

INPUT OUTPUT STATEMENTS

getchar

 getchar is a function for reading characters one at a time from the keyboard.

The general format of getchar:

variable_name = getchar();

 When this statement is encountered, the computer waits until a key is pressed and then assigns

the typed character as a value to getchar function. Since getchar is used on the right-hand side of

an assignment statement, the character value of getchar is assigned to the variable name on the

left.

Example: char name;

 name = getchar();

putchar

putchar is a function for writing characters one at a time to the terminal.

The general format :

putchar (variable_name);

Where variable_name is a char type variable containing a character. This statement displays the

character contained in the code at the terminal. For example, the statements

answer = ‘Y’;

putchar (answer);

will display the character Y on the screen.

FORMATTED OUTPUT (printf)

The general form of printf statement is

Printf (“control string”, arg1, arg2,……argn);

The control string indicates how many arguments follow and what their types are. The arguments

arg1, arg2,…..argn are the variables whose values are formatted and printed according to the

specifications of the control string. The arguments should match in number, order and type

with the format specifications.

FORMATTED INPUT (scanf)

 Formatted input refers to an input data that has been arranged in a particular format.

The general form of scanf is

scanf (“control string”, arg1, arg2,…..argn);

The arguments arg1, arg2,….argn specify the address of locations where the data is stored.

 Control string contains field specifications which direct the interpretation of input data. It

may include:

 Field (or format) specification, consisting of the conversion character %, a data type character

(or type specifier), and an optional number, specifying the field width.

 Blanks, tabs, or newlines.

Inputting Integer Numbers

The field specification for reading an integer number is:

% wd

The percent sign (%) indicates that a conversion specification follows. ‘w’ is an integer number

that specifies the field width of the number to be read. ‘d’ known as data type character,

indicates that the number to be read is in integer mode.

Example:

scanf (“%2d %5d”, &num1, &num2);

DECISION MAKING AND BRANCHING STATEMENTS

The statements which branch the execution control are called branching statements. They are if,

switch, goto, break and continue

 if statement

 The if statement is a powerful decision making statement and is used to control the flow of

execution of statements. The if statement may be implemented in different forms depending

upon the complexity of conditions to be tested. They are:

1. simple if 2. if ...else 3. nested if...else 4. else if ladder

Simple if

The general format is:

 if (test condition)

{

statement-block;

 }

next statement ;

If the test condition is true, the statement block will be executed: otherwise the statement block-

will be skipped and the execution will jump to the next statement. This is illustrated in the

following fig.

if ... else statement

The if ...else statement is an extension of the simple if statement.

The general form is:

if (test condition)

 {

 true-block statement(s)

 }

else

 {

 false-block statement (s)

 }

next statement

If the test expression is true, then the true-block statements are executed; otherwise, the false-

block statements are executed.

Nested if...else

 When a series of decisions are involved, we may have to use more than one if...else statement

in nested form as follows:

if (test-condition 1)

 {

 if (test-condition 2)

 {
 statement-1

 }

 else
 {

 statement-2

 }
else

 if (test condition)

 {

 statement-3
 }

 else

 {
 statement - 4

 }

 }

else if ladder

 It is a multi alternative selection structure. The general form:

if (condition 1)

 statement-1;

else if (condition 2)

 statement-2;

 else if (condition 3)

 statement-3;

 else if (condition n)

 statement-n;

 else

 default statement;

 next statement.

 In this statement, each ‘else’ is associated with an ‘ if ’

The switch statement

 When one of the many alternatives is to be selected, the switch statement is used. The

switch statement tests the value of the given variable (or expression) against a list of case values

and when a match is found, a block of statements associated with that case is executed. The

general form is:

switch (expression)

{

case value-1:

 block-1

 break;

case value-2:

 block-2

 break;

default:

 default-block

break;

}

next statement;

The goto statement

 The goto statement is used to branch unconditionally from one point to another in the

program. The goto requires a label in order to identify the place where the branch is to be made.

A label is any valid variable name and must be followed by a colon. The label is placed

immediately before the statement where the control is to be transferred.

The general format of goto statement is

goto label;

 ----------- -----------

 ----------- -----------

label:

statement;

label:

statement;

 ----------- -----------

 ----------- -----------

goto label;

Forward jump backward jump

 The label can be anywhere in the program either before or after the goto statement.

During running of a program when a statement like goto begin; is met, the flow of control will

jump to the statement immediately following the label begin: This happens unconditionally. The

goto breaks the normal sequential execution of the program. If the label: is placed before the

statement goto label; a loop will be formed and some statements will be executed repeatedly.

Such a jump is known as backward jump. If the label: is placed after the goto label; some

statements will be skipped and the jump is known as a forward jump.

The break statement

 The break statement causes an exit from a loop (such as while or for loops) or a switch

statement. The general form of break statement is break;

Example:

switch (expression)

{

case value-1:

 block-1

 break;

case value-2:

 block-2

 break;

default:

 default-block

 break;

}

next statement;

The break statement at the end of each block signals the end of a particular case and causes an

exit from the switch statement. It transfers the control to the statement-x following the switch

statement.

The continue statement

 The continue statement causes the loop to be continued with the next iteration after

skipping any statements following the continue statement. The continue statement tells the

compiler “SKIP THE FOLLOWING STATEMENTS AND CONTINUE WITH THE NEXT ITERATION”. The

format of the continue statement is

continue;

 The use of the continue statement in loops is illustrated in the following examples:

In while and do loops, continue causes the control to go directly to the test condition and then to

continue the iteration process. But in the case of for loop, the increment section of the loop is

executed before the test-condition is evaluated.

Looping statements

The while statement

The basic format of the while statement is:

 while (test condition)

 {

 body of the loop

}

The while is an entry controlled loop statement. The test condition is evaluated first and if

the condition is true, then the body of the loop is executed. After the execution of the body, the

test-condition is once again evaluated and if it is true, the body is executed once again. This

process of repeated execution of the body continues until the test-condition finally becomes false

then the control is transferred out of the loop.

The do while statement

 It is an exit controlled loop statement.

The general format is:

do

 {

 body of the loop

 }

while (test-condition);

On reaching the do statement, the program proceeds to evaluate the body of the loop first. At

the end of the loop, the test-condition in the while statement is evaluated. If the condition is true,

the program continues to evaluate the body of the loop once again. This process continues as

long as the condition is true. When the condition becomes false, the loop will be terminated and

the control goes to the statement that appears immediately after the while statement.

The for statement

The for loop is an entry-controlled loop. The general form of the for loop is:

 for (initialization; test-condition; increment)

{

 body of the loop

 }

The execution of the for statement is as follows:

1. Initialization of the control variables is done first.

2. The value of the control variable is tested using the test-condition. If the condition is true, the

body of the loop is executed; otherwise the loop is terminated.

3. When the body of the loop is executed, the control is transferred back to the for statement

after evaluating the last statement in the loop. Now, the control variable is incremented and

the new value of the control variable is again tested. This process continues till the value of

the control variable fails to satisfy the test-conditions.

Features of for loop

 The for loop has several capabilities that are not found in other loop constructs. They are:

1. More than one variable can be initialized at a time in the for statement.

2. Like the initialization section, the increment section may also have more than one part.

3. The test-condition may have any compound relation and the testing need not be limited only

to the loop control variable.

4. One or more sections such as initialization can be omitted.

5. Nesting of for loops, that is, one for statement within another for statement is allowed. For

example, two loops can be nested as follows:

ARRAYS

 An array is a group of related data items that share a common name. Arrays can be

of any variable type.

ONE DIMENSIONAL ARRAYS

 A list of items that can be given one variable name with only one subscript is called an one-

dimensional array or single subscripted variable.

In C, single subscripted variable x can be expressed as x[0], x[1], x[2], x[3]……….x[n-1]. If we

want to represent a set of five numbers by an array variable x, then we can declare the variable x,

as follows : int x [5];

The computer reserves five storage locations as shown below:

x[0]

x[1]

x[2]

x[3]

x[4]

The subscript of an array can be an integer constant, integer variable or an expressions that yield

an integer.

The general form of array declaration is

data type variable name [size] ;

The data type specifies the type of element that will be contained in the arrays such as int , float

or char. Size indicates the maximum number of elements that can be stored inside the array.

For example: int mark [57]; declares the mark to be an array containing 57 integer elements.

Any subscript 0 to 56 are valid.

We can initialize the elements of arrays in the same way as the ordinary variables where they are

declared.

The general form of initialization of array is:

datatype array name [size] = {list of values} ;

 eg: int a [5] = {25,3,4,70,81} ;

TWO DIMENSIONAL ARRAYS

Table type arrays with two subscripts are called two dimensional arrays. When tables of values

are to be processed, two dimensional arrays are used. Two –dimensional arrays are declared as

follows:

data type array name [row_ size] [column_size] ;

Example: int a [2] [3];

Two dimensional arrays are stored in memory.

a[0][0] a[0][1] a[0][2]

a[1][0] a[1][1] a[1][2]

The first index selects the row and the second index selects the column within that row.

Initializing two –dimensional arrays

Two – dimensional arrays can be initialized during the declaration with a list of initial values

enclosed in braces.

For example,

int x [2] [3]= {0,0,0,1,1,1};

Initialize the elements of the first row to zero and the second row to one. The above

statement can also be written as

int x [2] [3] = {{0,0,0},{1,1,1}};

by surrounding the elements of each row by braces.

If the values are missing in an initialization, they are automatically set to zero.

DECLARATION OF ARRAYS AND STORING ARRAYS IN MEMORY

 The general form of array declaration is

type variable-name [size];

The type specifies the type of elements that will be contained in the array, such as int, float, or

char and the size indicates the maximum number of elements that can be stored inside the array.

For example, float height [50]; declares the height to be an array containing 50 real elements.

Any subscripts 0 to 49 are valid. Similarly, int group[10]; declares the group as an array to

contain a maximum of 10 integer constants.

The C language treats character strings simply as arrays of characters. The size in a character

string represents the maximum number of characters that the string can hold. For instance,

char name[10]; declares the name as a character array (string) variable that can hold a

maximum of 10 characters. Suppose we read the following string constant into the string variable

name.

“WELL DONE”

Each character of the string is treated as an element of the array and is stored in the memory as

follows:

‘W’

‘E’

‘L’

‘L’

‘’

‘D’

‘O’

‘N’

INITIALISATION OF ARRAYS

We can initialize the elements of arrays in the same way as the ordinary variables when they are

declared. The general form of initialisation of array is:

 type array-name [size] = {list of values};

The values in the list are separated by commas. For example, the statement

 int number[3] = {0,0,0};

will declare the variable number as an array of size 3 and will assign zero to each element. If the

number of values in the list is less than the number of elements, then only that many elements

will be initialized. The remaining elements will be set to zero automatically. For instance,

 float total[5] = {0.0,15.75,-10};

will initialize the first three elements to 0.0, 15.75, and -10.0 and remaining two elements to

zero.

The size may be omitted. In such cases, the compiler allocates enough space for all initialized

elements. For example, the statement

int counter[] = {1,1,1,1};

will declare the counter array to contain four elements with initial values 1.

Character arrays may be initialized in a similar manner. Thus, the statement

 char name[] = {‘J’, ‘o’, ‘h’, ‘n’};

declares the name to be an array of four characters, initialized with the string “John”.

‘E’

‘\O’

	DECISION MAKING AND BRANCHING STATEMENTS
	Nested if...else
	else if ladder
	The switch statement
	The goto statement
	Looping statements
	The while statement
	The for statement

