

Course Materials for II B. Sc

Information Technology (IT)

Subject Name:*Computer and*

Organization Architecture

Prepared by

Dr. S. Sathiskumar

Assistant Professor

Post Graduate Department of Physics

Srinivasan College of Arts and Science

Perambalur – 621 212

Syllabus

	Computer organisation & Architecture	W.H. Patterson
UNIT-1	Computer organisation & Architecture	7 th edition
	Computer organisation & Architecture	
	Computer organisation & Architecture	
UNIT-2	(Memory organisation)	
	Memory organisation	
	Computer memory system overview	
	Cache memory principles - Semiconductor	
	Memory organisation - DRAM and	
	SRAM - types of ROM - Error correction	
UNIT-3	(I/O Modules)	
	External devices - I/O Modules	
	Programmed I/O - Direct memory access -	
	I/O channels & processors.	

UNIT - IV

Instruction sets, processor

organisation and control unit.

Machine Instruction characteristics

Types of operands - Addressing

Instruction formats - processor organisation

Registers organisation - instruction cycle

Control unit : Micro operations - control of the processor.

UNIT - 5 (parallel processing)

parallel organisation & Multi-process

organisation - symmetric multiprocessor

Multi-threading technique - chip multiprocessor

Non-uniform memory access - vector computation.

(calculator etc.)

calculator etc - various types

Unit - I Computer Organization

Architecture and Functions

This book is about the structure and function of computers. Its purpose is to present, as clearly and completely as possible, the nature and characteristics of modern-day computers. This task is a challenging one for two reasons.

First, there is a tremendous variety of products, from single-chip microcomputers costing a few dollars to supercomputers costing tens of millions of dollars, that can rightly claim the name *computer*. Variety is exhibited not only in cost, but also in size, performance, and application. Second, the rapid pace of change that has always characterized computer technology continues with no letup. These changes cover all aspects of computer technology, from the underlying integrated circuit technology used to construct computer components to the increasing use of parallel organization concepts in combining those components.

In spite of the variety and pace of change in the computer field, certain fundamental concepts apply consistently throughout. To be sure, the application of these concepts depends on the current state of technology and the price/performance objectives of the designer. The intent of this book is to provide a thorough discussion of the fundamentals of computer organization and architecture and to relate these to contemporary computer design issues. This chapter introduces the descriptive approach to be taken.

1.1 ORGANIZATION AND ARCHITECTURE

In describing computers, a distinction is often made between *computer architecture* and *computer organization*. Although it is difficult to give precise definitions for these terms, a consensus exists about the general areas covered by each (e.g., see [VRAN80], [SIEW82], and [BELL78a]).

Computer architecture refers to those attributes of a system visible to a programmer or, put another way, those attributes that have a direct impact on the logical execution of a program. Computer organization refers to the operational units and their interconnections that realize the architectural specifications. Examples of architectural attributes include the instruction set, the number of bits used to represent various data types (e.g., numbers, characters), I/O mechanisms, and techniques for addressing memory. Organizational attributes include those hardware details transparent to the programmer, such as control signals; interfaces between the computer and peripherals; and the memory technology used.

As an example, it is an architectural design issue whether a computer will have a multiply instruction. It is an organizational issue whether that instruction will be implemented by a special multiply unit or by a mechanism that makes repeated use of the add unit of the system. The organizational decision may be based on the anticipated frequency of use of the multiply instruction, the relative speed of the two approaches, and the cost and physical size of a special multiply unit.

Historically, and still today, the distinction between architecture and organization has been an important one. Many computer manufacturers offer a family of computer models, all with the same architecture but with differences in organization. Consequently, the different models in the family have different price and performance characteristics. Furthermore, a particular architecture may span many years and

encompass a number of different computer models, its organization changing with changing technology. A prominent example of both these phenomena is the IBM System/370 architecture. This architecture was first introduced in 1970 and included a number of models. The customer with modest requirements could buy a cheaper, slower model and, if demand increased, later upgrade to a more expensive, faster model without having to abandon software that had already been developed. Over the years, IBM has introduced many new models with improved technology to replace older models, offering the customer greater speed, lower cost, or both. These newer models retained the same architecture so that the customer's software investment was protected. Remarkably, the System/370 architecture, with a few enhancements, has survived to this day as the architecture of IBM's mainframe product line.

In a class of computers called microcomputers, the relationship between architecture and organization is very close. Changes in technology not only influence organization but also result in the introduction of more powerful and more complex architectures. Generally, there is less of a requirement for generation-to-generation compatibility for these smaller machines. Thus, there is more interplay between organizational and architectural design decisions. An intriguing example of this is the reduced instruction set computer (RISC), which we examine in Chapter 13.

This book examines both computer organization and computer architecture. The emphasis is perhaps more on the side of organization. However, because a computer organization must be designed to implement a particular architectural specification, a thorough treatment of organization requires a detailed examination of architecture as well.

1.2 STRUCTURE AND FUNCTION

The approach taken in this book follows from this viewpoint. The computer system will be described from the top down. We begin with the major components of a computer, describing their structure and function, and proceed to successively lower layers of the hierarchy. The remainder of this section provides a very brief overview of this plan of attack.

Function

Both the structure and functioning of a computer are, in essence, simple. Figure 1.1 depicts the basic functions that a computer can perform. In general terms, there are only four:

- ✓ Data processing
- ✓ Data storage
- ✓ Data movement
- ✓ Control

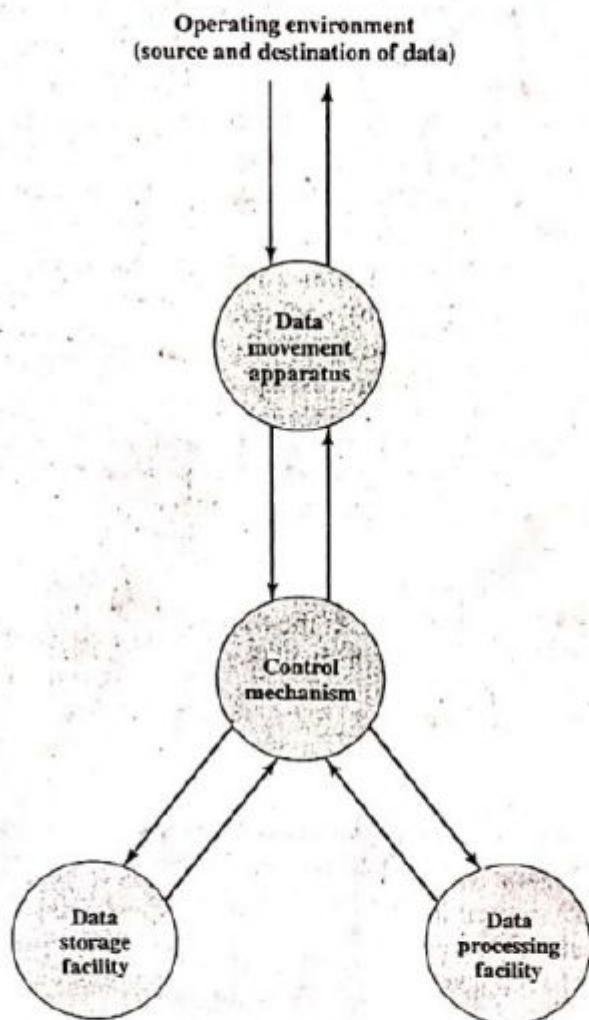


Figure 1.1 A Functional View of the Computer

The computer, of course, must be able to **process data**. The data may take a wide variety of forms, and the range of processing requirements is broad. However, we shall see that there are only a few fundamental **methods or types of data processing**.

It is also essential that a computer **store data**. Even if the computer is processing data on the fly (i.e., data come in and get processed, and the results go out immediately), the computer must temporarily store at least those pieces of data that are being worked on at any given moment. Thus, there is at least a short-term **data storage function**. Equally important, the computer performs a **long-term data storage function**. Files of data are stored on the computer for subsequent retrieval and update.

The computer must be able to **move data** between itself and the outside world. The computer's operating environment consists of devices that serve as either sources or destinations of data. When data are received from or delivered to a device that is directly connected to the computer, the process is known as **input-output (I/O)**, and the device is referred to as a **peripheral**. When data are moved over longer distances, to or from a remote device, the process is known as **data communications**.

Finally, there must be **control** of these three functions. Ultimately, this control is exercised by the individual(s) who provides the computer with instructions. Within the computer, a control unit manages the computer's resources and orchestrates the performance of its functional parts in response to those instructions.

At this general level of discussion, the number of possible operations that can be performed is few. Figure 1.2 depicts the four possible **types of operations**. The computer can function as a data movement device (Figure 1.2a), simply transferring data from one peripheral or communications line to another. It can also function as a data storage device (Figure 1.2b), with data transferred from the external environment to computer storage (read) and vice versa (write). The final two diagrams show operations involving data processing, on data either in storage (Figure 1.2c) or en route between storage and the external environment (Figure 1.2d).

The preceding discussion may seem absurdly generalized. It is certainly possible, even at a top level of computer structure, to differentiate a variety of functions, but, to quote [SIEW82],

There is remarkably little shaping of computer structure to fit the function to be performed. At the root of this lies the general-purpose nature of computers, in which all the functional specialization occurs at the time of programming and not at the time of design.

Structure

Figure 1.3 is the simplest possible depiction of a computer. The computer interacts in some fashion with its external environment. In general, all of its linkages to the external environment can be classified as peripheral devices or communication lines. We will have something to say about both types of linkages.

But of greater concern in this book is the internal structure of the computer itself, which is shown at a top level in Figure 1.4. There are four main structural components:

- **Central processing unit (CPU):** Controls the operation of the computer and performs its data processing functions; often simply referred to as **processor**

The computer, of course, must be able to **process data**. The data may take a wide variety of forms, and the range of processing requirements is broad. However, we shall see that there are only a few fundamental methods or types of data processing.

It is also essential that a computer **store data**. Even if the computer is processing data on the fly (i.e., data come in and get processed, and the results go out immediately), the computer must temporarily store at least those pieces of data that are being worked on at any given moment. Thus, there is at least a short-term data storage function. Equally important, the computer performs a long-term data storage function. Files of data are stored on the computer for subsequent retrieval and update.

The computer must be able to **move data** between itself and the outside world. The computer's operating environment consists of devices that serve as either sources or destinations of data. When data are received from or delivered to a device that is directly connected to the computer, the process is known as *input-output* (I/O), and the device is referred to as a *peripheral*. When data are moved over longer distances, to or from a remote device, the process is known as *data communications*.

Finally, there must be **control** of these three functions. Ultimately, this control is exercised by the individual(s) who provides the computer with instructions. Within the computer, a control unit manages the computer's resources and orchestrates the performance of its functional parts in response to those instructions.

At this general level of discussion, the number of possible operations that can be performed is few. Figure 1.2 depicts the four possible types of operations. The computer can function as a data movement device (Figure 1.2a), simply transferring data from one peripheral or communications line to another. It can also function as a data storage device (Figure 1.2b), with data transferred from the external environment to computer storage (read) and vice versa (write). The final two diagrams show operations involving data processing, on data either in storage (Figure 1.2c) or en route between storage and the external environment (Figure 1.2d).

The preceding discussion may seem absurdly generalized. It is certainly possible, even at a top level of computer structure, to differentiate a variety of functions, but, to quote [SIEW82],

There is remarkably little shaping of computer structure to fit the function to be performed. At the root of this lies the general-purpose nature of computers, in which all the functional specialization occurs at the time of programming and not at the time of design.

Structure

Figure 1.3 is the simplest possible depiction of a computer. The computer interacts in some fashion with its external environment. In general, all of its linkages to the external environment can be classified as peripheral devices or communication lines. We will have something to say about both types of linkages.

But of greater concern in this book is the internal structure of the computer itself, which is shown at a top level in Figure 1.4. There are four main structural components:

- **Central processing unit (CPU):** Controls the operation of the computer and performs its data processing functions; often simply referred to as **processor**

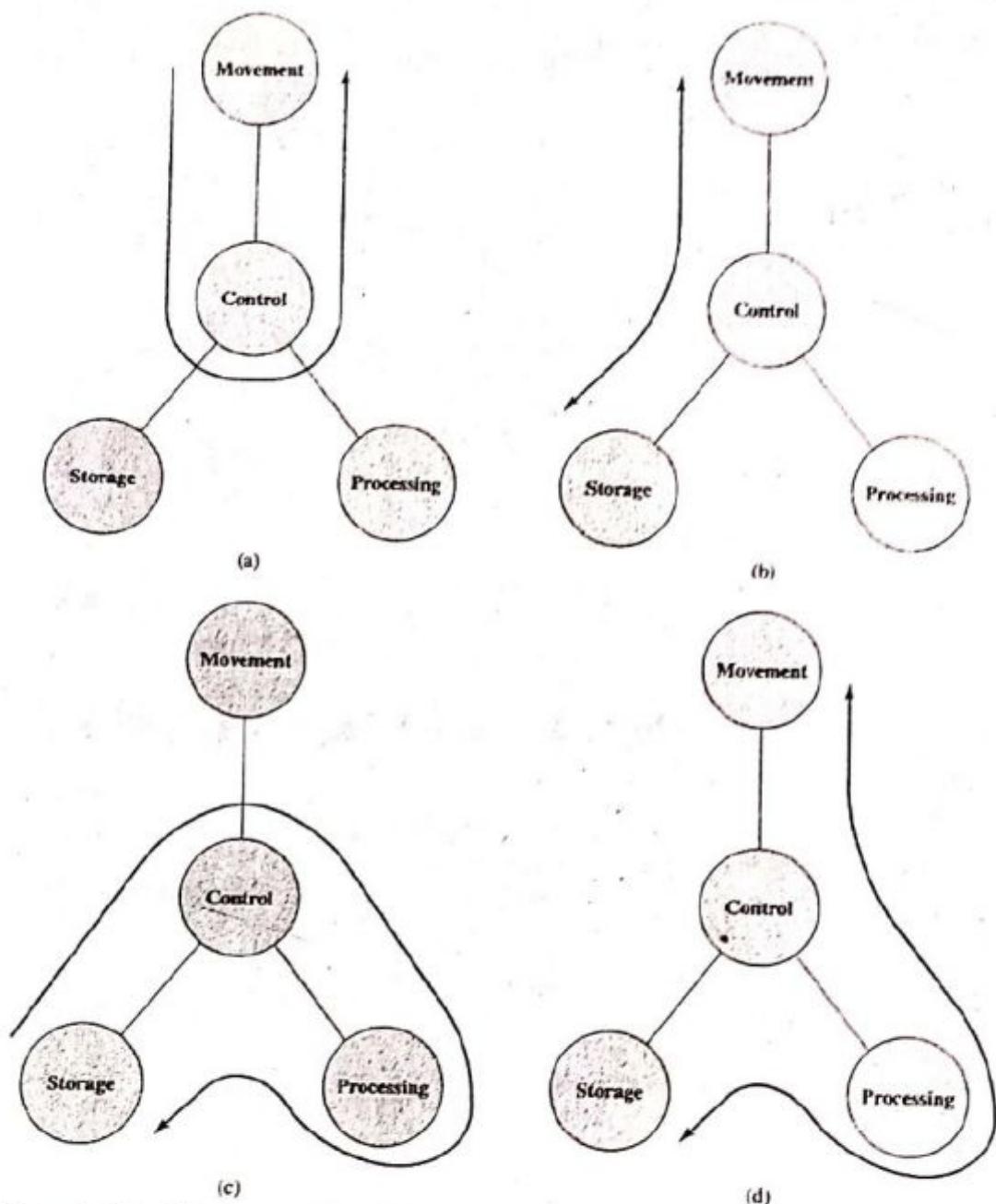


Figure 1.2 Possible Computer Operations

- **Main memory:** Stores data
- **I/O:** Moves data between the computer and its external environment
- **System interconnection:** Some mechanism that provides for communication among CPU, main memory, and I/O

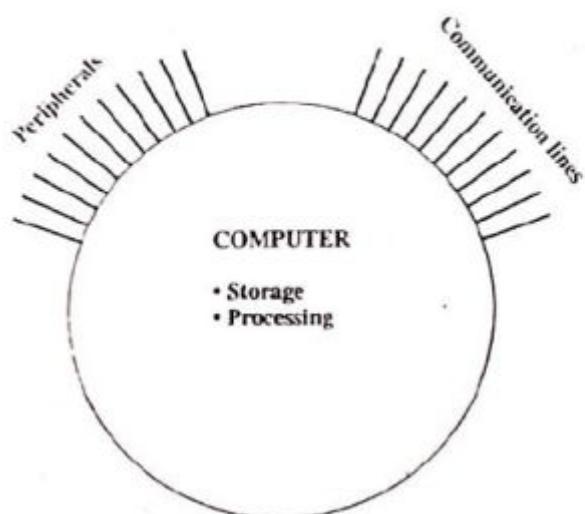


Figure 1.3 The Computer

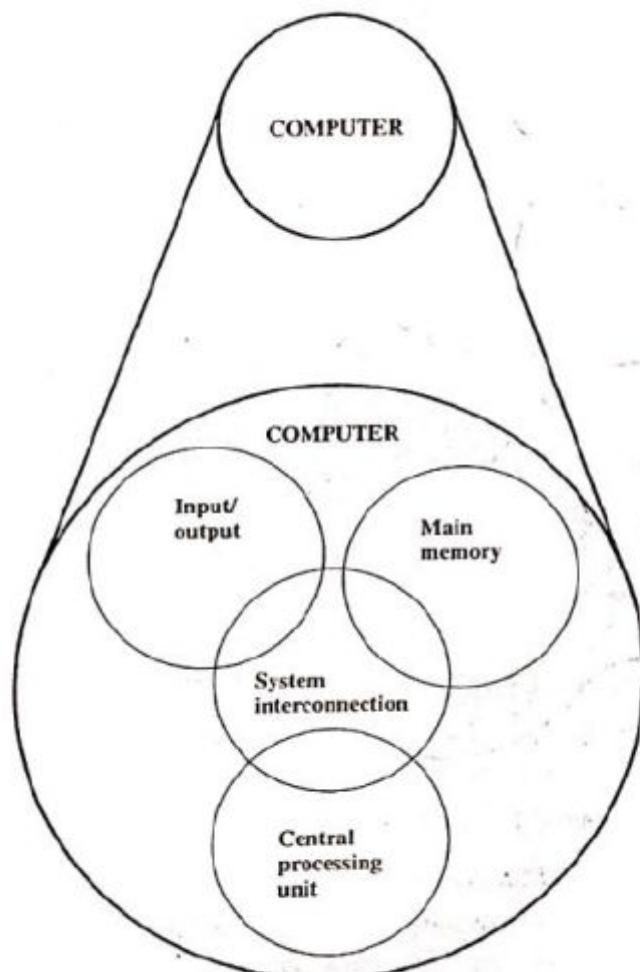


Figure 1.4 The Computer: Top-Level Structure

There may be one or more of each of the aforementioned components. Traditionally, there has been just a single CPU. In recent years, there has been increasing use of multiple processors in a single computer. Some design issues relating to multiple processors crop up and are discussed as the text proceeds; Part Five focuses on such computers.

Each of these components will be examined in some detail in Part Two. However, for our purposes, the most interesting and in some ways the most complex component is the CPU; its structure is depicted in Figure 1.5. Its major structural components are

- ✓ **Control unit:** Controls the operation of the CPU and hence the computer
- ✓ **Arithmetic and logic unit (ALU):** Performs the computer's data processing functions

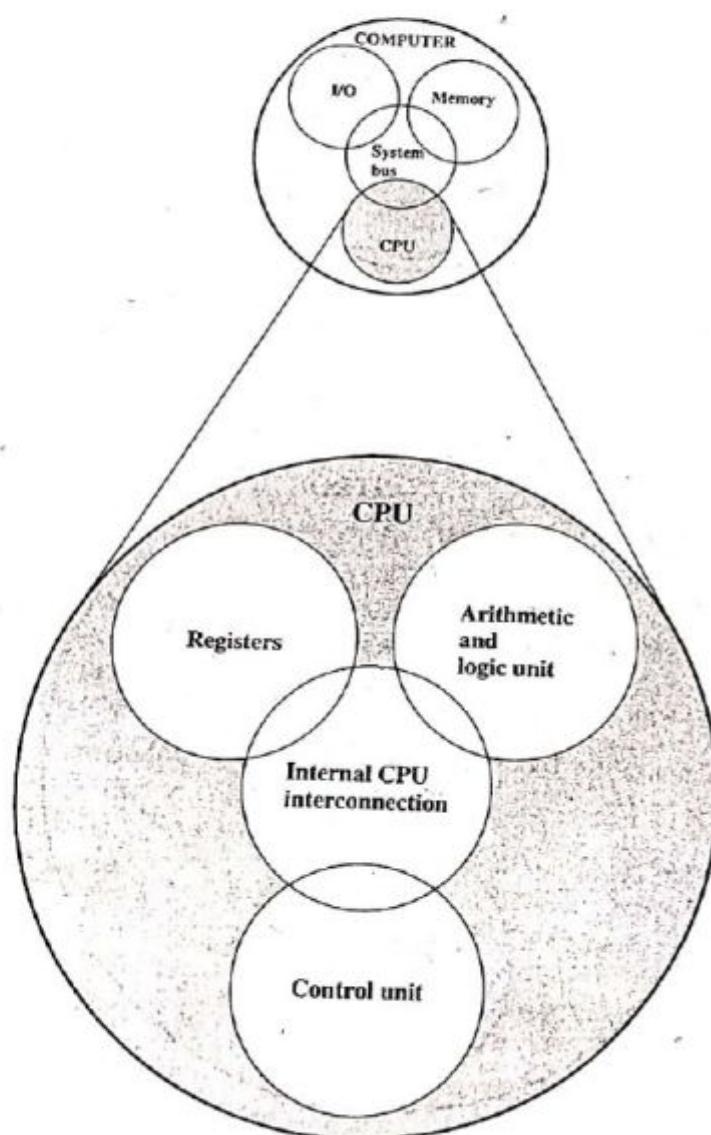


Figure 1.5 The Central Processing Unit (CPU)

- **Registers:** Provides storage internal to the CPU
- **CPU interconnection:** Some mechanism that provides for communication among the control unit, ALU, and registers

Each of these components will be examined in some detail in Part Three, where we will see that complexity is added by the use of parallel and pipelined organizational techniques. Finally, there are several approaches to the implementation of the control unit; one common approach is a *micropogrammed* implementation. In essence, a microprogrammed control unit operates by executing microinstructions that define the functionality of the control unit. With this approach, the structure of the control unit can be depicted as in Figure 1.6. This structure will be examined in Part Four.

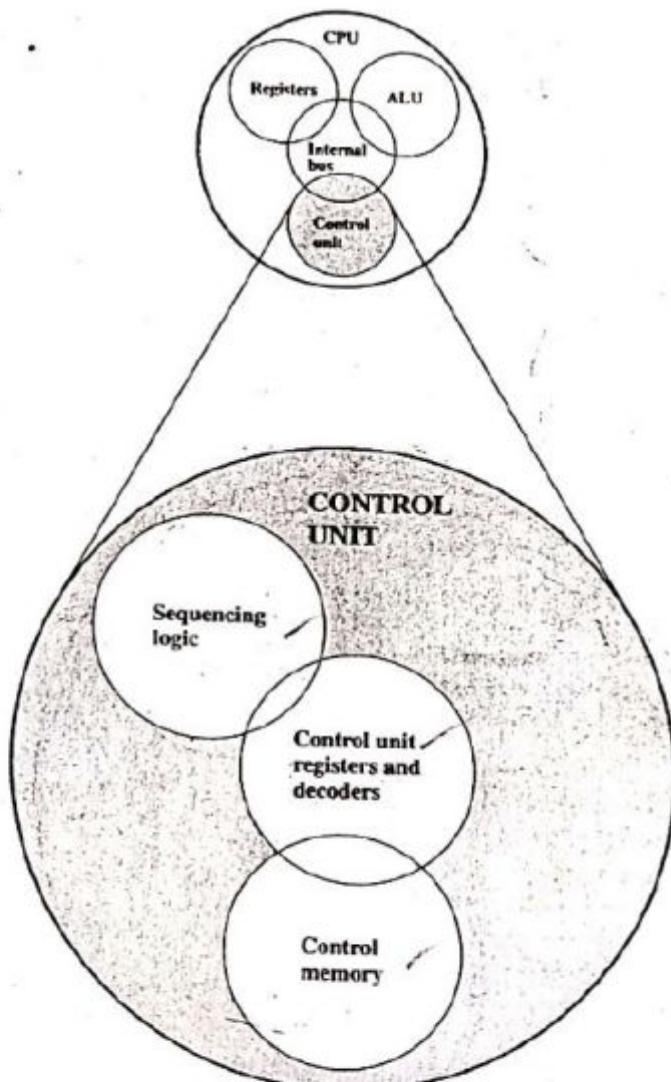


Figure 1.6 The Control Unit

1.3 WHY STUDY COMPUTER ORGANIZATION AND ARCHITECTURE?

The *IEEE/ACM Computer Curricula 2001* [JTF01], prepared by the Joint Task Force on Computing Curricula of the IEEE (Institute of Electrical and Electronics Engineers) Computer Society and ACM (Association for Computing Machinery), lists computer architecture as one of the core subjects that should be in the curriculum of all students in computer science and computer engineering. The report says the following:

The computer lies at the heart of computing. Without it most of the computing disciplines today would be a branch of theoretical mathematics. To be a professional in any field of computing today, one should not regard the computer as just a black box that executes programs by magic. All students of computing should acquire some understanding and appreciation of a computer system's functional components, their characteristics, their performance, and their interactions. There are practical implications as well. Students need to understand computer architecture in order to structure a program so that it runs more efficiently on a real machine. In selecting a system to use, they should be able to understand the tradeoff among various components, such as CPU clock speed vs. memory size.

[CLEM00] gives the following examples as reasons for studying computer architecture:

1. Suppose a graduate enters the industry and is asked to select the most cost-effective computer for use throughout a large organization. An understanding of the implications of spending more for various alternatives, such as a larger cache or a higher processor clock rate, is essential to making the decision.
2. Many processors are not used in PCs or servers but in embedded systems. A designer may program a processor in C that is embedded in some real-time or larger system, such as an intelligent automobile electronics controller. Debugging the system may require the use of a logic analyzer that displays the relationship between interrupt requests from engine sensors and machine-level code.
3. Concepts used in computer architecture find application in other courses. In particular, the way in which the computer provides architectural support for programming languages and operating system facilities reinforces concepts from those areas.

As can be seen by perusing the table of contents of this book, computer organization and architecture encompasses a broad range of design issues and concepts. A good overall understanding of these concepts will be useful both in other areas of study and in future work after graduation.

KEY POINTS

- ◆ An instruction cycle consists of an instruction fetch, followed by zero or more operand fetches, followed by zero or more operand stores, followed by an interrupt check (if interrupts are enabled).
- ◆ The major computer system components (processor, main memory, I/O modules) need to be interconnected in order to exchange data and control signals. The most popular means of interconnection is the use of a shared system bus consisting of multiple lines. In contemporary systems, there typically is a hierarchy of buses to improve performance.
- ◆ Key design elements for buses include arbitration (whether permission to send signals on bus lines is controlled centrally or in a distributed fashion); timing (whether signals on the bus are synchronized to a central clock or are sent asynchronously based on the most recent transmission); and width (number of address lines and number of data lines).

At a top level, a computer consists of CPU (central processing unit), memory, and I/O components, with one or more modules of each type. These components are interconnected in some fashion to achieve the basic function of the computer, which is to execute programs. Thus, at a top level, we can describe a computer system by (1) describing the external behavior of each component, that is, the data and control signals that it exchanges with other components; and (2) describing the interconnection structure and the controls required to manage the use of the interconnection structure.

This top-level view of structure and function is important because of its explanatory power in understanding the nature of a computer. Equally important is its use to understand the increasingly complex issues of performance evaluation. A grasp of the top-level structure and function offers insight into system bottlenecks, alternate pathways, the magnitude of system failures if a component fails, and the ease of adding performance enhancements. In many cases, requirements for greater system power and fail-safe capabilities are being met by changing the design rather than merely increasing the speed and reliability of individual components.

This chapter focuses on the basic structures used for computer component interconnection. As background, the chapter begins with a brief examination of the basic components and their interface requirements. Then a functional overview is provided. We are then prepared to examine the use of buses to interconnect system components.

3.1 COMPUTER COMPONENTS

As discussed in Chapter 2, virtually all contemporary computer designs are based on concepts developed by John von Neumann at the Institute for Advanced Studies, Princeton. Such a design is referred to as the *von Neumann architecture* and is based on three key concepts:

- Data and instructions are stored in a single read-write memory.
- The contents of this memory are addressable by location, without regard to the type of data contained there.
- Execution occurs in a sequential fashion (unless explicitly modified) from one instruction to the next.

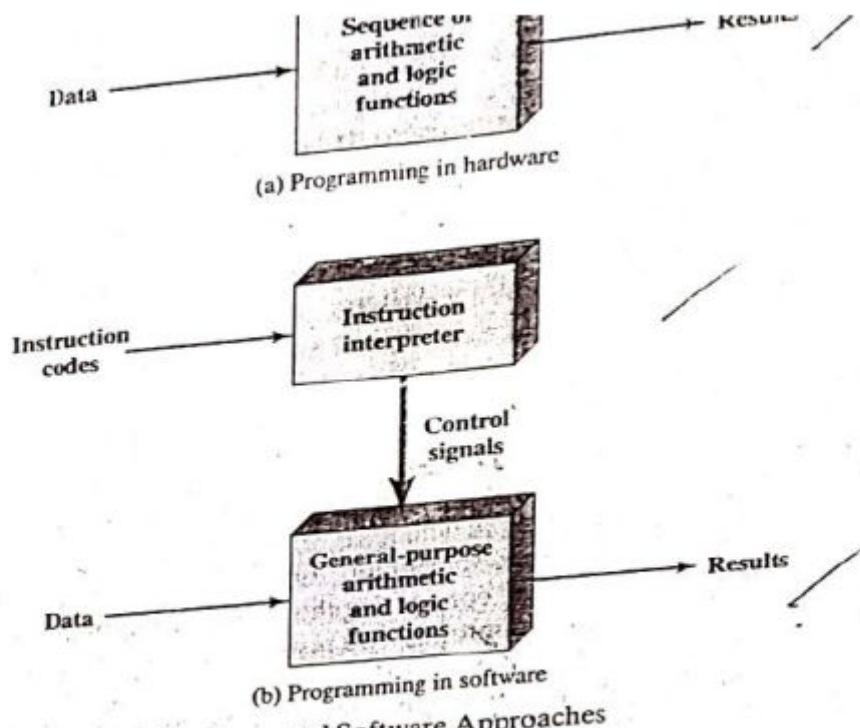
The reasoning behind these concepts was discussed in Chapter 2 but is worth summarizing here. There is a small set of basic logic components that can be combined in various ways to store binary data and to perform arithmetic and logical operations on that data. If there is a particular computation to be performed, a configuration of logic components designed specifically for that computation could be constructed. We can think of the process of connecting the various components in the desired configuration as a form of programming. The resulting "program" is in the form of hardware and is termed a *hardwired program*.

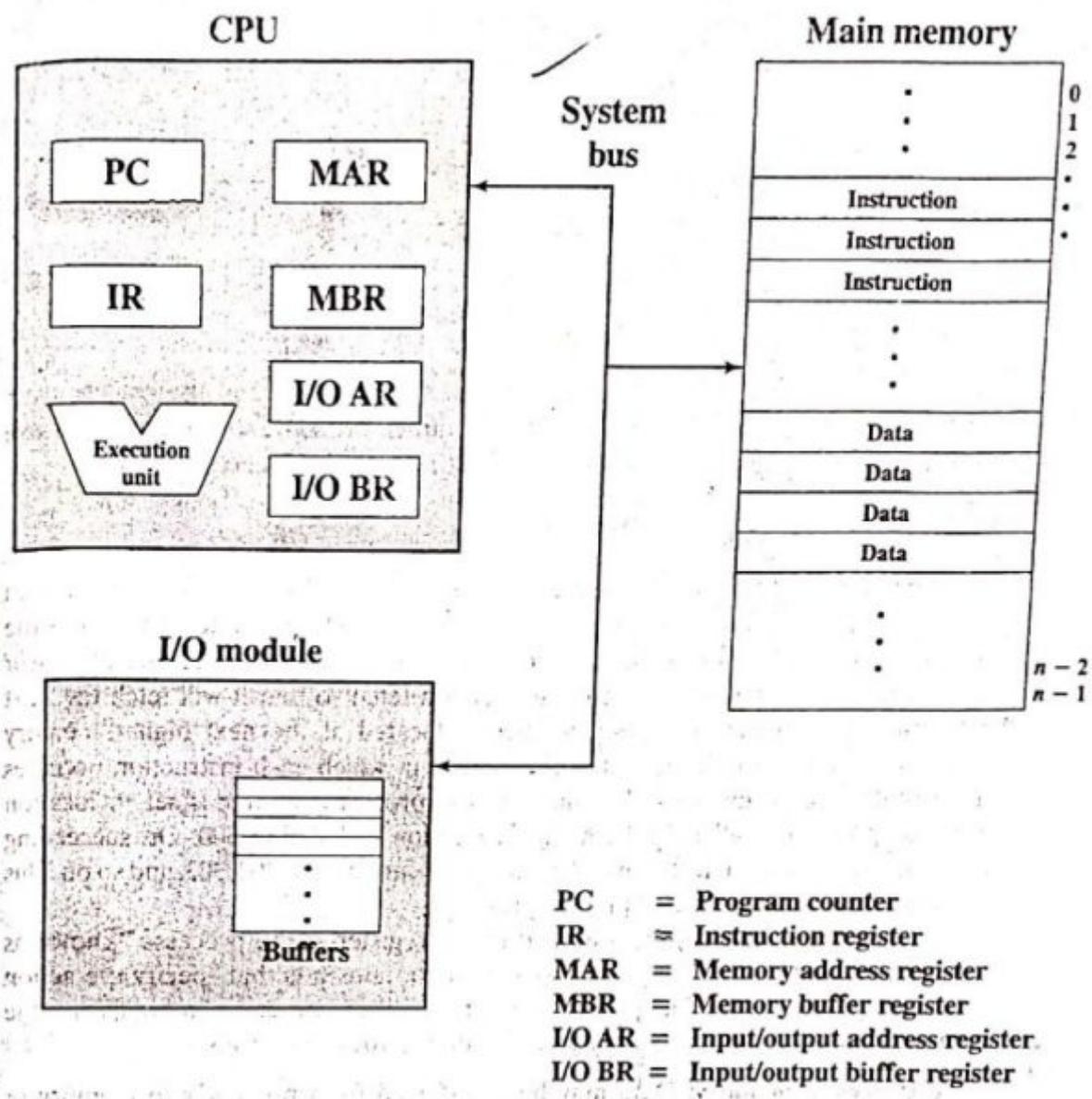
Now consider this alternative. Suppose we construct a general-purpose configuration of arithmetic and logic functions. This set of hardware will perform various functions on data depending on control signals applied to the hardware. In the original case of customized hardware, the system accepts data and produces results (Figure 3.1a). With general-purpose hardware, the system accepts data and control signals and produces results. Thus, instead of rewiring the hardware for each new program, the programmer merely needs to supply a new set of control signals.

How shall control signals be supplied? The answer is simple but subtle. The entire program is actually a sequence of steps. At each step, some arithmetic or logical operation is performed on some data. For each step, a new set of control signals is needed. Let us provide a unique code for each possible set of control signals, and let us add to the general-purpose hardware a segment that can accept a code and generate control signals (Figure 3.1b).

Programming is now much easier. Instead of rewiring the hardware for each new program, all we need to do is provide a new sequence of codes. Each code is, in effect, an instruction, and part of the hardware interprets each instruction and generates control signals. To distinguish this new method of programming, a sequence of codes or instructions is called *software*.

Figure 3.1b indicates two major components of the system: an instruction interpreter and a module of general-purpose arithmetic and logic functions. These two constitute the CPU. Several other components are needed to yield a functioning computer. Data and instructions must be put into the system. For this we need some sort of input module. This module contains basic components for accepting data and instructions in some form and converting them into an internal form of signals usable by the system. A means of reporting results is needed, and this is in the form of an output module. Taken together, these are referred to as *I/O components*.




Figure 3.1 Hardware and Software Approaches

One more component is needed. An input device will bring instructions and data in sequentially. But a program is not invariably executed sequentially; it may jump around (e.g., the LAS jump instruction). Similarly, operations on data may require access to more than just one element at a time in a predetermined sequence. Thus, there must be a place to store temporarily both instructions and data. That module is called *memory*, or *main memory* to distinguish it from external storage or peripheral devices. Von Neumann pointed out that the same memory could be used to store both instructions and data.

Figure 3.2 illustrates these top-level components and suggests the interactions among them. The CPU exchanges data with memory. For this purpose, it typically makes use of two internal (to the CPU) registers: a memory address register (MAR), which specifies the address in memory for the next read or write, and a memory buffer register (MBR), which contains the data to be written into memory or receives the data read from memory. Similarly, an I/O address register (I/OAR) specifies a particular I/O device. An I/O buffer (I/OBR) register is used for the exchange of data between an I/O module and the CPU.

A memory module consists of a set of locations, defined by sequentially numbered addresses. Each location contains a binary number that can be interpreted as either an instruction or data. An I/O module transfers data from external devices to CPU and memory, and vice versa. It contains internal buffers for temporarily holding these data until they can be sent on.

Having looked briefly at these major components, we now turn to an overview of how these components function together to execute programs.

Figure 3.2 Computer Components: Top-Level View

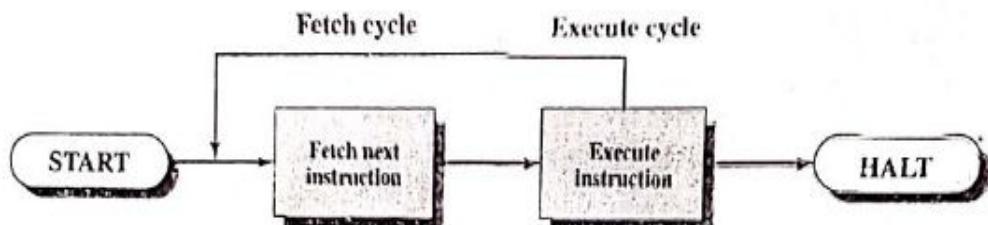


Figure 3.3 Basic Instruction Cycle

in Figure 3.3. The two steps are referred to as the *fetch cycle* and the *execute cycle*. Program execution halts only if the machine is turned off, some sort of unrecoverable error occurs, or a program instruction that halts the computer is encountered.

Instruction Fetch and Execute

At the beginning of each instruction cycle, the processor fetches an instruction from memory. In a typical processor, a register called the program counter (PC) holds the address of the instruction to be fetched next. Unless told otherwise, the processor always increments the PC after each instruction fetch so that it will fetch the next instruction in sequence (i.e., the instruction located at the next higher memory address). So, for example, consider a computer in which each instruction occupies one 16-bit word of memory. Assume that the program counter is set to location 300. The processor will next fetch the instruction at location 300. On succeeding instruction cycles, it will fetch instructions from locations 301, 302, 303, and so on. This sequence may be altered, as explained presently.

The fetched instruction is loaded into a register in the processor known as the instruction register (IR). The instruction contains bits that specify the action the processor is to take. The processor interprets the instruction and performs the required action. In general, these actions fall into four categories:

- **Processor-memory:** Data may be transferred from processor to memory or from memory to processor.
- **Processor-I/O:** Data may be transferred to or from a peripheral device by transferring between the processor and an I/O module.
- **Data processing:** The processor may perform some arithmetic or logic operation on data.
- **Control:** An instruction may specify that the sequence of execution be altered. For example, the processor may fetch an instruction from location 149, which specifies that the next instruction be from location 182. The processor will remember this fact by setting the program counter to 182. Thus, on the next fetch cycle, the instruction will be fetched from location 182 rather than 150.

An instruction's execution may involve a combination of these actions.

Consider a simple example using a hypothetical machine that includes the characteristics listed in Figure 3.4. The processor contains a single data register, called an accumulator (AC). Both instructions and data are 16 bits long. Thus, it is convenient to organize memory using 16-bit words. The instruction format provides

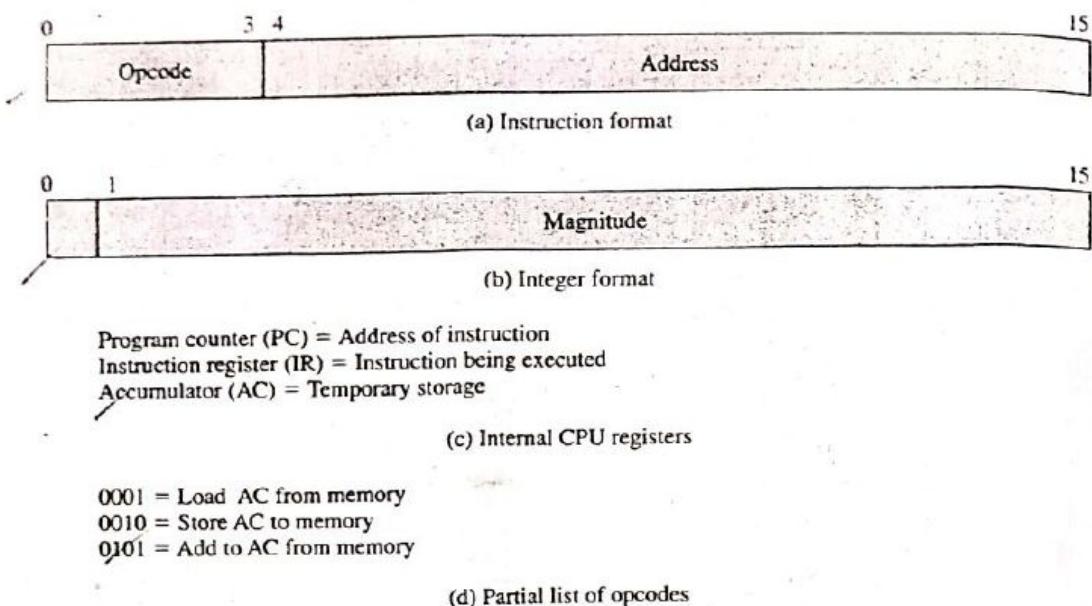


Figure 3.4 Characteristics of a Hypothetical Machine

4 bits for the opcode, so that there can be as many as $2^4 = 16$ different opcodes, and up to $2^{12} = 4096$ (4K) words of memory can be directly addressed.

Figure 3.5 illustrates a partial program execution, showing the relevant portions of memory and processor registers.¹ The program fragment shown adds the contents of the memory word at address 940 to the contents of the memory word at address 941 and stores the result in the latter location. Three instructions, which can be described as three fetch and three execute cycles, are required:

1. The PC contains 300, the address of the first instruction. This instruction (the value 1940 in hexadecimal) is loaded into the instruction register IR and the PC is incremented. Note that this process involves the use of a memory address register (MAR) and a memory buffer register (MBR). For simplicity, these intermediate registers are ignored.
2. The first 4 bits (first hexadecimal digit) in the IR indicate that the AC is to be loaded. The remaining 12 bits (three hexadecimal digits) specify the address (940) from which data are to be loaded.
3. The next instruction (5941) is fetched from location 301 and the PC is incremented.
4. The old contents of the AC and the contents of location 941 are added and the result is stored in the AC.
5. The next instruction (2941) is fetched from location 302 and the PC is incremented.
6. The contents of the AC are stored in location 941.

¹Hexadecimal notation is used, in which each digit represents 4 bits. This is the most convenient notation for representing the contents of memory and registers when the word length is a multiple of 4. See Appendix A for a basic refresher on number systems (decimal, binary, hexadecimal).

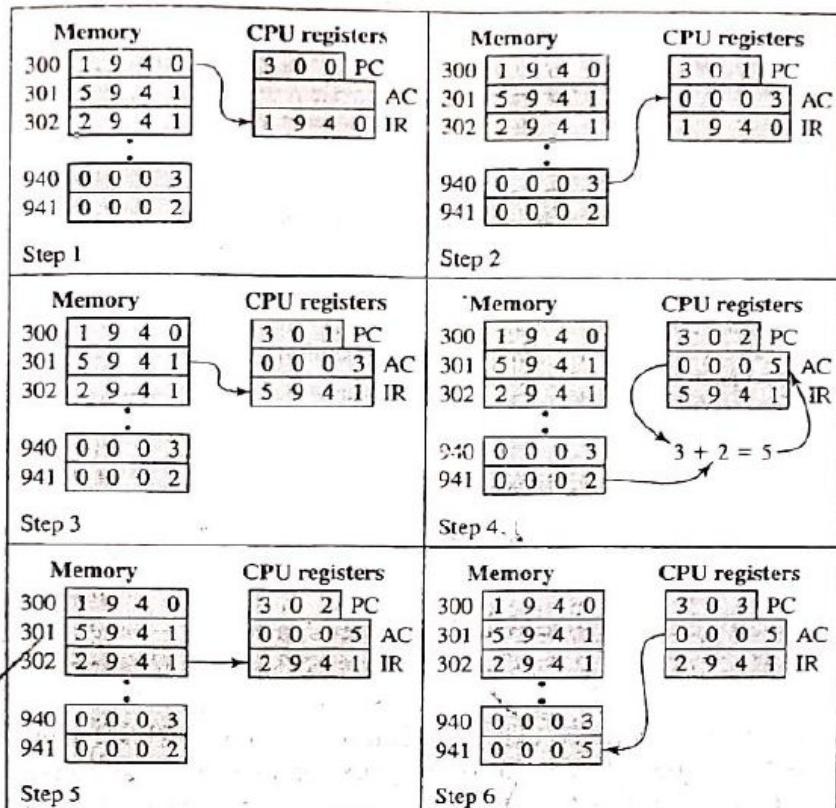


Figure 3.5 Example of Program Execution (contents of memory and registers in hexadecimal)

In this example, three instruction cycles, each consisting of a fetch cycle/execute cycle, are needed to add the contents of location 940 to the content of location 941. With a more complex set of instructions, fewer cycles would be needed. Some processors, for example, include instructions that contain more than one address. Thus the execution cycle for a particular instruction on such processors could involve more than one reference to memory. Also, instead of memory references, an instruction may specify an I/O operation.

For example, the PDP-11 processor includes an instruction, expressible logically as ADD B,A, that stores the sum of the contents of memory location B and A into memory location A. A single instruction cycle with the following steps occurs:

- Fetch the ADD instruction.
- Read the contents of memory location A into the processor.
- Read the contents of memory location B into the processor. In order for the contents of A not to be lost, the processor must have at least two registers for storing memory values, rather than a single accumulator.
- Add the two values.
- Write the result from the processor to memory location A.

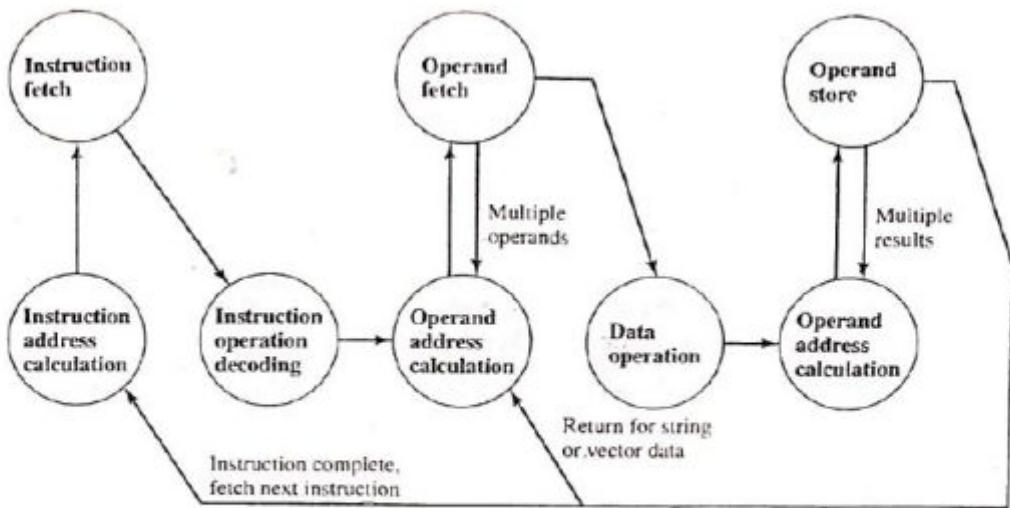


Figure 3.6 Instruction Cycle State Diagram

Thus, the execution cycle for a particular instruction may involve more than one reference to memory. Also, instead of memory references, an instruction may specify an I/O operation. With these additional considerations in mind, Figure 3.6 provides a more detailed look at the basic instruction cycle of Figure 3.3. The figure is in the form of a state diagram. For any given instruction cycle, some states may be null and others may be visited more than once. The states can be described as follows:

- **Instruction address calculation (iac):** Determine the address of the next instruction to be executed. Usually, this involves adding a fixed number to the address of the previous instruction. For example, if each instruction is 16 bits long and memory is organized into 16-bit words, then add 1 to the previous address. If, instead, memory is organized as individually addressable 8-bit bytes, then add 2 to the previous address.
- **Instruction fetch (if):** Read instruction from its memory location into the processor.
- **Instruction operation decoding (iod):** Analyze instruction to determine type of operation to be performed and operand(s) to be used.
- **Operand address calculation (oac):** If the operation involves reference to an operand in memory or available via I/O, then determine the address of the operand.
- **Operand fetch (of):** Fetch the operand from memory or read it in from I/O.
- **Data operation (do):** Perform the operation indicated in the instruction.
- **Operand store (os):** Write the result into memory or out to I/O.

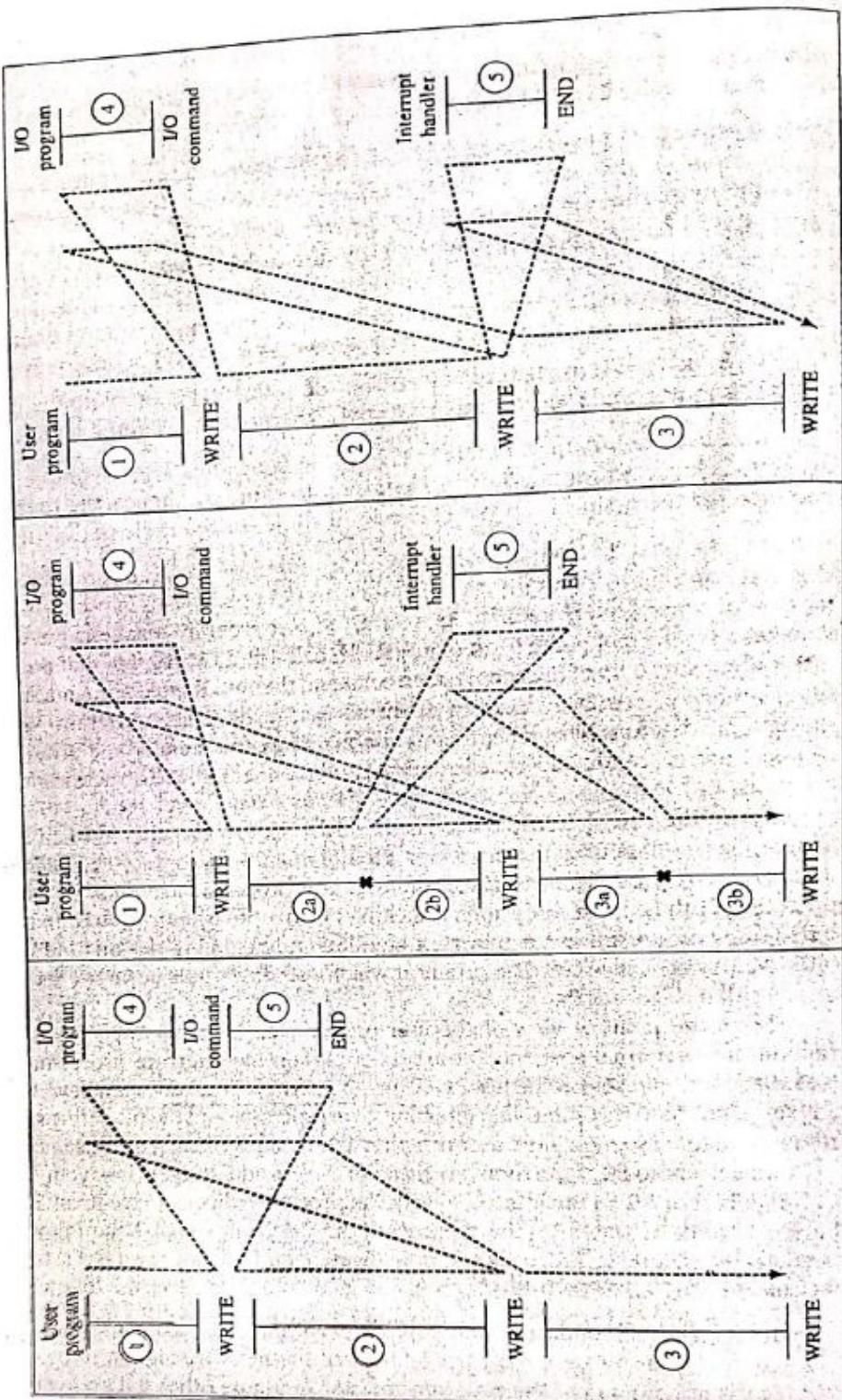
States in the upper part of Figure 3.6 involve an exchange between the processor and either memory or an I/O module. States in the lower part of the diagram involve only internal processor operations. The oac state appears twice, because

an instruction may involve a read, a write, or both. However, the action performed during that state is fundamentally the same in both cases, and so only a single state identifier is needed.

Also note that the diagram allows for multiple operands and multiple results, because some instructions on some machines require this. For example, the PDP-11 instruction ADD A,B results in the following sequence of states: iac, if, iod, oac, of, oac, of, do, oac, os.

Finally, on some machines, a single instruction can specify an operation to be performed on a vector (one-dimensional array) of numbers or a string (one-dimensional array) of characters. As Figure 3.6 indicates, this would involve repetitive operand fetch and/or store operations.

Interrupts


Virtually all computers provide a mechanism by which other modules (I/O, memory) may interrupt the normal processing of the processor. Table 3.1 lists the most common classes of interrupts. The specific nature of these interrupts is examined later in this book, especially in Chapters 7 and 12. However, we need to introduce the concept now to understand more clearly the nature of the instruction cycle and the implications of interrupts on the interconnection structure. The reader need not be concerned at this stage about the details of the generation and processing of interrupts, but only focus on the communication between modules that results from interrupts.

Interrupts are provided primarily as a way to improve processing efficiency. For example, most external devices are much slower than the processor. Suppose that the processor is transferring data to a printer using the instruction cycle scheme of Figure 3.3. After each write operation, the processor must pause and remain idle until the printer catches up. The length of this pause may be on the order of many hundreds or even thousands of instruction cycles that do not involve memory. Clearly, this is a very wasteful use of the processor.

Figure 3.7a illustrates this state of affairs. The user program performs a series of WRITE calls interleaved with processing. Code segments 1, 2, and 3 refer to sequences of instructions that do not involve I/O. The WRITE calls are to an I/O

Table 3.1 Classes of Interrupts

Program	Generated by some condition that occurs as a result of an instruction execution, such as arithmetic overflow, division by zero, attempt to execute an illegal machine instruction, or reference outside a user's allowed memory space.
Timer	Generated by a timer within the processor. This allows the operating system to perform certain functions on a regular basis.
I/O	Generated by an I/O controller, to signal normal completion of an operation or to signal a variety of error conditions.
Hardware failure	Generated by a failure such as power failure or memory parity error.

(a) No interrupts

(b) Interrupts: short I/O wait

(c) Interrupts: long I/O wait

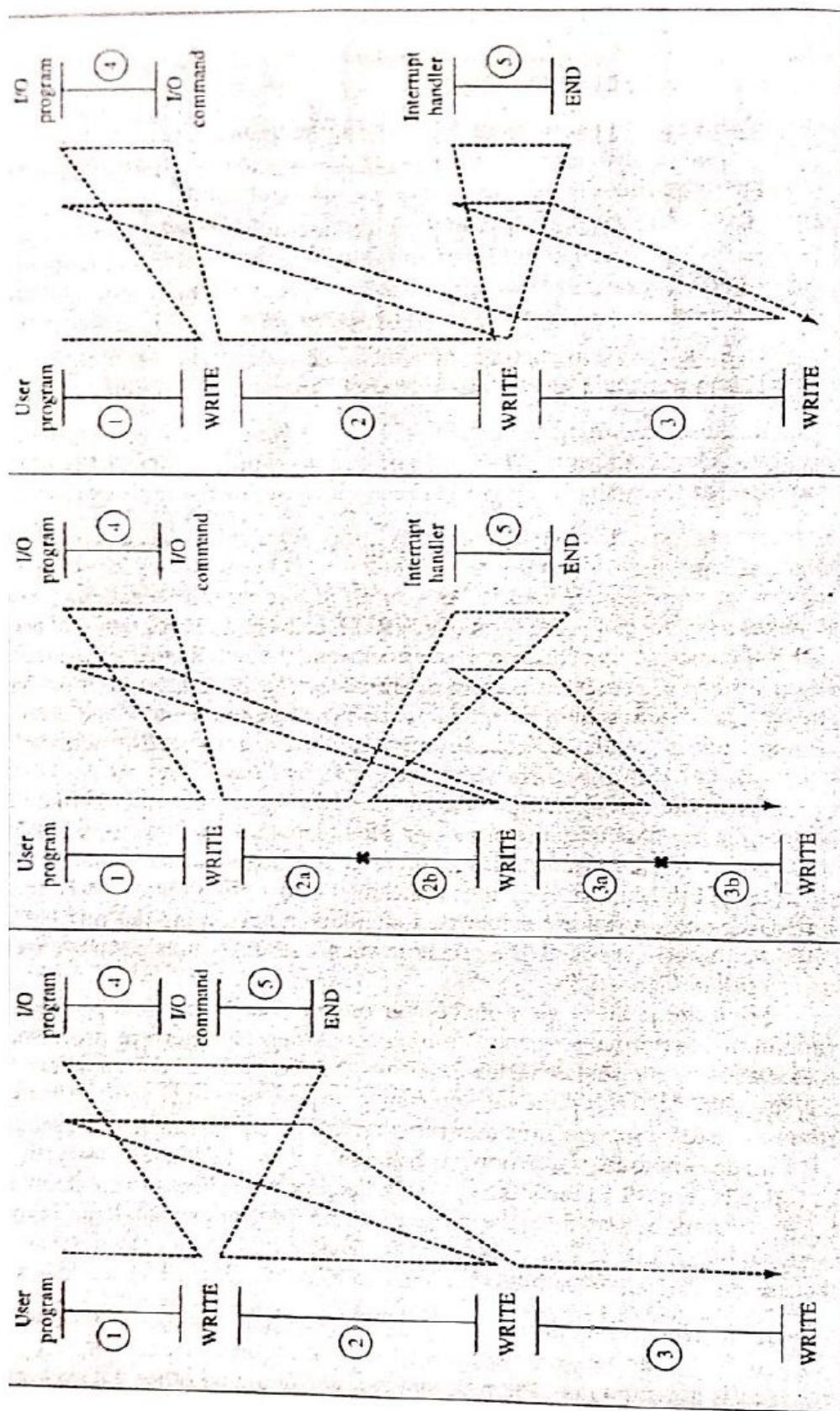


Figure 3.7 Program Flow of Control without and with Interrupts

program that is a system utility and that will perform the actual I/O operation. The I/O program consists of three sections:

- A sequence of instructions, labeled 4 in the figure, to prepare for the actual I/O operation. This may include copying the data to be output into a special buffer and preparing the parameters for a device command.
- The actual I/O command. Without the use of interrupts, once this command is issued, the program must wait for the I/O device to perform the requested function (or periodically poll the device). The program might wait by simply repeatedly performing a test operation to determine if the I/O operation is done.
- A sequence of instructions, labeled 5 in the figure, to complete the operation. This may include setting a flag indicating the success or failure of the operation.

Because the I/O operation may take a relatively long time to complete, the I/O program is hung up waiting for the operation to complete; hence, the user program is stopped at the point of the WRITE call for some considerable period of time.

Interrupts and the Instruction Cycle With interrupts, the processor can be engaged in executing other instructions while an I/O operation is in progress. Consider the flow of control in Figure 3.7b. As before, the user program reaches a point at which it makes a system call in the form of a WRITE call. The I/O program that is invoked in this case consists only of the preparation code and the actual I/O command. After these few instructions have been executed, control returns to the user program. Meanwhile, the external device is busy accepting data from computer memory and printing it. This I/O operation is conducted concurrently with the execution of instructions in the user program.

When the external device becomes ready to be serviced, that is, when it is ready to accept more data from the processor, the I/O module for that external device sends an *interrupt request* signal to the processor. The processor responds by suspending operation of the current program; branching off to a program to service that particular I/O device, known as an interrupt handler, and resuming the original execution after the device is serviced. The points at which such interrupts occur are indicated by an asterisk in Figure 3.7b.

From the point of view of the user program, an interrupt is just that: an interruption of the normal sequence of execution. When the interrupt processing is completed, execution resumes (Figure 3.8). Thus, the user program does not have to contain any special code to accommodate interrupts; the processor and the operating system are responsible for suspending the user program and then resuming it at the same point.

To accommodate interrupts, an *interrupt cycle* is added to the instruction cycle, as shown in Figure 3.9. In the interrupt cycle, the processor checks to see if any interrupts have occurred, indicated by the presence of an interrupt signal. If no interrupts are pending, the processor proceeds to the fetch cycle and fetches the next instruction of the current program. If an interrupt is pending, the processor does the following:

- It suspends execution of the current program being executed and saves its context. This means saving the address of the next instruction to be executed (current contents of the program counter) and any other data relevant to the processor's current activity.
- It sets the program counter to the starting address of an *interrupt handler* routine.

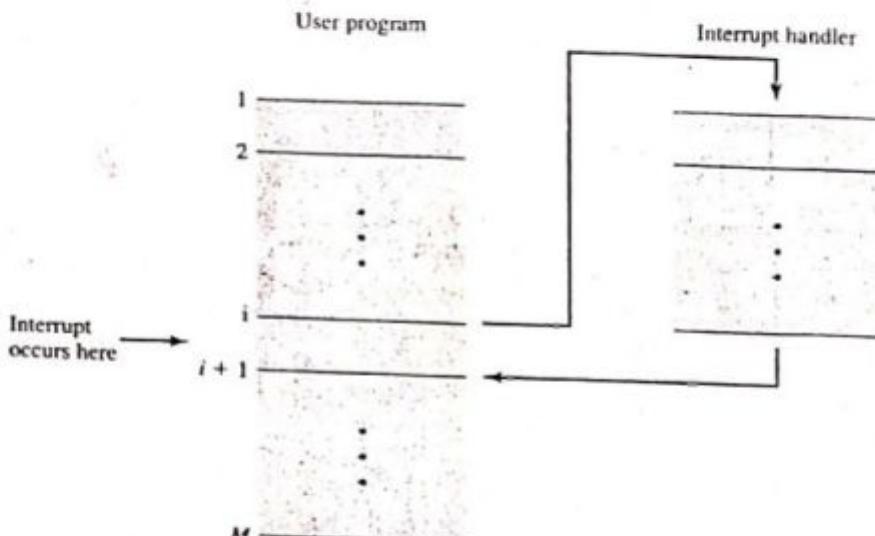


Figure 3.8 Transfer of Control via Interrupts

The processor now proceeds to the fetch cycle and fetches the first instruction in the interrupt handler program, which will service the interrupt. The interrupt handler program is generally part of the operating system. Typically, this program determines the nature of the interrupt and performs whatever actions are needed. In the example we have been using, the handler determines which I/O module generated the interrupt and may branch to a program that will write more data out to that I/O module. When the interrupt handler routine is completed, the processor can resume execution of the user program at the point of interruption.

It is clear that there is some overhead involved in this process. Extra instructions must be executed (in the interrupt handler) to determine the nature of the interrupt and to decide on the appropriate action. Nevertheless, because of the relatively large

Fetch cycle

Execute cycle

Interrupt

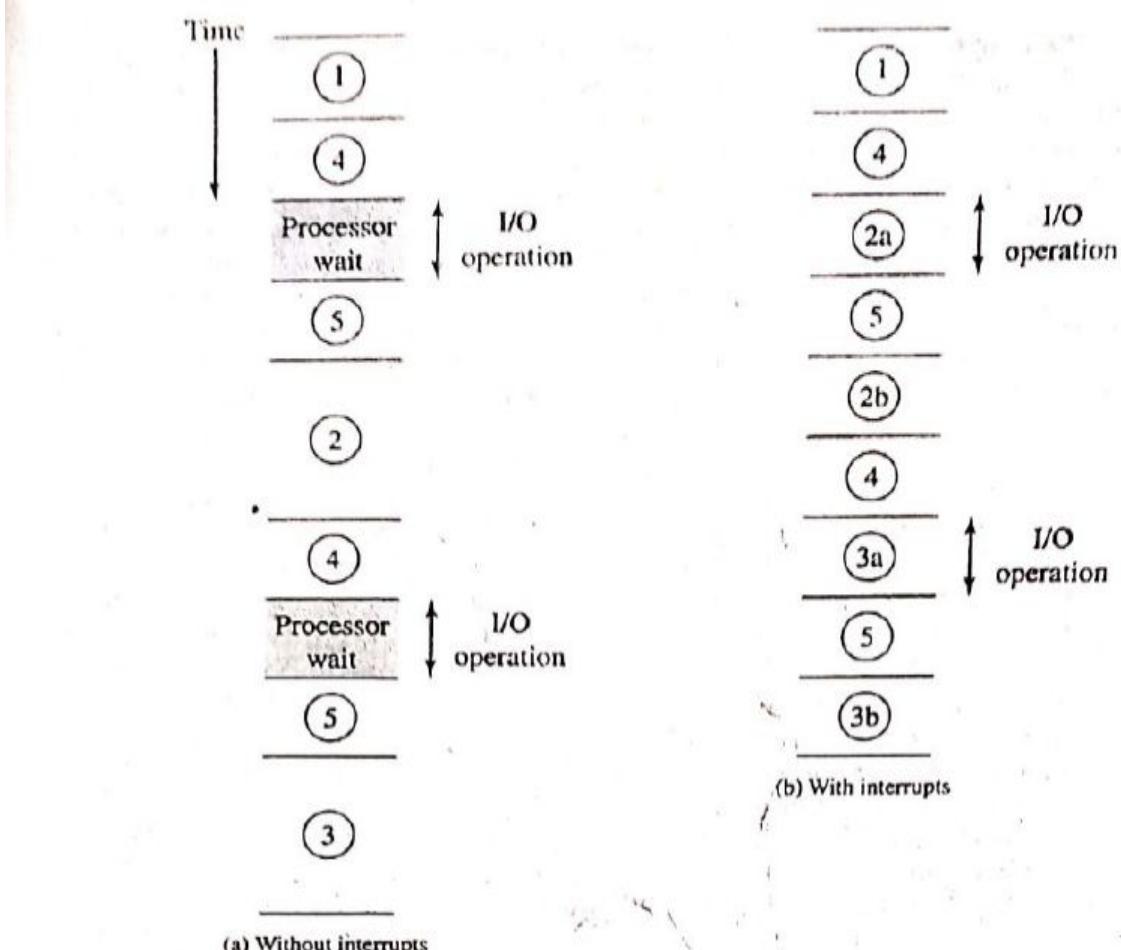


Figure 3.10 Program Timing; Short I/O Wait

amount of time that would be wasted by simply waiting on an I/O operation, the processor can be employed much more efficiently with the use of interrupts.

To appreciate the gain in efficiency, consider Figure 3.10, which is a timing diagram based on the flow of control in Figures 3.7a and 3.7b. Figures 3.7b and 3.10 assume that the time required for the I/O operation is relatively short: less than the time to complete the execution of instructions between write operations in the user program. The more typical case, especially for a slow device such as a printer, is that the I/O operation will take much more time than executing a sequence of user instructions. Figure 3.7c indicates this state of affairs. In this case, the user program reaches the second WRITE call before the I/O operation spawned by the first call is complete. The result is that the user program is hung up at that point. When the preceding I/O operation is completed, this new WRITE call may be processed, and a new I/O operation may be started. Figure 3.11 shows the timing for this situation with and without the use of interrupts. We can see that there is still a gain in efficiency because part of the time during which the I/O operation is underway overlaps with the execution of user instructions.

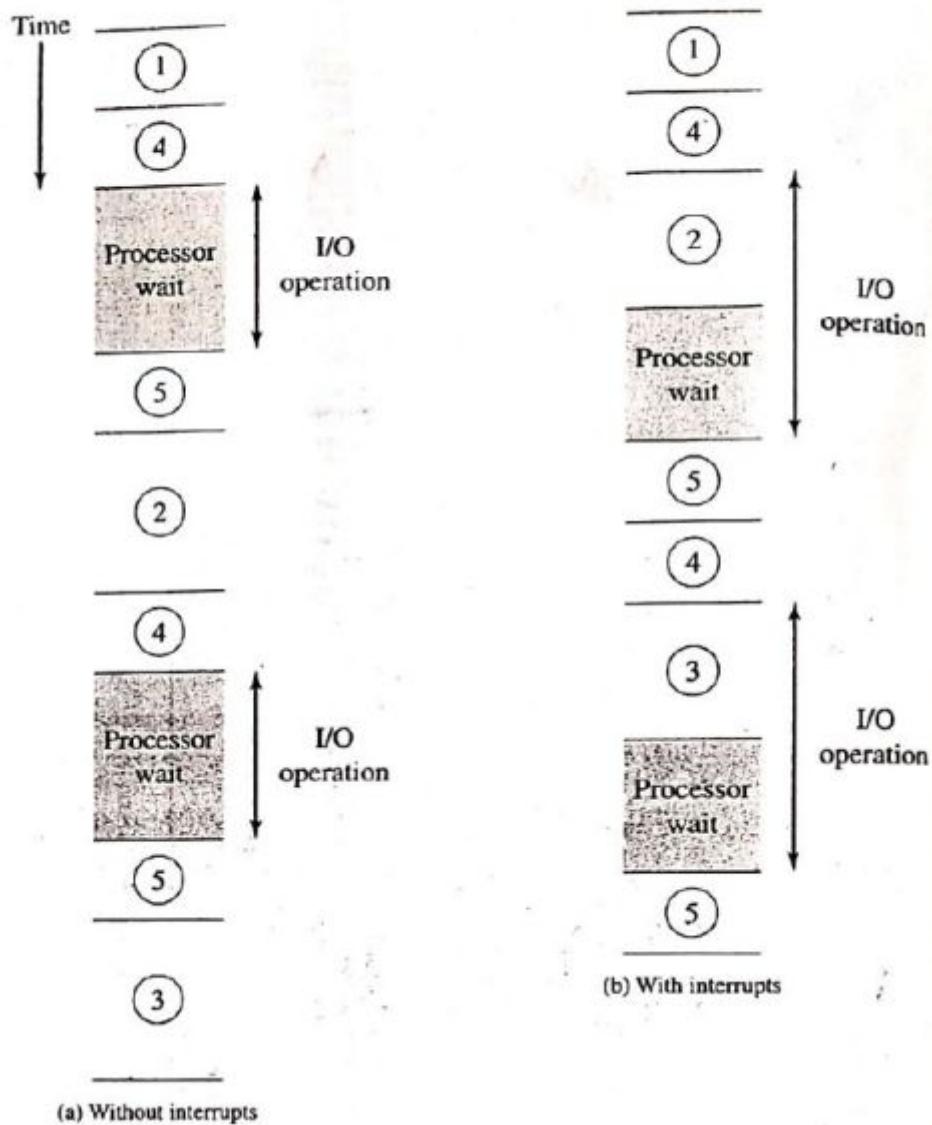


Figure 3.11 Program Timing: Long I/O Wait

Figure 3.12 shows a revised instruction cycle state diagram that includes interrupt cycle processing.

Multiple Interrupts The discussion so far has focused only on the occurrence of a single interrupt. Suppose, however, that multiple interrupts can occur. For example, a program may be receiving data from a communications line and printing results. The printer will generate an interrupt every time that it completes a print operation. The communication line controller will generate an interrupt every time a unit of data arrives. The unit could either be a single character or a block, depending on the nature of the communications discipline. In any case, it is possible for a communications interrupt to occur while a printer interrupt is being processed.

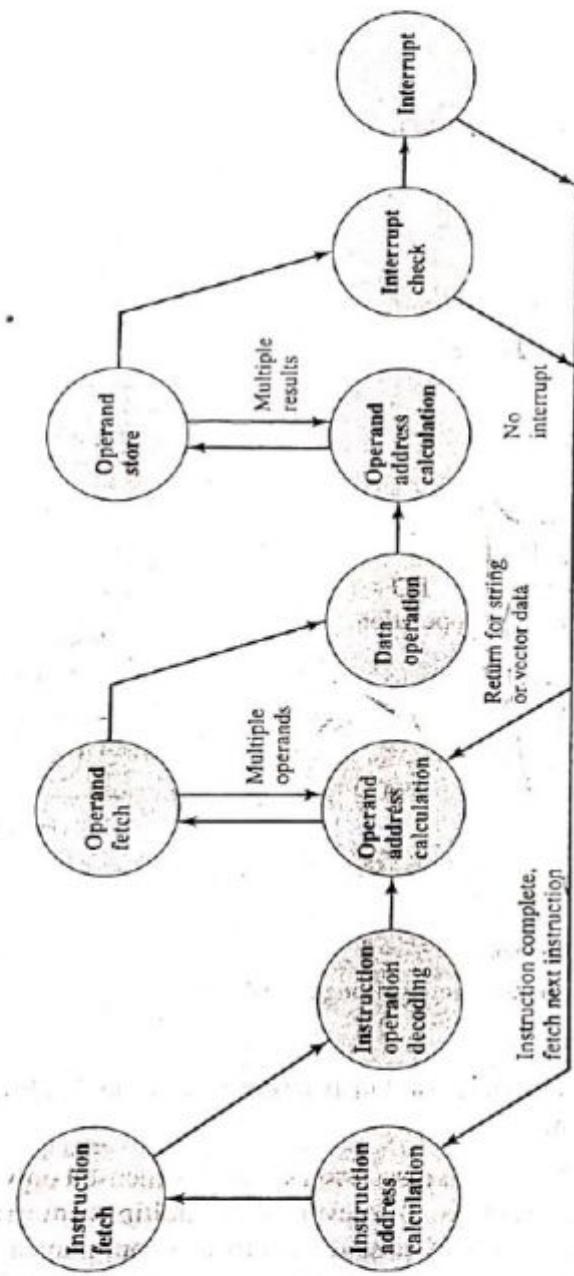


Figure 3.12: Instruction Cycle State Diagram, with Interrupts

Two approaches can be taken to dealing with multiple interrupts. The first is to disable interrupts while an interrupt is being processed. A *disabled interrupt* simply means that the processor can and will ignore that interrupt request signal. If an interrupt occurs during this time, it generally remains pending and will be checked by the processor after the processor has enabled interrupts. Thus, when a user program is executing and an interrupt occurs, interrupts are disabled immediately. After the interrupt handler routine completes, interrupts are enabled before resuming the user program, and the processor checks to see if additional interrupts have occurred. This approach is nice and simple, as interrupts are handled in strict sequential order (Figure 3.13a).

The drawback to the preceding approach is that it does not take into account relative priority or time-critical needs. For example, when input arrives from the communications line, it may need to be absorbed rapidly to make room for more input. If the first batch of input has not been processed before the second batch arrives, data may be lost.

A second approach is to define priorities for interrupts and to allow an interrupt of higher priority to cause a lower-priority interrupt handler to be itself interrupted (Figure 3.13b). As an example of this second approach, consider a system with three I/O devices: a printer, a disk, and a communications line, with increasing priorities of 2, 4, and 5, respectively. Figure 3.14, based on an example in [TANE97], illustrates a possible sequence. A user program begins at $t = 0$. At $t = 10$, a printer interrupt occurs; user information is placed on the system stack and execution continues at the printer interrupt service routine (ISR). While this routine is still executing, at $t = 15$, a communications interrupt occurs. Because the communications line has higher priority than the printer, the interrupt is honored. The printer ISR is interrupted, its state is pushed onto the stack, and execution continues at the communications ISR. While this routine is executing, a disk interrupt occurs ($t = 20$). Because this interrupt is of lower priority, it is simply held, and the communications ISR runs to completion.

When the communications ISR is complete ($t = 25$), the previous processor state is restored, which is the execution of the printer ISR. However, before even a single instruction in that routine can be executed, the processor honors the higher-priority disk interrupt and control transfers to the disk ISR. Only when that routine is complete ($t = 35$) is the printer ISR resumed. When that routine completes ($t = 40$), control finally returns to the user program.

I/O Function

Thus far, we have discussed the operation of the computer as controlled by the processor, and we have looked primarily at the interaction of processor and memory. The discussion has only alluded to the role of the I/O component. This role is discussed in detail in Chapter 7, but a brief summary is in order here.

An I/O module (e.g., a disk controller) can exchange data directly with the processor. Just as the processor can initiate a read or write with memory, designating the address of a specific location, the processor can also read data from or write data to an I/O module. In this latter case, the processor identifies a specific device that is controlled by a particular I/O module. Thus, an instruction sequence similar in form to that of Figure 3.5 could occur, with I/O instructions rather than memory-referencing instructions.

In some cases, it is desirable to allow I/O exchanges to occur directly with memory. In such a case, the processor grants to an I/O module the authority to read from

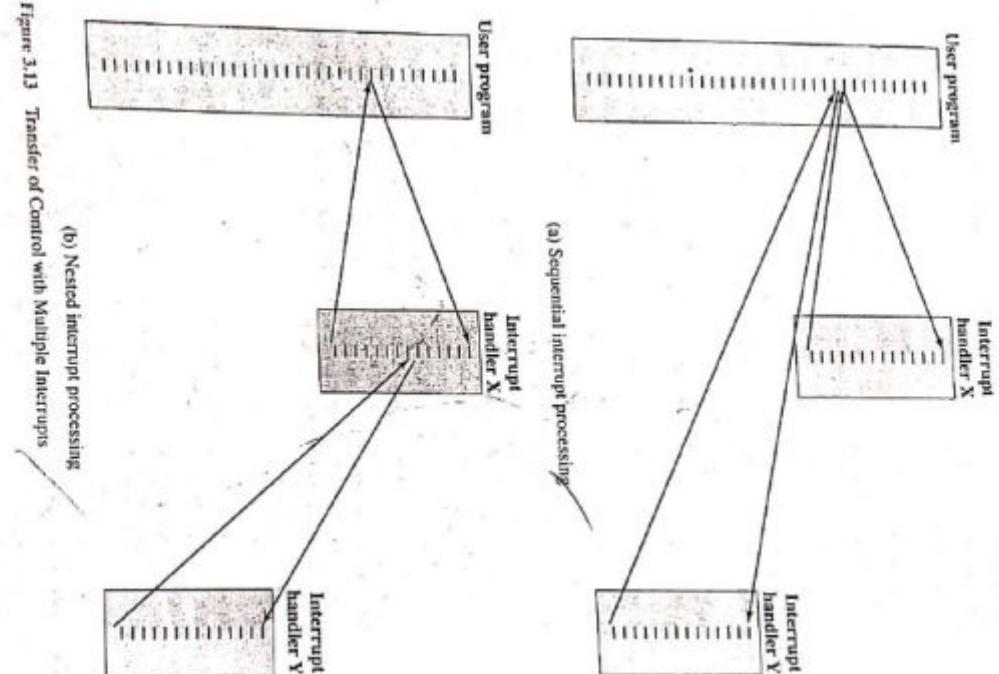


Figure 7.13 Transfer of Control with Multiple Interrupts

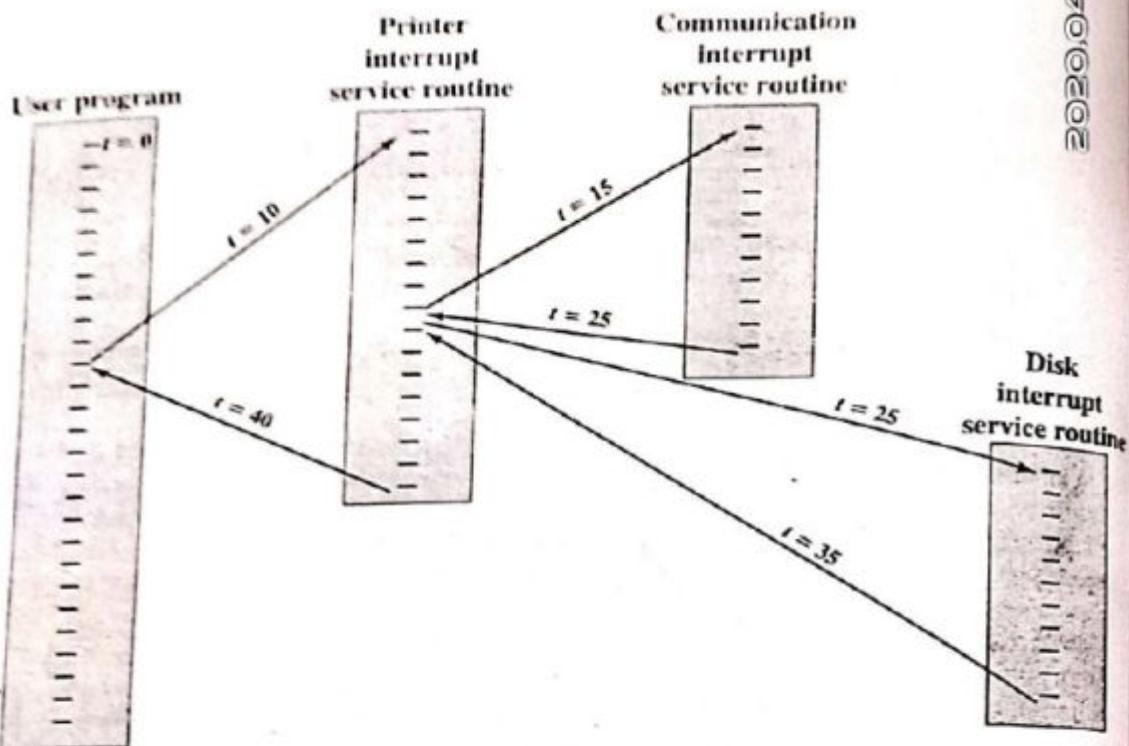


Figure 3.14 Example Time Sequence of Multiple Interrupts

or write to memory, so that the I/O-memory transfer can occur without tying up the processor. During such a transfer, the I/O module issues read or write commands to memory, relieving the processor of responsibility for the exchange. This operation is known as direct memory access (DMA) and is examined Chapter 7.

3.3 INTERCONNECTION STRUCTURES

A computer consists of a set of components or modules of three basic types (processor, memory, I/O) that communicate with each other. In effect, a computer is a network of basic modules. Thus, there must be paths for connecting the modules.

The collection of paths connecting the various modules is called the *interconnection structure*. The design of this structure will depend on the exchanges that must be made between modules.

Figure 3.15 suggests the types of exchanges that are needed by indicating the major forms of input and output for each module type:

- **Memory:** Typically, a memory module will consist of N words of equal length. Each word is assigned a unique numerical address ($0, 1, \dots, N - 1$). A word of data can be read from or written into the memory. The nature of the operation is indicated by read and write control signals. The location for the operation is specified by an address.

CHAPTER 3 / A TOP-LEVEL VIEW OF COMPUTER FUNCTION

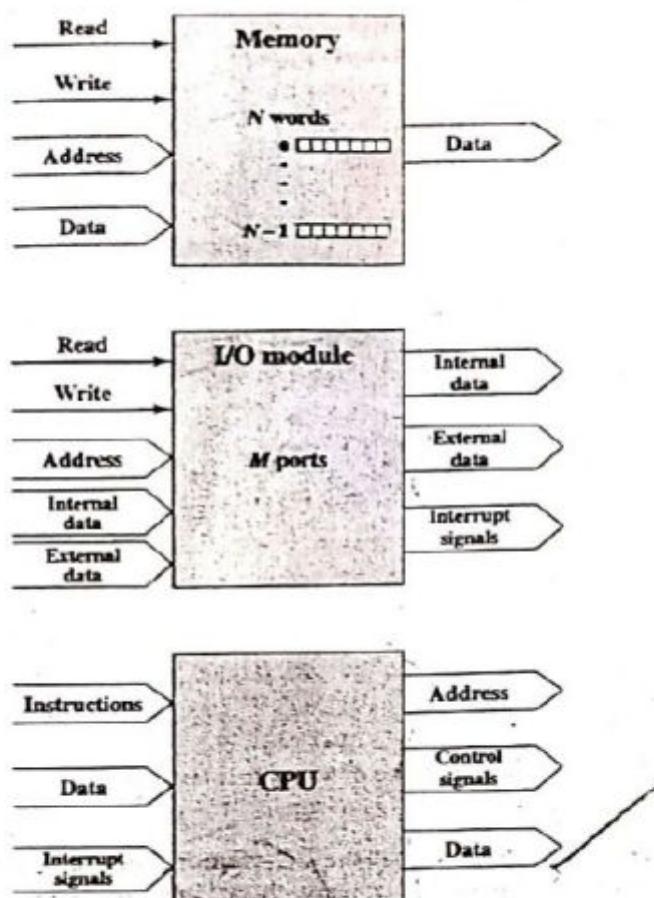


Figure 3.15 Computer Modules

✓ **I/O module:** From an internal (to the computer system) point of view, I/O is functionally similar to memory. There are two operations, read and write. Further, an I/O module may control more than one external device. We can refer to each of the interfaces to an external device as a *port* and give each a unique address (e.g., 0, 1, ..., $M - 1$). In addition, there are external data paths for the input and output of data with an external device. Finally, an I/O module may be able to send interrupt signals to the processor.

✓ **Processor:** The processor reads in instructions and data, writes out data after processing, and uses control signals to control the overall operation of the system. It also receives interrupt signals.

The preceding list defines the data to be exchanged. The interconnection structure must support the following types of transfers:

- ✓ **Memory to processor:** The processor reads an instruction or a unit of data from memory.
- ✓ **Processor to memory:** The processor writes a unit of data to memory.

- **I/O to processor:** The processor reads data from an I/O device via an I/O module.
- **Processor to I/O:** The processor sends data to the I/O device.
- **I/O to or from memory:** For these two cases, an I/O module is allowed to exchange data directly with memory, without going through the processor, using direct memory access (DMA).

Over the years, a number of interconnection structures have been tried. By far the most common is the bus and various multiple-bus structures. The remainder of this chapter is devoted to an assessment of bus structures.

3.4 BUS INTERCONNECTION

A bus is a communication pathway connecting two or more devices. A key characteristic of a bus is that it is a shared transmission medium. Multiple devices connect to the bus, and a signal transmitted by any one device is available for reception by all other devices attached to the bus. If two devices transmit during the same time period, their signals will overlap and become garbled. Thus, only one device at a time can successfully transmit.

Typically, a bus consists of multiple communication pathways or lines. Each line is capable of transmitting signals representing binary 1 and binary 0. Over time, a sequence of binary digits can be transmitted across a single line. Taken together, several lines of a bus can be used to transmit binary digits simultaneously (in parallel). For example, an 8-bit unit of data can be transmitted over eight bus lines.

Computer systems contain a number of different buses that provide pathways between components at various levels of the computer system hierarchy. A bus that connects major computer components (processor, memory, I/O) is called a system bus. The most common computer interconnection structures are based on the use of one or more system buses.

Bus Structure

A system bus consists, typically, of from about 50 to hundreds of separate lines. Each line is assigned a particular meaning or function. Although there are many different bus designs, on any bus the lines can be classified into three functional groups (Figure 3.16):

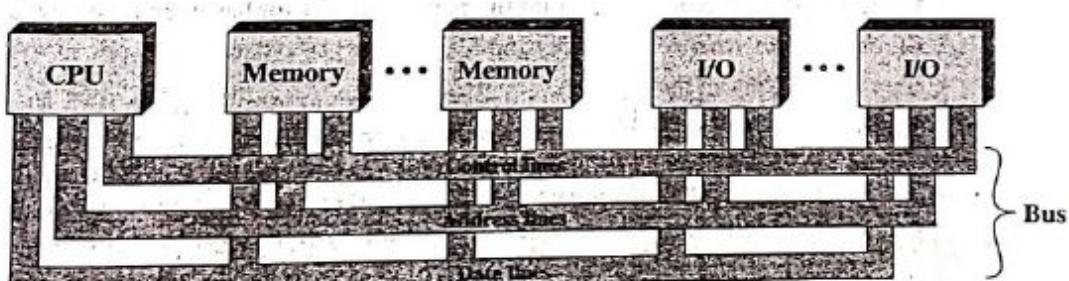


Figure 3.16 Bus Interconnection Scheme

data, address, and control lines. In addition, there may be power distribution lines that supply power to the attached modules.

The data lines provide a path for moving data between system modules. These lines, collectively, are called the data bus. The data bus may consist of from 32 to hundreds of separate lines, the number of lines being referred to as the width of the data bus. Because each line can carry only 1 bit at a time, the number of lines determines how many bits can be transferred at a time. The width of the data bus is a key factor in determining overall system performance. For example, if the data bus is 8 bits wide and each instruction is 16 bits long, then the processor must access the memory module twice during each instruction cycle.

The address lines are used to designate the source or destination of the data on the data bus. For example, if the processor wishes to read a word (8, 16, or 32 bits) of data from memory, it puts the address of the desired word on the address lines. Clearly the width of the address bus determines the maximum possible memory capacity of the system. Furthermore, the address lines are generally also used to address I/O ports. Typically, the higher-order bits are used to select a particular module on the bus, and the lower-order bits select a memory location or I/O port within the module. For example, on an 8-bit address bus, address 01111111 and below might reference locations in a memory module (module 0) with 128 words of memory, and address 10000000 and above refer to devices attached to an I/O module (module 1).

The control lines are used to control the access to and the use of the data and address lines. Because the data and address lines are shared by all components, there must be a means of controlling their use. Control signals transmit both command and timing information between system modules. Timing signals indicate the validity of data and address information. Command signals specify operations to be performed. Typical control lines include

- **Memory write:** Causes data on the bus to be written into the addressed location
- **Memory read:** Causes data from the addressed location to be placed on the bus
- **I/O write:** Causes data on the bus to be output to the addressed I/O port
- **I/O read:** Causes data from the addressed I/O port to be placed on the bus
- **Transfer ACK:** Indicates that data have been accepted from or placed on the bus
- **Bus request:** Indicates that a module needs to gain control of the bus
- **Bus grant:** Indicates that a requesting module has been granted control of the bus
- **Interrupt request:** Indicates that an interrupt is pending
- **Interrupt ACK:** Acknowledges that the pending interrupt has been recognized
- **Clock:** Used to synchronize operations
- **Reset:** Initializes all modules

The operation of the bus is as follows. If one module wishes to send data to another, it must do two things: (1) Obtain the use of the bus, and (2) transfer data via the bus. If one module wishes to request data from another module, it must (1) obtain the use of the bus, and (2) transfer a request to the other module over the appropriate control and address lines. It must then wait for that second module to send the data.

Physically, the system bus is actually a number of parallel electrical conductors. In the classic bus arrangement, these conductors are metal lines etched in a

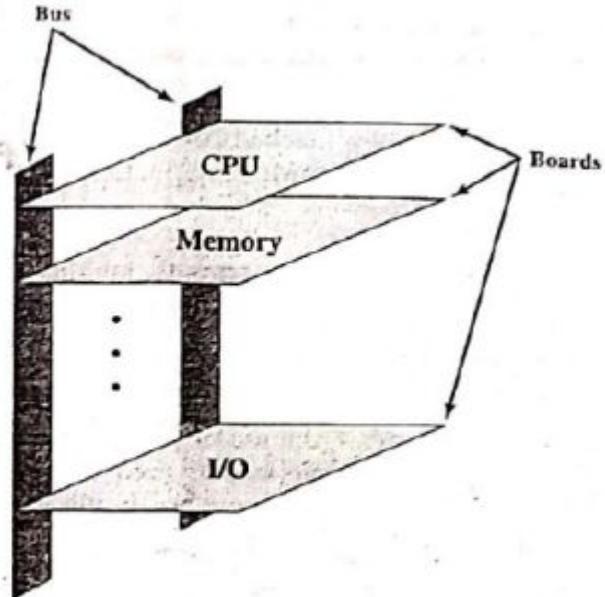


Figure 3.17 Typical Physical Realization of a Bus Architecture

card or board (printed circuit board). The bus extends across all of the system components, each of which taps into some or all of the bus lines. The classic physical arrangement is depicted in Figure 3.17. In this example, the bus consists of two vertical columns of conductors. At regular intervals along the columns, there are attachment points in the form of slots that extend out horizontally to support a printed circuit board. Each of the major system components occupies one or more boards and plugs into the bus at these slots. The entire arrangement is housed in a chassis. This scheme can still be used for some of the buses associated with a computer system. However, modern systems tend to have all of the major components on the same board with more elements on the same chip as the processor. Thus, an on-chip bus may connect the processor and cache memory, whereas an on-board bus may connect the processor to main memory and other components.

This arrangement is most convenient. A small computer system may be acquired and then expanded later (more memory, more I/O) by adding more boards. If a component on a board fails, that board can easily be removed and replaced.

Multiple-Bus Hierarchies

If a great number of devices are connected to the bus, performance will suffer. There are two main causes:

1. In general, the more devices attached to the bus, the greater the bus length and hence the greater the propagation delay. This delay determines the time it takes for devices to coordinate the use of the bus. When control of the bus passes from one device to another frequently, these propagation delays can noticeably affect performance.

2. The bus may become a bottleneck as the aggregate data transfer demand approaches the capacity of the bus. This problem can be countered to some extent by increasing the data rate that the bus can carry and by using wider buses (e.g., increasing the data bus from 32 to 64 bits). However, because the data rates generated by attached devices (e.g., graphics and video controllers, network interfaces) are growing rapidly, this is a race that a single bus is ultimately destined to lose.

Accordingly, most computer systems use multiple buses, generally laid out in a hierarchy. A typical traditional structure is shown in Figure 3.18a. There is a local bus that connects the processor to a cache memory and that may support one or more local devices. The cache memory controller connects the cache not only to this local bus, but to a system bus to which are attached all of the main memory modules. As will be discussed in Chapter 4, the use of a cache structure insulates the processor from a requirement to access main memory frequently. Hence, main memory can be moved off of the local bus onto a system bus. In this way, I/O transfers to and from the main memory across the system bus do not interfere with the processor's activity.

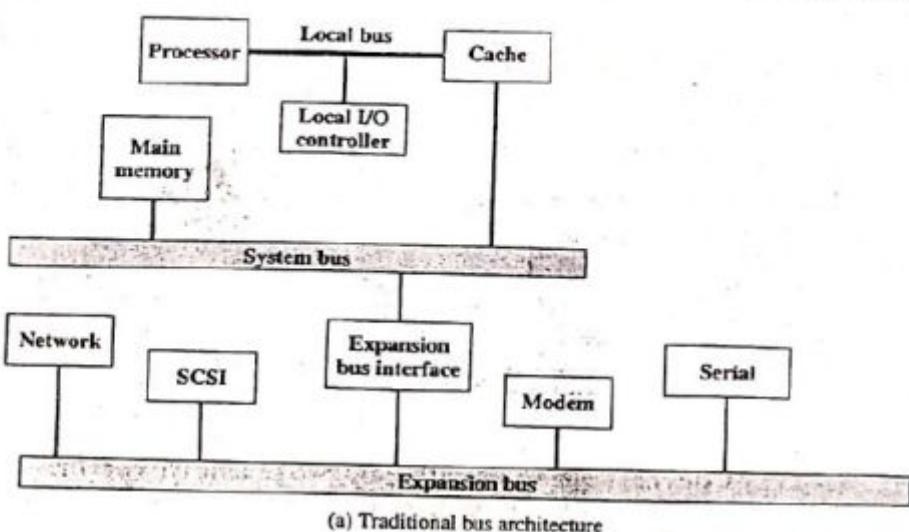

It is possible to connect I/O controllers directly onto the system bus. A more efficient solution is to make use of one or more expansion buses for this purpose. An expansion bus interface buffers data transfers between the system bus and the I/O controllers on the expansion bus. This arrangement allows the system to support a wide variety of I/O devices and at the same time insulate memory-to-processor traffic from I/O traffic.

Figure 3.18a shows some typical examples of I/O devices that might be attached to the expansion bus. Network connections include local area networks (LANs) such as a 10-Mbps Ethernet and connections to wide area networks (WANs) such as a packet-switching network. SCSI (small computer system interface) is itself a type of bus used to support local disk drives and other peripherals. A serial port could be used to support a printer or scanner.

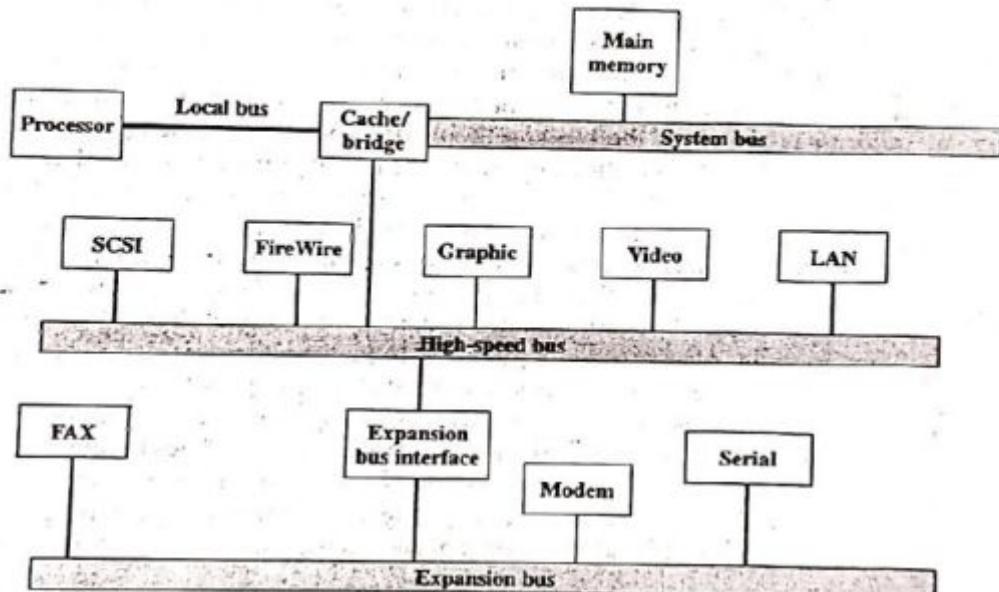

This traditional bus architecture is reasonably efficient but begins to break down as higher and higher performance is seen in the I/O devices. In response to these growing demands, a common approach taken by industry is to build a high-speed bus that is closely integrated with the rest of the system, requiring only a bridge between the processor's bus and the high-speed bus. This arrangement is sometimes known as a mezzanine architecture.

Figure 3.18b shows a typical realization of this approach. Again, there is a local bus that connects the processor to a cache controller, which is in turn connected to a system bus that supports main memory. The cache controller is integrated into a bridge, or buffering device, that connects to the high-speed bus. This bus supports connections to high-speed LANs, such as Fast Ethernet at 100 Mbps, video and graphics workstation controllers, as well as interface controllers to local peripheral buses, including SCSI and FireWire. The latter is a high-speed bus arrangement specifically designed to support high-capacity I/O devices. Lower-speed devices are still supported off an expansion bus, with an interface buffering between the expansion bus and the high-speed bus.

The advantage of this arrangement is that the high-speed bus brings high-demand devices into closer integration with the processor and at the same time is independent of the processor. Thus, differences in processor and high-speed bus

(a) Traditional bus architecture

(b) High-performance architecture

Figure 3.18 Example Bus Configurations

speeds and signal line definitions are tolerated. Changes in processor architecture do not affect the high-speed bus, and vice versa.

Elements of Bus Design

Although a variety of different bus implementations exist, there are a few basic parameters or design elements that serve to classify and differentiate buses. Table 3.2 lists key elements.

OP-LEVEL VIEW OF COMPUTER FUNCTION

Table 3.2 Elements of Bus Design

Type	Bus Width
Dedicated	Address
Multiplexed	Data
Method of Arbitration	Data Transfer Type
Centralized	Read
Distributed	Write
Timing	Read-modify-write
Synchronous	Read-after-write
Asynchronous	Block

Bus lines can be separated into two generic types: dedicated and multiplexed. A dedicated bus line is permanently assigned either to one function or to a set of computer components.

One example of functional dedication is the use of separate dedicated address lines, which is common on many buses. However, it is not essential. For instance, address and data information may be transmitted over the same set of lines. An Address Valid control line. At the beginning of a data transfer, the address is placed on the bus and the Address Valid line is activated. At this point, the bus controller has a specified period of time to copy the address and determine if it is intended for a specific module. The address is then removed from the bus, and the same bus lines are used for the subsequent read or write data transfer. This method of using the same lines for multiple purposes is known as *time multiplexing*.

The advantage of time multiplexing is the use of fewer lines, which saves space and reduces cost. The disadvantage is that more complex circuitry is needed within the bus controller. Also, there is a potential reduction in performance because certain operations that share the same lines cannot take place in parallel.

Physical dedication refers to the use of multiple buses, each of which connects only to specific modules. A typical example is the use of an I/O bus to interconnect all I/O modules. The I/O bus is then connected to the main bus through some type of I/O adapter card. The potential advantage of physical dedication is high throughput, because there is no bus contention. A disadvantage is the increased size and cost of the system.

Arbitration In all but the simplest systems, more than one module may be connected to the bus. For example, an I/O module may need to read or write directly to memory without sending the data to the processor. Because only one unit can be active at a time, some method of arbitration is needed. The various arbitration schemes can be roughly classified as being either centralized or distributed. In a centralized scheme, a single hardware device, referred to as a *bus controller* or *arbitrator*, is responsible for controlling and allocating time on the bus. The device may be a separate module or part of the processor. In a distributed scheme, there is no central controller. Rather, each module has its own access control logic and the modules act together to share the bus. With distributed arbitration, the purpose is to designate one device, either the processor or some other device, as master. The master may then initiate a data transfer (e.g., read or write) to some other device, which acts as slave for this particular exchange.

Timing Timing refers to the way in which events are coordinated on the bus. Buses use either synchronous timing or asynchronous timing.

With **synchronous timing**, the occurrence of events on the bus is determined by a clock. The bus includes a clock line upon which a clock transmits a regular sequence of alternating 1s and 0s of equal duration. A single 1-0 transmission is referred to as a *clock cycle* or *bus cycle* and defines a time slot. All other devices on the bus can read the clock line, and all events start at the beginning of a clock cycle. Figure 3.19 shows a typical, but simplified, timing diagram for synchronous read and write operations (see Appendix 3A for a description of timing diagrams). Other bus signals may change at the leading edge of the clock signal (with a slight reaction delay). Most events occupy a single clock cycle. In this simple example, the processor places a memory address on the address lines during the first clock cycle and may assert various status lines. Once the address lines have stabilized, the processor issues an address enable signal. For a read operation, the processor issues a read command at the start of the second cycle. A memory module recognizes the address

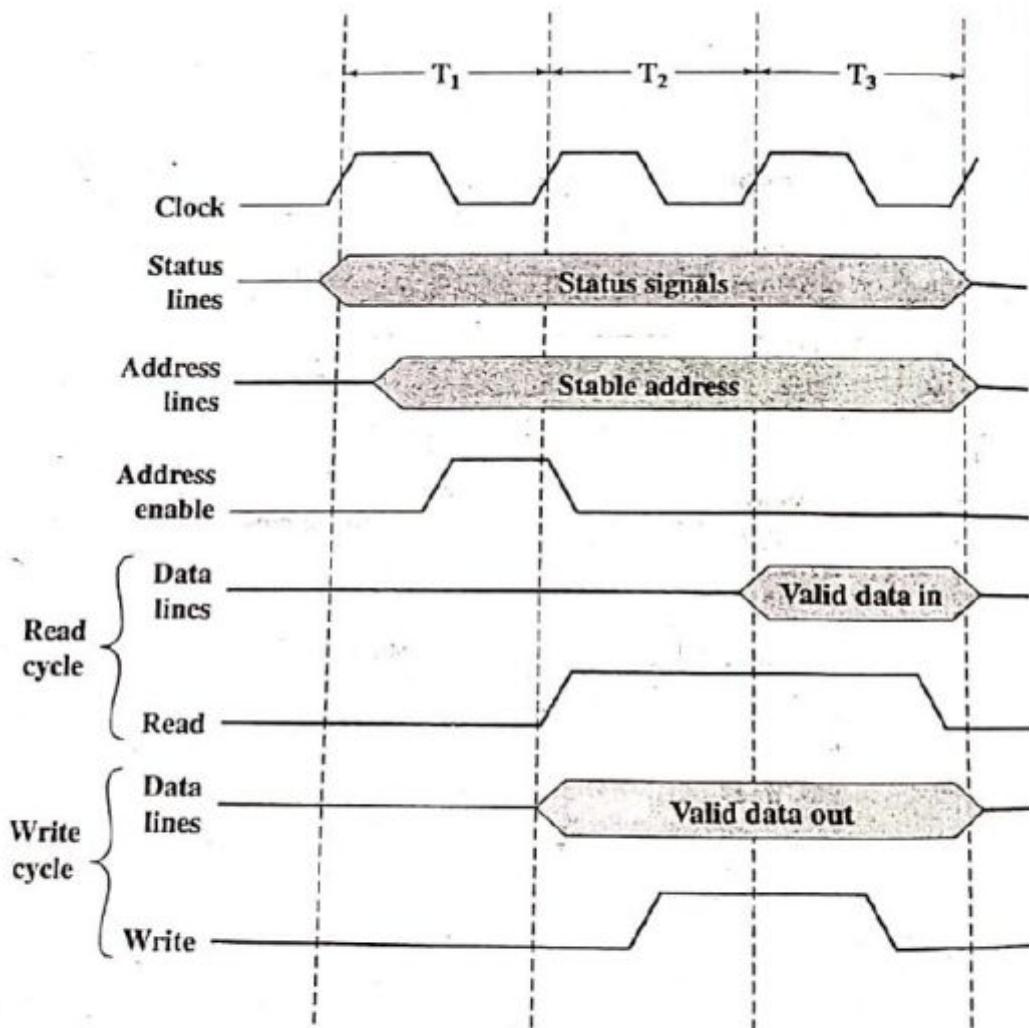


Figure 3.19 Timing of Synchronous Bus Operations

and, after a delay of one cycle, places the data on the data lines. The processor reads the data from the data lines and drops the read signal. For a write operation, the processor puts the data on the data lines at the start of the second cycle, and issues a write command after the data lines have stabilized. The memory module copies the information from the data lines during the third clock cycle.

With **asynchronous timing**, the occurrence of one event on a bus follows and depends on the occurrence of a previous event. In the simple read example of Figure 3.20a, the processor places address and status signals on the bus. After pausing for these signals to stabilize, it issues a read command, indicating the presence of valid address and control signals. The appropriate memory decodes the address and responds by placing the data on the data line. Once the data lines have stabilized, the memory module asserts the acknowledged line to signal the processor that the

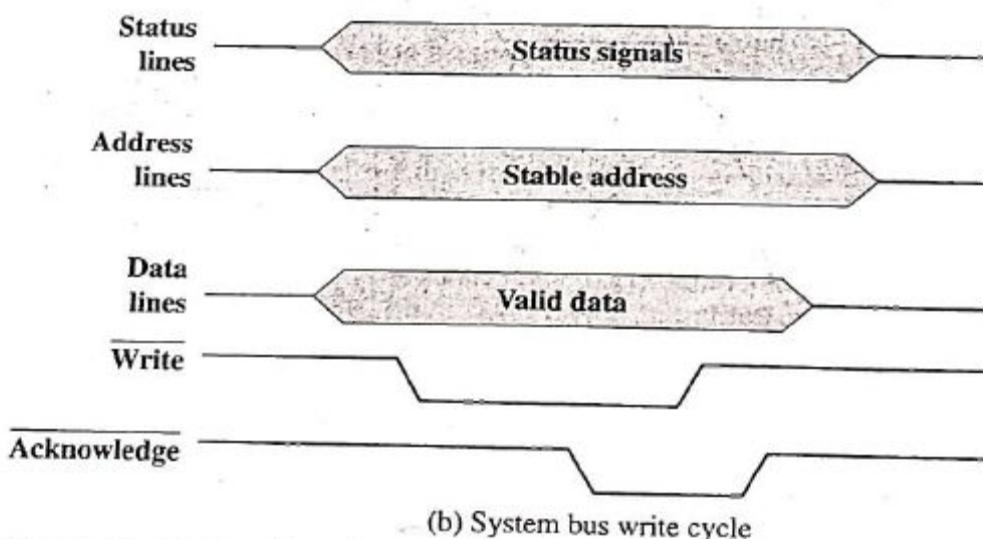
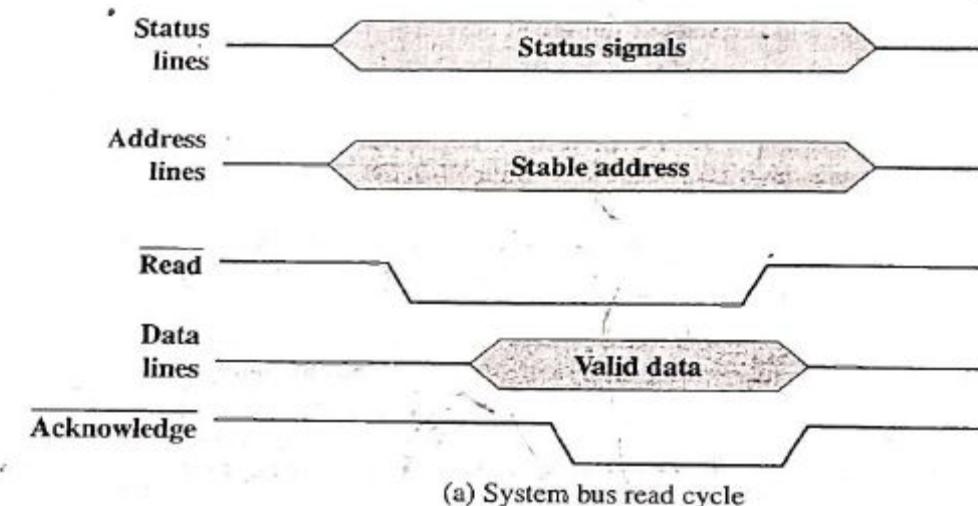



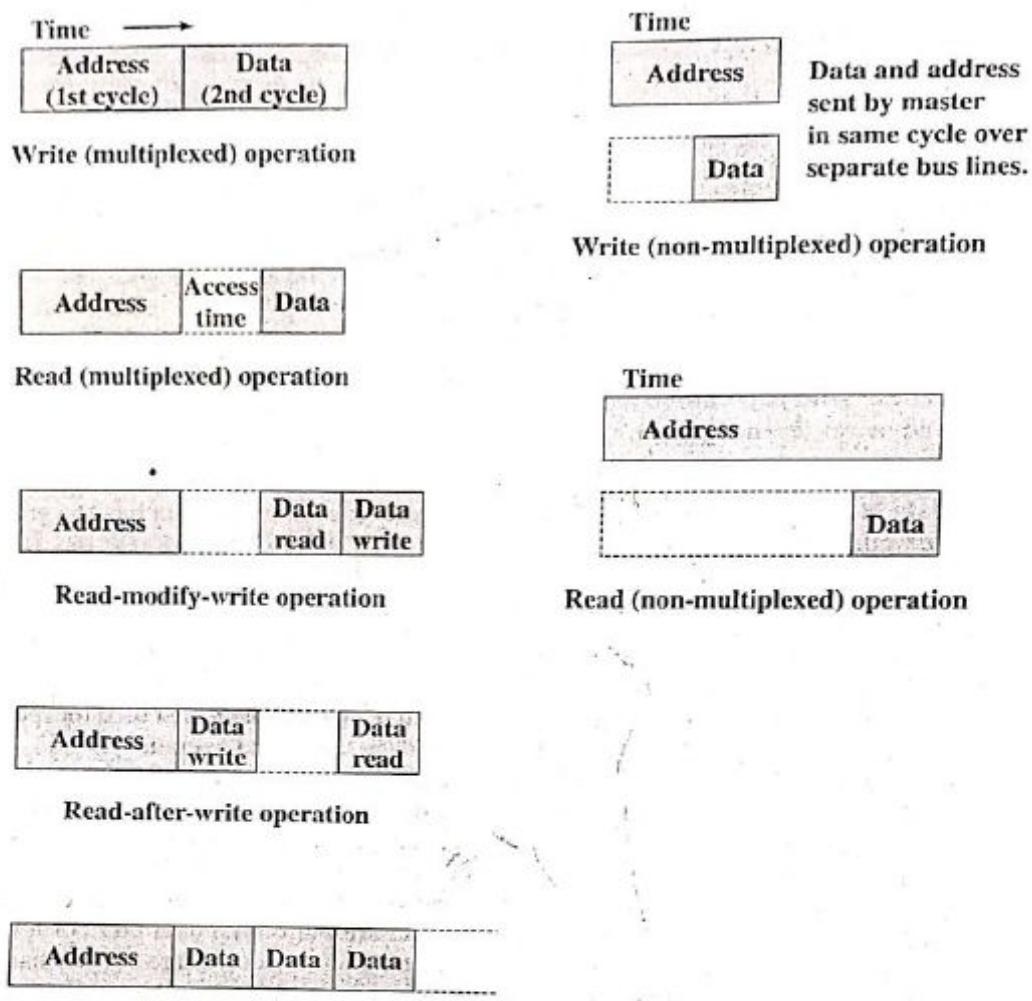
Figure 3.20 Timing of Asynchronous Bus Operations

data are available. Once the master has read the data from the data lines, it deasserts the read signal. This causes the memory module to drop the data and acknowledge lines. Finally, once the acknowledge line is dropped, the master removes the address information.

Figure 3.20b shows a simple asynchronous write operation. In this case, the master places the data on the data line at the same time that it puts signals on the status and address lines. The memory module responds to the write command by copying the data from the data lines and then asserting the acknowledge line. The master then drops the write signal and the memory module drops the acknowledge signal.

Synchronous timing is simpler to implement and test. However, it is less flexible than asynchronous timing. Because all devices on a synchronous bus are tied to a fixed clock rate, the system cannot take advantage of advances in device performance. With asynchronous timing, a mixture of slow and fast devices, using older and newer technology, can share a bus.

Bus Width We have already addressed the concept of bus width. The width of the data bus has an impact on system performance: The wider the data bus, the greater the number of bits transferred at one time. The width of the address bus has an impact on system capacity: The wider the address bus, the greater the range of locations that can be referenced.


Data Transfer Type Finally, a bus supports various data transfer types, as illustrated in Figure 3.21. All buses support both write (master to slave) and read (slave to master) transfers. In the case of a multiplexed address/data bus, the bus is first used for specifying the address and then for transferring the data. For a read operation, there is typically a wait while the data is being fetched from the slave to be put on the bus. For either a read or a write, there may also be a delay if it is necessary to go through arbitration to gain control of the bus for the remainder of the operation (i.e., seize the bus to request a read or write, then seize the bus again to perform a read or write).

In the case of dedicated address and data buses, the address is put on the address bus and remains there while the data are put on the data bus. For a write operation, the master puts the data onto the data bus as soon as the address has stabilized and the slave has had the opportunity to recognize its address. For a read operation, the slave puts the data onto the data bus as soon as it has recognized its address and has fetched the data.

There are also several combination operations that some buses allow. A read-modify-write operation is simply a read followed immediately by a write to the same address. The address is only broadcast once at the beginning of the operation. The whole operation is typically indivisible to prevent any access to the data element by other potential bus masters. The principal purpose of this capability is to protect shared memory resources in a multiprogramming system (see Chapter 8).

Read-after-write is an indivisible operation consisting of a write followed immediately by a read from the same address. The read operation may be performed for checking purposes.

Some bus systems also support a block data transfer. In this case, one address cycle is followed by n data cycles. The first data item is transferred to or from the specified address; the remaining data items are transferred to or from subsequent addresses.

Figure 3.21 Bus Data Transfer Types

3.5 PCI

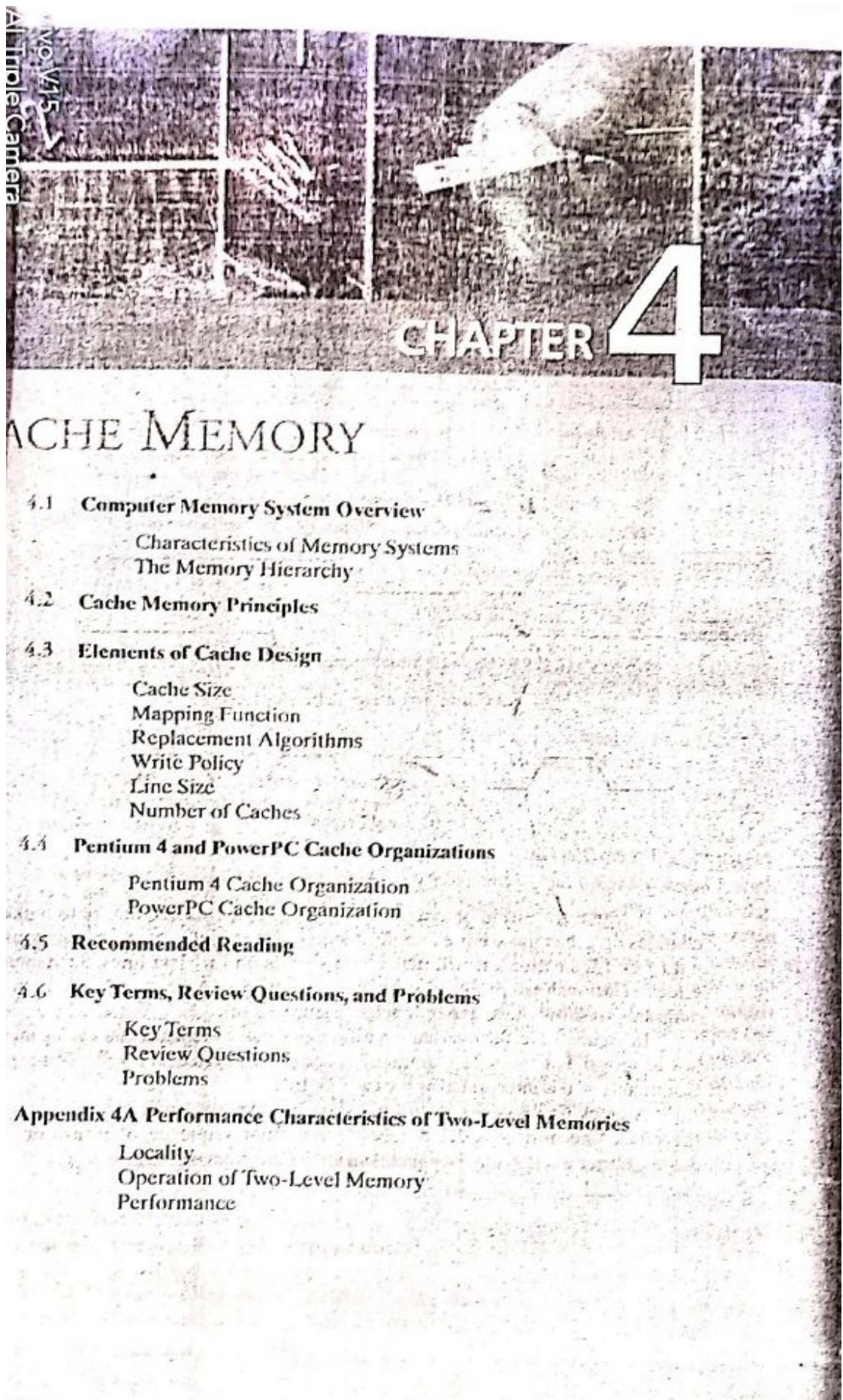
The peripheral component interconnect (PCI) is a popular high-bandwidth, processor-independent bus that can function as a mezzanine or peripheral bus. Compared with other common bus specifications, PCI delivers better system performance for high-speed I/O subsystems (e.g., graphic display adapters, network interface controllers, disk controllers, and so on). The current standard allows the use of up to 64 data lines at 66 MHz, for a raw transfer rate of 528 MB/s, or 4.224 Gbps. But it is not just a high speed that makes PCI attractive. PCI is specifically designed to meet economically the I/O requirements of modern systems; it requires very few chips to implement and supports other buses attached to the PCI bus.

Intel began work on PCI in 1990 for its Pentium-based systems. Intel soon released all the patents to the public domain and promoted the creation of an industry association, the PCI SIG, to develop further and maintain the compatibility of the PCI specifications. The result is that PCI has been widely adopted and is finding increasing use in personal computer, workstation, and server systems. Because the specification is in the public domain and is supported by a broad cross section of the microprocessor and peripheral industry, PCI products built by different vendors are compatible.

PCI is designed to support a variety of microprocessor-based configurations, including both single- and multiple-processor systems. Accordingly, it provides a general-purpose set of functions. It makes use of synchronous timing and a centralized arbitration scheme.

Figure 3.22a shows a typical use of PCI in a single-processor system. A combined DRAM controller and bridge to the PCI bus provides tight coupling with the processor and the ability to deliver data at high speeds. The bridge acts as a data buffer so that the speed of the PCI bus may differ from that of the processor's I/O capability. In a multiprocessor system (Figure 3.22b), one or more PCI configurations may be connected by bridges to the processor's system bus. The system bus supports only the processor/cache units, main memory, and the PCI bridges. Again, the use of bridges keeps the PCI independent of the processor speed yet provides the ability to receive and deliver data rapidly.

Bus Structure


PCI may be configured as a 32- or 64-bit bus. Table 3.3 defines the 49 mandatory signal lines for PCI. These are divided into the following functional groups:

- **System pins:** Include the clock and reset pins.
- **Address and data pins:** Include 32 lines that are time multiplexed for addresses and data. The other lines in this group are used to interpret and validate the signal lines that carry the addresses and data.
- **Interface control pins:** Control the timing of transactions and provide coordination among initiators and targets.
- **Arbitration pins:** Unlike the other PCI signal lines, these are not shared lines. Rather, each PCI master has its own pair of arbitration lines that connect it directly to the PCI bus arbiter.
- **Error reporting pins:** Used to report parity and other errors.

In addition, the PCI specification defines 51 optional signal lines (Table 3.4), divided into the following functional groups:

- **Interrupt pins:** These are provided for PCI devices that must generate requests for service. As with the arbitration pins, these are not shared lines. Rather, each PCI device has its own interrupt line or lines to an interrupt controller.
- **Cache support pins:** These pins are needed to support a memory on PCI that can be cached in the processor or another device. These pins support snoopy cache protocols (see Chapter 18 for a discussion of such protocols).
- **64-bit bus extension pins:** Include 32 lines that are time multiplexed for addresses and data and that are combined with the mandatory address/data lines to form

Unit - II Memory Organization

CACHE MEMORY

4.1 Computer Memory System Overview

- Characteristics of Memory Systems
- The Memory Hierarchy

4.2 Cache Memory Principles

4.3 Elements of Cache Design

- Cache Size
- Mapping Function
- Replacement Algorithms
- Write Policy
- Line Size
- Number of Caches

4.4 Pentium 4 and PowerPC Cache Organizations

- Pentium 4 Cache Organization
- PowerPC Cache Organization

4.5 Recommended Reading

4.6 Key Terms, Review Questions, and Problems

- Key Terms
- Review Questions
- Problems

Appendix 4A Performance Characteristics of Two-Level Memories

- Locality
- Operation of Two-Level Memory
- Performance

- ◆ Computer memory is organized into a hierarchy. At the highest level (closest to the processor) are the processor registers. Next comes one or more levels of cache. When multiple levels are used, they are denoted L1, L2, etc. Next comes main memory, which is usually made out of dynamic random-access memory (DRAM). All of these are considered internal to the computer system. The hierarchy continues with external memory, with the next level typically being a fixed hard disk, and one or more levels below that consisting of removable media such as optical disks and tape.
- ◆ As one goes down the memory hierarchy, one finds decreasing cost/bit, increasing capacity, and slower access time. It would be nice to use only the fastest memory, but because that is the most expensive memory, we trade off access time for cost by using more of the slower memory. The design challenge is to organize the data and programs in memory so that the accessed memory words are usually in the faster memory.
- ◆ In general, it is likely that most future accesses to main memory by the processor will be to locations recently accessed. So the cache automatically retains a copy of some of the recently used words from the DRAM. If the cache is designed properly, then most of the time the processor will request memory words that are already in the cache.

Although seemingly simple in concept, computer memory exhibits perhaps the widest range of type, technology, organization, performance, and cost of any feature of a computer system. No one technology is optimal in satisfying the memory requirements for a computer system. As a consequence, the typical computer system is equipped with a hierarchy of memory subsystems, some internal to the system (directly accessible by the processor) and some external (accessible by the processor via an I/O module).

This chapter and the next focus on internal memory elements, while Chapter 6 is devoted to external memory. To begin, the first section examines key characteristics of computer memories. The remainder of the chapter examines an essential element of all modern computer systems: cache memory.

Table 4.1 Key Characteristics of Computer Memory Systems

Location	Performance
Processor	Access time
Internal (main)	Cycle time
External (secondary)	Transfer rate
Capacity	Physical Type
Word size	Semiconductor
Number of words	Magnetic
Unit of Transfer	Optical
Word	Magneto-Optical
Block	Physical Characteristics
Access Method	Volatile/nonvolatile
Sequential	Erasable/nonerasable
Direct	Organization
Random	
Associative	

other forms of internal memory. The processor requires its own local memory, in the form of registers (e.g., see Figure 2.3). Further, as we shall see, the control unit portion of the processor may also require its own internal memory. We will defer discussion of these latter two types of internal memory to later chapters. Cache is another form of internal memory. External memory consists of peripheral storage devices, such as disk and tape, that are accessible to the processor via I/O controllers.

An obvious characteristic of memory is its **capacity**. For internal memory, this is typically expressed in terms of bytes (1 byte = 8 bits) or words. Common word lengths are 8, 16, and 32 bits. External memory capacity is typically expressed in terms of bytes.

A related concept is the **unit of transfer**. For internal memory, the unit of transfer is equal to the number of data lines into and out of the memory module. This may be equal to the word length, but is often larger, such as 64, 128, or 256 bits. To clarify this point, consider three related concepts for internal memory:

- **Word:** The "natural" unit of organization of memory. The size of the word is typically equal to the number of bits used to represent an integer and to the instruction length. Unfortunately, there are many exceptions. For example, the CRAY C90 has a 64-bit word length but uses a 46-bit integer representation. The VAX has a stupendous variety of instruction lengths, expressed as multiples of bytes, and a word size of 32 bits.
- **Addressable units:** In some systems, the addressable unit is the word. However, many systems allow addressing at the byte level. In any case, the relationship between the length in bits A of an address and the number N of addressable units is $2^A = N$.
- **Unit of transfer:** For main memory, this is the number of bits read out of or written into memory at a time. The unit of transfer need not equal a word or an

addressable unit. For external memory, data are often transferred in much larger units than a word, and these are referred to as blocks.

Another distinction among memory types is the **method of accessing units of data**. These include the following:

- **Sequential access:** Memory is organized into units of data, called records. Access must be made in a specific linear sequence. Stored addressing information is used to separate records and assist in the retrieval process. A shared read/write mechanism is used, and this must be moved from its current location to the desired location, passing and rejecting each intermediate record. Thus the time to access an arbitrary record is highly variable. Tape units, discussed in Chapter 6, are sequential access.
- **Direct access:** As with sequential access, direct access involves a shared read-write mechanism. However, individual blocks or records have a unique address based on physical location. Access is accomplished by direct access to reach a general vicinity plus sequential searching, counting, or waiting to reach the final location. Again, access time is variable. Disk units, discussed in Chapter 6, are direct access.
- **Random access:** Each addressable location in memory has a unique, physically wired-in addressing mechanism. The time to access a given location is independent of the sequence of prior accesses and is constant. Thus, any location can be selected at random and directly addressed and accessed. Main memory and some cache systems are random access.
- **Associative:** This is a random-access type of memory that enables one to make a comparison of desired bit locations within a word for a specified match, and to do this for all words simultaneously. Thus, a word is retrieved based on a portion of its contents rather than its address. As with ordinary random-access memory, each location has its own addressing mechanism, and retrieval time is constant independent of location or prior access patterns. Cache memories may employ associative access.

From a user's point of view, the two most important characteristics of memory are **capacity** and **performance**. Three performance parameters are used:

- **Access time (latency):** For random-access memory, this is the time it takes to perform a read or write operation, that is, the time from the instant that an address is presented to the memory to the instant that data have been stored or made available for use. For non-random-access memory, access time is the time it takes to position the read-write mechanism at the desired location.
- **Memory cycle time:** This concept is primarily applied to random-access memory and consists of the access time plus any additional time required before a second access can commence. This additional time may be required for transients to die out on signal lines or to regenerate data if they are read destructively. Note that memory cycle time is concerned with the system bus, not the processor.
- **Transfer rate:** This is the rate at which data can be transferred into or out of a memory unit. For random-access memory, it is equal to $1/(\text{cycle time})$.

For non-random-access memory, the following relationship holds:

$$T_N = T_A + \frac{N}{R}$$

Performance

where

T_N = Average time to read or write N bits

T_A = Average access time

N = Number of bits

R = Transfer rate, in bits per second (bps)

A variety of physical types of memory have been employed. The most common today are semiconductor memory, magnetic surface memory, used for disk and tape, and optical and magneto-optical.

Several physical characteristics of data storage are important. In a volatile memory, information decays naturally or is lost when electrical power is switched off. In a nonvolatile memory, information once recorded remains without deterioration until deliberately changed; no electrical power is needed to retain information. Magnetic-surface memories are nonvolatile. Semiconductor memory may be either volatile or nonvolatile. Nonerasable memory cannot be altered, except by destroying the storage unit. Semiconductor memory of this type is known as *read-only memory* (ROM). Of necessity, a practical nonerasable memory must also be nonvolatile.

For random-access memory, the organization is a key design issue. By organization is meant the physical arrangement of bits to form words. The obvious arrangement is not always used, as will be explained presently.

ROM

The Memory Hierarchy

The design constraints on a computer's memory can be summed up by three questions: How much? How fast? How expensive?

The question of how much is somewhat open ended. If the capacity is there, applications will likely be developed to use it. The question of how fast is, in a sense, easier to answer. To achieve greatest performance, the memory must be able to keep up with the processor. That is, as the processor is executing instructions, we would not want it to have to pause waiting for instructions or operands. The final question must also be considered. For a practical system, the cost of memory must be reasonable in relationship to other components.

As might be expected, there is a trade-off among the three key characteristics of memory: namely, cost, capacity, and access time. At any given time, a variety of technologies are used to implement memory systems. Across this spectrum of technologies, the following relationships hold:

- Faster access time, greater cost per bit
- Greater capacity, smaller cost per bit
- Greater capacity, slower access time

The dilemma facing the designer is clear. The designer would like to use memory technologies that provide for large-capacity memory, both because the capacity

is needed and because the cost per bit is low. However, to meet performance requirement, the designer needs to use expensive, relatively lower-capacity memories with short access times.

The way out of this dilemma is not to rely on a single memory component or technology, but to employ a **memory hierarchy**. A typical hierarchy is illustrated in Figure 4.1. As one goes down the hierarchy, the following occur:

- a. Decreasing cost per bit
- b. Increasing capacity
- c. Increasing access time
- d. Decreasing frequency of access of the memory by the processor

Thus, smaller, more expensive, faster memories are supplemented by larger, cheaper, slower memories. The key to the success of this organization is item (d): decreasing frequency of access. We examine this concept in greater detail when we discuss the cache, later in this chapter, and virtual memory in Chapter 8. A brief explanation is provided at this point.

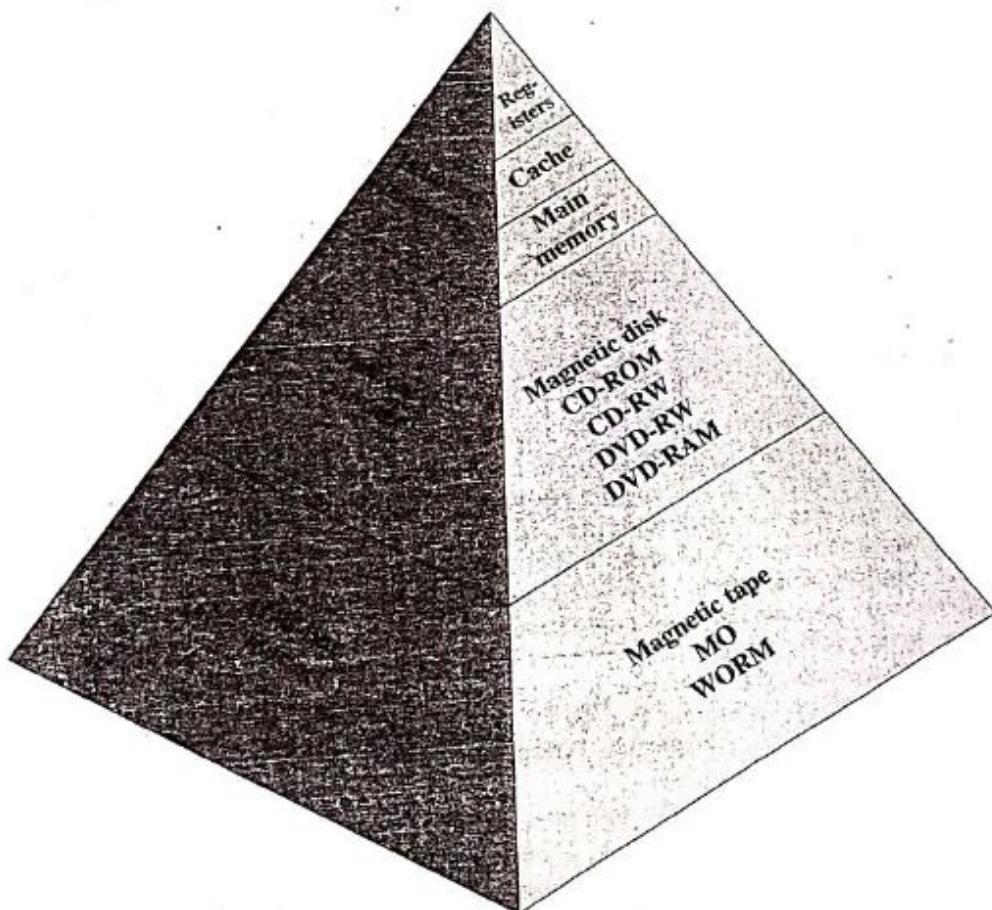


Figure 4.1 The Memory Hierarchy

Example 4.1 Suppose that the processor has access to two levels of memory. Level 1 contains 1000 words and has an access time of $0.01 \mu\text{s}$; level 2 contains 100,000 words and has an access time of $0.1 \mu\text{s}$. Assume that if a word to be accessed is in level 1, then the processor accesses it directly. If it is in level 2, then the word is first transferred to level 1 and then accessed by the processor. For simplicity, we ignore the time required for the processor to determine whether the word is in level 1 or level 2. Figure 4.2 shows the general shape of the curve that covers this situation. The figure shows the average access time to a two-level memory as a function of the hit ratio H , where H is defined as the fraction of all memory accesses that are found in the faster memory (e.g., the cache). T_1 is the access time to level 1, and T_2 is the access time to level 2.¹ As can be seen, for high percentages of level 1 access, the average total access time is much closer to that of level 1 than that of level 2.

In our example, suppose 95% of the memory accesses are found in the cache. Then the average time to access a word can be expressed as

$$(0.95)(0.01 \mu\text{s}) + (0.05)(0.01 \mu\text{s} + 0.1 \mu\text{s}) = 0.0095 + 0.0055 = 0.015 \mu\text{s}$$

The average access time is much closer to $0.01 \mu\text{s}$ than to $0.1 \mu\text{s}$, as desired.

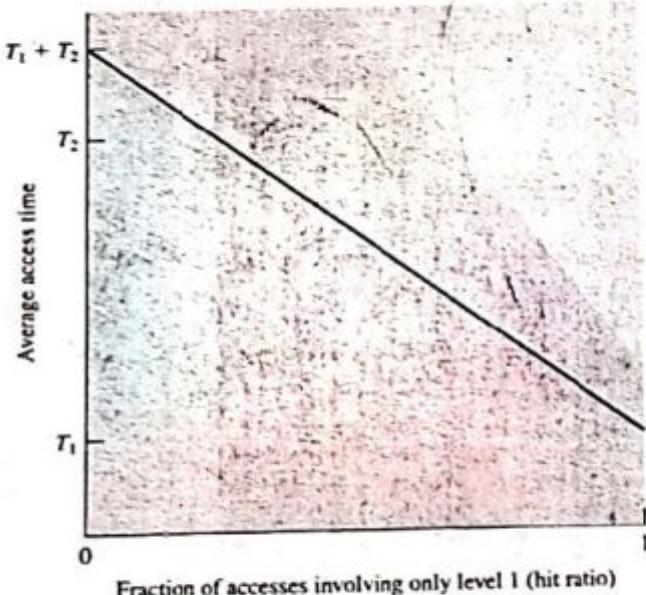


Figure 4.2 Performance of a Simple Two-Level Memory

¹If the accessed word is found in the faster memory, that is defined as a **hit**. A **miss** occurs if the accessed word is not found in the faster memory.

The use of two levels of memory to reduce average access time works in principle, but only if conditions (a) through (d) apply. By employing a variety of technologies, a spectrum of memory systems exists that satisfies conditions (a) through (c). Fortunately, condition (d) is also generally valid.

The basis for the validity of condition (d) is a principle known as **locality of reference** [DENN68]. During the course of execution of a program, memory references by the processor, for both instructions and data, tend to cluster. Programs typically contain a number of iterative loops and subroutines. Once a loop or subroutine is entered, there are repeated references to a small set of instructions. Similarly, operations on tables and arrays involve access to a clustered set of data words. Over a long period of time, the clusters in use change, but over a short period of time, the processor is primarily working with fixed clusters of memory references.

Accordingly, it is possible to organize data across the hierarchy such that the percentage of accesses to each successively lower level is substantially less than that of the level above. Consider the two-level example already presented. Let level 2 memory contain all program instructions and data. The current clusters can be temporarily placed in level 1. From time to time, one of the clusters in level 1 will have to be swapped back to level 2 to make room for a new cluster coming in to level 1. On average, however, most references will be to instructions and data contained in level 1.

This principle can be applied across more than two levels of memory, as suggested by the hierarchy shown in Figure 4.1. The fastest, smallest, and most expensive type of memory consists of the registers internal to the processor. Typically, a processor will contain a few dozen such registers, although some machines contain hundreds of registers. Skipping down two levels, main memory is the principal internal memory system of the computer. Each location in main memory has a unique address. Main memory is usually extended with a higher-speed, smaller cache. The cache is not usually visible to the programmer or, indeed, to the processor. It is a device for staging the movement of data between main memory and processor registers to improve performance.

The three forms of memory just described are, typically, volatile and employ semiconductor technology. The use of three levels exploits the fact that semiconductor memory comes in a variety of types, which differ in speed and cost. Data are stored more permanently on external mass storage devices, of which the most common are hard disk and removable media, such as removable magnetic disk, tape, and optical storage. External, nonvolatile memory is also referred to as secondary or auxiliary memory. These are used to store program and data files and are usually visible to the programmer only in terms of files and records, as opposed to individual bytes or words. Disk is also used to provide an extension to main memory known as virtual memory, which is discussed in Chapter 8.

Other forms of memory may be included in the hierarchy. For example, large IBM mainframes include a form of internal memory known as Expanded Storage. This uses a semiconductor technology that is slower and less expensive than that of main memory. Strictly speaking, this memory does not fit into the hierarchy but is a side branch: data can be moved between main memory and expanded storage but

not between expanded storage and external memory. Other forms of secondary memory include optical and magneto-optical disks. Finally, additional levels can be effectively added to the hierarchy in software. A portion of main memory can be used as a buffer to hold data temporarily that is to be read out to disk. Such a technique, sometimes referred to as a disk cache,² improves performance in two ways:

- Disk writes are clustered. Instead of many small transfers of data, we have a few large transfers of data. This improves disk performance and minimizes processor involvement.
- Some data destined for write-out may be referenced by a program before the next dump to disk. In that case, the data is retrieved rapidly from the software cache rather than slowly from the disk.

Appendix 4A examines the performance implications of multilevel memory structures.

2 CACHE MEMORY PRINCIPLES

Cache memory is intended to give memory speed approaching that of the fastest memories available, and at the same time provide a large memory size at the price of less expensive types of semiconductor memories. The concept is illustrated in Figure 4.3. There is a relatively large and slow main memory together with a smaller, faster cache memory. The cache contains a copy of portions of main memory. When the processor attempts to read a word of memory, a check is made to determine if the word is in the cache. If so, the word is delivered to the processor. If not, a block of main memory, consisting of some fixed number of words, is read into the cache and then the word is delivered to the processor. Because of the phenomenon of locality of reference, when a block of data is fetched into the cache to satisfy a single memory reference, it is likely that there will be future references to that same memory location or to other words in the block.

Figure 4.4 depicts the structure of a cache/main-memory system. Main memory consists of up to 2^n addressable words, with each word having a unique

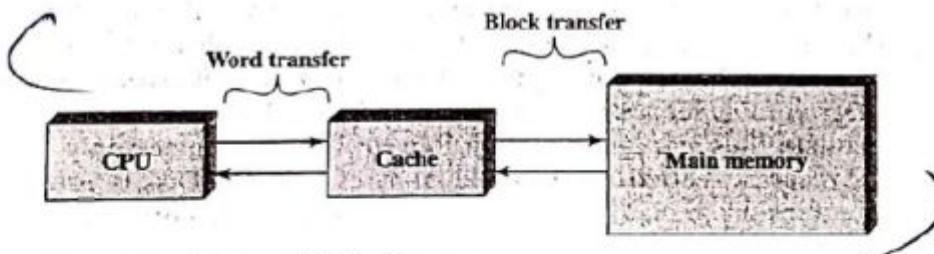


Figure 4.3 Cache and Main Memory

²Disk cache is generally a purely software technique and is not examined in this book. See [STAL05] for a discussion.

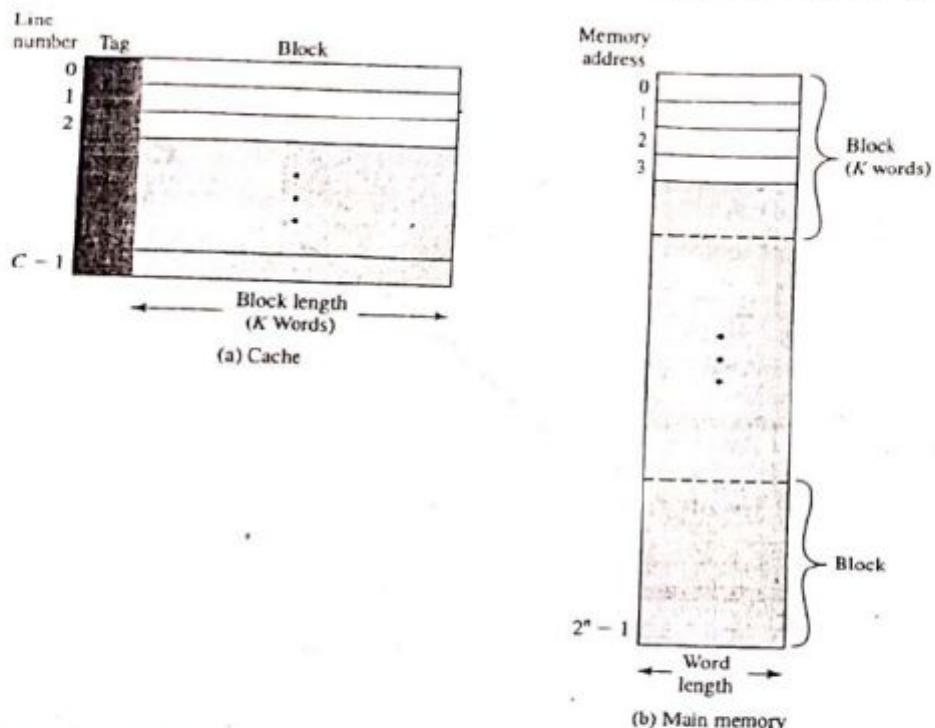


Figure 4.4 Cache/Main Memory Structure

n-bit address. For mapping purposes, this memory is considered to consist of a number of fixed-length blocks of K words each. That is, there are $M = 2^n/K$ blocks. The cache consists of C lines. Each line contains K words, plus a tag of a few bits; the number of words in the line is referred to as the **line size**. The number of lines is considerably less than the number of main memory blocks ($C \ll M$). At any time, some subset of the blocks of memory resides in lines in the cache. If a word in a block of memory is read, that block is transferred to one of the lines of the cache. Because there are more blocks than lines, an individual line cannot be uniquely and permanently dedicated to a particular block. Thus, each line includes a **tag** that identifies which particular block is currently being stored. The tag is usually a portion of the main memory address, as described later in this section.

Figure 4.5 illustrates the read operation. The processor generates the address, RA, of a word to be read. If the word is contained in the cache, it is delivered to the processor. Otherwise, the block containing that word is loaded into the cache, and the word is delivered to the processor. Figure 4.5 shows these last two operations occurring in parallel and reflects the organization shown in Figure 4.6, which is typical of contemporary cache organizations. In this organization, the cache connects to the processor via data, control, and address lines. The data and address lines also

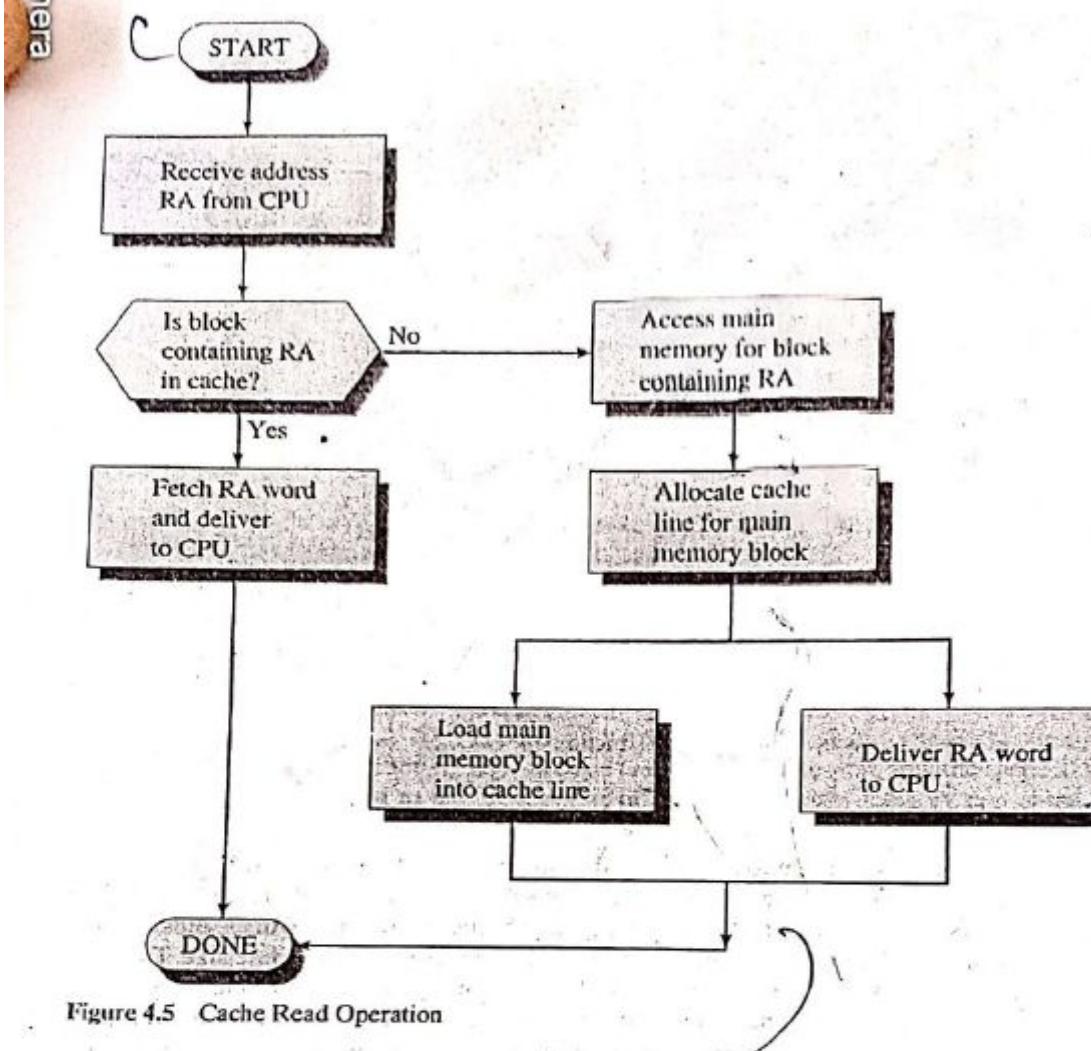


Figure 4.5 Cache Read Operation

attach to data and address buffers, which attach to a system bus from which main memory is reached. When a cache hit occurs, the data and address buffers are disabled and communication is only between processor and cache, with no system bus traffic. When a cache miss occurs, the desired address is loaded onto the system bus and the data are returned through the data buffer to both the cache and the processor. In other organizations, the cache is physically interposed between the processor and the main memory for all data, address, and control lines. In this latter case, for a cache miss, the desired word is first read into the cache and then transferred from cache to processor.

A discussion of the performance parameters related to cache use is contained in Appendix 4A.

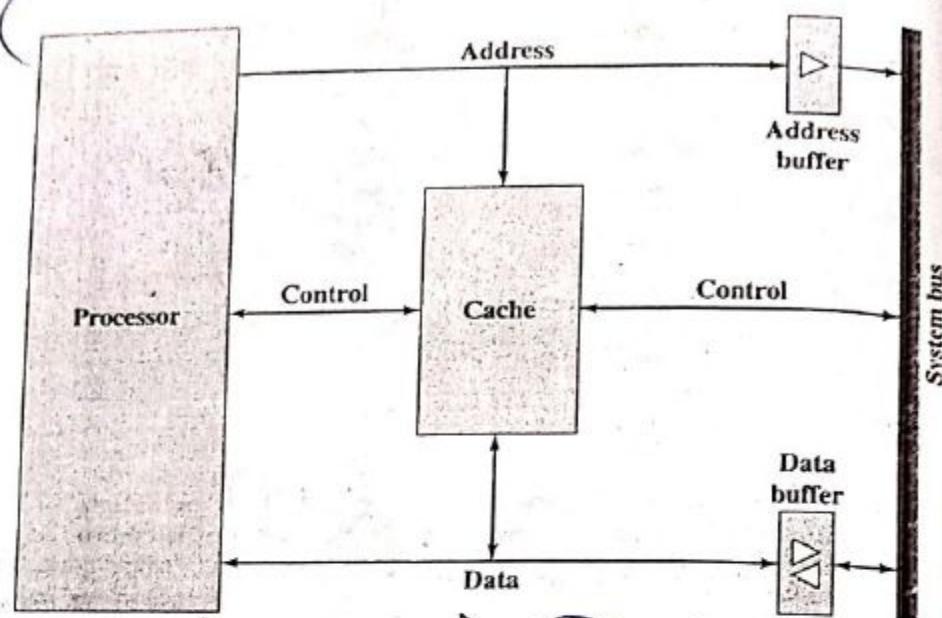
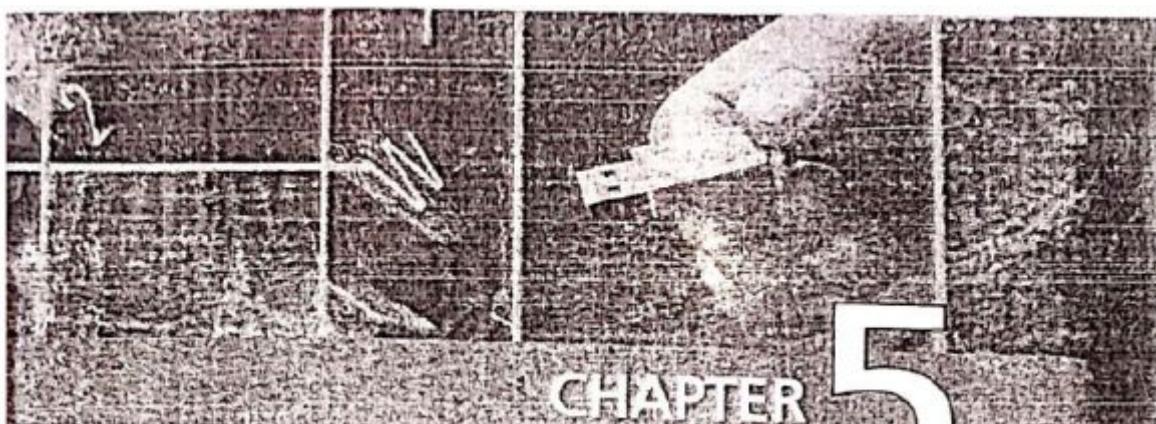


Figure 4.6 Typical Cache Organization

4.3 ELEMENTS OF CACHE DESIGN


This section provides an overview of cache design parameters and reports some typical results. We occasionally refer to the use of caches in high-performance computing (HPC). HPC deals with supercomputers and supercomputer software, especially for scientific applications that involve large amounts of data, vector and matrix computation, and the use of parallel algorithms. Cache design for HPC is quite different than for other hardware platforms and applications. Indeed, many researchers have found that HPC applications perform poorly on computer architectures that employ caches [BAIL93]. Other researchers have since shown that a cache hierarchy can be useful in improving performance if the application software is tuned to exploit the cache [WANG99, PRES01].³

Although there are a large number of cache implementations, there are a few basic design elements that serve to classify and differentiate cache architectures. Table 4.2 lists key elements.

Cache Size

The first element, cache size, has already been discussed. We would like the size of the cache to be small enough so that the overall average cost per bit is close to that of main memory alone and large enough so that the overall average access time is

³For a general discussion of HPC, see [DOWD98].

INTERNAL MEMORY

5.1 Semiconductor Main Memory

- Organization
- DRAM and SRAM
- Types of ROM
- Chip Logic
- Chip Packaging
- Module Organization

5.2 Error Correction

5.3 Advanced DRAM Organization

- Synchronous DRAM
- Rambus DRAM
- DDR SDRAM
- Cache DRAM

5.4 Recommended Reading and Web Sites

5.5 Key Terms, Review Questions, and Problems

- Key Terms
- Review Questions
- Problems

KEY POINTS

- ◆ The two basic forms of semiconductor random access memory are dynamic RAM (DRAM) and static RAM (SRAM). SRAM is faster, more expensive; and less dense than DRAM and is used for cache memory. DRAM is used for main memory.
- ◆ Error correction techniques are commonly used in memory systems. These involve adding redundant bits that are a function of the data bits to form an error-correcting code. If a bit error occurs, the code will detect and, usually, correct the error.
- ◆ To compensate for the relatively slow speed of DRAM, a number of advanced DRAM organizations have been introduced. The two most common are synchronous DRAM and RamBus DRAM. Both of these involve using the system clock to provide for the transfer of blocks of data.

This chapter begins with a survey of semiconductor main memory subsystems, including ROM, DRAM, and SRAM memories. Then we look at error control techniques used to enhance memory reliability. Following this, we look at more advanced DRAM architectures.

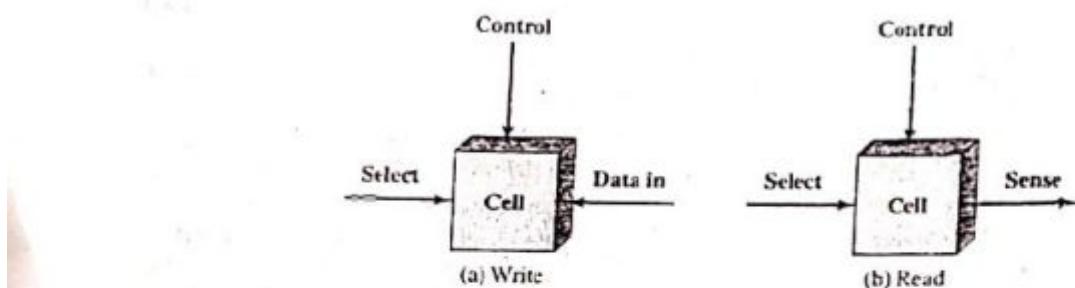


Figure 5.1 Memory Cell Operation

terminal indicates read or write. For writing, the other terminal provides an electrical signal that sets the state of the cell to 1 or 0. For reading, that terminal is used for output of the cell's state. The details of the internal organization, functioning, and timing of the memory cell depend on the specific integrated circuit technology used and are beyond the scope of this book, except for a brief summary. For our purposes, we will take it as given that individual cells can be selected for reading and writing operations.

DRAM and SRAM

All of the memory types that we will explore in this chapter are random access. That is, individual words of memory are directly accessed through wired-in addressing logic.

Table 5.1 lists the major types of semiconductor memory. The most common is referred to as *random-access memory* (RAM). This is, of course, a misuse of the term, because all of the types listed in the table are random access. One distinguishing characteristic of RAM is that it is possible both to read data from the memory and to write new data into the memory easily and rapidly. Both the reading and writing are accomplished through the use of electrical signals.

The other distinguishing characteristic of RAM is that it is volatile. A RAM must be provided with a constant power supply. If the power is interrupted, then the

Table 5.1 Semiconductor Memory Types

Memory Type	Category	Erasure	Write Mechanism	Volatility
Random-access memory (RAM)	Read-write memory	Electrically, byte-level	Electrically	Volatile
Read-only memory (ROM)	Read-only memory	Not possible	Masks	Nonvolatile
Programmable ROM (PROM)				
Erasable PROM (EPROM)	Read-mostly memory	UV light, chip-level	Electrically	Nonvolatile
Electrically Erasable PROM (EEPROM)		Electrically, byte-level		
Flash memory		Electrically, block-level		

data are lost. Thus, RAM can be used only as temporary storage. The two traditional forms of RAM used in computers are DRAM and SRAM.

Dynamic RAM RAM technology is divided into two technologies: dynamic and static. A dynamic RAM (DRAM) is made with cells that store data as charge on capacitors. The presence or absence of charge in a capacitor is interpreted as a binary 1 or 0. Because capacitors have a natural tendency to discharge, dynamic RAMs require periodic charge refreshing to maintain data storage. The term *dynamic* refers to this tendency of the stored charge to leak away, even with power continuously applied.

Figure 5.2a is a typical DRAM structure for an individual cell that stores one bit. The address line is activated when the bit value from this cell is to be read or written. The transistor acts as a switch that is closed (allowing current to flow) if a voltage is applied to the address line and open (no current flows) if no voltage is present on the address line.

For the write operation, a voltage signal is applied to the bit line; a high voltage represents 1, and a low voltage represents 0. A signal is then applied to the address line, allowing a charge to be transferred to the capacitor.

For the read operation, when the address line is selected, the transistor turns on and the charge stored on the capacitor is fed out onto a bit line and to a sense amplifier. The sense amplifier compares the capacitor voltage to a reference value and determines if the cell contains a logic 1 or a logic 0. The readout from the cell discharges the capacitor, which must be restored to complete the operation.

Although the DRAM cell is used to store a single bit (0 or 1), it is essentially an analog device. The capacitor can store any charge value within a range; a threshold value determines whether the charge is interpreted as 1 or 0.

Figure 5.2 Typical Memory Cell Structures

Static RAM In contrast, a static RAM (SRAM) is a digital device, using the same logic elements used in the processor. In a SRAM, binary values are stored using traditional flip-flop logic-gate configurations (see Appendix B for a description of flip-flops). A static RAM will hold its data as long as power is supplied to it.

Figure 5.2b is a typical SRAM structure for an individual cell. Four transistors (T_1, T_2, T_3, T_4) are cross connected in an arrangement that produces a stable logic state. In logic state 1, point C_1 is high and point C_2 is low; in this state, T_1 and T_4 are off and T_2 and T_3 are on.¹ In logic state 0, point C_1 is low and point C_2 is high; in this state, T_1 and T_4 are on and T_2 and T_3 are off. Both states are stable as long as the direct current (dc) voltage is applied. Unlike the DRAM, no refresh is needed to retain data.

As in the DRAM, the SRAM address line is used to open or close a switch. The address line controls two transistors (T_5 and T_6). When a signal is applied to this line, the two transistors are switch on, allowing a read or write operation. For a write operation, the desired bit value is applied to line B, while its complement is applied to line \bar{B} . This forces the four transistors (T_1, T_2, T_3, T_4) into the proper state. For a read operation, the bit value is read from line B.

SRAM versus DRAM Both static and dynamic RAMs are volatile; that is, power must be continuously supplied to the memory to preserve the bit values. A dynamic memory cell is simpler and smaller than a static memory cell. Thus, a DRAM is more dense (smaller cells = more cells per unit area) and less expensive than a corresponding SRAM. On the other hand, a DRAM requires the supporting refresh circuitry. For larger memories, the fixed cost of the refresh circuitry is more than compensated for by the smaller variable cost of DRAM cells. Thus, DRAMs tend to be favored for large memory requirements. A final point is that SRAMs are generally somewhat faster than DRAMs. Because of these relative characteristics, SRAM is used for cache memory (both on and off chip), and DRAM is used for main memory.

Types of ROM

As the name suggests, a **read-only memory** (ROM) contains a permanent pattern of data that cannot be changed. A ROM is nonvolatile; that is, no power source is required to maintain the bit values in memory. While it is possible to read a ROM, it is not possible to write new data into it. An important application of ROMs is microprogramming, discussed in Part Four. Other potential applications include

- Library subroutines for frequently wanted functions
- System programs
- Function tables

For a modest-sized requirement, the advantage of ROM is that the data or program is permanently in main memory and need never be loaded from a secondary storage device.

A ROM is created like any other integrated circuit chip, with the data actually wired into the chip as part of the fabrication process. This presents two problems:

- The data insertion step includes a relatively large fixed cost, whether one or thousands of copies of a particular ROM are fabricated.
- There is no room for error. If one bit is wrong, the whole batch of ROMs must be thrown out.

When only a small number of ROMs with a particular memory content is needed, a less expensive alternative is the **programmable ROM** (PROM). Like the ROM, the PROM is nonvolatile and may be written into only once. For the PROM, the writing process is performed electrically and may be performed by a supplier or customer at a time later than the original chip fabrication. Special equipment is required for the writing or "programming" process. PROMs provide flexibility and convenience. The ROM remains attractive for high-volume production runs.

Another variation on read-only memory is the read-mostly memory, which is useful for applications in which read operations are far more frequent than write operations but for which nonvolatile storage is required. There are three common forms of read-mostly memory: EPROM, EEPROM, and flash memory.

The optically **erasable programmable read-only memory** (EPROM) is read and written electrically, as with PROM. However, before a write operation, all the storage cells must be erased to the same initial state by exposure of the packaged chip to ultraviolet radiation. Erasure is performed by shining an intense ultraviolet light through a window that is designed into the memory chip. This erasure process can be performed repeatedly; each erasure can take as much as 20 minutes to perform. Thus, the EPROM can be altered multiple times and, like the ROM and PROM, holds its data virtually indefinitely. For comparable amounts of storage, the EPROM is more expensive than PROM, but it has the advantage of the multiple update capability.

A more attractive form of read-mostly memory is **electrically erasable**.

Chip Logic

As with other integrated circuit products, semiconductor memory comes in packaged chips (Figure 2.7). Each chip contains an array of memory cells.

In the memory hierarchy as a whole, we saw that there are trade-offs among speed, capacity, and cost. These trade-offs also exist when we consider the organization of memory cells and functional logic on a chip. For semiconductor memories, one of the key design issues is the number of bits of data that may be read/written at a time. At one extreme is an organization in which the physical arrangement of cells in the array is the same as the logical arrangement (as perceived by the processor) of words in memory. The array is organized into W words of B bits each. For example, a 16-Mbit chip could be organized as 1M 16-bit words. At the other extreme is the so-called one-bit-per-chip organization, in which data is read/written one bit at a time. We will illustrate memory chip organization with a DRAM; ROM organization is similar, though simpler.

Figure 5.3 shows a typical organization of a 16-Mbit DRAM. In this case, 4 bits are read or written at a time. Logically, the memory array is organized as four square arrays of 2048 by 2048 elements. Various physical arrangements are possible. In any case, the elements of the array are connected by both horizontal (row) and vertical (column) lines. Each horizontal line connects to the Select terminal of each cell in its row; each vertical line connects to the Data-In/Sense terminal of each cell in its column.

Address lines supply the address of the word to be selected. A total of $\log_2 W$ lines are needed. In our example, 11 address lines are needed to select one of 2048 rows. These 11 lines are fed into a row decoder, which has 11 lines of input and 2048 lines for output. The logic of the decoder activates a single one of the 2048 outputs depending on the bit pattern on the 11 input lines ($2^{11} = 2048$).

An additional 11 address lines select one of 2048 columns of 4 bits per column. Four data lines are used for the input and output of 4 bits to and from a data buffer. On input (write), the bit driver of each bit line is activated for a 1 or 0 according to the value of the corresponding data line. On output (read), the value of each bit line is passed through a sense amplifier and presented to the data lines. The row line selects which row of cells is used for reading or writing.

Because only 4 bits are read/written to this DRAM, there must be multiple DRAMs connected to the memory controller to read/write a word of data to the bus.

Note that there are only 11 address lines (A0–A10), half the number you would expect for a 2048×2048 array. This is done to save on the number of pins. The 22 required address lines are passed through select logic external to the chip and multiplexed onto the 11 address lines. First, 11 address signals are passed to the chip to define the row address of the array, and then the other 11 address signals are presented for the column address. These signals are accompanied by row address select (RAS) and column address select (CAS) signals to provide timing to the chip.

The write enable (\overline{WE}) and output enable (\overline{OE}) pins determine whether a write or read operation is performed. Two other pins, not shown in Figure 5.3, are ground (V_{ss}) and a voltage source (V_{cc}).

As an aside, multiplexed addressing plus the use of square arrays result in a quadrupling of memory size with each new generation of memory chips. One more pin devoted to addressing doubles the number of rows and columns, and so the size of the chip memory grows by a factor of 4.

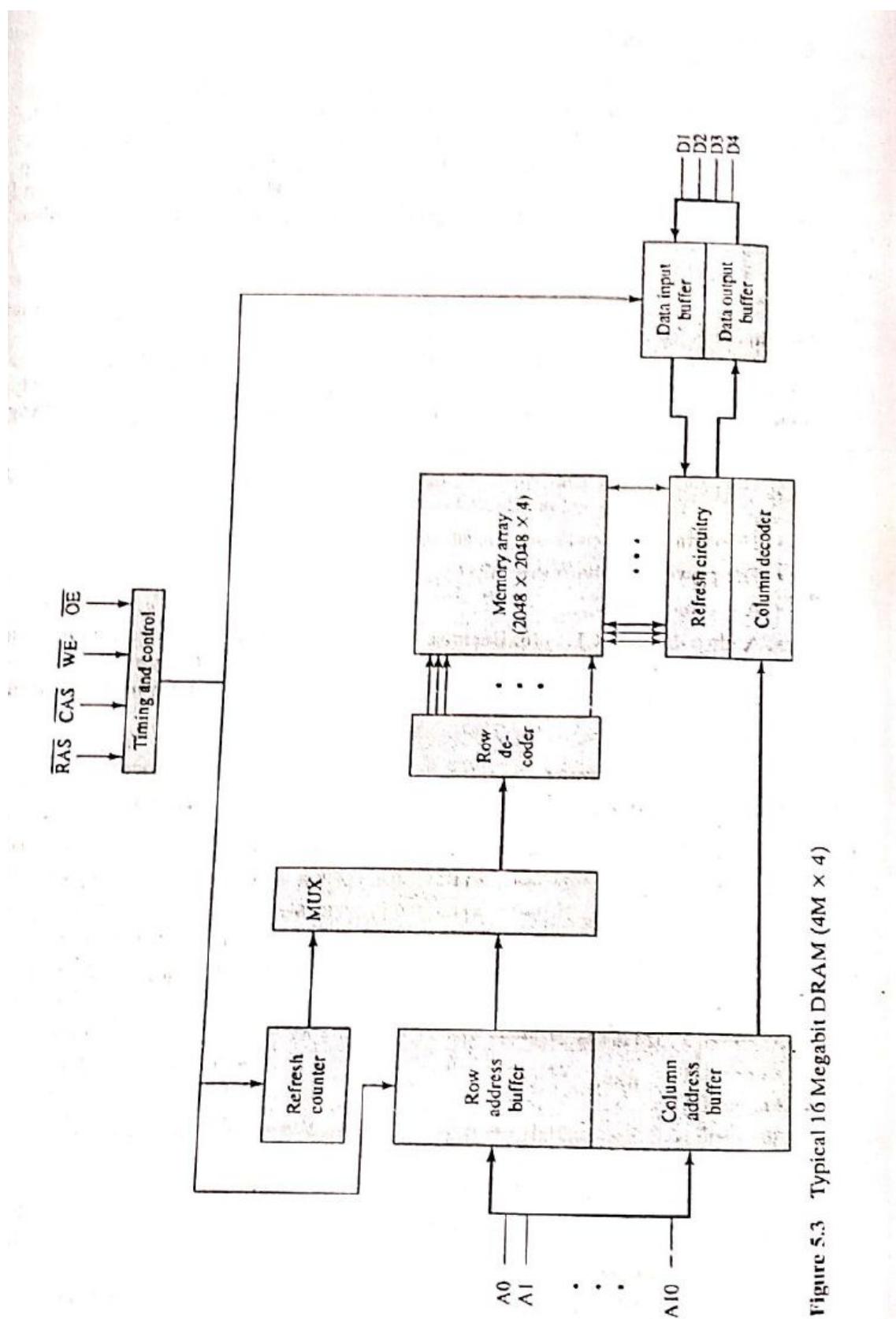


Figure 5.3 Typical 16 Megabit DRAM (4M x 4)

Figure 5.3 also indicates the inclusion of refresh circuitry. All DRAMs require a refresh operation. A simple technique for refreshing is, in effect, to disable the DRAM chip while all data cells are refreshed. The refresh counter steps through all of the row values. For each row, the output lines from the refresh counter are supplied to the row decoder and the RAS line is activated. The data are read out and written back into the same location. This causes each cell in the row to be refreshed.

Chip Packaging

As was mentioned in Chapter 2, an integrated circuit is mounted on a package that contains pins for connection to the outside world.

Figure 5.4a shows an example EPROM package, which is an 8-Mbit chip organized as $1M \times 8$. In this case, the organization is treated as a one-word-per-chip package. The package includes 32 pins, which is one of the standard chip package sizes. The pins support the following signal lines:

- The address of the word being accessed. For $1M$ words, a total of 20 ($2^{20} = 1M$) pins are needed (A0-A19).
- The data to be read out, consisting of 8 lines (D0-D7).
- The power supply to the chip (V_{cc}).
- A ground pin (V_{ss}).
- A chip enable (CE) pin. Because there may be more than one memory chip, each of which is connected to the same address bus, the CE pin is used to indicate whether or not the address is valid for this chip. The CE pin is activated by

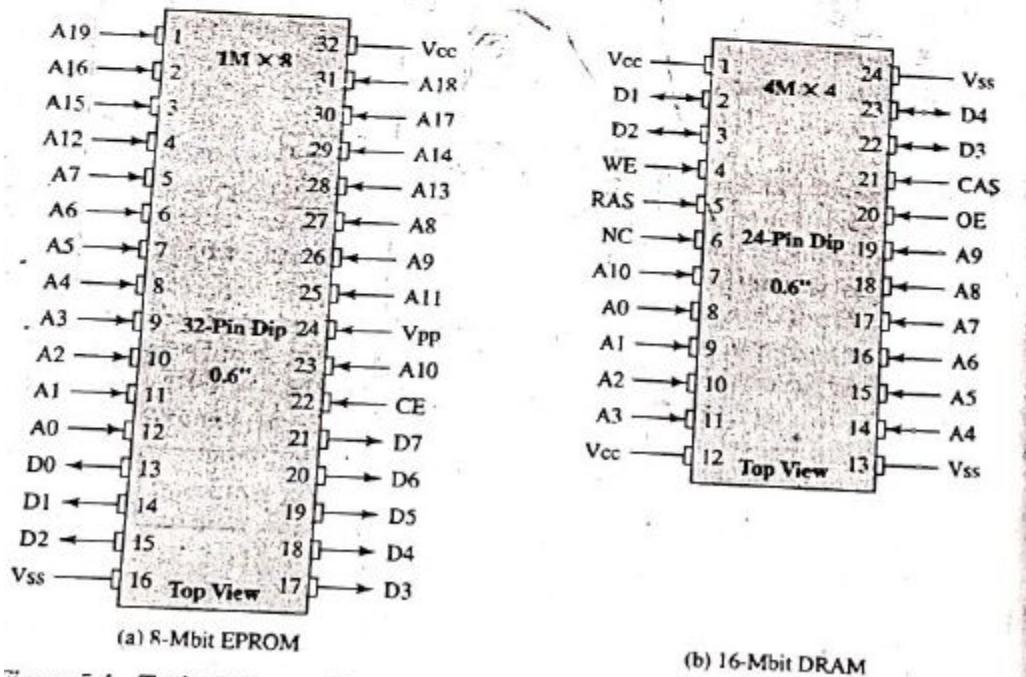
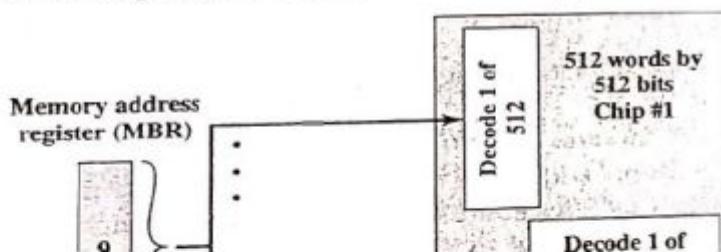


Figure 5.4 Typical Memory Package Pins and Signals


logic connected to the higher-order bits of the address bus (i.e., address bits above A19). The use of this signal is illustrated presently.

- A program voltage (V_{pp}) that is supplied during programming (write operations).

A typical DRAM pin configuration is shown in Figure 5.4b, for a 16-Mbit chip organized as $4M \times 4$. There are several differences from a ROM chip. Because a RAM can be updated, the data pins are input/output. The write enable (WE) and output enable (OE) pins indicate whether this is a write or read operation. Because the DRAM is accessed by row and column, and the address is multiplexed, only 11 address pins are needed to specify the $4M$ row/column combinations ($2^{11} \times 2^{11} = 2^{22} = 4M$). The functions of the row address select (RAS) and column address select (CAS) pins were discussed previously. Finally, the no connect (NC) pin is provided so that there are an even number of pins.

Module Organization

If a RAM chip contains only 1 bit per word, then clearly we will need at least a number of chips equal to the number of bits per word. As an example, Figure 5.5



Figure 5.6 1-Mbyte Memory Organization

shows how a memory module consisting of 256K 8-bit words could be organized. For 256K words, an 18-bit address is needed and is supplied to the module from some external source (e.g., the address lines of a bus to which the module is attached). The address is presented to 8 256K \times 1-bit chips, each of which provides the input/output of 1 bit.

This organization works as long as the size of memory equals the number of bits per chip. In the case in which larger memory is required, an array of chips is needed. Figure 5.6 shows the possible organization of a memory consisting of 1M word by 8 bits per word. In this case, we have four columns of chips, each column containing 256K words arranged as in Figure 5.5. For 1M word, 20 address lines are needed. The 18 least significant bits are routed to all 32 modules. The high-order 2 bits are input to a group select logic module that sends a chip enable signal to one of the four columns of modules.

5.2 ERROR CORRECTION

A semiconductor memory system is subject to errors. These can be categorized as hard failures and soft errors. A **hard failure** is a permanent physical defect so that the memory cell or cells affected cannot reliably store data, but become stuck at 0 or 1 or switch erratically between 0 and 1. Hard errors can be caused by harsh environmental abuse, manufacturing defects, and wear. A **soft error** is a random, nondestructive event that alters the contents of one or more memory cells, without damaging the memory. Soft errors can be caused by power supply problems or alpha particles. These particles result from radioactive decay and are distressingly common because radioactive nuclei are found in small quantities in nearly all

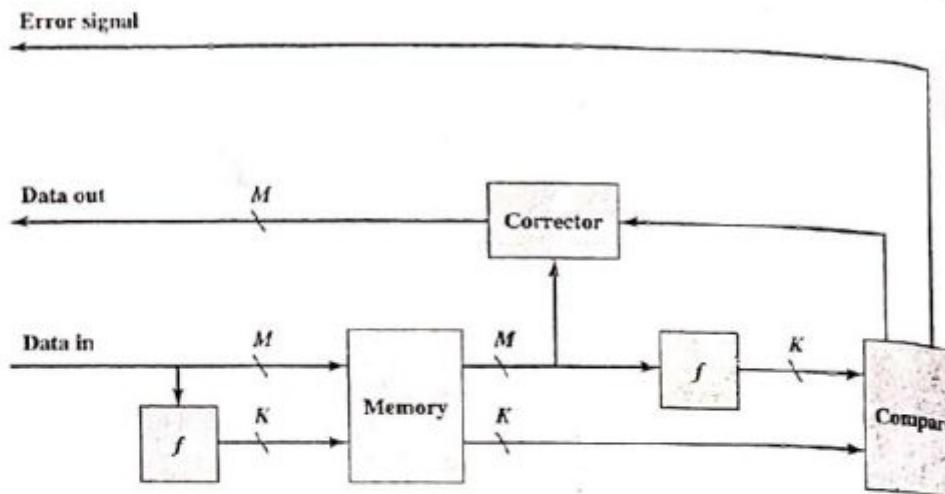


Figure 5.7 Error-Correcting Code Function

materials. Both hard and soft errors are clearly undesirable, and most modern main memory systems include logic for both detecting and correcting errors.

Figure 5.7 illustrates in general terms how the process is carried out. When data are to be read into memory, a calculation, depicted as a function f , is performed on the data to produce a code. Both the code and the data are stored. Thus, if an M -bit word of data is to be stored, and the code is of length K bits, then the actual size of the stored word is $M + K$ bits.

When the previously stored word is read out, the code is used to detect and possibly correct errors. A new set of K code bits is generated from the M data bits and compared with the fetched code bits. The comparison yields one of three results:

- No errors are detected. The fetched data bits are sent out.
- An error is detected, and it is possible to correct the error. The data bits plus error correction bits are fed into a corrector, which produces a corrected set of M bits to be sent out.
- An error is detected, but it is not possible to correct it. This condition is reported

Codes that operate in this fashion are referred to as *error-correcting codes*. A code is characterized by the number of bit errors in a word that it can correct and detect.

The simplest of the error-correcting codes is the *Hamming code* devised by Richard Hamming at Bell Laboratories. Figure 5.8 uses Venn diagrams to illustrate the use of this code on 4-bit words ($M = 4$). With three intersecting circles, there are seven compartments. We assign the 4 data bits to the inner compartments (Figure 5.8a). The remaining compartments are filled with what are called *parity bits*. Each parity bit is chosen so that the total number of 1s in its circle is even (Figure 5.8b). Thus, because circle A includes three data 1s, the parity bit in that circle is set to 1. Now, if an error changes one of the data bits (Figure 5.8c), it is easily found. By checking the parity bits, discrepancies are found in circle A and circle C but not in circle B. Only one of the seven compartments is in A and C but not B. The error can therefore be corrected by changing that bit.

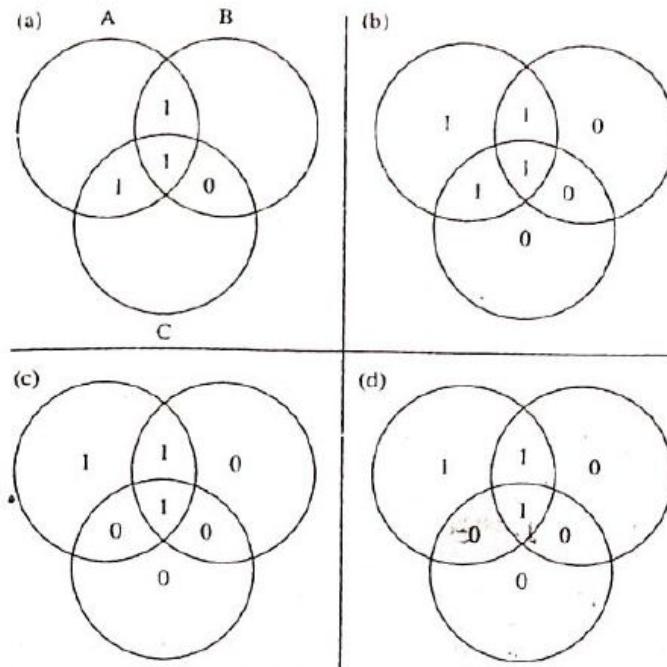


Figure 5.8 Hamming Error-Correcting Code

To clarify the concepts involved, we will develop a code that can detect and correct single-bit errors in 8-bit words.

To start, let us determine how long the code must be. Referring to Figure 5.7, the comparison logic receives as input two K -bit values. A bit-by-bit comparison is done by taking the exclusive-OR of the two inputs. The result is called the *syndrome word*. Thus, each bit of the syndrome is 0 or 1 according to if there is or is not a match in that bit position for the two inputs.

The syndrome word is therefore K bits wide and has a range between 0 and $2^K - 1$. The value 0 indicates that no error was detected, leaving $2^K - 1$ values to indicate, if there is an error, which bit was in error. Now, because an error could occur on any of the M data bits or K check bits, we must have

$$2^K - 1 \geq M + K$$

This inequality gives the number of bits needed to correct a single bit error in a word containing M data bits. For example, for a word of 8 data bits ($M = 8$), we have

- $K = 3: 2^3 - 1 < 8 + 3$
- $K = 4: 2^4 - 1 > 8 + 4$

Thus, eight data bits require four check bits. The first three columns of Table 5.2 lists the number of check bits required for various data word lengths.

For convenience, we would like to generate a 4-bit syndrome for an 8-bit data word with the following characteristics:

Table 5.2 Increase in Word Length with Error Correction

Data Bits	Single-Error Correction		Single-Error Correction/ Double-Error Detection	
	Check Bits	% Increase	Check Bits	% Increase
8	4	50	5	62.5
16	5	31.25	6	37.5
32	6	18.75	7	21.875
64	7	10.94	8	12.5
128	8	6.25	9	7.03
256	9	3.52	10	3.91

- If the syndrome contains all 0s, no error has been detected.
- If the syndrome contains one and only one bit set to 1, then an error has occurred in one of the 4 check bits. No correction is needed.
- If the syndrome contains more than one bit set to 1, then the numerical value of the syndrome indicates the position of the data bit in error. This data bit is inverted for correction.

To achieve these characteristics, the data and check bits are arranged into a 12-bit word as depicted in Figure 5.9. The bit positions are numbered from 1 to 12. Those bit positions whose position numbers are powers of 2 are designated as check bits. The check bits are calculated as follows, where the symbol \oplus designates the exclusive-OR operation:

$$\begin{aligned}
 C1 &= D1 \oplus D2 \oplus D4 \oplus D5 \oplus D7 \\
 C2 &= D1 \oplus D3 \oplus D4 \oplus D6 \oplus D7 \\
 C4 &= D2 \oplus D3 \oplus D4 \oplus D8 \\
 C8 &= D5 \oplus D6 \oplus D7 \oplus D8
 \end{aligned}$$

Each check bit operates on every data bit whose position number contains a 1 in the same bit position as the position number of that check bit. Thus, data bit positions 3, 5, 7, 9, and 11 (D1, D2, D4, D5, D7) all contain a 1 in the least significant bit of their position number as does C1; bit positions 3, 6, 7, 10, and 11 all contain a 1 in the second bit position, as does C2; and so on. Looked at another way, bit position n

Bit position	12	11	10	9	8	7	6	5	4	3	2	1
Position number	1100	1011	1010	1001	1000	0111	0110	0101	0100	0011	0010	0001
Data bit	D8	D7	D6	D5		D4	D3	D2		D1		
Check bit					C8				C4		C2	C1

Figure 5.9 Layout of Data Bits and Check Bits

is checked by those bits C_i such that $\sum i = n$. For example, position 7 is checked by bits in position 4, 2, and 1; and $7 = 4 + 2 + 1$.

Let us verify that this scheme works with an example. Assume that the 8-bit input word is 00111001, with data bit D1 in the rightmost position. The calculations are as follows:

$$\begin{aligned}C1 &= 1 \oplus 0 \oplus 1 \oplus 1 \oplus 0 = 1 \\C2 &= 1 \oplus 0 \oplus 1 \oplus 1 \oplus 0 = 1 \\C4 &= 0 \oplus 0 \oplus 1 \oplus 0 = 1 \\C8 &= 1 \oplus 1 \oplus 0 \oplus 0 = 0\end{aligned}$$

Suppose now that data bit 3 sustains an error and is changed from 0 to 1. When the check bits are recalculated, we have

$$\begin{aligned}C1 &= 1 \oplus 0 \oplus 1 \oplus 1 \oplus 0 = 1 \\C2 &= 1 \oplus 1 \oplus 1 \oplus 1 \oplus 0 = 0 \\C4 &= 0 \oplus 1 \oplus 1 \oplus 0 = 0 \\C8 &= 1 \oplus 1 \oplus 0 \oplus 0 = 0\end{aligned}$$

When the new check bits are compared with the old check bits, the syndrome word is formed:

$$\begin{array}{r} C8 \quad C4 \quad C2 \quad C1 \\ 0 \quad 1 \quad 1 \quad 1 \\ \oplus \quad 0 \quad 0 \quad 0 \quad 1 \\ \hline 0 \quad 1 \quad 1 \quad 0 \end{array}$$

The result is 0110, indicating that bit position 6, which contains data bit 3, is in error.

Figure 5.10 illustrates the preceding calculation. The data and check bits are positioned properly in the 12-bit word. Four of the data bits have a value 1 (shaded in the table), and their bit position values are XORed to produce the Hamming code 0111, which forms the four check digits. The entire block that is stored is 001101001111. Suppose now that data bit 3, in bit position 6, sustains an error and is

Bit position	12	11	10	9	8	7	6	5	4	3	2	1
Position number	1100	1011	1010	1001	1000	0111	0110	0101	0100	0011	0010	0001
Data bit	D8	D7	D6	D5		D4	D3	D2		D1		
Check bit					C8				C4		C2	C1
Word stored as	0	0	1	1	0	1	0	0	1	1	1	1
Word fetched as	0	0	1	1	0	1	1	0	1	1	1	1
Position number	1100	1011	1010	1001	1000	0111	0110	0101	0100	0011	0010	0001
Check bit					0				0		0	1

Figure 5.10 Check Bit Calculation

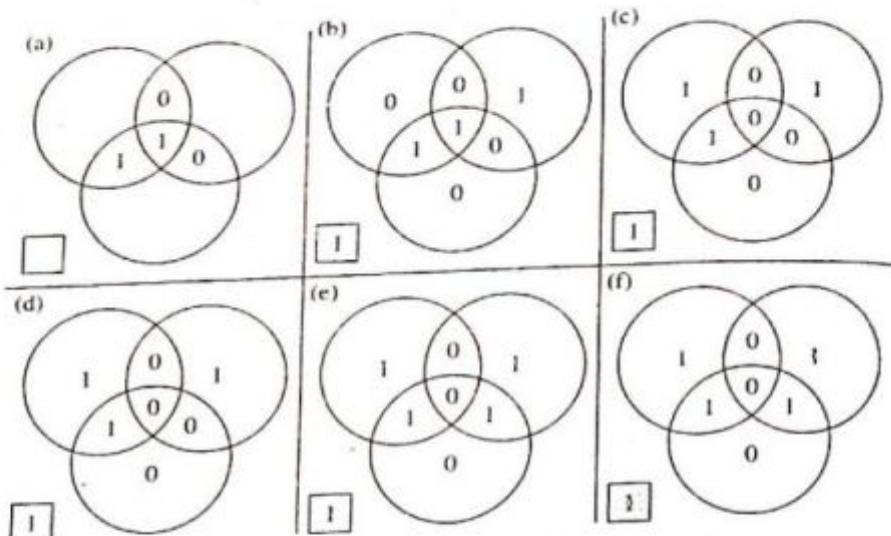


Figure 5.11 Hamming SEC-DEC Code

changed from 0 to 1. The resulting block is 001101101111, with a Hamming code of 0111. An XOR of the Hamming code and all of the bit position values for nonzero data bits results in 0110. The nonzero result detects an error and indicates that the error is in bit position 6.

The code just described is known as a *single-error-correcting* (SEC) code. More commonly, semiconductor memory is equipped with a single-error-correcting double-error-detecting (SEC-DED) code. As Table 5.2 shows, such codes require one additional bit compared with SEC codes.

Figure 5.11 illustrates how such a code works, again with a 4-bit data word. The sequence shows that if two errors occur (Figure 5.11c), the checking procedure goes astray (d) and worsens the problem by creating a third error (e). To overcome the problem, an eighth bit is added that is set so that the total number of 1s in the diagram is even. The extra parity bit catches the error (f).

An error-correcting code enhances the reliability of the memory at the cost of added complexity. With a one-bit-per-chip organization, an SEC-DED code is generally considered adequate. For example, the IBM 30xx implementations used an 8-bit SEC-DED code for each 64 bits of data in main memory. Thus, the size of main memory is actually about 12% larger than is apparent to the user. The VAX computers used a 7-bit SEC-DED for each 32 bits of memory, for a 22% overhead. A number of contemporary DRAMs use 9 check bits for each 128 bits of data, for a 7% overhead [SHAR97].

Table 5.3 Performance Comparison of Some DRAM Alternatives

	Clock frequency (MHz)	Transfer rate (GB/s)	Access time (ns)	Pin count
SDRAM	166	1.3	18	168
DDR	200	3.2	12.5	184
RDRAM	600	4.8	12	162

building block of main memory remains the DRAM chip, as it has for decades; until recently, there had been no significant changes in DRAM architecture since the early 1970s. The traditional DRAM chip is constrained both by its internal architecture and by its interface to the processor's memory bus.

We have seen that one attack on the performance problem of DRAM main memory has been to insert one or more levels of high-speed SRAM cache between the DRAM main memory and the processor. But SRAM is much costlier than DRAM, and expanding cache size beyond a certain point yields diminishing returns.

In recent years, a number of enhancements to the basic DRAM architecture have been explored, and some of these are now on the market. The schemes that currently dominate the market are SDRAM, DDR-DRAM, and RDRAM. Table 5.3 provides a performance comparison. CDRAM has also received considerable attention. We examine each of these approaches in this section.

Synchronous DRAM

One of the most widely used forms of DRAM is the synchronous DRAM (SDRAM) [VOGL94]. Unlike the traditional DRAM, which is asynchronous, the DRAM exchanges data with the processor synchronized to an external clock signal and running at the full speed of the processor/memory bus without imposing wait states.

In a typical DRAM, the processor presents addresses and control levels to the memory, indicating that a set of data at a particular location in memory should be either read from or written into the DRAM. After a delay, the access time, the DRAM either writes or reads the data. During the access-time delay, the DRAM performs various internal functions, such as activating the high capacitance of the row and column lines, sensing the data, and routing the data out through the output buffers. The processor must simply wait through this delay, slowing system performance.

With synchronous access, the DRAM moves data in and out under control of a system clock. The processor or other master issues the instruction and address information, which is latched by the DRAM. The DRAM then responds after a set number of clock cycles. Meanwhile, the master can safely do other tasks while the RAM is processing the request.

Figure 5.12 shows the internal logic of IBM's 64-Mb SDRAM [IBM01], which is typical of SDRAM organization, and Table 5.4 defines the various pin assignments.

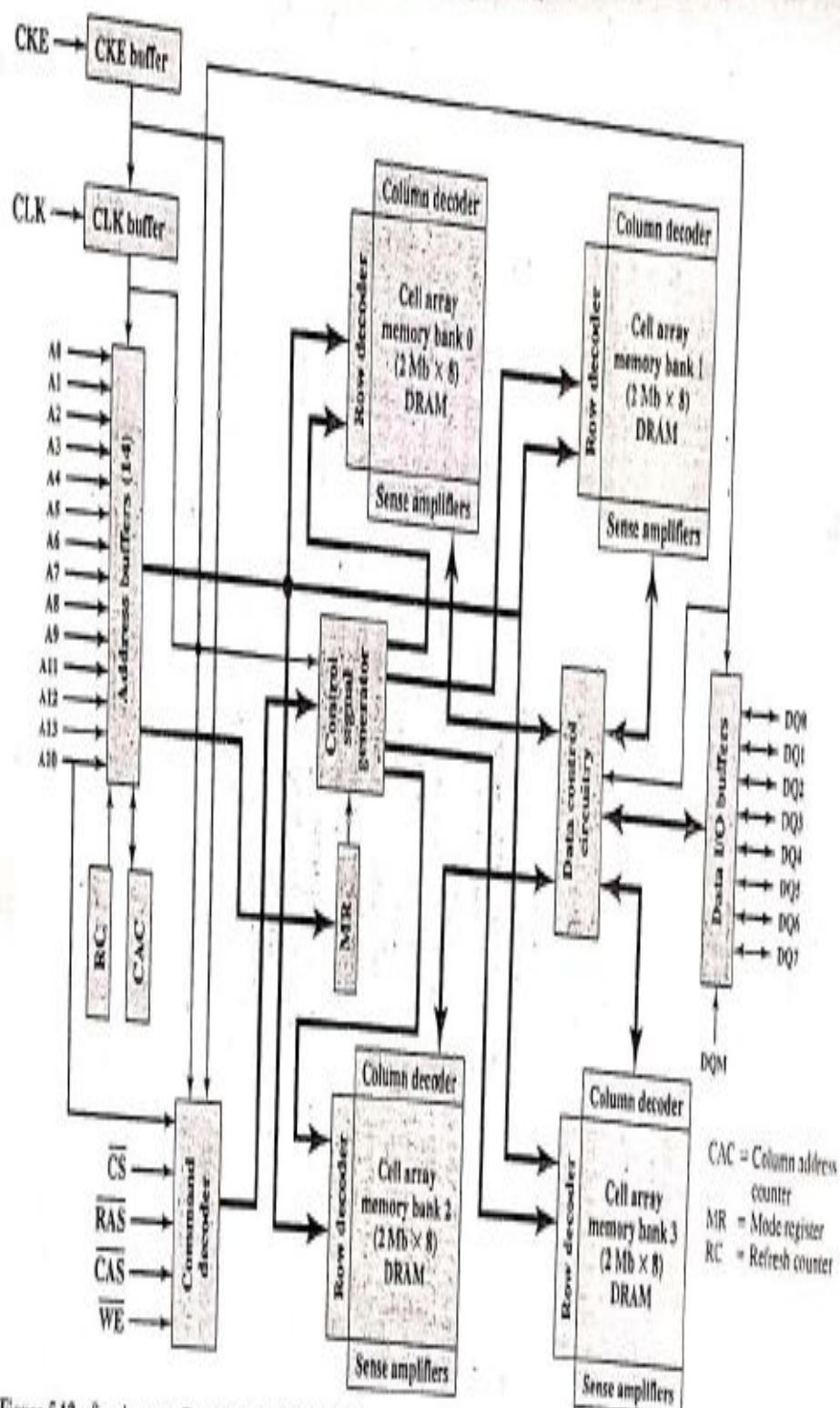


Figure 5.12 Synchronous Dynamic RAM (SDRAM)

Table 5.4 SDRAM Pin Assignments

A0 to A13	Address inputs
CLK	Clock input
CKE	Clock enable
CS	Chip select
RAS	Row address strobe
CAS	Column address strobe
WE	Write enable
DQ0 to DQ7	Data input/output
DQM	Data mask

The SDRAM employs a burst mode to eliminate the address setup time and row and column line precharge time after the first access. In burst mode, a series of data bits can be clocked out rapidly after the first bit has been accessed. This mode is useful when all the bits to be accessed are in sequence and in the same row of the array as the initial access. In addition, the SDRAM has a multiple-bank internal architecture that improves opportunities for on-chip parallelism.

The mode register and associated control logic is another key feature differentiating SDRAMs from conventional DRAMs. It provides a mechanism to customize the SDRAM to suit specific system needs. The mode register specifies the burst length, which is the number of separate units of data synchronously fed onto the bus. The register also allows the programmer to adjust the latency between receipt of a read request and the beginning of data transfer.

The SDRAM performs best when it is transferring large blocks of data serially, such as for applications like word processing, spreadsheets, and multimedia.

Figure 5.13 shows an example of SDRAM operation. In this case, the burst length is 4 and the latency is 2. The burst read command is initiated by having CS and CAS low while holding RAS and WE high at the rising edge of the clock. The address inputs determine the starting column address for the burst, and the mode register sets the type of burst (sequential or interleave) and the burst length (1, 2, 4, 8, full page). The delay from the start of the command to when the data from the first cell appears on the outputs is equal to the value of the CAS latency that is set in the mode register.

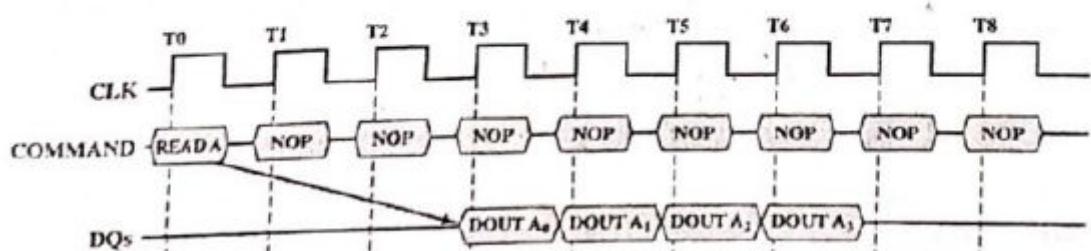


Figure 5.13 SDRAM Read Timing (burst length = 4, CAS latency = 2)

RDRAM, [VLSI92, CRIS97], has been adopted by Intel for its Pentium processors. It has become the main competitor to SDRAM. RDRAM chips are vertical packages, with all pins on one side. The chip exchanges data with the processor over 28 wires no more than 12 centimeters long. The bus can address up to 320 RDRAM chips and is rated at 1.6 GBps.

The special RDRAM bus delivers address and control information using a synchronous block-oriented protocol. After an initial 480 ns access time, this produces the 1.6 GBps data rate. What makes this speed possible is the bus itself, which defines impedances, clocking, and signals very precisely. Rather than being controlled by the explicit RAS, CAS, R/W, and CE signals used in conventional DRAMs, an RDRAM gets a memory request over the high-speed bus. This request contains the desired address, the type of operation, and the number of bytes in the operation.

Figure 5.14 illustrates the RDRAM layout. The configuration consists of a controller and a number of RDRAM modules connected together via a command bus. The controller is at one end of the configuration, and the far end of the bus includes a parallel termination of the bus lines. The bus includes 18 data lines (16 active data, two parity) cycling at twice the clock rate; that is, one bit is sent at the leading and following edge of each clock signal. This results in a signal rate on each data line of 800 Mbps. There is a separate set of 8 lines (RC) used for address and control signals. There is also a clock signal that starts at the far end from the controller propagates to the controller end and then loops back. A RDRAM module sends data to the controller synchronously to the clock to master, and the controller sends data to an RDRAM synchronously with the clock signal in the opposite direction. The remaining bus lines include a reference voltage, ground and power source.

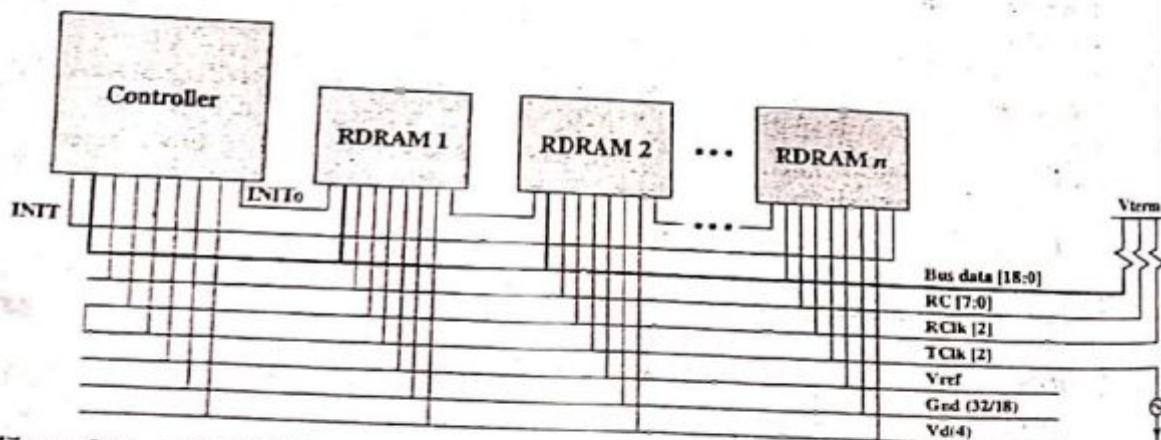


Figure 5.14 RDRAM Structure

DDR SDRAM

DRAM is limited by the fact that it can only send data to the processor once per clock cycle. A new version of SDRAM, referred to as double-data-rate SDRAM can send data twice per clock cycle, once on the rising edge of the clock pulse and once on the falling edge.

Cache DRAM

Cache DRAM (CDRAM), developed by Mitsubishi [HIDA90, ZHAN01], integrates a small SRAM cache (16 Kb) onto a generic DRAM chip.

The SRAM on the CDRAM can be used in two ways. First, it can be used as a cache, consisting of a number of 64-bit lines. The cache mode of the CDRAM is effective for ordinary random access to memory.

The SRAM on the CDRAM can also be used as a buffer to support the serial access of a block of data. For example, to refresh a bit-mapped screen, the CDRAM can prefetch the data from the DRAM into the SRAM buffer. Subsequent accesses to the chip result in accesses solely to the SRAM.

RECOMMENDED READING AND WEB SITES

[PRIN97] provides a comprehensive treatment of semiconductor memory technologies, including SRAM, DRAM, and flash memories. [SHAR97] covers the same material, with an emphasis on testing and reliability issues. [SHAR03] and [PRIN02] focus on advanced DRAM and SRAM architectures. For an in-depth look at DRAM, see [KEET01]. [CUPP01] provides an interesting performance comparison of various DRAM schemes. [BEZ03] is a comprehensive introduction to flash memory technology.

A good explanation of error-correcting codes is contained in [MCEL85]. For a deeper, yet, worthwhile book-length treatments are [ADAM91] and [BLAH83]. A quite readable, yet mathematical treatment of error-correcting codes is [ASH90]. [SHAR97] contains a good survey of codes used in contemporary main memories.

- [ADAM91] Adamek, J. *Foundations of Coding*. New York: Wiley, 1991.
- [ASH90] Ash, R. *Information Theory*. New York: Dover, 1990.
- [BEZ03] Bez, R., et al. "Introduction to Flash Memory." *Proceedings of the IEEE*, April 2003.
- [BLAH83] Blahut, R. *Theory and Practice of Error Control Codes*. Reading, MA: Addison-Wesley, 1983.
- [CUPP01] Cuppu, V., et al. "High Performance DRAMs in Workstation Environments." *IEEE Transactions on Computers*, November 2001.
- [KEET01] Keeth, B., and Baker, R. *DRAM Circuit Design: A Tutorial*. Piscataway, NJ: IEEE Press, 2001.
- [MCEL85] McEliece, R. "The Reliability of Computer Memories." *Scientific American*, January 1985.
- [PRIN97] Prince, B. *Semiconductor Memories*. New York: Wiley, 1997.
- [PRIN02] Prince, B. *Emerging Memories: Technologies and Trends*. Norwell, MA: Kluwer, 2002.

Unit - III I/O Modules

7

INPUT/OUTPUT

- 7.1 External Devices
- 7.2 I/O Modules
- 7.3 Programmed I/O
- 7.4 Interrupt-Driven I/O
- 7.5 Direct Memory Access
- 7.6 I/O Channels and Processors
- 7.7 The External Interface: FireWire and InfiniBand
- 7.8 Recommended Reading and Web Sites
- 7.9 Key Terms, Review Questions, and Problems

KEY POINTS

- ◆ The computer system's I/O architecture is its interface to the outside world. This architecture provides a systematic means of controlling interaction with the outside world and provides the operating system with the information it needs to manage I/O activity effectively.
- ◆ There are three principal I/O techniques: **programmed I/O**, in which I/O occurs under the direct and continuous control of the program requesting the I/O operation; **interrupt-driven I/O**, in which a program issues an I/O command and then continues to execute, until it is interrupted by the I/O hardware to signal the end of the I/O operation; and **direct memory access (DMA)**, in which a specialized I/O processor takes over control of an I/O operation to move a large block of data.
- ◆ Two important examples of external I/O interfaces are **FireWire** and **InfiniBand**.

In addition to the processor and a set of memory modules, the third key element of a computer system is a set of I/O modules. Each module interfaces to the system bus or central switch and controls one or more peripheral devices. An I/O module is not simply a set of mechanical connectors that wire a device into the system bus. Rather, the I/O module contains logic for performing a communication function between the peripheral and the bus.

The reader may wonder why one does not connect peripherals directly to the system bus. The reasons are as follows:

- There are a wide variety of peripherals with various methods of operation. It would be impractical to incorporate the necessary logic within the processor to control a range of devices.
- The data transfer rate of peripherals is often much slower than that of the memory or processor. Thus, it is impractical to use the high-speed system bus to communicate directly with a peripheral.
- On the other hand, the data transfer rate of some peripherals is faster than that of the memory or processor. Again, the mismatch would lead to inefficiencies if not managed properly.
- Peripherals often use different data formats and word lengths than the computer to which they are attached.

Thus, an I/O module is required. This module has two major functions (Figure 7.1)

- Interface to the processor and memory via the system bus or central switch
- Interface to one or more peripheral devices by tailored data links

We begin this chapter with a brief discussion of external devices, followed by an overview of the structure and function of an I/O module. Then we look at the

I/O operations are accomplished through a wide assortment of external devices that provide a means of exchanging data between the external environment and the computer. An external device attaches to the computer by a link to an I/O module (Figure 7.1). The link is used to exchange control, status, and data between the I/O module and the external device. An external device connected to an I/O module is often referred to as a *peripheral device* or, simply, a *peripheral*.

We can broadly classify external devices into three categories:

- **Human readable:** Suitable for communicating with the computer user
- **Machine readable:** Suitable for communicating with equipment
- **Communication:** Suitable for communicating with remote devices

Examples of human-readable devices are video display terminals (VDTs) and printers. Examples of machine-readable devices are magnetic disk and tape systems, and sensors and actuators, such as are used in a robotics application. Note that we are viewing disk and tape systems as I/O devices in this chapter, whereas in Chapter 6 we viewed them as memory devices. From a functional point of view, these devices are

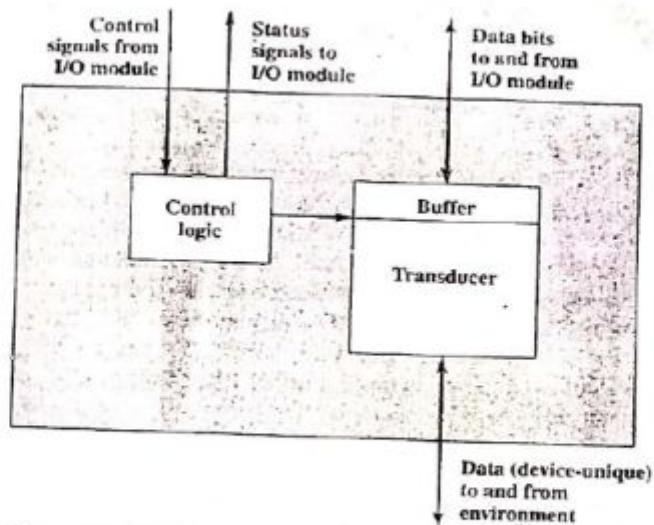


Figure 7.2 Block Diagram of an External Device

part of the memory hierarchy, and their use is appropriately discussed in Chapter 6. From a structural point of view, these devices are controlled by I/O modules and are hence to be considered in this chapter.

Communication devices allow a computer to exchange data with a remote device, which may be a human-readable device, such as a terminal, a machine-readable device, or even another computer.

In very general terms, the nature of an external device is indicated in Figure 7.2. The interface to the I/O module is in the form of control, data, and status signals. *Control signals* determine the function that the device will perform, such as send data to the I/O module (INPUT or READ), accept data from the I/O module (OUTPUT or WRITE), report status, or perform some control function particular to the device (e.g., position a disk head). *Data* are in the form of a set of bits to be sent to or received from the I/O module. *Status signals* indicate the state of the device. Examples are READY/NOT-READY to show whether the device is ready for data transfer.

Control logic associated with the device controls the device's operation in response to direction from the I/O module. The *transducer* converts data from electrical to other forms of energy during output and from other forms to electrical during input. Typically, a buffer is associated with the transducer to temporarily hold data being transferred between the I/O module and the external environment; a buffer size of 8 to 16 bits is common.

The interface between the I/O module and the external device will be examined in Section 7.7. The interface between the external device and the environment is beyond the scope of this book, but several brief examples are given here.

Keyboard/Monitor

The most common means of computer/user interaction is a keyboard/monitor arrangement. The user provides input through the keyboard. This input is then transmitted to

the computer and may also be displayed on the monitor. In addition, the monitor displays data provided by the computer.

The basic unit of exchange is the character. Associated with each character is a code, typically 7 or 8 bits in length. The most commonly used text code is the International Reference Alphabet (IRA).¹ Each character in this code is represented by a unique 7-bit-binary code; thus, 128 different characters can be represented. Table 7.1 lists all of the code values. In the table, the bits of each character are labeled from b_7 , which is the most significant bit, to b_1 , the least significant bit.² Characters are of two types: printable and control (Table 7.2). Printable characters are the alphabetic, numeric, and special characters that can be printed on paper or displayed on a screen. For example, the bit representation of the character "K" is $b_7b_6b_5b_4b_3b_2b_1 = 1001011$. Some of the control characters have to do with controlling the printing or displaying of characters; an example is carriage return. Other control characters are concerned with communications procedures.

Table 7.1 The International Reference Alphabet (IRA)

bit position				0	0	0	0	1	1	1	1	1
				b_7	b_6	b_5	b_4	b_3	b_2	b_1		
0	0	0	0	NUL	DLE	SP	0	@	P	'	p	
0	0	0	1	SOH	DC1	!	1	A	Q	a	q	
0	0	1	0	STX	DC2	"	2	B	R	b	r	
0	0	1	1	ETX	DC3	#	3	C	S	c	s	
0	1	0	0	EOT	DC4	\$	4	D	T	d	t	
0	1	0	1	ENQ	NAK	%	5	E	U	e	u	
0	1	1	0	ACK	SYN	&	6	F	V	f	v	
0	1	1	1	BEL	ETB	'	7	G	W	g	w	
1	0	0	0	BS	CAN	(8	H	X	h	x	
1	0	0	1	HT	EM)	9	I	Y	i	y	
1	0	1	0	LF	SUB	:	:	J	Z	j	z	
0	1	1		VT	ESC	+	:	K	L	k	{	
1	0	0		FF	FS	,	<	L	Y	l	l	
1	0	1		CR	GS	-	=	M	J	m	}	
1	1	0		SO	RS	.	>	N	^	n	~	
1	1	1		SI	US	/	?	O	-	o	DEL	

¹IRA is defined in ITU-T Recommendation T.50 and was formerly known as International Alphabet Number 5 (IA5). The U.S. national version of IRA is referred to as the American Standard Code for Information Interchange (ASCII).

²IRA-encoded characters are almost always stored and transmitted using 8 bits per character. The eighth bit is a parity bit used for error detection. The parity bit is the most significant bit and is therefore labeled b_8 .

Format Control

BS (Backspace): Indicates movement of the printing mechanism or display cursor backward one position.

HT (Horizontal Tab): Indicates movement of the printing mechanism or display cursor forward to the next preassigned 'tab' or stopping position.

LF (Line Feed): Indicates movement of the printing mechanism or display cursor to the start of the next line.

VT (Vertical Tab): Indicates movement of the printing mechanism or display cursor to the next of a series preassigned printing lines.

FF (Form Feed): Indicates movement of the printing mechanism or display cursor to the starting position of the next page, form, or screen.

CR (Carriage Return): Indicates movement of the printing mechanism or display cursor to the starting position of the same line.

Transmission Control

SOH (Start of Heading): Used to indicate the start of a heading, which may contain address or routing information.

STX (Start of Text): Used to indicate the start of the text and so also indicates the end of the heading.

ETX (End of Text): Used to terminate the text that was started with STX.

EOT (End of Transmission): Indicates the end of a transmission, which may have included one or more 'texts' with their headings.

ENQ (Enquiry): A request for a response from a remote station. It may be used as a 'WHO ARE YOU' request for a station to identify itself.

ACK (Acknowledge): A character transmitted by a receiving device as an affirmation response to a sender. It is used as a positive response to polling messages.

NAK (Negative Acknowledgment): A character transmitted by a receiving device as an negative response to a sender. It is used as a negative response to polling messages.

SYN (Synchronous/Idle): Used by a synchronous transmission system to achieve synchronization. When no data is being sent a synchronous transmission system may send SYN characters continuously.

ETB (End of Transmission Block): Indicates the end of a block of data for communication purposes. It is used for blocking data where the block structure is not necessarily related to the processing format.

Information Separator

FS (File Separator)

GS (Group Separator)

RS (Record Separator)

US (United Separator)

Information separators to be used in an optional manner except that their hierarchy shall be FS (the most inclusive) to US (the least inclusive)

Miscellaneous

NUL (Null): No character. Used for filling in time or filling space on tape when there are no data

BEL (Bell): Used when there is need to call human attention. It may control alarm or attention devices.

SO (Shift Out): Indicates that the code combinations that follow shall be interpreted as outside of the standard character set until a SI character is reached.

DLE (Data Link Escape): A character that shall change the meaning of one or more contiguously following characters. It can provide supplementary controls, or permits the sending of data characters having any bit combination.

DC1, DC2, DC3, DC4 (Device Controls): Characters for the control of ancillary devices or special terminal features.

For keyboard input, when the user depresses a key, this generates an electronic signal that is interpreted by the transducer in the keyboard and translated into the bit pattern of the corresponding IRA code. This bit pattern is then transmitted to the I/O module in the computer. At the computer, the text can be stored in the same IRA code. On output, IRA code characters are transmitted to an external device from the I/O module. The transducer at the device interprets this code and sends the required electronic signals to the output device either to display the indicated character or perform the requested control function.

Disk Drive

A disk drive contains electronics for exchanging data, control, and status signals with an I/O module plus the electronics for controlling the disk read/write mechanism. In a fixed-head disk, the transducer is capable of converting between the magnetic patterns on the moving disk surface and bits in the device's buffer (Figure 7.2). A moving-head disk must also be able to cause the disk arm to move radially in and out across the disk's surface.

The internal resources, such as main memory and the system bus, must be shared among a number of activities, including data I/O. Thus, the I/O function includes a **control and timing** requirement, to coordinate the flow of traffic between internal resources and external devices. For example, the control of the transfer of data from an external device to the processor might involve the following sequence of steps:

1. The processor interrogates the I/O module to check the status of the attached device.
2. The I/O module returns the device status.
3. If the device is operational and ready to transmit, the processor requests the transfer of data, by means of a command to the I/O module.
4. The I/O module obtains a unit of data (e.g., 8 or 16 bits) from the external device.
5. The data are transferred from the I/O module to the processor.

If the system employs a bus, then each of the interactions between the processor and the I/O module involves one or more bus arbitrations.

The preceding simplified scenario also illustrates that the I/O module must communicate with the processor and with the external device. **Processor communication** involves the following:

- **Command decoding:** The I/O module accepts commands from the processor, typically sent as signals on the control bus. For example, an I/O module for a disk drive might accept the following commands: READ SECTOR, WRITE SECTOR, SEEK track number, and SCAN record ID. The latter two commands each include a parameter that is sent on the data bus.
- **Data:** Data are exchanged between the processor and the I/O module over the data bus.
- **Status reporting:** Because peripherals are so slow, it is important to know the status of the I/O module. For example, if an I/O module is asked to send data to the processor (read), it may not be ready to do so because it is still working on the previous I/O command. This fact can be reported with a status signal. Common status signals are BUSY and READY. There may also be signals to report various error conditions.
- **Address recognition:** Just as each word of memory has an address, so does each I/O device. Thus, an I/O module must recognize one unique address for each peripheral it controls.

On the other side, the I/O module must be able to perform **device communication**. This communication involves commands, status information, and data (Figure 7.2).

An essential task of an I/O module is **data buffering**. The need for this function is apparent from Figure 2.11. Whereas the transfer rate into and out of main memory or the processor is quite high, the rate is orders of magnitude lower for many peripheral devices and covers a wide range. Data coming from main memory are sent to an I/O module in a rapid burst. The data are buffered in the I/O module and then sent to the peripheral device at its data rate. In the opposite direction, data are buffered so as not to tie up the memory in a slow transfer operation. Thus, the I/O module must be able to operate at both device and memory speeds. Similarly, if the

I/O device operates at a rate higher than the memory access rate, then the I/O module performs the needed buffering operation.

Finally, an I/O module is often responsible for **error detection** and for subsequently reporting errors to the processor. One class of errors includes mechanical and electrical malfunctions reported by the device (e.g., paper jam, bad disk track). Another class consists of unintentional changes to the bit pattern as it is transmitted from device to I/O module. Some form of error-detecting code is often used to detect transmission errors. A simple example is the use of a parity bit on each character of data. For example, the IRA character code occupies 7 bits of a byte. The eighth bit is set so that the total number of 1s in the byte is even (even parity) or odd (odd parity). When a byte is received, the I/O module checks the parity to determine whether an error has occurred.

1/O Module Structure

I/O modules vary considerably in complexity and the number of external devices that they control. We will attempt only a very general description here. (One specific device, the Intel 82C55A, is described in Section 7.4.) Figure 7.3 provides a general block diagram of an I/O module. The module connects to the rest of the computer through a set of signal lines (e.g., system bus lines). Data transferred to and from the module are buffered in one or more data registers. There may also be one or more status registers that provide current status information. A status register may also function as a control register, to accept detailed control information from the processor. The logic within the module interacts with the processor via a set of control lines. The processor uses the control lines to issue commands to the I/O module. Some of the control lines may be used by the I/O module (e.g., for arbitration and status signals).

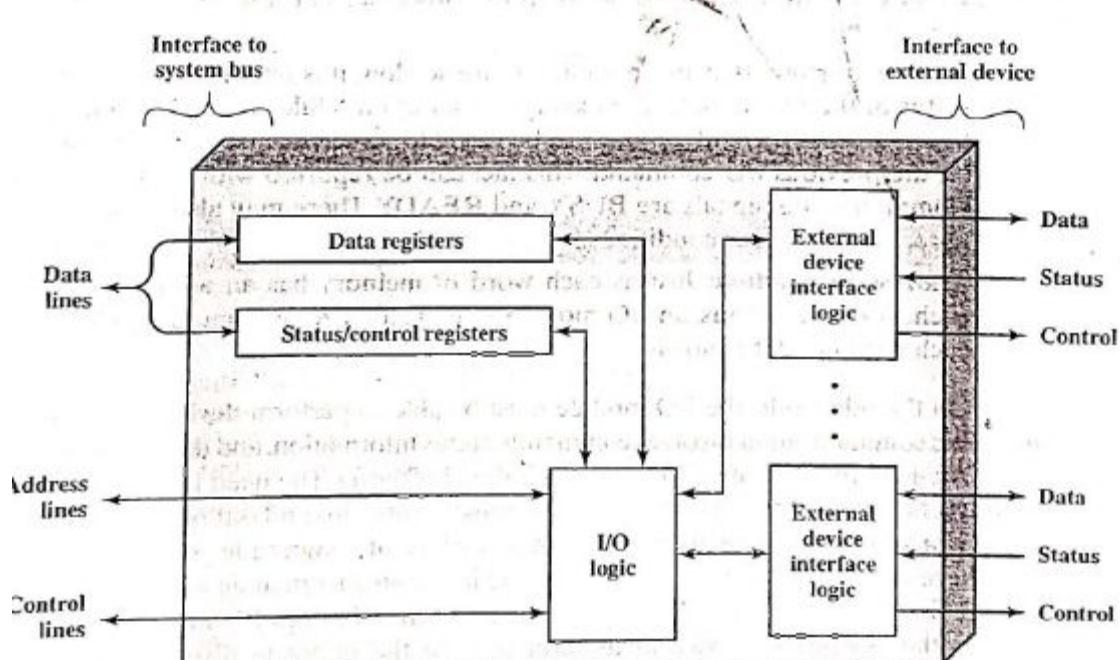


Figure 7.3 Block Diagram of an I/O Module

The module must also be able to recognize and generate addresses associated with the devices it controls. Each I/O module has a unique address or, if it controls more than one external device, a unique set of addresses. Finally, the I/O module contains logic specific to the interface with each device that it controls.

An I/O module functions to allow the processor to view a wide range of devices in a simple-minded way. There is a spectrum of capabilities that may be provided. The I/O module may hide the details of timing, formats, and the electromechanics of an external device so that the processor can function in terms of simple read and write commands, and possibly open and close file commands. In its simplest form, the I/O module may still leave much of the work of controlling a device (e.g., rewind a tape) visible to the processor.

An I/O module that takes on most of the detailed processing burden, presenting a high-level interface to the processor, is usually referred to as an *I/O channel* or *I/O processor*. An I/O module that is quite primitive and requires detailed control is usually referred to as an *I/O controller* or *device controller*. I/O controllers are commonly seen on microcomputers, whereas I/O channels are used on mainframes.

In what follows, we will use the generic term *I/O module* when no confusion results and will use more specific terms where necessary.

PROGRAMMED I/O

Three techniques are possible for I/O operations. With *programmed I/O*, data are exchanged between the processor and the I/O module. The processor executes a program that gives it direct control of the I/O operation, including sensing device status, sending a read or write command, and transferring the data. When the processor issues a command to the I/O module, it must wait until the I/O operation is complete. If the processor is faster than the I/O module, this is wasteful of processor time. With *interrupt-driven I/O*, the processor issues an I/O command, continues to execute other instructions, and is interrupted by the I/O module when the latter has completed its work. With both programmed and interrupt I/O, the processor is responsible for extracting data from main memory for output and storing data in main memory for input. The alternative is known as *direct memory access* (DMA). In this mode, the I/O module and main memory exchange data directly, without processor involvement.

Table 7.3 indicates the relationship among these three techniques. In this section, we explore programmed I/O. Interrupt I/O and DMA are explored in the following two sections, respectively.

Table 7.3 I/O Techniques

No Interrupts	Use of Interrupts
I/O-to-memory transfer through processor	Programmed I/O
Direct I/O-to-memory transfer	Interrupt-driven I/O Direct memory access (DMA)

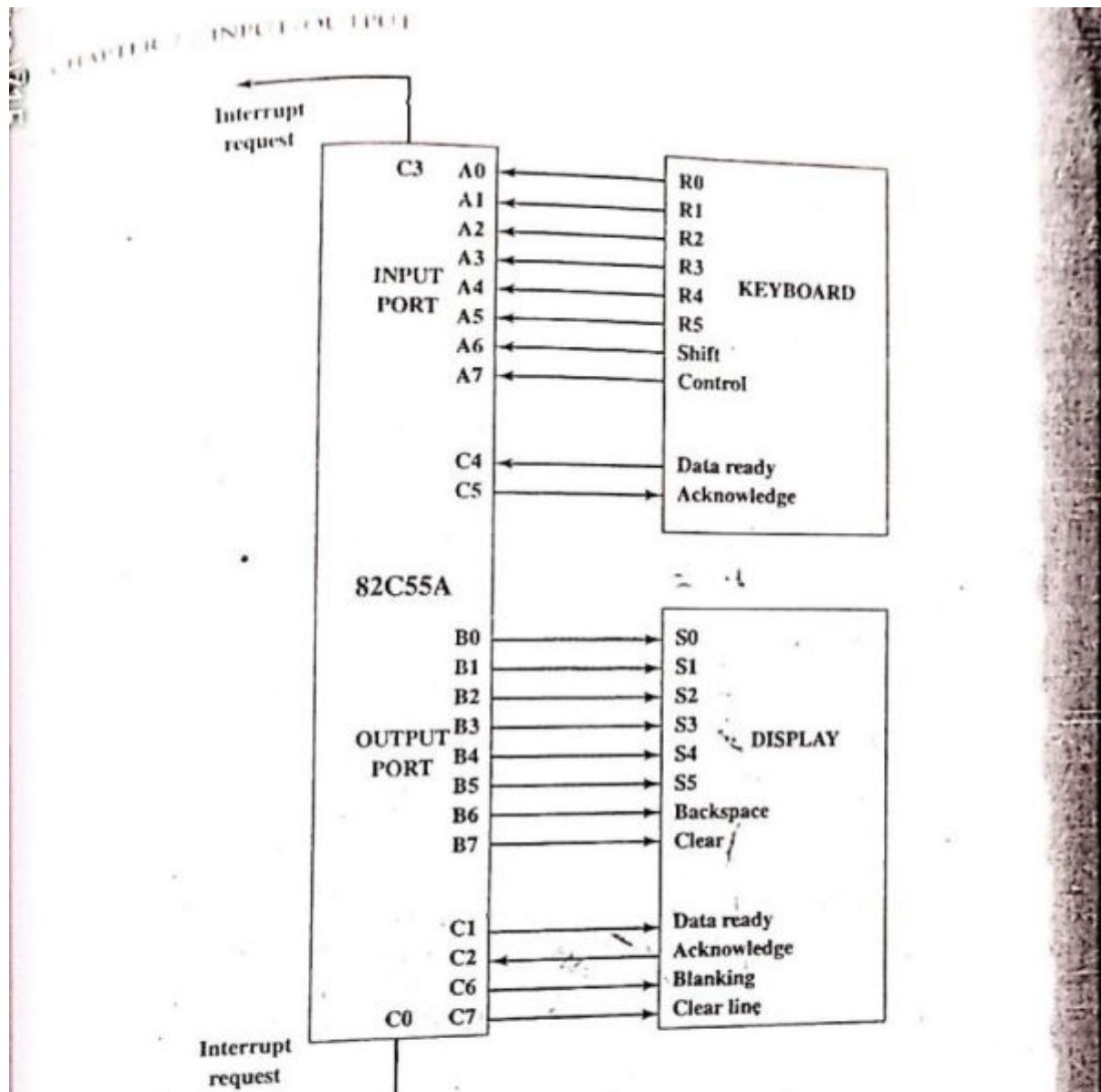


Figure 7.10 Keyboard/Display Interface to 82C55A

be cleared. Another line may be designated as an INTERRUPT REQUEST line and tied back to the system bus.

Because the 82C55A is programmable via the control register, it can be used to control a variety of simple peripheral devices. Figure 7.10 illustrates its use to control a keyboard/display terminal. The keyboard provides 8 bits of input. Two

7.5 DIRECT MEMORY ACCESS

Drawbacks of Programmed and Interrupt-Driven I/O

Interrupt-driven I/O, though more efficient than simple programmed I/O, still requires the active intervention of the processor to transfer data between memory and an I/O module, and any data transfer must traverse a path through the processor. Thus, both these forms of I/O suffer from two inherent drawbacks:

1. The I/O transfer rate is limited by the speed with which the processor can test and service a device.
2. The processor is tied up in managing an I/O transfer; a number of instructions must be executed for each I/O transfer (e.g., Figure 7.5).

There is somewhat of a trade-off between these two drawbacks. Consider the transfer of a block of data. Using simple programmed I/O, the processor is dedicated to the task of I/O and can move data at a rather high rate, at the cost of doing nothing else. Interrupt I/O frees up the processor to some extent at the expense of the I/O transfer rate. Nevertheless, both methods have an adverse impact on both processor activity and I/O transfer rate.

When large volumes of data are to be moved, a more efficient technique is required: direct memory access (DMA).

DMA Function

DMA involves an additional module on the system bus. The DMA module (Figure 7.11) is capable of mimicking the processor and, indeed, of taking over control of the system

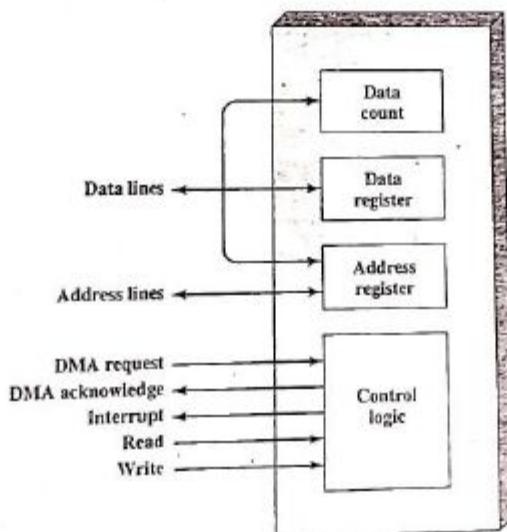


Figure 7.11 Typical DMA Block Diagram

from the processor. It needs to do this to transfer data to and from memory over the system bus. For this purpose, the DMA module must use the bus only when the processor does not need it, or it must force the processor to suspend operation temporarily. The latter technique is more common and is referred to as *cycle stealing*, because the DMA module in effect steals a bus cycle.

When the processor wishes to read or write a block of data, it issues a command to the DMA module, by sending to the DMA module the following information:

- Whether a read or write is requested, using the read or write control line between the processor and the DMA module
- The address of the I/O device involved, communicated on the data lines
- The starting location in memory to read from or write to, communicated on the data lines and stored by the DMA module in its address register
- The number of words to be read or written, again communicated via the data lines and stored in the data count register

The processor then continues with other work. It has delegated this I/O operation to the DMA module. The DMA module transfers the entire block of data, one word at a time, directly to or from memory, without going through the processor. When the transfer is complete, the DMA module sends an interrupt signal to the processor. Thus, the processor is involved only at the beginning and end of the transfer (Figure 7.5c).

Figure 7.12 shows where in the instruction cycle the processor may be suspended. In each case, the processor is suspended just before it needs to use the bus. The DMA module then transfers one word and returns control to the processor. Note that this is not an interrupt; the processor does not save a context and do something else. Rather, the processor pauses for one bus cycle. The overall effect is to cause the processor to execute more slowly. Nevertheless, for a multiple-word I/O transfer, DMA is far more efficient than interrupt-driven or programmed I/O.

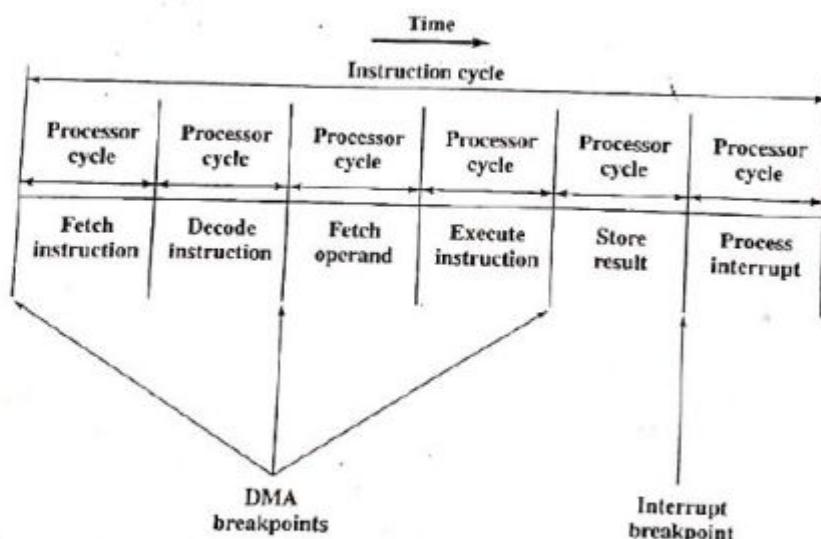


Figure 7.12 DMA and Interrupt Breakpoints during an Instruction Cycle

The DMA mechanism can be configured in a variety of ways. Some possibilities are shown in Figure 7.13. In the first example, all modules share the same system bus. The DMA module, acting as a surrogate processor, uses programmed I/O to exchange data between memory and an I/O module through the DMA module. This configuration, while it may be inexpensive, is clearly inefficient. As with processor-controlled programmed I/O, each transfer of a word consumes two bus cycles.

The number of required bus cycles can be cut substantially by integrating the DMA and I/O functions. As Figure 7.13b indicates, this means that there is a path between the DMA module and one or more I/O modules that does not include the system bus. The DMA logic may actually be a part of an I/O module, or it may be a separate module that controls one or more I/O modules. This concept can be taken one step further by connecting I/O modules to the DMA module using an I/O bus (Figure 7.13c). This reduces the number of I/O interfaces in the DMA module to one and provides for an easily expandable configuration. In all of these cases (Figures 7.13b and c), the system bus that the DMA module shares with the processor and memory is used by the DMA module only to exchange data with memory. The exchange of data between the DMA and I/O modules takes place off the system bus.

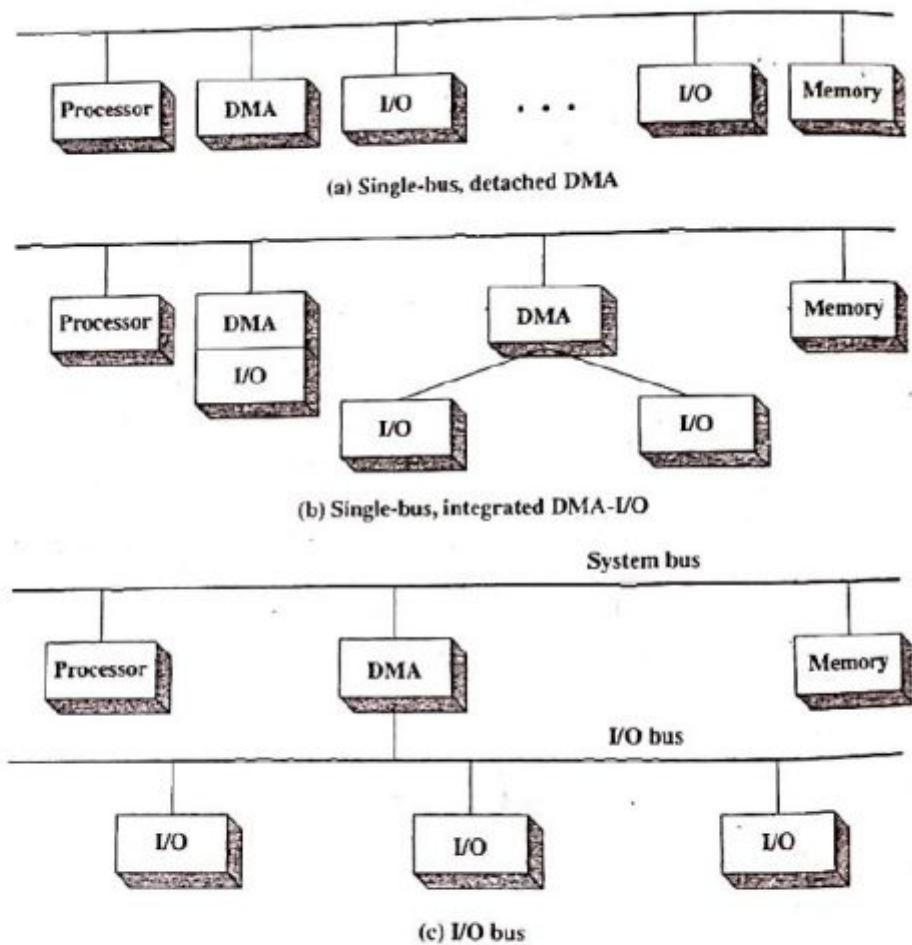
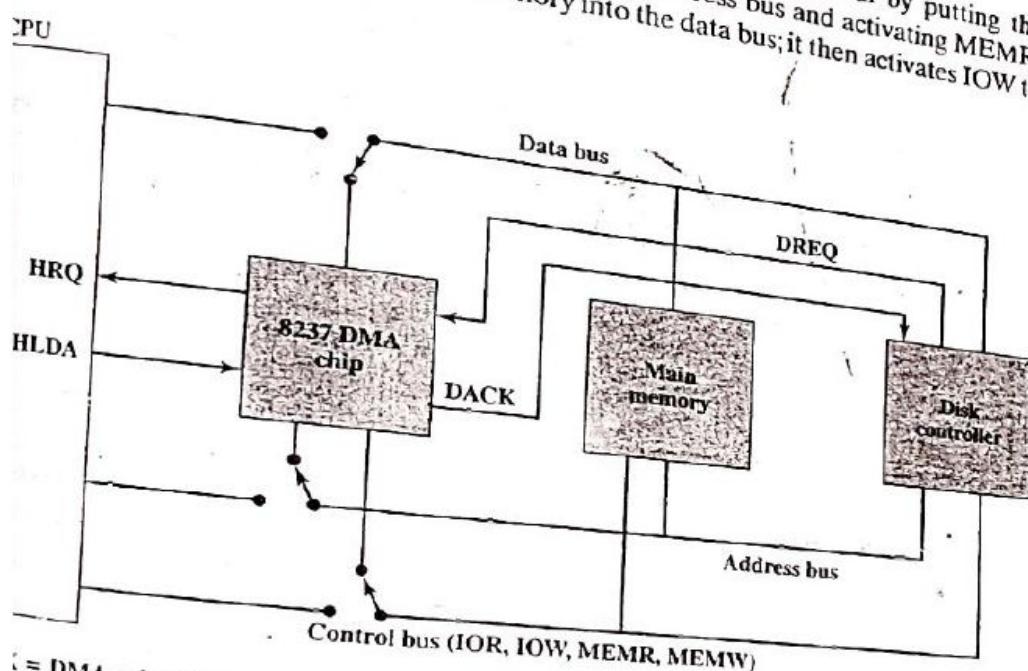



Figure 7.13 Alternative DMA Configurations

Intel 8237A DMA Controller

The Intel 8237A DMA controller interfaces to the 80x86 family of processors and to DRAM memory to provide a DMA capability. Figure 7.14 indicates the location of the DMA module. When the DMA module needs to use the system buses (data, address, and control) to transfer data, it sends a signal called HOLD to the processor. The processor responds with the HLDA (hold acknowledge) signal, indicating that the DMA module can use the buses. For example, if the DMA module is to transfer a block of data from memory to disk, it will do the following:

1. The peripheral device (such as the disk controller) will request the service of DMA by pulling DREQ (DMA request) high.
2. The DMA will put a high on its HRO (hold request), signaling the CPU through its HOLD pin that it needs to use the buses.
3. The CPU will finish the present bus cycle (not necessarily the present instruction) and respond to the DMA request by putting high on its HDLA (hold acknowledge), thus telling the 8237 DMA that it can go ahead and use the buses to perform its task. HOLD must remain active high as long as DMA is performing its task.
4. DMA will activate DACK (DMA acknowledge), which tells the peripheral device that it will start to transfer the data.
5. DMA starts to transfer the data from memory to peripheral by putting the address of the first byte of the block on the address bus and activating MEMR, thereby reading the byte from memory into the data bus; it then activates IOW to

= DMA acknowledge
 = DMA request
 = HOLD acknowledge
 = HOLD request

write it to the peripheral. Then DMA decrements the counter and increments the address pointer and repeats this process until the count reaches zero and the task is finished.

6. After the DMA has finished its job it will deactivate HRO, signaling the CPU that it can regain control over its buses.

While the DMA is using the buses to transfer data, the processor is idle. Similarly, when the processor is using the bus, the DMA is idle. The 8237 DMA is known as a *fly-by* DMA controller. This means that the data being moved from one location to another does not pass through the DMA chip and is not stored in the DMA chip. Therefore, the DMA can only transfer data between an I/O port and a memory address, but not between two I/O ports or two memory locations. However, as explained subsequently, the DMA chip can perform a memory-to-memory transfer via a register.

The 8237 contains four DMA channels that can be programmed independently and any one of the channels may be active at any moment. These channels are numbered 0, 1, 2, and 3.

The 8237 has a set of five control/command registers to program and control DMA operation over one of its channels (Table 7.4):

- **Command:** The processor loads this register to control the operation of the DMA. D0 enables a memory-to-memory transfer, in which channel 0 is used to transfer a byte into an 8237 temporary register and channel 1 is used to transfer the byte from the register to memory. When memory-to-memory is enabled, D1 can be used to disable increment/decrement on channel 0 so that a fixed value can be written into a block of memory. D2 enables or disables DMA.
- **Status:** The processor reads this register to determine DMA status. Bits D0–D3 are used to indicate if channels 0–3 have reached their TC (terminal count). Bits D4–D7 are used by the processor to determine if any channel has a DMS request pending.
- **Mode:** The processor sets this register to determine the mode of operation of the DMA. Bits D0 and D1 are used to select a channel. The other bits select various operation modes for the selected channel. Bits D2 and D3 determine if the transfer is a from an I/O device to memory (write) or from memory to I/O (read), or a verify operation. If D4 is set, then the memory address register and the count register are reloaded with their original values at the end of a DMA data transfer. Bits D6 and D7 determine the way in which the 8237 is used. In single mode, a single byte of data is transferred. Block and demand modes are used for a block transfer, with the demand mode allowing for premature ending of the transfer. Cascade mode allows multiple 8237s to be cascaded to expand the number of channels to more than 4.
- **Single Mask:** The processor sets this register. Bits D0 and D1 select the channel. Bit D2 clears or sets the mask bit for that channel. It is through this register that the DREQ input of a specific channel can be masked (disabled) or unmasked (enabled). While the command register can be used to disable the whole DMA chip, the single mask register allows the programmer to disable or enable a specific channel.

Table 7.4 Intel 8237A Registers

Bit	Command	Status	Mode	Single Mask	All Mask
D0	Memory-to-memory-E/D	Channel 0 has reached TC		Select channel mask bit	Clear/set channel 0 mask bit
D1	Channel 0 address hold E/D	Channel 1 has reached TC	Channel select		Clear/set channel 1 mask bit
D2	Controller E/D	Channel 2 has reached TC		Verify/write/read transfer	Clear/set channel 2 mask bit
D3	Normal/compressed timing	Channel 3 has reached TC			Clear/set channel 3 mask bit
D4	Fixed/rotating priority	Channel 0 request	Autoinitiation E/D		
D5	Late/extended write selection	Channel 0 request	Address increment/decrement select	Not used	
D6	DREQ sense active high/low	Channel 0 request			
D7	DACK sense active high/low	Channel 0 request	Demand/single/block/cascade mode select	Not used	

E/D = enable/disable

TC = terminal count

- **All Mask:** This register is similar to the single mask register except that all 4 channels can be masked or unmasked with one write operation.

In addition, the 8237A has eight data registers: one memory address register and one count register for each channel. The processor sets these registers to indicate the location of size of main memory to be affected by the transfers.

7.6 I/O CHANNELS AND PROCESSORS

The Evolution of the I/O Function

As computer systems have evolved, there has been a pattern of increasing complexity and sophistication of individual components. Nowhere is this more evident than in the I/O function. We have already seen part of that evolution. The evolutionary steps can be summarized as follows:

1. The CPU directly controls a peripheral device. This is seen in simple microprocessor-controlled devices.
2. A controller or I/O module is added. The CPU uses programmed I/O without interrupts. With this step, the CPU becomes somewhat divorced from the specific details of external device interfaces.
3. The same configuration as in step 2 is used, but now interrupts are employed. The CPU need not spend time waiting for an I/O operation to be performed, increasing efficiency.
4. The I/O module is given direct access to memory via DMA. It can now move a block of data to or from memory without involving the CPU, except at the beginning and end of the transfer.
5. The I/O module is enhanced to become a processor in its own right, with a specialized instruction set tailored for I/O. The CPU directs the I/O processor to execute an I/O program in memory. The I/O processor fetches and executes these instructions without CPU intervention. This allows the CPU to specify a sequence of I/O activities and to be interrupted only when the entire sequence has been performed.
6. The I/O module has a local memory of its own and is, in fact, a computer in its own right. With this architecture, a large set of I/O devices can be controlled, with minimal CPU involvement. A common use for such an architecture has been to control communication with interactive terminals. The I/O processor takes care of most of the tasks involved in controlling the terminals.

As one proceeds along this evolutionary path, more and more of the I/O function is performed without CPU involvement. The CPU is increasingly relieved of I/O-related tasks, improving performance. With the last two steps (5-6), a major change occurs with the introduction of the concept of an I/O module capable of executing a program. For step 5, the I/O module is often referred to as an *I/O channel*. For step 6, the term *I/O processor* is often used. However, both terms are on occasion applied to both situations. In what follows, we will use the term *I/O channel*.

CHARACTERISTICS OF I/O CHANNELS

An I/O channel represents an extension of the DMA concept. An I/O channel has the ability to execute I/O instructions, which gives it complete control over I/O operations. In a computer system with such devices, the CPU does not execute I/O instructions. Such instructions are stored in main memory to be executed by a special-purpose processor in the I/O channel itself. Thus, the CPU initiates an I/O transfer by instructing the I/O channel to execute a program in memory. The program will specify the device or devices, the area or areas of memory for storage, priority, and actions to be taken for certain error conditions. The I/O channel follows these instructions and controls the data transfer.

Two types of I/O channels are common, as illustrated in Figure 7.15. A selector channel controls multiple high-speed devices and, at any one time, is dedicated to one device.

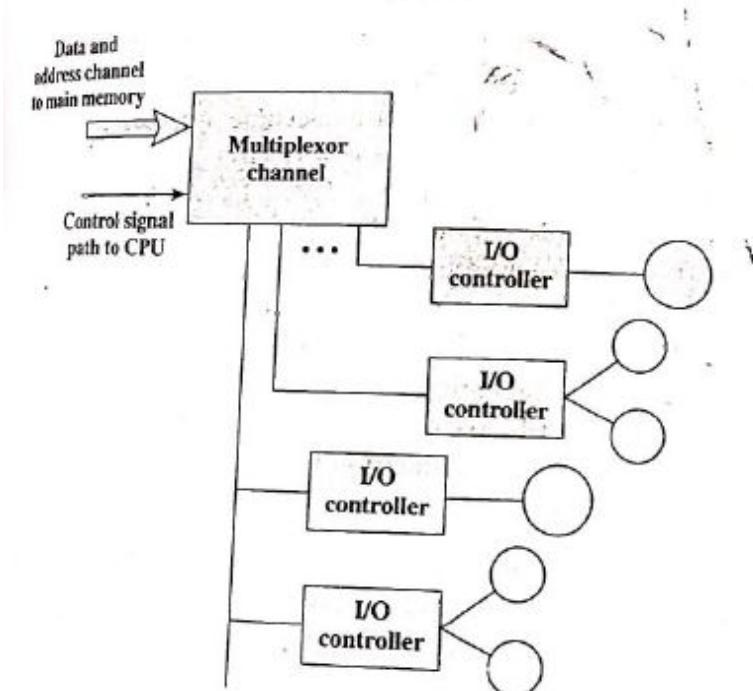
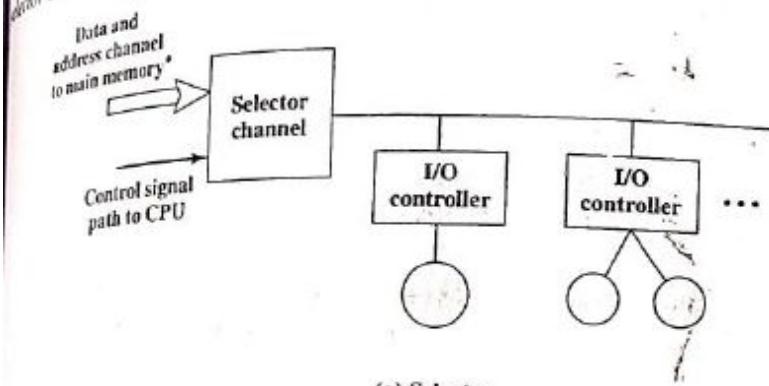



Figure 7.15 I/O Channel Architecture

cated to the transfer of data with one of those devices. Thus, the I/O channel selects one device and effects the data transfer. Each device, or a small set of devices, is handled by a *controller*, or I/O module, that is much like the I/O modules we have been discussing. Thus, the I/O channel serves in place of the CPU in controlling these I/O controllers. A *multiplexor channel* can handle I/O with multiple devices at the same time. For low-speed devices, a *byte multiplexor* accepts or transmits characters as fast as possible to multiple devices. For example, the resultant character stream from three devices with different rates and individual streams $A_1A_2A_3A_4\dots, B_1B_2B_3B_4\dots$, and $C_1C_2C_3C_4\dots$ might be $A_1B_1C_1A_2C_2A_3B_2C_3A_4$, and so on. For high-speed devices, a *block multiplexor* interleaves blocks of data from several devices.

7.7 THE EXTERNAL INTERFACE: FIREWIRE AND INFINIBAND

Types of Interfaces

The interface to a peripheral from an I/O module must be tailored to the nature and operation of the peripheral. One major characteristic of the interface is whether it is serial or parallel (Figure 7.16). In a **parallel interface**, there are multiple lines connecting the I/O module and the peripheral, and multiple bits are transferred simultaneously, just as all of the bits of a word are transferred simultaneously over the data bus. In a **serial interface**, there is only one line used to transmit data, and bits must be transmitted one at a time. A parallel interface has traditionally been used for higher-speed peripherals, such as tape and disk, while the serial interface has traditionally been used for printers and terminals. With a new generation of high-speed serial interfaces, parallel interfaces are becoming much less common.

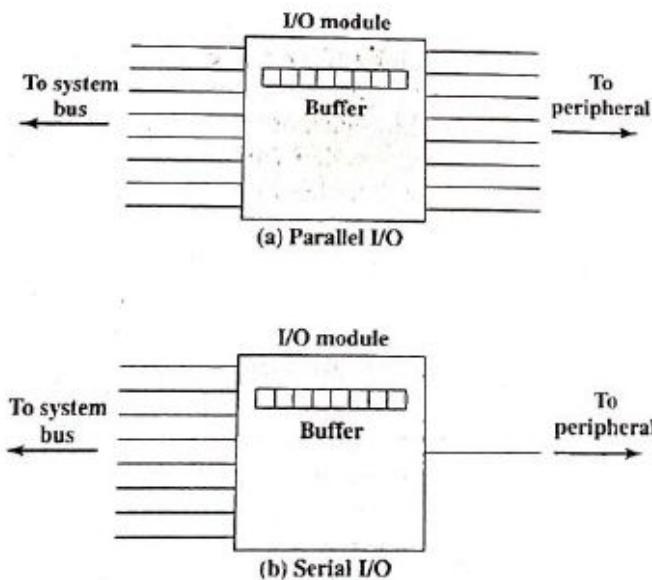


Figure 7.16 Parallel and Serial I/O

Unit - IV Instruction sets, Processor

Organization and control unit

10.1 MACHINE INSTRUCTION CHARACTERISTICS

The operation of the processor is determined by the instructions it executes, referred to as *machine instructions* or *computer instructions*. The collection of different instructions that the processor can execute is referred to as the processor's *instruction set*.

Elements of a Machine Instruction

Each instruction must contain the information required by the processor for execution. Figure 10.1, which repeats Figure 3.6, shows the steps involved in instruction execution and, by implication, defines the elements of a machine instruction. These elements are as follows:

- **Operation code:** Specifies the operation to be performed (e.g., ADD, I/O). The operation is specified by a binary code, known as the operation code, or **opcode**.
- **Source operand reference:** The operation may involve one or more source operands, that is, operands that are inputs for the operation.
- **Result operand reference:** The operation may produce a result.
- **Next instruction reference:** This tells the processor where to fetch the next instruction after the execution of this instruction is complete.

The next instruction to be fetched is located in main memory or, in the case of a virtual memory system, in either main memory or secondary memory (disk). In most cases, the next instruction to be fetched immediately follows the current instruction. In those cases, there is no explicit reference to the next instruction. When an explicit reference is needed, then the main memory or virtual memory address must be supplied. The form in which that address is supplied is discussed in Chapter 11.

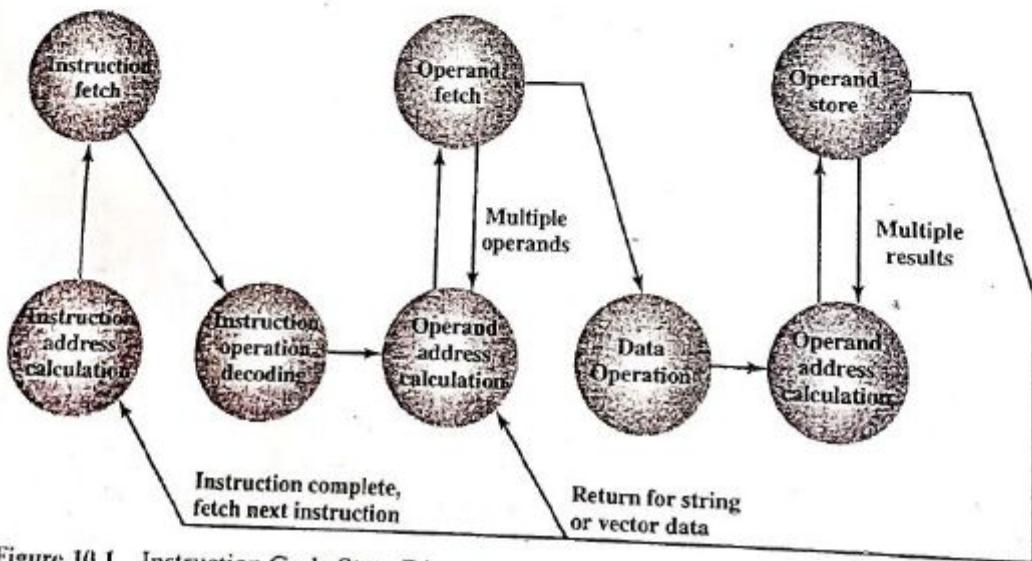


Figure 10.1 Instruction Cycle State Diagram

Source and result operands can be in one of three areas:

- **Main or virtual memory:** As with next instruction references, the main or virtual memory address must be supplied.
- **Processor register:** With rare exceptions, a processor contains one or more registers that may be referenced by machine instructions. If only one register exists, reference to it may be implicit. If more than one register exists, then each register is assigned a unique number, and the instruction must contain the number of the desired register.
- **I/O device:** The instruction must specify the I/O module and device for the operation. If memory-mapped I/O is used, this is just another main or virtual memory address.

Instruction Representation

Within the computer, each instruction is represented by a sequence of bits. The instruction is divided into fields, corresponding to the constituent elements of the instruction. A simple example of an instruction format is shown in Figure 10.2. As another example, the IAS instruction format is shown in Figure 2.2. With most instruction sets, more than one format is used. During instruction execution, an instruction is read into an instruction register (IR) in the processor. The processor must be able to extract the data from the various instruction fields to perform the required operation.

It is difficult for both the programmer and the reader of textbooks to deal with binary representations of machine instructions. Thus, it has become common practice to use a *symbolic representation* of machine instructions. An example of this was used for the IAS instruction set, in Table 2.1.

Opcodes are represented by abbreviations, called *mnemonics*, that indicate the operation. Common examples include

ADD	Add
SUB	Subtract
MPY	Multiply
DIV	Divide
LOAD	Load data from memory
STOR	Store data to memory

Operands are also represented symbolically. For example, the instruction

ADD R, Y

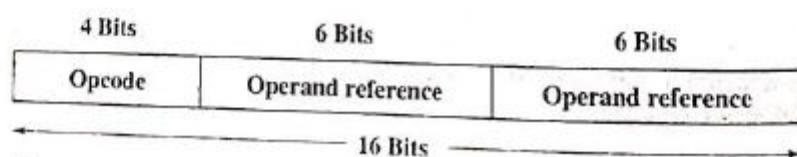


Figure 10.2 A Simple Instruction Format

may mean add the value contained in data location Y to the contents of register R . In this example, Y refers to the address of a location in memory, and R refers to a particular register. Note that the operation is performed on the contents of a location, not on its address.

Thus, it is possible to write a machine-language program in symbolic form. Each symbolic opcode has a fixed binary representation, and the programmer specifies the location of each symbolic operand. For example, the programmer might begin with a list of definitions:

$$\begin{aligned} X &= 513 \\ Y &= 514 \end{aligned}$$

and so on. A simple program would accept this symbolic input, convert opcodes and operand references to binary form, and construct binary machine instructions.

Machine-language programmers are rare to the point of nonexistence. Most programs today are written in a high-level language or, failing that, assembly language, which is discussed at the end of this chapter. However, symbolic machine language remains a useful tool for describing machine instructions, and we will use it for that purpose.

Instruction Types

Consider a high-level language instruction that could be expressed in a language such as BASIC or FORTRAN. For example,

$$X = X + Y$$

This statement instructs the computer to add the value stored in Y to the value stored in X and put the result in X . How might this be accomplished with machine instructions? Let us assume that the variables X and Y correspond to locations 513 and 514. If we assume a simple set of machine instructions, this operation could be accomplished with three instructions:

1. Load a register with the contents of memory location 513.
2. Add the contents of memory location 514 to the register.
3. Store the contents of the register in memory location 513.

As can be seen, the single BASIC instruction may require three machine instructions. This is typical of the relationship between a high-level language and a machine language. A high-level language expresses operations in a concise algebraic form, using variables. A machine language expresses operations in a basic form involving the movement of data to or from registers.

With this simple example to guide us, let us consider the types of instructions that must be included in a practical computer. A computer should have a set of instructions that allows the user to formulate any data processing task. Another way to view it is to consider the capabilities of a high-level programming language. Any program written in a high-level language must be translated into machine language to be executed. Thus, the set of machine instructions must be sufficient to express

any of the instructions from a high-level language. With this in mind we can categorize instruction types as follows:

- **Data processing:** Arithmetic and logic instructions
- **Data storage:** Memory instructions
- **Data movement:** I/O instructions
- **Control:** Test and branch instructions

Arithmetic instructions provide computational capabilities for processing numeric data. *Logic* (Boolean) instructions operate on the bits of a word as bits rather than as numbers; thus, they provide capabilities for processing any other type of data the user may wish to employ. These operations are performed primarily on data in processor registers. Therefore, there must be *memory* instructions for moving data between memory and the registers. *I/O* instructions are needed to transfer programs and data into memory and the results of computations back out to the user. *Test* instructions are used to test the value of a data word or the status of a computation. *Branch* instructions are then used to branch to a different set of instructions depending on the decision made.

We will examine the various types of instructions in greater detail later in this chapter.

Number of Addresses

One of the traditional ways of describing processor architecture is in terms of the number of addresses contained in each instruction. This dimension has become less significant with the increasing complexity of processor design. Nevertheless, it is useful at this point to draw and analyze this distinction.

What is the maximum number of addresses one might need in an instruction? Evidently, arithmetic and logic instructions will require the most operands. Virtually all arithmetic and logic operations are either unary (one source operand) or binary (two source operands). Thus, we would need a maximum of two addresses to reference source operands. The result of an operation must be stored, suggesting a third address, which defines a destination operand. Finally, after completion of an instruction, the next instruction must be fetched, and its address is needed.

This line of reasoning suggests that an instruction could plausibly be required to contain four address references: two source operands, one destination operand, and the address of the next instruction. In practice, four-address instructions are extremely rare. Most instructions have one, two, or three operand addresses, with the address of the next instruction being implicit (obtained from the program counter).

Figure 10.3 compares typical one-, two-, and three-address instructions that could be used to compute $Y = (A - B)/[C + (D \times E)]$. With three addresses, each instruction specifies two source operand locations and a destination operand location. Because we choose not to alter the value of any of the operand locations, a temporary location, T , is used to store some intermediate results. Note that there are four instructions and that the original expression had five operands.

Three-address instruction formats are not common because they require a relatively long instruction format to hold the three address references. With two-address instructions, and for binary operations, one address must do double duty as

Instruction	Comment
SUB Y, A, B	$Y \leftarrow A - B$
MPY T, D, E	$T \leftarrow D \times E$
ADD T, T, C	$T \leftarrow T + C$
DIV Y, Y, T	$Y \leftarrow Y \div T$

(a) Three-address instructions

Instruction	Comment
MOVE Y, A	$Y \leftarrow A$
SUB Y, B	$Y \leftarrow Y - B$
MOVE T, D	$T \leftarrow D$
MPY T, E	$T \leftarrow T \times E$
ADD T, C	$T \leftarrow T + C$
DIV Y, T	$Y \leftarrow Y \div T$

(b) Two-address instructions

Instruction	Comment
LOAD D	$AC \leftarrow D$
MPY E	$AC \leftarrow AC \times E$
ADD C	$AC \leftarrow AC + C$
STOR Y	$Y \leftarrow AC$
LOAD A	$AC \leftarrow A$
SUB B	$AC \leftarrow AC - B$
DIV Y	$AC \leftarrow AC \div Y$
STOR Y	$Y \leftarrow AC$

(c) One-address instructions

Figure 10.3 Programs to Execute $Y = \frac{A - B}{C + (D \times E)}$

both an operand and a result. Thus, the instruction SUB Y, B carries out the calculation $Y - B$ and stores the result in Y. The two-address format reduces the space requirement but also introduces some awkwardness. To avoid altering the value of an operand, a MOVE instruction is used to move one of the values to a result or temporary location before performing the operation. Our sample program expands to six instructions.

Simpler yet is the one-address instruction. For this to work, a second address must be implicit. This was common in earlier machines, with the implied address being a processor register known as the **accumulator** (AC). The accumulator contains one of the operands and is used to store the result. In our example, eight instructions are needed to accomplish the task.

It is, in fact, possible to make do with zero addresses for some instructions. Zero-address instructions are applicable to a special memory organization, called a *stack*. A stack is a last-in-first-out set of locations. The stack is in a known location and, often, at least the top two elements are in processor registers. Thus, zero-address instructions would reference the top two stack elements. Stacks are described in Appendix 10A. Their use is explored further later in this chapter and in Chapter 11.

Table 10.1 summarizes the interpretations to be placed on instructions with zero, one, two, or three addresses. In each case in the table, it is assumed that the address of the next instruction is implicit, and that one operation with two source operands and one result operand is to be performed.

The number of addresses per instruction is a basic design decision. Fewer addresses per instruction result in instructions that are more primitive, requiring a less complex processor. It also results in instructions of shorter length. On the other hand, programs contain more total instructions, which in general results in longer execution times and longer, more complex programs. Also, there is an important

Table 10.1 Utilization of Instruction Addresses (Nonbranching Instructions)

Number of Addresses	Symbolic Representation	Interpretation
3	OP A, B, C	$A \leftarrow B \text{ OPC}$
2	OP A, B	$A \leftarrow A \text{ OPB}$
1	OP A	$AC \leftarrow AC \text{ OP A}$
0	OP	$T \leftarrow (T - 1) \text{ OPT}$

AC = accumulator

T = top of stack

 $(T - 1)$ = second element of stack

A, B, C = memory or register locations

threshold between one-address and multiple-address instructions. With one-address instructions, the programmer generally has available only one general-purpose register, the accumulator. With multiple-address instructions, it is common to have multiple general-purpose registers. This allows some operations to be performed solely on registers. Because register references are faster than memory references, this speeds up execution. For reasons of flexibility and ability to use multiple registers, most contemporary machines employ a mixture of two- and three-address instructions.

The design trade-offs involved in choosing the number of addresses per instruction are complicated by other factors. There is the issue of whether an address references a memory location or a register. Because there are fewer registers, fewer bits are needed for a register reference. Also, as we shall see in the next chapter, a machine may offer a variety of addressing modes, and the specification of mode takes one or more bits. The result is that most processor designs involve a variety of instruction formats.

Instruction Set Design

One of the most interesting, and most analyzed, aspects of computer design is instruction set design. The design of an instruction set is very complex because it affects so many aspects of the computer system. The instruction set defines many of the functions performed by the processor and thus has a significant effect on the implementation of the processor. The instruction set is the programmer's means of controlling the processor. Thus, programmer requirements must be considered in designing the instruction set.

It may surprise you to know that some of the most fundamental issues relating to the design of instruction sets remain in dispute. Indeed, in recent years, the level of disagreement concerning these fundamentals has actually grown. The most important of these fundamental design issues include the following:

- **Operation repertoire:** How many and which operations to provide, and how complex operations should be
- **Data types:** The various types of data upon which operations are performed
- **Instruction format:** Instruction length (in bits), number of addresses, size of various fields, and so on

Machine instructions operate on data. The most important general categories of data are

- Addresses
- Numbers
- Characters
- Logical data

We shall see, in discussing addressing modes in Chapter 11, that addresses are, in fact, a form of data. In many cases, some calculation must be performed on the operand reference in an instruction to determine the main or virtual memory address. In this context, addresses can be considered to be unsigned integers.

Other common data types are numbers, characters, and logical data, and each of these is briefly examined in this section. Beyond that, some machines define specialized data types or data structures. For example, there may be machine operations that operate directly on a list or a string of characters.

Numbers

All machine languages include numeric data types. Even in nonnumeric data processing, there is a need for numbers to act as counters, field widths, and so forth. An important distinction between numbers used in ordinary mathematics and numbers stored in a computer is that the latter are limited. This is true in two senses. First, there is a limit to the magnitude of numbers representable on a machine and second, in the case of floating-point numbers, a limit to their precision. Thus, the programmer is faced with understanding the consequences of rounding, overflow, and underflow.

Three types of numerical data are common in computers:

- Integer or fixed point
- Floating point
- Decimal

We examined the first two in some detail in Chapter 9. It remains to say a few words about decimal numbers.

Although all internal computer operations are binary in nature, the human users of the system deal with decimal numbers. Thus, there is a necessity to convert from decimal to binary on input and from binary to decimal on output. For applications in which there is a great deal of I/O and comparatively little, comparatively simple computation, it is preferable to store and operate on the numbers in decimal form. The most common representation for this purpose is **packed decimal**.¹

With packed decimal, each decimal digit is represented by a 4-bit code, in the obvious way, with two digits stored per byte. Thus, 0 = 0000, 1 = 0001, ..., 8 = 1000, and 9 = 1001. Note that this is a rather inefficient code because only 10 of 16 possible 4-bit values are used. To form numbers, 4-bit codes are strung together, usually in multiples of 8 bits. Thus, the code for 246 is 0000 0010 0100 0110. This code is clearly less compact than a straight binary representation, but it avoids the conversion overhead. Negative numbers can be represented by including a 4-bit sign digit at either the left or right end of a string of packed decimal digits. For example, the code 1111 might stand for the minus sign.

Many machines provide arithmetic instructions for performing operations directly on packed decimal numbers. The algorithms are quite similar to those described in Section 9.3 but must take into account the decimal carry operation.

Characters

A common form of data is text or character strings. While textual data are most convenient for human beings, they cannot, in character form, be easily stored or transmitted by data processing and communications systems. Such systems are designed for binary data. Thus, a number of codes have been devised by which characters are represented by a sequence of bits. Perhaps the earliest common example of this is the Morse code. Today, the most commonly used character code in the International Reference Alphabet (IRA), referred to in the United States as the American Standard Code for Information Interchange (ASCII; see Table 7.1). Each character in this code is represented by a unique 7-bit pattern; thus, 128 different characters can be represented. This is a larger number than is necessary to represent printable characters, and some of the patterns represent *control characters*. Some of these control characters have to do with controlling the printing of characters on a page. Others are concerned with communications procedures. IRA-encoded characters are almost always stored and transmitted using 8 bits per character. The eighth bit may be set to 0 or used as a parity bit for error detection. In the latter case, the bit is set such that the total number of binary 1s in each octet is always odd (odd parity) or always even (even parity).

¹Textbooks often refer to this as binary coded decimal (BCD). Strictly speaking, BCD refers to the encoding of each decimal digit by a unique 4-bit sequence. Packed decimal refers to the storage of BCD-encoded digits using one byte for each two digits.

Note in Table 7.1 that for the IRA bit pattern 011XXXX, the digits 0 through 9 are represented by their binary equivalents, 0000 through 1001, in the rightmost 4 bits. This is the same code as packed decimal. This facilitates conversion between 7-bit IRA and 4-bit packed decimal representation.

Another code used to encode characters is the Extended Binary Coded Decimal Interchange Code (EBCDIC). EBCDIC is used on IBM mainframes. It is an 8-bit code. As with IRA, EBCDIC is compatible with packed decimal. In the case of EBCDIC, the codes 11110000 through 11111001 represent the digits 0 through 9.

Logical Data

Normally, each word or other addressable unit (byte, halfword, and so on) is treated as a single unit of data. It is sometimes useful, however, to consider an n -bit unit as consisting of n 1-bit items of data, each item having the value 0 or 1. When data are viewed this way, they are considered to be *logical data*.

There are two advantages to the bit-oriented view. First, we may sometimes wish to store an array of Boolean or binary data items, in which each item can take on only the values 1 (true) and 0 (false). With logical data, memory can be used most efficiently for this storage. Second, there are occasions when we wish to manipulate the bits of a data item. For example, if floating-point operations are implemented in software, we need to be able to shift significant bits in some operations. Another example: To convert from IRA to packed decimal, we need to extract the rightmost 4 bits of each byte.

Note that, in the preceding examples, the same data are treated sometimes as logical and other times as numerical or text. The "type" of a unit of data is determined by the operation being performed on it. While this is not normally the case in high-level languages, it is almost always the case with machine language.

10.3 PENTIUM AND POWERPC DATA TYPES

Pentium Data Types

The Pentium can deal with data types of 8 (byte), 16 (word), 32 (doubleword), and 64 (quadword) bits in length. To allow maximum flexibility in data structures and efficient memory utilization, words need not be aligned at even-numbered addresses; doublewords need not be aligned at addresses evenly divisible by 4; and quadwords need not be aligned at addresses evenly divisible by 8. However, when data are accessed across a 32-bit bus, data transfers take place in units of doublewords, beginning at addresses divisible by 4. The processor converts the request for misaligned values into a sequence of requests for the bus transfer. As with all of the Intel 80x86 machines, the Pentium uses the little-endian style; that is, the least significant byte is stored in the lowest address (see Appendix 10B for a discussion of endianness).

The byte, word, doubleword, and quadword are referred to as general data types. In addition, the Pentium supports an impressive array of specific data types that are recognized and operated on by particular instructions. Table 10.2 summarizes

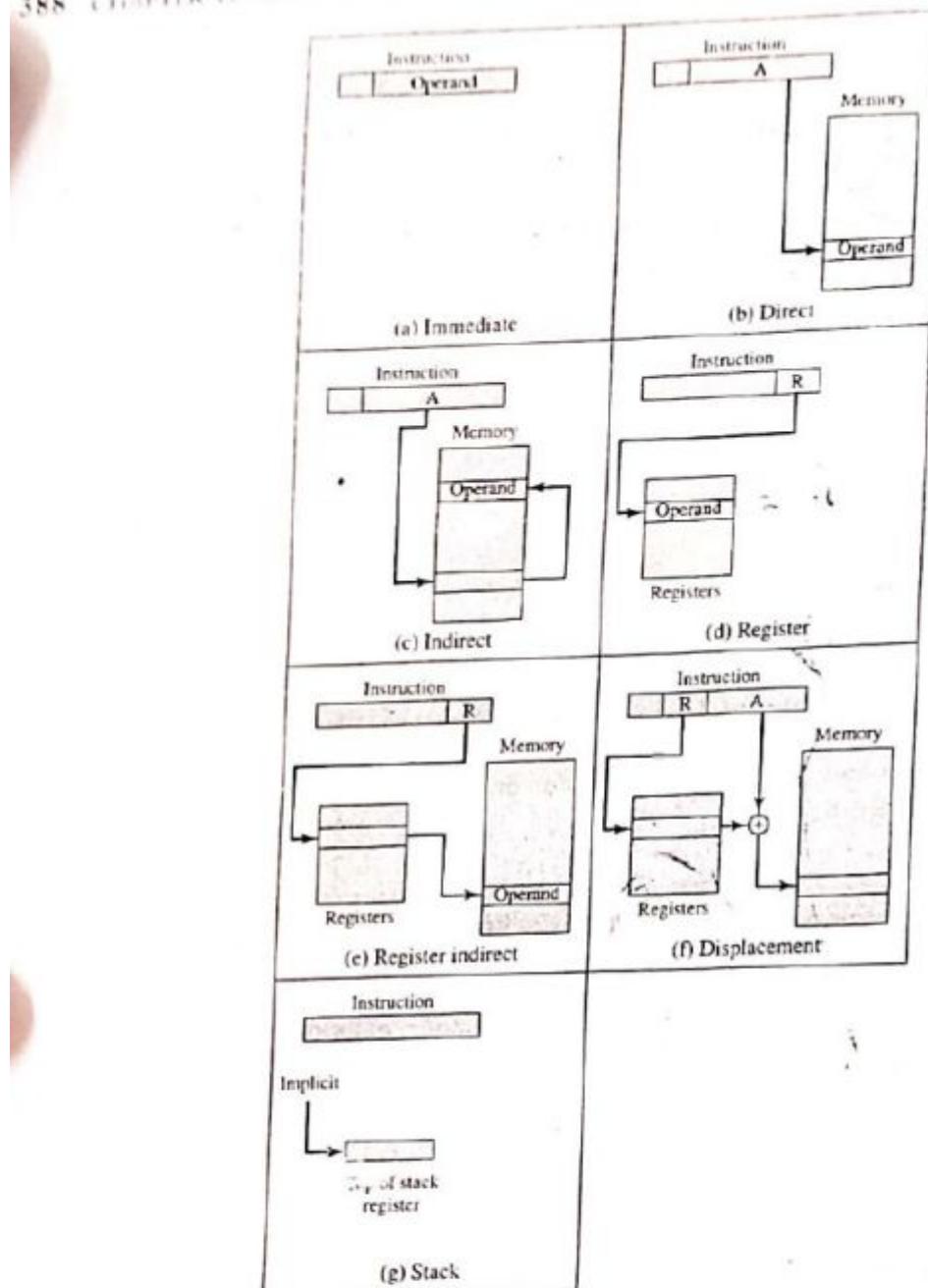


Figure 11.1 Addressing Modes

These modes are illustrated in Figure 11.1. In this section, we use the following notation:

A = contents of an address field in the instruction

R = contents of an address field in the instruction that refers to a register

EA = actual (effective) address of the location containing the referenced operand

(X) = contents of memory location X or register X

Table 11.1 Basic Addressing Modes

Mode	Algorithm	Principal Advantage	Principal Disadvantage
Immediate	Operand = A	No memory reference	Limited operand magnitude
Direct	EA = A	Simple	Limited address space
Indirect	EA = (A)	Large address space	Multiple memory references
Register	EA = R	No memory reference	Limited address space
Register indirect	EA = (R)	Large address space	Extra memory reference
Displacement	EA = A + (R)	Flexibility	Complexity
Stack	EA = top of stack	No memory reference	Limited applicability

Table 11.1 indicates the address calculation performed for each addressing mode. Before beginning this discussion, two comments need to be made. First, virtually all computer architectures provide more than one of these addressing modes. The question arises as to how the processor can determine which address mode is being used in a particular instruction. Several approaches are taken. Often, different opcodes will use different addressing modes. Also, one or more bits in the instruction format can be used as a *mode field*. The value of the mode field determines which addressing mode is to be used.

The second comment concerns the interpretation of the effective address (EA). In a system without virtual memory, the *effective address* will be either a main memory address or a register. In a virtual memory system, the effective address is a virtual address or a register. The actual mapping to a physical address is a function of the paging mechanism and is invisible to the programmer.

Immediate Addressing

The simplest form of addressing is immediate addressing, in which the operand value is present in the instruction:

$$\text{Operand} = A$$

This mode can be used to define and use constants or set initial values of variables. Typically, the number will be stored in two's complement form; the leftmost bit of the operand field is used as a sign bit. When the operand is loaded into a data register, the sign bit is extended to the left to the full data word size.

The advantage of immediate addressing is that no memory reference other than the instruction fetch is required to obtain the operand, thus saving one memory or cache cycle in the instruction cycle. The disadvantage is that the size of the number is restricted to the size of the address field, which, in most instruction sets, is small compared with the word length.

Direct Addressing

A very simple form of addressing is direct addressing, in which the address field contains the effective address of the operand:

$$EA = A$$

The technique was common in earlier generations of computers but is not common on contemporary architectures. It requires only one memory reference and no special calculation. The obvious limitation is that it provides only a limited address space.

Indirect Addressing

With direct addressing, the length of the address field is usually less than the word length, thus limiting the address range. One solution is to have the address field refer to the address of a word in memory, which in turn contains a full-length address of the operand. This is known as *indirect addressing*:

$$EA = (A)$$

As defined earlier, the parentheses are to be interpreted as meaning *contents of*. The obvious advantage of this approach is that for a word length of N , an address space of 2^N is now available. The disadvantage is that instruction execution requires two memory references to fetch the operand: one to get its address and a second to get its value.

Although the number of words that can be addressed is now equal to 2^N , the number of different effective addresses that may be referenced at any one time is limited to 2^K , where K is the length of the address field. Typically, this is not a burdensome restriction, and it can be an asset. In a virtual memory environment, all the effective address locations can be confined to page 0 of any process. Because the address field of an instruction is small, it will naturally produce low-numbered direct addresses, which would appear in page 0. (The only restriction is that the page size must be greater than or equal to 2^K .) When a process is active, there will be repeated references to page 0, causing it to remain in real memory. Thus, an indirect memory reference will involve, at most, one page fault rather than two.

A rarely used variant of indirect addressing is multilevel or cascaded indirect addressing:

$$EA = (\dots (A) \dots)$$

In this case, one bit of a full-word address is an indirect flag (I). If the I bit is 0, then the word contains the EA. If the I bit is 1, then another level of indirection is invoked. There does not appear to be any particular advantage to this approach, and its disadvantage is that three or more memory references could be required to fetch an operand.

Register Addressing

Register addressing is similar to direct addressing. The only difference is that the address field refers to a register rather than a main memory address:

$$EA = R$$

To clarify, if the contents of a register address field in an instruction is 5, then register R5 is the intended address, and the operand value is contained in R5. Typically, an address field that references registers will have from 3 to 5 bits, so that a total of from 8 to 32 general-purpose registers can be referenced.

The advantages of register addressing are that (1) only a small address field is needed in the instruction, and (2) no time-consuming memory references are required. As was discussed in Chapter 4, the memory access time for a register internal to the processor is much less than that for a main memory address. The disadvantage of register addressing is that the address space is very limited.

If register addressing is heavily used in an instruction set, this implies that the processor registers will be heavily used. Because of the severely limited number of registers (compared with main memory locations), their use in this fashion makes sense only if they are employed efficiently. If every operand is brought into a register from main memory, operated on once, and then returned to main memory, then a wasteful intermediate step has been added. If, instead, the operand in a register remains in use for multiple operations, then a real savings is achieved. An example is the intermediate result in a calculation. In particular, suppose that the algorithm for two's complement multiplication were to be implemented in software. The location labeled A in the flowchart (Figure 9.12) is referenced many times and should be implemented in a register rather than a main memory location.

It is up to the programmer to decide which values should remain in registers and which should be stored in main memory. Most modern processors employ multiple general-purpose registers, placing a burden for efficient execution on the assembly-language programmer (e.g., compiler writer).

Register Indirect Addressing

Just as register addressing is analogous to direct addressing, register indirect addressing is analogous to indirect addressing. In both cases, the only difference is whether the address field refers to a memory location or a register. Thus, for register indirect address,

$$EA = (R)$$

The advantages and limitations of register indirect addressing are basically the same as for indirect addressing. In both cases, the address space limitation (limited range of addresses) of the address field is overcome by having that field refer to a word-length location containing an address. In addition, register indirect addressing uses one less memory reference than indirect addressing.

Displacement Addressing

A very powerful mode of addressing combines the capabilities of direct addressing and register indirect addressing. It is known by a variety of names depending on the context of its use, but the basic mechanism is the same. We will refer to this as *displacement addressing*:

$$EA = A + (R)$$

Displacement addressing requires that the instruction have two address fields, at least one of which is explicit. The value contained in one address field (value = A) is used directly. The other address field, or an implicit reference based on opcode, refers to a register whose contents are added to A to produce the effective address.

We will describe three of the most common uses of displacement addressing:

- Relative addressing
- Base-register addressing
- Indexing

Relative Addressing For relative addressing, also called PC-relative addressing, the implicitly referenced register is the program counter (PC). That is, the next instruction address is added to the address field to produce the EA. Typically, the address field is treated as a two's complement number for this operation. Thus, the effective address is a displacement relative to the address of the instruction.

Relative addressing exploits the concept of locality that was discussed in Chapters 4 and 8. If most memory references are relatively near to the instruction being executed, then the use of relative addressing saves address bits in the instruction.

Base-Register Addressing For base-register addressing, the interpretation is the following: The referenced register contains a main memory address, and the address field contains a displacement (usually an unsigned integer representation) from that address. The register reference may be explicit or implicit.

Base-register addressing also exploits the locality of memory references. It is a convenient means of implementing segmentation, which was discussed in Chapter 8. In some implementations, a single segment-base register is employed and is used implicitly. In others, the programmer may choose a register to hold the base address of a segment, and the instruction must reference it explicitly. In this latter case, if the length of the address field is K and the number of possible registers is N , then one instruction can reference any one of N areas of 2^K words.

Indexing For indexing, the interpretation is typically the following: The address field references a main memory address, and the referenced register contains a positive displacement from that address. Note that this usage is just the opposite of the interpretation for base-register addressing. Of course, it is more than just a matter of user interpretation. Because the address field is considered to be a memory address in indexing, it generally contains more bits than an address field in a comparable base-register instruction. Also, we shall see that there are some refinements to indexing that would not be as useful in the base-register context. Nevertheless, the method of calculating the EA is the same for both base-register addressing and indexing, and in both cases the register reference is sometimes explicit and sometimes implicit (for different processor types).

An important use of indexing is to provide an efficient mechanism for performing iterative operations. Consider, for example, a list of numbers stored starting at location A. Suppose that we would like to add 1 to each element on the list. We need to fetch each value, add 1 to it, and store it back. The sequence of effective addresses that we need is A, A + 1, A + 2, ..., up to the last location on the list. With indexing, this is easily done. The value A is stored in the instruction's address field, and the chosen register, called an *index register*, is initialized to 0. After each operation, the index register is incremented by 1.

Because index registers are commonly used for such iterative tasks, it is typical that there is a need to increment or decrement the index register after each reference

to it. Because this is such a common operation, some systems will automatically do this as part of the same instruction cycle. This is known as *autoindexing*. If certain registers are devoted exclusively to indexing, then autoindexing can be invoked implicitly and automatically. If general-purpose registers are used, the autoindex operation may need to be signaled by a bit in the instruction. Autoindexing using increment can be depicted as follows:

$$\begin{aligned} EA &= A + (R) \\ (R) &\leftarrow (R) + 1 \end{aligned}$$

In some machines, both indirect addressing and indexing are provided, and it is possible to employ both in the same instruction. There are two possibilities: The indexing is performed either before or after the indirection.

If indexing is performed after the indirection, it is termed *postindexing*:

$$EA = (A) + (R)$$

First, the contents of the address field are used to access a memory location containing a direct address. This address is then indexed by the register value. This technique is useful for accessing one of a number of blocks of data of a fixed format. For example, it was described in Chapter 8 that the operating system needs to employ a process control block for each process. The operations performed are the same regardless of which block is being manipulated. Thus, the addresses in the instructions that reference the block could point to a location (value = A) containing a variable pointer to the start of a process control block. The index register contains the displacement within the block.

With *preindexing*, the indexing is performed before the indirection:

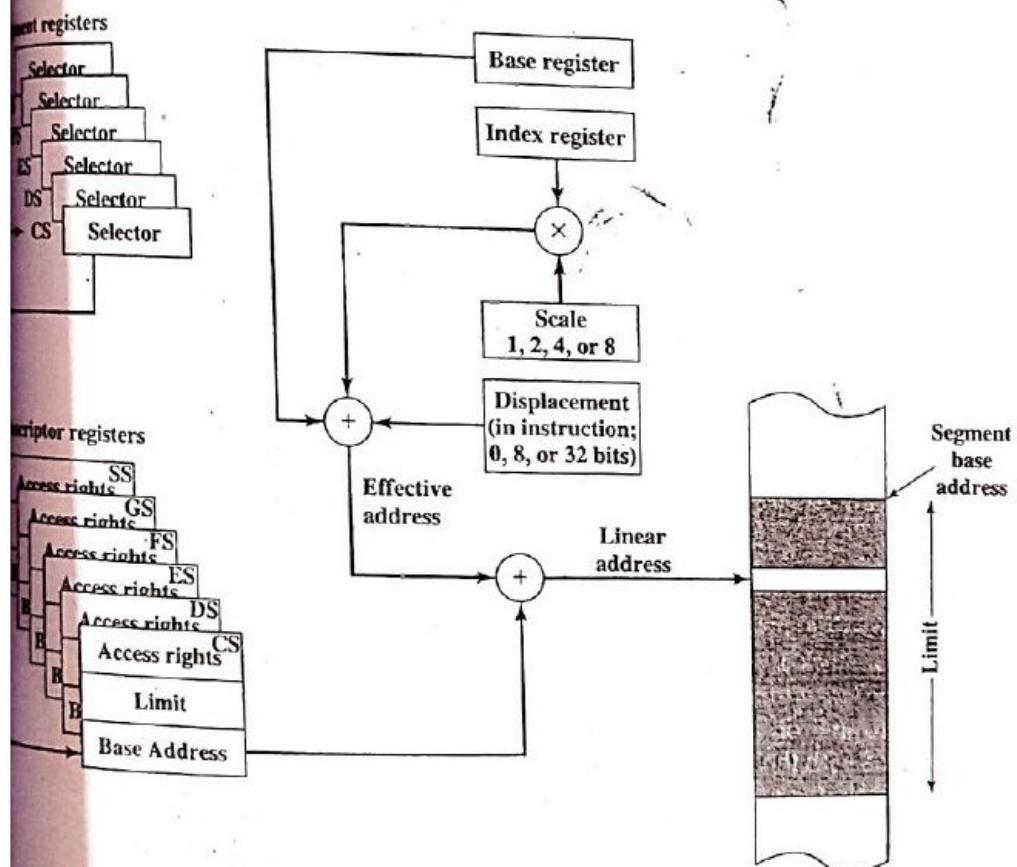
$$EA = (A + (R))$$

An address is calculated as with simple indexing. In this case, however, the calculated address contains not the operand, but the address of the operand. An example of the use of this technique is to construct a multiway branch table. At a particular point in a program, there may be a branch to one of a number of locations depending on conditions. A table of addresses can be set up starting at location A. By indexing into this table, the required location can be found.

Typically, an instruction set will not include both preindexing and postindexing.

Stack Addressing

The final addressing mode that we consider is stack addressing. As defined in Appendix 9A, a stack is a linear array of locations. It is sometimes referred to as a *pushdown list* or *last-in-first-out queue*. The stack is a reserved block of locations. Items are appended to the top of the stack so that, at any given time, the block is partially filled. Associated with the stack is a pointer whose value is the address of the top of the stack. Alternatively, the top two elements of the stack may be in processor registers, in which case the stack pointer references the third element of the stack (Figure 10.14b). The stack pointer is maintained in a register. Thus, references to stack locations in memory are in fact register indirect addresses.


The stack mode of addressing is a form of implied addressing. The machine instructions need not include a memory reference but implicitly operate on the top of the stack.

PENTIUM AND POWERPC ADDRESSING MODES

Pentium Addressing Modes

Recall from Figure 8.21 that the Pentium address translation mechanism produces an address, called a virtual or effective address, that is an offset into a segment. The sum of the starting address of the segment and the effective address produces a linear address. If paging is being used, this linear address must pass through a page-translation mechanism to produce a physical address. In what follows, we ignore this last step because it is transparent to the instruction set and to the programmer.

The Pentium is equipped with a variety of addressing modes intended to allow the efficient execution of high-level languages. Figure 11.2 indicates the logic involved. The segment register determines the segment that is the subject of the reference. There are six segment registers; the one being used for a particular reference depends on the

11.2 Pentium Addressing Mode Calculation

Table 11.2 Pentium Addressing Modes

Mode	Algorithm
Immediate	Operand = A
Register Operand	LA = R
Displacement	LA = (SR) + A
Base	LA = (SR) + (B)
Base with Displacement	LA = (SR) + (B) + A
Scaled Index with Displacement	LA = (SR) + (I) × S + A
Base with Index and Displacement	LA = (SR) + (B) + (I) + A
Base with Scaled Index and Displacement	LA = (SR) + (I) × S + (B) + A
Relative	LA = (PC) + A

LA = linear address

(X) = contents of X

SR = segment register

PC = program counter

A = contents of an address field in the instruction

R = register

B = base register

I = index register

S = scaling factor

context of execution and the instruction. Each segment register holds the starting address of the corresponding segment. Associated with each user-visible segment register is a segment descriptor register (not programmer visible), which records the access rights for the segment as well as the starting address and limit (length) of the segment. In addition, there are two registers that may be used in constructing an address: the base register and the index register.

Table 11.2 lists the 12 Pentium addressing modes. Let us consider each of these in turn.

For the **immediate mode**, the operand is included in the instruction. The operand can be a byte, word, or doubleword of data.

For **register operand mode**, the operand is located in a register. For general instructions, such as data transfer, arithmetic, and logical instructions, the operand can be one of the 32-bit general registers (EAX, EBX, ECX, EDX, ESI, EDI, ESP, EBP), one of the 16-bit general registers (AX, BX, CX, DX, SI, DI, SP, BP), or one of the 8-bit general registers (AH, BH, CH, DH, AL, BL, CL, DL). For floating-point operations, 64-bit operands are formed by using two 32-bit registers as a pair. There are also some instructions that reference the segment registers (CS, DS, ES, SS, FS, GS).

The remaining addressing modes reference locations in memory. The memory location must be specified in terms of the segment containing the location and the offset from the beginning of the segment. In some cases, a segment is specified explicitly; in others, the segment is specified by simple rules that assign a segment by default.

In the **displacement mode**, the operand's offset (the effective address of Figure 11.2) is contained as part of the instruction as an 8-, 16-, or 32-bit displacement.

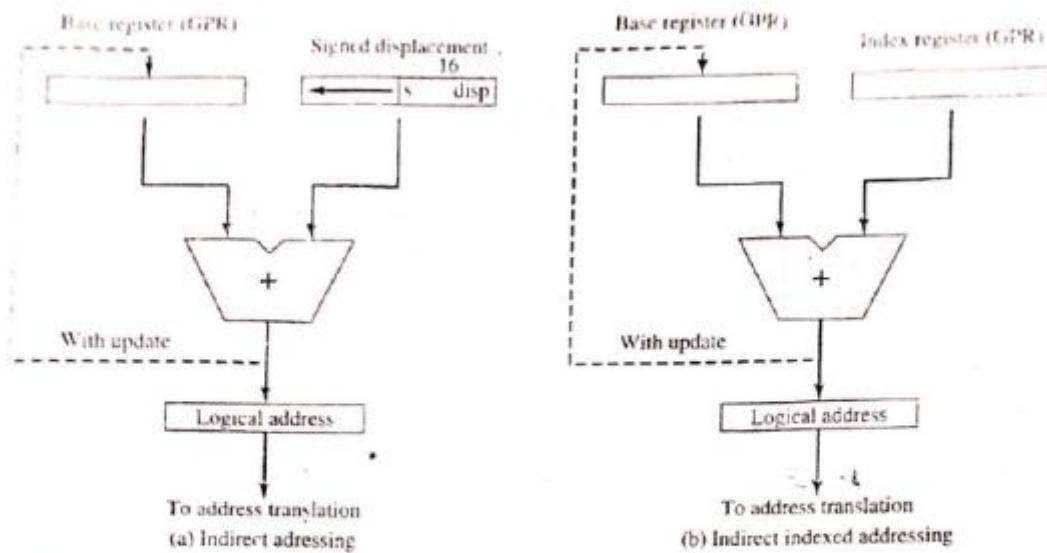


Figure 11.3 PowerPC Memory Operand Addressing Modes

both of which may be any of the general-purpose registers. The effective address is the sum of the contents of these two registers. Again, the update option causes the base register to be updated to the new effective address.

Branch Addressing Three branch addressing modes are provided. When **absolute addressing** is used with unconditional branch instructions, the effective address of the next instruction is derived from a 24-bit immediate value within the instruction. The 24-bit value is extended to a 32-bit value by adding two zeros to its least significant end (this is permissible because all instructions must occur on 32-bit boundaries) and sign extending. For conditional branch instructions, the effective address of the next instruction is derived from a 16-bit immediate value within the instruction. The 16-bit value is extended to a 32-bit value by adding two zeros to its least significant end and sign extending.

With **relative addressing**, the 24-bit immediate value (unconditional branch instructions) or 14-bit immediate value (conditional branch instructions) is extended as before. The resulting value is then added to the program counter to define a location relative to the current instruction. The other conditional branch addressing mode is **indirect addressing**. This mode obtains the effective address of the next instruction from either the link register or the count register. Note that in this case the count register is used to hold the address for a branch instruction. This register may also be used to hold a count for looping, as explained earlier.

Arithmetic Instructions For integer arithmetic, all operands must be contained either in registers or as part of the instruction. With register addressing, a source or destination operand is specified as one of the general-purpose registers. With immediate addressing, a source operand appears as a 16-bit signed quantity in the instruction.

For floating-point arithmetic, all operands are in floating-point registers; that is, only register addressing is used.

An instruction format defines the layout of the bits of an instruction, in terms of its constituent fields. An instruction format must include an opcode and, implicitly or explicitly, zero or more operands. Each explicit operand is referenced using one of the addressing modes described in Section 11.1. The format must, implicitly or explicitly, indicate the addressing mode for each operand. For most instruction sets, more than one instruction format is used.

The design of an instruction format is a complex art, and an amazing variety of designs have been implemented. We examine the key design issues, looking briefly at some designs to illustrate points, and then we examine the Pentium and PowerPC solutions in detail.

Instruction Length

The most basic design issue to be faced is the instruction format length. This decision affects, and is affected by, memory size, memory organization, bus structure, processor complexity, and processor speed. This decision determines the richness and flexibility of the machine as seen by the assembly-language programmer.

The most obvious trade-off here is between the desire for a powerful instruction repertoire and a need to save space. Programmers want more opcodes, more operands, more addressing modes, and greater address range. More opcodes and more operands make life easier for the programmer, because shorter programs can be written to accomplish given tasks. Similarly, more addressing modes give the programmer greater flexibility in implementing certain functions, such as table manipulations and multiple-way branching. And, of course, with the increase in main memory size and the increasing use of virtual memory, programmers want to be able to address larger memory ranges. All of these things (opcodes, operands, addressing modes, address range) require bits and push in the direction of longer instruction lengths. But longer instruction length may be wasteful. A 64-bit instruction occupies twice the space of a 32-bit instruction but is probably less than twice as useful.

Beyond this basic trade-off, there are other considerations. Either the instruction length should be equal to the memory-transfer length (in a bus system, data-bus length) or one should be a multiple of the other. Otherwise, we will not get an integral number of instructions during a fetch cycle. A related consideration is the memory transfer rate. This rate has not kept up with increases in processor speed. Accordingly, memory can become a bottleneck if the processor can execute instructions faster than it can fetch them. One solution to this problem is to use cache memory (see Section 4.3); another is to use shorter instructions. Thus, 16-bit instructions can be fetched at twice the rate of 32-bit instructions but probably can be executed less than twice as fast.

A seemingly mundane but nevertheless important feature is that the instruction length should be a multiple of the character length, which is usually 8 bits, and of the length of fixed-point numbers. To see this, we need to make use of that unfortunately ill-defined word, *word* [FRA183]. The word length of memory is, in some sense, the "natural" unit of organization. The size of a word usually determines the

size of fixed-point numbers (usually the two are equal). Word size is also typically equal to, or at least integrally related to, the memory transfer size. Because a common form of data is character data, we would like a word to store an integral number of characters. Otherwise, there are wasted bits in each word when storing multiple characters, or a character will have to straddle a word boundary. The importance of this point is such that IBM, when it introduced the System/360 and wanted to employ 8-bit characters, made the wrenching decision to move from the 36-bit architecture of the scientific members of the 700/7000 series to a 32-bit architecture.

Allocation of Bits

We've looked at some of the factors that go into deciding the length of the instruction format. An equally difficult issue is how to allocate the bits in that format. The trade-offs here are complex.

For a given instruction length, there is clearly a trade-off between the number of opcodes and the power of the addressing capability. More opcodes obviously mean more bits in the opcode field. For an instruction format of a given length, this reduces the number of bits available for addressing. There is one interesting refinement to this trade-off, and that is the use of variable-length opcodes. In this approach, there is a minimum opcode length but, for some opcodes, additional operations may be specified by using additional bits in the instruction. For a fixed-length instruction, this leaves fewer bits for addressing. Thus, this feature is used for those instructions that require fewer operands and/or less powerful addressing.

The following interrelated factors go into determining the use of the addressing bits.

- **Number of addressing modes:** Sometimes an addressing mode can be indicated implicitly. For example, certain opcodes might

addressing. Some architectures, including that of the Pentium, have a collection of two or more specialized sets (such as data and displacement). One advantage of this latter approach is that, for a fixed number of registers, a functional split requires fewer bits to be used in the instruction. For example, with two sets of eight registers, only 3 bits are required to identify a register; the opcode implicitly will determine which set of registers is being referenced.

- **Address range:** For addresses that reference memory, the range of addresses that can be referenced is related to the number of address bits. Because this imposes a severe limitation, direct addressing is rarely used. With displacement addressing, the range is opened up to the length of the address register. Even so, it is still convenient to allow rather large displacements from the register address, which requires a relatively large number of address bits in the instruction.
- **Address granularity:** For addresses that reference memory rather than registers, another factor is the granularity of addressing. In a system with 16- or 32-bit words, an address can reference a word or a byte at the designer's choice. Byte addressing is convenient for character manipulation but requires, for a fixed-size memory, more address bits.

Thus, the designer is faced with a host of factors to consider and balance. How critical the various choices are is not clear. As an example, we cite one study [CRA79] that compared various instruction format approaches, including the use of a stack, general-purpose registers, an accumulator, and only memory-to-register approaches. Using a consistent set of assumptions, no significant difference in code space or execution time was observed.

Let us briefly look at how two historical machine designs balance these various factors.

PDP-8 One of the simplest instruction designs for a general-purpose computer was for the PDP-8 [BELL78b]. The PDP-8 uses 12-bit instructions and operates on 12-bit words. There is a single general-purpose register, the accumulator.

Despite the limitations of this design, the addressing is quite flexible. Each memory reference consists of 7 bits plus two 1-bit modifiers. The memory is divided into fixed-length pages of $2^7 = 128$ words each. Address calculation is based on references to page 0 or the current page (page containing this instruction) as determined by the page bit. The second modifier bit indicates whether direct or indirect addressing is to be used. These two modes can be used in combination, so that an indirect address is a 12-bit address contained in a word of page 0 or the current page. In addition, 8 dedicated words on page 0 are autoindex "registers." When an indirect reference is made to one of these locations, preindexing occurs.

Figure 11.4 shows the PDP-8 instruction format. There are a 3-bit opcode and three types of instructions. For opcodes 0 through 5, the format is a single-address memory reference instruction including a page bit and an indirect bit. Thus, there are only six basic operations. To enlarge the group of operations, opcode 7 defines a register reference or *microinstruction*. In this format, the remaining bits are used to encode additional operations. In general, each bit defines a specific operation (e.g., clear accumulator), and these bits can be combined in a single instruction. The microinstruction strategy was used as far back as the PDP-1 by DEC and is, in a sense, a forerunner of

Memory Reference Instructions				
Opcode	D/I	Z/C		Displacement
0	2	3	4	5

Input/Output Instructions				
I	I	0		Device
0	2	3		8 9 11

Register Reference Instructions											
Group 1 microinstructions				Group 2 microinstructions							
1	1	1	0	CLA	CLL	CMA	CML	RAR	RAL	BSW	IAC
0	1	2	3	4	5	6	7	8	9	10	11

Group 3 microinstructions											
1	1	1	0	CLA	MQA	0	MQL	0	0	0	1
0	1	2	3	4	5	6	7	8	9	10	11

D/I = Direct/Indirect address
 Z/C = Page 0 or Current page
 CLA = Clear Accumulator
 CLL = Clear Link
 CMA = CoMplement Accumulator
 CML = CoMplement Link
 RAR = Rotate Accumulator Right
 RAL = Rotate Accumulator Left
 BSW = Byte SWap

IAC = Increment ACcumulator
 SMA = Skip on Minus Accumulator
 SZA = Skip on Zero Accumulator
 SNL = Skip on Nonzero Link
 RSS = Reverse Skip Sense
 QSR = Or with Switch Register
 HLT = HaLT
 MQA = Multiplier Quotient into Accumulator
 MQL = Multiplier Quotient Load

Figure 11.4 PDP-8 Instruction Formats

today's microprogrammed machines, to be discussed in Part Four. Opcode 6 is the I/O operation; 6 bits are used to select one of 64 devices, and 3 bits specify a particular I/O command.

The PDP-8 instruction format is remarkably efficient. It supports indirect addressing, displacement addressing, and indexing. With the use of the opcode extension, it supports a total of approximately 35 instructions. Given the constraints of a 12-bit instruction length, the designers could hardly have done better.

PDP-10 A sharp contrast to the instruction set of the PDP-8 is that of the PDP-10. The PDP-10 was designed to be a large-scale time-shared system, with an emphasis on making the system easy to program, even if additional hardware expense was involved.

Among the design principles that were employed in designing the instruction set were [BELL78c].

- **Orthogonality:** Orthogonality is a principle by which two variables are independent of each other. In the context of an instruction set, the term indicates that other elements of an instruction are independent of (not determined by) the opcode. The PDP-10 designers use the term to describe the fact that an address is always computed in the same way, independent of the opcode. This is in contrast to many machines, where the address mode sometimes depends implicitly on the operator being used.
- **Completeness:** Each arithmetic data type (integer, fixed-point, real) should have a complete and identical set of operations.

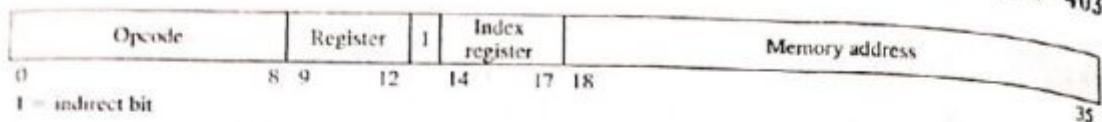


Figure 11.5 PDP-10 Instruction Format

- **Direct addressing:** Base plus displacement addressing, which places a memory organization burden on the programmer, was avoided in favor of direct addressing.

Each of these principles advances the main goal of ease of programming.

The PDP-10 has a 36-bit word length and a 36-bit instruction length. The fixed instruction format is shown in Figure 11.5. The opcode occupies 9 bits, allowing up to 512 operations. In fact, a total of 365 different instructions are defined. Most instructions have two addresses, one of which is one of 16 general-purpose registers. Thus, this operand reference occupies 4 bits. The other operand reference starts with an 18-bit memory address field. This can be used as an immediate operand or a memory address. In the latter usage, both indexing and indirect addressing are allowed. The same general-purpose registers are also used as index registers.

A 36-bit instruction length is true luxury. There is no need to do clever things to get more opcodes; a 9-bit opcode field is more than adequate. Addressing is also straightforward. An 18-bit address field makes direct addressing desirable. For memory sizes greater than 2^{18} , indirection is provided. For the ease of the programmer, indexing is provided for table manipulation and iterative programs. Also, with an 18-bit operand field, immediate addressing becomes attractive.

The PDP-10 instruction set design does accomplish the objectives listed earlier [LUND77]. It eases the task of the programmer or compiler at the expense of an inefficient utilization of space. This was a conscious choice made by the designers and therefore cannot be faulted as poor design.

Variable-Length Instructions

The examples we have looked at so far have used a single fixed instruction length, and we have implicitly discussed trade-offs in that context. But the designer may choose instead to provide a variety of instruction formats of different lengths. This tactic makes it easy to provide a large repertoire of opcodes, with different opcode lengths. Addressing can be more flexible, with various combinations of register and memory references plus addressing modes. With variable-length instructions, these many variations can be provided efficiently and compactly.

The principal price to pay for variable-length instructions is an increase in the complexity of the processor. Falling hardware prices, the use of microprogramming (discussed in Part Four), and a general increase in understanding the principles of processor design have all contributed to making this a small price to pay. However, we will see that RISC and superscalar machines can exploit the use of fixed-length instructions to provide improved performance.

The use of variable-length instructions does not remove the desirability of making all of the instruction lengths integrally related to the word length. Because the processor does not know the length of the next instruction to be fetched, a typical

strategy is to fetch a number of bytes or words equal to at least the longest possible instruction. This means that sometimes multiple instructions are fetched. However, as we shall see in Chapter 12, this is a good strategy to follow in any case.

PDP-11 The PDP-11 was designed to provide a powerful and flexible instruction set within the constraints of a 16-bit minicomputer [BELL70].

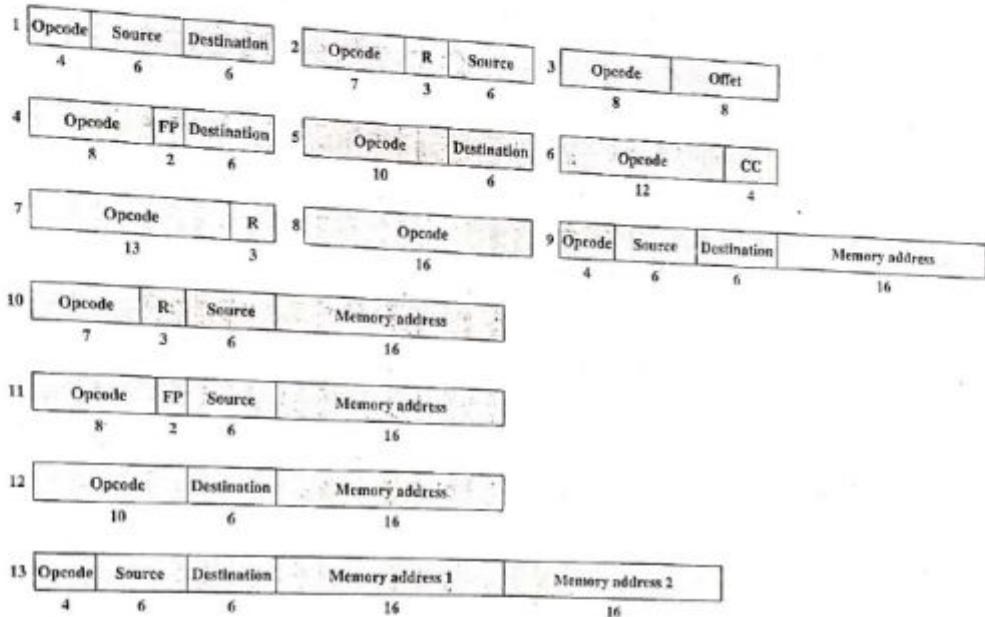
The PDP-11 employs a set of eight 16-bit general-purpose registers. Two of these registers have additional significance: One is used as a stack pointer for special-purpose stack operations, and one is used as the program counter, which contains the address of the next instruction.

Figure 11.6 shows the PDP-11 instruction formats. Thirteen different formats are used, encompassing zero-, one-, and two-address instruction types. The opcode can vary from 4 to 16 bits in length. Register references are 6 bits in length. Three bits identify the register, and the remaining 3 bits identify the addressing mode. The PDP-11 is endowed with a rich set of addressing modes. One advantage of linking the addressing mode to the operand rather than the opcode, as is sometimes done, is that any addressing mode can be used with any opcode. As was mentioned, this independence is referred to as *orthogonality*.

PDP-11 instructions are usually one word (16 bits) long. For some instructions, one or two memory addresses are appended, so that 32-bit and 48-bit instructions are part of the repertoire. This provides for further flexibility in addressing.

The PDP-11 instruction set and addressing capability are complex. This increases both hardware cost and programming complexity. The advantage is that more efficient or compact programs can be developed.

VAX Most architectures provide a relatively small number of fixed instruction formats. This can cause two problems for the programmer. First, addressing mode and opcode are not orthogonal. For example, for a given operation, one operand must come from a register and another from memory, or both from registers, and so on. Second, only a limited number of operands can be accommodated: typically up to two or three. Because some operations inherently require more operands, various strategies must be used to achieve the desired result using two or more instructions.


To avoid these problems, two criteria were used in designing the VAX instruction format [STRE78]:

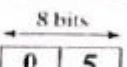
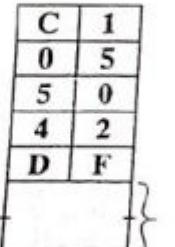
1. All instructions should have the "natural" number of operands.
2. All operands should have the same generality in specification.

The result is a highly variable instruction format. An instruction consists of a 1- or 2-byte opcode followed by from zero to six operand specifiers, depending on the opcode. The minimal instruction length is 1 byte, and instructions up to 37 bytes can be constructed. Figure 11.7 gives a few examples.

The VAX instruction begins with a 1-byte opcode. This suffices to handle most VAX instructions. However, as there are over 300 different instructions, 8 bits are not enough. The hexadecimal codes FD and FF indicate an extended opcode, with the actual opcode being specified in the second byte.

The remainder of the instruction consists of up to six operand specifiers. An operand specifier is, at minimum, a 1-byte format in which the leftmost 4 bits are the

Numbers below fields indicate bit length



Source and destination each contain a 3-bit addressing mode field and a 3-bit register number

FP indicates one of four floating-point registers

R indicates one of the general-purpose registers

CC is the condition code field

Figure 11.6 Instruction Formats for the PDP-11

Hexadecimal Format	Explanation	Assembler Notation and Description
8 bits	Opcode for RSB	RSB Return from subroutine
	Opcode for CLRL Register R9	CLRL R9 Clear register R9
	Opcode for MOVW Word displacement mode. Register R4 356 in hexadecimal Byte displacement mode. Register R11 25 in hexadecimal	MOVW 356(R4), 25(R11) Move a word from address that is 356 plus contents of R4 to address that is 25 plus contents of R11
	Opcode for ADDL3 Short literal 5 Register mode R0 Index prefix R2 Indirect word relative (displacement from PC) Amount of displacement from PC relative to location A	ADDL3 #5, R0, @A[R2] Add 5 to a 32-bit integer in R0 and store the result in location whose address is sum of A and 4 times the contents of R2

Pentium Instruction Formats

The Pentium is equipped with a variety of instruction formats. Of the elements described in this subsection, only the opcode field is always present. Figure 11.8 illustrates the general instruction format. Instructions are made up of from zero to four optional instruction prefixes, a 1- or 2-byte opcode, an optional address specifier (which consists of the ModR/m byte and the Scale Index byte) an optional displacement, and an optional immediate field.

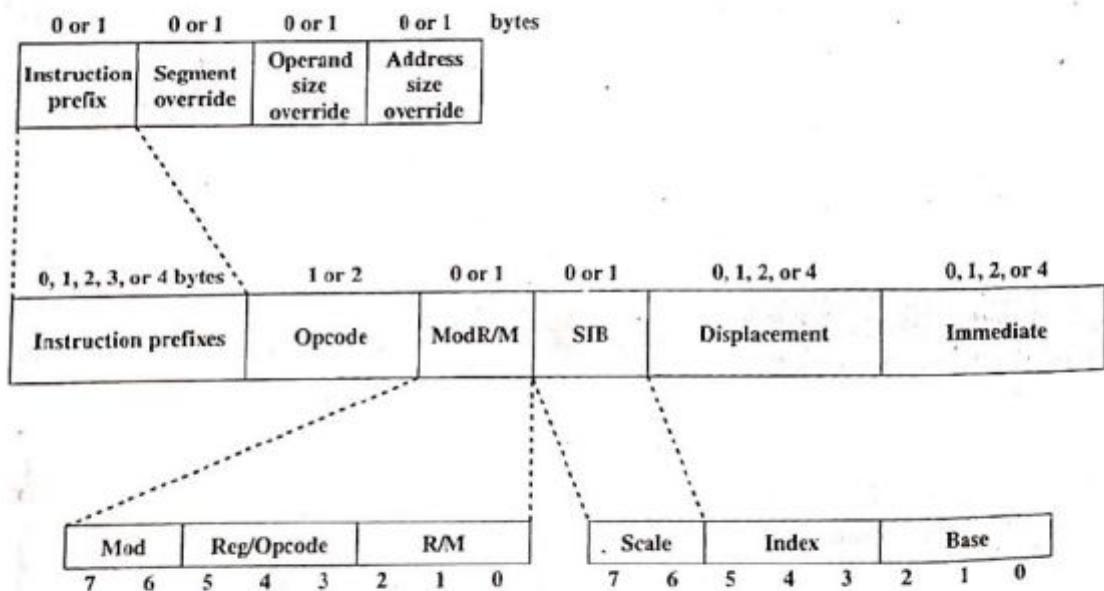


Figure 11.8 Pentium Instruction Format

KEY POINTS

- ◆ A processor includes both user-visible registers and control/status registers. The former may be referenced, implicitly or explicitly, in machine instructions. User-visible registers may be general purpose or have a special use, such as fixed-point or floating-point numbers, addresses, indexes, and segment pointers. Control and status registers are used to control the operation of the processor. One obvious example is the program counter. Another important example is a program status word (PSW) that contains a variety of status and condition bits. These include bits to reflect the result of the most recent arithmetic operation, interrupt enable bits, and an indicator of whether the processor is executing in supervisor or user mode.
- ◆ Processors make use of instruction pipelining to speed up execution. In essence, pipelining involves breaking up the instruction cycle into a number of separate stages that occur in sequence, such as fetch instruction, decode instruction, determine operand addresses, fetch operands, execute instruction, and write operand result. Instructions move through these stages, as on an assembly line, so that in principle, each stage can be working on a different instruction at the same time. The occurrence of branches and dependencies between instructions complicates the design and use of pipelines.

This chapter discusses aspects of the processor not yet covered in Part Three and sets the stage for the discussion of RISC and superscalar architecture in Chapters 13 and 14.

We begin with a summary of processor organization. Registers, which form the internal memory of the processor, are then analyzed. We are then in a position to return to the discussion (begun in Section 3.2) of the instruction cycle. A description of the instruction cycle and a common technique known as instruction pipelining complete our description. The chapter concludes with an examination of some additional aspects of the Pentium and PowerPC organizations.

PROCESSOR ORGANIZATION

understand the organization of the processor, let us consider the requirements placed on the processor, the things that it must do:

◆ **Fetch instruction:** The processor reads an instruction from memory (register, cache, main memory).

◆ **Interpret instruction:** The instruction is decoded to determine what action is required.

- **Fetch data:** The execution of an instruction may require reading data from memory or an I/O module.
- **Process data:** The execution of an instruction may require performing some arithmetic or logical operation on data.
- **Write data:** The results of an execution may require writing data to memory or an I/O module.

To do these things, it should be clear that the processor needs to store some data temporarily. It must remember the location of the last instruction so that it can know where to get the next instruction. It needs to store instructions and data temporarily while an instruction is being executed. In other words, the processor needs a small internal memory.

Figure 12.1 is a simplified view of a processor, indicating its connection to the rest of the system via the system bus. A similar interface would be needed for any of the interconnection structures described in Chapter 3. The reader will recall that the major components of the processor are an *arithmetic and logic unit* (ALU) and a *control unit* (CU). The ALU does the actual computation or processing of data. The control unit controls the movement of data and instructions into and out of the processor and controls the operation of the ALU. In addition, the figure shows a minimal internal memory, consisting of a set of storage locations, called *registers*.

Figure 12.2 is a slightly more detailed view of the processor. The data transfer and logic control paths are indicated, including an element labeled *internal processor bus*. This element is needed to transfer data between the various registers and the ALU because the ALU in fact operates only on data in the internal processor memory. The figure also shows typical basic elements of the ALU. Note the similarity between the internal structure of the computer as a whole and the internal structure of the processor. In both cases, there is a small collection of major elements (computer: processor, I/O, memory; processor: control unit, ALU, registers) connected by data paths.

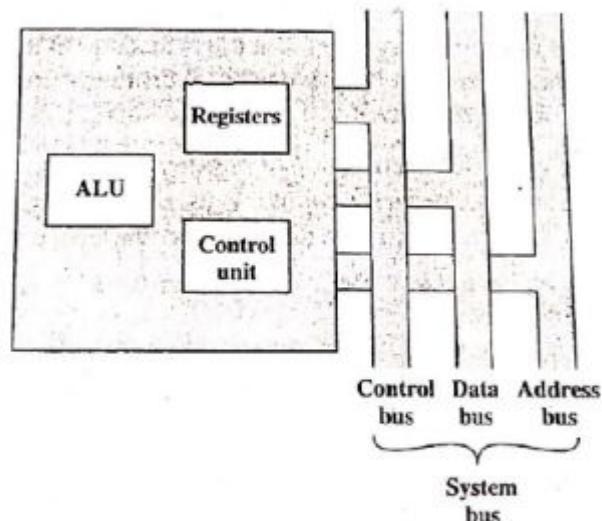


Figure 12.1 The CPU with the System Bus

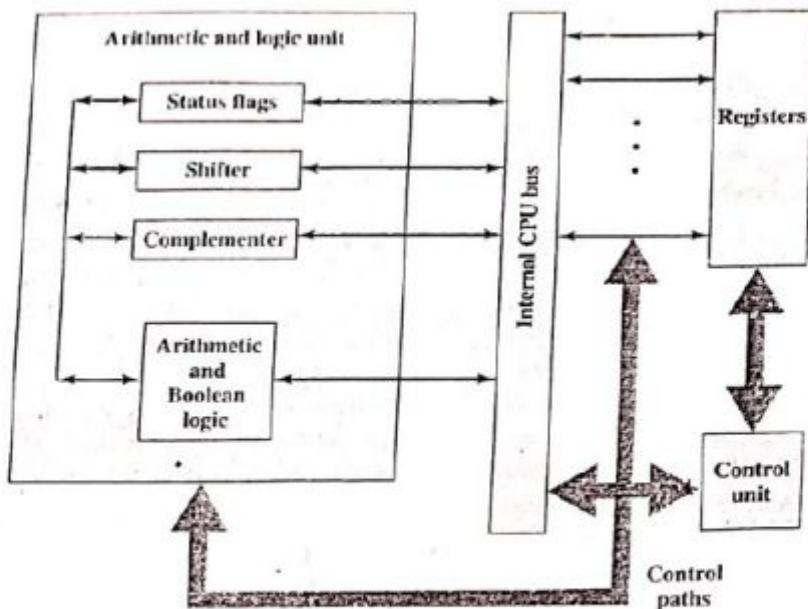


Figure 12.2 Internal Structure of the CPU

12.2 REGISTER ORGANIZATION

As we discussed in Chapter 4, a computer system employs a memory hierarchy. At higher levels of the hierarchy, memory is faster, smaller, and more expensive (per bit). Within the processor, there is a set of registers that function as a level of memory above main memory and cache in the hierarchy. The registers in the processor perform two roles:

- **User-visible registers:** Enable the machine- or assembly language programmer to minimize main memory references by optimizing use of registers.
- **Control and status registers:** Used by the control unit to control the operation of the processor and by privileged, operating system programs to control the execution of programs.

There is not a clean separation of registers into these two categories. For example, on some machines the program counter is user visible (e.g., Pentium), but on many it is not. For purposes of the following discussion, however, we will use these categories.

User-Visible Registers

A user-visible register is one that may be referenced by means of the machine language that the processor executes. We can characterize these in the following categories:

- General purpose
- Data
- Address
- Condition codes

General-purpose registers can be assigned to a variety of functions by the programmer. Sometimes their use within the instruction set is orthogonal to the operation. That is, any general-purpose register can contain the operand for any opcode. This provides true general-purpose register use. Often, however, there are restrictions. For example, there may be dedicated registers for floating-point and stack operations.

In some cases, general-purpose registers can be used for addressing functions (e.g., register indirect, displacement). In other cases, there is a partial or clean separation between data registers and address registers. Data registers may be used only to hold data and cannot be employed in the calculation of an operand address. Address registers may themselves be somewhat general purpose, or they may be devoted to a particular addressing mode. Examples include the following:

- **Segment pointers:** In a machine with segmented addressing (see Section 8.3), a segment register holds the address of the base of the segment. There may be multiple registers: for example, one for the operating system and one for the current process.
- **Index registers:** These are used for indexed addressing and may be autoindexed.
- **Stack pointer:** If there is user-visible stack addressing, then typically there is a dedicated register that points to the top of the stack. This allows implicit addressing; that is, push, pop, and other stack instructions need not contain an explicit stack operand.

There are several design issues to be addressed here. An important issue is whether to use completely general-purpose registers or to specialize their use. We have already touched on this issue in the preceding chapter because it affects instruction set design. With the use of specialized registers, it can generally be implicit in the opcode which type of register a certain operand specifier refers to. The operand specifier must only identify one of a set of specialized registers rather than one out of all the registers, thus saving bits. On the other hand, this specialization limits the programmer's flexibility.

Another design issue is the number of registers, either general purpose or data plus address, to be provided. Again, this affects instruction set design because more registers require more operand specifier bits. As we previously discussed, somewhere between 8 and 32 registers appears optimum [LUND77]. Fewer registers result in more memory references; more registers do not noticeably reduce memory references (e.g., see [WILL90]). However, a new approach, which finds advantage in the use of hundreds of registers, is exhibited in some RISC systems and is discussed in Chapter 13.

Finally, there is the issue of register length. Registers that must hold addresses obviously must be at least long enough to hold the largest address. Data registers should be able to hold values of most data types. Some machines allow two contiguous registers to be used as one for holding double-length values.

A final category of registers, which is at least partially visible to the user, holds **condition codes** (also referred to as *flags*). Condition codes are bits set by the processor hardware as the result of operations. For example, an arithmetic operation may

Condition Codes	Disadvantages
<p>Advantages</p> <ul style="list-style-type: none"> Condition codes are set by normal and data movement instructions, and reduce the number of COMPARE instructions needed. Instructions, such as BRANCH and relative to composite instructions, STAND BRANCH. Codes facilitate multiway branches. e., a TEST instruction can be followed by branches, one on less than or equal to zero and one on greater than zero. 	<p>Disadvantages</p> <ol style="list-style-type: none"> Condition codes add complexity, both to the hardware and software. Condition code bits are often modified in different ways by different instructions, making life more difficult for both the microprogrammer and compiler writer. Condition codes are irregular; they are typically not part of the main data path, so they require extra hardware connections. Often condition code machines must add special non-condition-code instructions for special situations anyway, such as bit checking, loop control, and atomic semaphore operations. In a pipelined implementation, condition codes require special synchronization to avoid conflicts.

ce a positive, negative, zero, or overflow result. In addition to the result itself stored in a register or memory, a condition code is also set. The code may subsequently be tested as part of a conditional branch operation.

Condition code bits are collected into one or more registers. Usually, they are part of a control register. Generally, machine instructions allow these bits to be read in reference, but the programmer cannot alter them.

Many processors, including those based on the IA-64 architecture and the MIPS processors, do not use condition codes at all. Rather, conditional branch instructions a comparison to be made and act on the result of the comparison, without storing condition code. Table 12.1, based on [DER087], lists key advantages and disadvantages of condition codes.

In some machines, a subroutine call will result in the automatic saving of all visible registers, to be restored on return. The processor performs the saving and restoring as part of the execution of call and return instructions. This allows the subroutine to use the user-visible registers independently. On other machines, the responsibility of the programmer is to save the contents of the relevant user-visible registers prior to a subroutine call, by including instructions for this purpose in the program.

Control and Status Registers

Control and Status Registers
There are a variety of processor registers that are employed to control the operation of the processor. Most of these, on most machines, are not visible to the user. Some may be visible to machine instructions executed in a control or operating mode. Different machines will have different register organizations and

of course, different machines will have different register organizations and different terminology. We list here a reasonably complete list of register types, with a brief description.

Four registers are essential to instruction execution:

- **Program counter (PC):** Contains the address of an instruction to be fetched
- **Instruction register (IR):** Contains the instruction most recently fetched
- **Memory address register (MAR):** Contains the address of a location in memory
- **Memory buffer register (MBR):** Contains a word of data to be written to memory or the word most recently read

Not all processors have internal registers designated as MAR and MBR, but some equivalent buffering mechanism is needed whereby the bits to be transferred to the system bus are staged and the bits to be read from the data bus are temporarily stored.

Typically, the processor updates the PC after each instruction fetch so that the PC always points to the next instruction to be executed. A branch or skip instruction will also modify the contents of the PC. The fetched instruction is loaded into an IR, where the opcode and operand specifiers are analyzed. Data are exchanged with memory using the MAR and MBR. In a bus-organized system, the MAR connects directly to the address bus, and the MBR connects directly to the data bus. User-visible registers, in turn, exchange data with the MBR.

The four registers just mentioned are used for the movement of data between the processor and memory. Within the processor, data must be presented to the ALU for processing. The ALU may have direct access to the MBR and user-visible registers. Alternatively, there may be additional buffering registers at the boundary to the ALU; these registers serve as input and output registers for the ALU and exchange data with the MBR and user-visible registers.

Many processor designs include a register or set of registers, often known as the *program status word* (PSW), that contain status information. The PSW typically contains condition codes plus other status information. Common fields or flags include the following:

- **Sign:** Contains the sign bit of the result of the last arithmetic operation.
- **Zero:** Set when the result is 0.
- **Carry:** Set if an operation resulted in a carry (addition) into or borrow (subtraction) out of a high-order bit. Used for multiword arithmetic operations.
- **Equal:** Set if a logical compare result is equality.
- **Overflow:** Used to indicate arithmetic overflow.
- **Interrupt enable/disable:** Used to enable or disable interrupts.
- **Supervisor:** Indicates whether the processor is executing in supervisor or user mode. Certain privileged instructions can be executed only in supervisor mode, and certain areas of memory can be accessed only in supervisor mode.

A number of other registers related to status and control might be found in a particular processor design. There may be a pointer to a block of memory containing additional status information (e.g., process control blocks). In machines using vectored interrupts, an interrupt vector register may be provided. If a stack is used to implement certain functions (e.g., subroutine call), then a system stack pointer is

needed. A page table pointer is used with a virtual memory system. Finally, registers may be used in the control of I/O operations.

A number of factors go into the design of the control and status register organization. One key issue is operating system support. Certain types of control information are of specific utility to the operating system. If the processor designer has a functional understanding of the operating system to be used, then the register organization can to some extent be tailored to the operating system.

Another key design decision is the allocation of control information between registers and memory. It is common to dedicate the first (lowest) few hundred or thousand words of memory for control purposes. The designer must decide how much control information should be in registers and how much in memory. The usual trade-off of cost versus speed arises.

Example Microprocessor Register Organizations

It is instructive to examine and compare the register organization of comparable systems. In this section, we look at two 16-bit microprocessors that were designed at about the same time: the Motorola MC68000 [STR179] and the Intel 8086 [MORS78]. Figures 12.3a and b depict the register organization of each; purely internal registers, such as a memory address register, are not shown.

Data registers		General registers		General registers	
		AX	Accumulator	EAX	AX
		BX	Base	EBX	BX
		CX	Count	ECX	CX
		DX	Data	EDX	DX
Pointer & Index		ESP		SP	
SP		Stack pointer			

The MC68000 partitions its 32-bit registers into eight data registers and nine address registers. The eight data registers are used primarily for data manipulation and are also used in addressing as index registers. The width of the registers allows 8-, 16-, and 32-bit data operations, determined by opcode. The address registers contain 32-bit (no segmentation) addresses; two of these registers are also used as stack pointers, one for users and one for the operating system, depending on the current execution mode. Both registers are numbered 7, because only one can be used at a time. The MC68000 also includes a 32-bit program counter and a 16-bit status register.

The Motorola team wanted a very regular instruction set, with no special-purpose registers. A concern for code efficiency led them to divide the registers into two functional components, saving one bit on each register specifier. This seems a reasonable compromise between complete generality and code compaction.

The Intel 8086 takes a different approach to register organization. Every register is special purpose, although some registers are also usable as general purpose. The 8086 contains four 16-bit data registers that are addressable on a byte or 16-bit basis, and four 16-bit pointer and index registers. The data registers can be used as general purpose in some instructions. In others, the registers are used implicitly. For example, a multiply instruction always uses the accumulator. The four pointer registers are also used implicitly in a number of operations; each contains a segment offset. There are also four 16-bit segment registers. Three of the four segment registers are used in a dedicated, implicit fashion, to point to the segment of the current instruction (useful for branch instructions), a segment containing data, and a segment containing a stack, respectively. These dedicated and implicit uses provide for compact encoding at the cost of reduced flexibility. The 8086 also includes an instruction pointer and a set of 1-bit status and control flags.

The point of this comparison should be clear. There is no universally accepted philosophy concerning the best way to organize processor registers [TOON81]. As with overall instruction set design and so many other processor design issues, it is still a matter of judgment and taste.

A second instructive point concerning register organization design is illustrated in Figure 12.3c. This figure shows the user-visible register organization for the Intel 80386 [ELAY85], which is a 32-bit microprocessor designed as an extension of the 8086.¹ The 80386 uses 32-bit registers. However, to provide upward compatibility for programs written on the earlier machine, the 80386 retains the original register organization embedded in the new organization. Given this design constraint, the architects of the 32-bit processors had limited flexibility in designing the register organization.

- Fetch: Read the next instruction from memory into the processor.
- Execute: Interpret the opcode and perform the indicated operation.
- Interrupt: If interrupts are enabled and an interrupt has occurred, save the current process state and service the interrupt.

We are now in a position to elaborate somewhat on the instruction cycle. First, we must introduce one additional subcycle, known as the indirect cycle.

The Indirect Cycle

We have seen, in Chapter 11, that the execution of an instruction may involve one or more operands in memory, each of which requires a memory access. Further, if indirect addressing is used, then additional memory accesses are required.

We can think of the fetching of indirect addresses as one more instruction subcycle. The result is shown in Figure 12.4. The main line of activity consists of alternating instruction fetch and instruction execution activities. After an instruction is fetched, it is examined to determine if any indirect addressing is involved. If so, the required operands are fetched using indirect addressing. Following execution, an interrupt may be processed before the next instruction fetch.

Another way to view this process is shown in Figure 12.5, which is a revised version of Figure 3.12. This illustrates more correctly the nature of the instruction cycle. Once an instruction is fetched, its operand specifiers must be identified. Each input operand in memory is then fetched, and this process may require indirect addressing. Register-based operands need not be fetched. Once the opcode is executed, a similar process may be needed to store the result in main memory.

Data Flow

The exact sequence of events during an instruction cycle depends on the design of the processor. We can, however, indicate in general terms what must happen. Let us assume that a processor that employs a memory address register (MAR), a memory buffer register (MBR), a program counter (PC), and an instruction register (IR).

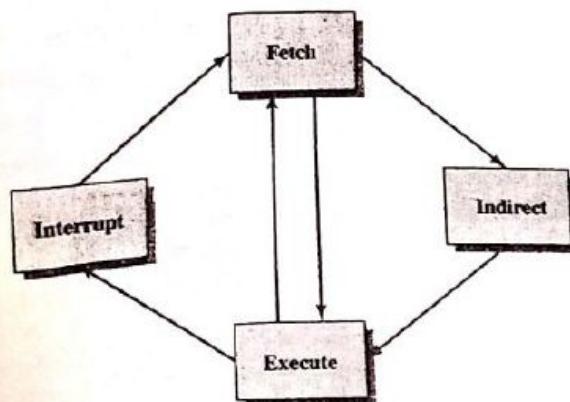


Figure 12.4 The Instruction Cycle

- **Fetch:** Read the next instruction from memory into the processor.
- **Execute:** Interpret the opcode and perform the indicated operation.
- **Interrupt:** If interrupts are enabled and an interrupt has occurred, save the current process state and service the interrupt.

We are now in a position to elaborate somewhat on the instruction cycle. First, we must introduce one additional subcycle, known as the indirect cycle.

The Indirect Cycle

As we have seen, in Chapter 11, that the execution of an instruction may involve one or more operands in memory, each of which requires a memory access. Further, if indirect addressing is used, then additional memory accesses are required.

We can think of the fetching of indirect addresses as one more instruction subcycle. The result is shown in Figure 12.4. The main line of activity consists of alternating instruction fetch and instruction execution activities. After an instruction is fetched, it is examined to determine if any indirect addressing is involved. If so, the required operands are fetched using indirect addressing. Following execution, an interrupt may be processed before the next instruction fetch.

Another way to view this process is shown in Figure 12.5, which is a revised version of Figure 3.12. This illustrates more correctly the nature of the instruction cycle. Once an instruction is fetched, its operand specifiers must be identified. Each required operand in memory is then fetched, and this process may require indirect addressing. Register-based operands need not be fetched. Once the opcode is executed, a similar process may be needed to store the result in main memory.

How

The sequence of events during an instruction cycle depends on the design of the processor. We can, however, indicate in general terms what must happen. Let us consider a processor that employs a memory address register (MAR), a memory buffer register (MBR), a program counter (PC), and an instruction register (IR).

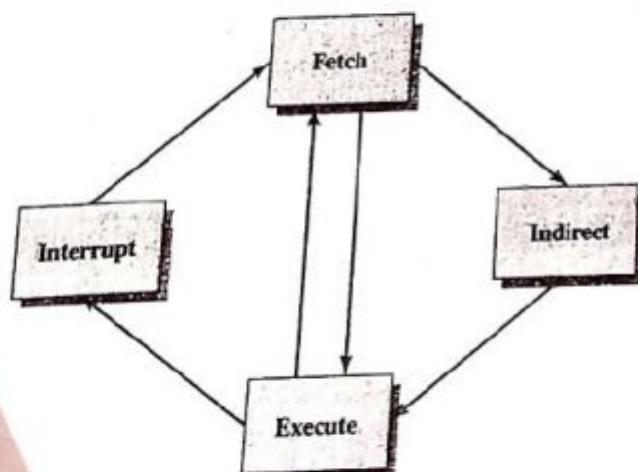


Figure 12.4 The Instruction Cycle

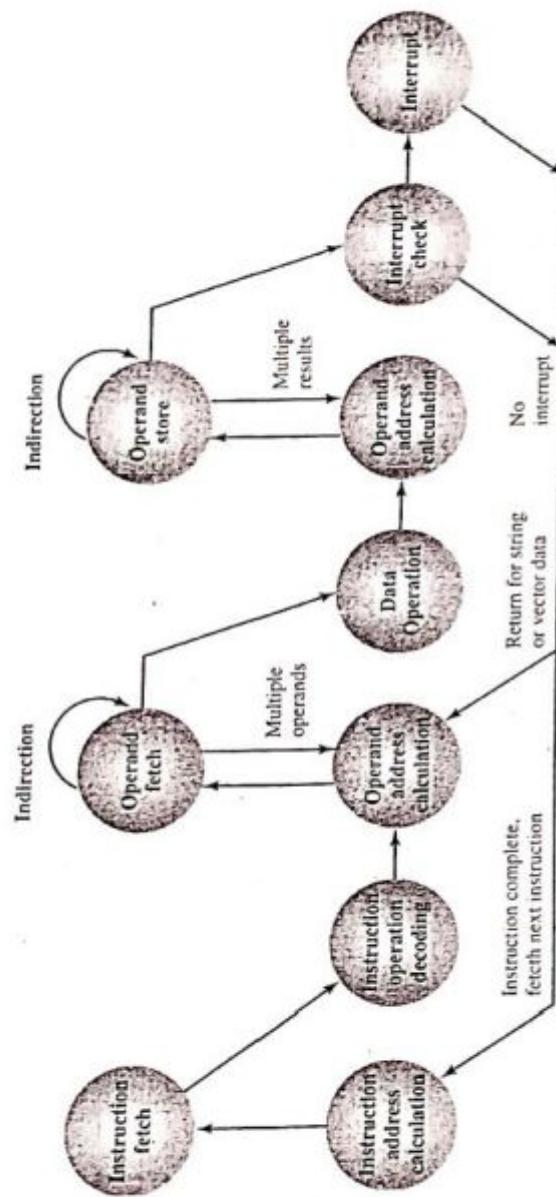


Figure 12.5 Instruction Cycle State Diagram

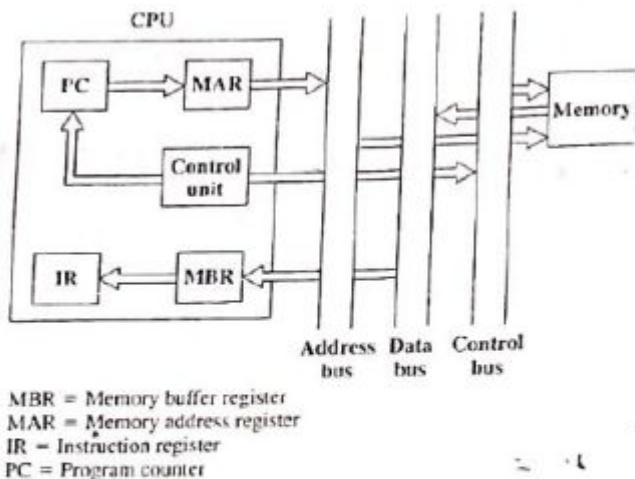


Figure 12.6 Data Flow, Fetch Cycle

During the *fetch cycle*, an instruction is read from memory. Figure 12.6 shows the flow of data during this cycle. The PC contains the address of the next instruction to be fetched. This address is moved to the MAR and placed on the address bus. The control unit requests a memory read, and the result is placed on the data bus and copied into the MBR and then moved to the IR. Meanwhile, the PC is incremented by 1, preparatory for the next fetch.

Once the fetch cycle is over, the control unit examines the contents of the IR to determine if it contains an operand specifier using indirect addressing. If so, an *indirect cycle* is performed. As shown in Figure 12.7, this is a simple cycle. The right-most N bits of the MBR, which contain the address reference, are transferred to the MAR. Then the control unit requests a memory read, to get the desired address of the operand into the MBR.

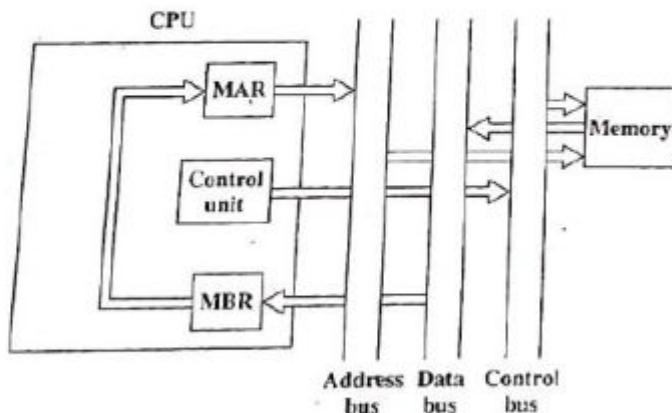


Figure 12.7 Data Flow, Indirect Cycle

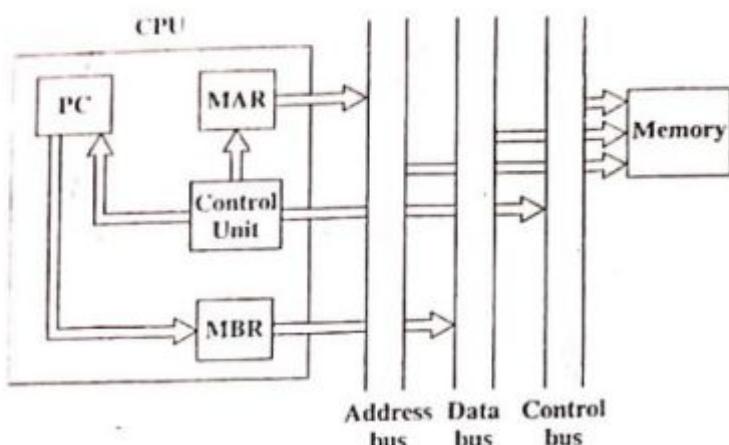


Figure 12.8 Data Flow, Interrupt Cycle

The fetch and indirect cycles are simple and predictable. The *execute cycle* takes many forms; the form depends on which of the various machine instructions is in the IR. This cycle may involve transferring data among registers, read or write from memory or I/O, and/or the invocation of the ALU.

Like the fetch and indirect cycles, the *interrupt cycle* is simple and predictable (Figure 12.8). The current contents of the PC must be saved so that the processor can resume normal activity after the interrupt. Thus, the contents of the PC are transferred to the MBR to be written into memory. The special memory location reserved for this purpose is loaded into the MAR from the control unit. It might, for example, be a stack pointer. The PC is loaded with the address of the interrupt routine. As a result, the next instruction cycle will begin by fetching the appropriate instruction.

KEY POINTS

- ◆ The execution of an instruction involves the execution of a sequence of substeps, generally called cycles. For example, an execution may consist of fetch, indirect, execute, and interrupt cycles. Each cycle is in turn made up of a sequence of more fundamental operations, called micro-operations. A single micro-operation generally involves a transfer between registers, a transfer between a register and an external bus, or a simple ALU operation.
- ◆ The control unit of a processor performs two tasks: (1) It causes the processor to execute micro-operations in the proper sequence, determined by the program being executed, and (2) it generates the control signals that cause each micro-operation to be executed.
- ◆ The control signals generated by the control unit cause the opening and closing of logic gates, resulting in the transfer of data to and from registers and the operation of the ALU.
- ◆ One technique for implementing a control unit is referred to as hard-wired implementation, in which the control unit is a combinatorial circuit. Its input logic signals, governed by the current machine instruction, are transferred into a set of output control signals.

In Chapter 10, we pointed out that a machine instruction set goes a long way toward defining the processor. If we know the machine instruction set, including an understanding of the effect of each opcode and an understanding of the addressing modes, and if we know the set of user-visible registers, then we know the functions that the processor must perform. This is not the complete picture. We must know the external interfaces, usually through a bus, and how interrupts are handled. With this line of reasoning, the following list of those things needed to specify the function of a processor emerges:

1. Operations (opcodes)
2. Addressing modes
3. Registers
4. I/O module interface
5. Memory module interface
6. Interrupt processing structure

This list, though general, is rather complete. Items 1 through 3 are defined by the instruction set. Items 4 and 5 are typically defined by specifying the system bus. Item 6 is defined partially by the system bus and partially by the type of support the processor offers to the operating system.

This list of six items might be termed the functional requirements for a processor. They determine what a processor must do. This is what occupied us in Parts Two and

We have seen that the operation of a computer, in executing a program, consists of a sequence of instruction cycles, with one machine instruction per cycle. Of course, we must remember that this sequence of instruction cycles is not necessarily the same as the *written sequence* of instructions that make up the program, because of the existence of branching instructions. What we are referring to here is the execution *time sequence* of instructions.

We have further seen that each instruction cycle is made up of a number of smaller units. One subdivision that we found convenient is fetch, indirect, execute, and interrupt, with only fetch and execute cycles always occurring.

To design a control unit, however, we need to break down the description further. In our discussion of pipelining in Chapter 12, we began to see that a further decomposition is possible. In fact, we will see that each of the smaller cycles involves a series of steps, each of which involves the processor registers. We will refer to these steps as *micro-operations*. The prefix *micro* refers to the fact that each step is very simple and accomplishes very little. Figure 16.1 depicts the relationship among the various concepts we have been discussing. To summarize, the execution of a program consists of the sequential execution of instructions. Each instruction is executed during an instruction cycle made up of shorter subcycles (e.g., fetch, indirect, execute, interrupt). The performance of each subcycle involves one or more shorter operations, that is, micro-operations.

Micro-operations are the functional, or atomic, operations of a processor. In this section we will examine the basic concepts of micro-operations.

events of any instruction cycle can be described as a sequence of such micro-operations. A simple example will be used. In the remainder of this chapter, we then show how the concept of micro-operations serves as a guide to the design of the control unit.

The Fetch Cycle

We begin by looking at the fetch cycle, which occurs at the beginning of each instruction cycle and causes an instruction to be fetched from memory. For purposes of discussion, we assume the organization depicted in Figure 12.6. Four registers are involved:

- **Memory address register (MAR):** Is connected to the address lines of the system bus. It specifies the address in memory for a read or write operation.
- **Memory buffer register (MBR):** Is connected to the data lines of the system bus. It contains the value to be stored in memory or the last value read from memory.
- **Program counter (PC):** Holds the address of the next instruction to be fetched.
- **Instruction register (IR):** Holds the last instruction fetched.

Let us look at the sequence of events for the fetch cycle from the point of view of its effect on the processor registers. An example appears in Figure 16.2. At the beginning of the fetch cycle, the address of the next instruction to be executed is in the program counter (PC); in this case, the address is 1100100. The first step is to move that address to the memory address register (MAR) because this is the only register connected to the address lines of the system bus. The second step is to bring in the instruction. The desired address (in the MAR) is placed on the address bus, the

MAR	
MBR	
PC	0000000001100100
IR	
AC	

(a) Beginning

MAR	0000000001100100
MBR	10010000000100000
PC	0000000001100101
IR	
AC	

(c) Second step

MAR	00000000001100100
MBR	
PC	00000000001100100
IR	
AC	

(b) First step

MAR	0000000001100100
MBR	0001000000100000
PC	0000000001100101
IR	0001000000100000
AC	

(d) Third step

Figure 16.2 Sequence of Events, Fetch Cycle

control unit issues a READ command on the control bus, and the result appears on the data bus and is copied into the memory buffer register (MBR). We also need to increment the PC by 1 to get ready for the next instruction. Because these two actions (read word from memory, add 1 to PC) do not interfere with each other, we can do them simultaneously to save time. The third step is to move the contents of the MBR to the instruction register (IR). This frees up the MBR for use during a possible indirect cycle.

Thus, the simple fetch cycle actually consists of three steps and four micro-operations. Each micro-operation involves the movement of data into or out of a register. So long as these movements do not interfere with one another, several of them can take place during one step, saving time. Symbolically, we can write this sequence of events as follows:

$$\begin{aligned} t_1: \text{MAR} &\leftarrow (\text{PC}) \\ t_2: \text{MBR} &\leftarrow \text{Memory} \\ &\text{PC} \leftarrow (\text{PC}) + 1 \\ t_3: \text{IR} &\leftarrow (\text{MBR}) \end{aligned}$$

where I is the instruction length. We need to make several comments about this sequence. We assume that a clock is available for timing purposes and that it emits regularly spaced clock pulses. Each clock pulse defines a time unit. Thus, all time units are of equal duration. Each micro-operation can be performed within the time of a single time unit. The notation (t_1, t_2, t_3) represents successive time units. In words, we have

- **First time unit:** Move contents of PC to MAR.
- **Second time unit:** Move contents of memory location specified by MAR to MBR. Increment by I the contents of the PC.
- **Third time unit:** Move contents of MBR to IR.

Note that the second and third micro-operations both take place during the second time unit. The third micro-operation could have been grouped with the fourth without affecting the fetch operation:

$$\begin{aligned} t_1: \text{MAR} &\leftarrow (\text{PC}) \\ t_2: \text{MBR} &\leftarrow \text{Memory} \\ t_3: \text{PC} &\leftarrow (\text{PC}) + 1 \\ &\text{IR} \leftarrow (\text{MBR}) \end{aligned}$$

The groupings of micro-operations must follow two simple rules:

1. The proper sequence of events must be followed. Thus $(\text{MAR} \leftarrow (\text{PC}))$ must precede $(\text{MBR} \leftarrow \text{Memory})$ because the memory read operation makes use of the address in the MAR.
2. Conflicts must be avoided. One should not attempt to read to and write from the same register in one time unit, because the results would be unpredictable. For example, the micro-operations $(\text{MBR} \leftarrow \text{Memory})$ and $(\text{IR} \leftarrow \text{MBR})$ should not occur during the same time unit.

A final point worth noting is that one of the micro-operations involves an addition. To avoid duplication of circuitry, this addition could be performed by the ALU. The use of the ALU may involve additional micro-operations, depending on the functionality of the ALU and the organization of the processor. We defer a discussion of this point until later in this chapter.

It is useful to compare events described in this and the following subsections to Figure 3.5. Whereas micro-operations are ignored in that figure, this discussion shows the micro-operations needed to perform the subcycles of the instruction cycle.

The Indirect Cycle

Once an instruction is fetched, the next step is to fetch source operands. Continuing our simple example, let us assume a one-address instruction format, with direct and indirect addressing allowed. If the instruction specifies an indirect address, then an indirect cycle must precede the execute cycle. The data flow differs somewhat from that indicated in Figure 12.7 and includes the following micro-operations:

$$\begin{aligned} t_1: \text{MAR} &\leftarrow (\text{IR}(\text{Address})) \\ t_2: \text{MBR} &\leftarrow \text{Memory} \\ t_3: \text{IR}(\text{Address}) &\leftarrow (\text{MBR}(\text{Address})) \end{aligned}$$

The address field of the instruction is transferred to the MAR. This is then used to fetch the address of the operand. Finally, the address field of the IR is updated from the MBR, so that it now contains a direct rather than an indirect address.

The IR is now in the same state as if indirect addressing had not been used, and it is ready for the execute cycle. We skip that cycle for a moment, to consider the interrupt cycle.

The Interrupt Cycle

At the completion of the execute cycle, a test is made to determine whether any enabled interrupts have occurred. If so, the interrupt cycle occurs. The nature of this cycle varies greatly from one machine to another. We present a very simple sequence of events, as illustrated in Figure 12.8. We have

$$\begin{aligned} t_1: \text{MBR} &\leftarrow (\text{PC}) \\ t_2: \text{MAR} &\leftarrow \text{Save_Address} \\ &\text{PC} \leftarrow \text{Routine_Address} \\ t_3: \text{Memory} &\leftarrow (\text{MBR}) \end{aligned}$$

In the first step, the contents of the PC are transferred to the MBR, so that they can be saved for return from the interrupt. Then the MAR is loaded with the address at which the contents of the PC are to be saved, and the PC is loaded with the address of the start of the interrupt-processing routine. These two actions may each be a single micro-operation. However, because most processors provide multiple types and/or levels of interrupts, it may take one or more additional micro-operations to obtain the save_address and the routine_address before they can be transferred to the MAR and

PC, respectively. In any case, once this is done, the final step is to store the MBR, which contains the old value of the PC, into memory. The processor is now ready to begin the next instruction cycle.

The Execute Cycle

The fetch, indirect, and interrupt cycles are simple and predictable. Each involves a small, fixed sequence of micro-operations and, in each case, the same micro-operations are repeated each time around.

This is not true of the execute cycle. For a machine with N different opcodes, there are N different sequences of micro-operations that can occur. Let us consider several hypothetical examples.

First, consider an add instruction:

ADD R1, X

which adds the contents of the location X to register R1. The following sequence of micro-operations might occur:

- $t_1: MAR \leftarrow (IR(\text{address}))$
- $t_2: MBR \leftarrow \text{Memory}$
- $t_3: R1 \leftarrow (R1) + (MBR)$

We begin with the IR containing the ADD instruction. In the first step, the address portion of the IR is loaded into the MAR. Then the referenced memory location is read. Finally, the contents of R1 and MBR are added by the ALU. Again, this is a simplified example. Additional micro-operations may be required to extract the register reference from the IR and perhaps to stage the ALU inputs or outputs in some intermediate registers.

Let us look at two more complex examples. A common instruction is increment and skip if zero:

ISZ X

The content of location X is incremented by 1. If the result is 0, the next instruction is skipped. A possible sequence of micro-operations is

- $t_1: MAR \leftarrow (IR(\text{address}))$
- $t_2: MBR \leftarrow \text{Memory}$
- $t_3: MBR \leftarrow (MBR) + 1$
- $t_4: \text{Memory} \leftarrow (MBR)$
- If $((MBR) = 0)$ then $(PC \leftarrow (PC) + 1)$

The new feature introduced here is the conditional action. The PC is incremented if $(MBR) = 0$. This test and action can be implemented as one micro-operation. Note also that this micro-operation can be performed during the same time unit during which the updated value in MBR is stored back to memory.

Finally, consider a subroutine call instruction. As an example, consider a branch-and-save-address instruction:

BSA X

The address of the instruction that follows the BSA instruction is saved in location **X**, and execution continues at location $X + 1$. The saved address will later be used for return. This is a straightforward technique for providing subroutine calls. The following micro-operations suffice:

$t_1: MAR \leftarrow (IR(\text{address}))$
 $MBR \leftarrow (PC)$
 $t_2: PC \leftarrow (IR(\text{address}))$
 $\quad \cdot \text{Memory} \leftarrow (MBR)$
 $t_3: PC \leftarrow (PC) + 1$

The address in the PC at the start of the instruction is the address of the next instruction in sequence. This is saved at the address designated in the IR. The latter address is also incremented to provide the address of the instruction for the next instruction cycle.

The Instruction Cycle

We have seen that each phase of the instruction cycle can be decomposed into a sequence of elementary micro-operations. In our example, there is one sequence each for the fetch, indirect, and interrupt cycles, and, for the execute cycle, there is one sequence of micro-operations for each opcode.

To complete the picture, we need to tie sequences of micro-operations together, and this is done in Figure 16.3. We assume a new 2-bit register called the *instruction cycle code* (ICC). The ICC designates the state of the processor in terms of which portion of the cycle it is in:

- 00: Fetch
- 01: Indirect
- 10: Execute
- 11: Interrupt

At the end of each of the four cycles, the ICC is set appropriately. The indirect cycle is always followed by the execute cycle. The interrupt cycle is always followed by the fetch cycle (see Figure 12.4). For both the fetch and execute cycles, the next cycle depends on the state of the system.

Thus, the flowchart of Figure 16.3 defines the complete sequence of micro-operations, depending only on the instruction sequence and the interrupt pattern. Of course, this is a simplified example. The flowchart for an actual processor would be more complex. In any case, we have reached the point in our discussion in which the operation of the processor is defined as the performance of a sequence of micro-operations. We can now consider how the control unit causes this sequence to occur.

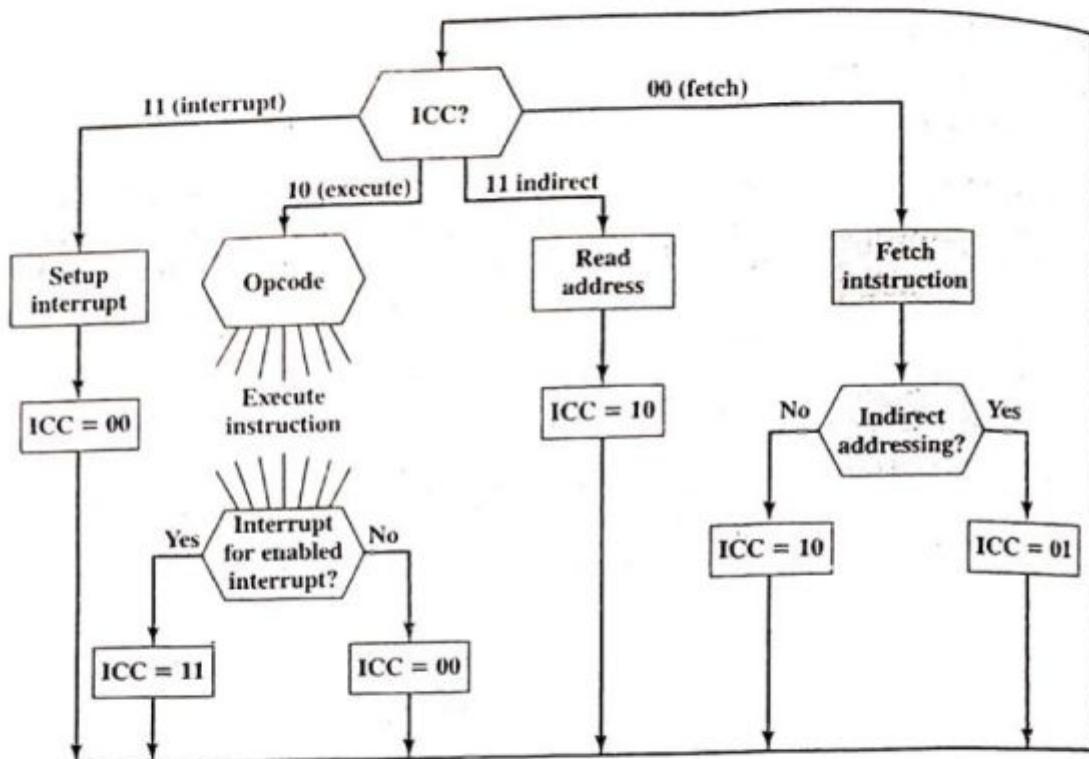


Figure 16.3 Flowchart for Instruction Cycle

6.2 CONTROL OF THE PROCESSOR

- Internal data paths
- External data paths
- Control unit

Some thought should convince you that this is a complete list. The ALU is the functional essence of the computer. Registers are used to store data internal to the processor. Some registers contain status information needed to manage instruction sequencing (e.g., a program status word). Others contain data that go to or come from the ALU, memory, and I/O modules. Internal data paths are used to move data between registers and between register and ALU. External data paths link registers to memory and I/O modules, often by means of a system bus. The control unit causes operations to happen within the processor.

The execution of a program consists of operations involving these processor elements. As we have seen, these operations consist of a sequence of micro-operations. Upon review of Section 16.1, the reader should see that all micro-operations fall into one of the following categories:

- Transfer data from one register to another.
- Transfer data from a register to an external interface (e.g., system bus).
- Transfer data from an external interface to a register.
- Perform an arithmetic or logic operation, using registers for input and output.

All of the micro-operations needed to perform one instruction cycle, including all of the micro-operations to execute every instruction in the instruction set, fall into one of these categories.

We can now be somewhat more explicit about the way in which the control unit functions. The control unit performs two basic tasks:

- **Sequencing:** The control unit causes the processor to step through a series of micro-operations in the proper sequence, based on the program being executed.
- **Execution:** The control unit causes each micro-operation to be performed.

The preceding is a functional description of what the control unit does. The key to how the control unit operates is the use of control signals.

Control Signals

We have defined the elements that make up the processor (ALU, registers, data paths) and the micro-operations that are performed. For the control unit to perform its function, it must have inputs that allow it to determine the state of the system and outputs that allow it to control the behavior of the system. These are the external specifications of the control unit. Internally, the control unit must have the logic required to perform its sequencing and execution functions. We defer a discussion of the internal operation of the control unit to Section 16.3 and Chapter 17. The remainder of this section is concerned with the interaction between the control unit and the other elements of the processor.

Figure 16.4 is a general model of the control unit, showing all of its inputs and outputs. The inputs are as follows:

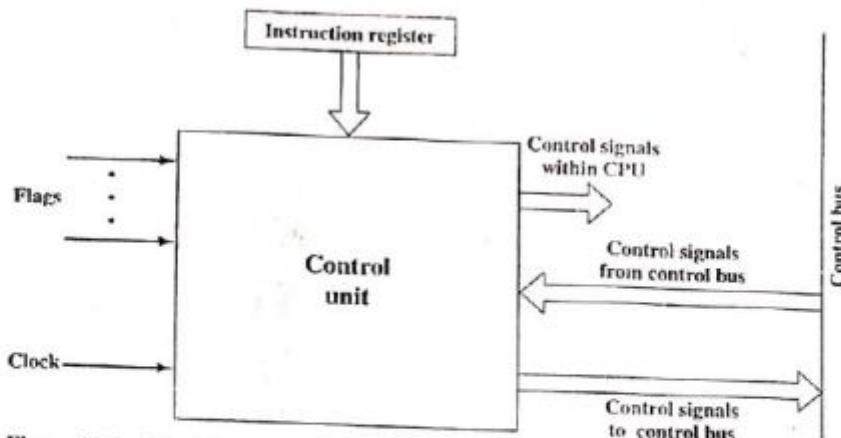


Figure 16.4 Block Diagram of the Control Unit

- **Clock:** This is how the control unit "keeps time." The control unit causes one micro-operation (or a set of simultaneous micro-operations) to be performed for each clock pulse. This is sometimes referred to as the processor cycle time, or the clock cycle time.
- **Instruction register:** The opcode of the current instruction is used to determine which micro-operations to perform during the execute cycle.
- **Flags:** These are needed by the control unit to determine the status of the processor and the outcome of previous ALU operations. For example, for the increment-and-skip-if-zero (ISZ) instruction, the control unit will increment the PC if the zero flag is set.
- **Control signals from control bus:** The control bus portion of the system bus provides signals to the control unit, such as interrupt signals and acknowledgments.

The outputs are

- **Control signals within the processor:** These are two types: those that cause data to be moved from one register to another, and those that activate specific ALU functions.
- **Control signals to control bus:** These are also of two types: control signals to memory, and control signals to the I/O modules.

The new element that has been introduced in this figure is the control signal. Three types of control signals are used: those that activate an ALU function, those that activate a data path, and those that are signals on the external system bus or other external interface. All of these signals are ultimately applied directly as binary inputs to individual logic gates.

Let us consider again the fetch cycle to see how the control unit maintains control. The control unit keeps track of where it is in the instruction cycle. At a given point, it knows that the fetch cycle is to be performed next. The first step is to transfer the contents of the PC to the MAR. The control unit does this by activating the control

signal that opens the gates between the bits of the PC and the bits of the MAR. The next step is to read a word from memory into the MBR and increment the PC. The control unit does this by sending the following control signals simultaneously:

- A control signal that opens gates, allowing the contents of the MAR onto the address bus
- A memory read control signal on the control bus
- A control signal that opens the gates, allowing the contents of the data bus to be stored in the MBR
- Control signals to logic that add 1 to the contents of the PC and store the result back to the PC

Following this, the control unit sends a control signal that opens gates between the MBR and the IR.

This completes the fetch cycle except for one thing: The control unit must decide whether to perform an indirect cycle or an execute cycle next. To decide this, it examines the IR to see if an indirect memory reference is made.

The indirect and interrupt cycles work similarly. For the execute cycle, the control unit begins by examining the opcode and, on the basis of that, decides which sequence of micro-operations to perform for the execute cycle.

A Control Signals Example

To illustrate the functioning of the control unit, let us examine a simple example. Figure 16.5 illustrates the example. This is a simple processor with a single accumulator. The data paths between elements are indicated. The control paths for signals

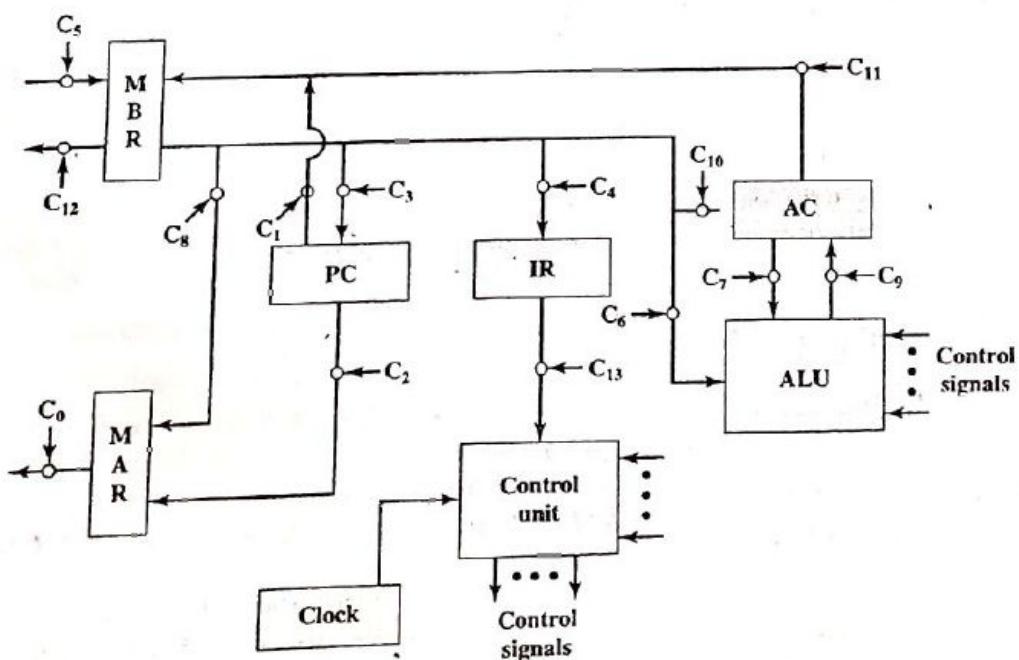


Figure 16.5 Data Paths and Control Signals

emanating from the control unit are not shown, but the terminations of control signals are labeled C, and indicated by a circle. The control unit receives inputs from the clock, the instruction register, and flags. With each clock cycle, the control unit reads all of its inputs and emits a set of control signals. Control signals go to three separate destinations:

- **Data paths:** The control unit controls the internal flow of data. For example, on instruction fetch, the contents of the memory buffer register are transferred to the instruction register. For each path to be controlled, there is a gate (indicated by a circle in the figure). A control signal from the control unit temporarily opens the gate to let data pass.
- **ALU:** The control unit controls the operation of the ALU by a set of control signals. These signals activate various logic devices and gates within the ALU.
- **System bus:** The control unit sends control signals out onto the control lines of the system bus (e.g., memory READ).

The control unit must maintain knowledge of where it is in the instruction cycle. Using this knowledge, and by reading all of its inputs, the control unit emits a sequence of control signals that causes micro-operations to occur. It uses the clock pulses to time the sequence of events, allowing time between events for signal levels to stabilize. Table 16.1 indicates the control signals that are needed for some of the micro-operation sequences described earlier. For simplicity, the data and control paths for incrementing the PC and for loading the fixed addresses into the PC and MAR are not shown.

It is worth pondering the minimal nature of the control unit. The control unit is the engine that runs the entire computer. It does this based only on knowing the instructions to be executed and the nature of the results of arithmetic and logical

Table 16.1 Micro-Operations and Control Signals

operations (e.g., positive, overflow, etc.). It never gets to see the data being processed or the actual results produced. And it controls everything with a few control signals to points within the processor and a few control signals to the system bus.

Internal Processor Organization

Figure 16.5 indicates the use of a variety of data paths. The complexity of this type of organization should be clear. More typically, some sort of internal bus arrangement, as was suggested in Figure 12.2, will be used.

Using an internal processor bus, Figure 16.5 can be rearranged as shown in Figure 16.6. A single internal bus connects the ALU and all processor registers.

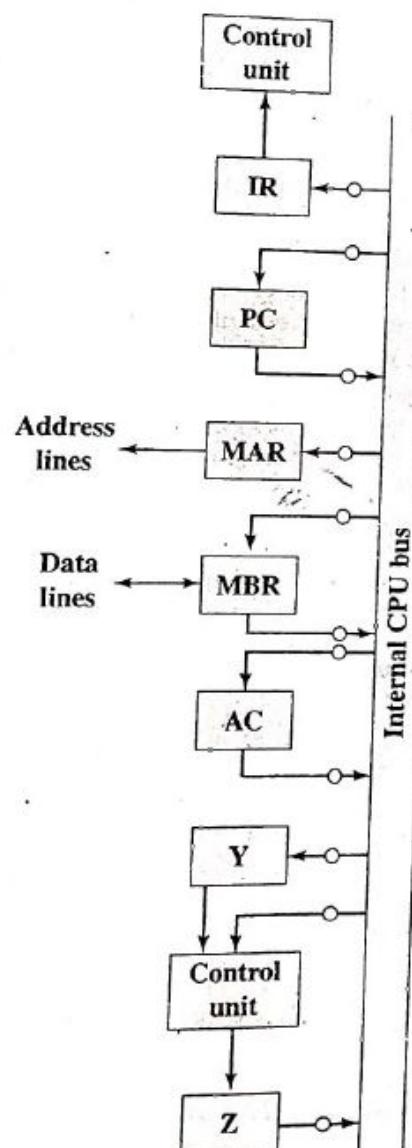


Figure 16.6 CPU with Internal Bus

Gates and control signals are provided for movement of data onto and off the bus from each register. Additional control signals control data transfer to and from the system (external) bus and the operation of the ALU.

Two new registers, labeled Y and Z, have been added to the organization. These are needed for the proper operation of the ALU. When an operation involving two operands is performed, one can be obtained from the internal bus, but the other must be obtained from another source. The AC could be used for this purpose, but this limits the flexibility of the system and would not work with a processor with multiple general-purpose registers. Register Y provides temporary storage for the other input. The ALU is a combinatorial circuit (see Appendix A) with no internal storage. Thus, when control signals activate an ALU function, the input to the ALU is transformed to the output. Thus, the output of the ALU cannot be directly connected to the bus, because this output would feed back to the input. Register Z provides temporary output storage. With this arrangement, an operation to add a value from memory to the AC would have the following steps:

```

 $t_1: MAR \leftarrow (IR(\text{address}))$ 
 $t_2: MBR \leftarrow \text{Memory}$ 
 $t_3: Y \leftarrow (MBR)$ 
 $t_4: Z \leftarrow (AC) + (Y)$ 
 $t_5: AC \leftarrow (Z)$ 

```

Other organizations are possible, but, in general, some sort of internal bus or busses is used. The use of common data paths simplifies the interconnection of the processor. Another practical reason for the use of busses which may occupy

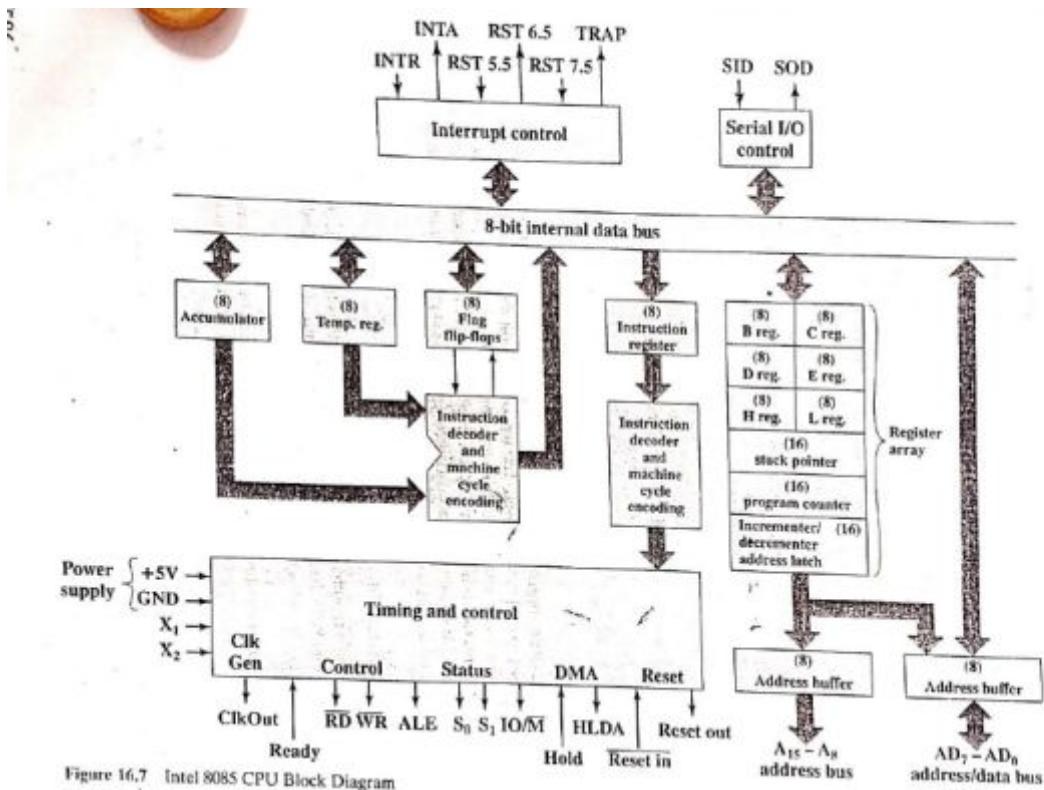


Figure 16.7 Intel 8085 CPU Block Diagram

Table 16.2 Intel 8085 External Signals

Address and Data Signals	
High Address (A15-A8)	The high-order 8 bits of a 16-bit address.
Address/Data (AD7-AD0)	The lower-order 8 bits of a 16-bit address or 8 bits of data. This multiplexing saves on pins.
Serial Input Data (SID)	A single-bit input to accommodate devices that transmit serially (one bit at a time).
Serial Output Data (SOD)	A single-bit output to accommodate devices that receive serially.
Timing and Control Signals	
CLK (OUT)	The system clock. Each cycle represents one T state. The CLK signal goes to peripheral chips and synchronizes their timing.
X1, X2	These signals come from an external crystal or other device to drive the internal clock generator.
Address Latch Enabled (ALE)	Occurs during the first clock state of a machine cycle and causes peripheral chips to store the address lines. This allows the address module (e.g., memory, I/O) to recognize that it is being addressed.
Status (S0, S1)	Control signals used to indicate whether a read or write operation is taking place.
IO/M	Used to enable either I/O or memory modules for read and write operations.
Read Control (RD)	Indicates that the selected memory or I/O module is to be read and that the data bus is available for data transfer.
Write Control (WR)	Indicates that data on the data bus is to be written into the selected memory or I/O location.
Memory and I/O Initiated Symbols	
Hold	Requests the CPU to relinquish control and use of the external system bus. The CPU will complete execution of the instruction presently in the IR and then enter a hold state, during which no signals are asserted by the CPU to the control, address, or data buses. During the hold state, the bus may be used for DMA operations.
Hold Acknowledge (HOLDA)	This control unit output signal acknowledges the HOLD signal and indicates that the bus is now available.
READY	Used to synchronize the CPU with slower memory or I/O devices. When an addressed device asserts READY, the CPU may proceed with an input (DBIN) or output (WR) operation. Otherwise, the CPU enters a wait state until the device is ready.

(Continued)

16.2 Continued

Interrupt-Related Signals

RAF
Restart Interrupts (RST 7.5, 6.5, 5.5)

Interrupt Request (INTR)

These five lines are used by an external device to interrupt the CPU. The CPU will not honor the request if it is in a hold state or if the interrupt is disabled. An interrupt is honored only at the completion of an instruction. Interrupts are in descending order of priority.

Interrupt Acknowledge

Acknowledges an interrupt.

CPU Initialization

SET IN

Causes the contents of the PC to be set to zero. The CPU resumes execution at location zero.

SET OUT

Acknowledges that the CPU has been reset. The signal can be used to reset the rest of the system.

Voltage and Ground

CC

15 volt power supply

SS

Electrical ground.

The control unit is identified as having two components labeled (1) instruction decoder and machine cycle encoding and (2) timing and control. A discussion of the first component is deferred until the next section. The essence of the control unit is the timing and control module. This module includes a clock and accepts as inputs the current instruction and some external control signals. Its output consists of control signals to the other components of the processor plus control signals to the external system bus.

The timing of processor operations is synchronized by the clock and controlled by the control unit with control signals. Each instruction cycle is divided into from one to five *machine cycles*; each machine cycle is in turn divided into from three to five *states*. Each state lasts one clock cycle. During a state, the processor performs one or a set of simultaneous micro-operations as determined by the control signals.

The number of machine cycles is fixed for a given instruction but varies from one instruction to another. Machine cycles are defined to be equivalent to bus accesses. Thus, the number of machine cycles for an instruction depends on the number of times the processor must communicate with external devices. For example, if an instruction consists of two 8-bit portions, then two machine cycles are required to fetch the instruction. If that instruction involves a 1-byte memory or I/O operation, then a third machine cycle is required for execution.

Figure 16.9 gives an example of 8085 timing, showing the value of external control signals. Of course, at the same time, the control unit generates internal

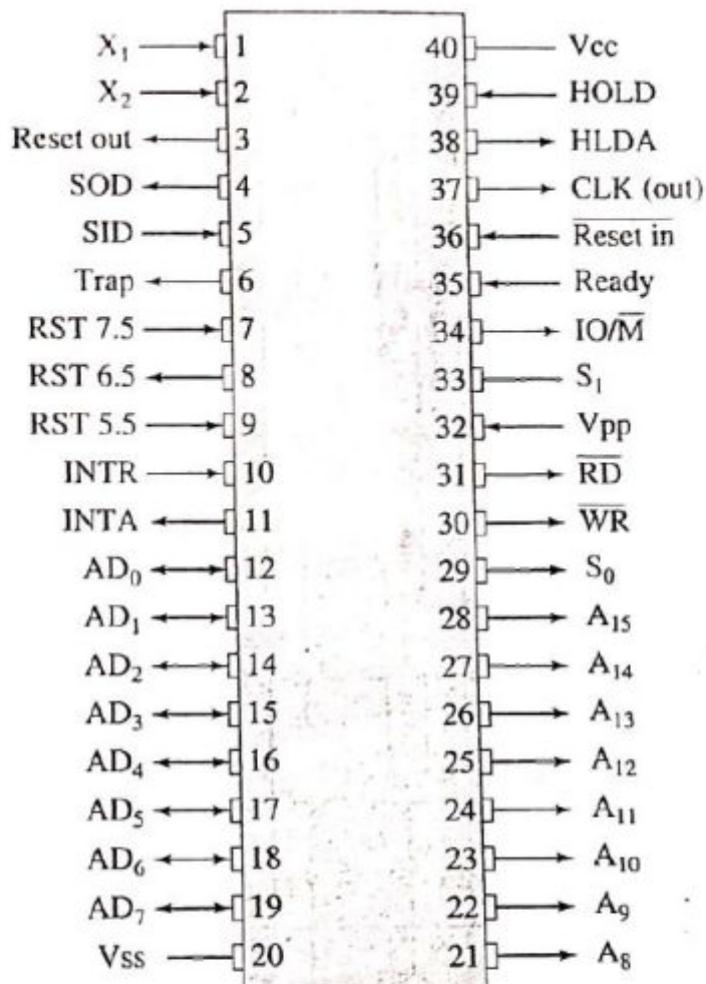


Figure 16.8 Intel 8085 Pin Configuration

control signals that control internal data transfers. The diagram shows the instruction cycle for an OUT instruction. Three machine cycles (M_1 , M_2 , M_3) are needed. During the first, the OUT instruction is fetched. The second machine cycle fetches the second half of the instruction, which contains the number of the I/O device selected for output. During the third cycle, the contents of the AC are written out to the selected device over the data bus.

The Address Latch Enabled (ALE) pulse signals the start of each machine cycle from the control unit. The ALE pulse alerts external circuits. During timing state T_1 of machine cycle M_1 , the control unit sets the IO/M signal to indicate that this is a memory operation. Also, the control unit causes the contents of the PC to be placed on the address bus (A_{15} through A_8) and the address/data bus (AD_7 through AD_0). With the falling edge of the ALE pulse, the other modules on the bus store the address.

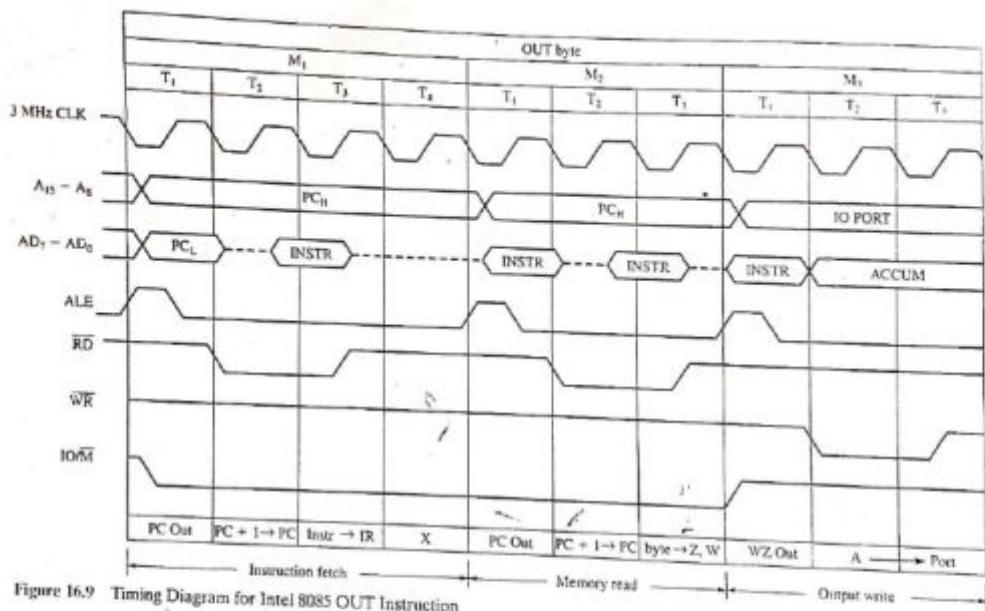


Figure 16.9 Timing Diagram for Intel 8085 OUT Instruction

We have discussed the control unit in terms of its inputs, output, and functions. We now turn to the topic of control unit implementation. A wide variety of techniques have been used. Most of these fall into one of two categories:

- Hardwired implementation
- Microprogrammed implementation

In a hardwired implementation, the control unit is essentially a combinatorial circuit. Its input logic signals are transformed into a set of output logic signals, which are the control signals. This approach is examined in this section. Microprogrammed implementation is the subject of Chapter 17.

Control Unit Inputs

Figure 16.4 depicts the control unit as we have so far discussed it. The key inputs are the instruction register, the clock, flags, and control bus signals. In the case of the flags and control bus signals, each individual bit typically has some meaning (e.g., overflow). The other two inputs, however, are not directly useful to the control unit.

First consider the instruction register. The control unit makes use of the opcode and will perform different actions (issue a different combination of control signals) for different instructions. To simplify the control unit logic, there should be a unique logic input for each opcode. This function can be performed by a *decoder*, which takes an encoded input and produces a single output. In general, a decoder will have n binary inputs and 2^n binary outputs. Each of the 2^n different input patterns will activate a single unique output. Table 16.3 is an example. The decoder for a control unit will typically have to be more complex than that, to account for variable-length opcodes. An example of the digital logic used to implement a decoder is presented in Appendix A.

The clock portion of the control unit issues a repetitive sequence of pulses. This is useful for measuring the duration of micro-operations. Essentially, the period of the clock pulses must be long enough to allow the propagation of signals along data paths and through processor circuitry. However, as we have seen, the control unit emits different control signals at different time units within a single instruction cycle. Thus, we would like a counter as input to the control unit, with a different control signal being used for T_1 , T_2 , and so forth. At the end of an instruction cycle, the control unit must feed back to the counter to reinitialize it at T_1 .

Unit - V Parallel Processing

As computer technology has evolved, and as the cost of computer hardware has dropped, computer designers have sought more and more opportunities for parallelism, usually to enhance performance and, in some cases, to increase availability. After an overview, this chapter looks at some of the most prominent approaches to parallel organization. First, we examine symmetric multiprocessors (SMPs), one of the earliest and still the most common example of parallel organization. In an SMP organization, multiple processors share a common memory. This organization raises the issue of cache coherence, to which a separate section is devoted. Then we describe clusters, which consist of multiple independent computers organized in a cooperative fashion. Next, the chapter examines multithreaded processors and chip multiprocessors. Clusters have become increasingly common to support workloads that are beyond the capacity of a single SMP. Another approach to the use of multiple processors that we examine is that of nonuniform memory access (NUMA) machines. The NUMA approach is relatively new and not yet proven in the marketplace, but is often considered as an alternative to the SMP or cluster approach. Finally, this chapter looks at hardware organizational approaches to vector computation. These approaches optimize the ALU for processing vectors or arrays of floating-point numbers. They are common on the class of systems known as *supercomputers*.

1. MULTIPLE PROCESSOR ORGANIZATIONS

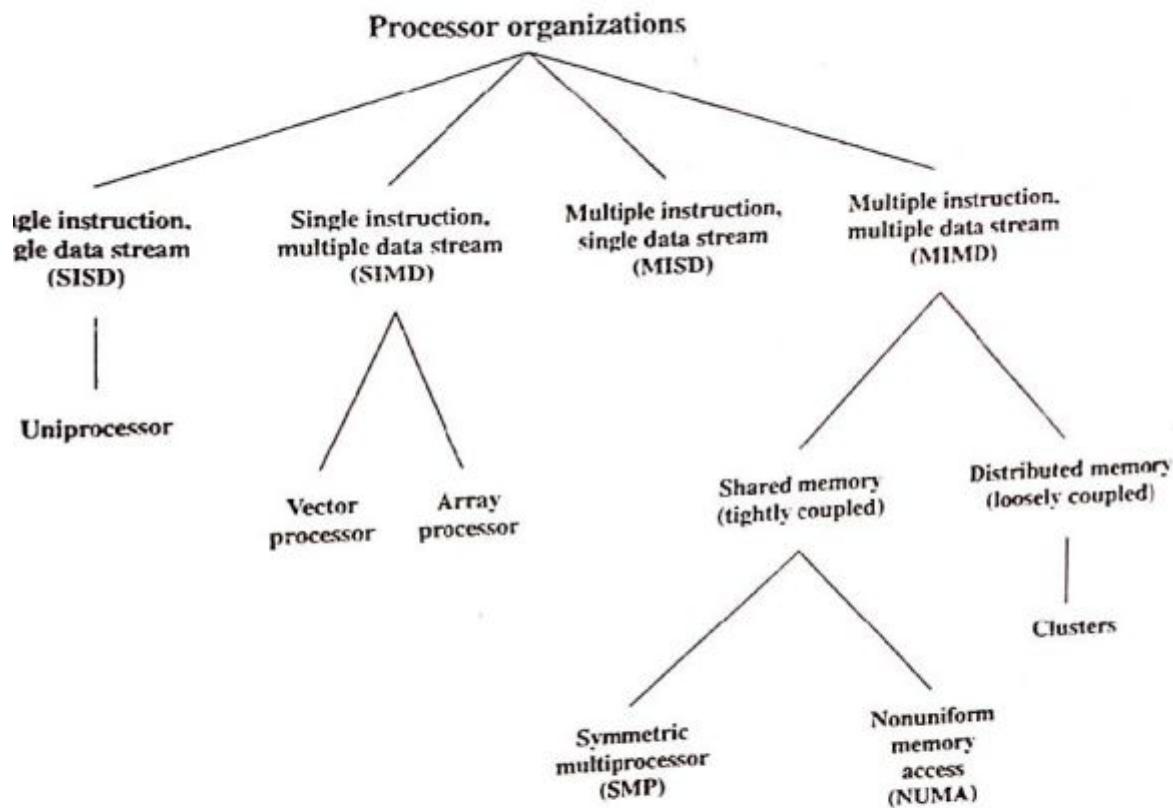
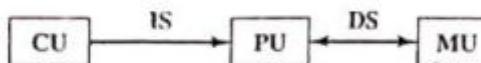
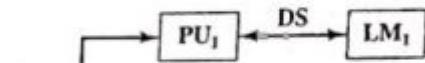
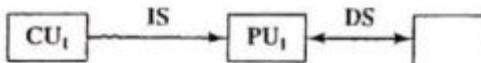
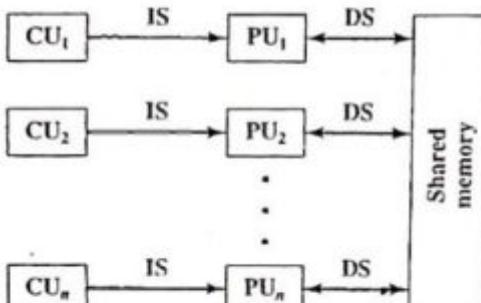
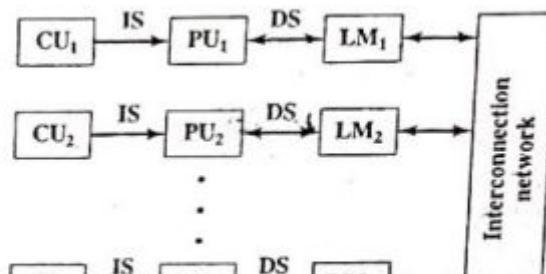





Figure 18.1 A Taxonomy of Parallel Processor Architectures


processor accesses programs and data stored in the shared memory, and the processor accesses programs and data stored in the local memory. The most common form


(a) SISD

(b) SIMD (with distributed memory)

(c) MIMD (with shared memory)

(d) MIMD (with distributed memory)

CU = Control unit	SISD = Single instruction, single data stream
IS = Instruction stream	SIMD = Single instruction, multiple data stream
PU = Processing unit	MIMD = Multiple instruction, multiple data stream
DS = Data stream	
MU = Memory unit	
LM = Local memory	

Figure 18.2 Alternative Computer Organizations

a shared memory. Finally, with the MIMD, there are multiple control units, each feeding a separate instruction stream to its own PU. The MIMD may be a shared-memory multiprocessor (Figure 18.2c) or a distributed-memory multicomputer (Figure 18.2d).

The design issues relating to SMPs, clusters, and NUMAs are complex, involving issues relating to physical organization, interconnection structures, interprocessor communication, operating system design, and application software techniques. Our concern here is primarily with organization, although we touch briefly on operating system design issues.

3. All processors share access to I/O devices, either through the same channels or through different channels that provide paths to the same device.
4. All processors can perform the same functions (hence the term *symmetric*).
5. The system is controlled by an integrated operating system that provides interaction between processors and their programs at the job, task, file, and data element levels.

Points 1 to 4 should be self-explanatory. Point 5 illustrates one of the contrasts with a loosely coupled multiprocessing system, such as a cluster. In the latter, the physical unit of interaction is usually a message or complete file. In an SMP, individual data elements can constitute the level of interaction, and there can be a high degree of cooperation between processes.

The operating system of an SMP schedules processes or threads across all of the processors. An SMP organization has a number of potential advantages over a uniprocessor organization, including the following:

- **Performance:** If the work to be done by a computer can be organized so that some portions of the work can be done in parallel, then a system with multiple processors will yield greater performance than one with a single processor of the same type (Figure 18.3).

- **Availability:** In a symmetric multiprocessor, because all processors can perform the same functions, the failure of a single processor does not halt the machine. Instead, the system can continue to function at reduced performance.
- **Incremental growth:** A user can enhance the performance of a system by adding an additional processor.
- **Scaling:** Vendors can offer a range of products with different price and performance characteristics based on the number of processors configured in the system.

It is important to note that these are potential, rather than guaranteed, benefits. The operating system must provide tools and functions to exploit the parallelism in an SMP system.

An attractive feature of an SMP is that the existence of multiple processors is transparent to the user. The operating system takes care of scheduling of threads or processes on individual processors and of synchronization among processors.

Organization

Figure 18.4 depicts in general terms the organization of a multiprocessor system. There are two or more processors. Each processor is self-contained, including a control unit, ALU, registers, and, typically, one or more levels of cache. Each processor

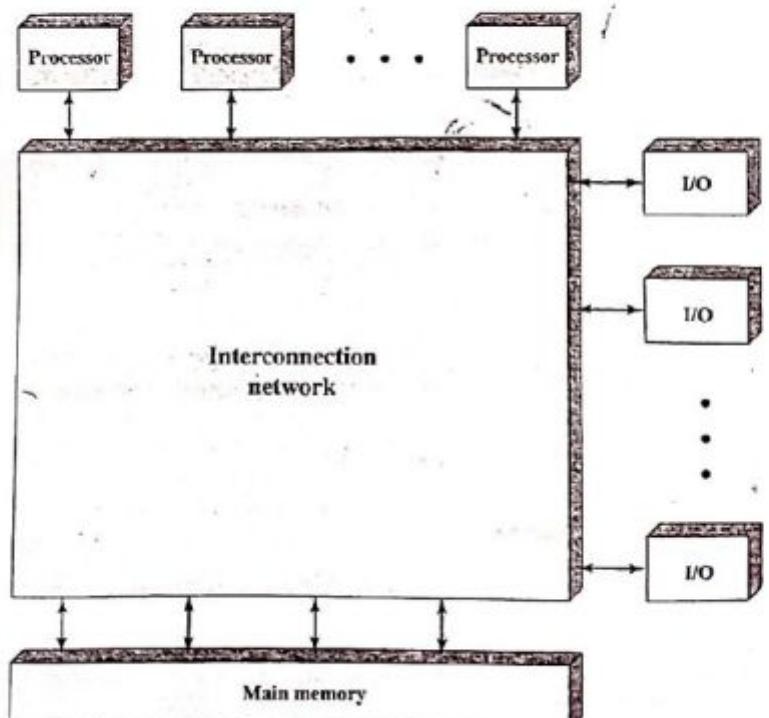
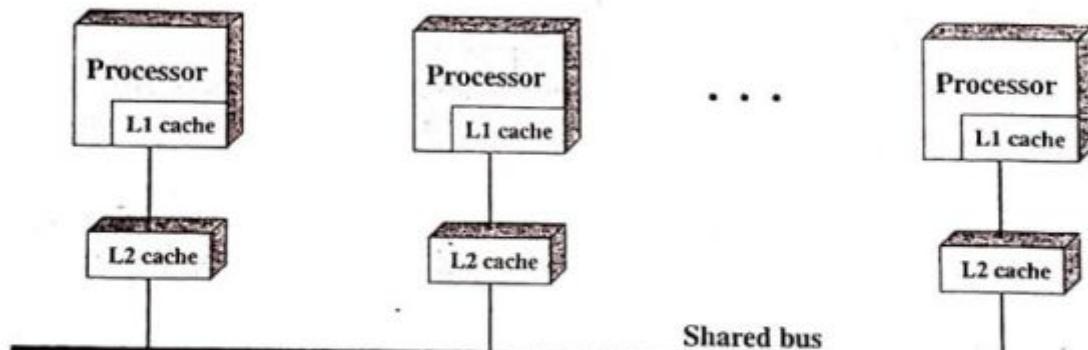



Figure 18.4 Generic Block Diagram of a Tightly Coupled Multiprocessor

has access to a shared main memory and the I/O devices through some form of interconnection mechanism. The processors can communicate with each other through memory (messages and status information left in common data areas). It may also be possible for processors to exchange signals directly. The memory is often organized so that multiple simultaneous accesses to separate blocks of memory are possible. In some configurations, each processor may also have its own private main memory and I/O channels in addition to the shared resources.

The most common organization for personal computers, workstations, and servers is the time-shared bus. The time-shared bus is the simplest mechanism for constructing a multiprocessor system (Figure 18.5). The structure and interfaces are basically the same as for a single-processor system that uses a bus interconnection. The bus consists of control, address, and data lines. To facilitate DMA transfers from I/O processors, the following features are provided:

- **Addressing:** It must be possible to distinguish modules on the bus to determine the source and destination of data.
- **Arbitration:** Any I/O module can temporarily function as "master." A mechanism is provided to arbitrate competing requests for bus control, using some sort of priority scheme.

- **Time sharing:** When one module is controlling the bus, other modules are locked out and must, if necessary, suspend operation until bus access is achieved.

These uniprocessor features are directly usable in an SMP organization. In this latter case, there are now multiple processors as well as multiple I/O processors all attempting to gain access to one or more memory modules via the bus.

The bus organization has several attractive features:

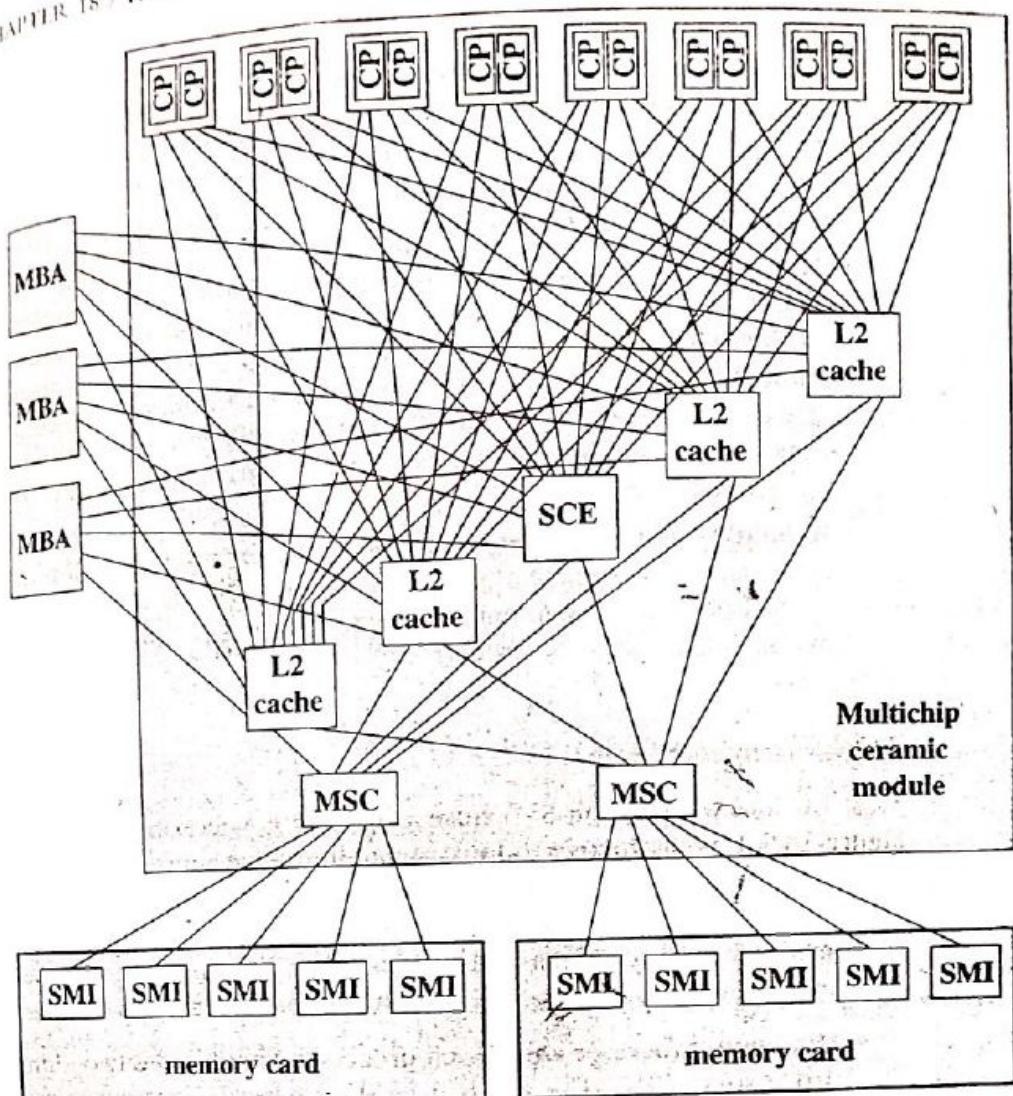
- **Simplicity:** This is the simplest approach to multiprocessor organization. The physical interface and the addressing, arbitration, and time-sharing logic of each processor remain the same as in a single-processor system.
- **Flexibility:** It is generally easy to expand the system by attaching more processors to the bus.
- **Reliability:** The bus is essentially a passive medium, and the failure of any attached device should not cause failure of the whole system.

The main drawback to the bus organization is performance. All memory references pass through the common bus. Thus, the bus cycle time limits the speed of the system. To improve performance, it is desirable to equip each processor with a cache memory. This should reduce the number of bus accesses dramatically. Typically, workstation and PC SMPs have two levels of cache, with the L1 cache internal (same chip as the processor) and the L2 cache either internal or external. Some processors now employ a L3 cache as well.

The use of caches introduces some new design considerations. Because each local cache contains an image of a portion of memory, if a word is altered in one cache, it could conceivably invalidate a word in another cache. To prevent this, the other processors must be alerted that an update has taken place. This problem is known as the *cache coherence* problem and is typically addressed in hardware rather than by the operating system. We address this issue in Section 18.4.

Multiprocessor Operating System Design Considerations

An SMP operating system manages processor and other computer resources so that the user perceives a single operating system controlling system resources. In fact, such a configuration should appear as a single-processor multiprogramming system. In both the SMP and uniprocessor cases, multiple jobs or processes may be active at one time, and it is the responsibility of the operating system to schedule their execution and to allocate resources. A user may construct applications that use multiple processes or multiple threads within processes without regard to whether a single processor or multiple processors will be available. Thus a multiprocessor operating system must provide all the functionality of a multiprogramming system plus additional features to accommodate multiple processors. Among the key design issues are the following:


- **Simultaneous concurrent processes:** OS routines need to be reentrant to allow several processors to execute the same IS code simultaneously. With multiple processors executing the same or different parts of the OS, OS tables and management structures must be managed properly to avoid deadlock or invalid operations.

- **Scheduling:** Any processor may perform scheduling, so conflicts must be avoided. The scheduler must assign ready processes to available processors.
- **Synchronization:** With multiple active processes having potential access to shared address spaces or shared I/O resources, care must be taken to provide effective synchronization. Synchronization is a facility that enforces mutual exclusion and event ordering.
- **Memory management:** Memory management on a multiprocessor must deal with all of the issues found on uniprocessor machines, as is discussed in Chapter 8. In addition, the operating system needs to exploit the available hardware parallelism, such as multiported memories, to achieve the best performance. The paging mechanisms on different processors must be coordinated to enforce consistency when several processors share a page or segment and to decide on page replacement.
- **Reliability and fault tolerance:** The operating system should provide graceful degradation in the face of processor failure. The scheduler and other portions of the operating system must recognize the loss of a processor and restructure management tables accordingly.

A Mainframe SMP

Most PC and workstation SMPs use a bus interconnection strategy as depicted in Figure 18.5. It is instructive to look at an alternative approach, which is used for a recent implementation of the IBM zSeries mainframe family [SIEG04, MAK04], called the z990. This family of systems spans a range from a uniprocessor with one main memory card to a high-end system with 48 processors and 8 memory cards. The key components of the configuration are shown in Figure 18.6:

- **Dual-core processor chip:** Each processor chip includes two identical central processors (CPs). The CP is a CISC superscalar microprocessor, in which most of the instructions are hardwired and the rest are executed by vertical microcode. Each CP includes a 256-KB L1 instruction cache and a 256-KB L1 data cache.
- **L2 cache:** Each L2 cache contains 32 MB. The L2 caches are arranged in clusters of five, with each cluster supporting eight processor chips and providing access to the entire main memory space.
- **System control element (SCE):** The SCE arbitrates system communication, and has a central role in maintaining cache coherence.
- **Main store control (MSC):** The MSCs interconnect the L2 caches and the main memory.
- **Memory card:** Each card holds 32 GB of memory. The maximum configurable memory consists of 8 memory cards for a total of 256 GB. Memory cards interconnect to the MSC via synchronous memory interfaces (SMIs).
- **Memory bus adapter (MBA):** The MBA provides an interface to various types of I/O channels. Traffic to/from the channels goes directly to the L2 cache.

CP = central processor

MBA = memory bus adapter

MSC = main store control

SCE = system control element

SMI = synchronous memory interface

Figure 18.6 IBM z990 Multiprocessor Structure

The microprocessor in the z990 is relatively uncommon compared with other modern processors because, although it is superscalar, it executes instructions in strict architectural order. However, it makes up for this by having a shorter pipeline and much larger caches and TLBs compared with other processors, along with other performance-enhancing features.

The z990 system comprises one to four **books**. Each book is a pluggable unit containing up to 12 processors with up to 64 GB of memory, I/O adapters, and a system control element (SCE) that connects these other elements. The SCE within

each book contains a 32-MB L2 cache, which serves as the central coherency point for that particular book. Both the L2 cache and the main memory are accessible by a processor or I/O adapter within that book or any of the other three books in the system. The SCE and L2 cache chips also connect with corresponding elements on the other books in a ring configuration.

There are a several interesting features in the z990 SMP configuration, which we discuss in turn:

- Switched interconnection
- Shared L2 caches

Switched Interconnection A single shared bus is a common arrangement on SMPs for PCs and workstations (Figure 18.5). With this arrangement, the single bus becomes a bottleneck affecting the scalability (ability to scale to larger sizes) of the design. The z990 copes with this problem in two ways. First, main memory is split into multiple cards, each with its own storage controller that can handle memory accesses at high speeds. The average traffic load to main memory is cut, because of the independent paths to separate parts of memory. Each book includes two memory cards, for a total of eight cards across a maximum configuration. Second, the connection from processors (actually from L2 caches) to a single memory card is not in the form of a shared bus but rather point-to-point links. Each processor chip has a link to each of the L2 caches on the same book, and each L2 cache has a link, via the MSC, to each of the two memory cards on the same book.

Each L2 cache only connects to the two memory cards on the same book. The system controller provides links (not shown) to the other books in the configuration, so that all of main memory is accessible by all of the processors.

Point-to-point links rather than a bus also provides connections to I/O channels. Each L2 cache on a book connects to each of the MBAs for that book. The MBAs, in turn, connect to the I/O channels.

Shared L2 Caches In a typical two-level cache scheme for an SMP, each processor has a dedicated L1 cache and a dedicated L2 cache. In recent years, interest in the concept of a shared L2 cache has been growing. In an earlier version of its mainframe SMP, known as generation 3 (G3), IBM made use of dedicated L2 caches. In its later versions (G4, G5, and z900 series), a shared L2 cache is used. Two considerations dictated this change:

1. In moving from G3 to G4, IBM doubled the speed of the microprocessors. If the G3 organization were retained, a significant increase in bus traffic would occur. At the same time, it was desired to reuse as many G3 components as possible. Without a significant bus upgrade, the BSNs would become a bottleneck.
2. Analysis of typical mainframe workloads revealed a large degree of sharing of instructions and data among processors.

These considerations led the G4 design team to consider the use of one or more L2 caches, each of which was shared by multiple processors (each processor having a dedicated on-chip L1 cache). At first glance, sharing an L2 cache might

18.3 CACHE COHERENCE AND THE MESI PROTOCOL

In contemporary multiprocessor systems, it is customary to have one or two levels of cache associated with each processor. This organization is essential to achieve reasonable performance. It does, however, create a problem known as the *cache coherence* problem. The essence of the problem is this: Multiple copies of the same data can exist in different caches simultaneously, and if processors are allowed to update their own copies freely, an inconsistent view of memory can result. In Chapter 4 we defined two common write policies:

- **Write back:** Write operations are usually made only to the cache. Main memory is only updated when the corresponding cache line is flushed from the cache.
- **Write through:** All write operations are made to main memory as well as to the cache, ensuring that main memory is always valid.

It is clear that a write-back policy can result in inconsistency. If two caches contain the same line, and the line is updated in one cache, the other cache will unknowingly have an invalid value. Subsequent reads to that invalid line produce invalid results. Even with the write-through policy, inconsistency can occur unless other caches monitor the memory traffic or receive some direct notification of the update.

In this section, we will briefly survey various approaches to the cache coherence problem and then focus on the approach that is most widely used: the MESI (modified/exclusive/shared/invalid) protocol. A version of this protocol is used on both the Pentium 4 and PowerPC implementations.

For any cache coherence protocol, the objective is to let recently used local variables get into the appropriate cache and stay there through numerous reads and write, while using the protocol to maintain consistency of shared variables that might be in multiple caches at the same time. Cache coherence approaches have generally been divided into software and hardware approaches. Some implementations adopt a strategy that involves both software and hardware elements. Nevertheless, the classification into software and hardware approaches is still instructive and is commonly used in surveying cache coherence strategies.

Software Solutions

Software cache coherence schemes attempt to avoid the need for additional hardware circuitry and logic by relying on the compiler and operating system to deal with the problem. Software approaches are attractive because the overhead of detecting potential problems is transferred from run time to compile time, and the design complexity is transferred from hardware to software. On the other hand,

compile-time software approaches generally must make conservative decisions, leading to inefficient cache utilization.

Compiler-based coherence mechanisms perform an analysis on the code to determine which data items may become unsafe for caching, and they mark those items accordingly. The operating system or hardware then prevents noncacheable items from being cached.

The simplest approach is to prevent any shared data variables from being cached. This is too conservative, because a shared data structure may be exclusively used during some periods and may be effectively read-only during other periods. It is only during periods when at least one process may update the variable and at least one other process may access the variable that cache coherence is an issue.

More efficient approaches analyze the code to determine safe periods for shared variables. The compiler then inserts instructions into the generated code to enforce cache coherence during the critical periods. A number of techniques have been developed for performing the analysis and for enforcing the results; see [LILJ93] and [STEN90] for surveys.

Hardware Solutions

Hardware-based solutions are generally referred to as cache coherence protocols. These solutions provide dynamic recognition at run time of potential inconsistency conditions. Because the problem is only dealt with when it actually arises, there is more effective use of caches, leading to improved performance over a software approach. In addition, these approaches are transparent to the programmer and the compiler, reducing the software development burden.

Hardware schemes differ in a number of particulars, including where the state information about data lines is held, how that information is organized, where coherence is enforced, and the enforcement mechanisms. In general, hardware schemes can be divided into two categories: directory protocols and snoopy protocols.

Directory Protocols Directory protocols collect and maintain information about where copies of lines reside. Typically, there is a centralized controller that is part of the main memory controller, and a directory that is stored in main memory. The directory contains global state information about the contents of the various local caches. When an individual cache controller makes a request, the centralized controller checks and issues necessary commands for data transfer between memory and caches or between caches. It is also responsible for keeping the state information up to date; therefore, every local action that can affect the global state of a line must be reported to the central controller.

Typically, the controller maintains information about which processors have a copy of which lines. Before a processor can write to a local copy of a line, it must request exclusive access to the line from the controller. Before granting this exclusive access, the controller sends a message to all processors with a cached copy of this line, forcing each processor to invalidate its copy. After receiving acknowledgments back from each such processor, the controller grants exclusive access to the requesting processor. When another processor tries to read a line that is exclusively granted to another processor, it will send a miss notification to the controller. The controller then issues a command to the processor holding that line that requires the

The most important measure of performance for a processor is the rate at which it executes instructions. This can be expressed as

$$\text{MIPS rate} = f \times \text{IPC}$$

where f is the processor clock frequency, in MHz, and IPC (instructions per cycle) is the average number of instructions executed per cycle. Accordingly, designers have pursued the goal of increased performance on two fronts: increasing clock frequency and increasing the number of instructions executed or, more properly, the number of instructions that complete during a processor cycle. As we have seen in earlier chapters, designers have increased IPC by using an instruction pipeline and then by using multiple parallel instruction pipelines in a superscalar architecture. With pipelined and multiple-pipeline designs, the principal problem is to maximize the utilization of each pipeline stage. To improve throughput, designers have created ever more complex mechanisms, such as executing some instructions in a different order from the way they occur in the instruction stream and beginning execution of instructions that may never be needed. But as was discussed in Section 2.2, this approach may be reaching a limit due to complexity and power consumption concerns.

An alternative approach, which allows for a high degree of instruction-level parallelism without increasing circuit complexity or power consumption, is called multithreading. In essence, the instruction stream is divided into several smaller streams, known as threads, such that the threads can be executed in parallel.

The variety of specific multithreading designs, realized in both commercial systems and experimental systems, is vast. In this section, we give a brief survey of the major concepts.

Implicit and Explicit Multithreading

The concept of thread used in discussing multithreaded processors may or may not be the same as the concept of software threads in a multiprogrammed operating system. It will be useful to briefly define terms:

- **Process:** An instance of a program running on a computer. A process embodies two key characteristics:

—**Resource ownership:** A process includes a virtual address space to hold the process image; the process image is the collection of program, data, stack, and attributes that define the process. From time to time, a process may be allocated control or ownership of resources, such as main memory, I/O channels, I/O devices, and files.

—**Scheduling/execution:** The execution of a process follows an execution path (trace) through one or more programs. This execution may be interleaved with that of other processes. Thus, a process has an execution state (Running, Ready, etc.) and a dispatching priority and is the entity that is scheduled and dispatched by the operating system.

- **Process switch:** An operation that switches the processor from one process to another, by saving all the process control data, registers, and other information for the first and replacing them with the process information for the second.²
- **Thread:** A dispatchable unit of work within a process. It includes a processor context (which includes the program counter and stack pointer) and its own data area for a stack (to enable subroutine branching). A thread executes sequentially and is interruptible so that the processor can turn to another thread.
- **Thread switch:** The act of switching processor control from one thread to another within the same process. Typically, this type of switch is much less costly than a process switch.

Thus, a thread is concerned with scheduling and execution, whereas a process is concerned with both scheduling/execution and resource ownership. The multiple threads within a process share the same resources. This is why a thread switch is much less time consuming than a process switch. Traditional operating systems, such as earlier versions of Unix, did not support threads. Most modern operating systems, such as Linux, other versions of Unix, and Windows, do support threads. A distinction is made between user-level threads, which are visible to the application program, and kernel-level threads, which are visible only to the operating system. Both of these may be referred to as explicit threads, defined in software.

All of the commercial processors and most of the experimental processors so far have used explicit multithreading. These systems concurrently execute instructions from different explicit threads, either by interleaving instructions from different threads on shared pipelines or by parallel execution on parallel pipelines. Implicit multithreading refers to the concurrent execution of multiple threads extracted from a single sequential program. These implicit threads may be defined either statically by the compiler or dynamically by the hardware. In the remainder of this section we consider explicit multithreading.

Approaches to Explicit Multithreading

At minimum, a multithreaded processor must provide a separate program counter for each thread of execution to be executed concurrently. The designs differ in the

²The term *context switch* is often found in OS literature and textbooks. Unfortunately, although most of the literature uses this term to mean what is here called a process switch, other sources use it to mean a thread switch. To avoid ambiguity, the term is not used in this book.

amount and type of additional hardware used to support concurrent thread execution. In general, instruction fetching takes place on a thread basis. The processor treats each thread separately and may use a number of techniques for optimizing single-thread execution, including branch prediction, register renaming, and superscalar techniques. What is achieved is thread-level parallelism, which may provide for greatly improved performance when married to instruction-level parallelism.

Broadly speaking, there are four principal approaches to multithreading:

- **Interleaved multithreading:** This is also known as **fine-grained multithreading**. The processor deals with two or more thread contexts at a time, switching from one thread to another at each clock cycle. If a thread is blocked because of data dependencies or memory latencies, that thread is skipped and a ready thread is executed.
- **Blocked multithreading:** This is also known as **coarse-grained multithreading**. The instructions of a thread are executed successively until an event occurs that may cause delay, such as a cache miss. This event induces a switch to another thread. This approach is effective on an in-order processor that would stall the pipeline for a delay event such as a cache miss.
- **Simultaneous multithreading (SMT):** Instructions are simultaneously issued from multiple threads to the execution units of a superscalar processor. This combines the wide superscalar instruction issue capability with the use of multiple thread contexts.
- **Chip multiprocessing:** In this case, the entire processor is replicated on a single chip and each processor handles separate threads. The advantage of this approach is that the available logic area on a chip is used effectively without depending on ever-increasing complexity in pipeline design.

For the first two approaches, instructions from different threads are not executed simultaneously. Instead, the processor is able to rapidly switch from one thread to another, using a different set of registers and other context information. This results in a better utilization of the processor's execution resources and avoids a large penalty due to cache misses and other latency events. The SMT approach involves true simultaneous execution of instructions from different threads, using replicated execution resources. Chip multiprocessing also enables simultaneous execution of instructions from different threads.

Figure 18.8, based on one in [UNGE02], illustrates some of the possible pipeline architectures that involve multithreading and contrasts these with approaches that do not use multithreading. Each horizontal row represents the potential issue slot or slots for a single execution cycle; that is, the width of each row corresponds to the maximum number of instructions that can be issued in a single clock cycle.³ The vertical dimension represents the time sequence of clock cycles. An empty (shaded) slot represents an unused execution slot in one pipeline. A no-op is indicated by N.

³Issue slots are the position from which instructions can be issued in a given clock cycle. Recall from Chapter 14 that instruction issue is the process of initiating instruction execution in the processor's functional units. This occurs when an instruction moves from the decode stage of the pipeline to the first execute stage of the pipeline.

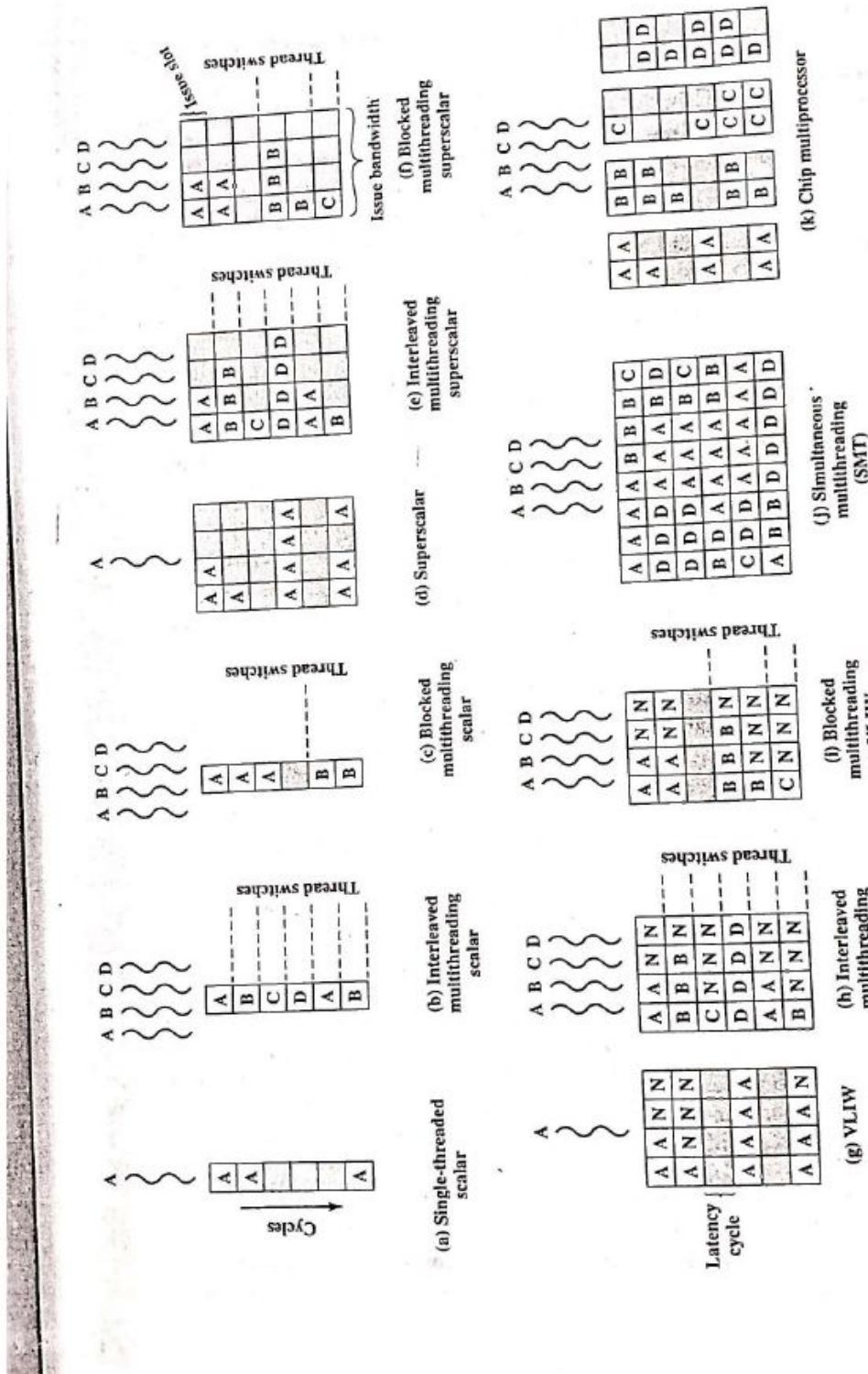


Figure 18.8 Approaches to Executing Multiple Threads

The first three illustrations in Figure 18.8 show different approaches with a scalar (i.e., single-issue) processor:

- **Single-threaded scalar:** This is the simple pipeline found in traditional RISC and CISC machines, with no multithreading.
- **Interleaved multithreaded scalar:** This is the easiest multithreading approach to implement. By switching from one thread to another at each clock cycle, the pipeline stages can be kept fully occupied, or close to fully occupied. The hardware must be capable of switching from one thread context to another between cycles.
- **Blocked multithreaded scalar:** In this case, a single thread is executed until a latency event occurs that would stop the pipeline, at which time the processor switches to another thread.

Figure 18.8c shows a situation in which the time to perform a thread switch is one cycle, whereas Figure 18.8b shows that thread switching occurs in zero cycles. In the case of interleaved multithreading, it is assumed that there are no control or data dependencies between threads, which simplifies the pipeline design and therefore should allow a thread switch with no delay. However, depending on the specific design and implementation, block multithreading may require a clock cycle to perform a thread switch, as illustrated in Figure 18.8. This is true if a fetched instruction triggers the thread switch and must be discarded from the pipeline [UNGE03].

Although interleaved multithreading appears to offer better processor utilization than blocked multithreading, it does so at the sacrifice of single-thread performance. The multiple threads compete for cache resources, which raises the probability of a cache miss for a given thread.

More opportunities for parallel execution are available if the processor can issue multiple instructions per cycle. Figures 18.8d through 18.8i illustrate a number of variations among processors that have hardware for issuing four instructions per cycle. In all these cases, only instructions from a single thread are issued in a single cycle. The following alternatives are illustrated:

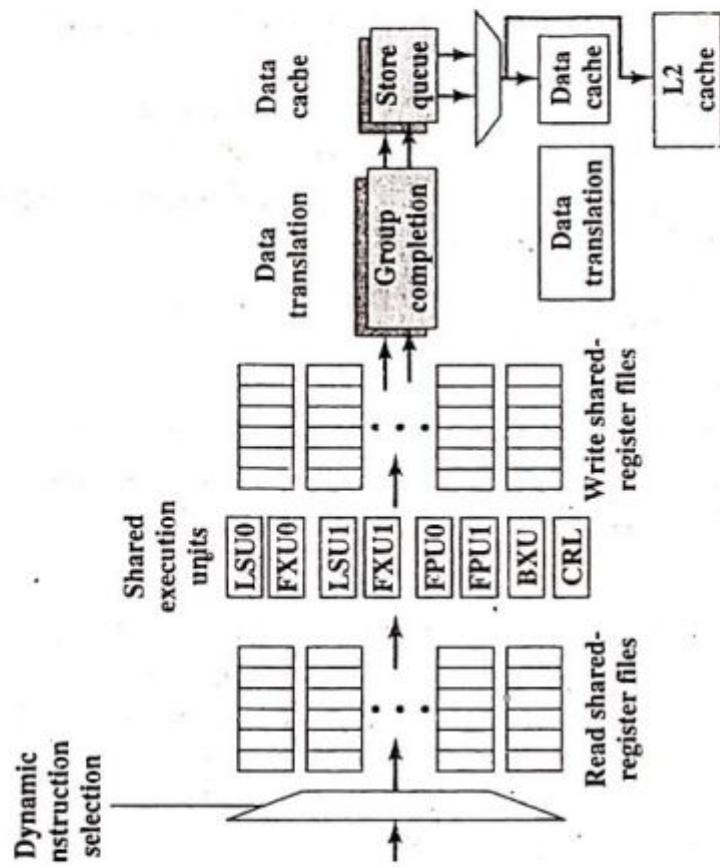
- **Superscalar:** This is the basic superscalar approach with no multithreading. Until relatively recently, this was the most powerful approach to providing parallelism within a processor. Note that during some cycles, not all of the available issue slots are used. During these cycles, less than the maximum number of instructions is issued; this is referred to as *horizontal loss*. During other instruction cycles, no issue slots are used; these are cycles when no instructions can be issued; this is referred to as *vertical loss*.
- **Interleaved multithreading superscalar:** During each cycle, as many instructions as possible are issued from a single thread. With this technique, potential delays due to thread switches are eliminated, as previously discussed. However, the number of instructions issued in any given cycle is still limited by dependencies that exist within any given thread.
- **Blocked multithreaded superscalar:** Again, instructions from only one thread may be issued during any cycle, and blocked multithreading is used.
- **Very long instruction word (VLIW):** A VLIW architecture, such as IA-64, places multiple instructions in a single word. Typically, a VLIW is constructed by the

compiler, which places operations that may be executed in parallel in the same word. In a simple VLIW machine (Figure 18.8g), if it is not possible to completely fill the word with instructions to be issued in parallel, no-ops are used.

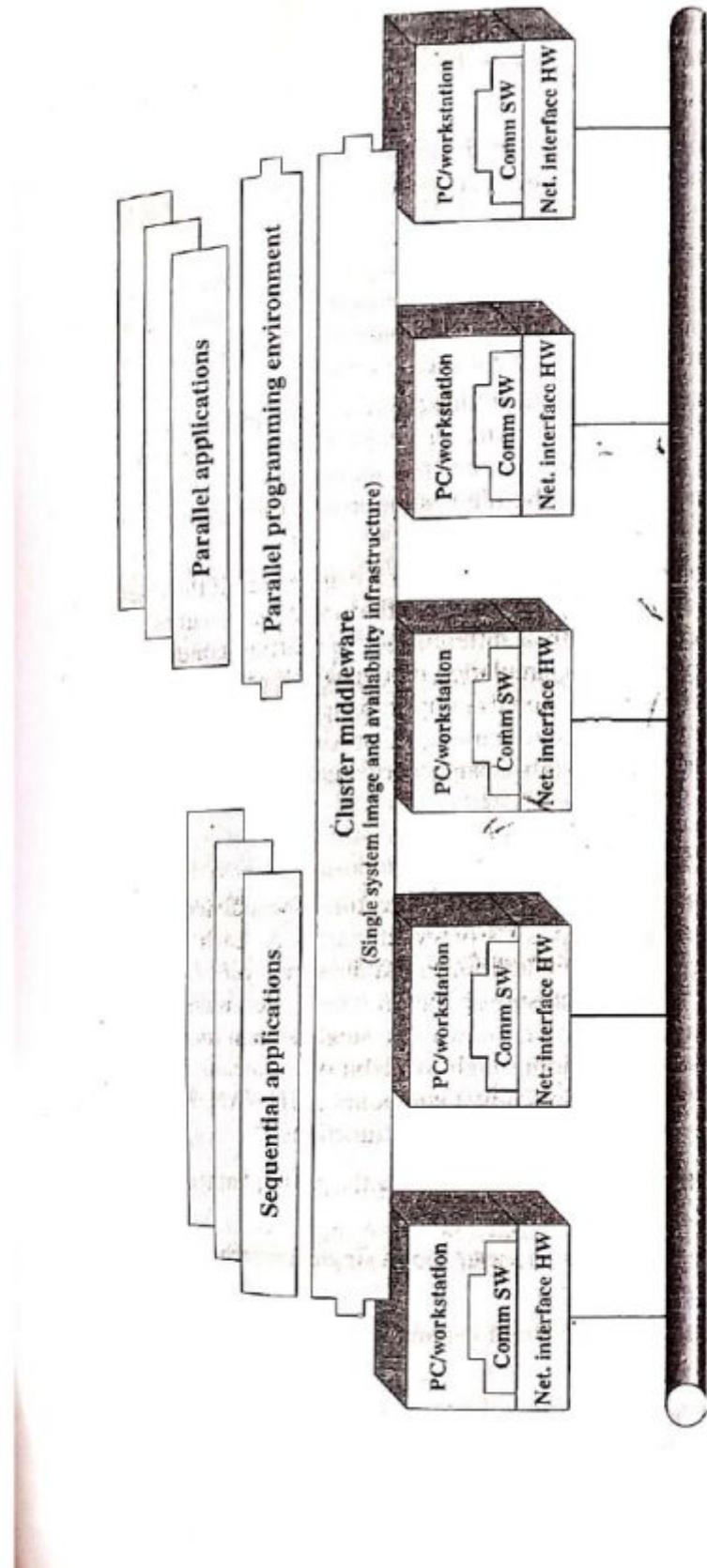
- **Interleaved multithreading VLIW:** This approach should provide similar efficiencies to those provided by interleaved multithreading on a superscalar architecture.
- **Blocked multithreaded VLIW:** This approach should provide similar efficiencies to those provided by blocked multithreading on a superscalar architecture.

The final two approaches illustrated in Figure 18.8 enable the parallel, simultaneous execution of multiple threads:

- **Simultaneous multithreading:** Figure 18.8i shows a system capable of issuing 8 instructions at a time. If one thread has a high degree of instruction-level parallelism, it may on some cycles be able to fill all of the horizontal slots. On other cycles, instructions from two or more threads may be issued. If sufficient threads are active, it should usually be possible to issue the maximum number of instructions on each cycle, providing a high level of efficiency.
- **Chip multiprocessor:** Figure 18.8k shows a chip containing four processors, each of which has a two-issue superscalar processor. Each processor is assigned a thread, from which it can issue up to two instructions per cycle.


Comparing Figures 18.8j and 18.8k, we see that a chip multiprocessor with the same instruction issue capability as an SMT cannot achieve the same degree of instruction-level parallelism. This is because the chip multiprocessor is not able to hide latencies by issuing instructions from other threads. On the other hand, the chip multiprocessor should outperform a superscalar processor with the same instruction issue capability, because the horizontal losses will be greater for the superscalar processor. In addition, it is possible to use multithreading within each of the processors on a chip multiprocessor, and this is done on some contemporary machines.

Example Systems


Pentium 4 More recent models of the Pentium 4 use a multithreading technique that the Intel literature refers to as *hyperthreading* [MARR02]. In essence, the Pentium 4 approach is to use SMT with support for two threads. Thus, the single multithreaded processor is logically two processors.

IBM Power5 The IBM Power5 chip, which is used in high-end PowerPC products, combines chip multiprocessing with SMT [KALL04]. The chip has two separate processors, each of which is a multithreaded processor capable of supporting two threads concurrently using SMT. Interestingly, the designers simulated various alternatives and found that having two two-way SMT processors on a single chip provided superior performance to a single four-way SMT processor. The simulations showed that additional multithreading beyond the support for two threads might decrease performance because of cache thrashing, as data from one thread displaces data needed by another thread.

Figure 18.9 shows the Power5's instruction flow diagram. Only a few of the elements in the processor need to be replicated, with separate elements dedicated to

Source: [\[link\]](#) Thread₁ resource

- **Single memory space:** Distributed shared memory enables programs to share variables.
- **Single job-management system:** Under a cluster job scheduler, a user can submit a job without specifying the host computer to execute the job.
- **Single user interface:** A common graphic interface supports all users, regardless of the workstation from which they enter the cluster.
- **Single I/O space:** Any node can remotely access any I/O peripheral or disk device without knowledge of its physical location.
- **Single process space:** A uniform process-identification scheme is used. A process on any node can create or communicate with any other process on a remote node.
- **Checkpointing:** This function periodically saves the process state and intermediate computing results, to allow rollback recovery after a failure.
- **Process migration:** This function enables load balancing.

The last four items on the preceding list enhance the availability of the cluster. The remaining items are concerned with providing a single system image.

Returning to Figure 18.11, a cluster will also include software tools for enabling the efficient execution of programs that are capable of parallel execution.

Clusters Compared to SMP

Both clusters and symmetric multiprocessors provide a configuration with multiple processors to support high-demand applications. Both solutions are commercially available, although SMP schemes have been around far longer.

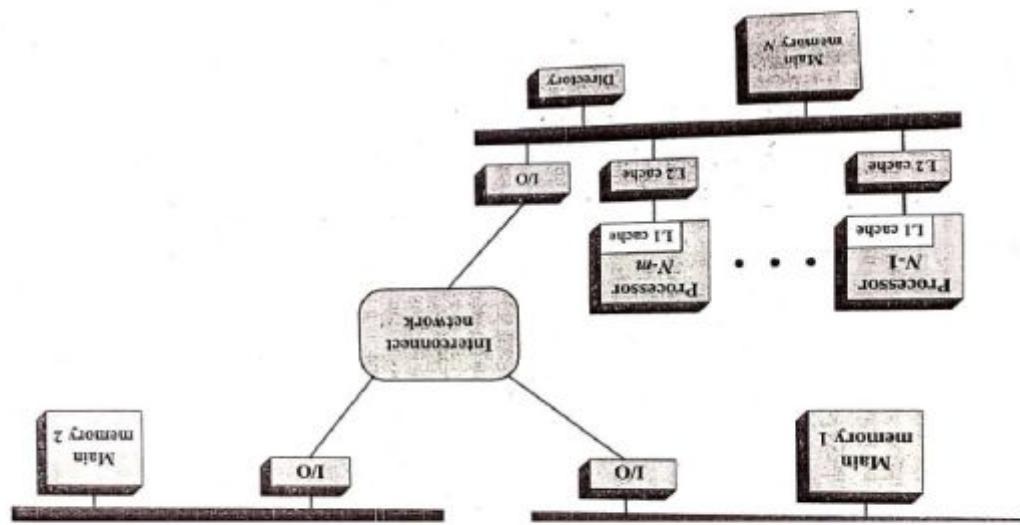
The main strength of the SMP approach is that an SMP is easier to manage and configure than a cluster. The SMP is much closer to the original single-processor model for which nearly all applications are written. The principal change required in going from a uniprocessor to an SMP is to the scheduler function. Another benefit of the SMP is that it usually takes up less physical space and draws less power than a comparable cluster. A final important benefit is that the SMP products are well established and stable.

Over the long run, however, the advantages of the cluster approach are likely to result in clusters dominating the high-performance server market. Clusters are far superior to SMPs in terms of incremental and absolute scalability. Clusters are also superior in terms of availability, because all components of the system can readily be made highly redundant.

- **Uniform memory access (UMA):** All processors have access to all parts of main memory using loads and stores. The memory access time of a processor to all regions of memory is the same. The access times experienced by different processors are the same. The SMP organization discussed in Sections 18.2 and 18.3 is UMA.
- **Nonuniform memory access (NUMA):** All processors have access to all parts of main memory using loads and stores. The memory access time of a processor differs depending on which region of main memory is accessed. The last statement is true for all processors; however, for different processors, which memory regions are slower and which are faster differ.
- **Cache-coherent NUMA (CC-NUMA):** A NUMA system in which cache coherence is maintained among the caches of the various processors.

A NUMA system without cache coherence is more or less equivalent to a cluster. The commercial products that have received much attention recently are CC-NUMA systems, which are quite distinct from both SMPs and clusters. Usually, but unfortunately not always, such systems are in fact referred to in the commercial literature as CC-NUMA systems. This section is concerned only with CC-NUMA systems.

Motivation


With an SMP system, there is a practical limit to the number of processors that can be used. An effective cache scheme reduces the bus traffic between any one processor and main memory. As the number of processors increases, this bus traffic also increases. Also, the bus is used to exchange cache-coherence signals, further adding to the burden. At some point, the bus becomes a performance bottleneck. Performance degradation seems to limit the number of processors in an SMP configuration to somewhere between 16 and 64 processors. For example, Silicon Graphics' Power Challenge SMP is limited to 64 R10000 processors in a single system; beyond this number performance degrades substantially.

The processor limit in an SMP is one of the driving motivations behind the development of cluster systems. However, with a cluster, each node has its own private main memory; applications do not see a large global memory. In effect, coherency is maintained in software rather than hardware. This memory granularity affects performance and, to achieve maximum performance, software must be tailored to this environment. One approach to achieving large-scale multiprocessing while retaining the flavor of SMP is NUMA. For example, the Silicon Graphics Origin NUMA system is designed to support up to 1024 MIPS R10000 processors [WHIT97] and the Sequent NUMA-Q system is designed to support up to 252 Pentium II processors [LOVE96].

The objective with NUMA is to maintain a transparent system wide memory while permitting multiple multiprocessor nodes, each with its own bus or other internal interconnect system.

Organization

Figure 18.12 depicts a typical CC-NUMA organization. There are multiple independent nodes, each of which is, in effect, an SMP organization. Thus, each node contains

multiple processors, each with its own L1 and L2 caches, plus main memory. The node is the basic building block of the overall CC-NUMA organization. For example, each Silicon Graphics Origin node includes two MIPS R10000 processors; each Sequent NUMA-Q node includes four Pentium II processors. The nodes are interconnected by means of some communications facility, which could be a switching mechanism, a ring, or some other networking facility.

Each node in the CC-NUMA system includes some main memory. From the point of view of the processors, however, there is only a single addressable memory, with each location having a unique system wide address. When a processor initiates a memory access, if the requested memory location is not in that processor's cache, then the L2 cache initiates a fetch operation. If the desired line is in the local portion of the main memory, the line is fetched across the local bus. If the desired line is in a remote portion of the main memory, then an automatic request is sent out to fetch that line across the interconnection network, deliver it to the local bus, and then deliver it to the requesting cache on that bus. All of this activity is automatic and transparent to the processor and its cache.

In this configuration, cache coherence is a central concern. Although implementations differ as to details, in general terms we can say that each node must maintain some sort of directory that gives it an indication of the location of various portions of memory and also cache status information. To see how this scheme works, we give an example taken from [PFIS98]. Suppose that processor 3 on node 2 (P2-3) requests a memory location 798, which is in the memory of node 1. The following sequence occurs:

1. P2-3 issues a read request on the snoopy bus of node 2 for location 798.
2. The directory on node 2 sees the request and recognizes that the location is in node 1.
3. Node 2's directory sends a request to node 1, which is picked up by node 1's directory.
4. Node 1's directory, acting as a surrogate of P2-3, requests the contents of 798, as if it were a processor.
5. Node 1's main memory responds by putting the requested data on the bus.
6. Node 1's directory picks up the data from the bus.
7. The value is transferred back to node 2's directory.
8. Node 2's directory places the data back on node 2's bus, acting as a surrogate for the memory that originally held it.
9. The value is picked up and placed in P2-3's cache and delivered to P2-3.

The preceding sequence explains how data are read from a remote memory using hardware mechanisms that make the transaction transparent to the processor. On top of these mechanisms, some form of cache coherence protocol is needed. Various systems differ on exactly how this is done. We make only a few general remarks here. First, as part of the preceding sequence, node 1's directory keeps a record that some remote cache has a copy of the line containing location 798. Then, there needs to be a cooperative protocol to take care of modifications. For example, if a modification is done in a cache, this fact can be broadcast to other nodes. Each node's directory that receives such a broadcast can then determine if

any local cache has that line and, if so, cause it to be purged. If the actual memory location is at the node receiving the broadcast notification, then that node's directory needs to maintain an entry indicating that that line of memory is invalid and remains so until a write back occurs. If another processor (local or remote) requests the invalid line, then the local directory must force a write back to update memory before providing the data.

NUMA Pros and Cons

The main advantage of a CC-NUMA system is that it can deliver effective performance at higher levels of parallelism than SMP, without requiring major software changes. With multiple NUMA nodes, the bus traffic on any individual node is limited to a demand that the bus can handle. However, if many of the memory accesses are to remote nodes, performance begins to break down. There is reason to believe that this performance breakdown can be avoided. First, the use of L1 and L2 caches is designed to minimize all memory accesses, including remote ones. If much of the software has good temporal locality, then remote memory accesses should not be excessive. Second, if the software has good spatial locality, and if virtual memory is in use, then the data needed for an application will reside on a limited number of frequently used pages that can be initially loaded into the memory local to the running application. The Sequent designers report that such spatial locality does appear in representative applications [LOVE96]. Finally, the virtual memory scheme can be enhanced by including in the operating system a page migration mechanism that will move a virtual memory page to a node that is frequently using it; the Silicon Graphics designers report success with this approach [WHIT97].

There are disadvantages to the CC-NUMA approach as well. Two in particular are discussed in detail in [PFIS98]. First, a CC-NUMA does not transparently look like an SMP; software changes will be required to move an operating system and applications from an SMP to a CC-NUMA system. These include page allocation, already mentioned, process allocation, and load balancing by the operating system. A second concern is that of availability. This is a rather complex issue and depends on the exact implementation of the CC-NUMA system; the interested reader is referred to [PFIS98].

18.7 VECTOR COMPUTATION

Although the performance of mainframe general-purpose computers continues to improve relentlessly, there continue to be applications that are beyond the reach of the contemporary mainframe. There is a need for computers to solve mathematical problems of physical processes, such as occur in disciplines including aerodynamics, seismology, meteorology, and atomic, nuclear, and plasma physics.

Typically, these problems are characterized by the need for high precision and a program that repetitively performs floating-point arithmetic operations on large arrays of numbers. Most of these problems fall into the category known as *continuous-field simulation*. In essence, a physical situation can be described by a surface or region in three dimensions (e.g., the flow of air adjacent to the surface of a

rocket). This surface is approximated by a grid of points. A set of differential equations defines the physical behavior of the surface at each point. The equations are represented as an array of values and coefficients, and the solution involves repeated arithmetic operations on the arrays of data.

Supercomputers were developed to handle these types of problems. These machines are typically capable of hundreds of millions of floating-point operations per second and cost in the 10- to 15-million-dollar range. In contrast to mainframes, which are designed for multiprogramming and intensive I/O, the supercomputer is optimized for the type of numerical calculation just described.

The supercomputer has limited use and, because of its price tag, a limited market. Comparatively few of these machines are operational, mostly at research centers and some government agencies with scientific or engineering functions. As with other areas of computer technology, there is a constant demand to increase the performance of the supercomputer. Thus, the technology and performance of the supercomputer continues to evolve.

There is another type of system that has been designed to address the need for vector computation, referred to as the *array processor*. Although a supercomputer is optimized for vector computation, it is a general-purpose computer, capable of handling scalar processing and general data processing tasks. Array processors do not include scalar processing; they are configured as peripheral devices by both mainframe and minicomputer users to run the vectorized portions of programs.

Approaches to Vector Computation

The key to the design of a supercomputer or array processor is to recognize that the main task is to perform arithmetic operations on arrays or vectors of floating-point numbers. In a general-purpose computer, this will require iteration through each element of the array. For example, consider two vectors (one-dimensional arrays) of numbers, *A* and *B*. We would like to add these and place the result in *C*. In the example of Figure 18.13, this requires six separate additions. How could we speed up this computation? The answer is to introduce some form of parallelism.

Several approaches have been taken to achieving parallelism in vector computation. We illustrate this with an example. Consider the vector multiplication

$$\begin{array}{r}
 \begin{bmatrix} 1.5 \\ 7.1 \\ 6.9 \\ 100.5 \\ 0 \\ 59.7 \end{bmatrix} + \begin{bmatrix} 2.0 \\ 39.7 \\ 1000.003 \\ 11 \\ 21.1 \\ 19.7 \end{bmatrix} = \begin{bmatrix} 3.5 \\ 46.8 \\ 1006.093 \\ 111.5 \\ 21.1 \\ 79.4 \end{bmatrix} \\
 A \quad + \quad B \quad = \quad C
 \end{array}$$

Figure 18.13 Example of Vector Addition

$C = A \times B$, where A , B , and C are $N \times N$ matrices. The formula for each element of C is

$$c_{i,j} = \sum_{k=1}^N a_{i,k} \times b_{k,j}$$

where A , B , and C have elements $a_{i,j}$, $b_{i,j}$, and $c_{i,j}$, respectively. Figure 18.14 shows a FORTRAN program for this computation that can be run on an ordinary scalar processor.

One approach to improving performance can be referred to as *vector processing*. This assumes that it is possible to operate on a one-dimensional vector of data. Figure 18.14b is a FORTRAN program with a new form of instruction that allows vector computation to be specified. The notation $(J = 1, N)$ indicates that operations on all indices J in the given interval are to be carried out as a single operation. How this can be achieved is addressed shortly.

The program in Figure 18.14b indicates that all the elements of the i th row of C are to be computed in parallel. Each element in the row is a summation, and the

```

DO 100 I = 1, N
DO 100 J = 1, N
  C(I, J) = 0.0
DO 100 K = 1, N
  C(I, J) = C(I, J) + A(I, K) + B(K, J)
100  CONTINUE

```

(a) Scalar processing

```

DO 100 I = 1, N
  C(I, J) = 0.0 (J = 1, N)
DO 100 K = 1, N
  C(I, J) = C(I, J) + A(I, K) + B(K, J) (J = 1, N)
100  CONTINUE

```

(b) Vector processing

```

DO 50 J = 1, N - 1
FORK 100
50  CONTINUE
      J = N
100  DO 200 I = 1, N
      C(I, J) = 0.0
      DO 200 K = 1, N
      C(I, J) = C(I, J) + A(I, K) + B(K, J)
200  CONTINUE

```

(c) Parallel processing

Figure 18.14 Matrix Multiplication ($C = A \times B$)

ach ele. summations (across K) are done serially rather than in parallel. Even so, only N^2 vector multiplications are required for this algorithm as compared with N^3 scalar multiplications for the scalar algorithm.

Another approach, *parallel processing*, is illustrated in Figure 18.14c. This approach assumes that we have N independent processors that can function in parallel. To utilize processors effectively, we must somehow parcel out the computation to the various processors. Two primitives are used. The primitive *FORK* n causes an independent process to be started at location n . In the meantime, the original process continues execution at the instruction immediately following the *FORK*. Every execution of a *FORK* spawns a new process. The *JOIN* instruction is essentially the inverse of the *FORK*. The statement *JOIN N* causes N independent processes to be merged into one that continues execution at the instruction following the *JOIN*. The operating system must coordinate this merger, and so the execution does not continue until all N processes have reached the *JOIN* instruction.

The program in Figure 18.14c is written to mimic the behavior of the vector-processing program. In the parallel processing program, each column of C is computed by a separate process. Thus, the elements in a given row of C are computed in parallel.

The preceding discussion describes approaches to vector computation in logical architectural terms. Let us turn now to a consideration of types of processor organization that can be used to implement these approaches. A wide variety of organizations have been and are being pursued. Three main categories stand out:

- Pipelined ALU
- Parallel ALUs
- Parallel processors

Figure 18.15 illustrates the first two of these approaches. We have already discussed pipelining in Chapter 12. Here the concept is extended to the operation of the ALU. Because floating-point operations are rather complex, there is opportunity for decomposing a floating-point operation into stages, so that different stages can operate on different sets of data concurrently. This is illustrated in Figure 18.16a. Floating-point addition is broken up into four stages (see Figure 9.22): compare, shift, add, and normalize. A vector of numbers is presented sequentially to the first stage. As the processing proceeds, four different sets of numbers will be operated on concurrently in the pipeline.

It should be clear that this organization is suitable for vector processing. To see this, consider the instruction pipelining described in Chapter 12. The processor goes through a repetitive cycle of fetching and processing instructions. In the absence of branches, the processor is continuously fetching instructions from sequential locations. Consequently, the pipeline is kept full and a savings in time is achieved. Similarly, a pipelined ALU will save time only if it is fed a stream of data from sequential locations. A single, isolated floating-point operation is not speeded up by a pipeline. The speedup is achieved when a vector of operands is presented to the ALU. The control unit cycles the data through the ALU until the entire vector is processed.

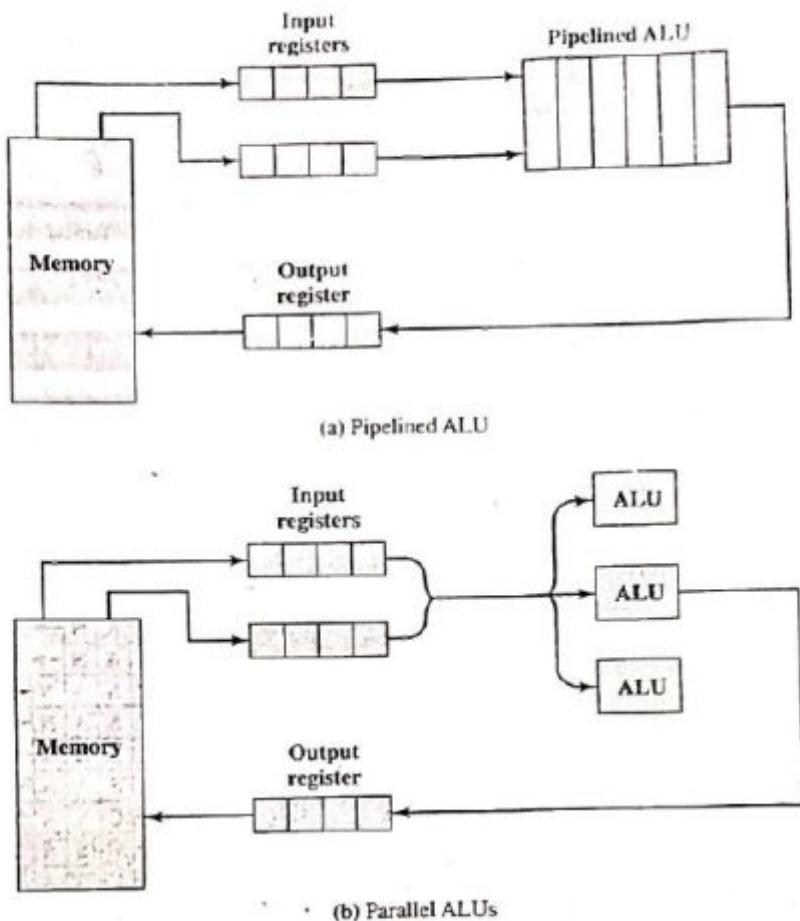


Figure 18.15 Approaches to Vector Computation

The pipeline operation can be further enhanced if the vector elements are available in registers rather than from main memory. This is in fact suggested by Figure 18.15a. The elements of each vector operand are loaded as a block into a vector register, which is simply a large bank of identical registers. The result is also placed in a vector register. Thus, most operations involve only the use of registers, and only load and store operations and the beginning and end of a vector operation require access to memory.

The mechanism illustrated in Figure 18.16 could be referred to as *pipelining within an operation*. That is, we have a single arithmetic operation (e.g., $C = A + B$) that is to be applied to vector operands, and pipelining allows multiple vector elements to be processed in parallel. This mechanism can be augmented with *pipelining across operations*. In this latter case, there is a sequence of arithmetic vector operations, and instruction pipelining is used to speed up processing. One approach to this, referred to as **chaining**, is found on the Cray supercomputers. The basic rule for chaining is this: A vector operation may start as soon as the first element of the operand vector(s) is available and the functional unit (e.g., add, subtract, multiply, divide) is

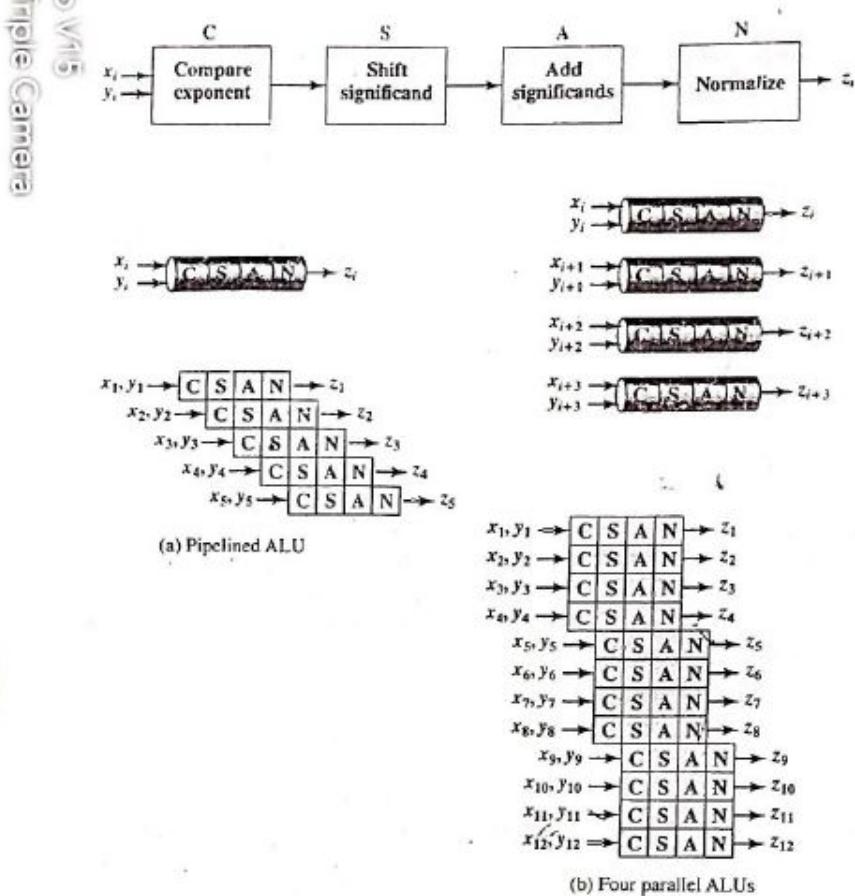


Figure 18.16 Pipelined Processing of Floating-Point Operations

free. Essentially, chaining causes results issuing from one functional unit to be fed immediately into another functional unit and so on. If vector registers are used, intermediate results do not have to be stored into memory and can be used even before the vector operation that created them runs to completion.

For example, when computing $C = (s \times A) + B$, where A , B , and C are vectors and s is a scalar, the Cray may execute three instructions at once. Elements fetched for a load immediately enter a pipelined multiplier, the products are sent to a pipelined adder, and the sums are placed in a vector register as soon as the adder completes them:

1. Vector load $A \rightarrow$ Vector Register (VR1)
2. Vector load $B \rightarrow$ VR2
3. Vector multiply $s \times VR1 \rightarrow VR3$
4. Vector add $VR3 + VR2 \rightarrow VR4$
5. Vector store $VR4 \rightarrow C$

Instructions 2 and 3 can be chained (pipelined) because they involve different memory locations and registers. Instruction 4 needs the results of instructions 2 and 3, but it can be chained with them as well. As soon as the first elements of vector registers 2 and 3 are available, the operation in instruction 4 can begin.

Another way to achieve vector processing is by the use of multiple ALUs in a single processor, under the control of a single control unit. In this case, the control unit routes data to ALUs so that they can function in parallel. It is also possible to use pipelining on each of the parallel ALUs. This is illustrated in Figure 18.16b. The example shows a case in which four ALUs operate in parallel.

As with pipelined organization, a parallel ALU organization is suitable for vector processing. The control unit routes vector elements to ALUs in a round-robin fashion until all elements are processed. This type of organization is more complex than a single-ALU CPI.

Finally, vector processing can be achieved by using multiple parallel processors. In this case, it is necessary to break the task up into multiple processes to be executed in parallel. This organization is effective only if the software and hardware for effective coordination of parallel processors is available.

We can expand our taxonomy of Section 18.1 to reflect these new structures, as shown in Figure 18.17. Computer organizations can be distinguished by the presence of one or more control units. Multiple control units imply multiple processors. Following our previous discussion, if the multiple processors can function cooperatively on a given task, they are termed *parallel processors*.

The reader should be aware of some unfortunate terminology likely to be encountered in the literature. The term *vector processor* is often equated with a pipelined ALU organization, although a parallel ALU organization is also designed for vector processing, and, as we have discussed, a parallel processor organization may also be designed for vector processing. *Array processing* is sometimes used to refer to a parallel ALU, although, again, any of the three organizations is optimized for the processing of arrays. To make matters worse, *array processor* usually refers to an auxiliary processor attached to a general-purpose processor and used to perform vector computation. An array processor may use either the pipelined or parallel ALU approach.

At present, the pipelined ALU organization dominates the marketplace. Pipelined systems are less complex than the other two approaches. Their control unit and operating system design are well developed to achieve efficient resource allocation and high performance. The remainder of this section is devoted to a more detailed examination of this approach, using a specific example.

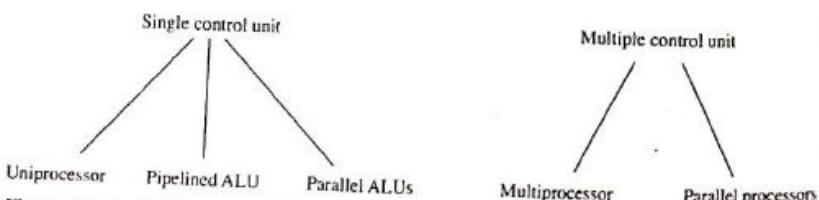


Figure 18.17 A Taxonomy of Computer Organizations

IBM 3090 Vector Facility

A good example of a pipelined ALU organization for vector processing facility developed for the IBM 370 architecture and implemented in the 3090 series [PADE88, TUCK87]. This facility is an optional add-on, but is highly integrated with it. It resembles vector facilities found in such as the Cray family.

The IBM facility makes use of a number of vector registers, actually a bank of scalar registers. To compute the vector sum $C = A + B$, A and B are loaded into two vector registers. The data from these registers is processed through the ALU as fast as possible, and the results are stored in another vector register. The computation overlap, and the loading of the input data in a block, results in a significant speeding up over an ordinary ALU.

Organization The IBM vector architecture, and similar pipeline organization provides increased performance over loops of scalar arithmetic instructions.

- The fixed and predetermined structure of vector data permits instructions inside the loop to be replaced by faster integrated (microcoded) machine operations.
- Data-access and arithmetic operations on several successive elements can proceed concurrently by overlapping such operations in time or by performing multiple-element operations in parallel.
- The use of vector registers for intermediate results avoids multiple reference.

Figure 18.18 shows the general organization of the vector facility. The vector facility is seen to be a physically separate add-on to the processor.

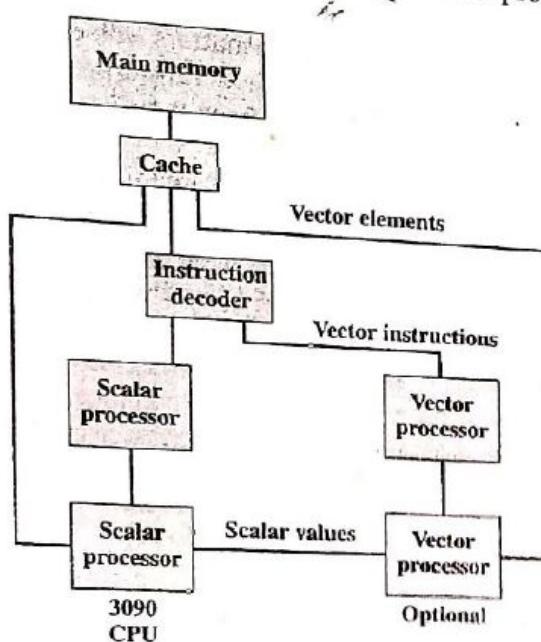


Figure 18.18 IBM 3090 with Vector Facility

is an extension of the System/370 architecture and is compatible with it. The vector facility is integrated into the System/370 architecture in the following ways:

- Existing System/370 instructions are used for all scalar operations.
- Arithmetic operations on individual vector elements produce exactly the same result as do corresponding System/370 scalar instructions. For example, one design decision concerned the definition of the result in a floating-point DIVIDE operation. Should the result be exact, as it is for scalar floating-point division, or should an approximation be allowed that would permit higher-speed implementation but could sometimes introduce an error in one or more low-order bit positions? The decision was made to uphold complete compatibility with the System/370 architecture at the expense of a minor performance degradation.
- Vector instructions are interruptible, and their execution can be resumed from the point of interruption after appropriate action has been taken, in a manner compatible with the System/370 program-interruption scheme.
- Arithmetic exceptions are the same as, or extensions of, exceptions for the scalar arithmetic instructions of the System/370, and similar fix-up routines can be used. To accommodate this, a vector interruption index is employed that indicates the location in a vector register that is affected by an exception (e.g., overflow). Thus, when execution of the vector instruction resumes, the proper place in a vector register is accessed.
- Vector data reside in virtual storage, with page faults being handled in a standard manner.

This level of integration provides a number of benefits. Existing operating systems can support the vector facility with minor extensions. Existing application programs, language compilers, and other software can be run unchanged. Software that could take advantage of the vector facility can be modified as desired.

Registers A key issue in the design of a vector facility is whether operands are located in registers or memory. The IBM organization is referred to as *register-to-register*, because the vector operands, both input and output, can be staged in vector registers. This approach is also used on the Cray supercomputer. An alternative approach, used on Control Data machines, is to obtain operands directly from memory. The main disadvantage of the use of vector registers is that the programmer or compiler must take them into account for good performance. For example, suppose that the length of the vector registers is K and the length of the vectors to be processed is $N > K$. In this case, a vector loop must be performed, in which the operation is performed on K elements at a time and the loop is repeated N/K times. The main advantage of the vector register approach is that the operation is decoupled from slower main memory and instead takes place primarily with registers.

The speedup that can be achieved using registers is demonstrated in Figure 18.19. The FORTRAN routine multiplies vector A by vector B to produce vector C, where each vector has a real part (AR, BR, CR) and an imaginary part (AI, BI, CI). The 3090 can perform one main-storage access per processor, or clock, cycle (either read or write); has registers that can sustain two accesses for reading and one for writing per cycle; and produces one result per cycle in its arithmetic unit. Let us assume the use of

FORTRAN ROUTINE:

```

DO 100 J = 1, 50
  CR(J) = AR(J) * BR(J) + AI(J) * BI(J)
100  CR(J) = AR(J) * BI(J) + AI(J) * BR(J)

```

Operation	Cycles
AR(J) * BR(J) \rightarrow T1(J)	3
AI(J) * BI(J) \rightarrow T2(J)	3
T1(J) + T2(J) \rightarrow CR(J)	3
AR(J) * BI(J) \rightarrow T3(J)	3
AI(J) * BR(J) \rightarrow T4(J)	3
T3(J) + T4(J) \rightarrow CR(J)	3
TOTAL	18

(a) Storage to storage

Operation	Cycles
AR(J) \rightarrow V1(J)	1
V1(J) * BR(J) \rightarrow V2(J)	1
AI(J) \rightarrow V3(J)	1
V3(J) * BI(J) \rightarrow V4(J)	1
V2(J) - V4(J) \rightarrow V5(J)	1
V5(J) \rightarrow CR(J)	1
V1(J) * BI(J) \rightarrow V6(J)	1
V4(J) * BR(J) \rightarrow V7(J)	1
V6(J) + V7(J) \rightarrow V8(J)	1
V8(J) \rightarrow CR(J)	1
TOTAL	10

(c) Storage to register

Operation	Cycles
AR(J) \rightarrow V1(J)	1
BR(J) \rightarrow V2(J)	1
V1(J) * V2(J) \rightarrow V3(J)	1
AI(J) \rightarrow V4(J)	1
BI(J) \rightarrow V5(J)	1
V4(J) * V5(J) \rightarrow V6(J)	1
V3(J) - V6(J) \rightarrow V7(J)	1
V7(J) \rightarrow CR(J)	1
V1(J) * V5(J) \rightarrow V8(J)	1
V4(J) * V2(J) \rightarrow V9(J)	1
V8(J) + V9(J) \rightarrow V0(J)	1
V0(J) \rightarrow CR(J)	1
TOTAL	12

(b) Register to register

Operation	Cycles
AR(J) \rightarrow V1(J)	1
V1(J) * BR(J) \rightarrow V2(J)	1
AI(J) \rightarrow V3(J)	1
V2(J) - V3(J) * BI(J) \rightarrow V2(J)	1
V2(J) \rightarrow CR(J)	1
V1(J) * BI(J) \rightarrow V4(J)	1
V4(J) + V3(J) * BR(J) \rightarrow V5(J)	1
V5(J) \rightarrow CR(J)	1
TOTAL	8

(d) Compound instruction

Figure 18.19 Alternative Programs for Vector Calculation

instructions that can specify two source operands and a result.⁴ Part a of the figure shows that, with memory-to-memory instructions, each iteration of the computation requires a total of 18 cycles. With a pure register-to-register architecture (part b), this time is reduced to 12 cycles. Of course, with register-to-register operation, the vector quantities must be loaded into the vector registers prior to computation and stored in memory afterward. For large vectors, this fixed penalty is relatively small. Figure 18.19c shows that the ability to specify both storage and register operands in one instruction further reduces the time to 10 cycles per iteration. This latter type of instruction is included in the vector architecture.⁵

⁴For the 370/390 architecture, the only three-operand instructions (register and storage instructions RS) specify two operands in registers and one in memory. In part a of the example, we assume the existence of three-operand instructions in which all operands are in main memory. This is done for purposes of comparison and, in fact, such an instruction format could have been chosen for the vector architecture.

⁵Compound instructions, discussed subsequently, afford a further reduction.

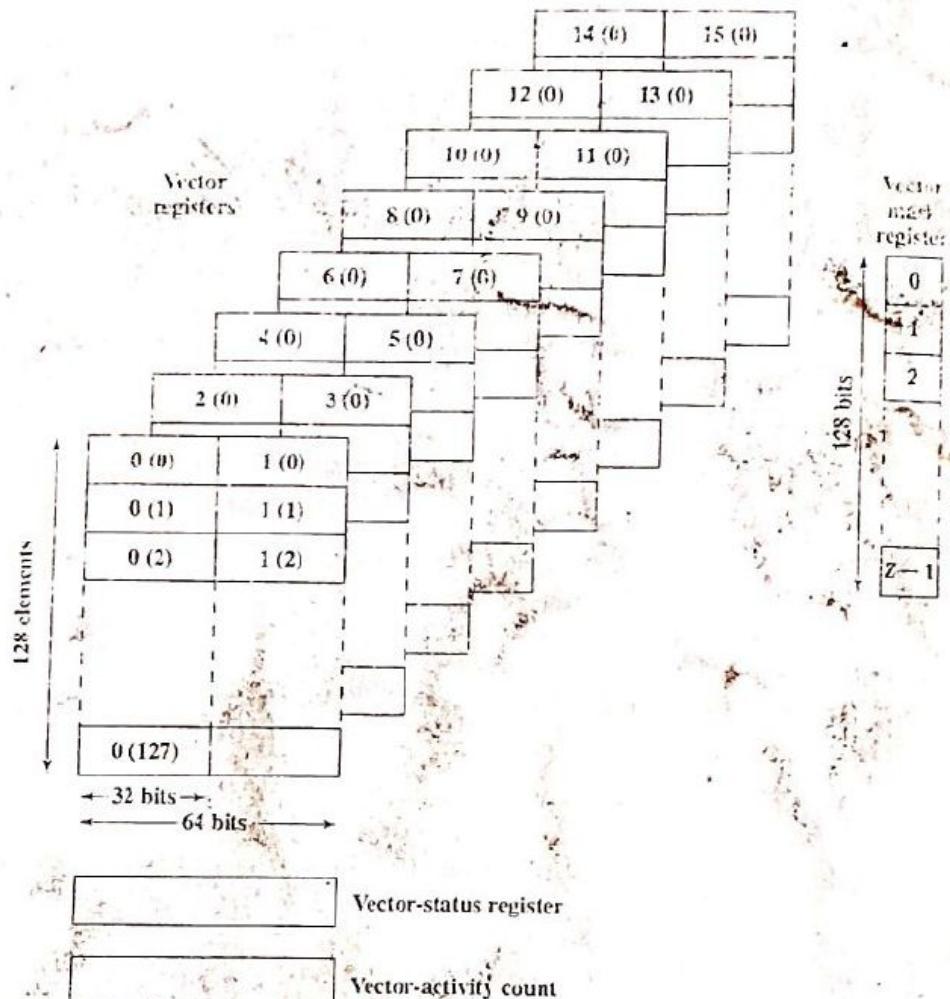


Figure 18.20 Registers for the IBM 3090 Vector Facility

Figure 18.20 illustrates the registers that are part of the IBM 3090 vector facility. There are sixteen 32-bit vector registers. The vector registers can also be coupled to form eight 64-bit vector registers. Any register element can hold an integer or floating-point value. Thus, the vector registers may be used for 32-bit and 64-bit integer values, and 32-bit and 64-bit floating-point values.

The architecture specifies that each register contains from 8 to 512 scalar elements. The choice of actual length involves a design trade-off. The time to do a vector operation consists essentially of the overhead for pipeline startup and register filling plus one cycle per vector element. Thus, the use of a large number of register elements reduces the relative startup time for a computation. However, this efficiency must be balanced against the added time required for saving and restoring vector registers on a process switch and the practical cost and space limits. These considerations led to the use of 128 elements per register in the current 3090 implementation.

Three additional registers are needed by the vector facility. The vector-mask register contains mask bits that may be used to select which elements in the vector