

PROGRAMMING IN C++

6

CORE COURSE II

PROGRAMMING IN C++

Objective:

To impart basic knowledge of Programming Skills in C++ language.

Unit I

Basic Concepts of Object- Oriented Programming - Benefits of OOP - Object
Oriented Languages - Applications of OOP – Structure of C++ Program -
Tokens, Expressions and Control Structures – Functions in C++

Unit II

Classes and Objects – Constructors and Destructors –Operator Overloading
and Type Conversions

Unit III

Inheritance : Extending Classes – Pointers - Virtual Functions and
Polymorphism

Unit IV

Managing Console I/O Operations – Working with Files – Templates –
Exception Handling

Unit V

Standard Template Library – Manipulating Strings – Object Oriented Systems
Development

Text Book

1. Balagursamy E, Object Oriented Programming with C++, Tata McGraw Hill

Publications, Sixth Edition, 2013

Reference Books

1. Ashok Kamthane, Programming in C++, Pearson Education,2013.

 Department of Computer Science, Valluvar College of Science and Management, Karur.

PROGRAMMING IN C++ I
ST

 B.SC (CS)

VALLUVAR COLLEGE OF SCIENCE AND MANAGEMENT
DEPARTMENT OF COMPUTER SCIENCE

2 Mark Questions

Unit – I:

Basic Concepts of Object- Oriented Programming - Benefits of OOP – Object

Oriented Languages - Applications of OOP – Structure of C++ Program - Tokens,
Expressions and Control Structures – Functions in C++

1. What are the characteristics of procedure oriented programming?

 Some characteristics exhibited by procedure-oriented programming are:

• Emphasis is on doing things (algorithms).
• Large programs are divided into smaller programs known as functions.
• Most of the functions share global data.

• Data move openly around the system from function to function.
• Functions transform data from one form to another.

• Employs top-down approach in program design.

2. Write the principal advantages of Object Oriented Programming?

 The principal advantages are:

• Through inheritance, we can eliminate redundant code and extend the

 use of existing classes.
• We can build programs from the standard working modules that
 communicate with one another, rather than having to start writing the

 code from scratch. This leads to saving of development time and higher
 productivity.

• The principle of data hiding helps the programmer to build secure
 programs that cannot be invaded by code in other parts of the program.
• It is possible to have multiple instances of an object to co-exist without

 any interference.
• It is possible to map objects in the problem domain to those in the

 program.
• It is easy to partition the work in a project based on objects.
• The data-centered design approach enables us to capture more details

 of a model inimplementable form.
• Object-oriented systems can be easily upgraded from small to large

 systems.
• Message passing techniques for communication between objects makes
 the interface descriptions with external systems much simpler.

• Software complexity can be easily managed.

3. Define Object.

Objects are the basic run·time entities in an object·oriented system.

They may represent a person, a place, a bank aooount, a table of data or
any item that the program has to handle. They may also represent

user·defined data such as vectors, time and lists.

 Department of Computer Science, Valluvar College of Science and Management, Karur.

PROGRAMMING IN C++ I
ST

 B.SC (CS)

An Object is an instance of a Class. When a class is defined, no
memory is allocated but when it is instantiated (i.e. an object is created)

memory is allocated.

4. What is Object Oriented Programming?

Object means a real word entity such as pen, chair, table etc.

Object-Oriented Programming is a methodology or paradigm to design a
program using classes and objects. It simplifies the software development

and maintenance by providing some concepts:

• Object

• Class
• Inheritance

• Polymorphism
• Abstraction
• Encapsulation

5. What is Class?

 A class in C++ is a user-defined type or data structure declared with

keyword class that has data and functions (also called member variables
and member functions) as its members whose access is governed by the
three access specifiers private, protected or public. By default access to

members of a C++ class is private. The private members are not
accessible outside the class; they can be accessed only through methods

of the class. The public members form an interface to the class and are
accessible outside the class.

6. Write few words about Object Oriented Languages.

 The languages should support several of the OOP concepts to claim
that they are object-oriented. Depending upon the features they support,
they can be classified into the following two categories:

1. Object-based programming languages, and

2. Object-oriented programming languages.

Object-based programming is the style of programming that primarily

supports encapsulation and object identity. Major features that are
required for object-based progrramming are:

• Data encapsulation
• Data hiding and access mechanisms

• Automatic initialization and clear-up of objects
• Operator overloading

 Languages that support programming v.itb objects a.re said to be
object-based programming languages. They do not support inheritance

and dynamic binding. Ada is a typical object-based programming
language.

 Department of Computer Science, Valluvar College of Science and Management, Karur.

PROGRAMMING IN C++ I
ST

 B.SC (CS)

Object·oriented programming incorporates all of object-based
programming features along with two additional features, namely,

inheritance and dynamic binding. Object-oriented programming can
therefore be characterized by the following statement:

Object-based features + Inheritance + dynamic binding

Languages that support these features include C++, Smalltalk, Object
Pascal and Java.

7. List the applications of object oriented programming?

The promising areas for application of OOP include:
• Real-time systems

• Simulation and modeling
• Object-oriented databases
• Hypertext, hypermedia and expertext

• AI and expert systems
• Neural networks and parallel programming

• Decision support and office automation syste1ns
• CIM/CAM/CAD systems

8. What is C++?

 C++ is an object-oriented programming language. It was developed
by Bjarne Stroustrup at AT&T Bell Laboratories in Murray Hill, New Jersey,

USA, in the early 1980's. Stroustrup, an admirerofSimula67 and a strong
supporter of C, wanted to combine the best of both the languages and
create a more powerful language that could support object-oriented

programming features and still retain the power and elegance of C. The
result was C++. rhereforo, C++ is an extension ofC with a major addition

of the class oonstruct feature of Simula67. Since the class was a major
addition to tho original C language, Stroustrup initially called the new
language 'C with classes'. However, later in 1983, the name was changed

to C++. The idea ofC++ comes from the C increment operator ++,
thereby suggesting that C++ is an augmented (incremented) version of C.

9. Give the structure of C++ program.

Programs are a sequence of instructions or statements. These
statements form the structure of a C++ program. C++ program structure

is divided into various sections, namely, headers, class definition, member
functions definitions and main function.

 Department of Computer Science, Valluvar College of Science and Management, Karur.

PROGRAMMING IN C++ I
ST

 B.SC (CS)

Note that C++ provides the flexibility of writing a program with or without
a class and its member functions definitions.

10.Write note on iostream File.

 We have used the following #include directive in the program:

 #include <iostream>

This directive causes the preprocesSor to add the contents of the
 iostream file to the program. It contains declarations for the identifier
 cout and the operator <<. Some old versions of C++ use a header file

 called iootream.h. This is one of the changes introduced by ANSI C++. The
 header file iostream should be included at the beginning of all programs

 that use input/output statements. Note that the naming conventions for
 header files may vary. Some implementations use iostream.hpp; yet
 others iostream.hxx. We must include appropriate header files depending

 on the contents of the program and implementation.

11.What is Namespace?

 Namespace is a new concept introduced by the ANSI C++ standards
committee. This defines a scope for the identifiers that are used in a
program. For using the identifiers defined in the namespace scope we

must include the using directive, like

using namespace std;

Here, std is the namespace where ANSI C++ standard class libraries are

defined. All ANSI C++ programs must include this directive. This will bring
all the identifiers defined in std to the current global scope. using and

namespace are the new keywords of C++.

12.What are tokens in C++?

 The smallest individual units in a program are known as tokens. C++

has the following tokens:

 • Keywords

 • Identifiers
 • Constants

 • Strings
 • Operators

A C++ program is written using these tokens, white spaces, and the
syntax of the language.

13.What is a variable in C++? How is it declared?

 A variable is a name given to a memory location. It is the basic unit of
storage in a program.

 Department of Computer Science, Valluvar College of Science and Management, Karur.

PROGRAMMING IN C++ I
ST

 B.SC (CS)

• The value stored in a variable can be changed during program execution.
• A variable is only a name given to a memory location, all the operations

done on the variable effects that memory location.
• In C++, all the variables must be declared before use.

How to declare variables?

A typical variable declaration is of the form:

// Declaring a single variable
type variable_name;

// Declaring multiple variables:
type variable1_name, variable2_name, variable3_name;

A variable name can consist of alphabets (both upper and lower case),
numbers and the underscore ‘_’ character. However, the name must not

start with a number.

14.Enumerate the rules of naming variables in C++.

 Following are the rules for naming variables:

1. Variable names in C++ can range from 1 to 255 characters.
2. All variable names must begin with a letter of the alphabet or an

underscore(_).
3. After the first initial letter, variable names can also contain letters and

numbers. Variable names are case sensitive.

4. No spaces or special characters are allowed.
5. You cannot use a C++ keyword (a reserved word) as a variable name.

 Here are some examples of acceptable variable names:
 mohd Piyush abc move_name a_123

 myname50 _temp j a23b9 retVal

You can declare variables using the syntax:
 datatype variable_name;

For example,
 int my_var;

 float my_float;

15.Write about C++ data types?

 Data types in C++ is mainly divided into three types:

1. Primitive Data Types: These data types are built-in or predefined
data types and can be used directly by the user to declare variables.
example: int, char , float, bool etc. Primitive data types available in

C++ are:
• Integer

• Character

 Department of Computer Science, Valluvar College of Science and Management, Karur.

PROGRAMMING IN C++ I
ST

 B.SC (CS)

• Boolean
• Floating Point

• Double Floating Point
• Valueless or Void

• Wide Character

2. Derived Data Types: The data-types that are derived from the

primitive or built-in datatypes are referred to as Derived Data Types.
These can be of four types namely:

• Function
• Array
• Pointer

• Reference

3. Abstract or User-Defined Data Types: These data types are defined
by user itself. Like, defining a class in C++ or a structure. C++
provides the following user-defined datatypes:

• Class
• Structure

• Union
• Enumeration

• Typedef defined DataType

16.What are the new operators in C++?

All C operators are valid in C++ also. In addition, C++ introduces some
new operators. The new operators are:

<< Insertion operator

>> Extraction operator

:: Scope resolut ion operator

::* Pointer-to-member declaratory

 Department of Computer Science, Valluvar College of Science and Management, Karur.

PROGRAMMING IN C++ I
ST

 B.SC (CS)

=>* Pointer-to-member operator

.* Pointer-to-member operator

delete Memory release operator

endl Line feed operator

new Memory allocation operator

setw Field width operator

17.What is scope resolution operator?

In C++, scope resolution operator is ::. It is used for following purposes.

1) To access a global variable when there is a local variable with same
name:

2) To define a function outside a class.

3) To access a class’s static variables.
4) In case of multiple Inheritance:

 If same variable name exists in two ancestor classes, we can use
scope resolution operator to distinguish.
5) For namespace

 If a class having the same name exists inside two namespace we
can use the namespace name with the scope resolution operator to refer

that class without any conflicts
6) Refer to a class inside another class:

 If a class exists inside another class we can use the nesting class to
refer the nested class using the scope resolution operator

18.What are manipulators?

 Manipulators are operators that are used to format the data display.
The most commonly used manipulators are endl and setw.

 The endl manipulator, when used in an output statement, causes a
linefeed to be inserted. It has the same effect as uaing the ne\vline

character "\n". For example, the statement

.....

.....
cout << 1111 = " << m << end l

<< "n = " << n << end l
<< "p = " << p << end 1:
.....

.....

 would cause three lines of output, one for each variable.

 If the numbers are have to right-justified in the form of output, is

possible only if we can specify a common field width for all the numbers
and force them to be printed right-justified. The setw manipulator does

this job. It is used as follows:

cout << setw(S) << stMn << endl;

 Department of Computer Science, Valluvar College of Science and Management, Karur.

PROGRAMMING IN C++ I
ST

 B.SC (CS)

The manipulator setw(5) specifies a field width 5 for printing the value of
the variable sum.

19.Write about Type Cast Operator.

 C++ _permits explicit type conversion or variables or expressions
using the type cast operator.

 Traditional C casts arc augmented in C++ by a function..call notation
as a syntactic alternative. The following two versions are equivalent:

(type-name) expression // C notation
type-name (expression) // C++ notation

Examples:

average • sum/(float)i; // C notation
average •sum/float(!); // C++ notation

 A type-name behaves as if it is a function for converting values to a
designated type. The function-call notation usually leads to simplest

expressions. However, it can be used only if the type is an identifier.
For example,

p = int * (q);

20.What is Function Overloading?

 Function overloading is a feature in C++ where two or more functions

can have the same name but different parameters.
 Function overloading can be considered as an example of
polymorphism feature in C++.

 Following is a simple C++ example to demonstrate function
overloading.

#include <iostream>
using namespace std;

void print(int i) {

 cout << " Here is int " << i << endl;
}
void print(double f) {

 cout << " Here is float " << f << endl;
}

void print(char const *c) {
 cout << " Here is char* " << c << endl;
}

int main() {

 print(10);
 print(10.10);
 print("ten");

 return 0;
}

 Department of Computer Science, Valluvar College of Science and Management, Karur.

PROGRAMMING IN C++ I
ST

 B.SC (CS)

Output:

Here is int 10
Here is float 10.1

Here is char* ten

21.Define function prototyping?

A function prototype is a declaration of the function that tells the program

about the type of the value returned by the function and the number and
type of arguments.

Function prototyping is one very useful feature of C++ function. A
function prototype describes the function interface to the compiler by

giving details such as the number and type of arguments and the type of
return values.

Syntax:
type function-name (argument- list);

The argument·list contains the types and names of argument that must be

passed to the function.

Example:

float volume(int x, float y, float z) ;

 Note that each argument variable must be declared independently
inside the parentheses. That is, a combined declaration like

float volume(int x, float y, z);

is illegal.

22.What is inline function?

 C++ inline function is powerful concept that is commonly used with

classes. If a function is inline, the compiler places a copy of the code of that
function at each point where the function is called at compile time.

 Any change to an inline function could require all clients of the function to
be recompiled because compiler would need to replace all the code once

again otherwise it will continue with old functionality.

 To inline a function, place the keyword inline before the function name

and define the function before any calls are made to the function. The
compiler can ignore the inline qualifier in case defined function is more than a

line.

 A function definition in a class definition is an inline function definition,

even without the use of the inline specifier.

The syntax for defining the function inline is:

 Department of Computer Science, Valluvar College of Science and Management, Karur.

PROGRAMMING IN C++ I
ST

 B.SC (CS)

inline return-type function-name(parameters)

{
 // function code

}

23.What is data abstraction?

 Data abstraction is one of the most essential and important feature of

object oriented programming in C++. Abstraction means displaying only
essential information and hiding the details. Data abstraction refers to
providing only essential information about the data to the outside world,

hiding the background details or implementation.

 Consider a real life example of a man driving a car. The man only knows
that pressing the accelerators will increase the speed of car or applying
brakes will stop the car but he does not know about how on pressing

accelerator the speed is actually increasing, he does not know about the
inner mechanism of the car or the implementation of accelerator, brakes etc

in the car. This is what abstraction is.

Abstraction using Classes: We can implement Abstraction in C++ using
classes. Class helps us to group data members and member functions using
available access specifiers. A Class can decide which data member will be

visible to outside world and which is not.

Abstraction in Header files: One more type of abstraction in C++ can be
header files. For example, consider the pow() method present in math.h
header file. Whenever we need to calculate power of a number, we simply

call the function pow() present in the math.h header file and pass the
numbers as arguments without knowing the underlying algorithm according

to which the function is actually calculating power of numbers.

Abstraction using access specifiers: Access specifiers are the main pillar

of implementing abstraction in C++. We can use access specifiers to enforce
restrictions on class members. For example:

 Members declared as public in a class, can be accessed from anywhere in
the program.

 Members declared as private in a class, can be accessed only from within
the class. They are not allowed to be accessed from any part of code outside

the class.

We can easily implement abstraction using the above two features provided

by access specifiers.

24.Explain GoTo Statement.

The goto statement is a jump statement which is sometimes also referred

to as unconditional jump statement. The goto statement can be used to
jump from anywhere to anywhere within a function.

Syntax:

 Department of Computer Science, Valluvar College of Science and Management, Karur.

PROGRAMMING IN C++ I
ST

 B.SC (CS)

Syntax1 | Syntax2

goto label; | label:

. | .

. | .

. | .

label: | goto label;

 In the above syntax, the first line tells the compiler to go to or jump
to the statement marked as a label. Here label is a user-defined identifier
which indicates the target statement. The statement immediately followed

after ‘label:’ is the destination statement. The ‘label:’ can also appear
before the ‘goto label;’ statement in the above syntax.

Unit – II:

Classes and Objects – Constructors and Destructors –Operator Overloading and
Type Conversions

1. Define Classes and Objects.

 A class is a way to bind the data and its associated functions together.
lt allows the data (and function&) to be hidden, if necessary, from external

use. when defining a class, we are creating a new abstract data type that can
be treated like any other built-in data type.

Generally, a class specification has two parts:

 1. Class declaration

 2. Class function definitions

The class declaration describes the type and scope of its members. The class
function definitions describe how the class functions are implement.
The general form of a class declaration ia:

class class name
(

};
private:

variable declarations;

function declarations;
public:

variable declarations;
function declaration;

 An Object is an instance of a Class. When a class is defined, no memory is
allocated but when it is instantiated (i.e. an object is created) memory is

allocated.

2. Distinguish between Object and Classes.

Class Object

A class is a blueprint from which you An object is the instance of the class,

 Department of Computer Science, Valluvar College of Science and Management, Karur.

PROGRAMMING IN C++ I
ST

 B.SC (CS)

can create the instance, i.e., objects. which helps programmers to use

variables and methods from inside
the class.

A class is used to bind data as well as
methods together as a single unit.

object acts as a variable of the class.

Classes have logical existence. Objects have a physical existence.

A class doesn't take any memory

spaces when a programmer creates
one.

An object takes memory when a

programmer creates one.

The class has to be declared only

once.

Objects can be declared several times

depending on the requirement.

3. What is Static member function?

 Just like static member variables we have static member functions
that are used for a specific purpose. To create a static member function
we need to use the static keyword while declaring the function. Since

static member variables are class properties and not object properties, to
access them we need to use the class name instead of the object name.

Properties of static member functions:

 A static function can only access other static variables or functions
present in the same class

 Static member functions are called using the class name.

Syntax- class_name::function_name()

4. What is Friend function in C++?

 A friend function of a class is defined outside that class' scope but it

has the right to access all private and protected members of the class. Even
though the prototypes for friend functions appear in the class definition,
friends are not member functions.

A friend can be a function, function template, or member function, or a class

or class template, in which case the entire class and all of its members are
friends.

To declare a function as a friend of a class, precede the function prototype in
the class definition with keyword friend as follows −

class ABC
{

public:

friend void xyz(void); // declaration
} ;

 Department of Computer Science, Valluvar College of Science and Management, Karur.

PROGRAMMING IN C++ I
ST

 B.SC (CS)

5. List the special characteristics of friend function.

 A friend function possesses certain special characteristics:

• It is not in the scope of the class to which it has boon declared as friend.
• Since it is not in the scope of the class, it cannot be called using the object

 of that class.
• It can be invoked like a normal function without the help of any object.

• Unlike member functions, it cannot access the member names directly and
 has to use an object name and dot membership operator with each
 member name.(e.g. A.x).

• It can be declared either in the public or the private part of a class without
 affecting its meaning.

• Usually, it has the objects as arguments.

6. What is meant by Constructors and list various types of Constructors?

A constructor is a 'special' member function whose task is to initialize the

object of its class. It is special because its name is the same as the Class
name. The constructor is invoked whenever an object of its associated

class is created. It is called constructor because it constructs the values of
data members of the class.
A constructor is dec1nred and defined as follows:

// class with a constructor

class integer
{
 int m, n;

 public:
 integer(void) ; //constructor declared

integer :: integer(void) //constructor defined

{
 m = 0; n = 0;

}

 Types of Constructors

I. Default Constructors: Default constructor is the constructor which

doesn’t take any argument. It has no parameters.
II. Parameterized Constructors: It is possible to pass arguments to

constructors. Typically, these arguments help initialize an object when

it is created. To create a parameterized constructor, simply add
parameters to it the way you would to any other function. When you

define the constructor’s body, use the parameters to initialize the
object.

III. Copy Constructor: A copy constructor is a member function which

initializes an object using another object of the same class.

 Department of Computer Science, Valluvar College of Science and Management, Karur.

PROGRAMMING IN C++ I
ST

 B.SC (CS)

7. What is a Parameterized Constructor?

 It is possible to pass arguments to constructors. Typically, these
arguments help initialize an object when it is created. To create a

parameterized constructor, simply add parameters to it the way you
would to any other function. When you define the constructor’s body, use
the parameters to initialize the object.

The constructor integer() may be modified to take arguments aa shown

below:
class integer
{

int m, n;

 public:
integer (int x, int y); //parameterized constructor
.....

.....
 };

 integer :: integer(int x, int y)
 {

m=x; n = y;
 }

When a constructor has boon parameterized, the object declaration

statement such as

integer int1;

may not work, We must pass the initial values as arguments to the

constructor function when an object is declared. This can be done in two
ways:

• By calling the constructor explicitly.
• By calling the constructor implicitly.

8. What is copy constructor?

A copy constructor is a member function which initializes an object
using another object of the same class. A copy constructor has the
following general function prototype:

 ClassName (const ClassName &old_obj);

Following is a simple example of copy constructor.

#include<iostream>
using namespace std;

class Point
{

private:
 int x, y;

public:

 Department of Computer Science, Valluvar College of Science and Management, Karur.

PROGRAMMING IN C++ I
ST

 B.SC (CS)

 Point(int x1, int y1) { x = x1; y = y1; }

 // Copy constructor
 Point(const Point &p2) {x = p2.x; y = p2.y; }

 int getX() { return x; }
 int getY() { return y; }

};

int main()
{
 Point p1(10, 15); // Normal constructor is called here

 Point p2 = p1; // Copy constructor is called here

 // Let us access values assigned by constructors
 cout << "p1.x = " << p1.getX() << ", p1.y = " << p1.getY();
 cout << "\np2.x = " << p2.getX() << ", p2.y = " << p2.getY();

 return 0;

}

Output:

p1.x = 10, p1.y = 15

p2.x = 10, p2.y = 15

9. What is meant by Destructors? Give example.

 A destructor, as the name implies, is used to destroy the objects that

have been created by a constructor. Like a constructor, the destructor is a
member function u1hosc name is the same as the class name but is

preceded by a tilde(~). For example, the destructor for the class integer
can be defined as shown below:
~Integer() { }

 A destructor never takes any argument nor does it return any value.
It will be invoked implicitly by the compiler upon exit from the program

(or block or function as the case may be) to clean up storage that is no
longer accessible. It is a good practice to declare destructors in a program
since it releases memory space for future use.

 Whenever new is used to allocate memory in the constructors, we
should use delete to free that memory.

class String
{

private:
 char *s;

 int size;
public:
 String(char *); // constructor

 ~String(); // destructor
};

 Department of Computer Science, Valluvar College of Science and Management, Karur.

PROGRAMMING IN C++ I
ST

 B.SC (CS)

String::String(char *c)
{

 size = strlen(c);
 s = new char[size+1];

 strcpy(s,c);
}

String::~String()
{

 delete []s;
}

10.Describe the importance of destructor.

� Automatic invocation and no explicit call from user code
� Overloading or inheritance not allowed
� Access modifiers or parameters not to be specified

� Order of call to destructor in a derived class is from the most
derived to the least derived

� Called not only during the object destruction, but also when the
object instance is no longer eligible for access

� Used in classes but not structs
� Used only to release expensive unmanaged resources (like

windows, network connection, etc.) that the object holds, rather

than for releasing managed references
� It is called automatically whenever object is destroyed or removed

from the memory.
� It is used to perform any operation at the time of destruction of any

object.

� It is called as per LIFO(Stack) method.(IMP)

11.How is a member function of a class defined outside?

A public member function can also be defined outside of the class

with a special type of operator known as Scope Resolution Operator
(SRO); SRO represents by :: (double colon)

Let’s consider the syntax

return_type class_name::function_name(parameters)
{

 function_body;
}

Syntax for declaring function outside of class

class class_name
 {

 public:

 return_type function_name (args); //function declaration

 Department of Computer Science, Valluvar College of Science and Management, Karur.

PROGRAMMING IN C++ I
ST

 B.SC (CS)

 };
//function definition outside class

return_type class_name :: function_name (args)
 {

 ; // function definition
 }

12.Write a program to overload unary minus operator.

/*C++ program for unary minus (-) operator overloading.*/
#include<iostream>
using namespace std;

class NUM

{
 private:
 int n;

 public:

 //function to get number
 void getNum(int x)

 {
 n=x;
 }

 //function to display number
 void dispNum(void)

 {
 cout << "value of n is: " << n;
 }

 //unary - operator overloading
 void operator - (void)

 {
 n=-n;
 }

};

int main()
{
 NUM num;

 num.getNum(10);
 -num;

 num.dispNum();
 cout << endl;
 return 0;

}

Output
 value of n is: -10

 Department of Computer Science, Valluvar College of Science and Management, Karur.

PROGRAMMING IN C++ I
ST

 B.SC (CS)

13.Give any two rules of Operator Overloading.

There are certain restrictions and limitations in overloading
Operators. Some of them are listed below:

1. Only existing operators can be overloaded. New operators cannot be
created.

2. The overloaded operator must have at least one operand that is of

user-defined type.
3. We cannot change the basic meaning of an operator. That is to say, we

cannot redefine the plus(+) operator to subtract one value from the
other.

4. Overloaded operators follow the syntax rules of the original operators.

They cannot be overridden.
5. There are some operators that cannot be overloaded.

6. We cannot use friend functions to overload certain operators.
 However member functions can be used to overload them.
6. Unary operators, overloaded by means of a member function, take no

explicit arguments and return no explicit values, but, those overloaded
by means of a friend function, take one reference argunl.cnt (the

object of the relevant class).
7. Binary operators overloaded through a member function take one

explicit argument and those which are overloaded through a friend
function take two explicit arguments.

8. When using binary operators overloaded through a member function,

the left hand operand must be an object of the relevant class.
9. Binary arithmetic operators such as +, -, *, and / must explicitly

return a value. They must not attempt to change their own arguments.

14.What do you mean by type conversion?

A type cast is basically a conversion from one type to another.

There are two types of type conversion:

1) Implicit Type Conversion Also known as ‘automatic type conversion’.

� Done by the compiler on its own, without any external trigger from
the user.

� Generally takes place when in an expression more than one data
type is present. In such condition type conversion (type promotion)
takes place to avoid lose of data.

� All the data types of the variables are upgraded to the data type of
the variable with largest data type.

 bool -> char -> short int -> int ->

 unsigned int -> long -> unsigned ->

 long long -> float -> double -> long double

� It is possible for implicit conversions to lose information, signs can

be lost (when signed is implicitly converted to unsigned), and
overflow can occur (when long long is implicitly converted to float).

 Department of Computer Science, Valluvar College of Science and Management, Karur.

PROGRAMMING IN C++ I
ST

 B.SC (CS)

Example of Type Implicit Conversion:

// An example of implicit conversion

#include <iostream>
using namespace std;

int main()
{

 int x = 10; // integer x
 char y = 'a'; // character c

 // y implicitly converted to int. ASCII
 // value of 'a' is 97

 x = x + y;

 // x is implicitly converted to float

 float z = x + 1.0;

 cout << "x = " << x << endl
 << "y = " << y << endl

 << "z = " << z << endl;

 return 0;

}
Output:

x = 107
y = a

z = 108

2) Explicit Type Conversion: This process is also called type casting and it
is user-defined. Here the user can typecast the result to make it of a
particular data type.

In C++, it can be done by two ways:

o Converting by assignment: This is done by explicitly defining the

required type in front of the expression in parenthesis. This can be also

considered as forceful casting.

 Syntax:

 (type) expression

 where type indicates the data type to which the final result is converted.

Example:

// C++ program to demonstrate
// explicit type casting

#include <iostream>

 Department of Computer Science, Valluvar College of Science and Management, Karur.

PROGRAMMING IN C++ I
ST

 B.SC (CS)

using namespace std;
int main()

{
 double x = 1.2;

 // Explicit conversion from double to int
 int sum = (int)x + 1;
 cout << "Sum = " << sum;

 return 0;
}

Output:
Sum = 2

o Conversion using Cast operator: A Cast operator is an unary

operator which forces one data type to be converted into another data
type.

 C++ supports four types of casting:

 1) Static Cast

 2) Dynamic Cast
 3) Const Cast

4) Reinterpret Cast

 Example:

 #include <iostream>
using namespace std;

int main()
{
 float f = 3.5;

 // using cast operator
 int b = static_cast<int>(f);

 cout << b;
}

 Output:

 3

Unit – III:

Inheritance : Extending Classes – Pointers - Virtual Functions and Polymorphism

1. What is derived class?

A derived class is a class created or derived from another existing

class. The existing class from which the derived class is created through

the process of inheritance is known as a base class or superclass.

Derived classes are used for augmenting the functionality of base
class by adding or modifying the properties and methods to suit the
requirements of the specialization necessary for derived class. This allows

for defining virtual methods that form the means to implement
polymorphism, which allows a group of objects to work in uniform

 Department of Computer Science, Valluvar College of Science and Management, Karur.

PROGRAMMING IN C++ I
ST

 B.SC (CS)

manner. Thus, the inherent advantages of inheritance and polymorphism
like code reuse, faster development, easy maintenance, etc., are realized.

A derived class is also known as subclass or child class.

The general form of defining a derived class is:

class derived-class-name : visibility-mode base-class-name
{

..... //
····· // members of derived class
..... //

} ;

2. What is Inheritance mean in C++?

The capability of a class to derive properties and characteristics

from another class is called Inheritance.
Sub Class: The class that inherits properties from another class is called

Sub class or Derived Class.
Super Class: The class whose properties are inherited by sub class is

called Base Class or Super class.

3. What are the different types/forms of Inheritance?

1) Single Inheritance: In single inheritance, a class is allowed to inherit

from only one class. i.e. one sub class is inherited by one base class
only.

Syntax:

class subclass_name : access_mode base_class
{
 //body of subclass

};

2) Multiple Inheritance: Multiple Inheritance is a feature of C++ where
a class can inherit from more than one classes. i.e one sub class is
inherited from more than one base classes.

Syntax:

class subclass_name : access_mode base_class1, access_mode
base_class2,

{
 //body of subclass

};

3) Multilevel Inheritance: In this type of inheritance, a derived class is

created from another derived class.

 Department of Computer Science, Valluvar College of Science and Management, Karur.

PROGRAMMING IN C++ I
ST

 B.SC (CS)

4) Hierarchical Inheritance: In this type of inheritance, more than one
sub class is inherited from a single base class. i.e. more than one

derived class is created from a single base class.

5) Hybrid (Virtual) Inheritance: Hybrid Inheritance is implemented by
combining more than one type of inheritance. For example: Combining
Hierarchical inheritance and Multiple Inheritance.

4. What is a virtual base class in C++?

The virtual base class is used when a derived class has multiple

copies of the base class.

#include <iostream>

using namespace std;
class B {
 public: int b;

};

class D1 : public B {
 public: int d1;

};

class D2 : public B {

 public: int d2;
};

class D3 : public D1, public D2 {
 public: int d3;

};

int main() {
 D3 obj;

 obj.b = 40; //Statement 1, error will occur
 obj.b = 30; //statement 2, error will occur

 obj.d1 = 60;
 obj.d2 = 70;
 obj.d3 = 80;

 cout<< "\n B : "<< obj.b

 cout<< "\n D1 : "<< obj.d1;
 cout<< "\n D2: "<< obj.d2;
 cout<< "\n D3: "<< obj.d3;

}

In the above example, both D1 & D2 inherit B, they both have a single
copy of B. However, D3 inherit both D1 & D2, therefore D3 have two
copies of B, one from D1 and another from D2.

 Department of Computer Science, Valluvar College of Science and Management, Karur.

PROGRAMMING IN C++ I
ST

 B.SC (CS)

5. What is meant by Pointers? Give example.

Pointers are symbolic representation of addresses. They enable
programs to simulate call-by-reference as well as to create and

manipulate dynamic data structures. It’s general declaration in C/C++ has
the format:

Syntax:

datatype *var_name;
int *ptr; //ptr can point to an address which holds int data

6. Explain This Pointer?

The this pointer holds the address of current object, in simple words
you can say that this pointer points to the current object of the class.

Every object in C++ has access to its own address through an
important pointer called this pointer. The this pointer is an implicit

parameter to all member functions. Therefore, inside a member function,
this may be used to refer to the invoking object.

Friend functions do not have a this pointer, because friends are not

members of a class. Only member functions have a this pointer.

Example:

#include <iostream>
using namespace std;

class Demo {
private:

 int num;
 char ch;
public:

 void setMyValues(int num, char ch){
 this->num =num;

 this->ch=ch;
 }
 void displayMyValues(){

 cout<<num<<endl;
 cout<<ch;

 }
};
int main(){

 Demo obj;
 obj.setMyValues(100, 'A');

 obj.displayMyValues();
 return 0;
}

Output:
100

A

 Department of Computer Science, Valluvar College of Science and Management, Karur.

PROGRAMMING IN C++ I
ST

 B.SC (CS)

7. List any two uses of pointers.

o To pass arguments by reference

o For accessing array elements
o To return multiple values
o Dynamic memory allocation

o To implement data structures
o To do system level programming where memory addresses are

useful

8. Define virtual function.

A virtual function a member function which is declared within a

base class and is re-defined(Overriden) by a derived class. When you
refer to a derived class object using a pointer or a reference to the base
class, you can call a virtual function for that object and execute the

derived class’s version of the function.

o Virtual functions ensure that the correct function is called for an
object, regardless of the type of reference (or pointer) used for

function call.
o They are mainly used to achieve Runtime polymorphism
o Functions are declared with a virtual keyword in base class.

o The resolving of function call is done at Run-time.

Rules for Virtual Functions

1) Virtual functions cannot be static and also cannot be a friend

function of another class.
2) Virtual functions should be accessed using pointer or reference of

base class type to achieve run time polymorphism.
3) The prototype of virtual functions should be same in base as well as

derived class.

4) They are always defined in base class and overridden in derived
class. It is not mandatory for derived class to override (or re-define

the virtual function), in that case base class version of function is
used.

5) A class may have virtual destructor but it cannot have a virtual

constructor.

9. What is a pure function?

A function is called pure function if it always returns the same result

for same argument values and it has no side effects like modifying an
argument (or global variable) or outputting something. The only result of

calling a pure function is the return value. Examples of pure functions are
strlen(), pow(), sqrt() etc. Examples of impure functions are printf(),
rand(), time(), etc.

 Department of Computer Science, Valluvar College of Science and Management, Karur.

PROGRAMMING IN C++ I
ST

 B.SC (CS)

10.What is Pure Virtual Functions?

A pure virtual function (or abstract function) in C++ is a virtual
function for which we don’t have implementation, we only declare it. A

pure virtual function is declared by assigning 0 in declaration. See the
following example.

// An abstract class
class Test

{
 // Data members of class
public:

 // Pure Virtual Function
 virtual void show() = 0;

 /* Other members */
};

11.What is an abstract class in C++?

Sometimes implementation of all function cannot be provided in a

base class because we don’t know the implementation. Such a class is
called abstract class. For example, let Shape be a base class. We cannot
provide implementation of function draw() in Shape, but we know every

derived class must have implementation of draw(). Similarly an Animal
class doesn’t have implementation of move() (assuming that all animals

move), but all animals must know how to move. We cannot create objects
of abstract classes.

12.Define Polymorphism.

The word polymorphism means having many forms. In simple
words, we can define polymorphism as the ability of a message to be
displayed in more than one form.

Real life example of polymorphism, a person at the same time can
have different characteristic. Like a man at the same time is a father, a

husband, an employee. So the same person posses different behavior in
different situations. This is called polymorphism.

13.What are the different types/forms of Polymorphism?

1) Compile time polymorphism: This type of polymorphism is achieved
by function overloading or operator overloading.

• Function Overloading: When there are multiple functions with
same name but different parameters then these functions are said

to be overloaded. Functions can be overloaded by change in
number of arguments or/and change in type of arguments.

• Operator Overloading: C++ also provide option to overload
operators. For example, we can make the operator (‘+’) for string

class to concatenate two strings. We know that this is the addition

 Department of Computer Science, Valluvar College of Science and Management, Karur.

PROGRAMMING IN C++ I
ST

 B.SC (CS)

operator whose task is to add two operands. So a single operator
‘+’ when placed between integer operands , adds them and when

placed between string operands, concatenates them

2) Runtime polymorphism: This type of polymorphism is achieved by
Function Overriding.

• Function overriding on the other hand occurs when a derived
class has a definition for one of the member functions of the

base class. That base function is said to be overridden.

Unit – IV:

Managing Console I/O Operations – Working with Files – Templates – Exception

Handling

1. What is stream?

 The I/O system supplies an interface to the programmer that is

 independent of the actual device being accessed. This interface is known
 as stream.

 A stream is a sequence of bytes. It acts either as a source from
 which the input data can be obtained or as a destination to which the
 output data can be sent. The source stream that provides data to the

 program is called the input stream and the destination stream that
 receives output from the program is called the output stream.

2. Explain the classes for file stream operation.

 In C++ there are number of stream classes for defining various
 streams related with files and for doing input-output operations. All these

 classes are defined in the file iostream.h. Figure given below shows the
 hierarchy of these classes.

 Department of Computer Science, Valluvar College of Science and Management, Karur.

PROGRAMMING IN C++ I
ST

 B.SC (CS)

1) ios class is topmost class in the stream classes hierarchy. It is the base

class for istream, ostream, and streambuf class.
2) istream and ostream serves the base classes for iostream class. The

class istream is used for input and ostream for the output.
3) Class ios is indirectly inherited to iostream class using istream and

ostream. To avoid the duplicity of data and member functions of ios class,

it is declared as virtual base class when inheriting in istream and ostream
as

 class istream: virtual public ios
 {

 };
 class ostream: virtual public ios

 {
 };

4) The _withassign classes are provided with extra functionality for the
assignment operations that’s why _withassign classes.

3. What is an iostream class?

 This class is responsible for handling both input and output stream as
both istream class and istream class is inherited into it. It provides

function of both istream class and istream class for handling chars, strings
and objects such as get, getline, read, ignore, putback, put, write etc..

Example:

#include <iostream>
using namespace std;

int main()
{

 // this function display

 // ncount character from array
 cout.write("SachinAathav", 6);
}

Output:

Sachin

4. How will be the I/O structure in C++?

 C++ comes with libraries which provides us with many ways for
performing input and output. In C++ input and output is performed in the
form of a sequence of bytes or more commonly known as streams.

 Input Stream: If the direction of flow of bytes is from the device(for

example, Keyboard) to the main memory then this process is called input.

 Department of Computer Science, Valluvar College of Science and Management, Karur.

PROGRAMMING IN C++ I
ST

 B.SC (CS)

 Output Stream: If the direction of flow of bytes is opposite, i.e. from
main memory to device(display screen) then this process is called

output.

I) Standard output stream (cout): Usually the standard output device
is the display screen. The C++ cout statement is the instance of the

ostream class. It is used to produce output on the standard output device
which is usually the display screen. The data needed to be displayed on

the screen is inserted in the standard output stream (cout) using the
insertion operator(<<).

II) standard input stream (cin): Usually the input device in a computer
is the keyboard. C++ cin statement is the instance of the class istream

and is used to read input from the standard input device which is usually a
keyboard.
The extraction operator(>>) is used along with the object cin for reading

inputs. The extraction operator extracts the data from the object cin which
is entered using the keboard.

III) Un-buffered standard error stream (cerr): The C++ cerr is the

standard error stream which is used to output the errors. This is also an
instance of the ostream class. As cerr in C++ is un-buffered so it is used
when one needs to display the error message immediately. It does not

have any buffer to store the error message and display later.

IV) Buffered standard error stream (clog): This is also an instance of
ostream class and used to display errors but unlike cerr the error is first
inserted into a buffer and is stored in the buffer until it is not fully filled.

The error message will be displayed on the screen too.

 Department of Computer Science, Valluvar College of Science and Management, Karur.

PROGRAMMING IN C++ I
ST

 B.SC (CS)

5. Give any two features of I/O system supported by C++.

� C++ IO is type safe. IO operations are defined for each of the type.
If IO operations are not defined for a particular type, compiler will

generate an error.
� C++ IO operations are based on streams of bytes and are device

independent. The same set of operations can be applied to different

types of IO devices.

6. What is a file?

 A file represents a sequence of bytes, regardless of it being a text

file or a binary file. C++ programming language provides access on high
level functions as well as low level (OS level) calls to handle file on your

storage devices.

7. What is meant by file input and output streams?

C++ handles file IO similar to standard IO. In header <fstream>,

the class ofstream is a subclass of ostream; ifstream is a subclass of
istream; and fstream is a subclass of iostream for bi-directional IO. You

need to include both <iostream> and <fstream> headers in your program
for file IO.

To write to a file, you construct a ofsteam object connecting to the output
file, and use the ostream functions such as stream insertion <<, put() and

write(). Similarly, to read from an input file, construct an ifstream object
connecting to the input file, and use the istream functions such as stream
extraction >>, get(), getline() and read().

File IO requires an additional step to connect the file to the stream (i.e.,

file open) and disconnect from the stream (i.e., file close).

8. Write a program to copy a content of file to another file.

/* C++ Program - Copy Files */

#include<iostream.h>
#include<conio.h>

#include<fstream.h>
#include<stdio.h>

#include<stdlib.h>
void main()
{

 clrscr();
 ifstream fs;

 ofstream ft;
 char ch, fname1[20], fname2[20];
 cout<<"Enter source file name with extension (like files.txt) : ";

 gets(fname1);
 fs.open(fname1);

 if(!fs)

 Department of Computer Science, Valluvar College of Science and Management, Karur.

PROGRAMMING IN C++ I
ST

 B.SC (CS)

 {
 cout<<"Error in opening source file..!!";

 getch();
 exit(1);

 }
 cout<<"Enter target file name with extension (like filet.txt) : ";
 gets(fname2);

 ft.open(fname2);
 if(!ft)

 {
 cout<<"Error in opening target file..!!";
 fs.close();

 getch();
 exit(2);

 }
 while(fs.eof()==0)
 {

 fs>>ch;
 ft<<ch;

 }
 cout<<"File copied successfully..!!";

 fs.close();
 ft.close();
 getch();

}

When the above C++ program is compile and executed, it will produce the
following result:

9. List out any two manipulators and their meanings.

Stream Manipulators are functions specifically designed to be used

in conjunction with the insertion (<<) and extraction (>>) operators on
stream objects, for example:

std::cout << std::setw(10);

They are still regular functions and can also be called as any other
function using a stream object as an argument, for example:

boolalpha (cout);

Manipulators are used to changing formatting parameters on
streams and to insert or extract certain special characters.

Following are some of the most widely used C++ manipulators:

 Department of Computer Science, Valluvar College of Science and Management, Karur.

PROGRAMMING IN C++ I
ST

 B.SC (CS)

endl

This manipulator has the same functionality as ‘\n’(newline

character). But this also flushes the output stream.

setw

This manipulator changes the width of the next input/output field.

When used in an expression out << setw(n) or in >> setw(n), sets the
width parameter of the stream out or in to exactly n.

showpoint/noshowpoint

This manipulator controls whether decimal point is always included
in the floating-point representation.

setprecision

This manipulator changes floating-point precision. When used in an
expression out << setprecision(n) or in >> setprecision(n), sets the

precision parameter of the stream out or into exactly n.

10.What is an exception?

 An exception is a problem that arises during the execution of a

program. A C++ exception is a response to an exceptional circumstance
that arises while a program is running, such as an attempt to divide by
zero.

Exceptions provide a way to transfer control from one part of a

program to another. C++ exception handling is built upon three
keywords: try, catch, and throw.

� throw − A program throws an exception when a problem shows
up. This is done using a throw keyword.

� catch − A program catches an exception with an exception

handler at the place in a program where you want to handle the

problem. The catch keyword indicates the catching of an
exception.

� try − A try block identifies a block of code for which particular

exceptions will be activated. It's followed by one or more catch

blocks.

11.Give the rules of Exception Handling.

• Use purpose-designed user-defined types as exceptions (not built-in

types)
• Catch exceptions from a hierarchy by reference

• Destructors, deallocation, and swap must never fail

 Department of Computer Science, Valluvar College of Science and Management, Karur.

PROGRAMMING IN C++ I
ST

 B.SC (CS)

• Don’t try to catch every exception in every function
• Minimize the use of explicit try/catch

12.What are the advantages of using exception handling mechanism in C++?

Following are main advantages of exception handling over traditional error
handling.

1) Separation of Error Handling code from Normal Code: In traditional

error handling codes, there are always if else conditions to handle errors.
These conditions and the code to handle errors get mixed up with the
normal flow. This makes the code less readable and maintainable. With try

catch blocks, the code for error handling becomes separate from the
normal flow.

2) Functions/Methods can handle any exceptions they choose: A function
can throw many exceptions, but may choose to handle some of them. The

other exceptions which are thrown, but not caught can be handled by
caller. If the caller chooses not to catch them, then the exceptions are

handled by caller of the caller.
In C++, a function can specify the exceptions that it throws using the

throw keyword. The caller of this function must handle the exception in
some way (either by specifying it again or catching it)

3) Grouping of Error Types: In C++, both basic types and objects can be
thrown as exception. We can create a hierarchy of exception objects,

group exceptions in namespaces or classes, categorize them according to
types.

13.What is Generic Programming?

Generic programming is a style of computer programming in which
algorithms are written in terms of types to-be-specified-later that are then
instantiated when needed for specific types provided as parameters.

Unit – V:

Standard Template Library – Manipulating Strings – Object Oriented Systems
Development

1. What is STL? What are its components?

The C++ STL (Standard Template Library) is a powerful set of C++

template classes to provide general-purpose classes and functions with

templates that implement many popular and commonly used algorithms
and data structures like vectors, lists, queues, and stacks.

At the core of the C++ Standard Template Library are following three
well-structured components −

1) Containers

 Department of Computer Science, Valluvar College of Science and Management, Karur.

PROGRAMMING IN C++ I
ST

 B.SC (CS)

Containers are used to manage collections of objects of a certain kind.
There are several different types of containers like deque, list, vector,

map etc.

2) Algorithms

Algorithms act on containers. They provide the means by which you

will perform initialization, sorting, searching, and transforming of the
contents of containers.

3) Iterators

Iterators are used to step through the elements of collections of
objects. These collections may be containers or subsets of containers.

2. Explain iterators.

Iterators are used to point at the memory addresses of STL
containers. They are primarily used in sequence of numbers, characters

etc. They reduce the complexity and execution time of program.

Operations of iterators :-

1. begin() :- This function is used to return the beginning position of the

container.

2. end() :- This function is used to return the after end position of the
container.

3. advance() :- This function is used to increment the iterator position till
the specified number mentioned in its arguments.

4. next() :- This function returns the new iterator that the iterator would
point after advancing the positions mentioned in its arguments.

5. prev() :- This function returns the new iterator that the iterator would

point after decrementing the positions mentioned in its arguments.

6. inserter() :- This function is used to insert the elements at any

position in the container. It accepts 2 arguments, the container and
iterator to position where the elements have to be inserted.

3. List the types of containers.

C++ contains three types of containers:

� Sequential Containers
� Associative Containers
� Unordered Containers

 Department of Computer Science, Valluvar College of Science and Management, Karur.

PROGRAMMING IN C++ I
ST

 B.SC (CS)

1) Sequence containers

Sequence containers implement data structures which can be accessed
sequentially.

• array: Static contiguous array (class template)
• vector: Dynamic contiguous array (class template)

• deque: Double-ended queue (class template)
• forward_list: Singly-linked list (class template)

• list : Doubly-linked list (class template)

2) Associative containers

Associative containers implement sorted data structures that can be

quickly searched (O(log n) complexity).

• Set: Collection of unique keys, sorted by keys (class template)

• Map: Collection of key-value pairs, sorted by keys, keys are unique
(class template).

• multiset: Collection of keys, sorted by keys (class template)
• multimap: Collection of key-value pairs, sorted by keys

 (class template)

3) Unordered associative containers

Unordered associative containers implement unsorted (hashed) data

structures that can be quickly searched (O(1) amortized, O(n) worst-case
complexity).

• unordered_set: Collection of unique keys, hashed by keys. (class
template)

• unordered_map: Collection of key-value pairs, hashed by keys,
keys are unique. (class template)

• unordered_multiset: Collection of keys, hashed by keys (class

template)
• unordered_multimap: Collection of key-value pairs, hashed by

keys (class template)

4. List the types of Iterators.

� Input Iterators

� Output Iterators
� Forward Iterator
� Bidirectional Iterators

� Random-Access Iterators

5. Draw the relationship between the three STL components.

1) Containers

 Department of Computer Science, Valluvar College of Science and Management, Karur.

PROGRAMMING IN C++ I
ST

 B.SC (CS)

Containers are used to manage collections of objects of a certain kind.
There are several different types of containers like deque, list, vector,

map etc.

2) Algorithms

Algorithms act on containers. They provide the means by which you

will perform initialization, sorting, searching, and transforming of the
contents of containers.

3) Iterators

Iterators are used to step through the elements of collections of objects.
These collections may be containers or subsets of containers.

6. Write three most popular container classes and its usage.

Container class is one of the classes that were put into class
libraries. To handle objects that contain other objects, container classes

are used. A GUI class library contains a group of container classes.

The following are the standardized container classes :
1. std::map :

Used for handle sparse array or a sparse matrix.

2. std::vector :
Like an array, this standard container class offers additional

features such as bunds checking through the at () member function,
inserting or removing elements, automatic memory management and
throwing exceptions.

3. std::string :
A better supplement for arrays of chars.

7. What is String?

Strings are used for storing text.

A string variable contains a collection of characters surrounded by double
quotes:

Example

Create a variable of type string and assign it a value:
string greeting = "Hello";

8. What is string class?

C++ has in its definition a way to represent sequence of characters as an

object of class. This class is called std:: string. String class stores the

characters as a sequence of bytes with a functionality of allowing access

to single byte character.

 Department of Computer Science, Valluvar College of Science and Management, Karur.

PROGRAMMING IN C++

9. Give any two examples of manipulation of

• strcpy(str1, str2): Copies string str2 into string str1.
• strcat(str1, str2): Concatenates string str2 onto the end of string

str1.
• strlen(str1): Returns the length of string str1.
• strcmp(str1, str2): Returns 0 if str1 and str2 are the same; less

than 0 if str1<str2; greater than 0 if str1>str2.
• strchr(str1, ch): Returns a pointer to the first occurrence of

character ch in string str1.
• strstr(str1, str2): Returns a pointer to the first occurrence of string

str2 in string str1.

10.Write commonly used

o String(): This constructor is used for creating an empty string
o String(const char *str):

string objects from a null
o String(const string *str):

string object from another string object

11.What is data flow diagram?

Also known as DFD, Data flow diagrams are used to graphically

represent the flow of data in a business information system. DFD
describes the processes that are involved in a system

from the input to the file storage and reports generation.

Data flow diagrams can be divided into logical and physical. The

logical data flow diagram describes flow of data through a system to
perform certain functionality of a business.

describes the implementation of the logical data flow.

12.Draw the classic software development life cycle.

Department of Computer Science, Valluvar College of Science and Management, Karur.

Give any two examples of manipulation of strings.

(str1, str2): Copies string str2 into string str1.
(str1, str2): Concatenates string str2 onto the end of string

(str1): Returns the length of string str1.
(str1, str2): Returns 0 if str1 and str2 are the same; less

than 0 if str1<str2; greater than 0 if str1>str2.
(str1, ch): Returns a pointer to the first occurrence of

character ch in string str1.
(str1, str2): Returns a pointer to the first occurrence of string

str2 in string str1.

Write commonly used string constructors?

This constructor is used for creating an empty string
String(const char *str): This constructor is used for creating

string objects from a null-terminated string
String(const string *str): This constructor is used for creati

string object from another string object

What is data flow diagram?

Also known as DFD, Data flow diagrams are used to graphically

represent the flow of data in a business information system. DFD
describes the processes that are involved in a system to transfer data

from the input to the file storage and reports generation.

Data flow diagrams can be divided into logical and physical. The

logical data flow diagram describes flow of data through a system to
perform certain functionality of a business. The physical data flow diagram

describes the implementation of the logical data flow.

Draw the classic software development life cycle.

Department of Computer Science, Valluvar College of Science and Management, Karur.

I
ST

 B.SC (CS)

(str1, str2): Copies string str2 into string str1.
(str1, str2): Concatenates string str2 onto the end of string

(str1, str2): Returns 0 if str1 and str2 are the same; less

(str1, ch): Returns a pointer to the first occurrence of

(str1, str2): Returns a pointer to the first occurrence of string

This constructor is used for creating an empty string
This constructor is used for creating

This constructor is used for creating a

Also known as DFD, Data flow diagrams are used to graphically

represent the flow of data in a business information system. DFD
to transfer data

Data flow diagrams can be divided into logical and physical. The

logical data flow diagram describes flow of data through a system to
The physical data flow diagram

 Department of Computer Science, Valluvar College of Science and Management, Karur.

PROGRAMMING IN C++ I
ST

 B.SC (CS)

13.What is prototyping?

Prototyping refers to an initial stage of a software release in which
developmental evolution and product fixes may occur before a bigger

release is initiated. These kinds of activities can also sometimes be called
a beta phase or beta testing, where an initial project gets evaluated by a
smaller class of users before full development.

Prototyping is defined as the process of developing a working

replication of a product or system that has to be engineered. It offers a
small scale facsimile of the end product and is used for obtaining
customer feedback

I-B.Sc (CS) OBJECT ORIENTED PROGRAMMING WITH C++

| © Department of Computer Science, Valluvar College of Science and Management, Karur. 1

Object Oriented Programming in C++

TABLE OF CONTENT:

1. Introduction

2. Class
3. Objects

4. Encapsulation

5. Abstraction

6. Polymorphism
7. Inheritance

8. Dynamic Binding

9. Message Passing
10. Benefits of OOP’s

11. Similarities between C and C++

12. Differences between C and C++
13. Object oriented languages

14. Applications of OOP

15. Structure of C++ Program

Object-oriented programming – As the name suggests uses objects in

programming. Object-oriented programming aims to implement real-world

entities like inheritance, hiding, polymorphism, etc in programming. The main
aim of OOP is to bind together the data and the functions that operate on them

so that no other part of the code can access this data except that function.

Characteristics of an Object Oriented Programming language

I-B.Sc (CS) OBJECT ORIENTED PROGRAMMING WITH C++

| © Department of Computer Science, Valluvar College of Science and Management, Karur. 2

Class: The building block of C++ that leads to Object-Oriented programming is

a Class. It is a user-defined data type, which holds its own data members and
member functions, which can be accessed and used by creating an instance of

that class. A class is like a blueprint for an object.

For Example: Consider the Class of Cars. There may be many cars with different

names and brand but all of them will share some common properties like all of

them will have 4 wheels, Speed Limit, Mileage range etc. So here, Car is the

class and wheels, speed limits, mileage are their properties.

 A Class is a user-defined data-type which has data members and member

functions.
 Data members are the data variables and member functions are the

functions used to manipulate these variables and together these data

members and member functions define the properties and behaviour of
the objects in a Class.

 In the above example of class Car, the data member will be speed limit,

mileage etc and member functions can apply brakes, increase speed etc.

We can say that a Class in C++ is a blue-print representing a group of

objects which shares some common properties and behaviours.

For example, lets say we have a class Car which has data members (variables)

such as speed, weight, price and functions such as gearChange(), slowDown(),

brake() etc. Now lets say I create a object of this class named FordFigo which
uses these data members and functions and give them its own values. Similarly

we can create as many objects as we want using the blueprint(class).

//Class name is Car

class Car

{

 //Data members
 char name[20];

 int speed;

 int weight;

public:

 //Functions

 void brake(){
 }

 void slowDown(){

 }
};

int main()
{

 //ford is an object

 Car ford;

}

I-B.Sc (CS) OBJECT ORIENTED PROGRAMMING WITH C++

| © Department of Computer Science, Valluvar College of Science and Management, Karur. 3

Object: An Object is an identifiable entity with some characteristics and

behaviour. An Object is an instance of a Class. When a class is defined, no
memory is allocated but when it is instantiated (i.e. an object is created)

memory is allocated.

class person

{

 char name[20];

 int id;
public:

 void getdetails(){}

};

int main()

{

 person p1; // p1 is a object
}

Object take up space in memory and have an associated address like a
record in pascal or structure or union in C.

When a program is executed the objects interact by sending messages to one
another.

Each object contains data and code to manipulate the data. Objects can

interact without having to know details of each other’s data or code, it is
sufficient to know the type of message accepted and type of response returned

by the objects.

Encapsulation: In normal terms, Encapsulation is defined as wrapping up of

data and information under a single unit. In Object-Oriented Programming,

Encapsulation is defined as binding together the data and the functions that
manipulate them.

Consider a real-life example of encapsulation, in a company, there are

different sections like the accounts section, finance section, sales section etc.
The finance section handles all the financial transactions and keeps records of all

the data related to finance. Similarly, the sales section handles all the sales-

related activities and keeps records of all the sales. Now there may arise a
situation when for some reason an official from the finance section needs all the

data about sales in a particular month. In this case, he is not allowed to directly

access the data of the sales section. He will first have to contact some other
officer in the sales section and then request him to give the particular data. This

is what encapsulation is. Here the data of the sales section and the employees

that can manipulate them are wrapped under a single name “sales section”.

I-B.Sc (CS) OBJECT ORIENTED PROGRAMMING WITH C++

| © Department of Computer Science, Valluvar College of Science and Management, Karur. 4

Encapsulation also leads to data abstraction or hiding. As using encapsulation

also hides the data. In the above example, the data of any of the section like
sales, finance or accounts are hidden from any other section.

Abstraction: Data abstraction is one of the most essential and important

features of object-oriented programming in C++. Abstraction means displaying
only essential information and hiding the details. Data abstraction refers to

providing only essential information about the data to the outside world, hiding

the background details or implementation.

Consider a real-life example of a man driving a car. The man only knows that

pressing the accelerators will increase the speed of the car or applying brakes
will stop the car but he does not know about how on pressing accelerator the

speed is actually increasing, he does not know about the inner mechanism of the

car or the implementation of accelerator, brakes etc in the car. This is what

abstraction is.

 Abstraction using Classes: We can implement Abstraction in C++ using

classes. The class helps us to group data members and member functions
using available access specifiers. A Class can decide which data member

will be visible to the outside world and which is not.

 Abstraction in Header files: One more type of abstraction in C++ can be
header files. For example, consider the pow() method present in math.h

header file. Whenever we need to calculate the power of a number, we

simply call the function pow() present in the math.h header file and pass

the numbers as arguments without knowing the underlying algorithm
according to which the function is actually calculating the power of

numbers.

Polymorphism: The word polymorphism means having many forms. In simple

words, we can define polymorphism as the ability of a message to be displayed

in more than one form.

A person at the same time can have different characteristic. Like a man at the

same time is a father, a husband, an employee. So the same person posses

different behaviour in different situations. This is called polymorphism.

An operation may exhibit different behaviours in different instances. The

behaviour depends upon the types of data used in the operation.

C++ supports operator overloading and function overloading.

 Operator Overloading: The process of making an operator to exhibit
different behaviours in different instances is known as operator

overloading.

 Function Overloading: Function overloading is using a single function
name to perform different types of tasks.

 Polymorphism is extensively used in implementing inheritance.

I-B.Sc (CS) OBJECT ORIENTED PROGRAMMING WITH C++

| © Department of Computer Science, Valluvar College of Science and Management, Karur. 5

Example: Suppose we have to write a function to add some integers, some

times there are 2 integers, some times there are 3 integers. We can write the
Addition Method with the same name having different parameters, the

concerned method will be called according to parameters.

#include <iostream>

using namespace std;

class Sum {
 public:

 int add(int num1,int num2){

 return num1 + num2;
 }

 int add(int num1, int num2, int num3){

 return num1 + num2 + num3;
 }

};

int main(void) {

 //Object of class Sum
 Sum obj;

 //This will call the second add function
 cout<<obj.add(10, 20, 30)<<endl;

 //This will call the first add function
 cout<<obj.add(11, 22);

 return 0;

}

Output:

60
33

I-B.Sc (CS) OBJECT ORIENTED PROGRAMMING WITH C++

| © Department of Computer Science, Valluvar College of Science and Management, Karur. 6

Inheritance: The capability of a class to derive properties and characteristics

from another class is called Inheritance. Inheritance is one of the most
important features of Object-Oriented Programming.

 Sub Class: The class that inherits properties from another class is called Sub
class or Derived Class.

 Super Class:The class whose properties are inherited by sub class is called

Base Class or Super class.

 Reusability: Inheritance supports the concept of “reusability”, i.e. when we

want to create a new class and there is already a class that includes some of the
code that we want, we can derive our new class from the existing class. By doing

this, we are reusing the fields and methods of the existing class.

Example: Dog, Cat, Cow can be Derived Class of Animal Base Class.

#include <iostream>
using namespace std;

class ParentClass {

 //data member
 public:

 int var1 =100;

};
class ChildClass: public ParentClass {

 public:

 int var2 = 500;

};
int main(void) {

 ChildClass obj;

}

Now this object obj can use the properties (such as variable var1) of
ParentClass.

I-B.Sc (CS) OBJECT ORIENTED PROGRAMMING WITH C++

| © Department of Computer Science, Valluvar College of Science and Management, Karur. 7

Dynamic Binding: In dynamic binding, the code to be executed in response to

function call is decided at runtime. C++ has virtual functions to support this.

Message Passing: Objects communicate with one another by sending and

receiving information to each other. A message for an object is a request for
execution of a procedure and therefore will invoke a function in the receiving

object that generates the desired results. Message passing involves specifying

the name of the object, the name of the function and the information to be sent.

C++ Benefits of OOP's

 Through inheritance, we can eliminate redundant code and extend the use
of existing classes which is not possible in procedure oriented approach.

 We can build programs from the standard working modules that

communicate with one another, rather than having to start writing the
code from scratch which happens procedure oriented approach. This leads

to saving of development time and higher productivity.

 The principle of data hiding helps the programmer to build secure

programs that cannot be invaded by code in other parts of the program.
 It is possible to have multiple instances of object to co-exist without any

interference.

 It is possible to map objects in the problem domain to those in the
program.

 It is easy to partition the work in a project based on objects .

 The data-centered design approach enables us to capture more details of
a model in implementable from.

 Object oriented systems can be easily upgraded from small to large

systems.

 Message passing techniques for communication between objects makes
the interface descriptions with external systems much simpler.

 Software complexity can be easily managed.

 C++ is a highly portable language and is often the language of selection
for multi-device, multi-platform app development.

 C++ is an object-oriented programming language and includes concepts

like classes, inheritance, polymorphism, data abstraction, and
encapsulation which allow code reusability and makes programs very

maintainable.

 C++ use multi-paradigm programming. The Paradigm means the style of

programming .paradigm concerned about logics, structure, and procedure
of the program. C++ is multi-paradigm means it follows three paradigm

Generic, Imperative, Object Oriented.

 It is useful for the low-level programming language and very efficient for
general purpose.

 C++ gives the user complete control over memory management. This can

be seen both as an advantage and a disadvantage as this increases the

responsibility of the user to manage memory rather than it being
managed by the Garbage collector.

 The wide range of applications: From GUI applications to 3D graphics for

games to real-time mathematical simulations, C++ is everywhere.
 C++ has a huge community around it. Community size is important,

because the larger a programming language community is, the more

I-B.Sc (CS) OBJECT ORIENTED PROGRAMMING WITH C++

| © Department of Computer Science, Valluvar College of Science and Management, Karur. 8

support you would be likely to get. C++ is the 6th most used and

followed tag on StackOverflow and GitHub.
 C++ has a very big job market as it is used in various industries like

finance, app development, game development, Virtual reality, etc.

 C++'s greatest strength is how scalable it could be, so apps that are very

resource intensive are usually built with it. As a statically written
language, C++ is usually more performant than the dynamically written

languages because the code is type-checked before it is executed.

 Compatibility with C: C++ is compatible with C and virtually every valid C
program is a valid C++ program.

Similarities between C and C++ are:
 Both the languages have a similar syntax.

 Code structure of both the languages are same.

 The compilation of both the languages is similar.

 They share the same basic syntax. Nearly all of C’s operators and
keywords are also present in C++ and do the same thing.

 C++ has a slightly extended grammar than C, but the basic grammer is

the same.
 Basic memory model of both is very close to the hardware.

 Same notions of stack, heap, file-scope and static variables are present in

both the languages.

Differences between C and C++ are:

C++ can be said a superset of C. Major added features in C++ are

Object-Oriented Programming, Exception Handling and rich C++ Library.
Below is the table of differences between C and C++:

c C++

C was developed by Dennis Ritchie

between the year 1969 and 1973 at

AT&T Bell Labs.

C++ was developed by Bjarne

Stroustrup in 1979.

C does no support polymorphism,
encapsulation, and inheritance which

means that C does not support object

oriented programming.

C++ supports polymorphism,
encapsulation, and inheritance because

it is an object oriented programming

language.

C is a subset of C++. C++ is a superset of C.

C contains 32 keywords. C++ contains 52 keywords.

For the development of code, C
supports procedural programming.

C++ is known as hybrid language

because C++ supports both procedural
and object oriented programming

paradigms.

Data and functions are separated in C

because it is a procedural
programming language.

Data and functions are encapsulated
together in form of an object in C++.

C does not support information hiding.

Data is hidden by the Encapsulation to

ensure that data structures and
operators are used as intended.

I-B.Sc (CS) OBJECT ORIENTED PROGRAMMING WITH C++

| © Department of Computer Science, Valluvar College of Science and Management, Karur. 9

Built-in data types is supported in C.
Built-in & user-defined data types is

supported in C++.

C is a function driven language
because C is a procedural

programming language.

C++ is an object driven language
because it is an object oriented

programming.

Function and operator overloading is
not supported in C.

Function and operator overloading is
supported by C++.

C is a function-driven language. C++ is an object-driven language

Functions in C are not defined inside

structures.

Functions can be used inside a

structure in C++.

Namespace features are not present
inside the C.

Namespace is used by C++, which
avoid name collisions.

Header file used by C is stdio.h. Header file used by C++ is iostream.h.

Reference variables are not supported

by C.

Reference variables are supported by

C++.

Virtual and friend functions are not

supported by C.

Virtual and friend functions are

supported by C++.

C does not support inheritance. C++ supports inheritance.

Instead of focusing on data, C focuses
on method or process.

C++ focuses on data instead of
focusing on method or procedure.

C provides malloc() and calloc()

functions for dynamic memory
allocation, and free() for memory de-

allocation.

C++ provides new operator for

memory allocation and delete operator
for memory de-allocation.

Direct support for exception handling is

not supported by C.

Exception handling is supported by

C++.

scanf() and printf() functions are used

for input/output in C.

cin and cout are used for input/output

in C++.

Object Oriented Languages

 Depending upon the features they support, they can be classified into the

following two categories:

1. Object –based programming languages and

2. Object-oriented programming lamguages.

Object-based programming is the style of programming that primarily supports

encapsulation and object identity. Major futures that are required for object-
based programming are:

 Date encapsulation
 Data hiding and access mechanisms

 Automatic initialization and clear-up of objects

 Operator overloading

Object –based programming languages do not support inheritance and dynamic

binding.

Object-oriented programming incorporates all of Object-based programming
features along with two additional futures, namely, inheritance and dynamic

binding

I-B.Sc (CS) OBJECT ORIENTED PROGRAMMING WITH C++

| © Department of Computer Science, Valluvar College of Science and Management, Karur. 10

Object-based features + Inheritance + Dynamic Binding

Languages that support these futures include C++, Smalltalk, Object Pascal and

Java.

Object Based languages are different from Object Oriented Languages:

Object Based Languages

 Object based languages supports the usage of object and encapsulation.

 They does not support inheritance or, polymorphism or, both.

 Object based languages does not supports built-in objects.
 Javascript, VB are the examples of object bases languages.

Object Oriented Languages

 Object Oriented Languages supports all the features of Oops including

inheritance and polymorphism.

 They support built-in objects.
 C#, Java, VB. Net are the examples of object oriented languages.

Here are the significant difference between Object-oriented Programming
Language and Object-based Programming Language:

Object-based Programming

Language

Object-oriented Programming

Language

All characteristics and features of

object-oriented programming, such as

inheritance and polymorphism are not

supported.

All the characteristics and features of

object-oriented programming are

supported.

These type of programming languages

have built-in objects. Example:

JavaScript has a window object.

These type of programming languages

don't have a built-in object. Example:

C++.

VB is another example of object-based

language as you can create and use

classes and objects but inheriting
classes is not supported.

Java is an example of object-oriented
programing language which supports

creating and inheriting (which is

reusing of code) one class from
another.

Applications of Object Oriented Programming

 OOP has become one of the programming buzz words today. There

appears to be a great deal of excitement and interest among software
engineers in using OOP.

 Applications of OOP are beginning to gain importance in many areas. The

most popular application of object-oriented programming, up to now, has
been in the area of user interface design such as window. Hundreds of

windowing systems have been developed, using the OOP techniques.

Real-business system are often much more complex and contain many

more objects with complicated attributes and method. OOP is useful in
these types of application because it can simplify a complex problem.

I-B.Sc (CS) OBJECT ORIENTED PROGRAMMING WITH C++

| © Department of Computer Science, Valluvar College of Science and Management, Karur. 11

Main application areas of OOP are:

 User interface design such as windows, menu

 Real Time Systems

 Simulation and Modeling
 Object oriented databases

 Hypertext, hypermedia and expertext

 AI and Expert System
 Neural Networks and parallel programming

 Decision support and office automation systems etc

 CIM/CAM/CAD systems

Structure of C++ Program

Programs are a sequence of instructions or statements. These statements
form the structure of a C++ program. C++ program structure is divided into

various sections, namely, headers, class definition, member functions definitions

and main function.

writing a program with or without a class and its member functions
definitions. A simple C++ program (without a class) includes comments,

headers, namespace, main() and input/output statements.

Comments are a vital element of a program that is used to increase the
readability of a program and to describe its functioning. Comments are not

executable statements and hence, do not increase the size of a file.

I-B.Sc (CS) OBJECT ORIENTED PROGRAMMING WITH C++

| © Department of Computer Science, Valluvar College of Science and Management, Karur. 12

The best way to learn a programming language is by writing programs.
Typically, the first program beginners write is a program called "Hello World",

which simply prints "Hello World" to your computer screen. Although it is very

simple, it contains all the fundamental components C++ programs have:

// my first program in C++

#include <iostream>

int main()

{

 std::cout << "Hello World!";

}

Hello World!

// my second program in C++

#include <iostream>

int main ()

{

 std::cout << "Hello World! ";

 std::cout << "I'm a C++ program";

}

Hello World! I'm a C++ program

Arun Natarajan
C++ - INHERITANCE, POLYMORPHISM, VIRTUAL FUNCTIONS

AND VITRUAL BASE CLASSES

 © Department of Computer science, VCSM . Karur. 1

Inheritance

In C++, inheritance is a process in which one object acquires all the properties

and behaviors of its parent object automatically. In such way, you can reuse, extend or

modify the attributes and behaviors which are defined in other class.

In C++, the class which inherits the members of another class is called derived

class and the class whose members are inherited is called base class. The derived class

is the specialized class for the base class.

Why and when to use inheritance?

Consider a group of vehicles. You need to create classes for Bus, Car and Truck.

The methods fuelAmount(), capacity(), applyBrakes() will be same for all of the three

classes. If we create these classes avoiding inheritance then we have to write all of these

functions in each of the three classes as shown in below figure:

You can clearly see that above process results in duplication of same code 3

times. This increases the chances of error and data redundancy. To avoid this type of

situation, inheritance is used. If we create a class Vehicle and write these three functions

in it and inherit the rest of the classes from the vehicle class, then we can simply avoid

the duplication of data and increase re-usability. Look at the below diagram in which the

three classes are inherited from vehicle class:

Arun Natarajan
C++ - INHERITANCE, POLYMORPHISM, VIRTUAL FUNCTIONS

AND VITRUAL BASE CLASSES

 © Department of Computer science, VCSM . Karur. 2

// C++ program to demonstrate implementation of Inheritance

#include <bits/stdc++.h>

using namespace std;

//Base class

class Parent

{

 public:

 int id_p;

};

// Sub class inheriting from Base Class(Parent)

class Child : public Parent

{

 public:

 int id_c;

};

//main function

int main()

 {

 Child obj1;

 // An object of class child has all data members

 // and member functions of class parent

 obj1.id_c = 7;

 obj1.id_p = 91;

 cout << "Child id is " << obj1.id_c << endl;

 cout << "Parent id is " << obj1.id_p << endl;

 return 0;

 }

Output:

Child id is 7

Parent id is 91

In the above program the „Child‟ class is publicly inherited from the „Parent‟ class so the

public data members of the class „Parent‟ will also be inherited by the class „Child‟.

Advantage of C++ Inheritance

Code reusability: Now you can reuse the members of your parent class. So, there is no

need to define the member again. So less code is required in the class.

Arun Natarajan
C++ - INHERITANCE, POLYMORPHISM, VIRTUAL FUNCTIONS

AND VITRUAL BASE CLASSES

 © Department of Computer science, VCSM . Karur. 3

Modes of Inheritance

Public mode: If we derive a sub class from a public base class. Then the public member

of the base class will become public in the derived class and protected members of the

base class will become protected in derived class.

Protected mode: If we derive a sub class from a Protected base class. Then both public

member and protected members of the base class will become protected in derived

class.

Private mode: If we derive a sub class from a Private base class. Then both public

member and protected members of the base class will become Private in derived class.

Note : The private members in the base class cannot be directly accessed in the derived

class, while protected members can be directly accessed. For example, Classes B, C and

D all contain the variables x, y and z in below example. It is just question of access.

// C++ Implementation to show that a derived class doesn‟t inherit access to private

//data members. However, it does inherit a full parent object

class A

{

public:

 int x;

protected:

 int y;

private:

 int z;

};

class B : public A

{

 // x is public

 // y is protected

 // z is not accessible from B

};

class C : protected A

{

 // x is protected

 // y is protected

 // z is not accessible from C

};

class D : private A // 'private' is default for classes

{

 // x is private

 // y is private

 // z is not accessible from D

};

Arun Natarajan
C++ - INHERITANCE, POLYMORPHISM, VIRTUAL FUNCTIONS

AND VITRUAL BASE CLASSES

 © Department of Computer science, VCSM . Karur. 4

Types Of Inheritance

C++ supports five types of inheritance:

 Single inheritance

 Multiple inheritance

 Hierarchical inheritance

 Multilevel inheritance

 Hybrid inheritance

Derived Classes

A Derived class is defined as the class derived from the base class.

The Syntax of Derived class:

class derived_class_name :: visibility-mode base_class_name

{

 // body of the derived class.

}

Where,

derived_class_name: It is the name of the derived class.

visibility mode: The visibility mode specifies whether the features of the base class are

publicly inherited or privately inherited. It can be public or private.

base_class_name: It is the name of the base class.

Arun Natarajan
C++ - INHERITANCE, POLYMORPHISM, VIRTUAL FUNCTIONS

AND VITRUAL BASE CLASSES

 © Department of Computer science, VCSM . Karur. 5

o When the base class is privately inherited by the derived class, public members of

the base class becomes the private members of the derived class. Therefore, the

public members of the base class are not accessible by the objects of the derived

class only by the member functions of the derived class.

o When the base class is publicly inherited by the derived class, public members of

the base class also become the public members of the derived class. Therefore,

the public members of the base class are accessible by the objects of the derived

class as well as by the member functions of the base class.

Note:

o In C++, the default mode of visibility is private.

o The private members of the base class are never inherited.

1) C++ Single Inheritance

Single inheritance is defined as the inheritance in which a derived class is

inherited from the only one base class.

Where 'A' is the base class, and 'B' is the derived class.

C++ Single Level Inheritance Example: Inheriting Fields

When one class inherits another class, it is known as single level inheritance.

Let's see the example of single level inheritance which inherits the fields only.

Syntax:

class subclass_name : access_mode base_class

{

 //body of subclass

};

// C++ program to explain Single inheritance

#include <iostream>

using namespace std;

// base class

class Vehicle {

 public:

 Vehicle()

 {

 cout << "This is a Vehicle" << endl;

Arun Natarajan
C++ - INHERITANCE, POLYMORPHISM, VIRTUAL FUNCTIONS

AND VITRUAL BASE CLASSES

 © Department of Computer science, VCSM . Karur. 6

 }

};

// sub class derived from two base classes

class Car: public Vehicle{

};

// main function

int main()

{

 // creating object of sub class will

 // invoke the constructor of base classes

 Car obj;

 return 0;

}

Output:

This is a vehicle

C++ Single Level Inheritance Example: Inheriting Methods

Let's see another example of inheritance in C++ which inherits methods only.

#include <iostream>

using namespace std;

 class Animal {

 public:

 void eat() {

 cout<<"Eating..."<<endl;

 }

 };

 class Dog: public Animal

 {

 public:

 void bark(){

 cout<<"Barking...";

 }

 };

int main(void) {

 Dog d1;

 d1.eat();

 d1.bark();

 return 0;

}

Output:

Eating...

Barking...

Arun Natarajan
C++ - INHERITANCE, POLYMORPHISM, VIRTUAL FUNCTIONS

AND VITRUAL BASE CLASSES

 © Department of Computer science, VCSM . Karur. 7

2) C++ Multilevel Inheritance

 In this type of inheritance, a derived class is created from another

derived class.

C++ Multi Level Inheritance Example

When one class inherits another class which is further inherited by another class,

it is known as multi level inheritance in C++. Inheritance is transitive so the last derived

class acquires all the members of all its base classes.

Let's see the example of multi level inheritance in C++.

Example 1:

// C++ program to explain

// multiple inheritance

#include <iostream>

using namespace std;

 // first base class

class Vehicle {

 public:

 Vehicle()

 {

 cout << "This is a Vehicle" << endl;

 }

};

// second base class

class FourWheeler {

 public:

 FourWheeler()

 {

 cout << "This is a 4 wheeler Vehicle" << endl;

 }

};

Arun Natarajan
C++ - INHERITANCE, POLYMORPHISM, VIRTUAL FUNCTIONS

AND VITRUAL BASE CLASSES

 © Department of Computer science, VCSM . Karur. 8

// sub class derived from two base classes

class Car: public Vehicle, public FourWheeler {

};

int main()

{

 // creating object of sub class will invoke the constructor of base classes

 Car obj;

 return 0;

}

Output:

This is a Vehicle

This is a 4 wheeler Vehicle

Example 2:

#include <iostream>

using namespace std;

 class Animal {

 public:

 void eat() {

 cout<<"Eating..."<<endl;

 }

 };

 class Dog: public Animal

 {

 public:

 void bark(){

 cout<<"Barking..."<<endl;

 }

 };

 class BabyDog: public Dog

 {

 public:

 void weep() {

 cout<<"Weeping...";

 }

 };

int main(void) {

 BabyDog d1;

 d1.eat();

 d1.bark();

 d1.weep();

 return 0;

}

Output:

Eating...

Barking...

Weeping...

Arun Natarajan
C++ - INHERITANCE, POLYMORPHISM, VIRTUAL FUNCTIONS

AND VITRUAL BASE CLASSES

 © Department of Computer science, VCSM . Karur. 9

3) C++ Multiple Inheritance

Multiple inheritance is the process of deriving a new class that inherits the

attributes from two or more classes.

Syntax of the Derived class:

class subclass_name : access_mode base_class1, access_mode base_class2,

{

 //body of subclass

};

Here, the number of base classes will be separated by a comma („, „) and access

mode for every base class must be specified.

Let's see a simple example of multiple inheritance.

Example 1:

// C++ program to implement

// Multilevel Inheritance

#include <iostream>

using namespace std;

 // base class

class Vehicle

{

 public:

 Vehicle()

 {

 cout << "This is a Vehicle" << endl;

 }

};

class fourWheeler: public Vehicle

{ public:

 fourWheeler()

 {

 cout<<"Objects with 4 wheels are vehicles"<<endl;

 }

};

// sub class derived from two base classes

class Car: public fourWheeler{

 public:

 car()

 {

Arun Natarajan
C++ - INHERITANCE, POLYMORPHISM, VIRTUAL FUNCTIONS

AND VITRUAL BASE CLASSES

 © Department of Computer science, VCSM . Karur. 10

 cout<<"Car has 4 Wheels"<<endl;

 }

};

int main()

{

 //creating object of sub class will

 //invoke the constructor of base classes

 Car obj;

 return 0;

}

output:

This is a Vehicle

Objects with 4 wheels are vehicles

Car has 4 Wheels

Example 2:

#include <iostream>

using namespace std;

class A

{

 protected:

 int a;

 public:

 void get_a(int n)

 {

 a = n;

 }

};

class B

{

 protected:

 int b;

 public:

 void get_b(int n)

 {

 b = n;

 }

};

class C : public A,public B

{

 public:

 void display()

 {

 std::cout << "The value of a is : " <<a<< std::endl;

 std::cout << "The value of b is : " <<b<< std::endl;

 cout<<"Addition of a and b is : "<<a+b;

 }

};

int main()

Arun Natarajan
C++ - INHERITANCE, POLYMORPHISM, VIRTUAL FUNCTIONS

AND VITRUAL BASE CLASSES

 © Department of Computer science, VCSM . Karur. 11

{

 C c;

 c.get_a(10);

 c.get_b(20);

 c.display();

 return 0;

}

Output:

The value of a is : 10

The value of b is : 20

Addition of a and b is : 30

In the above example, class 'C' inherits two base classes 'A' and 'B' in a public

mode.

4) C++ Hierarchical Inheritance

In this type of inheritance, more than one sub class is inherited from a single

base class. i.e. more than one derived class is created from a single base class.

Syntax of Hierarchical inheritance:

class A

{

 // body of the class A.

}

class B : public A

{

 // body of class B.

}

class C : public A

{

 // body of class C.

}

class D : public A

{

 // body of class D.

}

Arun Natarajan
C++ - INHERITANCE, POLYMORPHISM, VIRTUAL FUNCTIONS

AND VITRUAL BASE CLASSES

 © Department of Computer science, VCSM . Karur. 12

Let's see a simple example:

Example 1:

// C++ program to implement

// Hierarchical Inheritance

#include <iostream>

using namespace std;

// base class

class Vehicle

{

 public:

 Vehicle()

 {

 cout << "This is a Vehicle" << endl;

 }

};

// first sub class

class Car: public Vehicle

{

};

 // second sub class

class Bus: public Vehicle

{

};

// main function

int main()

{

 // creating object of sub class will

 // invoke the constructor of base class

 Car obj1;

 Bus obj2;

 return 0;

}

Output:

This is a Vehicle

This is a Vehicle

Example 2:

#include <iostream>

using namespace std;

class Shape // Declaration of base class.

Arun Natarajan
C++ - INHERITANCE, POLYMORPHISM, VIRTUAL FUNCTIONS

AND VITRUAL BASE CLASSES

 © Department of Computer science, VCSM . Karur. 13

{

 public:

 int a;

 int b;

 void get_data(int n,int m)

 {

 a= n;

 b = m;

 }

};

class Rectangle : public Shape // inheriting Shape class

{

 public:

 int rect_area()

 {

 int result = a*b;

 return result;

 }

};

class Triangle : public Shape // inheriting Shape class

{

 public:

 int triangle_area()

 {

 float result = 0.5*a*b;

 return result;

 }

};

int main()

{

 Rectangle r;

 Triangle t;

 int length,breadth,base,height;

 std::cout << "Enter the length and breadth of a rectangle: " << std::endl;

 cin>>length>>breadth;

 r.get_data(length,breadth);

 int m = r.rect_area();

 std::cout << "Area of the rectangle is : " <<m<< std::endl;

 std::cout << "Enter the base and height of the triangle: " << std::endl;

 cin>>base>>height;

 t.get_data(base,height);

 float n = t.triangle_area();

 std::cout <<"Area of the triangle is : " << n<<std::endl;

 return 0;

}

Output:

Enter the length and breadth of a rectangle:

23

20

Arun Natarajan
C++ - INHERITANCE, POLYMORPHISM, VIRTUAL FUNCTIONS

AND VITRUAL BASE CLASSES

 © Department of Computer science, VCSM . Karur. 14

Area of the rectangle is : 460

Enter the base and height of the triangle:

2

5

Area of the triangle is : 5

5) C++ Hybrid (Virtual) Inheritance

Hybrid Inheritance is implemented by combining more than one type of

inheritance. For example: Combining Hierarchical inheritance and Multiple Inheritance.

Below image shows the combination of hierarchical and multiple inheritance:

Let's see a simple example:

Example 1:

// C++ program for Hybrid Inheritance

#include <iostream>

using namespace std;

// base class

class Vehicle

{

 public:

 Vehicle()

 {

 cout << "This is a Vehicle" << endl;

 }

};

//base class

class Fare

{

 public:

 Fare()

 {

 cout<<"Fare of Vehicle\n";

 }

};

// first sub class

Arun Natarajan
C++ - INHERITANCE, POLYMORPHISM, VIRTUAL FUNCTIONS

AND VITRUAL BASE CLASSES

 © Department of Computer science, VCSM . Karur. 15

class Car: public Vehicle

{

};

 // second sub class

class Bus: public Vehicle, public Fare

{

};

int main()

{

 // creating object of sub class will

 // invoke the constructor of base class

 Bus obj2;

 return 0;

}

Output:

This is a Vehicle

Fare of Vehicle

Example 2:

#include <iostream>

using namespace std;

class A

{

 protected:

 int a;

 public:

 void get_a()

 {

 std::cout << "Enter the value of 'a' : " << std::endl;

 cin>>a;

 }

};

class B : public A

{

 protected:

 int b;

 public:

 void get_b()

 {

 std::cout << "Enter the value of 'b' : " << std::endl;

 cin>>b;

 }

};

class C

{

 protected:

 int c;

Arun Natarajan
C++ - INHERITANCE, POLYMORPHISM, VIRTUAL FUNCTIONS

AND VITRUAL BASE CLASSES

 © Department of Computer science, VCSM . Karur. 16

 public:

 void get_c()

 {

 std::cout << "Enter the value of c is : " << std::endl;

 cin>>c;

 }

};

 class D : public B, public C

{

 protected:

 int d;

 public:

 void mul()

 {

 get_a();

 get_b();

 get_c();

 std::cout << "Multiplication of a,b,c is : " <<a*b*c<< std::endl;

 }

};

int main()

{

 D d;

 d.mul();

 return 0;

}

Virtual base class

 Virtual base classes are used in virtual inheritance in a way of preventing multiple

“instances” of a given class appearing in an inheritance hierarchy when using multiple

inheritances.

Arun Natarajan
C++ - INHERITANCE, POLYMORPHISM, VIRTUAL FUNCTIONS

AND VITRUAL BASE CLASSES

 © Department of Computer science, VCSM . Karur. 17

Need for Virtual Base Classes:

Consider the situation where we have one class A .This class is A is inherited by two

other classes B and C. Both these class are inherited into another in a new class D as

shown in figure below.

As we can see from the figure that data members/function of class A are inherited

twice to class D. One through class B and second through class C. When any data /

function member of class A is accessed by an object of class D, ambiguity arises as to

which data/function member would be called? One inherited through B or the other

inherited through C. This confuses compiler and it displays error.

Example 1

#include <iostream>

using namespace std;

class A {

public:

 int a;

 A() // constructor

 {

 a = 10;

 }

};

class B : public virtual A {

};

class C : public virtual A {

};

class D : public B, public C {

};

int main()

{

 D object; // object creation of class d

 cout << "a = " << object.a << endl;

 return 0;

}

Output:

a = 10

Explanation : The class A has just one data member a which is public. This class is

virtually inherited in class B and class C. Now class B and class C becomes virtual base

class and no duplication of data member a is done.

Example 2:

#include <iostream>

using namespace std;

class A {

public:

Arun Natarajan
C++ - INHERITANCE, POLYMORPHISM, VIRTUAL FUNCTIONS

AND VITRUAL BASE CLASSES

 © Department of Computer science, VCSM . Karur. 18

 void show()

 {

 cout << "Hello from A \n";

 }

};

 class B : public virtual A {

};

 class C : public virtual A {

};

 class D : public B, public C {

};

int main()

{

 D object;

 object.show();

}

Output:

Hello from A

Polymorphism

The term "Polymorphism" is the combination of "poly" + "morphs" which means

many forms. It is a greek word. In object-oriented programming, we use 3 main

concepts: inheritance, encapsulation, and polymorphism.

Real Life Example Of Polymorphism

 Let's consider a real-life example of polymorphism. A lady behaves like a teacher

in a classroom, mother or daughter in a home and customer in a market. Here, a single

person is behaving differently according to the situations.

There are two types of polymorphism in C++:

Arun Natarajan
C++ - INHERITANCE, POLYMORPHISM, VIRTUAL FUNCTIONS

AND VITRUAL BASE CLASSES

 © Department of Computer science, VCSM . Karur. 19

Compile time polymorphism: The overloaded functions are invoked by matching the

type and number of arguments. This information is available at the compile time and,

therefore, compiler selects the appropriate function at the compile time. It is achieved by

function overloading and operator overloading which is also known as static binding or

early binding. Now, let's consider the case where function name and prototype is same.

class A // base class declaration.

 {

 int a;

 public:

 void display()

 {

 cout<< "Class A ";

 }

 };

class B : public A // derived class declaration.

{

 int b;

 public:

 void display()

 {

 cout<<"Class B";

 }

};

In the above case, the prototype of display() function is the same in both the base and

derived class. Therefore, the static binding cannot be applied. It would be great if the

appropriate function is selected at the run time. This is known as run time

polymorphism.

Run time polymorphism: Run time polymorphism is achieved when the object's

method is invoked at the run time instead of compile time. It is achieved by method

overriding which is also known as dynamic binding or late binding.

Differences b/w compile time and run time polymorphism.

Compile time polymorphism Run time polymorphism

The function to be invoked is known at the

compile time.

The function to be invoked is known at

the run time.

It is also known as overloading, early

binding and static binding.

It is also known as overriding, Dynamic

binding and late binding.

Arun Natarajan
C++ - INHERITANCE, POLYMORPHISM, VIRTUAL FUNCTIONS

AND VITRUAL BASE CLASSES

 © Department of Computer science, VCSM . Karur. 20

Overloading is a compile time polymorphism

where more than one method is having the

same name but with the different number of

parameters or the type of the parameters.

Overriding is a run time polymorphism

where more than one method is having

the same name, number of parameters

and the type of the parameters.

It is achieved by function overloading and

operator overloading.

It is achieved by virtual functions and

pointers.

It provides fast execution as it is known at

the compile time.

It provides slow execution as it is known

at the run time.

It is less flexible as mainly all the things

execute at the compile time.

It is more flexible as all the things

execute at the run time.

C++ Runtime Polymorphism Example

Let's see a simple example of run time polymorphism in C++.

// an example without the virtual keyword.

#include <iostream>

using namespace std;

class Animal {

 public:

void eat(){

cout<<"Eating...";

 }

};

class Dog: public Animal

{

 public:

 void eat()

 { cout<<"Eating bread...";

 }

};

int main(void) {

 Dog d = Dog();

 d.eat();

 return 0;

}

Output:

Eating bread...

Arun Natarajan
C++ - INHERITANCE, POLYMORPHISM, VIRTUAL FUNCTIONS

AND VITRUAL BASE CLASSES

 © Department of Computer science, VCSM . Karur. 21

C++ Run time Polymorphism Example: By using two derived class

Let's see another example of run time polymorphism in C++ where we are having

two derived classes.

// an example with virtual keyword.

#include <iostream>

using namespace std;

class Shape { // base class

 public:

virtual void draw(){ // virtual function

cout<<"drawing..."<<endl;

 }

};

class Rectangle: public Shape // inheriting Shape class.

{

 public:

 void draw()

 {

 cout<<"drawing rectangle..."<<endl;

 }

};

class Circle: public Shape // inheriting Shape class.

{

 public:

 void draw()

 {

 cout<<"drawing circle..."<<endl;

 }

};

int main(void) {

 Shape *s; // base class pointer.

 Shape sh; // base class object.

 Rectangle rec;

 Circle cir;

 s=&sh;

 s->draw();

 s=&rec;

 s->draw();

 s=?

 s->draw();

}

Output:

drawing...

drawing rectangle...

drawing circle...

Arun Natarajan
C++ - INHERITANCE, POLYMORPHISM, VIRTUAL FUNCTIONS

AND VITRUAL BASE CLASSES

 © Department of Computer science, VCSM . Karur. 22

Runtime Polymorphism with Data Members

Runtime Polymorphism can be achieved by data members in C++. Let's see an

example where we are accessing the field by reference variable which refers to the

instance of derived class.

#include <iostream>

using namespace std;

class Animal { // base class declaration.

 public:

 string color = "Black";

};

class Dog: public Animal // inheriting Animal class.

{

 public:

 string color = "Grey";

};

int main(void) {

 Animal d= Dog();

 cout<<d.color;

}

Output:

Black

Virtual Function

A virtual function is a member function which is declared within a base class and

is re-defined(Overriden) by a derived class. When you refer to a derived class object

using a pointer or a reference to the base class, you can call a virtual function for that

object and execute the derived class‟s version of the function.

 Virtual functions ensure that the correct function is called for an object,

regardless of the type of reference (or pointer) used for function call.

 They are mainly used to achieve Runtime polymorphism

 Functions are declared with a virtual keyword in base class.

 The resolving of function call is done at Run-time.

Rules for Virtual Functions

1) Virtual functions cannot be static and also cannot be a friend function of another

class.

2) Virtual functions should be accessed using pointer or reference of base class type

to achieve run time polymorphism.

3) The prototype of virtual functions should be same in base as well as derived

class.

Arun Natarajan
C++ - INHERITANCE, POLYMORPHISM, VIRTUAL FUNCTIONS

AND VITRUAL BASE CLASSES

 © Department of Computer science, VCSM . Karur. 23

4) They are always defined in base class and overridden in derived class. It is not

mandatory for derived class to override (or re-define the virtual function), in that

case base class version of function is used.

5) A class may have virtual destructor but it cannot have a virtual constructor.

// CPP program to illustrate

// concept of Virtual Functions

#include <iostream>

using namespace std;

 class base {

public:

 virtual void print()

 {

 cout << "print base class" << endl;

 }

 void show()

 {

 cout << "show base class" << endl;

 }

};

class derived : public base {

public:

 void print()

 {

 cout << "print derived class" << endl;

 }

 void show()

 {

 cout << "show derived class" << endl;

 }

};

int main()

{

 base* bptr;

 derived d;

 bptr = &d;

 // virtual function, binded at runtime

 bptr->print();

 // Non-virtual function, binded at compile time

 bptr->show();

}

Output:

print derived class

show base class

Arun Natarajan
C++ - INHERITANCE, POLYMORPHISM, VIRTUAL FUNCTIONS

AND VITRUAL BASE CLASSES

 © Department of Computer science, VCSM . Karur. 24

Pure Virtual Function

 A virtual function is not used for performing any task. It only serves as a

placeholder.

 When the function has no definition, such function is known as "do-nothing"

function.

 The "do-nothing" function is known as a pure virtual function. A pure virtual

function is a function declared in the base class that has no definition relative to

the base class.

 A class containing the pure virtual function cannot be used to declare the objects

of its own, such classes are known as abstract base classes.

 The main objective of the base class is to provide the traits to the derived classes

and to create the base pointer used for achieving the runtime polymorphism.

Pure virtual function can be defined as:

virtual void display() = 0;

Example:

#include <iostream>

using namespace std;

class Base

{

 public:

 virtual void show() = 0;

};

class Derived : public Base

{

 public:

 void show()

 {

 std::cout << "Derived class is derived from the base class." << std::endl;

 }

};

int main()

{

 Base *bptr;

 //Base b;

 Derived d;

 bptr = &d;

 bptr->show();

 return 0;

}

Output:

Derived class is derived from the base class.

Prepared By Prepared By Prepared By Prepared By ---- Arun Natarajan Arun Natarajan Arun Natarajan Arun Natarajan

PROGRAMMING IN C++ (16SCCCS2/16SCCCA2) I B.SC (CS) / BCA

VALLUVAR COLLEGE OF SCIENCE AND MANAGEMENT
DEPARTMENT OF COMPUTER SCIENCE

Important Questions

Unit – I:

Basic Concepts of Object- Oriented Programming - Benefits of OOP – Object
Oriented Languages - Applications of OOP – Structure of C++ Program - Tokens,

Expressions and Control Structures – Functions in C++

2 Marks Questions

1. What are the characteristics of procedure oriented programming?

2. Write the principal advantages of Object Oriented Programming?
3. Define Object.
4. What is Object Oriented Programming?

5. What is Class?
6. Write few words about Object Oriented Languages.

7. List the applications of object oriented programming?
8. What is C++? in PHP?

9. Give the structure of C++ program.
10.Write note on iostream File.
11.What is Namespace?

12.What are tokens in C++?
13.What is a variable in C++? How is it declared?

14.Enumerate the rules of naming variables in C++.
15.Write about C++ data types?
16.What are the new operators in C++?

17.What is scope resolution operator?
18.What are manipulators?

19.Write about Type Cast Operator.
20.What is Function Overloading?
21.Define function prototyping?

22.What is inline function?
23.What is data abstraction?

24.Explain GoTo Statement.

5 Marks Questions

1. Write short notes on object oriented languages.
2. What is inline function? Explain with an example.
3. Explain the basic data types in C++

4. Explain C++ tokens briefly.
5. List some of the striking features of OOPs.

6. What is scope resolution operator? Explain with an example.
7. Explain the Output and Input Operators in C++.
8. Write about User defined data types used in C++ with examples.

Prepared By Prepared By Prepared By Prepared By ---- Arun Natarajan Arun Natarajan Arun Natarajan Arun Natarajan

PROGRAMMING IN C++ (16SCCCS2/16SCCCA2) I B.SC (CS) / BCA

10 Marks Questions

1. Write about

a) Basic data type

b) User defined data type used in C++ with examples

2. Explain the basic concept of object oriented programming.

3. Explain the oops concepts with its benefits.

Unit – II:

Classes and Objects – Constructors and Destructors –Operator Overloading and
Type Conversions

2 Marks Questions

1. Define Classes and Objects.
2. Distinguish between Object and Classes.
3. What is Static member function?

4. What is Friend function in C++?
5. List the special characteristics of friend function.

6. What is meant by Constructors and list various types of Constructors?
7. What is a Parameterized Constructor?
8. What is copy constructor?

9. What is meant by Destructors? Give example.
10.Describe the importance of destructor.

11.How is a member function of a class defined outside?
12.Write a program to overload unary minus operator.
13.Give any two rules of Operator Overloading.

14.What do you mean by type conversion?

5 Marks Questions

1. Explain classes and object with example.

2. Write short notes on Type conversion.

3. Explain the concepts of class in C++.

4. What is destructor? Write a program to explain the concept of destructor.

5. What is operator overloading? Explain how binary operator can be

overloaded with example.

6. Explain about multilevel constructor with example in C++.

7. Explain about Defining Member Functions.

8. List the Rules for Overloading Operators.

10 Marks Questions

1. What is a friend function? Explain the friend function with and example

and also list its characteristics.

2. Discuss various types of constructors in C++.

3. What is operator overloading? Explain with example program.

Prepared By Prepared By Prepared By Prepared By ---- Arun Natarajan Arun Natarajan Arun Natarajan Arun Natarajan

PROGRAMMING IN C++ (16SCCCS2/16SCCCA2) I B.SC (CS) / BCA

Unit – III:

Inheritance : Extending Classes – Pointers - Virtual Functions and Polymorphism

2 Marks Questions

1. What is derived class?

2. What is Inheritance mean in C++?
3. What are the different types/forms of Inheritance?

4. What is a virtual base class in C++?
5. What is meant by Pointers? Give example.
6. Explain This Pointer?

7. List any two uses of pointers.
8. Define virtual function.

9. What is a pure function?
10.What is Pure Virtual Functions?
11.What is an abstract class in C++?

12.Define Polymorphism.
13.What are the different types/forms of Polymorphism?

5 Marks Questions

1. Write the visibility of inherited members in C++.
2. Explain the usage of virtual function with example.

3. Explain multilevel inheritances with example.
4. Explain pure virtual function with syntax and example.

5. Write short notes on polymorphism.
6. Describe how an object of a class that contains objects of others classes

created with an example.

7. Explain the uses of pointers in C++.
8. Explain Virtual Function in detail.

10 Marks Questions

1. Explain the different ways by which we can access public member function

of object with examples.

2. Distinguish multiple and multilevel inheritance with example.

3. What are abstract classes? Explain their use.

4. Write short notes on various types of inheritance with example.
5. Define Polymorphism. Explain the types of Polymorphism with suitable

example.

6. What is Inheritance? Explain Multilevel Inheritance and Hybrid Inheritance
with example.

Prepared By Prepared By Prepared By Prepared By ---- Arun Natarajan Arun Natarajan Arun Natarajan Arun Natarajan

PROGRAMMING IN C++ (16SCCCS2/16SCCCA2) I B.SC (CS) / BCA

Unit – IV:

Managing Console I/O Operations – Working with Files – Templates – Exception
Handling

2 Marks Questions

1. What is stream?
2. Explain the classes for file stream operation.

3. What is an iostream class?
4. How will be the I/O structure in C++?
5. Give any two features of I/O system supported by C++.

6. What is a file?
7. What is meant by file input and output streams?

8. Write a program to copy a content of file to another file.
9. List out any two manipulators and their meanings.
10.What is an exception?

11.Give the rules of Exception Handling.
12.What are the advantages of using exception handling mechanism in C++?

13.What is Generic Programming?

5 Marks Questions

1. Write short notes on console I/O operations.

2. Explain exception handling in C++.

3. Write short notes on class template.

4. Explain about unformatted input function with suitable example.

5. Discuss file stream classes in detail.

6. Write general format of function template and write a program to swap

two values using function template.

7. Distinguish between overloaded function and function templates

8. How is an exception handle in C++? Explain with example.

10 Marks Questions

1. Discuss about sequential input and output operations on files in C++.

2. What is exception handling? Explain the basics of exception handling with

example.

3. Explain formatted console I/O operations.

Prepared By Prepared By Prepared By Prepared By ---- Arun Natarajan Arun Natarajan Arun Natarajan Arun Natarajan

PROGRAMMING IN C++ (16SCCCS2/16SCCCA2) I B.SC (CS) / BCA

Unit – V:

Standard Template Library – Manipulating Strings – Object Oriented Systems
Development

2 Marks Questions

1. What is STL? What are its components?
2. Explain iterators.

3. List the types of containers.
4. List the types of Iterators.
5. Draw the relationship between the three STL components.

6. Write three most popular container classes and its usage.
7. What is String?

8. What is string class?
9. Give any two examples of manipulation of strings.
10.Write commonly used string constructors?

11.What is data flow diagram?
12.Draw the classic software development life cycle.

13.What is prototyping?

5 Mark Questions

1. Write short notes on STC.

2. Write various system development tools
3. Write short notes on applications of container classes.

4. Write a C++ program to compare two strings.
5. Explain containers support by the STL.
6. Discuss the steps used in object oriented design.

7. What is an algorithm? How STL algorithms are different from the
conventional algorithms.

8. Explain the steps in object oriented design.

10 Marks Questions

1. Distinguish between object oriented paradigms and procedure oriented

paradigms.
2. Explain object oriented analysis.
3. Discuss in detail procedure oriented paradigms and object oriented

paradigms.
4. Describe about manipulating strings in C++.

All the Best

PROGRAMMING IN C++

Activity - I

I-B.SC (CS) 16.04.2020

1) Write a C++ program to Calculate Factorial of a Number Using Recursion

2) Write a C++ Program to Multiply Two Matrix Using Multi-dimensional Arrays

3) Write a C++ Program to Display Fibonacci Series using functions.

4) Write a C++ Program to Find GCD using recursion

5) Write a C++ Program to Reverse a Number

6) Write code to Increment ++ and Decrement -- Operator Overloading in C++

Programming

7) Write a C++ Program to Check Whether a Number is Palindrome or Not

8) Write a C++ Program to Check Prime Number By Creating a Function

9) Write a C++ Program to Check Armstrong Number

10) Write a C++ program to Find Sum of Natural Numbers using Recursion

11) Write a C++ Program to Access Elements of an Array Using Pointer.

12) Write a C++ Program to Find the Number of Vowels, Consonants, Digits and White

Spaces in a String.

13) Write a C++ Program to Calculate Difference Between Two Time Period using

function

14) Write a C++ Program to Find Largest Element of an Array

15) Write a C++ Program to Calculate Average of Numbers Using Arrays

16) Write a C++ Program to Make a Simple Calculator to Add, Subtract, Multiply or

Divide Using switch...case

17) Write a C++ program to swap two numbers without using third variable.

18) Write a C++ program to read and print students information using two classes and

simple inheritance

19) Write a C++ program to read and print employee information using multiple

inheritance.

20) Write a C++ program to find area of square, rectangle, circle and triangle by using

function overloading

Note:

1) Write the above programs using mentioned language concepts (Recursion, inheritance,

pointers, array, etc...)

2) While writing the program you have to explain the program concept, for example

 � Prime number: you have to explain what prime number is? Likewise you have to

explain GCD, factorial, Fibonacci Series, Armstrong Number, Sum of Natural Numbers,

Palindrome and etc...

All the Best

