
16SCCCA2 – PROGRAMMING IN C++ UNIT V 1

DEPARTMENT OF BCA VIVEKANANDA ARTS AND SCIENCE COLLEGE FOR WOMEN,SIRKALI

UNIT V

Chapter 1 - Introduction to the Standard Template Library (STL)

1.1 Introduction

➢ The Standard Template Library (STL) is a set of C++ template classes to provide common

programming data structures and functions such as lists, stacks, arrays, etc.

➢ A collection of generic classes and functions is called the Standard Template Library(STL).STL

components are part of C++ standard library are defined in the namespace std.

➢ It is a library of container classes, algorithms, and iterators. It is a generalized library and so, its

components are parameterized.

1.2 Components of STL:

STL has several components. But as it core are 3 key components.

1.Containers

2.Algorithms

3. Iterators

These 3 components work in conjunction with one another to provide support to a variety of

programming solutions.

1.3 Containers

➢ Containers are object that actually hold data of same type(ie.store data).

➢ It is a way data is organized in memory.

➢ The STL containers are implemented by template classes.

➢ The STL defines ten containers which are grouped into three categories.

Containers

 Sequence
 Containers

• vector

• dequeue

• list

 Associative
 Containers

• set

• multiset

• map

• multimap

 Derived
 Containers

• stack

• queue

• priority_queue

16SCCCA2 – PROGRAMMING IN C++ UNIT V 2

DEPARTMENT OF BCA VIVEKANANDA ARTS AND SCIENCE COLLEGE FOR WOMEN,SIRKALI

The following table shows the containers supported by the STL.

Container Description Header File Iterator

vector A dynamic array. Allows insertions and deletions

at back.

<vector> Random

access

list A bidirectional linear list. Allows insertions and

deletions at anywhere.

<list> Bidirectional

dequeue A double-ended queue. Allows insertions and

deletions at both the ends.

<deque> Random

Access

set Storing unique sets.Allows rapid look up. <set> Bidirectional

multiset Storing nonunique sets.(Duplicates allowed) <set> Bidirectional

map Storing unique key/value pairs. Each key is

associated with only one value.

<map> Bidirectional

multimap Storing unique key/value pairs. one key may be

associated more than one value.

<map> Bidirectional

stack A standard stack.Last-in-first-out(LIFO) <stack> No iterator

Queue A standard queue. First-in-first-out(FIFO) <queue> No iterator

Priority-

queue

A priority queue. Thefirst element out is always the

highest priority element.

<queue> No iterator

i) Sequence Containers:

➢ It store elements in a linear sequence like a line .It provides 3 containers vector, list, deque.

➢ Each element is related to other elements by its position along the line.

 . . ….

 begin() end()

Elements in all these containers can be accessed using an iterator.These 3 sequence containers are

differentiated by their performance of

1. Speed of random access (vector and deque are fast random access, list is slow random aceess)

2.Insertions and deletions of elements.

Element 0 Element 0 Element 0 Last Element

16SCCCA2 – PROGRAMMING IN C++ UNIT V 3

DEPARTMENT OF BCA VIVEKANANDA ARTS AND SCIENCE COLLEGE FOR WOMEN,SIRKALI

 In the middle Insertions and deletions of elements slow in vector and deque, fast in list.

 At the end Insertions and deletions of elements ,vector fast at back, list fast at front,deque fast at

both the ends.)

ii) Associative Containers :

➢ It supports direct access to elements using keys.

➢ They are not sequential. There are 4 types ,

1. set

2. multiset

3. map

4. multimap

➢ All these containers store data in a tree structure.

➢ Containers set and multiset can store number of items and provide operations for manipulating

them using the values as the keys.

o Difference : set does not allow duplicate items while multiset does.

➢ Containers map and multimap are used to store pairs of items, one called key, and the other called

value.Manipulate the values using the keys associated with them.

o Difference: map allows only one key for a given valueto be stored while multimap

permits multiple keys.

iii) Derived Containers:

➢ It also called container adaptors.There are 3 types,

1. Stack

2. Queue

3. Priority queue

➢ These are created from different sequence containers.

➢ It does not support iterators.

➢ They support pop() and push() for deleting and inserting operations.

1.4 Algorithms

➢ Algorithms are a set of functions or methods provided by STL that act on containers. These are

built-in functions and can be used directly with the STL containers and iterators instead of writing

our own algorithms.

➢ To access the STL algorithm , we must include <algorithm> in our program.

STL supports the following types of algorithms:

• Retrieve or non-mutating algorithms

• Mutating algorithms

• Sorting algorithms

• Set algorithms algorithms

• Relational algorithms

16SCCCA2 – PROGRAMMING IN C++ UNIT V 4

DEPARTMENT OF BCA VIVEKANANDA ARTS AND SCIENCE COLLEGE FOR WOMEN,SIRKALI

Non-mutating Algorithms:

Operations Description

adjacent_find() Finds adjacent pair of objects that are equal

count() Counts occurrence of a value in a sequence

count_if() Counts number of elements that matches a predicate

equal() True if two ranges are same

find() Finds first occurrence of a value in a sequence

find_end() Finds last occurrence of a value in a sequence

for_each() Apply an operation to each element

mismatch() Finds first elements for which two sequences differ.

search() Finds subsequence within a sequence

search_n() Finds a sequence of a specified number of similar elements.

Mutating Algorithms:

Operations Description

copy() Copies a sequence

fill() Fills a sequence with a specified value

generate() Replaces all elements with the result of an operation

random_shuffler() Places elements in random order

remove() Deletes elements of specified value

replace() Replaces elements with a specified value

reverse() Reverse the order of elements

rotate() Rotates elements

swap() Swaps two elements

unique() Delete equal adjacent elements

16SCCCA2 – PROGRAMMING IN C++ UNIT V 5

DEPARTMENT OF BCA VIVEKANANDA ARTS AND SCIENCE COLLEGE FOR WOMEN,SIRKALI

Sorting Algorithms :

Operations Description

binary_search() Conducts a binary search on an ordered sequence

equal_range() Finds a subrange of elements with a given value

inplace_merge() Merges two consecutive sorted sequences

lower_bound() Finds the first occurrence of a specified value

make_heap() Makes a heap from a sequence

merge() Merges two sorted sequences

partition() Places elements matching a predicate first

sort() Sorts a sequence

sort_heap() Sorts a heap

upper_bound() Finds the last occurrence of a specified value

stable_sort() Sorts maintaining order of equal elements

Set Algorithms

Operations Description

includes() Finds whether a sequence is a subsequence of another

set_difference() Constructs a sequence that is the difference of two ordered sets

set_intersection() Constructs a sequence that contains the intersection of ordered sets

set_union() Produces sorted union of two ordered sets

Relational Algorithms :

Operations Description

equal() Finds whether two sequences are same

lexicographical_compare() Compares alphabetically one sequence with other

16SCCCA2 – PROGRAMMING IN C++ UNIT V 6

DEPARTMENT OF BCA VIVEKANANDA ARTS AND SCIENCE COLLEGE FOR WOMEN,SIRKALI

max() Gives maximum of two values

max_elements() Finds maximum elements within the sequence

min() Gives minimum of two values

min_elements() Finds minimum elements within the sequence

mismatch() Finds th first mismatch between the elements in two sequences

Numeric Algorithms :

Operation Description

accumulate() Accumulates the result of operation on sequence

adjacent_difference() Produces a sequence from another sequence

inner_product() Accumulates the result of operation on a pair of sequences

partial_sum() Produces a sequence by operation on a pair of sequences

1.5 Iterators

➢ Iterators are constructs that we use to traverse or step through containers in STL.

➢ Iterators are very important in STL as they act as a bridge between algorithms and containers.

➢ Iterators always point to containers and in fact algorithms actually, operate on iterators and never

directly on containers.

Iterators are of following types:

➢ Input Iterators: Simplest and is used mostly in single-pass algorithms.

➢ Output Iterators: Same as input iterators but not used for traversing.

➢ Bidirectional Iterators: These iterators can move in both directions.

➢ Forward Iterators: Can be used only in the forward direction, one step at a time.

➢ Random Access Iterators: Same as pointers. Can be used to access any element randomly.

1.6 Application of Container Classes

Three most popular container classes are vector, list, map.

i) Vectors

➢ Vectors are same as dynamic arrays with the ability to resize itself automatically when an element is

inserted or deleted, with their storage being handled automatically by the container.

16SCCCA2 – PROGRAMMING IN C++ UNIT V 7

DEPARTMENT OF BCA VIVEKANANDA ARTS AND SCIENCE COLLEGE FOR WOMEN,SIRKALI

➢ Vector elements are placed in contiguous storage so that they can be accessed and traversed using

iterators.

➢ In vectors, data is inserted at the end. Inserting at the end takes differential time, as sometimes there

may be a need of extending the array.

➢ Removing the last element takes only constant time because no resizing happens. Inserting and

erasing at the beginning or in the middle is linear in time.

➢ Class vector supports a number of constructors for creating vector objects.

 vector<int> v1; // zero-length int vector

 vector<double> v2(10); // 10 element double vector

 vector<int> v3(v4); // creates v3 from v4

 vector<int> v(5,4); // 5 element vector of 2s

➢ The vector class supports several member functions :

at(g) – Returns a reference to the element at position ‘g’ in the vector

front() – Returns a reference to the first element in the vector

back() – Returns a reference to the last element in the vector

data() – Returns a direct pointer to the memory array used internally by the vector to store its owned

elements.

size() – Returns the number of elements in the vector.

max_size() – Returns the maximum number of elements that the vector can hold.

capacity() – Returns the size of the storage space currently allocated to the vector expressed as number of

elements.

resize(n) – Resizes the container so that it contains ‘n’ elements.

empty() – Returns whether the container is empty.

shrink_to_fit() – Reduces the capacity of the container to fit its size and destroys all elements beyond the

capacity.

reserve() – Requests that the vector capacity be at least enough to contain n elements.

begin() – Returns an iterator pointing to the first element in the vector

end() – Returns an iterator pointing to the theoretical element that follows the last element in the vector

rbegin() – Returns a reverse iterator pointing to the last element in the vector (reverse beginning). It

moves from last to first element

https://www.geeksforgeeks.org/vectorat-vectorswap-c-stl/
https://www.geeksforgeeks.org/vectorfront-vectorback-c-stl/
https://www.geeksforgeeks.org/vectorfront-vectorback-c-stl/
https://www.geeksforgeeks.org/vector-data-function-in-c-stl/
https://www.geeksforgeeks.org/vectorempty-vectorsize-c-stl/
https://www.geeksforgeeks.org/vector-max_size-function-in-c-stl/
https://www.geeksforgeeks.org/vector-capacity-function-in-c-stl/
https://www.geeksforgeeks.org/vector-resize-c-stl/
https://www.geeksforgeeks.org/vectorempty-vectorsize-c-stl/
https://www.geeksforgeeks.org/vector-shrink_to_fit-function-in-c-stl/
https://www.geeksforgeeks.org/using-stdvectorreserve-whenever-possible/
https://www.geeksforgeeks.org/vectorbegin-vectorend-c-stl/
https://www.geeksforgeeks.org/vectorbegin-vectorend-c-stl/
https://www.geeksforgeeks.org/vector-rbegin-and-rend-function-in-c-stl/

16SCCCA2 – PROGRAMMING IN C++ UNIT V 8

DEPARTMENT OF BCA VIVEKANANDA ARTS AND SCIENCE COLLEGE FOR WOMEN,SIRKALI

rend() – Returns a reverse iterator pointing to the theoretical element preceding the first element in the

vector (considered as reverse end)

cbegin() – Returns a constant iterator pointing to the first element in the vector.

cend() – Returns a constant iterator pointing to the theoretical element that follows the last element in the

vector.

crbegin() – Returns a constant reverse iterator pointing to the last element in the vector (reverse

beginning). It moves from last to first element

crend() – Returns a constant reverse iterator pointing to the theoretical element preceding the first

element in the vector (considered as reverse end)

assign() – It assigns new value to the vector elements by replacing old ones

push_back() – It push the elements into a vector from the back

pop_back() – It is used to pop or remove elements from a vector from the back.

insert() – It inserts new elements before the element at the specified position

erase() – It is used to remove elements from a container from the specified position or range.

swap() – It is used to swap the contents of one vector with another vector of same type. Sizes may differ.

clear() – It is used to remove all the elements of the vector container

emplace() – It extends the container by inserting new element at position

emplace_back() – It is used to insert a new element into the vector container, the new element is added to

the end of the vector

Example :

// C++ program to illustrate the iterators in vector

#include <iostream>

#include <vector>

using namespace std;

int main()

{

 vector<int> g1;

 for (int i = 1; i <= 5; i++)

 g1.push_back(i);

 cout << "Output of begin and end: ";

 for (auto i = g1.begin(); i != g1.end(); ++i)

 cout << *i << " ";

 cout << "\nOutput of cbegin and cend: ";

https://www.geeksforgeeks.org/vector-rbegin-and-rend-function-in-c-stl/
https://www.geeksforgeeks.org/vector-cbegin-vector-cend-c-stl/
https://www.geeksforgeeks.org/vector-cbegin-vector-cend-c-stl/
https://www.geeksforgeeks.org/vectorcrend-vectorcrbegin-examples/
https://www.geeksforgeeks.org/vectorcrend-vectorcrbegin-examples/
https://www.geeksforgeeks.org/vector-assign-in-c-stl/
https://www.geeksforgeeks.org/vectorpush_back-vectorpop_back-c-stl/
https://www.geeksforgeeks.org/vectorpush_back-vectorpop_back-c-stl/
https://www.geeksforgeeks.org/vector-insert-function-in-c-stl/
https://www.geeksforgeeks.org/vectorclear-vectorerase-c-stl/
https://www.geeksforgeeks.org/vectorat-vectorswap-c-stl/
https://www.geeksforgeeks.org/vectorclear-vectorerase-c-stl/
https://www.geeksforgeeks.org/vector-emplace-function-in-c-stl/
https://www.geeksforgeeks.org/vectoremplace_back-c-stl/

16SCCCA2 – PROGRAMMING IN C++ UNIT V 9

DEPARTMENT OF BCA VIVEKANANDA ARTS AND SCIENCE COLLEGE FOR WOMEN,SIRKALI

 for (auto i = g1.cbegin(); i != g1.cend(); ++i)

 cout << *i << " ";

 cout << "\nOutput of rbegin and rend: ";

 for (auto ir = g1.rbegin(); ir != g1.rend(); ++ir)

 cout << *ir << " ";

 cout << "\nOutput of crbegin and crend : ";

 for (auto ir = g1.crbegin(); ir != g1.crend(); ++ir)

 cout << *ir << " ";

 return 0;

}

Output:

Output of begin and end: 1 2 3 4 5

Output of cbegin and cend: 1 2 3 4 5

Output of rbegin and rend: 5 4 3 2 1

Output of crbegin and crend : 5 4 3 2 1

ii) Lists :

➢ Lists are sequence containers that allow non-contiguous memory allocation.

➢ As compared to vector, list has slow traversal, but once a position has been found, insertion and

deletion are quick.

➢ It supports a bidirectional, linear list. For implementing a singly linked list, we use forward list.

➢ Class list provides many member functions for manipulating the elements of list

➢ Functions used with List:

front() – Returns the value of the first element in the list.

back() – Returns the value of the last element in the list .

begin() and end() – begin() function returns an iterator pointing to the first element of the list

end()– end() function returns an iterator pointing to the theoretical last element which follows the

last element.

empty() – Returns whether the list is empty(1) or not(0).

insert() – Inserts new elements in the list before the element at a specified position.

https://www.geeksforgeeks.org/list-front-function-in-c-stl/
https://www.geeksforgeeks.org/list-back-function-in-c-stl/
https://www.geeksforgeeks.org/listbegin-listend-c-stl/
https://www.geeksforgeeks.org/list-end-function-in-c-stl/
https://www.geeksforgeeks.org/list-empty-function-in-c-stl/
https://www.geeksforgeeks.org/list-insert-in-c-stl/

16SCCCA2 – PROGRAMMING IN C++ UNIT V 10

DEPARTMENT OF BCA VIVEKANANDA ARTS AND SCIENCE COLLEGE FOR WOMEN,SIRKALI

erase() – Removes a single element or a range of elements from the list.

assign() – Assigns new elements to list by replacing current elements and resizes the list.

remove() – Removes all the elements from the list, which are equal to given element.

remove_if()– Used to remove all the values from the list that correspond true to the predicate or

condition given as parameter to the function.

reverse() – Reverses the list.

size() – Returns the number of elements in the list.

resize()– Used to resize a list container.

sort() – Sorts the list in increasing order.

max_size() – Returns the maximum number of elements a list container can hold.

unique() - Removes all duplicate consecutive elements from the list.

clear()– clear() function is used to remove all the elements of the list container, thus making it size 0.

swap()– This function is used to swap the contents of one list with another list of same type and size.

splice() - Used to transfer elements from one list to another.

 merge() - Merges two sorted lists into one

 emplace() – Extends list by inserting new element at a given position.

Example :

#include <iostream>

#include <list>

#include <iterator>

using namespace std;

//function for printing the elements in a list

void showlist(list <int> g)

{

 list <int> :: iterator it;

 for(it = g.begin(); it != g.end(); ++it)

 cout << '\t' << *it;

 cout << '\n';

}

int main()

{

 list <int> gqlist1, gqlist2;

https://www.geeksforgeeks.org/list-erase-function-in-c-stl/
https://www.geeksforgeeks.org/list-assign-function-in-c-stl/
https://www.geeksforgeeks.org/list-remove-function-in-c-stl/
https://www.geeksforgeeks.org/listremove-listremove_if-c-stl/
https://www.geeksforgeeks.org/list-reverse-function-in-c-stl/
https://www.geeksforgeeks.org/list-size-function-in-c-stl/
https://www.geeksforgeeks.org/list-resize-function-in-c-stl/
https://www.geeksforgeeks.org/stdlistsort-c-stl/
https://www.geeksforgeeks.org/list-max_size-function-in-c-stl/
https://www.geeksforgeeks.org/list-unique-in-c-stl/
https://www.geeksforgeeks.org/listclear-c-stl/
https://www.geeksforgeeks.org/listswap-c-stl/
https://www.geeksforgeeks.org/list-splice-function-in-c-stl/
https://www.geeksforgeeks.org/list-merge-function-in-c-stl/
https://www.geeksforgeeks.org/list-emplace-function-in-c-stl/

16SCCCA2 – PROGRAMMING IN C++ UNIT V 11

DEPARTMENT OF BCA VIVEKANANDA ARTS AND SCIENCE COLLEGE FOR WOMEN,SIRKALI

 for (int i = 0; i < 10; ++i)

 {

 gqlist1.push_back(i * 2);

 gqlist2.push_front(i * 3);

 }

 cout << "\nList 1 (gqlist1) is : ";

 showlist(gqlist1);

 cout << "\nList 2 (gqlist2) is : ";

 showlist(gqlist2);

 cout << "\ngqlist1.front() : " << gqlist1.front();

 cout << "\ngqlist1.back() : " << gqlist1.back();

 cout << "\ngqlist1.pop_front() : ";

 gqlist1.pop_front();

 showlist(gqlist1);

 cout << "\ngqlist2.pop_back() : ";

 gqlist2.pop_back();

 showlist(gqlist2);

 cout << "\ngqlist1.reverse() : ";

 gqlist1.reverse();

 showlist(gqlist1);

 cout << "\ngqlist2.sort(): ";

 gqlist2.sort();

 showlist(gqlist2);

 return 0;

}

The output of the above program is :

List 1 (gqlist1) is : 0 2 4 6

8 10 12 14 16 18

List 2 (gqlist2) is : 27 24 21 18

15 12 9 6 3 0

gqlist1.front() : 0

gqlist1.back() : 18

gqlist1.pop_front() : 2 4 6 8

10 12 14 16 18

gqlist2.pop_back() : 27 24 21 18

15 12 9 6 3

16SCCCA2 – PROGRAMMING IN C++ UNIT V 12

DEPARTMENT OF BCA VIVEKANANDA ARTS AND SCIENCE COLLEGE FOR WOMEN,SIRKALI

gqlist1.reverse() : 18 16 14 12

10 8 6 4 2

gqlist2.sort(): 3 6 9 12

15 18 21 24 27

iii) MAPS

➢ Maps are associative containers that store elements in a mapped fashion.

➢ Each element has a key value and a mapped value.

➢ No two mapped values can have same key values.

➢ Some basic functions associated with Map:

begin() – Returns an iterator to the first element in the map

end() – Returns an iterator to the theoretical element that follows last element in the map

size() – Returns the number of elements in the map

max_size() – Returns the maximum number of elements that the map can hold

empty() – Returns whether the map is empty

pair insert(keyvalue, mapvalue) – Adds a new element to the map

erase(iterator position) – Removes the element at the position pointed by the iterator

erase(const g) – Removes the key value ‘g’ from the map

clear() – Removes all the elements from the map

Example:

#include <iostream>

#include <iterator>

#include <map>

using namespace std;

int main()

{

 // empty map container

 map<int, int> gquiz1;

 // insert elements in random order

 gquiz1.insert(pair<int, int>(1, 40));

 gquiz1.insert(pair<int, int>(2, 30));

 gquiz1.insert(pair<int, int>(3, 60));

 gquiz1.insert(pair<int, int>(4, 20));

 gquiz1.insert(pair<int, int>(5, 50));

 gquiz1.insert(pair<int, int>(6, 50));

 gquiz1.insert(pair<int, int>(7, 10));

 // printing map gquiz1

 map<int, int>::iterator itr;

 cout << "\nThe map gquiz1 is : \n";

 cout << "\tKEY\tELEMENT\n";

 for (itr = gquiz1.begin(); itr != gquiz1.end(); ++itr)

https://www.geeksforgeeks.org/mapbegin-end-c-stl/
https://www.geeksforgeeks.org/mapbegin-end-c-stl/
https://www.geeksforgeeks.org/mapsize-c-stl/
https://www.geeksforgeeks.org/map-max_size-in-c-stl/
https://www.geeksforgeeks.org/mapempty-c-stl/
https://www.geeksforgeeks.org/map-insert-in-c-stl/
https://www.geeksforgeeks.org/map-erase-function-in-c-stl/
https://www.geeksforgeeks.org/map-erase-function-in-c-stl/
https://www.geeksforgeeks.org/mapclear-c-stl/

16SCCCA2 – PROGRAMMING IN C++ UNIT V 13

DEPARTMENT OF BCA VIVEKANANDA ARTS AND SCIENCE COLLEGE FOR WOMEN,SIRKALI

{

 cout << '\t' << itr->first

 << '\t' << itr->second << '\n';

 }

 cout << endl;

 // assigning the elements from gquiz1 to gquiz2

 map<int, int> gquiz2(gquiz1.begin(), gquiz1.end());

 // print all elements of the map gquiz2

 cout << "\nThe map gquiz2 after" << " assign from gquiz1 is : \n";

 cout << "\tKEY\tELEMENT\n";

 for (itr = gquiz2.begin(); itr != gquiz2.end(); ++itr) {

 cout << '\t' << itr->first << '\t' << itr->second << '\n';

 }

 cout << endl;

 // remove all elements up to element with key=3 in gquiz2

 cout << "\ngquiz2 after removal of" " elements less than key=3 : \n";

 cout << "\tKEY\tELEMENT\n";

 gquiz2.erase(gquiz2.begin(), gquiz2.find(3));

 for (itr = gquiz2.begin(); itr != gquiz2.end(); ++itr) {

 cout << '\t' << itr->first << '\t' << itr->second << '\n';

 }

 // remove all elements with key = 4

 int num;

 num = gquiz2.erase(4);

 cout << "\ngquiz2.erase(4) : ";

 cout << num << " removed \n";

 cout << "\tKEY\tELEMENT\n";

 for (itr = gquiz2.begin(); itr != gquiz2.end(); ++itr) {

 cout << '\t' << itr->first

 << '\t' << itr->second << '\n';

 }

 cout << endl;

 // lower bound and upper bound for map gquiz1 key = 5

 cout << "gquiz1.lower_bound(5) : " << "\tKEY = ";

 cout << gquiz1.lower_bound(5)->first << '\t';

 cout << "\tELEMENT = " << gquiz1.lower_bound(5)->second << endl;

 cout << "gquiz1.upper_bound(5) : " << "\tKEY = ";

 cout << gquiz1.upper_bound(5)->first << '\t';

 cout << "\tELEMENT = " << gquiz1.upper_bound(5)->second << endl;

 return 0;

}

Output:

16SCCCA2 – PROGRAMMING IN C++ UNIT V 14

DEPARTMENT OF BCA VIVEKANANDA ARTS AND SCIENCE COLLEGE FOR WOMEN,SIRKALI

The map gquiz1 is :

 KEY ELEMENT

 1 40

 2 30

 3 60

 4 20

 5 50

 6 50

 7 10

The map gquiz2 after assign from gquiz1 is :

 KEY ELEMENT

 1 40

 2 30

 3 60

 4 20

 5 50

 6 50

 7 10

gquiz2 after removal of elements less than key=3 :

 KEY ELEMENT

 3 60

 4 20

 5 50

 6 50

16SCCCA2 – PROGRAMMING IN C++ UNIT V 15

DEPARTMENT OF BCA VIVEKANANDA ARTS AND SCIENCE COLLEGE FOR WOMEN,SIRKALI

 7 10

gquiz2.erase(4) : 1 removed

 KEY ELEMENT

 3 60

 5 50

 6 50

 7 10

gquiz1.lower_bound(5) : KEY = 5 ELEMENT = 50

gquiz1.upper_bound(5) : KEY = 6 ELEMENT = 50

1.7 Function Objects:

➢ A function object is a function that has been wrapped in a class, like an object.

➢ The class has only one member functions, the overloaded () operator and no data.

➢ Function objects are used as arguments to certain containers and algorithms.Example:

Sort(array, array+5,greater<int>())

➢ STL provides many predefined function objects for performing arithmetical and logical operations.

Here the variables x and y represent objects of class T.

i) Arithmetic function object

divides< T > - x/y

minus< T > - x-y

modulus< T > - x%y

negate< T > - -x

plus< T > - x+y

multiplies< T > - x*y

ii) Relational function object

equal_to<T> - x==y

greater<T> - x>y

greater_equal<T>- x>=y

less<T> - x<y

less_equal<T> - x<=y

not_equal_to<T>- x!=y

iii) Logical Function Object

16SCCCA2 – PROGRAMMING IN C++ UNIT V 16

DEPARTMENT OF BCA VIVEKANANDA ARTS AND SCIENCE COLLEGE FOR WOMEN,SIRKALI

logical_and<T> - x&&y

logical_not<T> - !x

logical_or<T> - x||y

Example:

#include<iostream>

#include<algorithm>

#include<functional>

using namespace std;

int main()

{

 int x[] = { 10,50,30,40,20};

 int y[] = { 70,90,60,80};

sort(x,x+5,greater<int>());

sort(y,y+4);

for(int i=0;i<5;i++)

 cout<<x[i]<<” “;

 cout<<”\n”;

for(int i=0;i<4;i++)

 cout<<y[i]<<” “;

cout<<”\n”;

int z[9];

merge(x,x+5,y,y+4,z);

for(int i=0;i<9;i++)

 cout<<z[i]<<” “;

cout<<”\n”;

return(0);

}

OUTPUT:

 50 40 30 20 10

 60 70 80 90

50 40 30 20 10 60 70 80 90

 --

