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Unit–1: Analytic Functions

Introduction

In this Unit we study in detail the concepts of limit and continuity for functions of a complex
variable. We also introduce the notion of differentiability for functions of a complex variable and
see how the derivative of a complex function of one complex variable sometimes behaves like
the derivative of a real function of one real variable and other times is comparable to the partial
derivatives of a real function of two variables.

Functions of a Complex Variable

We use the letters z and w to denote complex variables. Thus to denote a complex valued function
of a complex variable we use the notation w = f(z). Throughout this unit we shall consider
functions whose domain of definition is a region of the complex plane.

The function w = iz + 3 is defined in the entire complex plane. The function w = 1
z2+1

is
defined at all points of the complex plane except at z = ±i.

The function w = |z| is defined in the entire complex plane and this is a real valued function of
the complex variable z.

If a0, a1, . . . , an are complex constants the function P (z) = a0 + a1z + · · · + anz
n is defined in

the entire complex plane and is called a polynomial in z.
If P (z) and Q(z) are polynomials the quotient P (z)

Q(z) is called a rational function and it is defined
for all z with Q(z) 6= 0.

The function f(z) = x4 + y4 + i
(
x2 + y2

)
is defined over the entire complex plane. In general

if u(x, y) and v(x, y) are real valued functions of two variables both defined on a region S of the
complex plane then f(z) = u(x, y) + iv(x, y) is a complex valued function defined on S.

Conversely each complex function w = f(z) can be put in the form

w = f(z) = u(x, y) + iv(x, y)

where u and v are real valued functions of the real variables x and y.
u(x, y) is called the real part and v(x, y) is called the imaginary part of the function f(z).
For example, f(z) = z2 = (x + iy)2 =

(
x2 − y2

)
+ i(2xy) so that u(x, y) = x2 − y2 and

v(x, y) = 2xy.
Thus a complex function w = f(z) can be viewed as a function of the complex variable z or as

a function of two real variables x and y.
To have a geometric representation of the function w = f(z) it is convenient to draw separate

complex planes for the variables z and w so that corresponding to each point z = x + iy of the z
-plane there is a point w = u+ iv in the w-plane.
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Limits

Let w = f(z) be a function defined in some region containing a point z0 except perhaps at the
point z0. It may happen that as z approaches z0 the value f(z) of the function is arbitrarily close
to a complex number l. Then we say that the limit of the function f(z) as z approaches z0 is l. This
idea is expressed in a precise form in the following definition.

Definition

A function w = f(z) is said to have the limit l as z tends to z0 if given ε > 0 there exists
δ > 0 such that 0 < |z − z0| < δ ⇒ |f(z)− l| < ε . In this case we write lim

z→z0
f(z) = l.

Geometrically the definition states that given any open disc with centre l and radius ε there
exists an open disc with centre z0 and radius δ such that for every point z (6= z0) in the disc
|z − z0| < δ the image w = f(z) lies in the disc |w − l| < ε.

Lemma 1. When the limit of a function f(z) exists as z tends to z0 then the limit has a unique value.

Proof. Suppose that limz→z0 f(z) has two values l1 and l2. Then given ε > 0 there exists δ1 and
δ2 > 0 such that

0 < |z − z0| < δ1 ⇒ |f(z)− l1| <
ε

2
and

0 < |z − z0| < δ2 ⇒ |f(z)− l2| <
ε

2

Now let δ = min {δ1, δ2}. Then if 0 < |z − z0| < δ we have

|l1 − l2| = |l1 − f(z) + f(z)− l2|
≤ |f(z)− l1|+ |f(z)− l2|

<
ε

2
+
ε

2
= ε

Since ε > 0 is arbitrary |l1 − l2| = 0 so that l1 = l2.

Example 2. Let f(z) =

{
z2 if z 6= i
0 if z = i

. As z approaches i, f(z) approaches i2 = −1. Hence we

expect that lim
z→i

f(z) = −1.

Solution. To prove that we must show that given ε > 0 there exists δ > 0 such that 0 < |z − i| <
δ ⇒

∣∣z2 + 1
∣∣ < ε. Now ∣∣z2 + 1

∣∣ = |(z + i)(z − i)|
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= |z + i‖z − i| (1)

Note that if we can find a δ > 0 satisfying the requirements of the definition then we can choose
another δ ≤ 1 satisfying the requirements of the definition. Now

0 < |z − i| < 1⇒ |z + i| = |z − i+ 2i|
≤ |z − i|+ |2i|
< 1 + 2 = 3

Therefore |z + i| < 3. Using this in (1), we obtain 0 < |z − i| < 1 ⇒
∣∣z2 + 1

∣∣ < 3|z − i|. Hence if
we choose δ = min

{
1, ε3
}

, we get

0 < |z − i| < δ ⇒
∣∣z2 + 1

∣∣ < ε

Therefore lim
z→i

f(z) = −1. �

Example 3. lim
z→2

z2−4
z−2 = 4.

Solution. Let f(z) = z2−4
z−2 . Hence f(z) is not defined at z = 2 and when z 6= 2 we have

f(z) =
(z + 2)(z − 2)

z − 2
= z + 2

Therefore |f(z)− 4| = |z + 2− 4| = |z − 2| when z 6= 2. Now given ε > 0, we choose δ = ε. Then
0 < |z − 2| < δ ⇒ |f(z)− 4| < ε. Therefore

lim
z→2

f(z) = 4

�

Example 4. The function f(z) = z
z does not have a limit as z → 0.

Solution. Given

f(z) =
z

z
=
x− iy
x+ iy

Suppose z → 0 along the path y = mx. Along this path

f(z) =
x− imx
x+ imx

=
1− im
1 + im

as x 6= 0

Hence if z → 0 along the path y = mx, f(z) tends to 1−im
1+im which is different for different values of

m. Hence f(z) does not have a limit as z → 0. �

Example 5. Let f(z) = x2y2

(x+y2)3
, z 6= 0. Then f(z) does not have a limit as z → 0.
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Solution. Along the parabola y2 = mx we have

f(z) =
mx2

(x+mx)3
=

m

(1 +m)3

Hence if z → 0 along the parabola y2 = mx, f(z) tends to m
(1+m)3

which depends on m. Hence f(z)
does not have a limit as z → 0. �

Definition

We say lim
z→∞

f(z) = l if given ε > 0 there exists a number m > 0 such that

|z| > m⇒ |f(z)− l| < ε.

We say that lim
z→z0

f(z) =∞ if for given n > 0 there exists δ > 0 such that

0 < |z − z0| < δ ⇒ |f(z)| > n.

We say that lim
z→∞

f(z) =∞ if for given n > 0 there exists m > 0 such that

|z| > m⇒ |f(z)| > n.

Theorems on Limit

We state without proof the following theorem on the limits of sum, product and quotient of two
functions. The proof is analogues to that of real functions.

Theorem 1

Let f and g be two functions whose limits at z0 exist. Let lim
z→z0

f(z) = l and lim
z→z0

g(z) = m.

Then

(1). lim
z→z0

[f(z) + g(z)] = l +m.

(2). lim
z→z0

f(z)g(z) = lm.

(3). lim
z→z0

f(z)
g(z) = 1

m provided m 6= 0.

Theorem 2

(1). If lim
z→z0

f(z) = l, then lim
z→z0

f(z) = l.

(2). If lim
z→z0

f(z) = l, then lim
z→z0

|f(z)| = |l|.

(3). lim
z→z0

f(z) = l iff lim
z→z0

Re f(z) = Re l and lim
z→z0

lm f(z) = Im(l).
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Proof.

(1). Let ε > 0 be given. Then there exists δ > 0 such that

0 < |z − z0| < δ ⇒ |f(z)− l| < ε

Now |f(z) − l| = |f(z)− l| = |f(z) − l|. Hence 0 < |z − z0| < δ ⇒ |f(z) − l| < ε so that
lim
z→z0

f(z) = l.

(2). ‖f(z)| − |l|| ≤ |f(z)− l| and hence

0 < |z − z0| < δ ⇒ ||f(z)| − |l|| < ε

Therefore lim
t→z0
|f(z)| = |l|.

(3). Let lim
z→z0

f(z)| = l. Since Re f(z) = 1
2 [f(z) + f(z)], we have

lim
z→z0

Re f(z) =
1

2

[
lim
z→z0

f(z) + lim
z→z0

f(z)

]
=

1

2
(l + l)

= Re l

Similarly lim
z→z0

Im f(z) = Im l.

Conversely, let lim
z→z0

Re f(z) = Re l and let lim
z→z0

Im f(z) = Im l. Since f(z) = Re f(z)+i lm f(z)

it follows that lim
z→z0

f(z) = Re l + i Im l = l.

Continuous Functions

Definition

Let f be a complex valued function defined on a region D of the complex plane. Let z0 ∈ D.
Then f is said to be continuous at z0 if limz→z0 f(z) = f (z0). Thus f is continuous at z0 if
given ε > 0 there exists a δ > 0 such that |z − z0| < δ ⇒ |f(z)− f (z0)| < ε. f is said to be
continuous in D if it is continuous at each point of D.

Theorem 3

(1). If f and g are continuous at z0 then f + g, fg and f are continuous at z0 and f/g is
continuous at z0 if g (z0) 6= 0.

(2). If f is continuous at z0 then |f | is also continuous at z0.

(3). If f is continuous at z0 iff Re f and Im f are continuous at z0.

(4). Any polynomial P (z) is continuous at each point of the complex plane and any rational
function P (z)

Q(z) is continuous at all points where Q(z) 6= 0.
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Differentiability

Definition

Let f be a complex function defined in a region D and let z ∈ D. Then f is said to be
differentiable at z if lim

h→0

f(z+h)−f(z)
h exists and is finite. This limit is denoted by f ′(z) or df

dz

and is called the derivative of f(z) at z. The function is said to be differentiable in D if it is
differentiable at all points of D.

Example 6. The function f(z) = z2 is differentiable at every point and f ′(z) = 2z.

Solution.

f(z + h)− f(z)
h

=
(z + h)2 − z2

h
= 2z + h

Hence lim
h→0

f(z + h)− f(z)
h

= lim
h→0

(2z + h)

= 2z

∴ f ′(z) =2z
�

Example 7. The function f(z) = z is nowhere differentiable.

Solution.

f(z + h)− f(z)
h

=
(z + h)− z

h

=
z + h− z

h

=
h

h

lim
h→0

h
h does not exist. Therefore f(z) = z is nowhere differentiable. �

Remark 1

If f(z) is differentiative at a point z then it is continuous at that point.

Proof.

lim
h→0

[f(z + h)− f(z)] = lim
h→0

[
f(z + h)− f(h)

h

]
× lim
h→0

h

= f ′(z)× 0

= 0

Therefore lim
h→0

f(z + h) = f(z) so that f is continuous at z.
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The converse of the above result is not true.
For example, f(z) = z is continuous everywhere but it is nowhere differentiable.
The definition of derivative for complex functions is identical to the definition for real functions

and the following formal rules of differentiation are true for complex functions also and the proof
is left as an exercise.

Theorem 4

Let f(z) and g(z) be differentiable at a point z. Then

(1). (f + g)′(z) = f ′(z) + g′(z).

(2). (fg)′(z) = f(z)g′(z) + f ′(z)g(z).

(3).
(
f
g

)′
(z) = f ′(z)g(z)−f(z)g′(z)

[g(z)]2
provided g(z) 6= 0.

(4). Suppose g is differentiable at z and f is differentiable at g(z). Let F (z) = f (g(z)).
Then F ′(z) = f ′(g(z))g′(z). (This is the usual chain rule for the derivative of composite
functions).

(5). Let n be any positive integer. The function f(z) = zn is differentiable at every point
and f ′(z) = nzn−1.

(6). The polynomial P (z) = a0+ a1z+ a2z
2+ · · ·+ anz

n is differentiable at every point and
P ′(z) = a1 + 2a2z + · · ·+ nanz

n−1.

(7). If n is a negative integer f(z) = zn is differentiable at every point z 6= 0 and f ′(z) =
nzn−1.

The Cauchy-Riemann Equations

The existence of the derivative of a complex function of a complex variable f(z) requires f(z+h)−f(z)
h

to approach to the same limit as h→ 0 along any path. This has some far reaching consequences. In
this section we derive some important properties of the real and imaginary parts of the differentiable
function f(z) = u(x, y) + iv(x, y).

Theorem 5

Let f(z) = u(x, y) + iv(x, y) be differentiable at a point z0 = x0 + iy0. Then u(x, y) and
v(x, y) have first order partial derivatives ux (x0, y0), uy (x0, y0), vx (x0, y0) and vy (x0, y0) at
(x0, y0) and these partial derivatives satisfy the Cauchy-Riemann equations (C.R equations)
given by

ux (x0, y0) = vy (x0, y0) and uy (x0, y0) = −vx (x0, y0)
Also, f ′ (z0) = ux (x0, y0) + ivx (x0, y0)

= vy (x0, y0)− iuy (x0, y0)

Proof. Since f(z) = u(x, y) + iv(x, y) is differentiable at z0 = x0 + iy0 lim
h→0

f(z0+h)−f(z0)
h exists and
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hence the limit is independent of the path in which h approaches zero. Let h = h1 + ih2. Now

f (z0 + h)− f (z0)
h

=
u (x0 + h1 · y0 + h2) + iv (x0 + h1, y0 + h2)− u (x0, y0)− iv (x0, y0)

h1 + ih2

=

[
u (x0 + h1, y0 + h2)− u (x0, y0)

hi + ih2

]
+ i

[
v (x0 + h1, y0 + h2)− v (x0, y0)

h1 + ih2

]
Suppose h→ 0 along the real axis so that h = h1. Then

f ′ (z0) = lim
h1→0

[
f (z0 + h1)− f (z0)

h1

]
= lim

h1→0

[
u (x0 + h1, y0)− u (x0, y0)

h1

]
+ i lim

h1→0

[
v (x0 + h1, y0)− v (x0, y0)

h1

]
= ux (x0, y0) + ivx (x0, y0) (1)

Now, suppose h→ 0 along the imaginary axis so that h = ih2. Therefore

f ′ (z0) = lim
ih2→0

[
f (z0 + h2)− f (z0)

ih2

]
= lim

h2→0

[
u (x0, y0 + h2)− u (x0, y0)

ih2

]
+ i lim

h2→0

[
v (x0, y0 + h2)− v (x0, y0)

ih2

]
=

[
uy (x0, y0)

i

]
+ i

[
vy (x0, y0)

i

]
=

1

i
uy (x0, y0) + vy (x0, y0)

= −iuy (x0, y0) + vy (x0, y0) (2)

From (1) and (2) we get

f ′ (z0) = ux (x0, y0) + ivx (x0, y0) = vy (x0, y0)− iuy (x0, y0)

Equating real and imaginary parts we get

ux (x0, y0) = vy (x0, y0)

uy (x0, y0) = −vx (x0, y0)

Example 8. Let f(z) =

{ xy
x2+y2

if z 6= 0

0 if z = 0
. Here u(x, y) =

{ xy−
x2+y2

if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)
and

v(x, y) = 0.

Solution. Now

ux(0, 0) = lim
h→0

[
u(h, 0)− u(0, 0)

h

]
= lim

h→0

[
0− 0

h

]
= 0
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Similarly uy(0, 0) = 0. Also vx(0, 0) = 0 and vy(0, 0) = 0. Hence the C.R equations are satisfied at
z = 0. Now, along the path y = mx.

f(z) =
xmx

x2 +m2x2
=

m

1 +m2
if x 6= 0

Hence if z → 0 along the path y = mx, f(z) → m
1+m2 which is different for different values of m.

Hence f(z) does not have a limit as z → 0 so that f(z) is not even continuous at z = 0. Thus f(z)
is not differentiable at z = 0. �

Theorem 6

Let f(z) = u(x, y) + iv(x, y) be a function defined in a region D such that u, v and their
first order partial derivatives are continuous in D. If the first order partial derivatives of
u, v satisfy the Cauchy-Riemann equations at a point (x, y) ∈ D then f is differentiable at
z = x+ iy.

Proof. Since u(x, y) and its first order partial derivatives are continuous at (x, y) we have by the
mean value theorem for functions of two variables

u (x+ h1, y + h2)− u(x, y) = h1ux(x, y) + h2uy(x, y) + h1ε1 + h2ε2 (1)

where ε1 and ε2 → 0 as h1 and h2 → 0. Similarly

v (x+ h1, y + h2)− v(x, y) = h1vx(x, y) + h2vy(x, y) + h1ε3 + h2ε4 (2)

where ε3, ε4 → 0 as h1 and h2 → 0. Let h = h1 + ih2. Then

f(z + h)− f(z)
h

=
1

h
[u (x+ h1, y + h2)− u(x, y) + iv (x+ h1, y + h2)− v(x, y)]

=
1

h
[{h1ux(x, y) + h2uy(x, y) + h1ε1 + h2ε2}+ i {h1vx(x, y) + h2vy(x, y) + h1ε3 + h2ε4}]

=
1

h
[h1 {ux(x, y) + ivx(x, y)}+ h2 {uy(x, y) + ivy(x, y)}+ h1 (ε1 + iε3) + h2 (ε2 + iε4)]

=
1

h
[(h1 + ih2)ux(x, y)− i (h1 + ih2)uy(x, y) + h1 (ε1 + iε3) + h2 (ε2 + iε4)]

=
1

h
[hux(x, y)− ihuy(x, y) + h1 (ε1 + iε3) + h2 (ε2 + iε4)]

= ux(x, y)− iuy(x, y) +
h1
h

(ε1 + iε3) +
h2
h

(ε2 + iε4)

Now, since
∣∣∣h1h ∣∣∣ ≤ 1, h1h (ε1 + iε3)→ 0 as h→ 0. Similarly h2

h (ε2 + iε4)→ 0 as h→ 0. Therefore

lim
h→0

f(z + h)− f(z)
h

= ux(x, y)− iuy(x, y).

Hence f is differentiable.

Example 9. Let f(z) = ex(cos y + i sin y). Therefore u(x, y) = ex cos y and v(x, y) = ex sin y. Then
ux(x, y) = ex cos y = vy(x, y) and uy(x, y) = −ex sin y = −vx(x, y).
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Solution. Thus the first order partial derivatives of u and v satisfy the Cauchy-Riemann equations
at every point. Further u(x, y) and v(x, y) and their first order partial derivatives are continuous at
every point. Hence f is differentiable at every point of the complex plane. �

Alternate forms of Cauchy - Riemann equations

In the following theorem we express the Cauchy-Riemann equations in complex form.

Theorem 7: Complex form of C-R equations

Let f(z) = u(x, y) + iv(x, y) be differentiable. Then the C.R equations can be put in the
complex form as fx = −ify.

Proof. Let f(z) = u(x, y) + iv(x, y). Then fx = ux + ivx and fy = uy + ivy. Hence

fx = −ify
⇔ ux + ivx = −i (uy + ivy)

⇔ ux + ivx = vy − iuy
⇔ ux = vy and vx = −uy

Thus the two C.R equations are equivalent to the equation fx = −ify.

In the following theorem we express the Cauchy-Riemann equations and the derivative of a
complex function in terms of it polar coordinates.

Theorem 8: C.R equations in polar coordinates

Let f(z) = u(r, θ)+iv(r, θ) be differentiable at z = reiθ 6= 0. Then ∂u
∂r = 1

r
∂v
∂θ and ∂v

∂r = −1
r
∂u
∂θ .

Further f ′(z) = r
z

(
∂u
∂r + i∂v∂r

)
.

Proof. We have x = r cos θ and y = r sin θ. Hence

∂u

∂r
=
∂u

∂x

∂x

∂r
+
∂u

∂y

∂y

∂r

=
∂u

∂x
cos θ +

∂u

∂y
sin θ (1)

Also

∂v

∂θ
=
∂v

∂x

∂x

∂θ
+
∂v

∂y

∂y

∂θ

=
∂v

∂x
(−r sin θ) + ∂v

∂y
(r cos θ)

1

r

∂v

∂θ
= −∂v

∂x
sin θ +

∂v

∂y
cos θ

=
∂u

∂y
sin θ +

∂u

∂x
cos θ (using C.R equations)
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=
∂u

∂r
(using (1))

Thus
∂u

∂r
=

1

r

∂v

∂θ

Similarly we can prove that ∂v
∂r = −1

r
∂u
∂θ . Now

r

(
∂u

∂r
+ i

∂v

∂r

)
= r

[(
∂u

∂x

∂x

∂r
+
∂u

∂y

∂y

∂r

)
+ i

(
∂v

∂x

∂x

∂r
+
∂v

∂y

∂y

∂r

)]
= r

[(
∂u

∂x
cos θ +

∂u

∂y
sin θ

)
+ i

(
∂v

∂x
cos θ +

∂v

∂y
sin θ

)]
= r cos θ

(
∂u

∂x
+ i

∂v

∂x

)
+ r sin θ

(
∂u

∂y
+ i

∂v

∂y

)
= x

(
∂u

∂x
+ i

∂v

∂x

)
+ iy

(
∂v

∂y
− i∂u

∂y

)
= xf ′(z) + iyf ′(z)

= (x+ iy)f ′(z)

= zf ′(z)

f ′(z) =
r

z

(
∂u

∂r
+ i

∂v

∂r

)
We now proceed to express C.R equations in yet another form. Let f(z) = u(x, y) + iv(x, y). Since
x = z+z

2 and y = z−z
2i , we have

f(z) = u

(
z + z

2
,
z − z
2i

)
+ iv

(
z + z

2
,
z − z
2i

)
Example 10. Verify Cauchy-Riemann equations for the function f(z) = z3.

Solution.

f(z) = z3 = (x+ iy)3

=
(
x3 − 3xy2

)
+ i
(
3x2y − y3

)
u(x, y) = x3 − 3xy2 and v(x, y) = 3x2y − y3

Therefore

ux = 3x2 − 3y2 and vx = 6xy

uy = −6xy and vy = 3x2 − 3y2

Here ux = vy and uy = −vx. Hence the Cauchy-Riemann equations are satisfied. �

Example 11. Find constants a and b so that the function f(z) = a
(
x2 − y2

)
+ibxy+c is differentiable

at every point.

Solution. Here u(x, y) = a
(
x2 − y2

)
+ c and v(x, y) = bxy. ux = 2ax; vx = by; uy = −2ay and

vy = bx. Clearly ux = vy and uy = −vx iff 2a = b. Therefore C-R equations are satisfied at all
points iff 2a = b. Therefore the function f(z) is differentiable for all values of a, b with 2a = b. �
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Analytic Functions

Definition

A function f defined in a region D of the complex plane is said to be analytic at a point
a ∈ D if f is differentiable at every point of some neighbourhood of a. Thus f is analytic
at a if there exists ε > 0 such that f is differentiable at every point of the disc S(a, ε) =
{z/|z − a| < ε}. If f is analytic at every point of a region D then f is said to be analytic
in D . A function which is analytic at every point of the complex plane is called an entire
function or integral function.

Theorem 9

An analytic function in a region D with its derivative zero at every point of the domain is a
constant.

Proof. Let f(z) = u(x, y) + iv(x, y) be analytic in D and f ′(z) = 0 for all z ∈ D. Since f ′(z) =
ux + ivx = vy − iuy we have ux = uy = vy = vy = 0. Therefore u(x, y) and v(x, y) are constant
functions and hence f(z) is constant.

Example 12. Any analytic function f(z) = u+ iv with arg f(z) constant is itself a constant function.

Solution. arg f(z) = tan−1(v/u) = c, where c is a constant. Therefore v
u = k where k is a

constant. Therefore v = ku. Hence vx = kux and vy = kuy. Eliminating k from the above
equations we get uxvy = vxuy. Therefore uxvy − uyvx = 0. Therefore u2x + u2y = 0 (by C.R.
equations). Therefore ux = 0 and uy = 0 and hence u is constant. Similarly we can prove that v is
constant. Therefore f = u+ iv is constant. �

Harmonic Functions

Definition

Let u(x, y) be a function of two real variables x and y defined in a region D. u(x, y) is said
to be a harmonic function if ∂2u

∂x2
+ ∂2u

∂y2
= 0 and this equation is called Laplace’s equation.

Theorem 10

The real and imaginary parts of an analytic function are harmonic functions.

Proof. Let f(z) = u(x, y) + iv(x, y) be an analytic function. Then u and v have continuous partial
derivatives of first order which satisfy the C.R equations given by ∂u

∂x = ∂v
∂y and ∂u

∂y = − ∂v
∂x . Further

∂2u

∂x∂y
=

∂2u

∂y∂x
and

∂2v

∂x∂y
=

∂2v

∂y∂x
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Now

∂2u

∂x2
+
∂2u

∂y2
=

∂

∂x

(
∂v

∂y

)
+

∂

∂y

(
−∂v
∂x

)
=

∂2v

∂x∂y
− ∂2v

∂y∂x

= 0

Thus u is a harmonic function. Similarly we can prove that v is a harmonic function.

Definition

Let f = u + iv be an analytic function in a region D. Then v is said to be a conjugate
harmonic function of u .

Theorem 11

Let f = u+ iv be an analytic function in a region D. Then v is a harmonic conjugate of u if
and only if u is a harmonic conjugate of −v.

Proof. Let v be a harmonic conjugate of u. Then f = u + iv is analytic. Therefore if = iu − v is
also analytic. Hence u is a harmonic conjugate of −v The proof for the converse is similar.

Theorem 12

Any two harmonic conjugates of a given harmonic function u in a region D differ by a real
constant.

Proof. Let u be a harmonic function. Let v and v∗ be two harmonic conjugates of u. u + iv and
u+ iv∗ are analytic in D. Hence by the Cauchy-Riemann equation we have

∂u

∂x
=
∂v

∂y
=
∂v∗

∂y

and
∂u

∂y
= −∂v

∂x
= −∂v

∗

∂x

∴
∂v

∂y
=
∂v∗

∂y
and

∂v

∂x
=
∂v∗

∂x

Hence ∂
∂y (v − v

∗) = 0 and ∂
∂x (v − v

∗) = 0. Therefore v = v∗ + c where c is a real constant.

Milne-Thompson method

Let u(x, y) be a given harmonic function. Let f(z) = u(x, y)+iv(x, y) be an analytic function. Then

f ′(z) = ux(x, y) + ivx(x, y)

= ux(x, y)− iuy(x, y)

Prepared by: Mrs. S. Sunantha, M.Sc., M.Phil., B.Ed., Please go on to the next page. . .



Department of Mathematics Complex Analysis Page 15 of 54

Let ϕ1(x, y) = ux(x, y) and ϕ2(x, y) = uy(x, y). We have x = z+z
2 and y = z−z

2i . Hence

f ′(z) = ϕ1

(
z + z

2
,
z − z
2i

)
− iϕ2

(
z + z

2
,
z − z
2i

)
Putting z = z we obtain f ′(z) = ϕ1(z, 0)− iϕ2(z, 0). Hence

f(z) =

∫
[ϕ1(z, 0)− iϕ2(z, 0)] dz + c

Example 13. Prove that u = 2x− x3 + 3xy2 is harmonic and find its harmonic conjugate. Also find
the corresponding analytic function.

Solution. Given u = 2x− x3 + 3xy2. Therefore

ux = 2− 3x2 + 3y2

uxx = −6x
uy = 6xy

uyy = 6x

Therefore uxx + uyy = 0. Hence u is harmonic. Let v be a harmonic conjugate of u. Therefore
f(z) = u+ iv is analytic. By Cauchy-Riemann equations we have

vy = ux = 2− 3x2 + 3y2

Therefore integrating with respect to y we get

v = 2y − 3x2y + y3 + λ(x) (1)

where λ(x) is an arbitrary function of x. Therefore vx = −6xy + λ′(x). Now vx = −uy gives
−6xy + λ′(x) = −6xy. Hence λ′(x) = 0 so that λ(x) = c where c is a constant. Thus v =
2y − 3x2y + y3 + c [from (1)]. Now

f(z) =
(
2x− x3 + 3xy2

)
+ i
(
2y − 3x2y + y3

)
+ ic

= 2(x+ iy)−
[(
x3 − 3xy2

)
+ i
(
3x2y − y3

)]
+ ic

= 2z − z3 + ic

Therefore f(z) = 2z − z3 + ic is the required analytic function. �
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Unit–2: Bilinear Transformations
Introduction

A function f : C → C can be thought of as a transformation from one complex plane to another
complex plane. Hence the nature of a complex function can be described by the manner in which
it maps regions and curves from one complex plane to another. In this chapter we shall discuss
bilinear transformations and see how various regions are transformed by these transformations.

Elementary Transformations

(1). Translation: w = z + b
Consider the transformation w = z + b. If z = x + iy, w = u + iv and b = b1 + ib2 then the
image of the point (x, y) in the z -plane is the point (x+ b1, y + b2) in the w -plane.
Under this transformation the image of any region is simply a translation of that region.
Hence the two regions have the same shape, size and orientation. In particular the image of
a straight line is a straight line and the image of a circle with centre a and radius r is a circle
with centre a+ b and radius r.
We note that∞ is the only fixed point of this transformation when b 6= 0.

(2). Rotation: w = az where |a| = 1
Consider the transformation w = az where |a| = 1. Let z = reiθ and a = eiα so that |a| = 1.
Therefore w = az = eiα

(
reiθ

)
= rei(θ+α). Therefore a point with polar coordinates (r, θ)

in the z -plane is mapped to the point (r, θ + α) in the w -plane. Hence this transformation
represents a rotation through an angle α = arg a about the origin.
Under this transformation also straight lines are mapped into straight lines and circles are
mapped into circles. We note that 0 and∞ are the two fixed points of this transformation.

(3). Magnification or Contraction: w = bz(b > 0, real)
Consider the transformation w = bz where b is real and b > 0. Then a point with polar
coordinates (r, θ) in the z-plane is mapped into the point (br, θ) in the w− plane. Hence this
transformation represents a magnification or contraction by the factor according as b > 1 or
b < 1.
Under this transformation also straight lines are mapped into straight lines and circles are
mapped into circles. We note that 0 and∞ are the fixed points of this transformation.

(4). Inversion: w = 1
z

Consider the transformationw = 1
z . Put z = reiθ. Thereforew = (1/r)e−iθ. This transformation

can be expressed as a product of two transformations T1(z) = (1/r)eiθ and T2(z) = re−iθ = z.
For,

(T1 ◦ T2) (z) = T1 (T2(z))

= T1

(
re−iθ

)
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=

(
1

r

)
e−iθ

=
1

z

The transformation T1(z) = (1/r)eiθ represents the inversion with respect to the unit circle
|z| = 1 and T2(z) = z represents reflection about the real axis.

Hence the transformation w = 1
z is the inversion w.r.t the unit circle followed by the reflection

about the real axis. Here points outside the unit circle are mapped into points inside the unit
circle and vice versa. Points on the circle are reflected about the real axis. In terms of cartesian
coordinates the above transformation can be expressed in the form

w = u+ iv =
1

x+ iy
=

x− iy
x2 + y2

u =
x

x2 + y2
and v =

−y
x2 + y2

Similarly from z = 1
w we get

x =
u

u2 + v2
and y =

−v
u2 + v2

(1)

Now, consider the equation

a
(
x2 + y2

)
+ bx+ cy + d = 0 (2)

where a, b, c, d are real. This equation represents a circle or a straight line according as a 6= 0
or a = 0. Using (1) in (2) we get

d
(
u2 + v2

)
+ bu− cv + a = 0 (3)

Now, suppose a 6= 0; d 6= 0.
In this case both (2) and (3) represent circles not passing through the origin. Hence circles
not passing through the origin are mapped into circles not passing through the origin.

Similarly, a circle passing through the origin is mapped into a straight line not passing through
the origin. A straight line not passing through the origin is mapped into a circle passing
through the origin. A straight line passing through the origin is again mapped into a line
passing through the origin.
Thus we see that under the transformation w = 1

z the image of a circle need not be a circle
and the image of a straight line need not be a straight line. However the family of circles and
lines are again mapped into the family of circles and lines.
We note that the fixed points of the transformation u = 1

z are 1 and −1.

Example 14. Under the transformation w = iz+ i show that the half plane x > 0 maps onto the half
plane v > 1.

Prepared by: Mrs. S. Sunantha, M.Sc., M.Phil., B.Ed., Please go on to the next page. . .



Department of Mathematics Complex Analysis Page 18 of 54

Solution. Let z = x+ iy and w = u+ iv

w = iz + i⇒ w = i(x+ iy) + i = −y + i(x+ 1)

Therefore u + iv = −y + i(x + 1). Therefore u = −y and v = x + 1. Therefore x > 0 ⇐⇒ v > 1.
Therefore the half plane x > 0 is mapped into the half plane v > 1. �

Example 15. Show that the region in the z-plane given by x > 0 and 0 < y < 2 is mapped into the
region in the w -plane given by −1 < u < 1 and v > 0 under the transformation w = iz + 1.

Solution. Let z = x+ iy and w = u+ iv.

w = iz + 1 ⇒ w = i(x+ iy) + 1

⇒ u+ iv = (−y + 1) + ix

Therefore u = 1− y and v = x. Therefore x > 0 and 0 < y < 2⇐⇒ v > 0 and −1 < u < 1. Hence
the given region is mapped into the region v > 0 and −1 < u < 1 as shown in the figure. �

Bilinear Transformations

A transformation of the form

w = T (z) =
az + b

cz + d
(1)
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where a, b, c, d are complex constants and ad−bc 6= 0, is called a bilinear transformation or Mobius
transformation.
We define T (∞) = a

c and T
(−d
c

)
= ∞. Hence T becomes a 1 − 1 onto map of the extended

complex plane onto itself. The inverse of (1) is given by

z = T−1(w) =
−dw + b

cw − a
which is also a bilinear transformation.

Theorem 13

Any bilinear transformation can be expressed as a product of translation, rotation,
magnification or contraction and inversion.

Proof. Let

w = T (z) =
az + b

cz + d
where ad− bc 6= 0 (1)

be the given bilinear transformation.
Case 1: c = 0. Hence d 6= 0 (since ad− bc 6= 0). Therefore

(1)⇒ w =
az + b

d

=
(a
d

)
z +

(
b

d

)
Now, let T1(z) =

(
a
d

)
z and T2(z) = z +

(
b
d

)
. T1 and T2 are elementary transformations and

(T2 ◦ T1) (z) = T2

[(a
d

)
z
]

=
(a
d

)
z +

(
b

d

)
= T (z)

Case 2: c 6= 0.

w =
az + b

cz + d
=
a
[
z +

(
d
c

)]
+ b−

(
ad
c

)
c
[
z +

(
d
c

)]
=
a

c
+
b−

(
ad
c

)
cz + d

Now, let

T1(z) = cz + d

T2(z) =
1

z

T3(z) =

(
b− ad

c

)
z

T4(z) = z +
(a
c

)
Then T (z) = (T4 ◦ T3 ◦ T2 ◦ T1) (z). Hence the theorem.
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Example 16. Show that the transformation w = 5−4z
4z−2 maps the unit circle |z| = 1 into a circle of

radius unity and centre −1
2 .

Solution.

w =
5− 4z

4z − 2

∴ 4wz − 2w = 5− 4z

∴ (4w + 4)z = 5 + 2w

∴ z =
5 + 2w

4w + 4

Now, |z| = 1⇒ zz = 1.

⇒
(
5 + 2w

4w + 4

)(
5 + 2w

4w + 4

)
= 1

⇒ 25 + 4ww + 10w + 10w = 16ww + 16 + 16(w + w)

⇒ 12ww + 6w + 6w − 9 = 0

⇒ ww +
1

2
w +

1

2
w − 3

4
= 0

This represents the equation of the circle with centre −1
2 and radius

√
1
4 + 3

4 = 1. Hence the result.
�

Cross Ratio

Definition

Let z1, z2, z3, z4 be four distinct points in the extended complex plane. The cross ratio of
these four points denoted by (z1, z2, z3, z4) is defined by

(z1, z2, z3, z4) =



(z1−z3)(z2−z4)
(z1−z4)(z2−z3) if none of z1, z2, z3, z4 is∞
z1−z3
z1−z4 if z2 is∞
z2−z4
z1−z4 if z3 is∞
z2−z3
z2−z3 if z4 is∞
z2−z4
z2−z3 if z1 is∞

Theorem 14

Any bilinear transformation preserves cross ratio.

Proof. Let w = az+b
cz+d , ad − bc 6= 0 be the given bilinear transformation. Let z1, z2, z3, z4 be four

distinct points. Let their images under this transformation be w1, w2, w3, w4 respectively. We
assume that all the zi and wi are different from∞. We claim that (z1, z2, z3, z4) = (w1, w2, w3, w4).
We have

wi =
azi + b

czi + d
(i = 1, 2, 3, 4)
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Now,

w1 − w3 =
az1 + b

cz1 + d
− az3 + b

cz3 + d

=
(ad− bc) (z1 − z3)
(cz1 + d) (cz3 + d)

= k1 (z1 − z3) (say)

Similarly w2 − w4 = k2 (z2 − z4). Therefore

(w1 − w3) (w2 − w4) = k1k2 (z1 − z3) (z2 − z4)
= k (z1 − z3) (z2 − z4)

Similarly we can prove that

(w1 − w4) (w2 − w3) = k (z1 − z4) (z2 − z3)
(w1 − w3) (w2 − w4)

(w1 − w4) (w2 − w3)
=

(z1 − z3) (z2 − z4)
(z1 − z4) (z2 − z3)

The proof is similar if one of the zi or wi is∞.

Example 17. Find the bilinear transformation which maps the points z1 = 2, z2 = i z3 = −2, onto
w1 = 1, w2 = i, w3 = −1 respectively.

Solution. Let the image of any point z under the required transformation be w. The required
bilinear transformation is given by the equation

(w, 1, i,−1) = (z, 2, i,−2)
(w − i)(1 + 1)

(w + 1)(1− i)
=

(z − i)(2 + 2)

(z + 2)(2− i)
2(w − i)

(w + 1)(1− i)
=

4(z − i)
(z + 2)(2− i)

(w − i)
w − iw + 1− i

=
2(z − i)

2z − iz + 4− 2i

iwz + 6w − 3z − 2i = 0

w(iz + 6) = 3z + 2i

w =
3z + 2i

iz + 6

This is the required bilinear transformation. �

Example 18. Find the bilinear transformation which maps the points z = −1, 1,∞ respectively on
w = −i,−1, i.
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Solution. Let the image of any point z under the required bilinear transformation be w. Since
bilinear transformation preserves cross ratio we have

(z,−1, 1,∞) = (w,−i,−1, i)
z − 1

−1− 1
=

(w + 1)(−i− i)
(w − i)(−i+ 1)

(z − 1)(w − iw − i− 1) = 4iw + 4i

w[z − 1− i(z − 1)− 4i] = 4i+ (i+ 1)(z − 1)

w =
(i+ 1)z + 3i− 1

(1− i)z − 3i− 1 �

Fixed Points of Bilinear Transformations

Ifw = f(z) is any transformation from the z -plane tow -plane, the fixed points of the transformation
are the solutions of the equation z = f(z).
Consider a bilinear transformation given by

w =
az + b

cz + d
where ad− bc 6= 0

The fixed points or invariant points of the bilinear transformation are given by the roots of the
equation z = az+b

cz+d (i.e.) cz2 + (d− a)z − b = 0.
Case 1: c 6= 0. In this case the fixed points are given by

z =
(a− d)±

√
[(d− a)2 + 4bc]

2c

When (d − a)2 + 4bc 6= 0, the given bilinear transformation has two finite fixed points and when
(d− a)2 + 4bc = 0 it has only one finite fixed point.
Case 2: c = 0. In this case the bilinear transformation becomes w =

(
a
d

)
z + b

d . Clearly ∞ is one
fixed point. Other fixed point is determined by the equation z =

(
a
d

)
z + b

d (i.e.) (d− a)z − b = 0.
Therefore if d − a 6= 0 we get a finite fixed point b

d−a . If d − a = 0 then∞ is the only fixed point.
Thus we have
Case (i): c 6= 0; (d− a)2 + 4bc 6= 0⇒ 2 finite fixed points.
Case (ii): c 6= 0; (d− a)2 + 4bc = 0⇒ one finite fixed point.
Case (iii): c = 0; a 6= d⇒∞ and one finite fixed point.
Case (iv): c = 0; a = d⇒∞ is the only fixed point.

Theorem 15

Any bilinear transformation having two finite fixed points α and β can be written in the form
w−α
w−β = k

(
z−α
z−β

)
.

Proof. Let T be the given bilinear transformation having α and β as fixed points. Let the image of
any point γ under T be δ. Then the bilinear transformation T is given by (w, δ, α, β) = (z, γ, α, β).
Therefore

(w − α)(δ − β)
(w − β)(δ − α)

=
(z − α)(γ − β)
(z − β)(γ − α)
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w − α
w − β

= k

(
z − α
z − β

)
where k =

(γ − β)(δ − α)
(γ − α)(δ − β)

Definition

Let T be a bilinear transformation with two finite fixed points α, β. If k given by (1) is real
T is called hyperbolic and if |k| = 1, T is called elliptic.

Theorem 16

Any bilinear transformation having∞ and α 6=∞ as fixed points can be written in the form
w − α = k(z − α).

Proof. Let T be the given bilinear transformation having∞ and α as fixed points. Let the image of
any point γ under T be δ. Then the bilinear transformation is given by (w, δ;α,∞) = (z, γ;α,∞).
Therefore

w − α
δ − α

=
z − α
γ − α

w − α = k(z − α) where k =
δ − α
γ − α

Definition

A bilinear transformation with only one finite fixed point is called parabolic.

Theorem 17

Any bilinear transformation having∞ as the only fixed point is a translation.

Proof. Let w = az+b
cz+d be the bilinear transformation having ∞ as the only fixed point. Then c = 0

and a = d. Therefore the bilinear transformation reduces to the form w = az+b
a . Therefore

w = z +
(
b
a

)
which is a translation.

Example 19. Find the invariant points of the transformations (i) w = 1+z
1−z (ii) w = 1

z−2i .

Solution.

(i). The invariant points of w = f(z) are got from f(z) = z. Therefore

f(z) = z ⇒ z =
1 + z

1− z
⇒ z − z2 = 1 + z

⇒ 1 + z2 = 0

⇒ z = ±i

Therefore i and −i are the two fixed points of the transformation.

Prepared by: Mrs. S. Sunantha, M.Sc., M.Phil., B.Ed., Please go on to the next page. . .



Department of Mathematics Complex Analysis Page 24 of 54

(ii). f(z) = z ⇒ z =
1

z − 2i

⇒ z2 − 2iz − 1 = 0

⇒ (z − i)2 = 0

Hence i is the (only) fixed point.

�

Some Special Bilinear Transformations

In this section we shall determine the general form of the transformations which map

(i). the real axis onto itself.

(ii). the unit circle onto itself.

(iii). the real axis onto the unit circle.

Theorem 18

A bilinear transformation w = az+b
cz+d , where ad − bc 6= 0 maps the real axis into itself if and

only if a, b, c, d are real.
Further this transformation maps the upper half plane Im z ≥ 0 into the upper half plane
Im w ≥ 0 if and only if ad− bc > 0.

Proof. Suppose a, b, c, d are real. Then obviously, z is real⇒ w is also real. Therefore the real axis
is mapped into itself.
Conversely consider any bilinear transformation T that maps the real axis into itself. Therefore
there exist real numbers x1, x2, x3 such that T (x1) = 1, T (x2) = 0 and T (x3) =∞. Therefore the
bilinear transformation T is given by

(z, x1, x2, x3) = (w, 1, 0,∞)

(z − x2) (x1 − x3)
(z − x3) (x1 − x2)

=
w − 0

1− 0
= w

Therefore w = az+b
cz+d where a = x1 − x3; b = −x2 (x1 − x3); c = x1 − x2 and d = −x3 (x1 − x2).

Since x1, x2, x3 are real a, b, c, d are also real. Now

2i Imw = w − w =
az + b

cz + d
− az + b

cz + d

=
(ad− bc)(z − z)
|cz + d|2

= 2i

(
ad− bc
|cz + d|2

)
Imz

Therefore lm w = (ad−bc)
|cz+d|2 Im z. Therefore the upper half plane Im z ≥ 0 is mapped onto the upper

half plane lm w ≥ 0⇔ ad− bc > 0.
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Theorem 19

Any bilinear transformation which maps the real axis onto unit circle |w| = 1 can be written
in the form w = eiλ

(
z−α
z−α

)
where λ is real.

Further this transformation maps the upper half plane Im z ≥ 0 onto the unit circular
disc |w| ≤ 1 iff Im α > 0.

Proof. Let w = az+b
cz+d where ad−bc 6= 0 be any bilinear transformation which maps the real axis onto

the unit circle |w| = 1. 0 and ∞ are inverse points with respect to the unit circle |w| = 1. Hence
their pre-images −(b/a) and −(d/c) are reflection points with respect to the real axis. Therefore if
α = −

(
b
a

)
then α = −

(
d
c

)
. Now

w =
az + b

cz + d

=
(a
c

)[z + (b/a)

z + (d/c)

]
=
(a
c

)(z − α
z − α

)
Now, suppose z is real. Hence |w| = 1. Therefore∣∣∣a

c

∣∣∣ |z − α||z − α|
= 1

Now, since z is real z = z and hence

|z − α| = |z − α| = |z − α| = |z − α|

Therefore
∣∣a
c

∣∣ = 1. Hence a
c = eiλ where λ is real. Therefore

w = eiλ
(
z − α
z − α

)
,

where λ is real, is the required transformation. Now

ww − 1 = eiλ
(
z − α
z − α

)
e−iλ

(
z − α
z − α

)
− 1

=

(
z − α
z − α

)(
z − α
z − α

)
− 1

=
−4 Im z Imα

|z − α|2
(on simplification)

Therefore the bilinear transformation maps the upper half plane Im z ≥ 0 onto the disc |w| ≤ 1 iff
Imα > 0.

Example 20. Prove that the transformation given by awz − bw − bz + a = 0 maps the unit circle
|z| = 1 onto the unit circle |w| = 1 if |b| 6= |a|.
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Proof. awz − bw − bz + a = 0. Therefore

w =
bz − a
az − b

Now

ww − 1 =

(
bz − a
az − b

)(
bz − a
az − b

)
− 1

=
(zz − 1)

(
|b|2 − |a|2

)
|az − b|2

(on simplification)

If |b| 6= |a| then ww− 1 = 0⇔ zz− 1 = 0. Therefore the unit circle |z| = 1 is mapped onto the unit
circle |w| = 1 if |b| 6= |a|.
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Unit–3: Complex Integration

Introduction

In this chapter we develop the theory of integration for complex functions. We assume that the
reader is familiar with the Riemann integral of a function defined on [a, b]. Using this we define
the integral of a complex valued function defined on [a, b] and the integral of a function f : D → C
where D is a region in C, along a curve C lying in D. We prove Cauchy’s fundamental theorem
and study the various consequences of this theorem.

Definite Integral

Definition

Let f(t) = u(t) + iv(t) be a continuous complex valued function defined on [a, b]. We define∫ b

a
f(t)dt =

∫ b

a
u(t)dt+ i

∫ b

a
v(t)dt.

Remark 21. The following properties of the definite integral can be easily verified

(1). Re
b∫
a
f(t)dt =

b∫
a
Re[f(t)]dt.

(2). Im
b∫
a
f(t)dt =

b∫
a
Im[f(t)]dt.

(3).
b∫
a
[f(t) + g(t)]dt =

b∫
a
f(t)dt+

b∫
a
g(t)dt.

(4).
b∫
a
cf(t)dt = c

b∫
a
f(t)dt where c is any complex constant.

Lemma 22.

∣∣∣∣∣ b∫a f(t)dt
∣∣∣∣∣ ≤ b∫

a
|f(t)|dt.

Proof. Let
∫ b
a f(t)dt = reiθ. Therefore∣∣∣∣∫ b

a
f(t)dt

∣∣∣∣ = r = e−iθ
∫ b

a
f(t)dt

= Re

(
e−iθ

∫ b

a
f(t)dt

)
(since r is real)
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= Re

(∫ b

a
e−iθf(t)dt

)
(using 4)

=

∫ b

a
Re
(
e−iθf(t)dt

)
(using 1)

≤
∫ b

a

∣∣∣e−iθf(t)∣∣∣ dt
=

∫ b

a

∣∣∣e−iθ∣∣∣ |f(t)|dt
=

∫ b

a
|f(t)|dt

Thus

∣∣∣∣∣ b∫a f(t)dt
∣∣∣∣∣ ≤ b∫

a
|f(t)|dt.

Definition

Let C be a piecewise differentiable curve given by the equation z = z(t) where a ≤ t ≤ b.
Let f(z) be a continuous complex valued function defined in a region containing the curve
C. We define ∫

C
f(z)dz =

∫ b

a
f(z(t))z′(t)dt.

Example 23. Consider
∫
C

f(z)dz where f(z) = 1
z and C is the circle |z| = r described in the positive

sense. The parametric equation of the circle |z| = r is given by z = reit where 0 ≤ t ≤ 2π and
z′(t) = ireit. Therefore ∫

C
f(z)dz =

∫
C

dz

z
=

∫ 2π

0

ireit

reit
dt

= i

∫ 2π

0
dt

= 2πi

Theorem 20∫
−C

f(z)dz = −
∫
C

f(z)dz.

Proof. Suppose the equation of C is given by z = z(t) where a ≤ t ≤ b. We know that the equation
of −C is given by

z(t) = z(b+ a− t) where a ≤ t ≤ b

Now, ∫
−C

f(z)dz =

∫ b

a
f(z(b+ a− t))z′(b+ a− t)(−dt)
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Put b+ a− t = u. Then −dt = du. Also t = a⇒ u = b and t = b⇒ u = a. Therefore∫
−C

f(z)dz =

∫ a

b
f(z(u))z′(u)du

= −
∫ b

a
f(z(u))z′(u)du

= −
∫
C

f(z)dz

Definition

Let C1 be a differentiable curve with origin z1 and terminus z2. Let C2 be another
differentiable curve with origin z2 and terminus z3. Then the curve C which consists of
C1 followed by C2 is a piecewise differentiable curve with origin z1 and terminus z3. This
curve is denoted by C1 + C2.

Definition

Let C be a piecewise differentiable curve given by the equation z = z(t) where a ≤ t ≤ b.
Then the length l of C is defined by

l =

∫ b

a

∣∣z′(t)∣∣ dt
Theorem 21∣∣∣∣∫
C

f(z)dz

∣∣∣∣ ≤Ml where M = max{|f(z)|/z ∈ C} and l is the length of C.

Proof. Suppose C is given by the equation z = z(t) where a ≤ t ≤ b. By definition of M we have

|f(z(t))| ≤M ∀ t; a ≤ t ≤ b (1)

Now ∣∣∣∣∣∣
∫
C

f(z)dz

∣∣∣∣∣∣ =
∣∣∣∣∫ b

a
f(z(t))z′(t)dt

∣∣∣∣
≤
∫ b

a

∣∣f(z(t))z′(t)∣∣ dt
=

∫ b

a

∣∣f (z(t)‖z′(t))∣∣ dt
≤
∫ b

a
M
∣∣z′(t)∣∣ dt (using (1))
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=M

∫ b

a

∣∣z′(t)∣∣ dt
=Ml∣∣∣∣∣∣

∫
C

f(z)dz

∣∣∣∣∣∣ ≤Ml

Example 24. Evaluate
∫
C

f(z)dz where f(z) = y − x− i3x2 and C is the line segment from z = 0 to

z = 1 + i.

Solution. The equation of the line segment C joining z = 0 and z = 1 + i is given by y = x.
Therefore the parametric equation of C can be taken as x = t and y = t where 0 ≤ t ≤ 1. Hence
z(t) = x(t) + iy(t) = t+ it so that z′(t) = (1 + i). Now

f(z(t)) = t− t− i3t2 = −i3t2

Therefore

∫
C

f(z)dz =

1∫
0

f(z(t))z′(t)dt

=

∫ 1

0
−i3t2(1 + i)dt

= −3i(1 + i)

[
t3

3

]1
0

= 1− i
�

Cauchy’s Theorem

In this section we prove the fundamental theorem of integration known as Cauchy’s theorem which
forms the basis for the theory of complex integration

Definition

Let p(x, y) and q(x, y) be two real valued functions. Then the differential equation
p(x, y)dx + q(x, y)dy = 0 is said to be exact if there exists a function u(x, y) such that
∂u
∂x = p and ∂u

∂y = q.

Theorem 22: Cauchy’s Theorem

Let f be a function which is analytic at all points inside and on a simple closed curve C.
Then

∫
C

f(z)dz = 0.
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Proof. Let D be the closed region consisting of all points interior to C together with the points on
C. Let ε > 0 be given. Let. Cj (j = 1, 2, . . . , n) denote the boundaries of the squares and partial
squares covering D such that there exists a point zj lying inside or on Cj satisfying∣∣∣∣f(z)− f (zj)z − zj

− f ′ (zj)
∣∣∣∣ < ε (1)

for all z distinct from zj and lying within or on Cj . Let

δj(z) =

{
f(z)−f(zj)

z−zj − f ′ (zj) if z 6= zj

0 if z = zj

Clearly δj(z) is a continuous function and

f(z) = f (zj)− zjf ′ (zj) + zf ′ (zj) + (z − zj) δj(z)∫
Cj

f(z)dz =

∫
Cj

f (zj) dz −
∫
Cj

zjf
′ (zj) dz +

∫
Cj

zf ′ (zj) dz +

∫
Cj

(z − zj) δj(z)dz

= f (zj)

∫
Cj

dz − zjf ′ (zj)
∫
Cj

dz + f ′ (zj)

∫
Cj

zdz +

∫
Cj

(z − zj) δj(z)dz

=

∫
Cj

(z − zj) δj(z)dz

(
since

∫
Cj

dz = 0 and

∫
Cj

zdz = 0

)

Therefore
n∑
j=1

∫
Cj

f(z)dz =

n∑
j=1

∫
Cj

(z − zj) δj(z)dz (2)

Now, in the sum
n∑
j=1

∫
Cj

f(z)dz the integrals along the common boundary of every pair of adjacent

subregions cancel each other.
Hence only the integrals along the arcs which are the parts of C remain. Therefore

n∑
j=1

∫
Cj

f(z)dz =

∫
C
f(z)dz

Therefore from (2), ∫
C
f(z)dz =

n∑
j=1

∫
Cj

(z − zj) δj(z)dz

∣∣∣∣∫
C
f(z)dz

∣∣∣∣ =
∣∣∣∣∣∣
n∑
j=1

∫
Cj

(z − zj) δj(z)dz

∣∣∣∣∣∣
≤

n∑
j=1

∫
Cj

|(z − zj) δj(z)| dz

=

n∑
j=1

∫
Cj

|z − zj | |δj(z)| dz
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C
f(z)dz

∣∣∣∣ ≤ n∑
j=1

∫
Cj

|z − zj‖δj(z)| dz (3)

Now if Cj is a square and sj is the length of its side then |z − zj | <
√
2sj for all z on Cj . Also from

(1) we have |δj(z)| < ε and hence∫
Cj

|z − żj | |δj(z)| dz <
(√

2sjε
)
(4sj)

= 4
√
2Ajε (4)

where Aj is the area of the square Cj . Similarly for a partial square with boundary Cj if lj is the
length of the arc of C which forms a part of Cj . We have∫

Cj

|z − zj | |δj(z)| dz <
√
2sjε (4sj + lj)

< 4
√
2Ajε+

√
2Slj (5)

where S is the length of a side of some square containing the entire region D as well as all the
squares originally used in covering D. We observe that the sum of all Aj ’s that occur in the right
hand side of (4) and (5) do not exceed S2 and the sum of all the lsj is equal to L (the length of C).
Using (4) and (5) in (3) we obtain∣∣∣∣∫

C
f(z)dz

∣∣∣∣ < (4√2S2 +
√
2SL

)
ε

= kε

where k = 4
√
2S2 +

√
2SL is a constant. Thus∣∣∣∣∫

C
f(z)dz

∣∣∣∣ < kε

Since ε is arbitrary we have
∫
C

f(z)dz = 0.

Definition

A region D is said to be simply connected if every simple closed curve lying in D encloses
only points of D.

Cauchy’s Integral Formula

In this section we establish another fundamental result known as Cauchy’s integral formula using
Cauchy’s theorem.
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Theorem 23

Let f(z) be a function which is analytic inside and on a simple closed curve C. Let z0 be any
point in the interior of C. Then

f (z0) =
1

2πi

∫
C

f(z)

z − z0
dz

Proof. Choose a circle C0 with centre z0 and radius r0 such that C0 lies in the interior of C. Now,
z0 is the only point inside C at which the function f(z)

z−z0 is not analytic and hence is analytic. in the
region D consisting of all points inside and on C except the points interior to C0. Hence∫

C

f(z)dz

z − z0
=

∫
C0

f(z)dz

z − z0

=

∫
C0

(
f(z)− f (z0) + f (z0)

z − z0

)
dz

=

∫
C0

(
f(z)− f (z0)

z − z0

)
dz +

∫
c0

f (z0)

z − z0
dz

=

∫
C0

(
f(z)− f (z0)

z − z0

)
dz + f (z0)

∫
C0

dz

z − z0

=

∫
C0

(
f(z)− f (z0)

z − z0

)
dz + f (z0) (2πi)

Thus ∫
C

f(z)dz

z − z0
=

∫
C0

(
f(z)− f (z0)

z − z0

)
dz + 2πifz0 (1)

We now claim that ∫
C0

(
f(z)− ḟ (z0)

z − z0

)
dz = 0

Since f(z) is analytic inside and on C it is continuous at z0. Therefore given ε > 0 there exists
δ > 0 such that

|z − z0| < δ ⇒ |f(z)− f (z0)| < ε

If we choose r0 < δ, then |z − z0| < r0 ⇒ |f(z)− f (z0)| < ε. Hence∣∣∣∣∫
C0

(
f(z)− f (z0)

z − z0

)
dz

∣∣∣∣ < ( ε

r0

)
(2πr0)

= 2πε

Thus ∣∣∣∣∫
C0

(
f(z)− f (z0)

z − z0

)
dz

∣∣∣∣ < 2πε

since ε is arbitrary we have ∫
C0

(
f(z)− f (z0)

z − z0

)
dz = 0
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∴ From (1) we get ∫
C

f(z)

z − z0
dz = 2πif (z0)

Therefore

f (z0) =
1

2πi

∫
C

f(z)

z − z0
dz

Example 25. Consider
∫
C

dz
z−3 where C is the circle |z − 2| = 5.

Solution. Let f(z) = 1. The point z = 3 lies inside C. Hence by Cauchy’s integral formula∫
C

dz
z−3 = 2πif(3) = 2πi. �

Theorem 24: Maximum Modulus Theorem

Let f(z) be continuous in a closed and bounded region D and analytic and nonconstant in
the interior of D. Then |f(z)| attains its maximum value on the boundary of D and never in
the interior of D.

Proof. Since f is continuous in a closed and bounded region D, |f(z)| is bounded and attains its
bound. Therefore there exists a positive real number M such that

|f(z)| ≤M ∀ z ∈ D (1)

and equality holds for at least one point z in D. Suppose that there exists an interior point z0 ∈ D
such that

|f (z0)| =M (2)

Choose a circle with centre z0 and radius r such that the circular disc |z − z0| ≤ r is contained in
D. Then we have

f (z0) =
1

2π

∫ 2π

0
f
(
z0 + reiθ

)
eiθdθ

Therefore

|f (z0)| ≤
1

2π

∫ 2π

0

∣∣∣f (z0 + reiθ
)∣∣∣ dθ (3)

Also from (1) and (2) we have
∣∣f (z0 + reiθ

)∣∣ ≤ |f (z0)|. Therefore∫ 2π

0

∣∣∣f (z0 + reiθ
)∣∣∣ dθ ≤ 2π |f (z0)|

|f (z0)| ≥
1

2π

∫ 2π

0

∣∣∣f (z0 + reiθ
)∣∣∣ dθ (4)

From (3) and (4) we get

|f (z0)| =
1

2π

∫ 2π

0

∣∣∣f (z0 + reiθ
)∣∣∣ dθ

2π |f (z0)| =
∫ 2π

0

∣∣∣f (z0 + reiθ
)∣∣∣ dθ
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0
|f (z0)| dθ =

∫ 2π

0

∣∣∣f (z0 + reiθ
)∣∣∣ dθ∫ 2π

0

[
|f (z0)| −

∣∣∣f (z0 + reiθ
)∣∣∣] dθ = 0

Since the integrand in the above expression is continuous and non-negative we have |f (z0)| −∣∣f (z0 + reiθ
)∣∣ = 0 (ie) |f (z0)| =

∣∣f (z0 + reiθ
)∣∣ for all z in the circular disc |z − z0| < r (ie)

|f (z0)| = |f(z)| for all z in the circular disc. Therefore f(z) is constant in a neighbourhood of z0.
Since f(z) is continuous it follows that f(z) is constant throughout D which is a contradiction.
Therefore the maximum of |f(z)| is not attained at any of the interior points of D. Hence the
theorem.

Example 26. Evaluate using Cauchy’s integral formula

1

2πi

∫
C

z2 + 5

z − 3
dz where C is |z| = 4

Solution. f(z) = z2 + 5 is analytic inside and on |z| = 4 and z = 3 lies inside it. Therefore by
Cauchy’s integral formula 1

2πi

∫
C

z2+5
z−3 dz = f(3) = 32 + 5 = 14. �

Higher Derivatives

In this section we shall prove that an analytic function has derivatives of all orders. It follows,
in particular, that the derivative of an analytic function is again an analytic function. Consider a
function f(z) which is analytic in a region D. Let z ∈ D. Let C be any circle with centre z such
that the circle and its interior is contained in D. By Cauchy’s integral formula we have

f(z) =
1

2πi

∫
C

f(ζ)

ζ − z
dζ

We now proceed to prove that

f ′(z) =
1

2πi

∫
C

f(ζ)

(ζ − z)2
dζ

and in general

f (n)(z) =
n!

2πi

∫
C

f(ζ)

(ζ − z)n+1
dζ.

Theorem 25

Let f be analytic inside and on a simple closed curve C. Let z be any point inside C. Then

f ′(z) =
1

2πi

∫
C

f(ζ)

(ζ − z)2
dζ.

Proof. By Cauchy’s integral formula we have

f(z) =
1

2πi

∫
C

f(ζ)

ζ − z
dζ
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Therefore

f(z + h)− f(z)
h

=
1

h(2πi)

∫
C

(
f(ζ)

ζ − z − h
− f(ζ)

ζ − z

)
dζ

=
1

h2πi

∫
C

[
hf(ζ)

(ζ − z − h)(ζ − z)

]
dζ

=
1

2πi

∫
C

f(ζ)dζ

(ζ − z − h)(ζ − z)
(1)

Now ∫
C

f(ζ)dζ

(ζ − z − h)(ζ − z)
−
∫
C

f(ζ)dζ

(ζ − z)2
=

∫
C

[
f(ζ)

(ζ − z − h)(ζ − z)
− f(ζ)

(ζ − z)2

]
dζ

=

∫
C

f(ζ)

(ζ − z)

(
1

ζ − z − h
− 1

ζ − z

)
dζ

=

∫
C

f(ζ)

(ζ − z)

[
h

(ζ − z − h)(ζ − z)

]
dζ

= h

∫
C

f(ζ)dζ

(ζ − z − h)(ζ − z)2

Therefore

1

2πi

∫
C

f(ζ)dζ

(ζ − z − h)(ζ − h)
− 1

2πi

∫
C

f(ζ)dζ

(ζ − z)2
=

h

2πi

∫
C

f(ζ)dζ

(ζ − z − h)(ζ − z)2

Therefore
f(z + h)− f(z)

h
− 1

2πi

∫
C

f(ζ)dζ

(ζ − z)2
=

h

2π|i|

∫
C

f(ζ)dζ

(ζ − z − h)(ζ − z)2
(2)

Now, let M denote the maximum value of |f(ζ)| on C. Let L be the length of C and d be the
shortest distance from z to any point on the curve C. Therefore for any point ζ on C we have

|ζ − z| ≥ d and |ζ − z − h| ≥ |ζ − z| − |h| ≥ d− |h|

Theorem 26: Liouville’s Theorem

A bounded entire function in the complex plane is constant.

Proof. Let f(z) be a bounded entire function. Since f(z) is bounded there exists a real number M
such that |f(z)| ≤ M for all z. Let z0 be any complex number and r > 0 be any real number. By
Cauchy’s inequality we have |f ′ (z0)| ≤ M

r . Taking the limit as r → ∞ we get f ′ (z0) = 0. Since z0
is arbitrary f ′(z) = 0 for all z in the complex plane. Therefore f(z) is a constant function.

Theorem 27: Fundamental theorem of algebra

Every polynomial of degree ≥ 1 has atleast one zero (root) in C.
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Proof. Let f(z) be a polynomial of degree ≥ 1. Suppose f(z) has no zero in C. Then f(z) 6= 0
for all z Further f(z) is an entire function in the complex plane. Therefore 1

f(z) is also an entire
function. Also as z → ∞, f(z) → ∞. Therefore 1

f(z) → 0 as z → ∞. Therefore 1
f(z) is a bounded

function. Hence by Liouville’s theorem 1
f(z) is a constant function. Therefore f(z) is a constant

function and hence it is a polynomial of degree zero which is a contradiction. Hence f(z) has at
least one root in C. Hence the theorem.

Theorem 28: Morera’s theorem

If f(z) is continuous in a simply connected domain D and if
∫
C

f(z)dz = 0 for every simple

closed curve C lying in D then f(z) is analytic in D.

Proof. By known results there exists an analytic function F (z) such that F ′(z) = f(z) in D. Also
we know the derivative of an analytic function is an analytic function. Hence F ′(z) is analytic in
D. Therefore f(z) is analytic in D.

Example 27. Evaluate
∫
C

sin z
(z−π/2)2dz where C is the circle |z| = 2.

Solution. Let f(z) = sin z. Hence f ′(z) = cos z· Also π/2 lies inside |z| = 2. Hence∫
C

sin zdz

(z − π/2)2
= 2πif ′(π/2)

= 2πi(cosπ/2)

= 0

�
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Unit–4: Series Expansions

Introduction

In this chapter we consider the problem of representing a given function as a power series. We
prove that if a function is analytic at a point z0 then it can be expanded as a power series called
Taylor’s series consisting of non-negative powers of z − z0 and the expansion is valid in some
neighbourhood of z0. We also prove that a function f(z) which is analytic in an annular region
a < |z − z0| < b can be expanded as a series called Laurent’s series consisting of positive and
negative powers of z − z0. We also introduce the concept of singular points of a function and
classify the singular points and discuss the behaviour of the function in the neighbourhood of a
singularity.

Taylor’s Series

Theorem 29: (Taylor’s Theorem)

Let f(z) be analytic in a region D containing z0. Then f(z) can be represented as a power
series in z − z0 given by

f(z) = f (z0) +
f ′ (z0)

1!
(z − z0) +

f ′′ (z0)

2!
(z − z0)2 + · · ·+

f (n) (z0)

n!
(z − z0)n + · · ·

The expansion is valid in the largest open disc with centre z0 contained in D.

Proof. Let r > 0 be such that the disc |z − z0| < r is contained in D. Let 0 < r1 < r. Let C1 be the
circle |z − z0| = r1. By Cauchy’s integral formula we have

f(z) =
1

2πi

∫
C1

f(ζ)

(ζ − z)
dζ (1)

Also by theorem on higher derivatives we have

f (n)(z) =
n!

2πi

∫
C1

f(ζ)dζ

(ζ − z)n+1
(1)

Now

1

ζ − z
=

1

(ζ − z0)− (z − z0)

=
1

(ζ − z0)
[
1− z−z0

ζ−z0

]
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=
1

ζ − z0

1 + (z − z0
ζ − z0

)
+

(
z − z0
ζ − z0

)2

+ · · ·+
(
z − z0
ζ − z0

)n−1
+

(
z−z0
ζ−z0

)n
1−

(
z−z0
ζ−z0

)


=
1

ζ − z0
+

z − z0
(ζ − z0)2

+
(z − z0)2

(ζ − z0)3
+ . . .+

(z − z0)n−1

(ζ − z0)n
+

(z − z0)n

(ζ − z0)n (ζ − z)

Now, multiplying throughout by f(ζ)
2πi , integrating over C1 and using (1) and (2) we get

f(z) = f (z0) + f ′ (z0) (z − z0) +
f ′′ (z0)

2!
(z − z0)2 + · · ·+

f (n−1) (z0)

(n− 1)!
(z − z0)n−1 +Rn (3)

where

Rn =
(z − z0)n

2πi

∫
c1

f(ζ)dζ

(ζ − z) (ζ − z0)n

Here ζ lies on C1 and z lies in the interior of C1 so that |ζ − z0| = r1 and |z − z0| < r1. Therefore

|ζ − z| = |(ζ − z0)− (z − z0)| ≥ |ζ − z0| − |z − z0| = r1 − |z − z0|

Therefore
1

|ζ − z|
≤ 1

r1 − |z − z0|

Let M denote the maximum value of |f(z)| on C1. Then

|Rn| ≤
|z − z0|n

2π

M (2πr1)

(r1 − |z − z0|) rn1

=
M |z − z0|

(r1 − |z − z0|)

(
|z − z0|
ṙ1

)n−1
Also

∣∣∣ z−z0r1

∣∣∣ < 1. Hence limn→∞Rn = 0. Therefore taking limit as n→∞ in (3) we get

f(z) = f (z0) +
f ′ (z0)

1!
(z − z0) +

f ′′ (z0)

2!
(z − z0)2 + · · ·+

f (n) (z0)

n!
(z − z0)n + · · ·

Example 28. The Taylor’s series for f(z) = 1
z about z = 1 is given by

1

z
= f(1) +

f ′(1)

1!
(z − 1) +

f ′′(1)

2!
(z − 1)2 +

f ′′′(1)

3!
(z − 1)3 + · · ·

Solution. Now,

f(z) =
1

z
⇒ f(1) = 1

f ′(z) = − 1

z2
⇒ f ′(1) = −1

f ′′(z) =
2

z3
⇒ f ′′(1) = 2
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f ′′′(z) = − 6

z4
⇒ f ′′′(1) = −6

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Hence the Taylor’s series expansion for 1
z about 1 is

1

z
= 1− (z − 1) + (z − 1)2 − (z − 1)3 + · · ·

This expansion is valid in the disc |z− 1| < 1. Similarly the Taylor’s series for f(z) = 1
z about z = i

is given by
1

z
=

1

i
− z − i

i2
+

(z − i)2

i3
− (z − i)3

i4
+ . . .

and the expansion is valid in the disc |z − i| < 1. �
Maclaurin’s series expansion of some of the standard functions are given below.

(1). e−z = 1− z
1! +

z2

2! − · · ·+ (−1)n znn! + · · · (|z| <∞).

(2). sin z = z − z3

3! +
z5

5! − · · ·+ (−1)n−1 z2n−1

(2n−1)! + · · · (|z| <∞).

(3). cos z = 1− z2

2! +
z4

4! − · · ·+ (−1)n−1 z2n−2

(2n−2)! + · · · (|z| <∞).

(4). sinh z = 1
1! +

z3

3! +
z5

5! + · · ·+
z2n−1

(2n−1)! + · · · (|z| <∞).

(5). cosh z = 1 + z2

2! +
z4

4! + · · ·+
z2n

(2n)! + · · · (|z| <∞).

(6). 1
1+z = 1− z + z2 − z3 + · · ·+ (−1)nzn + · · · (|z| < 1).

(7). 1
1−z = 1 + z + z2 + z3 + · · ·+ zn + · · · (|z| < 1).

(8). log(1 + z) = z − z2

2 + z3

3 − · · · (−1)
n−1 zn

n + · · · (|z| < 1).

(9). log(1− z) = −z − z2

2 −
z3

3 − · · · −
zn

n − · · · (|z| < 1).

Example 29. Expand f(z) = sin z in a Taylor’s series about z = π
4 and determine the region of

convergence of this series.

Solution. The Taylor’s series for f(z) about z = π
4 is

f(z) = f(π/4) +
(z − π/4)

1!
f ′(π/4) +

(z − π/4)2

2!
f ′′(π/4) + · · ·

Here f(z) = sin z. Hence f(π/4) = 1√
2
.

f ′(z) = cos z. Hence f ′(π/4) =
1√
2

f ′′(z) = − sin z. Hence f ′′(π/4) = − 1√
2

f ′′′(z) = − cos z. Hence f ′′′(π/4) = − 1√
2
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The Taylor’s series for sin z about z = π/4 is

sin z =
1√
2
+

(z − π/4)
1!

(
1√
2

)
− (z − π/4)2

2!

(
1√
2

)
+ · · ·

=
1√
2

[
1 +

(z − π/4)
1!

− (z − π/4)2

2!
− (z − π/4)3

3!
+ · · ·

]

The expansion is valid in the entire complex plane. �

Laurent’s Series

A series of the form

∞∑
n=1

bn
zn

(1)

can be considered as an ordinary power series in the variable 1
z . Hence if the radius of convergence

of the power series
∞∑
n=1

bnz
n is r and r < ∞ the series

∞∑
n=1

bn
zn converges in the region |z| > r. The

convergence is uniform in every region |z| ≥ ρ > r and the series represents an analytic function
in |z| > r. If the series (1) is combined with the usual power series we get a more general series of
the form

∞∑
−∞

anz
n (2)

This series is said to converge at a point if the part of the series consisting of the negative powers
of z and the part of the series consisting of non-negative powers of z are separately convergent.
We know that the series consisting of non-negative powers of z converges in a disc |z| < r2 and
the series consisting of negative powers of z converges in a region |z| > r1. Therefore if r1 < r2
the series represented by (2) converges in the region r1 < |z| < r2 and in this annulus region it
represents an analytic function.

We shall now prove that the converse situation is also true. i.e., any function which is analytic
in a region containing the annulus r1 < |z − z0| < r2 can be represented in a series of the form
∞∑
−∞

an (z − z0)n.
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Theorem 30: Laurent’s Theorem

Let C1 and C2 denote respectively the concentric circles |z − z0| = r1 and |z − z0| = r2 with
r1 < r2. Let f(z) be analytic in a region containing the circular annulus r1 < |z − z0| < r2.
Then f(z) can be represented as a convergent series of positive and negative powers of z−z0
given by

f(z) =

∞∑
n=1

bn
(z − z0)n

+

∞∑
n=0

an (z − z0)n

where

bn =
1

2πi

∫
C1

f(ζ)dζ

(ζ − z0)−n+1 and

an =
1

2πi

∫
C2

f(ζ)dζ

(ζ − z0)n+1

Proof. Let z be any point in the circular annulus r1 < |z − z0| < r2. Then by known theorem we
have,

f(z) =
1

2πi

∫
C2

f(ζ)dζ

ζ − z
− 1

2πi

∫
C1

f(ζ)dζ

ζ − z

Therefore

f(z) =
1

2πi

∫
C2

f(ζ)dζ

ζ − z
+

1

2πi

∫
C1

f(ζ)dζ

z − ζ
(1)

As in the proof of Taylor’s theorem, we have

1

2πi

∫
C2

f(ζ)

ζ − z
dζ = a0 + a1 (z − z0) + a2 (z − z0)2 + +̇an−1 (z − z0)n−1 +Rn(z) (2)

where

an =
1

2πi

∫
C2

f(ζ)

(ζ − z0)n+1dζ and

Rn(z) =
(z − z0)n

2πi

∫
C2

f(ζ)dζ

(ζ − z0)n (ζ − z)

Now,

1

z − ζ
=

1

z − z0 + z0 − ζ

=
1

(z − z0)− (ζ − z0)

=
1

(z − z0)
[
1− ζ−z0

z−z0

]
=

1

z − z0

1 + (ζ − z0
z − z0

)
+

(
ζ − z0
z − z0

)2

+ · · ·+
(
ζ − z0
z − z0

)n−1
+

(
ζ−z0
z−z0

)n
1−

(
ζ−z0
z−z0

)
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Multiplying by f(ζ)
2πi and integrating over C1 we get∫

C1

f(ζ)dζ

z − ζ
=

b1
z − z0

+
b2

(z − z0)2
+ · · ·+ bn−1

(z − z0)n−1
+ Sn(z) (3)

where

bn =
1

2πi

∫
C1

f(ζ)dζ

(ζ − z0)−n+1 ; Sn =
1

2πi (z − z0)n
∫
C1

f(ζ) (ζ − z0)n dζ
z − ζ

From (1), (2) and (3) we get

f(z) = a0 + a1 (z − z0) + · · · · · ·+ an−1 (z − z0)n−1

+
b1

z − z0
+

b2

(z − z0)2
+ · · ·+ bn−1

(z − z0)n−1
+Rn(z) + Sn(z) (4)

The required result follows if we can prove that Rn → 0 and Sn → 0 as n → ∞. Now, if ζ ∈ C1

then |ζ − z0| = r1 and
|z − ζ| = |(z − z0)− (ζ − z0)| ≥ |z − z0| − r1

If ζ ∈ C2 then |ζ − z0| = r2 and

|ζ − z| = |(ζ − z0)− (z − z0)| ≥ r2 − |z − z0|

Now let M denote the maximum value of |f(z)| in C1 ∪ C2. Then

|Rn| ≤
|z − z0|n

2π

M (2πr2)

rn2 (r2 − |z − z0|)

≤ M |z − z0|
(r2 − |z − z0|)

(
|z − z0|
r2

)n−1
Since |z−z0|r2

< 1, Rn → 0 as n→∞. Also

|Sn| ≤
1

|z − z0|n 2π
Mrn1 (2πr1)

(|z − z0| − r1)

≤ Mr1
(|z − z0| − r1)

(
r1

|z − z0|

)n
Since r1

|z−z0| < 1, Sn → 0 as n→∞. Hence, by taking limit n→∞ in (4) we get

f(z) =
∞∑
n=1

bn
(z − z0)n

+
∞∑
n=0

an (z − z0)n

Hence the theorem.

Example 30. Find the Laurent’s series expansion of f(z) = z2e1/z about z = 0.

Solution. f(z) = z2e1/z. Clearly f(z) is analytic at all points z 6= 0. Now

f(z) = z2
[
1 +

1

z
+

1

2!z2
+

1

3!z3
+ · · ·

]
= z2 + z +

1

2
+

1

3!z
+

1

4!z2
+ · · ·

This is the required Laurent’s series expansion for f(z) at z = 0. �
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Zeros of an Analytic Function

Definition

Let f(z) be a function which is analytic in a region D. Let a ∈ D. Then a is said to be a
zero of order r (where r is a positive integer) for f(z) if f(z) = (z − a)rϕ(z) where ϕ(z) is
analytic at a and ϕ(a) 6= 0.

Example 31. Consider f(z) = sin z. We know that

sin z = z − z3

3!
+
z5

5!
− · · ·

= z

(
1− z2

3!
+
z4

5!
− · · ·

)
= zϕ(z)

where ϕ(z) = 1− z2

3! +
z4

5! − · · · . Obviously ϕ(z) is analytic and ϕ(0) = 1 6= 0. z = 0 is a zero of order
1 for sin z.

Theorem 31

Suppose f(z) is analytic in a region D and is not identically zero in D . Then the set of all
zeros of f(z) is isolated.

Proof. Let a ∈ D be a zero for f(z). We shall prove that there exists a neighbourhood |z − a| < δ
such that this neighbourhood does not contain any other zero for f(z). Suppose a is a zero of order
r for f(z). Then

f(z) = (z − a)rϕ(z) (1)

where ϕ(z) is analytic at a and ϕ(a) 6= 0. Now, since ϕ is analytic at a, ϕ is continuous at a.
Therefore we can find a δ > 0 such that

|z − a| < δ ⇒ |ϕ(z)− ϕ(a)| < |ϕ(a)|
2

We claim that the neighbourhood |z − a| < δ does not contain any other zero of f(z). Suppose
b 6= a is another zero for f(z) in this neighbourhood. Then |b − a| < δ and f(b) = 0. Therefore
(b− a)rϕ(b) = 0. Now, since b 6= a, (b− a)r 6= 0. Therefore ϕ(b) = 0. Further

|b− a| < δ ⇒ |ϕ(b)− ϕ̇(a)| < |ϕ(a)|
2
⇒ |ϕ(a)| < |ϕ(a)|

2

which is a contradiction. Thus the neighbourhood |z − a| < δ contains no other zero of f(z) and
hence the set of all zeros of f(z) is isolated.
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Singularities

Definition

A point a is called a singular point or a singularity of a function f(z) if f(z) is not analytic
at a and f is analytic at some point of every disc |z − a| < r.

Example 32. Consider the function f(z) = 1
z . Then f ′(z) = − 1

z2
for all z 6= 0. Thus f(z) is analytic

except at z = 0. Therefore z = 0 is a singular point of f(z).

Definition

A point a is called an isolated singularity for f(z) if

(1). f(z) is not analytic at z = a and

(2). there exists r > 0 such that f(z) is analytic in 0 < |z − a| < r.

(i.e) the neighbourhood |z − a| < r contains no singularity of f(z) except a.

Example 33. f(z) = z+1
z2(z2+1)

has three isolated singularities z = 0, i,−i.

Definition

Let a be an isolated singularity for f(z). Then a, is called a removable singularity if the
principal part of f(z) at z = a has no terms.

Example 34. Let f(z) = sin z
z . Clearly 0 is an isolated singular point for f(z). Now

sin z

z
=

1

z

(
z − z3

3!
+
z5

5!
− · · ·

)
= 1− z2

3!
+
z4

5!
− · · ·

Here the principal part of f(z) at z = 0 has no terms. Hence z = 0 is a removable singularity. Also
limz→0

sin z
z = 1. Hence the singularity can be removed by defining f(0) = 1 so that the extended

function becomes analytic at z = 0.
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Unit–5: Series Expansions
Introduction

In this chapter we introduce the concept of the residue of a function f(z) at an isolated singular
point and prove Cauchy’s residue theorem. Using this theorem we evaluate certain types of real
definite integrals.

Residues

Definition

Let a be an isolated singularity for f(z). Then the residue of f(z) at a is defined to be the
coefficient of 1

z−a in the Laurent’s series expansion of f(z) about a and is denoted by Res
{f(z); a}.
Thus Res {f(z); a} = 1

2πi

∫
C

f(z)dz = b1 where C is a circle |z − a| = r such that f is analytic

in 0 < |z − a| < r.

Example 35. Consider

f(z) =
ez

z2

ez

z2
=

1

z2

(
1 +

z

1!
+
z2

2!
+ · · · · · ·

)
=

1

z2
+

1

z
+

1

2!
+
z

3!
+
z2

4!
+ · · ·

Therefore f(z) has a double pole at z = 0. Therefore Res{f(z); 0} = coefficient of 1
z = 1.

Lemma 36. If z = a is a simple pole for f(z) then

Res{f(z); a} = lim
z→a

(z − a)f(z)

Proof. Since z = a is a simple pole for f(z) the Laurent’s series expansion for f(z) about z = a is
given by f(z) = b1

z−a + a0+ a1(z− a)+ · · · · · · . Now, (z− a)f(z) = b1+ a0(z− a)+ a1(z− a)2+ · · · .
Therefore

lim
z→a

(z − a)f(z) = b1

= Res{f(z); a}

Lemma 37. If a is a simple pole for f(z) and f(z) = g(z)
z−a where g(z) is analytic at a and g(a) 6= 0

then Res{f(z); a} = g(a).
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Proof. By above Lemma, Res{f(z); a} = limz→a(z − a)f(z) = limz→a g(z) = g(a).

Lemma 38. If a is a simple pole for f(z) and if f(z) is of the form h(z)
k(z) where h(z) and k(z) are

analytic at a and h(a) 6= 0 and k(a) = 0 then

Res{f(z); a} = h(a)

k′(a)

Proof.

Res{f(z); a} = lim
z→a

(z − a)f(z)

= lim
z→a

(z − a)h(z)
k(z)

= lim
z→a

h(z) lim
z→a

(z − a)
k(z)

= lim
z→a

h(z) lim
z→a

[
z − a

k(z)− k(a)

]
(since k(a) = 0)

= h(a)

[
1

k′(a)

]
=
h(a)

k′(a)

Lemma 39. Let a be a pole or order m > 1 for f(z) and let f(z) = g(z)
(z−a)m where g(z) is analytic at

a and g(a) 6= 0. Then

Res{f(z); a} = g(m−1)(a)

(m− 1)!

Proof. g(m−1)(a) = (m−1)!
2πi

∫
C

g(z)dz
(z−a)m (by theorem on higher derivatives) whereC is a circle |z−a| = r

such that f(z) is analytic in 0 < |z − a| < r. Therefore

g(m−1)(a)

(m− 1)!
=

1

2πi

∫
C
f(z)dz = Res{f(z); a}

Example 40. Calculate the residue of z+1
z2−2z at its poles.

Solution. Let f(z) = z+1
z2−2z = z+1

z(z−2) . z = 0 and z = 2 are simple poles for f(z)

Res{f(z); 0} = lim
z→0

(z − 0)

[
z + 1

z(z − 2)

]
= lim

z→0

z + 1

z − 2
= −1

2

Res{f(z); 2} = lim
z→2

(z − 2)

[
z + 1

z(z − 2)

]
= lim

z→2

z + 1

z
=

3

2 �
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Cauchy’s Residue Theorem

Theorem 32: Cauchy’s Residue Theorem

Let f(z) be a function which is analytic inside and on a simple closed curve C except for a
finite number of singular points z1, z2, . . . . . . , zn inside C. Then∫

C

ḟ(z)dz = 2πi
n∑
j=1

Res {f(z); zj} .

Proof. Let C1, C2, · · · , Cn be circles with centres z1, z2, . . . . . . , zn respectively such that all circles
are interior to C and are disjoint with each other (refer figure). By Cauchy’s theorem for multiply
connected regions we have∫

C
f(z)dz =

∫
C1

f(z)dz +

∫
C2

f(z)dz + · · ·+
∫
Cn

f(z)dz

= 2πiRes {f(z); z1}+ 2πiRes {f(z); z2}+ · · ·+ 2πiRes {f(z); zn}

= 2πi
n∑
j=1

Res {f(z); zj} .

Hence the theorem.

Example 41. Evaluate
∫
C

z2dz
(z−2)(z+3) where C is the circle |z| = 4.

Solution. Let f(z) = z2

(z−2)(z+3) . z = 2 and z = −3 are simple poles for f(z) and both of them lie
inside |z| = 4. Now,

Res{f(z); 2} = lim
z−2

(z − 2)

[
z2

(z − 2)(z + 3)

]
=

4

5

Res{f(z);−3} = lim
z→−3

(z + 3)

[
z2

(z − 2)(z + 3)

]
= −9

5

Therefore by Residue theorem ∫
C
f(z)dz = 2πi

[
4

5
+

(
−9

5

)]
= −2πi

∴
∫
C

z2dz

(z − 2)(z + 3)
= −2πi

�

Theorem 33: Argument Theorem

Let f be a function which is analytic inside and on a simple closed curve C except for a finite
number of poles inside C. Also let f(z) have no zeros on C. Then 1

2πi

∫
C

f ′(z)
f(z) dz = N − P

where N is the number of zeros of f(z) inside C and P is the number of poles of f(z) inside
C (A pole or zero of order m is counted n times).
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Proof. We observe that the singularities of the function f ′(z)
f(z) inside C are the poles and zeros of

f(z) lying inside C. Let z0 be a zero of order n for f(z). Let C1 be a circle with centre z0 such that
is the only zero of f(z) inside C1. Then f(z) = (z − z0)n g(z) where g(z) is analytic and nonzero
inside C1. Hence f ′(z) = n (z − z0)n−1 g(z) + (z − z0)n g′(z). Therefore

f ′(z)

f(z)
=

n

z − z0
+
g′(z)

g(z)
(1)

Since g(z) is analytic and non zero inside C1,
g′(z)
g(z) is also analytic and hence can be expanded as a

Taylor’s series about z0. Therefore

Res

{
f ′(z)

f(z)
; z0

}
= coefficient of

1

z − z0
in (1)

= n

Similarly if z1 is a pole of order p for f(z), then Res
{
f ′(z)
f(z) ; z1

}
= −p. Hence by Cauchy’s residue

theorem, 1
2πi

∫
C

f ′(z)
f(z) dz = N − P where N is the number of zeros and P is the number of poles of

f ′(z) within C.

Corrolary 42. If f(z) is analytic inside and on C and not zero on C, then 1
2πi

∫
C
f ′(z)
f(z) dz = N where

N is the number of zeros lying inside C.

Theorem 34: Rouche’s Theorem

If f(z) and g(z) are analytic inside and on a simple closed curve C and if |g(z)| < |f(z)| on
C then f(z) + g(z) and f(z) have the same number of zeros inside C.

Proof. f(z) + g(z) = f(z)
[
1 + g(z)

f(z)

]
= f(z)ϕ(z), where ϕ(z) = 1 + g(z)

f(z) . Hence [f(z) + g(z)]′ =

f ′(z) + g′(z) = f ′(z)ϕ(z) + f(z)ϕ′(z). Therefore

f ′(z) + g′(z)

f(z) + g(z)
=
f ′(z)ϕ(z) + f(z)ϕ′(z)

f(z)ϕ(z)

=
f ′(z)

f(z)
+
ϕ′(z)

ϕ(z)

1

2πi

∫
C

[
f ′(z) + g′(z)

f(z) + g(z)

]
· dz = 1

2πi

∫
C

f ′(z)

f(z)
dz +

1

2πi

∫
C

ϕ′(z)

ϕ(z)
dz (1)

Now, by hypothesis |g(z)| < |f(z)| and hence
∣∣∣ g(z)f(z)

∣∣∣ < 1 on C. Therefore |ϕ(z)−1| < 1 on C. Hence
by maximum modulus theorem, |ϕ(z) − 1| < 1 for every point z inside C. Therefore ϕ(z) 6= 0 for
every point inside C. Hence∫

C

ϕ′(z)

ϕ(z)
dz = Number of zeros of ϕ(z) within C

= 0
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Hence from (1), we have

1

2πi

∫
C

[
f ′(z) + g′(z)

f(z) + g(z)

]
dz =

1

2πi

∫
C

f ′(z)

f(z)
dz

Therefore N1 = N2, where N1 and N2 denote respectively the number of zeros of f(z) + g(z) and
f(z) inside C. Hence the theorem.

Theorem 35: Fundamental Theorem of Algebra

A polynomial of degree n with complex coefficients has n zeros in C.

Proof. Let a0+a1z+a2z2+ · · ·+anzn, where an 6= 0, be a polynomial of degree n. Let f(z) = anz
n

and g(z) = a0+a1+· · ·+an−1zn−1. Clearly lim
z→∞

g(z)
f(z) = 0. Hence there exists a positive real number

r such that
∣∣∣ g(z)f(z)

∣∣∣ < 1 for all z with |z| > r. Hence by Rouche’s theorem f(z) and f(z) + g(z) have
the same number of zeros inside the circle |z| = r + 1. But 0 is a zero of multiplicity n for f(z).
Hence the given polynomial f(z) + g(z) also has n zeros.

Example 43. Evaluate
∫
C

dz
2z+3 where C is |z| = 2.

Solution. z = −3
2 is the simple pole of f(z) which lies inside the circle |z| = 2.

Res

{
f(z);−3

2

}
= lim

z→−3/2

h(z)

k′(z)

where h(z) = 1 and k(z) = 2z + 3. Therefore

Res

{
f(z);−3

2

}
=

1

2

Therefore by residue theorem
∫
C

f(z)dz = 2πi
(
1
2

)
= πi. �

Evaluation of Definite Integrals

We use Cauchy’s residue theorem for evaluating certain types of real definite integrals.

TYPE 1:
2π∫
0

f(cos θ, sin θ)dθ, where f(cos θ, sin θ) is a rational function of cos θ and sin θ.

To evaluate this type of integral we substitute z = eiθ. As θ varies from 0 to 2π, z describes the
unit circle |z| = 1. Also,

cos θ =
eiθ + e−iθ

2
=
z + z−1

2
and

sin θ =
eiθ − e−iθ

2i
=
z − z−1

2i
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Substituting these values in the given integrand the integral is transformed into
∫
C

θ(z)dz where

θ(z) = f
[
z+z−1

2 , z−z
−1

2i

]
and C is the positively oriented unit circle |z| = 1. The integral

∫
C

θ(z)dz

can be evaluated using the residue theorem.

Example 44. Evaluate
2π∫
0

dθ
5+4 sin θ .

Solution. Let I =
2π∫
0

dθ
5+4 sin θ . Put z = eiθ. Then dz = izdθ and sin θ = z−z−1

2i . The given integral

is transformed to

I =

∫
C

dz

iz
[
5 + 4

(
z−z−1

2i

)]
=

∫
C

dz

2z2 + 5iz − 2

where C is the unit circle |z| = 1. Let

f(z) =
1

2z2 + 5iz − 2
=

1

2(z + 2i)(z + i/2)

Therefore −2i and −i/2 are simple poles of f(z) and the pole −i/2 lies inside C. Also

Res{f(z);−i/2} = lim
z→i/2

1

2(z + 2i)
=

1

3i

Hence by Cauchy’s Residue Theorem I = 2πi
(
1
3i

)
= 2π

3 . �

TYPE 2:
∞∫
−∞

f(x)dx where f(x) = g(x)
h(x) and g(x), h(x) are polynomials in x and the degree of h(x)

exceeds that of g(x) by at least two.
To evaluate this type of integral we take f(z) = g(z)

h(z) . The poles of f(z) are determined by the zeros
of the equation h(z) = 0.
Case (i): No pole of f(z) lies on the real axis.
We choose the curve C consisting of the interval [−r, r] on the real axis and the semi circle |z| = r
lying in the upper half of the plane. Here r is chosen sufficiently large so that all the poles lying in
the upper half of the plane are in the interior of C. Then we have∫

C

f(z)dz =

r∫
−r

f(x)dx+

∫
C1

f(z)dz

where C1 is the semi circle. Since deg h(x)− deg f(x) ≥ 2 it follows that
∫
C1

f(z)dz → 0 as r →∞

and hence
∫
C

f(z)dz =
∞∫
−∞

f(x)dx. Therefore
∞∫
−∞

f(x)dx can be evaluated by evaluating
∫
C

f(z)dz

which in turn can be evaluated by using Cauchy’s residue theorem.
Case (ii): f(z) has poles lying on the real axis.
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Suppose a is a pole lying on the real axis. In this case we indent the real axis by a semi-circle C2 of
radius ε with centre a lying in the upper half plane where ε is chosen to be sufficiently small (refer
figure).

Such an indenting must be done for every pole of f(z) lying on the real axis. It can be proved
that

∫
C2

f(z)dz = −πiRes{f(z); a}. By taking limit as r → ∞ and ε → 0 we obtain the value of

∞∫
−∞

f(x)dx.

Example 45. Use Contour integration method to evaluate
∞∫
0

dx
1+x4

.

Solution. Let f(z) = 1
1+z4

. The poles of f(z) are given by the roots of the equation z4 + 1 = 0,
which are the four fourth roots of−1. By De Moivre’s theorem they are given by eiπ/4; ei3π/4; ei5π/4; ei7π/4

and all are simple poles. We choose the contour C consisting of the interval [−r, r] on the real axis
and the upper semi-circle |z| = r which we denote by C1. Therefore∫

C
f(z)dz =

∫ r

−r
f(x)dx+

∫
C1

f(z)dz (1)

The poles of f(z) lying inside the contour C are obviously eiπ/4 and ei3π/4 only. We find the residues
of f(z) at these points.

Res
{
f(z); eiπ/4

}
=
h
(
eiπ/4

)
k′
(
eiπ/4

)
where h(z) = 1 and k(z) = z4 + 1 so that k′(z) = 4z3. Therefore

Res
{
f(z); eiπ/4

}
=

1

4ei3π/4
=
e−i3π/4

4

Similarly

Res
{
f(z); ei3π/4

}
=
e−i9π/4

4

By residue theorem∫
C
f(z)dz = 2πi( sum of the residues at the poles)

= 2πi

[
e−i3π/4

4
+
e−i9π/4

4

]
=
πi

2
[(cos(3π/4)− i sin(3π/4)) + (cos(9π/4)− i sin(9π/4))]

=
πi

2

[(
− 1√

2
− i√

2

)
+

(
1√
2
− i√

2

)]
=
πi

2

(
−2i√
2

)
=

π√
2

From (1), ∫ r

−r

dx

1 + x4
+

∫
C1

f(z)dz =
π

2
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As r →∞,
∫
C1

f(z)dz → 0.

∫ ∞
−∞

dx

1 + x4
=

π√
2

2

∫ ∞
0

dx

1 + x4
=

π√
2∫ ∞

0

dx

1 + x4
=

π

2
√
2

�

TYPE 3:
∞∫
−∞

g(x)
h(x) cos axdx or

∞∫
−∞

g(x)
h(x) sin axdx, where g(x) and h(x) are real polynomials such that

degree of h(x) exceeds that of g(x) by at least one and a > 0.
Case (i): h(x) has no zeros on the real axis.
In this case take f(z) = g(z)

h(z)e
iaz. Therefore f(z) has no poles on the real axis. Choose the contour

as in Type 2 and proceeding as in Type 2 we get the value of
∞∫
−∞

g(x)
h(x)e

iaxdx.

Taking the real and imaginary parts of g(x)
h(x)e

iaxdx we obtain the values of
∞∫
−∞

g(x)
h(x) cos axdx and

∞∫
−∞

g(x)
h(x) sin axdx.

Case (ii): h(x) has zeros of order one on the real axis.
Take f(z) = g(z)

h(z)e
iaz. We notice that f(z) has real poles. Suppose a is a real zero of h(x) on the

real axis. In this case we indent the real axis as Case (ii) of Type 2 and evaluate the integral.
To prove that the integral over the upper semicircle tends to zero as r →∞, we use the following
lemma.

Lemma 46 (Jordan’s Lemma). Let f(z) be a function of the complex variable z satisfying the
following conditions.

(1). f(z) is analytic in upper half plane except at a finite number of poles.

(2). f(z)→ 0 uniformly as |z| → ∞ with 0 ≤ arg z ≤ π.

(3). a is a positive integer.

Then lim
r→∞

∫
C

f(z)eiαzdz = 0 where C is the semi circle with centre at the origin and radius r.

Example 47. Prove that
∞∫
0

cosx
1+x2

dx = π
2e .

Solution. Let f(z) = eiz

1+z2
. The poles of f(z) are given by i and −i. Choose the contour C as

shown in the figure. The pole of f(z) that lies within C is i. Hence by residue theorem∫
C
f(z)dz = 2πiRes{f(z); i}

= 2πi
h(i)

k′(i)
where h(z) = eiz and k(z) = 1 + z2
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=
2πie−1

2i

=
π

e

Therefore ∫ r

−r

eiax

x2 + 1
dx+

∫
C1

eiaz

z2 + 1
dz =

π

e

When r →∞ the integral over C1 tends to zero. Therefore∫ ∞
−∞

eiax

x2 + 1
dx =

π

e

Equating real parts we get∫ ∞
−∞

cosx

1 + x2
dx =

π

e

2

∫ ∞
0

cosx

1 + x2
dx =

π

e

(
since

cosx

1 + x2
is an even function

)
∫ ∞
0

cosx

1 + x2
dx =

π

2e
�
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