Chapter 3 Introduction to SQL

2 Marks:
1. Define data – definition language (DDL)?
The SQL, DDL provides commands for defining relation schemas, deleting relations, and modifying relation schemas.

2. Define data – manipulation language (DML)?

The SQL, DML provides the ability to query information from the database and to insert tuples into, delete tuples from, and modify tuples in the database.

3. Define integrity?

The SQL, DDL includes commands for specifying integrity constraints that the data stored in the database must satisfy. Updates that violate integrity constraints are disallowed.

4. Define view definition?

The SQL, DDL includes commands for defining views.

5. Define transaction control?

 SQL includes commands for specifying the beginning and ending of transactions.

6. What is embedded SQL and dynamic SQL?

 Embedded and dynamic SQL define how SQL statements can be embedded within general – purpose programming languages, such as c,c++, and java .

7. Define authorization?

The SQL, DDL includes commands for specifying access rights to relations and views.

8. Define primary key?

The primary – key attributes are required to be nonnull andunique; that is, no tuple can have a null value for a primary-key attribute, and no two tuples in the relation can be equal on all the primary-key attributes.

9. Define foreign key?

This foreign-key declaration specifies that for each course tuple, the department name specified in the tuple must exist in the primary key attribute (dept_name) of the department relation.
10. Define not null?

 The not null constraint on an attribute specifies that the null value is not allowed for that attribute ; in other words, the constraint excludes the null value from the domain of that attribute.

11. Define set operations?

 The SQL operations union, intersect, and except operate on relations and correspond to the mathematical set-theory operations(,(and - .
 The set of all courses taught in the fall 2009 semester:

Select course_id

 From section

Where semester=’fall’ and year=2009;
12. Define union operation?
 The union operatio0n automatically eliminates duplicates, unlike the select clause.

 (Selectcouse_id
From section

 Where semester=’fall’ and year=2009)

Union all

 (Selectcourse_id

From section

 Where semester=’spring’ and year =2010);

13.Define the intersect operation?

The intersect operation automatically eliminates duplicates.

14.Define null values?
 Null values present special problems in relational operations, including arithmetic operations, comparison operations, and set operations.

 SQL uses the special keyword null in apredicate to test for a null value.
Select name
 From instructor

 Where salary is null;

15. Define aggregate functions?

Aggregate functions are functions that take a collection (a set or multiset) of values as input and return a single value. SQL offers five built-in aggregate functions:

· Average:avg
· Minimum:min
· Maximum:max
· Total:sum
· Count :count
16. Define nested subqueries?

 A common use of subqueries is to perform tests for set membership in a relation, make set comparisons, and determine set cardinality, by nested subqueries in the where clause
· Set membership

· Set comparison
17. Define deletion?

 A deletion request is expressed in much the same way as a query.
 Delete from r

 Where p;

10 marks:

1)Modification of database:

We have restricted attention until now to the extraction of information from the database. Now, we show to add, remove ,or change information with SQL.
· Deletion

· Insertion

· Updates

DELETION:

 A delete request is expressed in much the same way as a query. We can delete only whole tuples; We cannot delete values on only particular attributes. SQL expresses a deletion by

Delete from rWhere p;

P represents a predicate and r represents a relation.

Examples of SQL delete requests
 Delete all tuples in the instructor relation pertaining to instructor in the finance department.

Delete from instructor Where dept _name=’finance’;

 Delete all instructor with a salary between $13,000 and $15,000.

Delete from instructor Where salary between 13000 and 15000;

 Delete all tuples in the instructor relation for those instructors associated with a department located in the waston building.

Delete from instructor Where dept_name in (select dept _name from department where building =’waston’);

INSERTION :

· To insert data into a relation , we either specify a tuple to be inserted or write a query whose result is a set of tuples to be inserted.

· The simplest insert statement is a request to insert one tuple.

Example of SQL for insert requests

Insert into course values (course id ,title,deptname,credits);

Insert into course values(‘cs-437’,’database system’,’comp.sci’,4);

UPDATES:

 In certain situation ,we may wish to change a values in a tuple without changing all values in the tuple. For this pupose ,the updates statement is used.

Example of SQL for updates requests

Update instructor set alary=alary*1.05;

The preceding update statement is applied once to each of the tuple in instructor relation.

Update instructor set salary =salary*1.05 where salary avg(salary) from instructor);

Where clause of the update statement may contain any construct legal in the where clause of the select statement (including nested selects).
2)Nested subqueries:

 SQL provides a mechanism for nesting subqueries. A subquery is a select-from-where expression that is nested within a another query. A common of subqueries is to perform tests for set membership, set comparisons, set cardinality.

Set membership:

 SQL allows testing tuples for set membership in a relation.the in connective tests for set membership, where the set is a collection of values produced by a select clause. The not in connective tests for the absence of set membership.

 “find all the customers who have both a loan and an account at the bank.the set of depositors at the bank, and the set of borrowers from the bank. we can take the alternaive approach of finding all account holders at the bank who are the set of borrowers from the bank.

(Select customer_ nameFrom depositor);

We then need to find those customers who are borrowers from the bank and who appear in the list of account holders obtained in the subquery, Nesting the subquery in an outer select.

Select distinct customer_ name From borrower Where customer_ name in(select customer_ name from depositor);
Select distinct customer_ name From borrower. LoanWhere borrower. loan number=’perryridge’ and(branch_ name, customer_ name)in(select branch_ name, customer_ nameFrom depositor ,accountWhere depositor. account_ number=account. account_ number)

We use the not in construct in a similar way.

Select distinct customer_ name From borrower;
Where customer_ name not in (select customer_ name from depositor)

The in and not in operators can also be use on enumerated sets.
5 marks:

1)BASIC STRUCTURE OF SQL QUERIES:
 The basic structure of sql query consists of three clauses

· Select

· From

· Where

The query takes as its input the relation listed in the from clauses,operates on them as specified in the where and select clauses,and then produces a relation as the result.

Queries on a single relation

let us consider a simple query using our university

Example:

“ Find the names of all instructor ”.instructor names are found in the instructor relation,soweput that relation in the from clause.the instructor’s name appears in the name attribute,so we put that in the select clause.

Select name from instructor ;

The result is the relation consisting of a single attribute with the heading name .

 “Find the department names of all instructor”,

Select dept name from instructor;

The result is a relation containing the department names,

We want to force the elimination of dublicates,we insert the keyword distinct after select.

Select distinct dept name from instructor;

The result of the query would contain each department name at most once.

 SQL allows us to use the keyword all to specify explicitly that dublicatin are not removed:

Select all dept name from instructor;

To ensure the elimination of dublicates in the results

Select clause

The select clause may also contain arithmetic expressions involving the operators +,-,* and / operatin or attributes of tuples.

For example:

Select id,name,deptname,salary*1.1 from instructor;

SQL allows the us eof logical connectives and ,or and not in the where clause.the operands <,<=,>,>=,= and <>.SQL allows us to use the comparison operators to compare strings and arithmetic expressions as well as special types,such as data types.

Queries on multiple relations

Queries often need to access information from multiple relations.in sql, to answer the above query,we list the relations that need to be accessed in the from clause,and specify the matching condition in the where clause.

Select name, instructor.dept name ,building from instructor, department where instructor .dept name=department.deptname;

The role of each clause is as follows:

The select clause is used to list the attributes desired in the result of query.

The from clause is a list of the relation to be accessed in the evaluation of the query.

The where clause is a predicate involving attributes of the relation in the from clause.

A typical SQL query has the form

Select A1,A2,….An from r1,r2,…rm where p;

Each Ai represents an attributes ,and each ri represents a relation .p is a predicate.if the where clause is omitted ,the predicate p is true.s

2)NULL VALUES:

Sql allows the use of null values to indicate the absence of information about the value of an attribute.

 We can use the special keyword null in a predicate to test for a null value. Thus, to find all loan numbers that appear in the loan relation with null values in amount, we write

Select loan number from loan where amount is null;

The predicate is not null test for the absence of a null value.

The use of null value in arithmetic and comparison operation may cause several complications.

The result of an arithmetic expression is null if any of the input values is null. Sql treats as unknown the result of any comparison involving a null value.

Since the predicate in a where clause can involve Boolean operations such as and, or and not on the results of the comparison, the definition of the Boolean operations are extended to deal with the value unknown.

· And: The result of true and unknown is unknown, false and unknown is false and unknown and unknown is unknown.

· Or: The result of true or unknown is true, false or unknown is unknown and unknown or unknown is unknown.

· Not: The result of not unknown is unknown.

Sql defines the result of an sqlstataement of the form,

Select …… from r1……….rn where p;

 To contain tuples in r1X……………Xrn for which predicate p evaluate true. If the predicate evaluates to either false or unknown for a tuple in r1X……………Xrn the tuple is not added to the result.

Sql also allows us to test whether the result of a comparison is unknown, rather than true or false, by using the clauses is unknown or not unknown.

Null values when they exists, also complicate the process of aggregate operators. Fpr example, assume that the some tuples in the loan relation have null value for amount. Consider the following query to total all the loan amounts:

Select sum(amount) from loan;

The values to be summed in the preceding query include null values, since some tuples have a null value for amount. Rather than say that the allover sum is itself null,the standard sql says that the sum operator should ignore null values in its input.

A Boolean data type which can take values true, alse and unknown, was introduced in sql:1999.

3)Aggregate functions:
 Aggregate functions are the functions that take multiple values as the input and returns a single value. Sql offers five built in aggregate functions.

· Average: avg

· Minimum: min

· Maximum: max

· Count: count

· Total: sum
The input to sum and average must be the collections of numbers, but the other operators can operate on nun numeric data types such as strings as well.

Consider the query “find the average account balance at the perryridge bank”,
Select avg(balance) from account where branchname=’perryridge’;
Consider the query “find the average account balance at each branch”

Selectbranchname,avg(balance) from account groupbybranchname;

Retaining duplicates is important in computing an average. There are cases where we must eliminate duplicates, we use the keyword distinct in the aggregate expression.

Consider the query ”find the number of depositors foe each branch”

Select branch name,count(distinct customername) from depositor,account where depositor.accountnumber=aaccount.accountnumbergroupbybranchname;

Consider the query “find the average balance for all accounts”

Select avg(balance) from account;
We use the aggregate function count frequently to count the number of tuple in the relation. The notation for this function in sql is count(*). Thus, to find the number of tuples in the customer relation, we write

Select count(*) from customer;

Sql does not allows the use of distinct with count(*). It is legal to use distinct with min and max, even though the result does not change. We can use the keyword all in place of distinct to specify duplicate retention, but, since all is the default, there is no need to do this.

Consider the query “find the average balance for each customer who lives in harrison and has atleast three accounts”

Select depositor.customername,avg(balance) from depositor, customer, account where depositor.accountnumber=account.accountnumber and depositor.customername= customer.customername and customercity=’harrison’ groupbydepositor.customername having count(distinct depositor.accountnumber)>=3;
