& Sy rL.-!n P - = l; "‘"r

.“_"li-'-'-j.,'lfl-l'.'-".ﬂ-'u.: AT l“f‘,,u_j -~ O -
c
; E

r"{'__'r'! :""T:_r"‘s.._.r"u—r l"l; o] _.["t:..-I PL"'_
/4 . 1
o ' ot e s alod
= "'_.-f'f!.i‘:'“ __'._; o qu - = riFicad :.,..'j,'_')r [

B o
i LI T
fﬂ"ll.. L'!F i &

Lt

u"*'Fxr.,h {-,_” 'Lh fidit h' (1

,) i "l‘-l-{-
'{ ,*_.gct-{‘-m"ﬂ £ [[&= .‘c_pl .{;,..) '{

cory -
plan anme PEO Gt
Cgmﬂm :

.) 1l
I hr. ‘F -L-ﬂ- Fi 1 "I':at'
et ﬁ-—?'l“"r"j el

(
- /7 Aargeni
ik & OV PR

S = e o L?‘ | b tleny
- 4 l-@._fhg’—l.t.l-ﬂ no t "._L'—‘:I‘E !"" f :."-F"‘-’J" ' :‘
sy .F" {_,“_! (—f '.‘:.111 c 1'..“'__'__}. Dk c:l-"J

L]
'l NalTE
.-;-{. ,_r._.l...—

ang
[_l_l:_4;" “'i'{‘L';-"- LQ::L .

"& O N i e
Flﬁ:l. (.lu.‘:.u{t-ﬂl
’;',c'_r_nm.) Sl A o

f
G c ofo

Sbrap - Th

seal Hme ouen

Lbfz&-ﬁ o flme

“ny

Scanned with CamScanner

r

[;"

—

DoDD D. MORTEV F}u:'FPﬂJT oA [

J_ﬂ.?wlo.xuia‘:wl Frlc o Cﬁfiflb:_ﬁfiﬂﬂ;
EmJJD&_aEQJ. _S:ﬁé;g;’fa*"l-f ann _a,&‘.cif‘?nl"u:[

Sesdern Mot cordais o ralcyo prO @2Roq

o~ lacro cordrallen . eut boo o het

Ahing od dhern os Corpuler. tha
Cormpdsr hiddan o+ oreondolod. it

Dowid €.Simon | |
;b}iim in ong oA —JrF»q pvo ity

|
Errbadded '

| Bn M%#ﬂ-%

|
|'_}.0m;ﬂ: hay —hneo oo | Cc:-rn,pghtu..}!

| orboddded sate !

’ 'I:J:t ormbaddoy WM{U

I’y;l_)'\.a.ﬂl-‘—‘lﬂ-’lk’_

‘ as 3f Soffu | E: gy
u;ua% Ao hot hdsdd e Secondane,

Scanne d with CamScanner

Li

y Piea
bacdlos taen aff 4 Jﬁ

-—_l I .U'n- ‘
| (i rﬂ"f_:.c?h =

i e ﬂ-j'ﬂ - b & Sontof o
(T b o -
pecr & Soh (o rfﬂlp-éjr 22 . .
y o mekeY P iﬂ?-ﬂ"‘:’h
'1[!5“1"-[: { e v ij i e
T4 .D!rvf.na&iaal -PP‘L "
| SJ-L,PE‘_:"LJ—-"—TL Somr —~ho- ap ;:IEL
; g -~} L .
i H}{ J 1 £ [E:"JL{:L-“""J
¢ _{”‘D hant JJLJLN’? i —
- - | / N -
[_ I_I_;_fi_,_-_l; o O (=R - J \-D"S_ csu:i’ CLJ_
¥ ._‘;Lffjﬁ-" .. A_E_Q_ ‘Pq)
o ! r r:uinoﬂt;—? ﬁ P:"
[llﬂ'-f,flq Fon ——!‘iﬂ

;P’fﬂﬂﬂ%f-’"

o pRSo™ an o~
e abadded PE

020/05/16 15:52

Scanned with CamScanner

Gronanal punpo. pwrolags o CaHPP)! (

Mitvo pyocasto _
Ermbaddal prowsiat | o

Application Spacific ingfuaction Sat prooys
CASTP:

MicYo con o flon

I{E‘mfn.auuap ML CYO Cc}}ihg,ﬂflb,ﬂ
T!_'ﬂg}ikvﬁ S—{g!mj pyo cegfo CG\S P

v y;l M o ia Pso eS8 o
l NLD:QJ«"-‘H‘I’ lc pyvotegey and T /o proleid

Single punPsL pYo mler CSPPY ot atdilios
Pyo agfos:

| Co pyolsiuY A:?M h_f,.l.lﬂ.ElQTl

| L1 .

| Cm{ﬁﬂuﬂlan \ _D?j-_ Pou‘}}plawg lovdle
| GiPP (o) PSTP Cossy ‘:rhfﬁg_mfuf_
}_i)ic oidhon an PST P a ULST Cl,l.ﬂc.:‘ubé
| ppplicclion specific sygtam
.P"ED&QJW

'[M dticone. Pxo Cegioy

I

D
'Mitvopyoteffor:

ohe and mvbog CPU Not tged an
RAM R RoMH
oo Mz ok Sy gaandy

Scanne d with CamScanner

pluanwd. Sn U GH=

| Talel 20 vt
‘ LR bk ey

| Uge et ombadded cyslem

L2 H Ccxx> , 802860 spPRRC

pRM

s
H'l vme._c:hi?'oi‘fﬂ” ;o |
‘Gogs | ARY rlf\iﬂi PJ“LP‘? i 7

I

|

i L punpoR prro e i

—— l Co P"’ED&‘HDF‘ t__pﬁ_ﬁ,l?n P
|

PTGCD&?DT

3
%@ - G1ru:a,’fuﬂl«'—'i-3 pEowso |
' Ly x b pinad —> CTFHTE

' " . o ¥ kP o p
| ide grephic s b4 ,

1. P"IU'EGCD._—@. P PTﬂmr?f?h'%

Scanned with CamScanner

Y . H.E:r“"-"L “I’g twf'u.li'n']'r-'!

{_Fl".hﬂr'fl”*” EELEJ*{;

r{ ‘L-'I.El-l r_-;f.-ffl e | fu-'[Jue CC g0 Prﬂ' rifu gd'

Q. r*f-f_ﬂformiuw

& ..ﬁug _ft;!ftﬂ P o 048
C e ecdon .c'lnz.p. D.l:’r_cxsﬂﬂ.lr: J
C gDbEC 'jc‘:,l'ni Ppﬁ‘[)’{tﬁgfb

\o. CohfFC

n.IPeG
E-—:,-qu‘.{' G‘l.:nuuup ‘ |

19 . HPE O ¢ Mofion p_:a&mnf Cx
{"I'._:'I.QLL_{")

irollors 25 (poniphonol HAoss

1% Lo

AT C np.pﬂl-toﬁdﬂ Specific 'Iﬁ-iﬁg)yﬁa-ﬂ
coreuk : -
An ~noliction Speslic indormtsd

Scanne d with CamScanner

) — ho Ec'}“lfﬂm.hig _H!_‘a’-ﬂ Can Soc.

%"”"“ﬂé’ foops. €0 2nconponale ceith
in .,M'/' jﬂIQEJADEQ. o Cﬂ}“:ﬂ'lg‘ﬂ Pﬁ{ﬂ@fa};ﬁ

p [
U.h:ue_ .:EJ_flui QJ\JJP- C!'J‘u_;('-P“i , Pﬂhi%' JJVQP_N-BD

. (e m_cj
Sotma. Seyglams SN o['-"‘lfﬁ*ﬁf} Ce
" Do (o
UJ.;;Q‘*’ P‘}U“ﬂr’” s ':””)
- ot oinsf = MLL cand
Bl = }J_o:ﬁb.)o'ﬁh- "_r:,.\,ff’,n-ﬁﬂ =

g eeh

i.';)'t:yﬂ"ﬂ _if.rn-ln.‘
rf _‘f'urn:r S o

Hals J';.?HHE.(I _;{u '.;f‘jg'.l'{:!; r[r r)‘
{r:hr feaer o --lfc.p

Sed rl\'j

;t'h.rf .H.‘,.l Al 1ade™

0% r-n;' [s (j: [,.::I tdf.. ;uﬂjf

!JH’_‘IU{'_UE;{') UOH rrrr:;ujl.fff[‘ -f 128 _ﬂu-n_o

el (:,Eﬂul[
c.mr.uti xfc".r ~Hao cowiu;e r::rrJ i "ﬁ

s.gopt cneuid | powsn —up Rugd and
ok P9 - T kgt

rore e baginsing usicg o Suitol
o~ Sighol

¢ offant ot e SJj/ﬁ?M S erora

b.C?mm'ﬁ (o noeen pnu.ln:n il gﬂu;ﬂ;a_ﬂmﬁf 5:_,!,'
|

an —the Sijr',h’“ : |

Rustard of Systew ooton it o |

|

|
[
.'

chuck op o .
:J-Grf o PQ}'\:LDQQ- trone. hah a pnn._r;p.f Prang
.;Kfmual

4;‘ M ’Piﬁuahﬂ LD oL S‘y_ﬂEm

FJ—F‘Jﬂj— h’ﬂc)wu ‘,unfyf.wnm.'/f Qu,Fﬁtuam_
Dos o Sygler-
' J

Scanne d with CamScanner

Ir','-*l. ['.h'hialll . lL_l.__'ri.'l : i '-_-_.-ul‘.. r

i i*"l-.".‘l _I*

._'__if'«.i"‘:' s .u'-l"l "';Ll-'f ':rl!.'*;:f'r-

__,.-:h .if'-hi-i.""'l-f‘.r‘“ qu'J";k f_"'u'i -'Llfal
- l';l.: -F;l‘ll{ .:..p Fj':’{-c "1 PJ:‘ L% ni ..._Ij‘\ "1‘._11"
= '._l.:J‘-:;"‘ by [."rn:_'l-;I "'f'ilﬂ i.':rﬁllh".lw
- {: r (o l.{:.i FoH ._;11"-::]..3\‘ .

i_-r.. ¢ ‘-1 L & ..-‘.,{Q_ D (':'lEJTf‘:I.-f

v viada bls .:rr-Jf; ar Ha bk c.vr\.sp 13!_;-&
‘r"' + - "_*-..l' LS ‘-_tl-: g "‘
A mal e 5—‘-"3&1 ’n .;."‘I..C‘ﬂ Yy, i:::,jif o

Lok oM addneys C_LLU_,‘:,UJ% 1 o Mo
_‘f*;r{jf- LFU‘:E‘,,; L xo celod .

[&1 ——— .--I:hﬁ "’ a ﬁ’ﬁ.l-_..ﬁn *::- Lfn e D‘_'”.l--u-.

Scanned with CamScanner

Coflivant. Gn o pvotfiet & wIre r
(o FLLC“#". -
psombly dangusges M o pocdic
D | P‘hmﬂhﬂ"ﬂ AN o ! gz_mu %
= aa-n . C;DALEOE e 0So4v E)
U’g'z"‘j e @,g}iawaiﬂf‘ aﬂbﬂw
y o R0 oumol
a f‘u’jﬁ“ﬁ-iﬂu&g r)“rlﬂ_ Py - e -
0 .u.,gfmu:'-ﬁiém Se c:‘,g,g_p bl W

|'L1"\

l". A 19 Id
L " i

L‘ Y’ E_,-’LQQ.{"I_,Q? DL":;-

.
‘ | ['/QL*-"." .
tl.j g,t Cd/f- C,‘EM’L C-Q_ .

(g pt poC
(--l_LS P Eﬂd‘a ' b ’P_rbr
‘in.‘f o O ;QMM;.—M |

r‘ lI.(Tl C,pxi.h_ﬂ_
Spe oA e
B Sjomb
LGt W’ﬁ"—

Py 0 GNe s |

P Py

i —

(v e -1\1_.'1..|-f. ' { .ldpif.;"- V.
r I,-l" ll-||;,|

T f-fu JF H‘;..... _.'p,

||.,-'L|-f AN dw)y
i

'"faad W ‘ja'-'-t,lt"
o cbhp o Ly

i_","|i S |.“*l' '-l'-f' {uplr.:r

. ..;1"..‘: - r““ 51 lee ‘[i I d v i |-..-.p[-ll

ccnd b e el Colng ones iyl
.l'nfu.,] i Mo (g loansy b uarfpy oo

Cocdop Lo e Aok
bd v Jode o T) o
Lindod Jo0e 5 g

) X
J;tfu,lnl TR B W EE e T
f—"r 4

. lr,l' hllh.fmr; f...[

-Il-" 'J;I“ t-ll;l'l;lr

o fr-rrfj.ri+ﬂ"' it (rrhar.un“ﬂ b2ty dn
L".f-"rl‘,.‘ fl.‘i.r Jl..-fp f'\"ll

p,,_ e ! (¢

o Tn -Ha reyt 9lip <fRa
0 .

x’
rn(l":‘y 2 /)

Scanned with CamScanner

e

)

e 'i"hu r f..”,,f

5_-"!:';.” f ?IJ.I'IEJF

AT

- .-:I:-)!"’"*rl
Lo g

anid) ue o preofegfus |

tu.}j{ I ﬁunfﬁc&h{
H.z--rrn:..:_j Il T4 holdds b
brededries d ."tuPJl gt .-o-f -.L-Fu.ﬂ_ bd;f-tﬂf

m g toond. Eo e
|_J"p'.F (pmaﬂ ..FI A

\ [V;Pﬁ-'l.fl.a;&_l ¥ fﬂ-’rlh,]‘._]_l?.f

f+ .b;:ff l;';ipﬂ n
[

| "L - hu -IFDP? L?-"Eﬂ o
leamsied .,J;"e.ﬂ o
Jd-orran .,D-'f:&"ﬂmﬂ

lr.mnn.:tlr} o =iE)
\ ! IF}‘.__U."'I.CF&!

| Hbrewsty
*I;.-JJ.HJ .
N 2l

ot owfonnally
: T4 Celenho
1 J-jﬁ';ur J Bug [+
] lcotnoctt oy ‘H.’Q

"r‘g;a’il? "+F\Q, P—chJDT

4 €
: L3 , 4 € o)

2020/05/16 16:00

Scanned with CamScanner

gLy - B 7T rFor ot :J;':,;Z -
el
Fir J‘),&..E.ur: .'_.l.u/-

.:-' _.l"f-@- L

L‘,j;l'.l.}ﬁf_-_fp gnc 2

J bzt

‘,;..J'_jﬁ.c'-*z.uj ra 1_]1{ fJJ'c’.;f:.
TR - T b-..?,}‘)#-rfif-—-’i E _r;;iﬂm £
")) .nb
T & ",ui;-;mjmf/? ,m fod S

b
t . B posad Sa sty L
rodes (CF fir,rj-’-'_J

oo
it ot

e tesi ot

LEilan oo o : =

17-:’—'3_.}»’1%.1)
J-’-—“’j’;f.ﬂ' CJ_JM -

1 JJocedes —he
,;/J.-r) u._j' “+ o MGM

T

(;rj '—“ﬁ T F BJA’_ fo

(pu U6 — Caded

Co . Cetthal ek - P f
r ‘_T-I- (r:.lj-l’“__JJ (J_ﬂ_.j "f‘iﬂ_ L-U-‘! Q‘M

g;.,rorf L+ J -aP—UJJ r_jir b, h.ﬁﬁafmﬁ —Pa ¢
preo ety

RS - poplicatisn Ragulen coti-

cost b od on ki segat vy
pumﬂf? EPWG“'HMj o | st e, o4
MM ﬁ prognatn (o7) b) A
Mgy’ 8 L outy (L) o Codiing ¢ %) !
un:Jb o ch Sedigd Sib.nuﬁ Varia bl a:f—qga

,._na "b"bu.'.ﬁ')j Ay a5 ‘,&haﬁoa

2020/05/16 16:00

Scanned with CamScanner

‘€ O & Cl}_lé gfLC.{_} 2y

Plu c r{_pu

15

ALY - AsufArafic f—cgic@i ok -

- cinit o Qe it anctunedic aa
FC—‘E:J—CCL-L ,u—JﬁLLA_Ci&MJ :::,C(_B""u‘:}:u-lj +o

Ao CLgLJuﬁﬁ .AJx&MEULctLG*d PJiﬂﬂuﬁi

P O - @Tﬂ%,-m C.ﬂC«U"ﬁ” Y —

T @mﬁaiﬁf o Nﬁcﬁﬁ‘h ngcit
LT-«';TJ SQ)WLJ—*L; dhe efdnesd sletfinod b‘_g,r
‘ Frame L “44015Lﬁ}h Me R - TH

— u.h-f‘—'g/'-'u‘l'ﬂ-"“‘-w
,ngt ootn chemery o Fho.
k) ,LJE ool krubpbdﬁﬂghf aLnji Sﬁauyhua&
{ 5 Colled .,uﬂ-‘?mﬂr”’*" UDC“UJE
P v o (253e¥s

t;’,L— <0

-,.i-"" S’D}(?b

SP - Sfnet Poliafin :.
a pc-kbx,tm _..'[-0"?5 @ exoladnery ol
Co mn.{,,acmi? to a skack o p edn

h"l_CJ“ﬂC_‘[\Jg1

IR - '__L"l-\.‘ff\udb-a‘h & ueLe ! - l
a, uesl oA Mﬁu*cﬁm Qo HaX
4o TR Jloss ot haxe €o ot Hor
Ahe haxt mm&'ﬂiﬁ’* atler ota hat
been pro cagdod] .

s

2020/05/16 16:01

Scanned with CamScanner

T-Cache —_ 7, drction Cache!-
Irl1--" . I ,_F .n':i; by ’
| T 4 g-a?_m;-d-la z}j SRo __/EH“_F .e:-h.n,4
drsfrckion quone dhe dnghuclisn]

FIFe medslo

HHU-MM:\-“;{' a_)ﬁ.gunaai

T 4 *na.)v:x,gg..{‘ ~+ho brgsro g
ot o nghhction cond Aot
;uéﬂ,ofa,&l& pro fﬂ-ffrf-fﬁ

SRS - Syglasw R ogiglen okt -
| TC ar o sot ot sagudong casech

crhile PToCr‘—hu-ﬁ ~he mxgﬁucitw
»—H—e, WM"’{%’ S gsdasm p".:.-ogmm

FL?U-F,anﬁ}? Pa_in.i pTaCa.fJbﬁ iJhJ.{:
P st epanati feom PLU

F_jﬁ poink PTGCB-%Lrg u:r%.{r.}ma-f,-.
oos : Y, P*"szr—w;? _p.c.ncil.alh,;: '
,;,i—” . Mmicso fsolifoy |

;Fns T Loalirg Poirt angat—
atﬁ!:ﬂLmM—Pﬂ"ﬁ

| b el =t

g:i‘:o_nugp jf.uai’-"ﬁ pc:r.J'.AiL mmﬂl?ﬂ-i"-m

o Hardand dowrat ond vsd by

FLpu Jot 3 ol ol Stack,

Scanne d with CamScanner

mﬂamﬂmha.lr Faotnony £° p¥e = 9‘?%
N o lrd Blocki and rnameny toap = Ssghy,

1 |@ Fonctions | P @550 1 Gﬁgfa il Qz&!u_lg
L"ﬂf 'prl‘-'l Vaniotd Sagmﬂ.hi_ '

/ = Progiasn coutines and PTocid Gy

hawe Aiffenonts gpw)tj

2020/05/16 16:04

Scanne d with CamScanner

F-——__—-

fi!.

§ — Sgornon A
O o —— ’f) 1
. ! | i
. r_‘_ o
2 to. et _';?J—ﬁw
. .

v, = 1 Uﬁo’ —
-.-'.)LE

= u F & Fﬂﬁqr?

cotnan Tuns
S T , MMM
aghe v _tare ot 2 "Woach
pnd Hata

Iz
r’JJ,_pf
o s g fhatt A 2, e
Vs @U;-,'J:ﬂ e 95 ’ ontys
- o - Sﬁ'}’&'—&h
- L)

e
oy by e o 4

cdp.cd- bl 1

| R 2t J
ddng et of -
} N s

r
g1 ppdees 2

Ao hedd9
 ude spbiseeblt
on LIF® MaJﬂ

Scanne d with CamScanner

T

-

f r‘._".."tlr:"gl;-r.1 ;,‘_]f r‘:f{:'f; i AN

f Fa r f’).

ﬂfl F '”.fa."' Sr Hhad i ..IIJ' 'y SV ¥4 , P
f1 . 4
Le. ‘.-lrr._fan 3% . ﬂ""”“;j ﬁ
‘-'1 =
¥ tj—l)]’ﬂf = i'_',,.l'.'.' _.{:J I P.J_)z Fa Fe
L

‘,-_-,.f(,,f:u "'_,,IJ'-“ ,.r_}‘.r,u'ie o Qf;; ...:r_fl"

L borr, "“"4

__.,r..l_[l
[J'ff'g-'ﬂ”'l"""' 7)

)

ME‘:'}) 4 Crv] - -

= ‘
,._J..!'r‘uf} G":--JL"‘"

- “' ;’j'.- & Fgd
tC L) he o AHIErS

ot A S

- r ') rJ_fJ-; :
E = I’P"’ '
r?rxr—-ly oA . boa (s 1200 V7
4- -—-}-Jlﬂ_ l"ﬂ.lf-r-h?ﬁ;“"pi . ._;J-f" £ s -;H;:,
o ot adeyt FC
i :
oY A o O <y
qigp alerned T
T [
| G .

Madt Cil 04 @
bprondy Elotf- ploon €
B oir F .c:js:??J-”?-’E Hie -

&

Yo dada f;‘-fv*#::-ﬁm ehled. o g, UpIrZ. 23
l_{,.p;yr.ﬁ.!.;

ancthen .,',:.rr.pc:':jaf-r'- P""C-g‘fﬂm-‘ﬂi"g

|

Scanned with CamScanner

l

vﬁ

I I“” Lwp ll’\-._lh.rﬂ'_‘l. ~he -—_[]F-"I .'..{.)

‘ “'l.'r _,'EE,;J‘F y

| i = o - -
l W I-LL‘ “‘.L..! "l 'j W FFU'\ -'{1

P ~]'”,“_U ,‘_'lnl"‘l::‘*ﬂﬂ'\:f a,

| --f‘l{u pondon

!.L‘ltlj\ :‘1.,J-J..'I.ftl“"3) -1_{

IJI-"-I' P "] tquj;‘, P['.”l-h_f}'"

pry_-l h,ff--”

pu_“c.ﬁ (Z' ey 21

:II‘

oy Ao F’f\i’d@b
Bccc.ft

o, o f\on

at” mp.‘m‘é{

o an addnelt s o
!“‘r': ¢yt r.n-fﬂ"'rf.‘. —an B [Eh"l-f-h;{ Can éd
‘l . . H"\;f oF “Lﬂaﬁﬂ
4 g called | quoce fYor
| . | poarle
|I ¢ Ih.fpl 1 f:"-l:ll. rj{:* fr'.‘f.”.‘?
—— ; _f.".';-“' L A S
| [”_'-;_:\ : _1 N i / { J |
- -j'\.\ -* v ! - r.‘]._'.;-‘. '_l 1 (‘ ‘
e Y| s l_‘“
(-I.-o(f"'r l:l ('IHIIVIIE i- i f T::llrjf_.’
Vv am r-l‘r' "\ LA {00 bl R P{J,JLI-JE'
r'{tt["f’l‘ _l_‘- el '.'-::-‘ JG ‘I.
ad 4?‘ Y ol o Sl
Lopta jr”*";"
r}\) f (_‘.‘U".'Cu,za’] (er,;_u?_ n::..i — ‘Tfmﬁ- h-u

Jlt‘\'rxlr.l]\ [“:c-‘f'rm pp:ujéns‘ Q_—;,hm-t- An . ;!
En?jmwf ~Ha_ eronts block ~ou T N -
{ o K_.‘.'Em'-ﬂ‘}ﬁ value en ;..!J\-;gﬂnjicﬂ-ﬁ bﬂ—g.ﬂhﬂt
-Hho. hnt.l!w&ﬁ“‘é{

?'1 200 {'
v R V) 7%
/ \ Crel

A

Scanned with CamScanner

Co Uedd

) N r‘J'-.wu.l.‘ et

) v T | e Cetanile. ‘,{"‘n obn o i . rt—ft
ﬂ iﬁ]u t lmu,l_q_ [1‘:__'.: n JA-C-’L;-L‘)'{
g dien C TAN}“J

Prong ome
| o
4"1-, prHl e ('Ju:ls_i-

~le (fisn one

|,L:P|.‘L1"
.r.g'.flhi.ff

*r[‘ﬂFL.
.Eh'rl‘ﬂ; Car-IN

N Paps prcad
e .!{_ ot Pf. ﬂ_—ﬂfﬁi —Pc.f'f A 5’[, .
' 'i '!-L.L'-E‘ — ;—Lﬂi oL

Ay 5[" {nc 1 O AL

2020/05/16 16:06

Scanned with CamScanner

H[zn st in o ot stwctinn aoidh
gy N eds bmemony plocke | ahe fo ¥

¥ (occh o ﬂomw\i
| |

i —'h"* i"‘u a Lop pmhiEn _.fa"-r .
ramony addnagy | oo uohena 1A stanks

Fach gl olopp.t .4 “+he ramony
alio S£0ne3 e | pointen £o dhe hbxd
olomerk’ | “Tha _lagt ofomart pointy 4o hall,

o 2 =
|r|l'E "{U‘P P': Ldj

Y 4_4-3?f ZH-> EEZTE - el

i "-.{‘"'-v &_r“ =0 why hare . blioek 3
rl,l[. i'.'?..'.{
ﬁj § 1) i' — —I - i
=T B
J Mers ol =——"—
{ \y Vot fo P
ll S' re,f-; ,I.‘:,‘_':_;JM
L _-_’|_ B d'}___'"r_l:r =1 r ,[L—(
l - . | e e rr ["f{
-~ |I . -
[, 0N)J)\ Y |- o7

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

/
ce Mechanism 4

(en'upts. NO'IMaska bl

those for which the

rvi
Device Drivers and Interrupts Se

In
ot be masked and they ar¢ called nonm.asknble ;s 2
T] ferri
s R umntemlpted. Aiﬁ’;at?lllei:':s maﬁ(ed.
;’;::ri::l:pnlay be temporarily interrupted to let other ISRs €xe .
nding Register

. t Pe
6.7.4 Interrupt Status Register Of Interrup!
/‘('-—_’—f
Canceps ptand to initiate steps

rru .
flag corresponding to
dentify the mterrupt

A few specific interrupts ©
are those for which the se

for the processor 10 inte

An identification of source of an interrupt is required, or the X s
for servicing of the interrupt. A processing syste dentify interrupt 0y
an interrupt source in a processor status register.
when that is set.

A bit in interrupt-pending register that corresponds t0 2
interrupt when the processor is not executing any other interru

m can 1 . .
A flag (bit) in stafus register can 1

n interrupt SOurce enables a processor 10
pt whose priority is higher than that.

Interrupt Vector

3 {An nterrupt vector is a memory address to which processor vectors transfers to I jon pointer
*/ (program counter) new address] on an infe en services the interrupt by executing ISR either

at that address and then the ISR instruction points to the new ISR address corresponding to the source

m(i) starting at that addess, (ii) at address poinT:e'fand generated by bytes at that address, or (ii1) starting
of interrupt or bits specified in the SWI instruction.

Ko wlieds x

Processor finds the ISR vector address
‘| from the four bytes atISR_VECTADDRn
| which computes from n

v

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Java

b edded program
data file o constanty g

d £
orogramming " ncepts °" and 8 €% Big o)
der file, e
petween inclust fﬂh‘; (i) The header files a1t ¢ well wsied and
an malh. & dard 1ibra" ies. (1D T beder £10.53 5
xt for spec! cific informstion ,\V

rence b€
,,.[DNCO 8 ess 10 8!
acc i “p(jon of 1€X

ing i9 c Coe and

 modles, (1) The heater 3
 gevenal text file or € files, () A text file

urce files need \ovu

s of application

7.22 Sourceé Files
| start. The code

Source files are progratl files for the
led, mudandmmmd A source
st function main

c
r di rectiv
Ing wi ll

lransmitting or recelving

Device conﬁguranon codes can be
spriallTHe

mw« ;gbsynem
hen needed dcsarcmtheﬁk
i cwardlrecuvc onsider ¢ another €xampie

it the protocols

nlable. For example, I

Lension

ole U

Me in an exany
define p1 51~

¢, those used for an initial & =
‘We con ABC Telecom

and mclnsum of configuratio’

les,

Feasibility of

context an the st
nesting one *

tart and retrieves them

on refu
irn within another

(Contd)

Scanned with CamScanner

Arcaste ture
Pongramsnng and Do vegn . ——

Pr
P ——
ng Con J ") y
epts and Embeddad Programming in C. C++ and Java g

How does a macro dilfer from a function?
| The codes for
function, and on ren

siled only once. Processor has to save the context on calling that
ay returm nothng

ocessar reatores the context. F
(vouid declaration case) or return a Boolean value, an integer, or ¢
data. [Primitive means sumilar to iteger or character :n_r,_n::_ type 1
or structure]. For example, the enable PortA Intr () and disable PortA Tr
calls. [The brackets for the function calls are no mal.)

3 The codes for Macro are compiled in gvery function wherever that macro name
before compilation, puts the codes at the places whereve Wi
a function, the processor does not save the conlext, and

Yen to newther re- a4 there s nO rEfUm in MAcro
L R). Macros are used for short codes only. This is because,
~aiy jnstead of macro, the overheads (context saving and other a

additional Hme, Tarbesds THE time is the same order of
of shon codes within a functon. We use & function for codes when

or reference type of

1% sinular to an array
) are the function

15 used. Compiler
3 NACTO TUNS 10

Tis LR af higher
IS LA gine&.(—.!* 0 Ty
T T : e e el
od when the codes should be ¢ ompiled
on return

0 1 save the con

] . Bl r

art Tu yu % are to be s
S

e

ed 10 o number of \

TA TYPES, DATA STRUCTURES,
LOOPS AND POINTERS

an identifier, 1t will have the addrensies
s for data depends upon data type. For ex
: O e o ticks), then num Ticks will be atlocated
< ows followtr .‘}E‘g% char (B-bit) for characters, byt
; ; bt ,li!:uubsv. e (3200, long double (64
: o compilers do not take the ‘byte’ as 8 data-type definition e)
ﬂ%gsgnog—.ﬂ vanable as data lype Then tvpedef 15 nsed © cre
isgsﬁﬂgg NEEAA ng—i-ﬂ; 1nke 2 Hoolean varn yhle as daa byl
>'.«1§E¢-ﬂf§:§ For example, 8 16-bittumer can
.!s..l-ai.-i...:nlﬂui from 0 to 65535 only
used. 1t is made clear by the following example

The opede/ 1 also .
git_n%‘%s—-nﬁu.v: port data 1 “unsigred o

&B.in_-l.,_.i-.wlfgll_o?t-.
typedef unsigned character porthdata
)define Phyte portAdats OxFl

7.4.2 Use of Modifiers
A o modifie the actions of data (P

W g
pyte . M

Scanned with CamScanner

Scanned with CamScanner

Exampls

1. Aproces!

Instruction Po

execute in supervisory
. ARM processol v SP. / jenerally r13)

g element

of phor

haracte
. The n

roll numb
roll numb
variable:

marks of student:

that jointly

Jement with in

he pointer and ind

Scanned with CamScanner

dded Programming i C. Cow and Jave

ming Concepts and Embé

Program
Mo Archeciure, Programing and Decgs r
_ _ S AWEILED 7.4.10 Circular Queue—
; il \ . o *y & . e e
viiting alle A circular queue is o specinl queve. A pointer on reaching o limat | e 32.91. 10 .? 4222.
buffer and & disploy builer are examples of circular quene Fiach character i o8
memory block with a circular quene with 1S WO pu

*Quan N PO
ﬂq_”ﬂun in FIFO mode. Figure 7.6 shows @
needed for nserions and deletions.

@, whan back Atlempls

, . , 10 exceed end, pack becomes equal lo stant
Start End

From U\x .
R

For Circular Queu

pointers 1o point its two elements at the front
rd always retrieves in FIFO mode from a queue .

Back

Fig. 7.6 Circular yueue at a memory block with two pointers 1o point its tWo elements at t
front ..w:a back. A pointer on reaching a limit of the block returns to the start of the | (S

ot increment beyond the memory bl

i b 4t i fix e

()

\

e quene ® fononty of element is hugh

Messages posted (inserted) from the jasks arrange—"

per prionty. JFigure 7.7 shows 2 priority queue

ALY

deleted) as

-_Bnaoém..nmmom.ﬁinn: rnu,_,.sas__?::z?
3 ﬂp1|1l1l
_/ i / L |
L \ A {114
‘ AR RERE

QBackPointer
inserted in order of priority from 1he start ponter - s

A (Lowest Pricrity)
| \Wailing Elements for / Unfilled addresseas
the read from bufier at bufter

Eng Pointer

\nt

e with elements arranged in priority order head and tail po

[Pi ne
‘.-- vice-d iver functions. Insertions are from source-end god
¢ and destination are ¢ ected by a function pipe_connestt]

|

Scanned with CamScanner

Archi
Tecture, vaa.e:asa and Design

A s

Back at Task 1
Ei
Pipe Front Pointer Pipe source) vo_ﬁ__,._w
| for dalging ams.. Pointar '
_ from Pipe ; _:«mﬂ”o into

Fig 78 M
2o
ry block used as data elements in a pl
pe

”.w%.j 3 Use of Data Structures:

Table and Hash Table

g 2= -

e Y (MAtX), s an
table AR A8 an k
fora ‘ The base pomnts to its ?ﬂ,avozn:_ data set in memory block. There i
and the other for a : element at the first colunn, first roy ok
n can be column Figure 7.9 shows o n, firt AL There are two
‘ retneved from addresses fy memory block with the pointers for
‘%qﬂ specifying column Mq 521 e.nua. column index and row index.
gg_gg be fi and row indices is used in an instruction. That
or a column or row and 1s from the base.

-
gag AMarmory Block mh_ﬂ,.a,-l..wa flase Pointer onwards
‘ _ Og_a —a.i ﬁo- flatal 1] —n_—._
g M ?.@IB inds: Registed)
\ Rows ” n.: alpmunt
| [y
- “ \§ Memary

B -

Ln

o

A hash table) a set ¢

AR ”_sn:_w_.mu\ﬁw_w_nﬂ__._:ﬂgﬁﬂ with a memory block for key and value pairs. Jusi as an index
: nt, a hash key identifies a hash element. Tabl : 1 speci

key and succeeding columns values associated with the key leat mo__::: sl

Pro,
gramming Concepts and Embedded Programming in €, Ce+ and Jove

[Name | Marks | (= A polnter &
LA Names / & —— Values amrp
= , ph ==) Bytes for an
i ! ¥ }-—7 of S Address that
~ s ays — / objects T e points 1o Value
I 5 - \ ar obyec!
JORREESS Memary lof a

(A pointer lor each name can be
at a register file or in memory) IS oy S
in hash t2ble

Fig. 7.10 Memory block with the pointers for a look-up table for hash keys

75 | USE OF LOOPS, INFINITE LOOPS AND CONDITIONS

A set of statements is repeated in a loop each time with chang=4 -4-= value, Generally, in case of an
array, the index changes and the same set s (0 be repeated for another element 01 b array, Then the
op is eonvenient (o use. A loop starts from an initial value of a variable or condition and excuuie> Uit
the limiting value ot condition is fulfilled. There can be certain parameter changing each time from 113

initial condition up to a limiting condition.

For example, consider the following, for (1 = 0; i<
which repeatedly execute* /). The initial condition is assigned as (=
execute i is less or equal to 100. The set of statements in bracket executes fro
return to start | increments by I. The for statement lets the set of statements repeatedly execules 101

times with values of i=0, 1,+:::99; 100 and 101.

For another example, consider the following. j = 0; while
statements which repeatedly execute * 14+) - The ininal condition 1s assigned as i =0 and is s¢
before the while loop. The while loop executes tll i remains less or equal 10 100. The i+ increments
before the return and test for while condition takes place. The while statement I¢1s the set of statements
repeatedly executes with values of 1 =0, L.y 99, 100, 101.

E.aou&sou.ﬁ_baum true then while loop will execute infinitely until an interrupt SOUrEe causes

, For example, while (1) { (/" aset of statements which execute repeatedly execute
| +/). The loop will execute infinitely because 1 always remains | (=true). Infinite loops are never
in usu %ﬂ%ﬁhg_w because the function or task will never cnd and never exit of
ﬁo%muo_umm after the loop. Infinite loop is a feature in embedded system programming’
wware in the telephone Thas 1o be always ina wa

iting loop that finds the ring on the line
by external input. An exit from the loop except for servicing the interrupt will

= 100; ivs)(/*2 set of statements
0 and last condiuon for loop to
m start to end and berween

(1 < = 100){/* asertol

1

i

8 a *C’ program design in which the program starts exccuting from the main ()
{ 1ls to the functions and calls on the interrupts in between. It has 1o return to the
main () is in an infinite loop

rORLAIMm 1S NEVET in a halt state. Therefore, the

Scanned with CamScanner

8 ¥ Joj U0
ssud usay A

Sfessaul D] A
<a9ud-amot ue 10

{
i

4004,
(PUD 445 5 ur BunuwnaBosd pappaquwid puv s1da2u03 Ul Y

Scanned with CamScanner

.

Programming n o S and Jave

- .ﬁ-.-.--r".'-‘-.-..
b .-‘-'-.‘.
‘\G!‘-’!.ni Camipls and m__:—_:...:-..

een slate 04/ exit ().

1 the cholce [y menu 0 Ser
gen state 0/ */ : exit (x

Switeh (m) |
is menu | 5¢

Yo s s st
. mn Case 0 [/*Code, which axscutes whe
Casa | (/*Cods, which sxecutes whan the cholce

Sarwton
Ntion (w0 m
Case N«) |/*Code, which sxecutes whan the cholce 18 manu N = | Screen state 0°/

|
)
& - p u A -.:
Nnetion (g, M) /* Coudes for Scrarn Stal
/% An ISR sands message m a8 par the chole
—_ vold poll.meant (/* Code for polling for ehol
J* An ISR sands massage m as per the cholce
Switeh (m)
Case 0 {/*Cade, which axecutes when the cholce i manu 0 5¢
Case | /*Code, which executes when the cholce 18 menu | Serean s

of L exit ().

-.--o.-ovtnnnntt-..cn-n-.v.-vo.-.»\

PR 1) CAR

.‘..-‘DII.I.—tD. CLLLL

the menu in scraen state) */

— .

& selectad by the user from
cu [fom menu m for screen state) */
selacted by the user from the menu in screen state) */

rean state o/ exit (),
wate I/ axit (),

Case N - 1 [/*Code, which executes when the choice Is meny N - | Strean stale 1/ +/ L exit L)

)
'.‘.'ll"...'\

-\o.tlb.c.cnt-s:-;--::e-:.‘.icinontnﬂqnnn:.-c
. /* Codes for Screen state) + Vo 2, K- 3%/
«-,E poll.menuk I/* Code far polling for choice from menu m for scremn state K/

» wessf -

voud main (void)’ Number of functions

s
when ealling a function in ?cc:_:w
i)

tared. Two variables for

AN

on must be dec
M char *port hdata; hoole
sent at port and rescts wlien not present]

functian (o return the flag, if there

R, which gets the input character at the

M1 Jﬂwﬂq: function 12, the values are copied from
n the f1 passe the values, (2 executes in a way that 1t

at f2. A function that has already passed the

LM

Scanned with CamScanner

C

rogramming in €, Ce# and Jave

Concepts ond Embedded P

nethod overloading. The operalorns

Programming

ggnl?—i

| ek can Be aded Mike T
|] rators in CA+ can be overloaded ‘ax? aneralor is used for post-y
: Program an e‘rm”lﬂ. _-’. SoRAMING E«mﬁ;o&& {0 perform a set of OPeralons. {Usually the *++" operator s used for posi-ines
od Program = language offers many advantages. An Objecied- and pre-inerement and the *1' operator s used for a not cc.w_._:c: , P e

e 4+ L) Lif (ListNow

. _4,_.\ HRE Provides fur the followings:

W OBIECH e set of objects, which J - const Orderedlist & Operator
any ‘.l. y ATE Common oy stinilar abjects within o programm and Listiow = Listhow -> phexts
e methods: thay man; s Listboy =
L of maliple insuance E.?Eswuozs. SOt g their definivions, Asturn 'tnisil \ () const Axets
L OF setof abjects or new ohjects, : poalean int Ordere e s -

Caf‘—r&caﬁ noL support operalor overloading, except for the *=" operator f..fcvnof:%:::.
well string concatenation.

+ class has object feaw
There is siruct that binds all the me: ¥+ clas y

mber functions together in €. Buta L

,B.'rg 1S state and behavion, 1t can be extended and child classes can be derived from it A number of child classes can be dex __
3 ,,) from a common class, This feature is called polymorphism. A class can be declared as public o1 puy
hulate the stare of the abject), The data and methods access is restricted when a class is declared private Struct does not have i

COBOL, Pascal and C, are large programs that features.

)

teme H?!‘b language \ike Smalltalk, ;
! . Bl_n!. .Euaésn?!?a&s;:_a |

The program codes become \engihy, particularly when certaw features of the standard C+ = ame
mples of these features are as follows:

' application program. Each
data 3t these ieldh. Each grous car e

Each e&oﬂ. s ’nﬂ-ﬂ.sa_. Each (8) Template
g_. : ,ﬂﬂﬁaﬂfpﬁnaa-aop of (5) Multiple Inheritance (Deriving a class from many parents)
104 common behavior. A class o () Exceptional hand\ing
; (d) Virtual base classes

(&) Qﬁucnan VO Streams [Two Worary functions are cin (for character () n) and cout (for chara
(8) oun)}. The 1O stream class \ibrary provides for the input and output streams of charas
\byies). I\ supports pipes, sockets and file-management features. v

due 10 the ALS TC-UsaDV
iy and R \ AABITY With the

, f operators. Embedded L - -

plét b .mmm@w,%.n.w Object-Onen:
state and bevayior and which

\ Wnﬁ nemory needs and mn-ti,
CRN oo Fx i

r+ PROGRAMS TO ELIMINATE THE

,,‘“.,.w58¢~52w04<?n?ﬂof?ﬂ.
: %.rgo.m AN oplmsing the generated codes,
_ 0 place of the objeets (reference dawa types) @
sible.

Ahe teference 10 an object to WL

Scanned with CamScanner

leatul

f th

nrovided

bove

Scanned with CamScanner

nlys 3 PR, Py
| .r‘,",,L,,l‘_!_‘u!h;;r‘,j‘{_-'r‘ 519/

ol ._,:L - '. 1 with classes. Awﬁcﬂim program

“{"f,r.' “';; 1 . LAl

hat mak u,-w-,: amiopnwmquwk
me the need for an operating system

on ﬂn installed JVM (Java Virtual Machine) on

s in the input and runs on the given platform

: stems is stored at the ROM.]
]ﬂ‘fﬂm Platform independence in hosting the

fions.

respect to the processor and the OS used. Java is

cations and allows machines of different types (0

structions. So it is robust in the sense that memory

1 ¢ -f,,J\H mory leak occurs, for example, when attempting

anipulation by value and reference. There are no struc,
| .muluple inheritances and operator overloading,

sing Just-In-Time (JIT) compilation.
';embedded Java system may need a

Scanned with CamScanner

Architecture, Programming and Design

1. Polling for Events-Based Model

A program model is polling in a eyclic loop. Polling is for the events, state variables, messages and

signals. Polling is performed using switch-case statements, A function is called for each event, state,
message or signal found inthe Toop.™

£ 1 s

==

Ty

Figure 8.1 shows a polling for events-based model for an automatic chocolate-vending machine (ACVM).
The following functions run on events
1. A poll for interrupt event from coin-insert port when a coin is inserted, and if event found then run
1SR read _user_input () for obtaining input for the choice of chocolate from the customer.
. A poll for port message posted for delivering chocolate and if message found then run deliver
chocolate (port_message).

. A poll for display message posted for display and if message found then run function display
{display_message), else display (idle state message),

Interrupt on user-coin insert afler message m,,.

. display (idle_state) '. ISR on interrupt
. Run code_for dis pla:-' —— ' 1. Poll for message for menu-choice selected m,,. and interrupt event e, at
¢ Wail for mess ! ! eoin insert port when a coin is inserled; case (event = e;) execule
:) | I read_user_input ()
| 2, Poll for port message posted for delivering chocolate my,.
| Case |message = m,) execute deliver_chocolate (),
| 3. Case (message = My, execute display () else display (idle_slate),

| ! J :
event &, ' read_user_input () deliver_chocolate() ! dispaly ()
message | Run code % Run code !\ Runcode_fordisplay
m,. ' Message m,, ' Message mg;gp . 85 per My, j
Signal |
)]
messago
My
mescage -
md‘isp

polling for events-based program model in ACVM example ‘

Scanned with CamScanner

2. Sequential Program Model

order. ISRs provide short period deviations from the sequence, execute short codes for servicing the

s for servicing the chtﬂJ
interrupts and send the function pointers as messages inserted into the queue. Even then, the pointed
functions are executed in sequential first-in first-out (FIFO) order.

: : ¢
F|gure B.2 shows a sequential program model for an automatic chocolate-vending machine (ACVM).
The following functions run in sequence, .
1. Run function get_user_input () for obtaining input for the choice of chocolate from the customer. .
2. Run function read_coins () for reading the coins inserted into the ACVM for the cost of chocolate]
3. Run function deliver_chocolate for delivering the chocolate. '
4. Run function display_thanks for displaying ‘Collect the nice chocolate. Visit again!' l
I
1 function get_user_input () | | L
S Run code | |
P s return = i
8 , lelurn .
| Sequential [opariteme marmis s ¢
| function calls i”_ - 7! tunction read _coins {‘_i '_ i
| whie () e | | Runcode - B !
a2t_user_input (); |+—0 | return I| i l"‘
| read_coins (); s e s | P
| deliver_chocalate (); I\‘-\ © Munction delwer chncu'lale () | ! G
I. display_thanks ();}: P N I| Hun code '[H '
hicas e B R return | | i
1 ¥ e e s e - I |
i | :
. “ 1 function display_thanks () V3 4
(| Fucods . \
L @I{—n__ e Y vune i
[- " . I‘
fi-. ».1 Sequential Programming Mode! of an ACVM A’ﬂ 1 '
|
3. Concurrent Processes and InterProcess Communication Model
A programming model is that which has several concurrent tasks (or processes or threads) and eacls |

task has sequential codes in an infinite loep. An 08 controls the order of priorities for execution vr
controls the time slice allotted for execution of a task. A task posts an interprocess messace or signal
to OS, which passes it to another task waiting for that message or signal. A task, which gets a message

or signal from the OS, runs and remaining tasks remain in blocked (wait) state. Example 8.3 gives the
concurrent process model for the program model in Example 8.2

} re —

=SasesSs—]

Figure E 3 shows a program model based on concurrent running of the processes in an ACVM. Assume
that the program consists of the following processes, which run concurrently

1. Process get user input!) forauserinterrupt service, It obtains input for the choice of chocolate
from the child. It posts interprocess signal for process read_coins.

A
e T

Scanned with CamScanner

|

W

Mo
0%

o

L

P

ﬁ 3

s
L
i

£. ProCess read_COINS|) WAILS TON IN€ SIgNAI 0T get_user 1nput(| 4nd wnen ud signais, It sians
and read coins inserted in the ACVM for the cost of chocolate. It posts an interprocess signal for
process deliver chocolate () and also posts a signal to process display_wait () to start.

3. Process deliver chocolate() waits for signal of read _coins{) and when OS signals, it
starts and delivers the chocolate as per choice input at step 1. It posts an inter process signal for
display thanks [).

4. Process display wzit() waits for signal of read coins{) and when OS signals, it starts
displaying 'Wait few moments!"

5. Process display thanks{) waits for signal of deliver_chocolate {) and when 05 signals,
it starts displaying ‘Collect the nice chocolate. Visit again!'

1 - . ; AP
Concurrent ISR GUI_interrupt () »| process get_user_input ()

| Processes create Run code wait GUIlinterrupt Msg
creale process Signal GUInterrupt Msg Run code _
get_user_inpul ; Signals read_coins

| create process read_cains i |

{ . e

| create process : process read_coins () »| process deliver_ pcolate ()
delwerpchncn:me {1 wait Sread_coins %aﬂ S;iglwer_chomlate

fe p ' Aun code Run code
| gg;:f;ﬁgﬁ:i{) Signal Sdeliver_chocolate Signal Sdisplay_thanks

create process Signra_l Sdisplaywait [

display_wait { };} 1 :
- | process display_wait () »| process display_thanks ()
wart Sdisply_thanks

| wait Sdisplay_wait .
Run code for Wait few Run code 'Collect the nice
s 2 chncolate. Visit again!'

moments!' i _ !
Wait Sdisplay_thanks Wail Scisplay_wait
.._I Signal Sdisplay_wait

Signal Sdisplay_thanks
Fig. 8.3 Concurrent processing programming model of an ACVM

—= Arrows show inter-process
communications

Mﬂdﬂr‘w g
A e g P el T e N

P a—‘”’“lkﬂ.g -

4. Qb_;en Grfentsd {ragrammr

.. SELR T RN
JT]‘

:’m obiect is characterised by its identity (a reference to it that holds 1ts state and beh
object means its data, property, fields and attributes. Behavior means pperations, method or methods,
which can manipulate the state. Objects are created from the instances of a class. Defining the logically

avior), State of

related group makes a class.
Class defines the state and behavior. It has internal user-level fields for its state and behavior. It

defines the methods of processing the fields. A class can thus create many objects by copying the
group and making it functional. Each object is functional. Each object can interact with other objects
to process the states as per the defined behavior. A set of classes and their objects then create an

application program. An object-oriented language is used for the following features:

(a) Data encapsulation within an object
(b) Re-usable objects or set of nh.r:cts defined, that are common within a program or between the

‘many applications
(c) ‘Abstraction of data fields and methods in a class

(d) Creation of new objects creation a inherited class, which extends or redefines or overrides data
fields and methods of a class.
(¢) Creation of new objects using polymorphism.

e

Scanned with CamScanner

Program Modeling Corncepts _A

Example 8.4

e ——————— —— — — — —— = — . — = —— - —

An object-based model is used instead of ACVM sequential program and processes-based models.

Figure 8.4 shows the features of classes objects, and inheritance interface in a model for an ACVM, The
following can be the classes and objects.

{ Class GUI [___ = T
? ass ispla

Unsigned byte [|: keycode i Class Read_Coins FpLRaY o
String: char []; ! _ String: char [];
String: Menultems; Unsigned byle []: String:
Menultermns: StrLine1, StrLine2, coinAmount Msgltems1,
StrLine3d, StrLined; readCoin (); | Striine1,
Color: textLineColor, sum (); Msgltems2,
cursorTextLineColar, StrLine2; I
screenBackgroundColor; Color: textLineCaolaor;
Cursor: line, coloredBar; r

L Class
display_menu (}; Deliver_chocolate abstract screen_size ():

et_user_input (); set_display_ period ();

Eet:chmc_e {Pa; get_choice (); i
enterClick { }; deliver ();
! read_port: Aead_Coins displayThanks: MsgDisplay

displayWait: MsgDisplay

Class GUI J

e coinAmount;
coint, coin 2, coin 5

i = }
Class GUI_ACVM_User | Class GUI_ACVM_Owner
Class MsgDisplay
- + :
f Class Display_time_date i Class User_inputs

Fig. 8.4 Classes and objects and inheritance and interface features in a program model based
for the ACVM

1. Class cuI for graphic-user interaction. It has two methods, display menu () and get_user_

input () for obtaining input for the choice of chocolate from the customer. It has the method
set choice ()"0 set the choice selected.

2. Clases Read Coins () forreading the coinsinserted. Ithas a method readcoin (). readcoin ()
reads one, two and five rupee coins from three ports and a method sem (3 Ffor summing the
total coins, .

3. Class Deliver_chocolate. It has methods, get_choice () toget the choice and deliver {)
for delivering the chocolate.

4. class MsgDisplay. It has methods display wait {) and display_thanks () for display
wait message and thank message.

Scanned with CamScanner

j: Z_E':?:‘_"'-_T:._..,_, B Architecture, Programming and Dasign
'; =2 = s=vnchronous i2ata Flow Graph (SDFG) Model
ks | When there are number of tokens (inputs) required for-a.computation to generate number of tokens

{outputs) m a single tinng, the data flow is said to be synchronous. The SDFG model is as follows.

Let an arc represent a buffer in physical memory. The arc can contain one or more initial tokens with

| the delavs. A token, till 1t 1s received at the vertex, does not fire the computations at a vertex. Ferrices

- foire h-ﬂt in this graph are called the actors. Actors do the computations. An actor also represents
a complete DFG within itself. An edee between the vertices (arcs with an arrow Jor the direction)
pepresents o quene of ouiput values from one vertex and a quene of input values to another vertex,
Edves carrv the values from one actor to anather.

— e v ey .

——— = == = — == e
- | Let ¥ and ¥ be two sets of instructions that once fired (started), and do not need any further inputs from
any source during the computations. Let X generate the output values (tokens/data) a, b and c. Let ¥
get the input values (tokens/data), @, ¢, iand jand let i have a delay. The number of inputs to ¥ need
not equal the number of outputs from X. ¥ gets additional inputs and does not need all the gutputs
from X. These computations and data are now modeled by a directed darta flow graph that exists from
X to Y. The number of outputs and inputs are labeled near the arc-origin and arc-end.

Figure 8.9 shows actors {vertices, which does the computations on firing) and arcs in a directed
graph between X and Y. The figure shows the cutputs a, b and c and inputs @, ¢, i and j. The §is with
a delay (dot). The dot on an arc represents the initial token(s) in an SDFC model. Then an initial token
may also represent a delay that is shown by a dot on the edges of SDFC. If there are mare than one
initial token the number of initial tokens are mentioned on the dot. The i and j are initial tokens for the
vertex Y showing that i has a delay.

Vertices (Acton) for Computation

(a,b g) fa.c, i)
o -
' g 4 ,.f'/ ™
5 X F——e ¥ |
W g 3 /

| Zig. 2.8 Actors and arcs in a directed graph between X and Y, outputs @, b and c at X, and
inputs a, ¢, iand jat Y, iis with a delay (dot)

A number of vertices may be present in a system. Al computations are static scheduled in SDFG
exectition at each vertex (firtng elements for the computations and creating another set aof ourput
tokens). SDFG model program wanslates into a sequential model program.

| An SDFG model is like a DFG, but also models the delays as well as the number ef inputs and .
{ outputs. The edges directed to the circle can be assumed to have a physical memory buffer and until
[the buffer has the data, the computations do not fire.

22 eTaTE-MAACHINE PROGRAMMING MODELS FOR
CUeRT-LONTROLLED PROGRAMS

Aprogram’s output or achions for present input may depend on the previous input and output conditions.
It means the previous state 1s also input along with the new input to determine the program’s next state.

Scanned with CamScanner

DEL

gvff% Emé%% SYr

Frogram Modeling Concepis

A program model means that there are different states and the model considers a system as o |
which is producing the states one after another until it retumns to the initial state.
8.3.1 state-Machine Programming Model

A state-maching js_a_model in which it is assumed that there are states and state transition functions,
which produce the states. A state transition function is a function which changes TstateTo 115 next state.

Example 8.8

= e =y

— ey

1. A display may have different states. A state carresponds to a displayed menu, and the program
action depends on the previous display state (menu). The program is sequentially polled for the
screen state and menuw choice selected by the user.

2. A mobile phone has nine keys markedw, e, r, s, d, f,z, x, caswellas 1,2, 3, 4,5,6, 7,8, 3 When
a4 phone number is dialed, the keys interpret as 1, 2, ..., 8 and 9. When SM5 message is keyed- -
then a key inputs a number, 1, 2, .., 8 or 9 if marked * is keyed-in before else inputs an alphabe:
W, 8, ... X OF C.

If case-shify key "aA’ is keyed in then an upper case alphabet is output on keying-in a character ©
= pPrevious state is lower case alphabet, Else, vice-versa shift of Case takes place.

Atelephone system has five finite states, idle, Receiving a ring, Disling, Connected and Exchangi
Mmessages.

A

R .

Consider an example of the running state in a timer. The count-input is the clock-input, T
changed count value is the output. The output function is the mcrement in the count wal
The state transiticn function is the time-out on overflow when a predetermined numbers « -
o countinpurs are reached. A timer has four finite states. ‘idle’, ‘Start’, ‘Running’ and ‘finiz~= -

'Idf_:t' Stare It starts state transition on loading an inpuil, rumTicks (number of ticks
which the tiemer finishes)

(b} Running’ State. On each clock input for decrement, the count value decrements.
(€} “Fimish® Srare. Program flows to finished state. This is when the count value reaches 0O,

x - A task has four finite states — idle, ready (waiting), running and fimshed. An output from ao-=

state becomes the input 1o next state. A token from O% schedular changes a task state. ﬂl

When is a system modcled as the states and state machine? Frequently, there are inputs 1o a prog. o

that change the state of a system to a new state, and gencrate outputs. which may also be the inpuis

for the next state. Now, it can be assumed that in a model the running of the program and 11s flow can |

h_": considered as running of a machine which generate the states. The program flow can be modeled :

simply by interstate transitions (from one state to another) from next state transition functions (Moorg ‘
{

model) or next_output state transition functions (Mealy model)]
THe - T i
Ihere can be tranSten-of The present stale 1o the next state, which depends on the inputs and state

transition function. A set of outputs represents a state in Moore model and a sct of outpuls represents o
state transition in Mealy model.

Let a circle represents a siate and let a directed are (or an arrow) represent the prozram flow from n
state to another.

The steps that model or represent the startes and interstare transitions in a data path are as follows. |

l. A transition to a new state occurs from the previous state on an evert tinput). The event mav be
setting a value of cenain parameter or the result of the execution of certain codes. A transition may
also be interrupt-flag driven (after a flag sets). semaphore driven or intermupt-source servicing-

‘--_-——_._-—-___

.._ - -'-'-—_._—‘
necd doven.

2. A state can receive multiple tokens (in uts, messages, flags internipts or semaphgres) from another
state(s). A roken (event) is used here as a general term that means either an inpur or event-inpul.
I P

. i R 4

S irols W, Medeoing

Sof{ oare _ ARG Proces. B

l-‘l'ﬁ

Scanned with CamScanner

Y

Z

kron /

P

-

-".’/

L
Architecture, Programming and Design P

An event-input charactenstic 15 that at 1s asynchronous (one never knows when an event may

happen) An event-input may happen when there is setting or resctting of a flag. It may occur when

there 1s (1) a semaphore given or taken, or (i) some indication for a resource or signal or data-item

penerated, or (1ir) completion of execution of a set of codes.
3. Asstate can generate multiple tokens (outputsmessages, flags interrupts or semaphores). An output
nd variables identify a next state on mapping the inputs, variables and previous
states using the output-state transition (action) function (Mealy model). A flag indicating sate
condition or a set of codes being exccuted or a set of values of certain parameters identifies a next
state on mapping the inputs, variables and previous states using the next-state transition function
(Moore model).

or sel o E'nutﬁfi

A

The state machine model is a mode! in which running program and its flow can bz considered as
running of a machine, which generates states. The program flow can be modeled simply by interstate
transitions (from one state to another) from next state transition functions (Moore model) or next
output state transition functions (Mealy model). A circle represents a state and running program
codes and a directed arc (or an arrow) represent the program flow in one state to another.

2.3.2 Finite States Machine (FSM) Model

The FSM model states that there is finite number of possible states in a system, and a system can only
be in one of these states at an instance. -

When modeling a -process as fithte state machine (FSM), the software designer specifies the
following for each state. -

1. A state among one of a finite nuimber of states.

2. Finite set ofnputs (tokens, event {lags or status flags) with therr values for the state,

3. Finite actions (for example computations) during the state and finite set of outputs with their
pumh!m for tokens, event (Tags or status lags) and an output (action) function for the state
that gives the outputs. e

4, State rransition function Tor each state to take it to the next state.

cxaswirle 8.9

e

Figure 8.10 shows the FSM states in a program model of an ACYM. J-":."..-'CM has four finte states—get_
dser_input (), read_coins (), deliver_chocolate and display_thanks. An autput from one state becomes
the input to next state, A signal from OS scheduler or interrupt from user changes an ACVM state

oy signal inpul eimen Signal deliver =10 : :
7 lask / ~ taskfor ~ f I/" Task *‘1.
(get_uﬂer__ir'l-put _f_ | I'Eﬁd_mins —HEE1I‘¢'EF EhGEEIaIE‘ i ': =
e} B o (5 ..-"H S {]' _,---’ Lo \
e —— % |
T Signal display q.h.__i \““a__ S
: S
B User interrupt e faske TN
' | dicpldy fhiarikis)
—==— Arrows show sfale transition to next state on . ()3 7
a software interrupt signal for the transition S
Fig. B.10 F5M states in a program model for ACVM ﬂ

Scanned with CamScanner

Program Modeling Concepts ﬂ

8.3.3 FSM State Tables

When an FSM model is represented graphically with circles and directed arcs, it becomes complex
in the case of a complex process with large number of states. A state table can then be designed for
representation of every state in its rows to design software using the model. The following columns are

made for cach row. f_jku'i\il L{TL}:U : ~

I —
Present State name or identification _= -

Action(s) at the state until some event(s) \ o~
The events (tokens) that cause the execution of state transition fungli
Quiput(s) from the state output function(s)

Next State i A
_.E.tpmr;:d.ﬂmel{: terval for finishing the transitions to a new state after the event. \
The coding using each row can now be easily done as follows. |/
4 while (presentState} [action (}; if (event = : taken = ...)
{output = ... ; stateTransitionFunctien ();)]
ar

Switeh (State)

Case presentState: action (}; if (event =; token = |
[output = ..wuan ; stateTransitionFunction ();: }:1°'

Here, presentState is » Boolean, which is true as long as the present state continues and tums false
on wansition to the next. The action {) is a function that exccutes at the state. If certain events
occur and tokens are received (for example, clock mput in a timer), a state transition function,
state Transition Function, 1s executed which also makes presentSrate = false and transition occurs 10
the next state by setting nextState (2 Boolean variable) = true.

Example 8.10

=== == ——
Figure 811 shows the states, state transitions, events, outputs from state eutput function and finite
number of state transitions of a maobile phone key marked as w. Total number of states are finite in
number. State variables of state 5 are state_phone, state_sms, ad_key, alt_key, key. w, sign_key. Three
keys are ah, alt and sign, and only one is active at an instant. . =

Srate_phone active means the mobile is-in dial a phone rnode. State_sms active means the mobile
is in sms keying-in mode.

When state_phone is active, state_sms is inactive, aA_key = inactive, alt_key = inactive, key_-w =
inactive, sign_key = inactive then key_w output state = 0 (idle). When key_w interrupt event activares
then key_w output state undergoes transition to ' It means when 5 {state_phone, state_sms, ah_ key.
alt_key, key_w, sign_key) undergoes transition from initial state 5(1,0,0,0,0,0)to state 5(1,0,0,0.1.
0} then state transition function generates key_w_output =*1°_[* 1" means character 1, 1 means active.
" '0' means character 0 and 0 means inactive. |

When S (0,1, 0, 0, 0, 0) then on Interrupt from key_w the next state is 5(0,1,0,1, 0) and output
key_w_output = 'w". s

e
m""ﬁ""‘c’-ﬂ’l.w e

Scanned with CamScanner

f

YLy
QY —
WS A2
i|

5

a1 A= i

Caltunng s ; User input d

disable ca all_kev_ﬂﬂ"‘“i o

Tal-¥
e

p o — ¥+

| c task '
all_In Interrupt as ¢

L LT userivut [0%)

“ ==\ (number),

i of -

[]

Call_In Interrupt ;

—i Arows show state transition to next state on a software interrupt
(signal for the transition) or hardware interrupt

- 811 State S (state_phone, state_sms, aA_key, alt_key, key_w, sign_key) undergoing
state transitions and finite number of state transitions for S in mobile phone

alphanumeric Qwerty keypad ‘

i{-.gif-

s |

g = =

Make a state table for the FSM in Example 8.10. Table 8.1 gives the state table for the key 'w’in
alphanumeric xeypad of 2 mobile.

.= 4., State table for the key ‘w' State S (state_phone, state_sms, aA_key, alt_key, key_w,
sign_key) in alphanumeric keypad

i ';‘ Y ey W DD
S (1.0,0,0,0, 0) wait 0 $ (1,0,0,0,0,0) 0 0
S (1,0.0.0,0,0) wait) $(1,00,0,1, 0) Sk
$(0,1.0,0,0,0) wait 0 $(0,1,0,0,0,0) 0 0
$(0.1.0.0.0,0) wait l $(0,1,0.0.1,0) ‘W 0
S (0,1,1,0,0, 0) wait 0 S (0,1,0,0.0,0) 0 0
$ (0,1,1,0,0, 0) wait 1 $(0,1,00,1,0) W 0
$(0.1,1,0,0,0) wait 0 S (0,1,1,0,0,0) 0 0
$(0,1,1,0,0.0) wait l S(0,1,1,0,1,0) W' 0
1 5(0,1,0,1.0.0) wait 0 S0,1,0,00,0) f) 0
S (0.1,0,10,0) wait 1 $(0,1,0,0,1, 0) 9 0

Scanned with CamScanner

/R .G

LY
L
3

- F

i,
el

i

J:

.""FFH-
£y

G

—

)

—

£ delne ue
dafine false 0 \\,.,
define state0 "000000"

define statel “100000°

define state3 "010000"

define state5 “011000"

define state7? "0101007

£ define state2 "100010°

define stated “010010"

define state6 011010

define state8 “010110"

void Key_w_FSM () {

boolean idle_state

char key_w_output,

key_w_output = idlestate,

kw! =0;

State = State(,

while (true) { /* An infinite loop 'j

SRR SO R A S s SR

J* function dlSpla'f ("x") shows character x on the screen, display (0) shows idle state which means sam«

as before and function cursor_next () moves the cursor position to *he next when keying in a phon.
number or SMS text message, */

SWI-T.Ch {Statiﬂ [ii'I'I'Iiii'li'liti'liil.'il'ltt.iliijj'l'iiitiiiiitt FRTEAES .pq-}r
StateQ: if (kwl == 0) { idleState = 1; display (0); /* No change*/}
break:
ftiiiiiiilttittttiiitftttitibiiiiritttitiqiiqiitttittirqttpt.f
Statel: if (kwl == 0) { idleState = 1; display (D), /* No change*/};

if (kwl == 1)} { idleState = 0; State = State 2; key_w_output = *1'; display (‘1"); /* display character 1*/}
cursor_next (), kwl == 0; idleState = 1;

break;

fittiiiiiitiittittttiitttiftfitifiitfttﬂqiiqittttt-ii‘i-¢i|1ix

State3: if (kwl == 0) { idleState = 1; display (0), /* No change*/};

if (kwl == 1 && kw_state =0) { idleState = 0;State = State 4; key_w_output = ‘w'":State display (‘'w'); /*
display character w*/},

curser_next () kwl == 0; idleState = 1;

hreak;

ftilllililiiiiiﬁitlli"tli!#lllii##ililiifilwllliwilﬁllllllf

State5: if (kwl == 0) { idleState = 1; display (0); /* No change*/};

if (kwl == 1 && kw_state ="w'} { State = State 6; key_w_output = "W'; display ('W'); /* display character W*/}.
if (kwl == 1 && kw_state ="W") { State = State 4; key_w_output = ‘w"; display (*w'); /* display character w */},
cursor_next {); kwl==10;"

break; nQys
“fiii*i*iifii‘itt'ttti-tiii.iliit*'**i'itl‘itiitit'l'l'l'l!‘l‘l‘l‘l"l‘i"l"l"r‘

State7?: if (kwl == 0) { idleState = 1; display (0); /* No change*/}. (

if (kwl == 1) { State = State 8; display ('1"); /* display character 1*/);
cursor_next (); kwl == 0; idleState = 1;
break;

xii!!*tlltititilliitiilﬁtttitiiliﬂlqiiiiit}illﬂlttiiiiil'ilt!

J
Jre --End of Switch -Case -----smsmmmmmmremeenes o

State = Stateﬂ I,-’" End ufWhﬂe infinite loop */
}/* End of Key.w_FSM */ >

Scanned with CamScanner

Architecture, Programming and Design

N

—

fnite state machine model assumes the finite number of states and reduces the programming tasks
I’{ " the following. (1) Coding for each state transition function and each output function. The FSM
model is appropriate for one process at a time, for the sequential flows from one state to the next

state, and for controlled flow of the program. When using an FSM model, a state table representation
becomes very handy while coding.

o4

MODELING OF MULTIPROCESSOR SYSTEMS

84.Y Multiprocessor Systems

g

A large complex program can be partitioned into tasks (or processes or threads), ISRs and sets of

instructions. The tasks and ISRs can run concurrently on different processors and by an appropriate
mechamsm. Tasks can communicate with each other.

Exampie 8.13

(a) Assume a large program has four tasks: task 1, task 2, task 3 and task 4. It has 4 ISRs, ISR_A
ISR_B, ISR_C and ISR_D. Assume a processor PA is statically scheduled to run task 2, task 4, ISR_B'
and ISR_D. Processor PB is statically scheduled to run taskl, task 3, ISR_A, and ISR_C. Fiquré
8.12(a) shows the scheduling on two processors. '

(b} Assume a large program has four tasks: task 1, task 2, task 3 and task 4. It has 4 ISRs, ISR A
ISR_B, ISR_C and ISR_D. Assume a processor has a dual core with one core is statically scheduTe:i

10 run the tasks and other the ISRs. ISRs sends the messages to the tasks running un other core
Figure 8.12(b) shows the schaduling on a dual-core processor. - x

Signal or message Signal or message

(1BRB}—L — 5 { Task?2) | 18R_D =

BT]
Task 4 |] B,
e ™ b G SR -'}l L—pﬁJ f:hﬁ
. G
Signal or message Signal or message 7
— y —— _. ¢ —— -
s b F g T 4 - ™ ‘:
| l n .‘u__ 7 [Y f I A R] i ‘_‘
; .5 A J — \.Tasl-c 1/ _lSR_C_) o .TEE.K 3;, L_i]_E_]
e T T e S L
{a) =
. "R
Interrupt Interrupt Interrupt Interrupt ’ <
= t - T - —\.__\ .\\ i =
k ISR_A L ISR B { ISR_C)) I e »
e = A Rt D '———_rﬁ—_"iJ i=_=
Stormi S2orm?2 S3orm3 S4o0rm4 :‘
e o, - b T z
Task 1 | Task 2 | Task 3 | Tazk 4 i_é::n_r__é'] L Ty
1 “ = & o e L Sy E._ -
S means signal and m means message of an inter-process communication _"' K:‘}“
()
Fig. k33

(a) Static scheduling of tasks and ISRs on two processors (b)

Static sch
Wo processor cores ®duling on

—

Scanned with CamScanner

‘Pragram Modeling Concepts ‘_ﬂ

The problem is how to partition the program into tasks or sets of instructions between the various

processors, and then how to schedule the instructions and data over the available processor times and
resources so that there is optimum performance. Should there be static scheduling for running one task
on one processor? Then, suppose one processor finishes computations carlier than the other. What 15
the performance cost? Performance cost 1s more 1f there is idle time left from the available. What is
the performance cost if one task needs to send a message to another and the other waits (blocks) tll

the message 1s received? Following are the problems in modeling the processing of instm-:tions ina
multiprocessor system:

. Partitioning ul’prnccsacsitinslmctiﬂﬁ sets and instruction(s). %

s CU]ICUITCI’I[PFI]‘CI:'GS.II"IL ufpmrf_wn cach processor. ’é

. The static schedubing by compiler, analogous to scheduling in a snp:rs.{:nlar processor. Each
superscalar processor has multiple processing units in parallel. e R

. When superscalar units are present in a processor, it means two or more pipelines of instructions
are executed in parallel. A pipeline has number of stages (3 to 9) and different instructions are at
different stages. The problem then, 1s not only scheduling of concurrent processing instructions on
different processors, but also scheduling of concurrent processing instructions on each superscalar
unit and pipeline in the processor.

5. Hardware scheduling, for example, whether static scheduling of hardware (processors and

memories) 1s feasible ornet. [It is simpler and its use depends on the types of instructions when it

does not affect the system performance.]

6. Static ¢ scheduling i1ssue [for example, when the performance is not affected and when the processing
actions are predictable and synchronous.]

7. Synchromsing 1ssues, synchronisation means use of interprocessor or process communications
(IPCsysuch that theres a definite order {precedence) in which the computations are fired on any
processor in multiprocessor system. [IPC 1s @ message or signal to another process or processor so
that 1t can proceed further. Section 9.7 will describe the IPC in detail |

0 8. Dynamic ::.Lht_tlullllg_l"i_'ﬂt&_[rnr example. when the performance 1s affected when there are

' interrupts and when the services to the tasks are asynchronous. It is also relevant when there is
pre-emptive scheduling as that s also asynchronous.]

9. Scheduling of the instructions,_ S5IMDs (single instruction multiple data), MIMDs (multiple
instru¢ttons and-muwlipte data) and VLIWS (very large instruction words within each process and
scheduling them for each processor.

B

L

Several methods of scheduling and synchronising can be used for execution of the instructions.
SIMDs, MIMDs. and VLIWs in a multiprocessor system. Scheduling is done after analysing the
scheduling and synchronising options.

Y Consider two processors, P4 and PB, interfaced with the memory in a system.

m Case 1 The processors share the same address space through a common bus, called tight
- coupling between processors. —
g il cass =T

B Case 2 The processors have different autonomous address spaces (like in a network) as well as
shared data sets and arrays, called leose coupling. Figures 8.13(a) and (b} show both the cases.
B LS

; B Case 2 The processors share the memories in altemative bus architecture. for example. three-

I dimensional mesh, ring, torrid or tree in place of a shared bus between the different tightly coupled
Processors.

T

ety

- - A

Scanned with CamScanner

m Architecture, Programming and Design

Locked to [_1;_:;_] Shared bus
Same L f
Instruction IT
: T oo L R aT et Shared Data Scts '
olaTaskor F—————— o —n == = —————
B e or Afrays
Cufferent H_ Y
Instructions of a | - II'
Task or VLIW PB l VA
(a)
Inter Processor
Communication (IPC) — —— — ===
; For Synchronizalion
Heeds
Unlocked 1o T —
a Specific o [l R S Shared or Unshared
Task or lo T = e == Dala Sets or Arrays
Specific VLIW l
(b) e i

7ig. 8.13 (a) Tightly coupled processors sharing the same address space while processing
multiple tasks (b) Loosely coupled processors having separate autonomous address
spaces as in a network as well as shared address space for data sets and arrays

Processors process concurrently as follows:

1. One way of concurrent processing is to schedule each task so that it is executed on- different
processors and to svnchromise the tasks by some interprocessor communication mechanism,

. The second wav is, when an SMID, MIMD or VLIW instruction has different data. cach task is
processed on different processors (tightly coupled processing) for different data. This is analogous
to the execution of a VLIW in TMS320C6, a recent Texas Instruments DSP series processor. It
emplovs two identical sets of four unis and a VLIW instruction word can be within 4 and 32 bytes.
It has instruction-level parallelism when a compiler schedules such that, the processors run the

-

different instruction elements into the different units in parallel.
Note: The compiler does static scheduling for VLIS, Static scheduling is one in which a compiler
commiles such that the codes are mun on different processors or processing units as per the schedule
decided, and this schedule remains static during the program run sven if a processor waits for the others
to fimish the scheduled processing.
3. Analternate way 1s that a task instruction is exceuted on the same processor, or different instmictions
of a task can be done on different processors (loosely coupled). A compiler schedules the various
instructions of the tasks among the procéssors-atan-instance.

142 Applications of the Graphs to Multiprocessor Systemes:

Partitioning and Scheduling
When there are multiple processors in parallel, the partitioning of a program is done as follows:

I. There 15 a munimum number of IPCs so that the total time of IPC delayvs (waiting periods)

M ses
There is load balancing. Each processor has the least waiting time by sharing the processing load.

. The performance cost minimises, Performance cost means the cxecution time regquired [a) for
computations for the tokens and delavs ar the edoe feommunication time), (h) the computation t
1 vertex (transition), and (o) contexr switch rime.

i
— T e e

5

3

tiere hefore fiving fcompitations) e

Scanned with CamScanner

The graph of a program thus partitions into the functions, tasks or threads. One of Ihrl:t:"'ls'u"m.
strategies can schedule a program for running.

I. () Each task or function is exccuted on an assigned processor. (b) Each task or function
is executed on difterent processors at different penods. (¢) Instructions of four different tasks
partitioned on two processors. (d) Instructions of four different tasks partitioned and scheduled
on two processors differently i different periods. [Figires 8 14(a)-to-8.14(d) show these four
partitoning and scheduling strategies.]

|
Processor G T-Ts"‘ : (mege i P |
_\1 L rocessor 1
PA fv} Vi) ——-M.m .
p 2t . A - L O Computations |
?) = 5 ——= QOulpul to Next Place |
PB (vy (\Vz) (‘-"a"; or Port. |
= b5 e |
Processor RO T W—— |
(V9. V2 V'3).and (V"1,V"2 Y1) are different threads of the task 1 and task 2, respeclively '
(a |
Procossor T
@ 4\\,, <o)
M =
—————————————————— —®= |PC
PB (‘;_ _’L,:“ v") £y
2 . e vll
Processor v '-b _Q'E‘f
—a——Task 2 — =
I (b)
C'ij Is an instruction In V| to take i-th column and j i-th row element af matrix A and add
bils with the corresponding element in B,
Processor
PA fC'!)——'- czﬂ— HC 31' = Hc 41*— —
] el o
Processor = @
Remaining rnstructrnns of Vi Thread Task 3
Processor !
| "
I
PA Q 1)- ——(_/r—-&:l = u\ ’Qa)""‘ i} -{’ Vz
- Task | —————» a
FB fc 2___{::4 ___.___.‘__zl-fv} f)—hffj—-—-ﬁ—
Processor t———Tagk | —-» ° ~+——-Task 2— -—=~
(d)

i Fig. 8.14 (a) Each task or function is executed on an assigned processor (b) Each task or
| function is executed on difterent processors at different periods (c) Instructions of
four different tasks partitioned on two processors (d) Instructions of four different
tasks partitioned and scheduled on two processaors differently in different periods

e e e e e]

\ e =3
” e ~Lds YO r\.J.r"\".fﬂ Do PR e M l

Scanned with CamScanner

. ! fa,ﬂ((rto— y : P

F:Lw

Architecture, Programming and Design

7 pach sel of data 1s partitioned in a VLIW instruction and is executed on different processors,
o pich exeente the same program. Consider a matrix addition process. Each row can be added on
o fIEFENL JIDCERSL when the data of the rows are partitioned among the processors. Such data
partifoning 1s I“"-'f‘:'j"-‘d _‘-\'hcn processing a DSP-VLIW.
A combined partiioning as done both at dawa level as well as 1ask (of function) level. Different

funchions themselves may run concurrently on ditferent processors but at the micro or atomic level,
Jdata 15 purtimm.;d and the instructions are run.

partitioning and scheduling of vertices can be done in number of ways. (a) Each task or function is
executed onan assigned processor. (b) Each task or function is executed on the different processors at
different IJﬂ'TiII‘-IdS. [C] Instructions of four difTerent tasks pﬂﬂiliﬁll ed on two processors. (d] Instructions
of four different tasks partitioned and scheduled on two processors differently in different periods.
(¢) Data partitioning in case of SIMDs, MIMDs and VLIWs.

8.5 || UML MODELING

Concepts used in object-oriented language are also used in software designing.

1. Object-oriented design has feature of re-usability of the defined software components as nl:-!'c::t
or s¢t of objects (reusable components), New components can be abstracted from the existing.
New components and object designs are created by the object irlh{:[itﬂﬂﬂ%_:ﬂ polymorphs.
Information encapsulates within a dcssMﬁﬁﬁEﬁject_

. An object characterises by its identity {a reference to it that holds its state and behavior), by its
state (its designs for data, property, fields, attributes and al gorithims) and by its behavior {method

(|]

or methods that can mampulate the state of the design). :
_New object designs are created as the instances of a class. Class defines the state, attributes,
operations and behavior of a design concept. It has internal user-level fields for its state and

[IF¥]

behavior. It defines the ways of using the designs.
4. A class can then create many component objects (designs) by copying the group and making
designs functional. Each design is a functional design. Each object design can interface with other
designs to process the states as per the defined behavior.
5. A set of classes then gives the complete software design for a system.

UML 1s a Unified (common) Modeling Language for any general. system for which object-
oriented analysis and design are feasible and which cdn be abstracted by models. Unification in UML
means its common applicability to many designs or processes. We can then model the following by a
similar set of diagrams: (1) Software Visualising, (ii) Data Design(s), (111) Algorithm Design(s), (1v)
Software Design(s), (v) Software specifications, (vi) Software Development Process, and (vi1) An
Industrial Process.

UML is a language for modeling. Details of the language can be lcamt from standard
textbooks. Following is a description of UML features and its applications in designing of embedded

svstems. L e

Figures 8.15(a) to (1) show six basic UML elements: class, package, stereotype, object, anonymous
ubject and state.

Scanned with CamScanner

Program Modeling Concepls A

Class Name
o e LR L, o — —— x|
Real Time Clock Object Name ‘ Swt 1 Real Time Clock
Unsigned long : L
count Attributes ' Unsigned lang
l count Swt 1
clack input {) ; |
clock Inc () i‘i’::;‘;;’“‘r s ST 7
system Interrupt () Soerations UML Objecl
UML Class (d)
(a)
Package of three
N Classes
Timer Processing b
(Class Free Running munteL [(‘ Object .
| Class OutCompare :; Anonymous object
r M i’
3 Class InputCapture :] L :Real Time Clock)
| Anonymous object
UML Package &)
b
(0) Event preemption

f << hr-min-sec>> . | task Running

i Class Timer | State Y

Mt A M _ - A Transition
UML Stereotype UML State

fc) (f)

Fig. .15 Representation of UML basic elements: (a) Class (active class and abstract or inactive
class) (b) Package (c) Stereotype (d) Object (e) Anonymous object (f) State

Table 8.2 gives its elements.

Table 8.2 UML basic elements

* “Exemplary Diagrammatic

: G SROMP L e s oo Representation
Class Class defines the states, attnbutes and Rectangular box with divisions [Figure
behavior. A class can be active or abstract. 8.15(a)] for class names, for its identity,

attributes, and behaviors (operations,
methods, routines, or functions)

Abstract Class A class, in general, may be abstract when either ~ Rectangular box with divisions for class

one or more states, operations or behaviors not names for its identity, attributes, and
completely defined, being in an abstract stage, operations, but with prefix abstract with
or when it is not for creating objects but only a each abstract behavior and attribute

class, which extends that class and implements
the abstract behaviors (methods) and specifies the

Scanned with CamScanner

10.1.1 OS Services Goal

OFS services Gonl of perfection und correctness’ OF facilitates the following:

L Easy eharing of resonrces as per schedule and allocations. Resources mean process

J
L

3,
4

5¢

S071()
memory, 10, devices, pipes sockets, system timer, keyboard, displays. printer and other o,
g ¢ WU s e 4 .~ T "

resources, which processes (tncks or threads) request from the OS. No processing task thia 4
ukEs any resource until it has been allocated by the OS at a given instance.

Easy :.:-.:.::.:.s::: of application software with the given system hardware. An applicay,,.,.
uses the OS functions and processes which are provided in the OS.

Seheduling, context switching and interrupt-servicing mechanisms.

Manngement of the processes, tasks, threads, memory, 1PCs, devices, and other functiop.
[Management means creation, resources allocation, resources frecing, scheduling or synchronisin,
apd deletion.

Fifes, 1/0 and Network subsystems and protocols.

6. Portability of the application on different hardware configurations.
7 Interoperability of the application on different networks.
8. Common set of interfaces that integrates various devices and applications through standard .,

open systems.

9. Easy usc of the interfacing functions, GUIs and APIs.
A0, Maximising the system performance 10 let different processes (or tasks or threads) share -

resources most efficiently. OS provides the protection and security. Examples of security breacy,
arc tasks as follows: obtaining illegal access to other task data dircctly without system calls.
overflow of stack areas into the memory, and overlaying of process and control blocks and threx!

stacks in memory.

10.1.2 User and Supervisory Mode Structure
When using an d.w,\nﬂmﬂqwnnmmﬂ in the sy$tem s imtwo modes. There is a clock, called system

clock. At every clock tick of system-clock, there is an

N interrupt. On interrupt, the system time updates.

the system context switches to supervisory mode from the user mode. After completing the supervisory
functions in the OS, the system context switches back to user mode. . .

piserag oz R e

T T S T AR T E TN
WAL A 2 Ay

A AN T e
A.d.i..“nﬁ e,

Py P e i A o Ul A et il S ’ { A A

Scanned with CamScanner

r

T TR N ITN RN NETVRNR IS S NSRBIt RN A LR RS T SRS R EENS

~ay

ue SJAWQ YDYM SUOIIIUNY Jawp uonN|osL-ybiY Jau|LXXXX3 J0) sapiaoid
mnm:n l¢‘)9Nsu:lnmxu; NUNDSAS sNed siawp Ay ynejag “s[eAdlu)
-g SMOPUIM UO[IN|OS31 JAL]) JO UONIULAP SAGRUD UOPIN|OSIYIWLISXI UOPIUNY SMOPUIMY °2
nupDshs 21 +/, sw 0| AJ3A3 S3dnusAIU) NUPIDSAS Satepjul Al 'g);x;q) UTBSa?;
s 9 [[IM 1X31U0 341 YDJYM 01 S3SEL 3y} ||B BujIEasd pue Ysey iy 3yl Jo bujuu

Al p:f\:‘o”;as ?alflil) Jo Ja:wl:\ulq pauljap 3y AepIu| 03 uopduNy 11-5001,./ () NUPPLLSO Q
ap 2 +/,uopuny () |uiso AqQ SO Y3 Buepu) ay) pue () ujew ayl jo 6u|uu|sa::| 3y 10539)
001 = PUO>S 13d $)3)) JO JaqUINU Y3 JUY3P 0) UOPOUN) 11-50t./ 001 235743 ™MILL™SO 2Up # (® 1

- Z'01 ajdwirx3

*§0 JO SUONdUN Jawy J2QUINU JO s $3|qEU Ny Ul 1[diyMm pue sidnua)ur nUpIDSAS
o Jo uoynau8 Jo pouad atp sauyap yarym ‘puooas ad syan SO Sutuyap 10y uonauny e sey .so_L}[
gorg uonauny SO ue £q pauyap 2q ued s[eAsdul Jowryy-wsAs uonjosal-ydiy uonduny Wk w21sAs
¢ £q 195 24 UL JO (9 318 NULY[JSAS JO JqUINU SUTIW YIYM ‘pu0oas 12d syon wasAs Jo Joq}unu L
{(dnuaul JaWN 3I0]2 dUIM-eal way3ks) 4upyps4s £q pajousp aq uea ydon ¢ U0 1dnuayur uy dnusyut
Joum W3ISAS ASNED [[IM YaIym syou DIy JO Jaquinu oY) Aq pouyepaid ale sjcarul WL woyskg
Tmim! JenSa1 1e Yo € A oy wajsAs) sadnuoluq/(moamp oy arempiey) }90[9 zu:l-l!m v

(_SNOLLONN4 ¥3WIL I €01

[suonumy SO Pue SLS] ‘SYS] ‘SYSE I UIIAIIQ UOYEDIUTUILIOD
£2(q792 Od1 ‘SO Pue sidx20s ‘sadid ‘saxoqpiew ‘sonanb ‘soloydeutas
sjeufts Sujpuey (Jo11a) vondaaxs ‘seudis se yons sH4|) Suisn
£q sass200¢ Aowau paseys saBeuvwr £]2An939h3 SO UV J9Y10uE 0})
311 2u0 woyj saFessaw se vyep Suipuos Aq SurstuoIGOUAS $559901 (Qd]) UONEINUNIIWO §53001d o]
-apout Jurjn .
295 Awoud 10 Burnpayas a11aka 9y 10§ ‘Buynpayos d - Suinpayds

(s)98essow oy Surpuas £q Jo s[[ed WANSAS ST UMOUY ATE YIIYM)
syre> Sutyew Aq JoYia apew 53552002d £Q sisonbas aamosal Buissazolg s1s9nbay 20Inosay ﬂugs‘sa@ /
20ULURUITH NG §52201] |

(001 [onuo) $533014)

@94 17 UONTLLIOJUT $11 PuE 23UCUAAUILL AITYONNS $53001d $3|qeuy
“(o01g joniuo)

£522044) D © I8 22031u7s $52502d 218219 PUB UOKII[IP PUB UOHEAITOR
-zp ‘opdamsa! “Bunyo|q “Burvons ‘tonEAnse ‘Doneald $53201d s9[qUUg

suony

uonR|a(01 LoHEaI)
WO JUINISOUD]Y SSITVI

[2uJ3) SO aY) JO suondUNy JuaWaBRURW-SS3I0)Y Z'01 3|qBL

‘Juowaeueitl pealy) pue ysel
cray os]e 1UWAFEURI $530014 ‘WY SO 941 JO sHONIUTY JudwaFeuew-ssaooid Y SIST| Z'01 2|qeL
i1

1 HWBDVNVW ssaooud | zol

“[[ews 3pod [away ay) saxew s1y L "SOLY JO [ousdyodut oy Fursn suidisAs pappaquud
p yeeadsa “50 LaMIE e U1 [away 3y SpIsNO 3q Arw suONOUY 95aY) J9AIMO] SO UIAIT © U [away
Jovrd 241 29 fow suonuny uswaFeurw-201ap pue afy ‘Klowajy ‘g Sutpranyininw ur peasy pue
g Fumpemininus Ul yso cueaw osje $53002d © *g() e Aq pajjonuod sassas01d ay) Sursapisuos uat A

V 5014 pup 50 Jo swopduny d(sog ‘|| SwWASAS Bunpiadg i) o2y

awadeuew wasisqns /] ()
SI9ALIP 9IIAIP put JUWITRULL DAY,)

wauwndeunt a41(3)

wawadeuntu CowapyAy)
(UEUER TR ERY,)
Joway 241 Jo (s391A135) SUONOUNY St a1e Jutmo|jopAy |,

*9pOuUL 1951 Ul SUnI uvoyeaydde pue ped Suturowal ay L, *apow Kostazadns ut sajesado ey $0) oy jo un
PaIdas © SB PAUY3P 3q ULd 1] “([Ed wasks aY) UrY) 19O [[e3 uonaung Aue Aq $s33t woip pardatoid s
OEIS UE ‘BICP ‘SUONIUNY (WIS Y1 JO 20uds KIOWAA *SO AUT JO JIUN |BINDNINS AISEq IY) S1 [N A |
[oway 3y Je 10§ paptaoid 10U sUOHOUN) PAPIIU L3I0 Kue
puE SO UIAIB 2 Ut [o1 JO ued se) 201A9p pue I Ay NOYHIM [au;:){{;'
SO UaAIS o ut [owsdy ays o wred s juaLaSeuew 951A9p pue JowadeuTw |y YA |9y :
s|un [rInanns Jumodj au e
[¢ 30 2WI0S SApNJAUL SO UY TAMpITY wasAs pue uonearjdde ayy uaaMIdg/1ake| H|PPIW YL S1 SO

waz v

“unjiom§au $391A0p 0] SISNQ PUB ‘SIIUH ‘SINAIP [

-1sAyd ‘suod ‘synasa Suroepaiut ‘sasnq ‘sauowdw (5)10553001f - aeMpIRY L

“(sa012p pue suod ‘Klowaw ‘Jossasord)

QIEMPIEY UAAIS 1 UO 2IN0IXD SUONUNY AU 13] O} SaaTLIR|

SI0IAIAS SO DY) 10] SUONIUMY

10430 pue JuawaFeuryt 3y ‘$IIAIS Ipotlt Lostaadns [awsay) s

SO pue S19A7] 2A0qE 9y} U2 (SIndio puv sndit 1of) axpayuy

. ‘SuonaUNY 3NAII8 SO A Aq paptaoid

350} URY) JAYI0 SIS AIBAYOS wa1sKs 9 53413 19Ke| sy g 3
*301A9P TIPOWN[NL @ SE YOS 'SIAALIP 51AIP UIELIID 10 put j1om SO Y1 1e paptaoid auo ay1

-jou oy193ds e Joj ‘ojdwex? 10} ‘suotiouny ay) daey Jou Kevw g UEIR SO A0S WASAS t

“AUTAYOS WANSAS UAAIF Sty Fuisn

10ss3301d 23U} UO TLU 0] 9[qE S1 11 1BY) OS AITAYOS wNsAs pue uon

-eaydde usamiaq (sindino pue sindut J0§) 3vpNUL Ay SpIraLg

ateauyos wajsks A PUT SIEIUL 3 Funsn amm

-p1oy waysAs uaAld ays uo urt suoneatjdde aw 1od se SAINdIXY

DeJIW| §() - AMMPITH 9

epN| SO [

(1av) smpn]
Sumweifoxy uonesddy

.

aremyog onearddy

SuoY

22807 danpnarg umop-dol

AININNS WRASAS Yy Uy Ss13ke 1'01 2|qeL
i
i\
{ /;umannS ;
o

. \ i
152 32033xd spraiy ayy asojasayy 9eds P
Pue (3pows [3usay) apow AIOSIAIAANS UL Speanp pue sysey ‘sassarosd :\’n J0 Buunt syw?

. 0!
WASAS A ur amonns Ay e ke 2 9 i e

it
1ol g

ubisaq puo bunwweibouy aimmyyaay

Scanned with CamScanner

spendtandd 3 Buged SOLY URQ AL U wo Sundmuye 1ty U

J
72
'

adirrow
R ICTE

3 WL

a8 &

LN

NS A aND

3 o W Wg adndmn uguend
N 3 TR0 T iy e Qz.x*-‘- 3.\»::‘“_”_ byl
NN W s W AR VNS wanaad ¥ QOUN 98 B o I N SRR
TWOR SRS WG VRS NN v N g B B M yed e 42 R
S N St S ,? gk ‘\‘m.mur Amreang A RS 230
WAL 1S Pepuodouied oF N 3 v-\s‘;s- ‘; e e e 8 W ¥ G,

% - " U | A} h -

S3 L TOLN O SOGRRANMS TRy DRSO VAR O YN

puipuedsa) Eat] ot
. sng oLy el

SR SOLN U NdnIRAIN BE WD sundnaRi s
e S YR R e udsuny,

UUTTE SN REU
R e XAy O BN
S > AL TR W
AR 2 wommaan v VRIS 10 DO BT IR 1:;.‘,. WIS N’,:‘ :k,amv;ml{‘ L
> = % @ 1) N N 8 2 NS
5,5 N e Ay a0 Y 343 U SAINER ::’!iauéa«*"‘ B L TS D
TR R s e 03 wmad 3Q BIORRE BN IR SO Qe et T BBIE

e

oA YU NS
}..x:&'.\::“_ oxit, IR MR vaz
o o2
R
ot I

oy N
= ey . 2 sagt SW () B
TRAATYR Pt b ey THRY K WAL B By

R N e v S N R I TS W

R
Raas ¥6a T Ny MR NI
ay sy, aiita, 4 SRV oSOy
o e Ly Tp— PR P W ot A -
Q-‘\- P T L e py ,{J“m
vk YA FUE S . .
e 3 AP ;‘“’w 5 i V0L W
D P Wit S o @
D@
s iy

" it W
RSN .

YR W Apuas Y 8

e ?

I

s

 —

e

- S -

m—

iz 3G 20p FRRAD P 2gp o

ez e yoo ae o
RS
4 QLN M

TAML
WDIRED an> wirymy sy ¥
LTI RGN S0 avs P N
e 2 od mape
R BN SR TR 4) e 0 ¢ 97 P
SR YIS P S AT YR 90 G T vy Soammes g o T ST @ Qe
somed sy Ranpmons vRwney widnno 0D W adnae or g “:
unos Sundnudiug ve i yoy ve o T Damg 1281

NN SRR y<y g
4t o S s 2 ¥R g WA e
g aen Furme wer) Cegdee p wemd dfreow a RO

A e Ruranrs oo

I o Do g
SUNIRLRE S et s Rutimipeny usvompoe: Poronvosadsoys o QO 0 SO
5 =

STIVD ID¥NOSLINYNIINI 30 ONTIONYH

CONY AININNONIANT SQLY NI SINLINOY 13N¥¥3 1Ny

Fant

SO 3 RIS YNNG 3000 Prmrge e

g p> soovad v TN UL NSNS A JO NG e 2 eweprande OF g

Sy

TR @ gy y o

WV AR QIR P 20U (N e W BN SNENG M o paarand waf mes oy
WNNR (I wwr g e

U 1 SIS NS ST SIS ()} e
SR TR Sy L QF () Mo

e wor

g v
SN Ajow T NGNS AT () WA w2 G g o Cxvg
R R R T

TENE O T 2w eud RGNS Ty T SRy T
W) 7 enow,
N,

af

N IR e SO i y WO eeweawer par R T PEURE S b
W Nl SO PR G K e aer e CANNIEMIAS Creands

TR B (D5 4 Y W e,
N T anne vemeoe,s
W e

e

M b anhy wananern,
R T B N s N G <3 NI ARG W T AN (4
ey
e VTR S T T e —
NI Bl e e SPNRG nng as
Y SBRALNI e ey

o i
O Peangrng wiorm pow

Ty e S0 St Sy

R N e

B At L R e]

RS O WG Y @ e 0% gpq ey

N Oy MOWEL ¢ g
B ey e

g %

SO N ey A e e

o G e Gt

W WN SemE A e

R T P R T o i AT LR T

WA O

s TSP —

¥y

~

Scanned with CamScanner

F Architecture, Programming and Deslgn
10.6.3 1/0O Subs

The 1O ports are the subsystems of OS device-management systems. Drivers use them to communicate
with the many devices. The I/O instructions depend on the hardware platform. I/0 systems differ in the
different OS. Table 10.9 lists subsystemns of a typical I/O system.

Table 10.9 1/0 Subsystem in a typical I/O system in an OS

Subsystems Hierarchy Action(s) and layers bevween the subsystems

Application An application having an /O system. A sublayer may exist between the ap-
plication and I/O basic functions.

I'O Basic Functions Device-independent OS functions, for example, file-system functions for
read and write, buffered I/0 or file (block) read and write functions, A
sublayer may also exist between basic 1/0 functions and /O device driver
functions. .

L'O Device-Driver Functions Device-dependent OS functions. A driver may interface with a set of library

functions. For example, for serial communication device or network.

Device Hardware Network or port or 1/O interface card.

nd asynchronous,” may be uséd. RTOS provisions for
separate functions for the synchronous and asynchronous I/Os. A traditional OS may support only
synchronous I Os.
Syuchronous aperations are at a certain fixed-data transfer rates. Therefore, a task (process)
blocks until the completion of the I/O. For example, a write function, write () for 1 kB data transfer to
a bufTer. Synchronous /O operation means once synchronous I/O initiates, the data transfer wil! block
the task until | kB data gets transferred to the buffer. Similarly, read (') once initiated, blocks the task
till 1 kB is read. .
.\\..GSQNEEE. 1/0 operations are at the variable data-transfer rates, because a process of high
prionity should not block during the 1/0s.

10.7 || INTERRUPT ROUTINES IN RTOS ENVIRONMENT
HANDLING OF INTERRUPT-SOURCE CALLS

An RTOS or OS has an interrupt-servicing mechanism. Following sections explain thes¢/altcrnatives
for responding to interrupt,

3.\332 Call to an ISR by an Interrupting Source

(.55_ an inynupt occurs, the process running at the CPU interrupts. Context switching takes place
directly to ghe ISR. An /" interrupt source leads to switch to / ISR. ISR_i just sends an ISR enter
message at start for the RTOS. Figure 10.1 shows these steps. .

Later the ISR code can post an IPC (inailbox or message queue, or semaphore). Task waiting for that -

PC does not start before the return from the ISR. The ISR enter message is to inform the RTOS that an

R has faken control of the CPU. The ISR continues execution of the codes needed for the interrupt
vice until the ISR exit message.

1me operatln

Codes fof |

Retufn

stems Il Basic
95 \ntarrupt sources |
e T A
il ot 1%
SR/ = .vI \2
—_— \
5 4
n!|\|\1|_, \
osi 4
J

n message il
t| messad®”

Y
exit messagé

Example 10. 10

= icrocontroller has a

Functions of 05 and RTOS

{nterrupting source- ISR sends an ISR enter Mestan,
an in

pefore rewurn 10 n.vm

hardware timer, which is Eoﬂﬂ”ﬂﬂ

: :mmq M:,mn..u nﬂ__n.q on timer interry
“The miCrO=cl o
) n..:Bﬁ-.)n.&m

to an{ISR vector

message or:d o 1 .
y other:1ask-o"- . k

52 RTOS First
ti{e Corres

When a task is interrupted on
for servicing the hardware 1
executiorrthen can post on¢
message. Context wé.:orom.
pending interrupt ISR or hi

ﬁos&sm ISR

errupt, switche
¢ more IPCs fo
back to RTOS on et
hest priority task. Fi

’ Codes for ISR

irst interrupting on an interrupt, th

pt-calls and program counter chang,

.,uoaﬂ.‘ ddr, ?mi,—m a routine \SR.Timer for [

AU ISRITimer_A , :
L er the start of ISR_Timer is called: ISR Timer v,

.()-just aft

AT AR the ISR onk afy
! t there should.be return 10 ISR only afer o
nom_.smqm,wm.%u.ﬁmmcﬁm.? the ISR code. Any 1ask walting for v,

r.queue message should not start.on execution of the poq
or;qus y . :

terrupting on an Interrupt, then RTOS Calling

source then context first switches 10 RTOS. The Rigy
s the context to ooﬂnmcosa.ﬁ.m ISR _i. The ISR dunng

£ the task(s) waiting for the mailbox, Queue of semaghor
return from 1SR_i. Context then switches from RT03 g

gure 10.2 shows the steps.

i-th intercupt

Return —
Interrupt
source |
e}5 Save
~ - context k
.ﬂmmrx -~ = 3 | callSR
\
Event | —
message

en RTOS calling the corresponding\Sk

Scanned with CamScanner

| of O and RTOS

erTut sources ¢
—1

.

/3

"

The ISR must be short ang
e remaming codes yw hen
pitches the contents bey
afa task.
An RTOS mav provide ¢
nonty ondered Fyo,

Archite ture, 72.!33!.‘3 ond Design
must
CVerat g g

Or the 1ISRs such that he
:nds an ISR enter Mmessage ¢

Examiple 1 a.l

»,_SL:_,M".« Post the Messages for another task. Thg task rups
Sl oo o::_ . .:M:Jn RTOs schedules only the tasks (processes) angd
A Y. The ISR ¢ ecutes only during a temporary Suspension

RTOs IMitiates running of the ISR calls from a

The R nishes the critica) code till th
CONtext switen ph u»:.:ﬁwmvue-:ns calls the jqp ISR Preemption Points mean instruction i:nh
timer, which Is program,y, oS STUCTION of the crigjea) uu:v.o—_unz resany IR of process. The Preemption point is the st
| program counter Q.»JmMM highest Priority is calieq. the presently running function, after which the 15 being of
tine ¢ 2. Conside
rou ISR. < fimer far e bas voo.“ “MV.;M device. Assume that using 4, RTOS, the touch screen ISR, ISR_T,
allec GNF.: other ISRs z“mw meard 4 function OS_ISR_Creare () An ISR can share the mem oﬂnrmnﬁnn
Is called. Timer . Means the g, ory heap wit|
S bl 33 IntConnect Connects the aocnzuuﬁwn_nu“mmn:nasn during running of the codes. A function,
ta the ISR only afcer Ry Gﬁ;ﬂo:n:quamr.n:im:a_n_n Let 2 ~ocn:-“aﬂn_ﬂﬂ the event identifier in an Interrupt handler,
sﬂuw..igzn for the taps the mnwmnq at a selecy icon or me even
N execution of the pos: preemption point,

ISR_TouchScreenkE,
finds which ISR or

-

n RTOS ﬂm:..:o

ventHander. ISR return i

Wwitches to RTOS. RTOS ¢
task shoylg run next anp

NStruction ‘cau

Ses context switch
d context then

switches to that.

to RTOS. The RTOS
R_i. The ISR during
queue or mnE..ﬁvc_.m
‘ches from RTOS 1o

-serv

ice routines, a first-level ISR
an also pe called

The use of FLISR reduces (he ;
{worst case and best case Jatencjes
procedure call (DPC) from the ISR. The i-th interry
wmterrupt source call. Figure 0. I(c) shows the Step.
There are the ISRs, number of ISTs, RTOS and

nterrupt ER:Q

(waiting period) for an interru
E.mannnbn& for

an interrupt service. An IST fu
pt service thread (ISTi) is a thre:
s on the interrupt.

hen switches the

nterrupg Service Threads
An RTOS can provide for uvo Jev,

kevel ISR (SLISR). The FLISR ¢
aterrupt ISR.

) context to
back-ta RTOS. RTOS

= e

(FLISR) and a slow-

..EEEE?...:QEE ISR and the SLISR a5 software-

pt service and jitter
nction is a deferred
ad to service an j-th

tasks in the memory blocks other than the interrupted
sk Any iterrupt source causes the RTOS to get the Notice of that, then finish the critical code till the
preemption point and call the ISR. The ISR execu

canpost a message into the FIFO for the interrupt
source and is priority. The ISTs in the FIFO that b,

per their priorities on return from (he ISR. The IS

nding ISR ISTS and tasks.

When no ISR of IST is pending execution iy the FIFO, the interrupted task runs.

tes after saving the context on to astack. The ISR
service thread (IST) afier recognising the interrupt
ave received the messages from the ISR execute as
R has the highest uﬁ._.o:.Q and preempts all pending

Canise
Return =S,

—— Intarrugt woures | \
4 Sava contart

vent/ message

— Ratriaye
gwm‘_wlf — llw"' comaxt «
' { and run
IST for tasi
o Return 1o Ouo.l:L again

Fig. 10.3 RTOS calling the corresponding ISR, the |5

R sending messags
service thread in a priority queue of ISTs

2(s) o an intarrupt-

L, run critical and necessary codes only,
J 10 ISTs into the FIFO. It is the IST, whi

- The ISTs run in the kemnel
-inheritance mechanism.

ISTs and tasks (processes).-and switches the contexts

and then they must simply send the
ich runs the frmammg codes as per
space. The ISTs does not lead o prionity inversion

between the ISTs and tasks.
Example 10. 12

—_—
_—
]
—
|
-—

—

-

-

|

.

b

1

!

It calls a Jow-level (hardware level) ISR, LISR, resets the pending interry
controller and calls a device-specific ISR, say, DISR;. The DISR, posts a Mes3age to an IST, specific to the
device. The message notifies 10 IST; that an | then the DISR, returns to LISR.
- device-specific ISR, say, _u_mw_. :
When no further Interrupts are pending, the
which was interrupted when the OS passed conu
The IST; are scheduled by the OS, the IST, fin
codes, ISTs run as if a thread is running.

_\o.\NMV\rnnmvz:u an IPC Event by ISR

RTOS ing mechanism provisions for following:

(@7 ISRs have the higher priorities over tasks and most RTOS functions. e onk
?%W should not wait for a semaphore, mailbox message or queue message. An ISR can use only

3 se it has at for
the accept function for the events. An ISR should not also wait for mutex, else it has to wai
other task or ISR section code to finish before the ISR can run.

10.8 | iNTRODUCTION TO REAL-TIME OPERATING SYSTEMS

. - ion system for applications, which
A Real-Time Operating System (RTOS) is 5:::&59@0?.2:0: sy VAEM .%M.Em.ogswqaa heans
require that system tasks and functions exccute with real-time constraints. Rex

0OS control returns to th
rol ta the LISR,

ds that the Interrupt has Qccurred, it starts and run the

|

& Currently exacuting thread,

Scanned with CamScanner

B

Example 10.16

Architecture, Programming and Design

I. A program can be such that I

g&ﬂ«!’ua.:nuﬁiia used in fully light
intervals.]

2. An embedded system may

LCD panel so that 1t takes less

ed room. [A sensor senses the light level ar specific
sl o g

need to run continuously, withoyt being switched off, the system
design, therefore, is constrained by the need to limit power dissipation while It Is running. Total
power consumption by the system in running, waiting and idle states should also be limited. A
program can provide for auto switch-over of standby mode In case of the m.«ﬁna not used within
2 specified time interval and stop mode when th. A

@ system not used for long intervals. l

® Disable Caches Mode Yetanother method is to disable use
Processor (tor example, caches) when not necessary, and to keep in dis C
units that are not needed during a particular software-portion execution (
The software designer should enable the use
obtain greater performanc
the remaining sections |

requirement. Hardware
Part of a cache enpt gets acty

%&CS& Power dissipation,

#10.10 | RTOS TASK-SCHEDULING MODELS

Following are he <common schedulin
1. Cooperative

of caches in a process
¢ dunng the run of a section of

g models used by schedulers.
schaduling of ready tasks in

a circular queue, Jt closely relates to function quene
~Scheduling. # g
72.C UOPeratve scheduling with precedence constraints
“3._Cyclic and round-robjn time-slicing scheduling

\\M\.unn..i,.: ve mhbnii_.am

s. eduling using ‘Earliest Deadline First’ (EDF) precedence
“__Rate monotonjc schedulin

7 Fixed-times scheduling
< Scheduling of periodic, sporadic ang aperiodic tasks
\o. Advanced scheduling algorithms for multiprocessors and for complex distributed systems
An RTOS common ly utes the codes for the multiple tasks as priori ty

7T0.10.1 Model for Preemptiye Scheduling

Preemptive scheduling means higher prioriry, task and ve
a lower priority task whenever the higher priority
Interprocessor communication, such as Semaphore or message.,

L. The preemption event takes place when an interru

Sﬁnﬂ?snaauum:._.nn n..::osiﬁ.o,m by the ISR. On this call to the RTOS, a token, the
\\ﬁ&%&&ﬁ. vent, is set. The context then switches to ISR,

2’ Each RTOS uses g system clock ticked by a SysClkIntr interrupt. The preemption event takes place
when the SysClkinir Interrupt (real-time, clock-driven, software-timer interrupt) occurs at the
RTOS. On this es ent, RTOS takes control of the processor and checks whether it should let currently
executing task continue or to preempt it o make way for the higher priority task. This event makes

8 using ‘higher rate of events occurrence first® precedence

exec based preemptive scheduler.

ry high-priority ISRs preempt running of
ask is ready to run after receiving the pending

pt occurs, and just before the return from the

systems Il Basic Functions of O5 and RTOS
ting
me Opard

. e latter. Task yp, ~-, ,
Real Tl the switch of the flag to the Task then oy
to run, ON . chedulin U, v
ther higher priority Euwﬁnwaa blocked :_F_:.ﬂ hw__m M%v MM wmw_w(m.wp_wm m _m Wmmpﬁ 3 4
ano! i A A s : 3

=t te, re en any ¢ o 3 R |

transition to m:n m.”wn:. takes plac® “sn“_v to the RTOS, and if u:.E”MM ?nwwn“ nﬂﬂaq“ﬂ task the - _”_ HE

\w\jmu 1_.231”_..”“:3% message Ao_:wcu. [Now the preemption is befor 2 the critica) snzﬁ
= %E.::m Q_bwn control of the C ¥ .
be service . 3 e
ISSUE! - |
10.11 || OS SECURITY le patients, protection of the patients from any Onfusion An RTOS should
- T " ~==~2Nn e p: ‘

. Itiple processes and their
rea has to supervise mu ' 0 s . v
When a doctor has lo ! tive. When an oSt it
mbonion R _E%QMBOQ and resouree” :w_”vn_d".zn OS security issue is a criticq) is
: m omes 5 s
rotection O ther bec . ource exclusively or
amo_ﬁmw M.. peosiies 0L 60 E“ u”.rﬂq it has a control of a w<wﬁﬂomn MoBEos 10 a set Mq
or mix ines whe ont i
B e o sscs, or whether It - lusive control over a process and a free
i g e E.ﬂn_n ks of a file will have nxnn_” configures when a resource is sq
‘ oC! on
earilc, £ Rt E&:cm to all the w_.oanmmn.m_. M”MaO Mﬂ owu,.onnw.nnm.
. sees ¢]
space will have the acc se is shared with a de the configuration whenneeded, to fulfillthe req,.
B sl he flexibility tochange thee mm,uw memory blocks at an instance 3g .
e o _.h le, a process has a comrol o s are created, this can'be 22.55% -
; ’ ° : e
{ all the processes. For examp: o tee when more processe her .
olall he system accordingly. L cchanism and implement a system administrator (s) g "
noa_m:?mm. _oow_a provide a protection En:..iﬁ:ﬁc_. o e
. ._,__.ﬁ. - om..w For example, a system & osats)
momch“hwu..mana.ﬁna (and hence ﬁn—n.v“o changing the OS configuration? The OS needs 3 Protecs,
: ° . .
any What about issues of an %ﬁ_nnzmcziﬁo programmer can find a hole in the protection me
i i °=I . -
e e o uuv:nna.;:w the implementation of protection mechanisms and enfy
and gain an unauthorized access. s

i ‘es is a chal
of security policy for resources is

environment complicates n:m. _mmm_n.nnoaw.
Table 10.12 lists the security tun

Bor 5y,
Tue
,>+.n4.ﬂ. s

Processe 1,

<o,
late:

TS

—...521.

ﬂrﬂw..,ﬂn

llenging issuc before any OS software designer. The Dty

Table 10.12 Important security functions
d ters b A
ntrolli i e arameters by user processeg
ling read and write of the resources and p: : .
Controlled Resource MMM MM.“—__%P some resources write only for a process and some read only for,
L “set of processes.

Confinement Mechanism
Security Policy (Strategy)

Mechanism that restricts sharing of parameters to a ,mﬁ of processes aa«
Rules for authorizing access to the OS, v,w.mﬁ.: ns.a information. _.y?,:s n
example is a communication system g&im a policy of cnﬁ..«o._.y,ﬁ commyn-
cation (connection establishment preceding flow of data uur—,,nﬁ. /
Extemal authentication mechanisin for the user and a :.,nn:uz_ﬁ: 5 prev zw_ ,J |
application run unless the user is mem.ﬁ_,ﬂ_ and the system E_E_.E,:.wrwﬂ, %o% |
ware) authorised. Internal authentication for the process, u?._,E.r wﬁrﬂawﬁ.
not appear (impersonate) like other processes, User 293:.,..“.:6: ru:_g,r J
difficult if the user disseminates passwords or other authentication :.F . ._w)
User or process(s) allowed using the system resources as per s.a mwﬁ_:w _”Mn Mz
A tool to change information to make it F.Eﬁ,pZa by any other user or process
without the appropriate key for deciphering it.

Authentication Mechanism

Authorization Mechanism
Encryption

latency and fast ¢
pe ances. Thre

5) 0 of the sy
»..WW—.:C load

(1) Worst-cuse ex,

) :E:.:E laten
PU load is anoty

sporadic tagk.

19132 cp

Each task giyes
(Task period me
A expects apyty
task execution
task execution
the CPU s 1 ()
The CPU «
are mtasks. F
than 1. The tiy
priority tasks
when the sun
90% time in ;
also vary
Whenate
the tasks tha
CPU load v¢
with predete
Whena!
task is exp
s the pack
Apree
separatel

() An
Gy Ay
ne:
(i) A
U

\]

Scanned with CamScanner

" E
es p—-

Architec

1

ure, \vw:.o\.:!:::n and D,
esign

‘Il RTOS INT -
E.k.m FERRUPY ¥
THE TAS LATENC
> KS AS vmzﬂOzZ\»Hm’mz_ﬂm_.ﬂﬁwMMme SIS0
E..u._ Latencyand Deadling

SasPerforms:
M_uo::_m_.no_ ManceMetricinScheduling
i and Aperiodic Tasks
A a o o
teney. Different _”Lnowm_e:. It should have minimum interrupt
.::_ov, are as follows: ¢els have bLeen proposed for measuring
atencies wi .

ith respect to the sum of the execution times

Models for Periodic

An RTOS v._:,:_r_ quickly and predic
Jatency and fust ..,c:_cz_-u,e_._r.:_.: tably re
g o e __2_.::_:::6:m .::c

tio of the sum of Inten e
PU load Tupt L

f
(U Worst-cuse

execution tiy i
ne .
With respect to mean execution time

Anterrupt latencies® i
CneIes” in varg
g various task
Mp__”.m:__ ﬁ::::.aq way to look n._..__c___“%_.nh.r_z can be used for evaluating performance metrics. The
spo ask. ormance. Worst-case performance can be calculated for a

73.2
_\3\ CPU Load as Performance Metric

Each task gives a load
: : to th
ﬁ.-mr. period means period um M.u M.Q ,._SE m.m:i.q.:E task evecution time divided by the task period.
A expects another character beft SCHovs Smr‘..__, Consider In_AOut_B intra network Receiver port
1ask execution time is also :M ore 172 ps, i.e. task period is 172 ps for 64 kbps data rate. If the
sk execution time when g :v us :z.:. the .OmC load for this task is 1 (=100%). In this case, the
tte CPU is I (less than _oc«M aracter is received must be less than 172 is as the maximum load of
The CPU load or sy : e s .

& tasks. For Enﬂ.: .dm:.qi load estimation in the case of multitasking is as follows: Suppose there
B | The timeouts ultiple tasks, the sum of the CPU loads for all the tasks and ISRs should be less
and fixed time-limit definitions for the tasks reduce the CPU load for the higher

riority tasks . : - . .
P) so that even the lower priority tasks can run before the deadlines. What does it mean
underutilised and spends its

Hh_w:" .Em sum ow.:”_o CPU loads equal 0.1 (10%)? It means the CPU is
% time in a waiting mode. Since the execution times and the task periods vary, the CPU loads can

) Real Time Operating Systems Il Basic Functions of OS and RTOS
10.13:3 Sporadic Task Model Performance Metric

\a us consider the following parameters.

Ty = Total length of periods for which sporadic tasks occur
¢ = 'Total task execution time

T,, = Mean periods between the sporadic occurrences

T.. = Minimum period between the sporadic occurrences

. min
Worst-case execution-time performance metric, p is calculated as follows for worst case of a task
atz

in a model,
P= P wors™ @* Tiom /! Tow) (e * Tyowm !/ Tein)-
£ occurrence of sporadic task = (T / T,,) and maximum rate of

It is becguse the average rate 0
sporadjetask burst = Tigu ! Tinine time.
)

0.14 || OS PERFORMANCE GUIDELINES

owing: memory management, interrupt handling and scheduling

0S performance affects most by the foll
functions.
Memmory is an important system resource that all programs use. Memory systems mean virual,
- physical and cache memory. Initialising, allocating and copying of memory address spaces are the
When memory resources

operations for the codes, data and heap (data generated while unning).
cted, the memory notifications are also issued. Tracking, analysing

become low or memory \eaks are dete:
memory usage, caching, purging and finding memory leaks in the application are the operations

» performed by OS.

Each operation requires time and resources. The time requircment, therefore, affects the overall

system performance. Performance guidelines in an OS are for efficient use of the memory in
systems. Guideline document provides background information about the memory systems and
how program uses them efficiently. Efficiency means right amount of memory s 10 be allocated at

the right instance.
A scheduling algorithm selects the p

scheme. Overall performance maximises
= Performance tuning means to optimise
Y. An understanding of the hardware,

rocess at given instance, which executes in given scheduling

the function of the 0S scheduler.
the real-time system performance (CPU and Memory

usages operating system and application is tequired.

also vary.

When a task needs to run only once then it is gperiodic (one shot) in a
:.,.w tasks that need to run periodically with the fixed periods can be period
CPU load very close 1o 1. An example of a periodic task is as follows. There
with predetermined periods, ‘and the inputs are in succession without any time gap-

When a task cannot be scheduled at fixed periods, its schedule is called Sporadic. For example, if @
task is expected to receive inputs al variable time gaps then the task schedule is sporadic. An example
s the packets from the routers ina network. The variable time gaps must be within defined limits.

A preemptive scheduler must take into account three types of tasks (aperiodic, periodic and sporadic)

:parately.

5 An ...mn:.o&n task needs to be preempted only once.
i) A periodic task needs to be preempted after the fixed periods and it must be execu

next preemption is nceded.
) A sporadic task needs to be checked for precmption after a minimum time period of its occurrence.
Usually, the strategy employed by the software designer is to keep the CPU load between 0.7=

n application. Scheduling of
ic and can be done with a~
may be inputs at a port

ted before its

’

(.25 for sporadic tasks.

G AND EXAMPLES

A5 #V MiDDLEWARE: MEANIN

n application using the OS

Middleware means the following:
" 1. Software which provides the services other than available to @ i e G
2. Software layer between applications and 0OS on each node in 2 distributed computing sysiem
nsisting

network - o
3. Software which enables an application two systems ¢
different OSs and hardware.

4. Software for data communic;
network.

o communicate between

ation and management in the distributed compuuing syster

Scanned with CamScanner

DESIGN CYCIE

The life cycle is referred as models. A typical simple product contains 5 phases-

Requirement analysis
Design

Development and test
Deployment

Maintenance

The embedded product life cycle model contains phases as follows-

Retirement Conceptualization

Upgrade Analysis

Dasign

Deployment

i) Need:

The embedded product is an output of ‘Need” from an individual/ public/ company. Based on
the need a proposal is prepared, reviewed by seniors, approved and then the preduct goes to
product development team.

Scanned with CamScanner

The types of need could be as follows

Mew or custom product development: Need for product which does not exist oras a
competitor for an existing product.

Product re-engineering: The market is dynamic and competitive. Therefore there is
always a need of making changes in an existing product design and launching its new
version. Product re-engineering includes Product maintenance (technical support to
end user), Corrective maintenance (corrective action following a failure} and
Preventive maintenance (scheduled maintenance to avoid failure)

ii) Conceptualization:

Itis a product development phase which begins after approval. In this stage the following
tasks are performed:

Feasibility study: It is the careful examination of need and it suggests solutions to
build product.

Cost Benefit analysis: This analysis involves identifying total development cost and
profits expected.

Product scope: This means knowing what is in the scope and not in the scope for the
product.

Planning activities: This covers various plans required for product development.

iii) Analysis:

This stage starts after the conceptualization phase is approved by the client. It concentrates
on developing functional model of product. The product is defined in detail with respect to
input, process and output. This stage determines the function performed by product.

Analysis and documentation: This phase analyzes business needs and purpose of
product. It also addresses various functional aspects and quality attributes.

Interface definition and documentation: This defines interface between product and
other parts of systems.

Defining Test plan and procedure: This defines the tests to be performed and what
should be included in the test. Some tests that are carried out are- Unit testing {unit/
module level), Integration testing (Integrating each module), System testing
(functional aspects) and User acceptance testing (meeting all requirements).

iv) Design:

The entire design of product as per requirements is done in this phase.

v) Development and testing:

This phase transforms design into realizable product.

Scanned with CamScanner

vi] Deployment:
Deployment is nothing but launching first fully functional model of product. It includes some
important tasks as follows-

« Notification of product deployment: Launching ceremaony details to stake holders and public.
s Execution of training plan: Train the end user.

« Product instailation: Install product to ensure it is fully functional,
+ Praduct - Post implementation review: To determine success of product.

vii) Support:

Support means operation and maintenance of product in product environment. The activities
arg-

= Tosetupa dedicated support wing
« Taidentify bugs and areas of improvement.
viii) Upgrade:

It is necessary to upgrade the product already present in market. Upgrades deals with feature
enhancement, bug fixes, etc.

ix) Retirement/ Disposal:

The product is declared as obsolete and is discontinued from market due to revolutionary
technology changes.

Scanned with CamScanner

time oforodion eahve 44 oxkCynal
2 (oYM ko $iz0 ond werght i mits.

3- Budget fowoy and (polirg (o005 umPtion.
W SaASfY gafely apd yoliobility yoquivomonts.
5 Meek thd cost torrgors

Rl tive [Yeackive opoxosion:
Roal time. ofexedion:
COFET'O f_kt\ggg ff 'W\‘C =L, h“‘?di@.il‘ on CLQPM on *‘B\Q, k‘\m ; b
Wt 4 (S Jolivegad -
Syg't oM {}tﬁj 19r\ 1"1\.1,1-}% o Lo Cong TO{CPJ uJOTﬁ afe PQMFD'T -; '

oo Lorwii::sd_w\ avchiteckux® pyeicding worgeco

foxfosrane. s ufficudt |
gronple of Real v OYoxokion ame S¥Geal

Cordl mAsSTon cwigical Sughord. T
. feackwe oforakion
e Softwa®e oxecuty) i yorponse ko an

Al Sy

Scanned with CamScanner

"N’ s a"d weight -{aq,wqwng
of WS W na PU veelicde

Stal §iz0 ord 1ow ol Ykt :
sign el lorge:
NON -{CHongulat, non-Plana? geometTies- '
PaLKAFnY ard sntegsakion pp Jigitad, analog,,
eiYeuitS po Nedwe size.
ard ToLiable:
Frobedlod Oystem (iluwiog oy ~osulk in Sow:

Fi:;’if oanple tO WSS (on _c‘hhcaﬂ, a{’fptég“.

Scanned with CamScanner

ssstem Jovol Noguirvemonss

1o o comfokitive N roatket Aegigres ghould

Qollouﬂl’\ﬂ : ‘
\;r\d '{’"&u.hl & bt

2. Gyskera sofoly & yobiabi Bt
3. condyol S prgsicad gaskery

R pouvsex rranaaement: a3

Eﬂfi Psooluct WYY

Fovolotod Products one byplcatdy sm& on H
foodkue , ardl Sg,g;k@m Lok - __.

Scanned with CamScanner

p BT 990w an:! a0V ol cudk t&SuL
Ok wae gafoky ard voliak! Ly :

N R Sek Qf LmQDL?Q&Qp[Gxcungtneed can caw l:-:!r’
P ign Crallerge
Yo table SOft wato .

glockyond ¢ vSnon-e logkvonic elesigh toolooffs .

contsoting physical Sugtoms :
' prabedoti ng e omPuden to jodotact widh e :
Vonment o orkkong od onkyolli g oxkoxral raline

Fos 4R35, oralog T puks @Nt O ubpllf musk be
Fiom gligital ggnal Loveld :
_ significant noal o © pPeiate wiokows
¥ crckuodss

. .
A
el o
e 00 Et: : l @ | 9, b S .
{ ,'.\..: Ly ML
v o o - 2
- . - J -
\ 1's b e ki C
I & el e iy (Y .,
" e ¥ W 1 ¥
2 i 1 == 4100 =
i

Scanned with CamScanner

oW cwluklon of lap
ovdex ko dun fvom deoxfonst -y
applicakion) ard up ko 5 yeaTs in OWED:
| wltia-tow pouey glogigh f—'o‘"(Long.- ks o A

ocquigtion:

tockaology - dovven Aosekof o w@gf s, B i

-fore oy bo moTe loowoy 35 €O mpgmnk .

eovfo ok acoudgbion (oS cant bo teekon L
wven optirdzing ggjtem Afe - cycle Logk -

| th\?mr Jrs Lok Qf a Lom{?omrd .,.\;.. o
%miiﬂ o olsyign clcts Tord T kil P SRR

o ve wﬂdﬂir‘aﬁ@{ (o flote Ormon COWR

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

VALLUVAR COLLEGE OF SCIENCE AND MANAGEMENT,KARUR

DEPARTMENT OF COMPUTER SCIENCE AND APPLICATIONS

EMBEDDED SYSTEMS

SUB.CODE: P16CSE2A
UNIT-I

2 MARK:
1.Define system.
2. Define Embedded systems.
3. What are the essential units of processor?
4. List out the types of the processor.
5. What is microprocessor?
6. What is microcontroller?
7. Define ROM image.
8. List out the types of language processors.
9. Define ISR.
10. Define RTOS.
11. List out any five structural units in a processor.
12. What is memory and list out its type?
13. Define RAM.

14. Define ROM.
15. List out the types of ROM.

16. What is serial access memory?
17. What is direct access memory?
18. Define cache memory.

19. What is virtual memory?

20.List out the design parameters to select the appropriate memory type.

CLASS:I-M.Sc.,(CS)

21.What are all the needs to be factored during processor selection for an embedded system?
5 MARK:

22) List out and explain the classification of embedded systems.

23) Discuss about DSP and ASSP.

24) Explain about the software in high level languages.

25) List out and explain the software tools in designing of embedded systems.

26) Briefly explain about the structural units in a processor.

27) How to select processor for embedded systems?

28) How to select memory for embedded systems?

10 MARK:

29) Explain about i) Final machine implementable software for a product
ii)Software in processor specific assembly language.

30) Explain about the memory devices.

31) Elaborate in detail about the allocation of memory to program segments and blocks and
memory map of a system.

UNIT-II
2 MARK:

1.Define ISR.

2. What is context in embedded system?

3. What is context switching in embedded system?
4. Define interrupt latency.

5. What is interrupt service deadline?

6. what are the criteria by which appropriate programming language is chosen for embedded
system of a given system?

7. what is the most important feature in C that makes it popular for an embedded system?
8. What is the advantage of polymorphism, when programming using C++?

9. What is a preprocessor directive?
10. Differentiate macros and functions.

11. Define data structure.
12. What is array?

5 MARK:

13) Briefly explain interrupt servicing mechanisms.

14) Explain about the context and periods for context switching.

15) Briefly explain about the assembly language programming and high level programming.
16) List out the program elements and its uses.

17) List out and explain the include directive for the inclusion of files.

18) Explain about the loops and conditions.

19) Explain the concept of table and hash table.

20) Explain in detail about the function pointers and function queues.
21) What is function calls and explain its usage.

10 MARK:
22) Explain in detail about the data structures with neat diagram.

23) What is object oriented programming and write the advantages and disadvantages of C++
and java.

UNIT-1I

2 MARK:

1. What is software analysis?

2. What is data-flow?

3. What is CDFG?

4. Define software implementation.

5. What is the benefit of the FSM?

6. Define petri nets.

7. What is state transition function?

8. Define petri table.

9. What is multiprocessor system?

5 MARK:

10) Briefly explain about the DFG model.

11) Write java program elements and explain its usage.

12) Briefly explain the CDFG model.

13) Explain about the state machine programming model and give some examples.

14) Explain about synchronous data flow model.

15) Differentiate between Functions,ISR, Tasks.

16) What is meant by a pipe? How does a pipe differ from queue?

10 MARK:

17) Explain in detail about the program models with an example.

18) Discuss about the modeling of multi processor system.

19) Explain with one example each, APEG,SDFG,HSDFG
UNIT-IV

1.What is meant by RTOS?
2.what is the role of RTOS in Embedded Systems?

3 Advantages of RTOS in Embedded Systems?

4. \What are the common OS services?

6.What are the Example for RTOS?

7.What are the two types of RTOS?

8.what are the Hard and soft real time systems?
9.What are the interrupt in RTOS?

10. What is interrupt routine in RTOS?
11.What is RTOS task scheduling?

12.what are the algorithm used in scheduling?

13. what are the two types of task scheduling ?

14.what is interrupt latency in RTOS?
15. What is interrupt response time?
16. How does a preemptive scheduling works?
17. How does a non preemptive scheduling works?
18. Define performance metrics in RTOS?
19.What are the characteristics of RTOS ?
5 MARK:
20) Briefly explain 1/0 system in RTOS.
21) List out and explain the RTOS services.
22) Explain about the preemptive scheduling.
23) Discuss about the scheduling of periodic, sporadic and aperiodic tasks.
24) Briefly explain the advanced scheduling algorithms using the problabistic petri nets.
10 MARK:
25) Explain in detail about the OS services in embedded systems.

26) Explain in detail about the interrupt routines in RTOS environment and handling of interrupt
source calls.

27) How to design an embedded system using RTOS.

28) List out and explain the following scheduling models i) Cooperative scheduling model

ii) Cooperative scheduling with precedence constraints iii) Cyclic and round robin scheduling
UNIT-V

2 MARK:

1) What are the approaches for the embedded system?

2) What are the components of the embedded system project management?

3) What is meant by embedded system design?

4) Explain codesign issues?

5) What is embedded system design process?

6) What is design metrics in embedded system?

7) What is the Design Cycle?
8) What is target system in embedded system?

9) What is a logic analyzer used for?

10) What are the Hardware—Software Codesign?

11) What is the phase representation in design cycle?

12) what is the use of software tools for development in embedded system?
13)What are the softwares used in embedded system?

14) What is the scope of embedded system?

15) What is the use of logic analyzer in embedded system?

16) What are the categories of a logical analyzer?

17) What are the core processors for project management in embedded system?
18) Define co-design.

19) Define co-design activities.

20) What is embedded hardware testing?
5 MARK:

21) How embedded system works in project management?

22) Explain about the design cycle.

23) List out and explain the uses of target system.

24) What are all the issues in embedded system design? and explain it.

10 MARK:

25) Elaborate in detail about embedded system design and codesign issues.
26) Discuss the uses of software tools for development.

27) Explain the uses of scope and logic analysis for system hardware tests.

VALLUVAR COLLEGE OF SCIENCE AND MANAGEMENT,KARUR
DEPARTMENT OF COMPUTER SCIENCE AND APPLICATIONS
EMBEDDED SYSTEMS
SUB.CODE: P16CSE2A CLASS:1-M.Sc.,(CS)
UNIT-I

2 MARK:

1.Define system.

2. Define Embedded systems.

3. What are the essential units of processor?
4. List out the types of the processor.

5. What is microprocessor?

6. What is microcontroller?

7. Define ROM image.

8. List out the types of language processors.
9. Define ISR.

10. Define RTOS.

11. List out any five structural units in a processor.
12. What is memory and list out its type?
13. Define RAM.

14. Define ROM.
15. List out the types of ROM.

16. What is serial access memory?
17. What is direct access memory?
18. Define cache memory.

19. What is virtual memory?

20.List out the design parameters to select the appropriate memory type.

21.What are all the needs to be factored during processor selection for an embedded system?
5 MARK:

22) List out and explain the classification of embedded systems.

23) Discuss about DSP and ASSP.

24) Explain about the software in high level languages.

25) List out and explain the software tools in designing of embedded systems.

26) Briefly explain about the structural units in a processor.

27) How to select processor for embedded systems?

28) How to select memory for embedded systems?

10 MARK:

29) Explain about i) Final machine implementable software for a product
i)Software in processor specific assembly language.

30) Explain about the memory devices.

31) Elaborate in detail about the allocation of memory to program segments and blocks and
memory map of a system.

UNIT-1
2 MARK:

1.Define ISR.

2. What is context in embedded system?

3. What is context switching in embedded system?
4. Define interrupt latency.

5. What is interrupt service deadline?

6. what are the criteria by which appropriate programming language is chosen for embedded
system of a given system?

7. what is the most important feature in C that makes it popular for an embedded system?
8. What is the advantage of polymorphism, when programming using C++?

9. What is a preprocessor directive?
10. Differentiate macros and functions.

11. Define data structure.
12. What is array?

5 MARK:

13) Briefly explain interrupt servicing mechanisms.

14) Explain about the context and periods for context switching.

15) Briefly explain about the assembly language programming and high level programming.
16) List out the program elements and its uses.

17) List out and explain the include directive for the inclusion of files.

18) Explain about the loops and conditions.

19) Explain the concept of table and hash table.

20) Explain in detail about the function pointers and function queues.
21) What is function calls and explain its usage.

10 MARK:
22) Explain in detail about the data structures with neat diagram.

23) What is object oriented programming and write the advantages and disadvantages of C++
and java.

UNIT-I1I
2 MARK:

What is software analysis?

What is data-flow?

What is CDFG?

Define software implementation.
What is the benefit of the FSM?
Define petri nets.

What is state transition function?

Define petri table.

© 0o N o g bk~ w D PE

What is multiprocessor system?

5 MARK:

10) Briefly explain about the DFG model.

11) Write java program elements and explain its usage.

12) Briefly explain the CDFG model.

13) Explain about the state machine programming model and give some examples.

14) Explain about synchronous data flow model.

15) Differentiate between Functions, ISR, Tasks.

16) What is meant by a pipe? How does a pipe differ from queue?

10 MARK:

17) Explain in detail about the program models with an example.

18) Discuss about the modeling of multi processor system.

19) Explain with one example each, APEG,SDFG,HSDFG
UNIT-IV

1.What is meant by RTOS?
2.what is the role of RTOS in Embedded Systems?

3 Advantages of RTOS in Embedded Systems?

4 What are the common OS services?

6.What are the Example for RTOS?

7.What are the two types of RTOS?

8.what are the Hard and soft real time systems?
9.What are the interrupt in RTOS?

10. What is interrupt routine in RTOS?
11.What is RTOS task scheduling?

12.what are the algorithm used in scheduling?

13. what are the two types of task scheduling ?

14.what is interrupt latency in RTOS?
15. What is interrupt response time?
16. How does a preemptive scheduling works?
17. How does a non preemptive scheduling works?
18. Define performance metrics in RTOS?
19.What are the characteristics of RTOS ?
5 MARK:
20) Briefly explain 1/0 system in RTOS.
21) List out and explain the RTOS services.
22) Explain about the preemptive scheduling.
23) Discuss about the scheduling of periodic, sporadic and aperiodic tasks.
24) Briefly explain the advanced scheduling algorithms using the problabistic petri nets.
10 MARK:
25) Explain in detail about the OS services in embedded systems.

26) Explain in detail about the interrupt routines in RTOS environment and handling of interrupt
source calls.

27) How to design an embedded system using RTOS.

28) List out and explain the following scheduling models i) Cooperative scheduling model

ii) Cooperative scheduling with precedence constraints iii) Cyclic and round robin scheduling
UNIT-V

2 MARK:

1) What are the approaches for the embedded system?

2) What are the components of the embedded system project management?
3) What is meant by embedded system design?

4) Explain codesign issues?

5) What is embedded system design process?

6) What is design metrics in embedded system?

7) What is the Design Cycle?
8) What is target system in embedded system?

9) What is a logic analyzer used for?

10) What are the Hardware—Software Codesign?

11) What is the phase representation in design cycle?

12) what is the use of software tools for development in embedded system?
13)What are the softwares used in embedded system?

14) What is the scope of embedded system?

15) What is the use of logic analyzer in embedded system?

16) What are the categories of a logical analyzer?

17) What are the core processors for project management in embedded system?
18) Define co-design.

19) Define co-design activities.

20) What is embedded hardware testing?
5 MARK:

21) How embedded system works in project management?

22) Explain about the design cycle.

23) List out and explain the uses of target system.

24) What are all the issues in embedded system design? and explain it.

10 MARK:

25) Elaborate in detail about embedded system design and codesign issues.
26) Discuss the uses of software tools for development.

27) Explain the uses of scope and logic analysis for system hardware tests.

