UNIT-1

CLAIRAUT'S EQUATION

A differential equation of the form

Where f(p) is a function of p alone (not containing x or y) is called Clairaut's equation.

Differentiating (1) with respect to x we get

$$p = p + x \frac{dp}{dx} + f'(p) \frac{dp}{dx}$$

(i.e) $(x + f'(p)) \frac{dp}{dx} = 0$
(i.e) $\frac{dp}{dx} = 0$ (or) $(x + f'(p)) = 0$

Case 1:

Consider $\frac{dp}{dx} = 0$ Integrating we get, $\int \frac{dp}{dx} dx = 0$ implies p = cSubstituting p = c in (1), we get

$$y = cx + f(c)$$

This is the general solution of (1).

Case 2:

Consider x + f'(p) = 0

By eliminating p between equations (1) and (4) we get a solution of equation (1) which is free from any arbitrary constant and this solution can be obtained from (3) by giving a particular value for c. This solution is called the singular solution of (1).

Note:

The general solution to clairaut's equaton is obtained by replacing c for p in the clairaut's equation (1)

Example 1:

Find the general solution of $y = xp + \frac{\alpha}{p}$

Solution:

This equation is in clairaut's form

 \therefore the solution is got by replacing p by c

 \therefore the general solution is $y = cx + \frac{a}{c}$

Example 2:

Solve $p = \tan(y - xp)$

Solution:

$$p = \tan(y - xp)$$
$$\tan^{-1} p = y - xp$$
$$y = xp + \tan^{-1} p$$

This is of clairaut's form

: the general solution is $y = cx + \tan^{-1} c$

Example 3:

Solve
$$(y - px)(p - 1) = p$$

Solution:

$$(y - px)(p - 1) = p$$
$$(y - px) = \frac{p}{p - 1}$$
$$y = px + \frac{p}{p - 1}$$

This is of clairaut's form

 \therefore the general solution is $y = cx + \frac{c}{c-1}$

i.e., (y - cx)(c - 1) = c

Example 4:

Solve
$$e^{3x}(p-1) + p^3 e^{2y} = 0$$

Solution:

$$e^{3x}(p-1) + p^3 e^{2y} = 0 \cdots \cdots \cdots (1)$$

Put $X = e^x$, $Y = e^y$ $\frac{dY}{dX} = \frac{e^y}{e^x} \frac{dy}{dx}$ $P = \frac{e^y}{e^x} p$ $p = \frac{x}{Y} P \dots \dots (2)$ $\therefore (1) \text{ becomes } X^3 \left(\frac{x}{Y} P - 1\right) + \frac{x^3}{Y^3} P^3 Y^2 = 0$ i.e., $\frac{X^3(XP - Y)}{Y} + \frac{X^3P^3}{Y} = 0$ $\frac{X^3(XP - Y)}{Y} + \frac{X^3P^3}{Y} = 0$ $(XP - Y) + P^3 = 0$ $Y = PX + P^3$ This is of clairaut's form $\therefore \text{ the solution is } Y = cX + c^3$

i.e.,
$$e^{y} = ce^{x} + c^{3}$$

Example 5: solve (px - y)(py + x) = 2p

Solution:

 $(px - y)(py + x) = 2p \cdots \cdots \cdots (1)$ Let = x^2 , $Y = y^2$ Then

$$\frac{dY}{dX} = \frac{y}{x}\frac{dy}{dx}$$

$$P = \frac{y}{x}p$$
(1) becomes $\left(x\frac{x}{y}p - y\right)\left(y\frac{x}{y}p + x\right) = 2\frac{x}{y}p$

$$\frac{x^2p - y^2}{y}x(p+1) = 2\frac{x}{y}p$$

$$(XP - Y)(P+1) = 2p$$

$$XP - Y = \frac{2P}{P+1}$$

$$Y = XP - \frac{2P}{P+1}$$

This is of clairaut's form

 \therefore the general solution is

$$Y = cX - \frac{2c}{c+1}$$

i.e., $y^2 = cx^2 - \frac{2c}{c+1}$