Course Materials for Il B. Sc

Information Technology (IT)

Subject Name:Computer and

Organization Architecture

Prepared by

Dr. S. Sathiskumar
Assistant Professor
Post Graduate Department of Physics
Srinivasan College of Arts and Science
Perambalur — 621 212



Syllabus

R A A A e

Cnmgm' . El W‘l FWL'H“'&!LML

AR Para s tallings
= Bk Ed% on

)] iy Moy

WL )

Y1160, '; ol TF 2T B _'-."r bl TR
tnw@y U‘rganumﬁ%n y Awk~+em
angl ,-j'—LU‘“-,d“-l.]D"_'bﬁ,;u Dﬂg’-‘]*ﬁ‘srﬂ#? on C{ .ﬁ-fn:hﬂ'ed‘u_u_

_{,{Mm EU’W.Dl ﬁma:h&bryi 5 {WPLL%

(Falual mh’t = (Dr‘l"‘k f-L:tﬂA lj'“hl:hc;n e |
S PD‘T”'I-I“‘J Jl ¢y ' g 0 yPrd
Tht ert ohhe uifbn -ﬁjcmum;zﬁ ~ GLM 'nﬁww&'ﬁm
N ;
UN\T-'I_ IL M‘EMDJH ﬂ"fﬂaﬂ%a-'«htbﬂ)
e = o a ,. - It iy )
i et T -[", -}:@rn wmvﬁm.u-
i'..i}}:q--|-i'jff_._ﬁr'ﬂ.plﬂt,l-{ M e, o r":il LIR N 7a'g,

A echhs s el
Fh o ridary Siochapls ﬁﬂ."‘ﬁ-ﬁ?»- bt

Mﬁh” ’Fw{gﬁﬁg - paganbiooiics DRA™ aund
SPATY - 20aTypes L OpUREN - Eeeox 0 nioeton

b

5 i
| e,
VT r1_'.,-!‘_.‘ 'J,.- i

LT3 (Tlo Modudes)
Ex*am‘p dﬁ_VPLtﬁ — |_,n"l:ﬁ T“"lDiLLJ-E.{
Tio- Pect  wmemory Ocoss

progammed



Thbm_dﬁ:n 2 ..E-.Etx - proleasny
oxgantsotion and (onty D\ P %
Machbhe Tndtaudfon  (rosactetsity |
Vupes o opeionds  —Addnssfirg L
“Tretiudfdn | formaly -~ PYOWAEDY  osganted,
R %%ﬁ}; N mga'ﬁ?fg&mﬁ' — % b ‘wch
’LOﬂ‘hrD‘v Lm?t : Mq"un opeﬂash'hw "t ondvo)
% 'ﬁ-,_a_ p-f[}m;z&ﬂ . WX IO Y Yoy P T

ONT -5 u:maw PRGioha o)

tmﬂJlU mgmﬁ?ﬁaﬁoﬂ e M U e
ljfga}-jnﬁm;t{gn o ggmma e .','*-MMJ*T?PTUW??:
Mt aolPrg =i ol ¢ hfp M oprotessas.

Noen - unthem . pagmoiy o aceos- — vedos
tompulation

*
) 1 - i # (N S A |
s)ata al T} & (s
i J_..."JI



Unit - I Computer Organization

Architecture and Functions



fais book o sbout the structure and function of computers. s purpose is o present.,
as cleardy und completely as possible, the nature and characleristics of modern-day
computers. This task is a challenging one for lwo reasons.

First. there is a tremendous variety of products, from gingke-chip nuerocom-
puters costing a few dollars Lo supercompulters costing tens of millions of dollars,
that can rightly claim the name compurer, Variety is exhibited not only in cost. b
also in size. performance, and application. Second, the rapid pace of changye thet has
always characterized computer technology continues with no leivp. These changes
caver all aspects of computer technology, from the underlying inegrated circamt
technology used to construet computer components 1o the increasing use of paiailcl
organization conceps in combining those components.

In spitc of the variety and pace of change in the computer field, certain fundamenial
concepts apply consistently throughout. To be sure. the application of these concepts
depends on the current state of technology and the price/performance pibjeciives of the
designer. The intent of this book is (o provide a thorough discussion of tie fundamentals
of computer organization and architecture and to relate these to coplemporary computer
design issues. This chapter introduces the descriptive approach to be taken.

[n describing computers, a distinction is often made betwes compuler architecture
_and comiputer orgar:ization. Although it is difficult 1o give precise definitions for
these ferms, a consensus exists about the general areas covered by each (ep., see
[VRANSO], [SIEWS2], and | BELL78a]).

'\ Compater architecture refers to those attributes of a system visible to a
programmer or, put another way, those attributes that have a direci impact
on the logical execution of a progmmhmputer organization refers 10 the oper-
ational units and their interconnections that realize the architectural specifica-
tions)Examples of architectural attributes include the instruction set, the number
of bits used 10 represent various data types {e.g.,ng{n_tjgrichamgg_:_ﬂ, I/O mech-
anisms, and techniques for_addressing_mempry, Organizational _attributes
include those hardware details transparent to the programmer, such as control
signals; interfaces between the computer and peripherals; and the memory

- O —

technclogy used.

As an example, it is an architectural design issue whether a computer will
have 2 multiply instruction. It is an organizational issue whether that instruction
will be implemented by a special muitiply unit or by a mechanism that makes
repeaied use of the add umit of the system. The organizational decision may
be based on the anticipated frequency of use of the multiply instruction, the

_ telative speed of the two approaches, 2nd the cost and physical size of a special
mulliply enii. "

Historically, and still today, the distinction between architecture and organization
has been an imporiani ene, Many computer manufacturers offer a tamilv of computer
models, all with the same architecture but with differences in organization. Conse-
quently, the different models in the family have different price and performance
characteristics Furtheémore, a particular architecture may span many years and
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cncompass o number of different computer madels, its organizatiol Lhi}l]j_!lﬂ!; with
ample of both these phenomena 15 the IBM

changing technology. A promiment ey 1
first introduced in 1970 and included a

System/370 mehtecture This mrehitecture was
aumber of models The customer with modest requirements could buy a cheaper,

dower madel and. if demand increased, later upgrade (0 a more expensive, faster
model without having to abandon sofiware that had already been developed. Over the
vears, 1BM has introduced many new models with improved technology 10 replace
older models, offering the customer greater speed, lower cost, oF both. These newer
models retained the same architecture so that the eustomer's software investmenl was
protected. Remarkably, the System/370 architecture, with a few enhancements, has
survived to this day as the architecture of IBM's mainframe product line.

In a class of computers called microcomputers, the relationship between
architecture and organization is very close, Changes in technology not only influence
organization but also result in the introduction of more powerful and more complex
architectures. Generally, there is less of a requirement for generaiinn-m-generaliﬂn
compatibility for these smaller machines. Thus, there is more interplay between
organizational and architectural design decisions. An intriguing example of this 15 the
reduced instruction sel computer (RTSC), which we examine in Chapter 13.

This book examines both computer organization and computer architecture.
The emphasis is perhaps more on the side of organization. However, because 2
computer organization must be designed to implement a particular architectural
specification, a thorough treatment of organization requires a detailed examination

of architeclure as well.

AND FUNCTION
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I
The approach taken in this book follows from this wr.wpumt The compuye,
system will be described from the top down. We begin with the major componens of
a computer, describing their structure and function, and proceed to successively

lower layers of the hicrarchy. The remainder of this section provides a very brief
oveniew of this;plan of attack.

Function *

L a
Boti) the structure and functioning of a computer are, in essence, simple. Figure 1.1
depicts the basic functions that a computer can perform. In general terms, there

are only four:
|
-+ Data processing
* Data storage
j#"Data movement
Ir" Control
'

J Operating environment
P [source and destination of data)

Vigure 1.1 A Functional View of the Computer
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1he compater, of course, must be able (o process data, The duta may 1zke a wide
vanety of forms, and the range of process ne requirements s broad. However, we shall

see that there are only a few fundamental methods or types of data processing,

St s also essential that a compuier store data, Even if the compuler s
processing data oa the fly (i.e. data come in and gel processed, and the results go
out immediately), the computer must temporarily store at least those pieces of data
that are being worked on at any given moment. Thus, there is at least a short-term
data storage function. Equally imporiant, the computer performs a long-term data
storage function. Files of data are stored on the compuier for subscquent retrieval
and updalte.

The computer must be able to move data between itself and the outside world.
The Tomputer’s operating environment consists of devices that serve as either
sources or destinations of data. When data are received from or delivered 1o a device
that is directly connected to the computer, the process is known as inpu—output
(LO), ornd the device is referred to as a peripheral. When data are moved over longer
distances, to or from a remote device, ihe process is known as data _communications.

Finally, there must be control of these three functions. Ultimately, this control
is extreised by the individual(s) who provides the computer with instructions. With-
in the computer, a control unit manages the computer’s resources and orchesirates
the performance of its functional parts in response.to those instructions.

At this general level of discussion, the number of possible operations that can
| be performed is few] Figure 1.2 depicts the four possible types of _operations. The

computer can function as a data movement device EFigErg_ 1.2a), simply transferring

data from one Ecriphbraiirucummunﬁggi_ggslig_ca 1o another. It can also function as
a data storage device (Figure 1 -2b), with data transferred from the external environ-
ment to computer storage (read) and vice versa (write). The final two diagrams
show operations involving data processing; on data either in storage (Figure 1.2¢) or
¢n route between storage and the external environment (Figure 1.24).

The preceding discussion may seem absurdly generalized. Tt is certainly possi-

ble, even at a top level of computer structure, to differentiate a variety of functions,

but, to quote [STEWS2],

There is remarkably Jittle shaping of computer structure to fit the
function to be performed. At the root of this lies the general-purpose
nature of computers, in which all the functional specialization oceurs
2l the time of programming and not at the time of design,

/Svtru cture

Figure 1.3 is the simplest possible depiction of a computer. The computer interacts
in some fashion with its external environment. In general, all of its linkages to the
exlernal environment can he classified as peripheral devices or communication
lines. We will have something to say about both types of linkages.

But of greater concern in this book is the internal structure of the computer itsell.
which is shown at a top level in Figure 1.4. There are four main structural components:

«Central processing unit (CPU): Controls the operation of the computer and
performs its data processing functions: otten simply referred (o as processor
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v, must be able to process data, The data may leke d wide
vanety of forms.and the range of processing requircmentsis broad. However. we shall
see that there are only a few fundamental methods or types of data processing,
It is also essential that a compuici store data. Even if the computer is
a on the {ly (i.e., data come in and get processed. and the results go
ly). the computer must temporarily store at least those picces of data
:oment. Thus, theve is at least a short-term
the computer performs a long-term data

the compuler for subsequent retrieval’

The compiiel. ol o

processing dat
out immediate
that are being worked on at any given n
data storage function. Equally important,

storage function. Files of data are stored on

and update.
The computer must be able to move data between itself and the outside world.
The €omputer’s operating environment consists of devices that serve as eithel
cources or destinations of data. When data are received from or delivered to a device
that is directly connecled to the compulcr, the process 1s known as input-output
(LO). and the device is referred to as a;;-w-;:p;'_wrc__:_x', When data are moved over longer
distances, to or from a remote device. the process is known as data comimunications.
Jinally, there must be control of these three funcfffms_. Ultimately, this control
is exgreised by the individual(s) who provides the computer with instructions. With-
in the computer, a control unit manages the computer’s resources and orchestrates

the performance of its functional parts in response 1o those instructions.
At this general level of discussion, the number of possible operations that can

be performed is 1'u:wc{ Figure 1.2 depicts the four possible types of operations. The
n as a data movement device (Figure 1.2a), simply transferring

computer can {uncti
q;_t_cﬂmmnn_gpcriph’eraJE_qgmﬂ_nqugiggsjigg_tp_anol]_’:cr. [t can also function as
a data storage device (Figure 1.2b), with data transferred from the external environ-
ment to computer storage (read) and vice versa (write). The final two diagrams
show operations involving data processing; on data either in storage (Figure 1.2c) or
en route between storage and the external environment (Figure 1.2d).

The preceding discussion may scem absurdly generalized. It is certainly possi-
ble, even at a top level of computer structure, to differentiate a varicty of functions,
but, to quote [STEW82],

There is remarkably little shaping of computer structure to fit the
function Lo be performed. At the root of this lies the general-purpose
nature of compulters, in which all the functional specialization occurs

at the time of programming and not at the time of design.

/S‘tr'ucture

Figure 1.3 is the simplest possible depiction of a computer. The computer interacts

in some fashion with its external environment. In general, all of its linkages to the
external environment can be classified as peripheral devices or communication

lines. We will have something to say about both types of linkages.
But of greater concern in this book is the internal structurc of the computer itsell.

which is shown at a top level in Figure 1.4. There are four main structural components:

U): Controls the operation of the computer and

« Central processing unit (CP
functions; often simply rcferred Lo as processor

performs its data processing
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Figure 1.2 Possible Computer Operations

~¢ Main memory: Stores data
- UO: Moves data between the computer and its external environment

* System inferconnection: Sume mechanism that provides for communication
-~ among CPU, main memory, and 1/O



COMPUTER

* Slorage
* Processing

iz L2 The Computer

COMPUTER

System
interconnection

Fisure 1.4 The Computer: Top-Level Struciure
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here may be one or more of each of the aforementioned components. Tryg;
tonally, there has been just a single CPU. In recent years, there has been i"‘ﬂmﬂain
use of multiple processors in a single compuler. Some design issues relating 1o muyj.
tiple processors crop up and are diseussed as the text proceeds; Part Five focuses o
such computers,

Each of these components will be examined in some detail in Part Two, Hﬂweverl
for our purposes, the most interesting and in some ways the most complex componen)
15 the CPU:its structure is depicted in Figure 1.5, Its major structural components are

22 Control unit: Controls the dperation of the CPU and hence the computer

;,A:i!hmﬂic and logic unit (ALU): Performs the computer’s data processing
functions

Internal CPU
imterconnection

Figure 1.5 The Central Processing Unit (CPU)



CHAPFTEIL 1 INTRODUCTION

-+ Registers: Provides storape iuternal 1o the CPY
. CPL interconnedlion: Some mechanism that provides for communication
among the control unit, ALLL and registers

Each of these components will be examined in some detail in Pan Three, where we will
sce that complexily 1s added by the use of paralle] and pipelined organizational tech-
nigues. Finally, there are several approaches 1o the implementation of the control unit:
one commaon approach is a microprogrammed implementation. In essence, a micrepro-
grammed control unit operates by executing microinstructions that define the function..
ality of the control unit. With this approach, the structure of the control unit can be
depicted as in Figure 1.6. This structure will be examined in Part Four,

Figure L6 The Control Unit
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i
1.3

~XVHY STUDY/COMPUIER DRGANIZAHGN

AND AR CHITECTURE?

The IEEE/ACM Computer Curricula 2001 [JTF01], prepared by the Joint Task
Force on Computing Curricula of the IEEE (Institute of Electrical and Electronics
Engineers) Computer Society and ACM (Association for Computing Machinery).
lists computer architecture as onc of the core subjects that should be in the curricu-
lum of all students in computer science and computer engineering. The report says

the following:

The compuier lies at the heart of computing. Without it most of the
computing disciplines today would be a branch of theoretical mathe-
matics. To be a professional in any field of computing today. one
shouid not regard the compuier as jusi a black box that executes pro-
grams by magic. All students of compuling should acquire some
understanding and appreciation of a computer system’s functional
components, their characteristics, their performance, and their
interactions. There are practical implications as well. Students need
to understand computer architecture in order 1o structure a program
50 that it runs more efficiently on a real machine. In selecting a sys-
tem to wse, they should to able to undersiand the tradeoff among
various components, such as CPU clock speed vs memory size.

[CLEMO00] gives the following examples as reasons for studying computer
architecture:

1. Suppose a graduate enters the industry and is asked to select the most cosl-
effective computer for use throughout a large organization. An understanding
of the implications of spending more for various alternatives, such as a larger
cache or a higher processor clock rate, is essential to making the decision.

2. Many processors are not used in PCs or servers but in embedded systems. A
designer may program a processor in C that is embedded in some real-time or
larger system, such as an intelligent automobile electronics controller. Debugging
the system may require the use of a logic analyzer thal displays the relationship
between interrupt requests from engine sensors and machine-level code.

3. Concepts used in computer architecture find application in other courses. In
particular, the way in which the computer provides architectural support for
programming languages and operating system facilities reinforces concepts

from those areas
As can be seen by perusing the table of contents of this book, computer orga-

nization and architecture encompasscs a broad range of design issues and concepts.
A good overall understanding of these concepls will be useful both in other areas of

study and in future work after graduation.
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CHAPTEIL 3 0 A TOP-LEVEL VIEW OF COMPUTER FUNCTION

KEY POINTS = .

¢ Aninstruction cycle consists of an instruction fetch, followed by zero or -

more operand [etches, followed by zero or mare operand stores, fol- '

lowed by an interrupt check (if interrupts are gnabied). e ot

¢ The major compuier system ¢omponents (processor, main memory, L'O
modules) need to be interconnected in order 10 exchange data.and con-
trol signals. The most popular means of interconnection is the use of a_
shared system bus consisting of multiple lines. In contemporary systems, *
there typically is a hicrarchy of buses to.improve performarice.

+ Key design elements for buses include arbitration (whether permission to.
send signals on bus lines is controlled centrally or in a distributed fashion);

timing (whether signals on the bus are synchronized to a central clock or -~

are sent asynchronously based on the most recent transmission); and width -
(number of address lines and number of data limes ;e co - LR B ey

&

At atop level, a computer consists of CPU (eentral processing unit), memory, and
/O components, with one or more modules of each type. These components are in-

terconnecied in some fashion to achieve the basic function of the computer, which 4

is to execule programs. Thus, at a top level, w can describe a computer system by

(1) describing the external behavior of each component, that is, the data and con- &

trol signals that it exchanges with ather components; and (2) deseribing the inter-

connection structure and the controls required to manage the use of the

- interconnection structure.

This top-level view of structure and function is important because of its
explanatory power in understanding the nature of.a computer, Equally important
is its use to understand the increasingly complex issues of performance evalya.
tion. A grasp of the top-level structure and function offers insight into system

bottlenecks, alternate pathways, the magnitude of system failures if a component

fails, and the ease of adding performance enhancements, In many cases, require-

ments for preater system power and fail-safe capabilities are being met s g
ing the design rather than merely increasing the speed and reliability o .

individual components. ‘

This chapter focuses on the basic structures used for computer component ]

interconnection. As background, the chapter begins with a brief examination of the
basic components and their interface requirements. Then a functional OVETvView ig
provided. We are then prepared to examine the use af buses to interconneg| system
COMPONENTS.
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'/;l; discussed in Chaprer 2. vintually all contemporary computcr doesipns are based
on concepts developed by John von Neumann at the Institute for Advanced Sudies

Princeton, Such a design is reflened Lo as the von Newman arehilectre and s based
on three key concepts:
= Data and instructions are stored i a single read-wrle memory
¢ The contents of this memory are addressable by location, wathout regard to
the type of data contaned there,
= Execution oceurs in g sequential fashion (unless explicitly modificd) from one
instruction o the next.

The reasoning behind these concepts was discussed in Chapler 2 but 1s worth
summanzing here. There s asmall set of basic logie componenls it can be combined
m various ways 1o store binary data and to perform arithmetic and logical operatons
on that data, If there is a particular computation to be performed. a conhguration of
logic components designed specifically for that computation could be constructed. We
can thank of the process ol connecting the vanous components in the desired conflipu-
ration as a form of programming. The resulting “program™ s in the lorm of hardware
and s termed a hardwired program -~

MNow consider this alternative. Suppose we construct a general-purpose config-
uration of arithmetic and logic functions. This set of hardware will perform various
functions on data depending on control signals applied wo the hardware. In the ong-
inal case of customized hardware, the system accepts data and produces results
(Figure 3.1a). With general-purpose hardware, the system acoepts data and control
signals and produces resulis Thus, mstead of rewinng the hardware for each new
program, the programmer merely needs (o supply a new sel of control signals,

Huow shall control signals be supplicd? The answer is sumple but subitle. The entire
program is actually a sequence of steps At each step, some arithmetie or logical opera-
tion is performed on some data. For each step, a new set of control signals is necded.
Let us provide a unigue code Tor cach possible set of conrol signals, and et us add o
the general-purpose hardware a segment that can accept a code and generate control
signals (Figure 3.1h).

Programming is now much easier, Instead of rewiring the hardware for each
new program, all we need to do s provide a new sequence of codes. Each code s, in
effect. an instruction, and part of the hardware interprets cach instruction and gen-
erates control signals€lio distinguish this new method ol PrOEraimming, i scquence
of codes or instructions is called _L!_ﬂu_ﬂﬂ,} -

Figure 3 1h mdicates two major components of the system: an instruction
mterpreter and a module of general-purpose arithmetic and logie functions. These
twa constitute the CPUL Several uther components are needed 1o vield a functioning
computer. Data and instructions must be put into (he system. For s we negd some
sort of impul module. This module contains basie g imponents for accepting Jata and
mstructions in some form and converting them into an iternal lorm of signals
usable by the system. A means of feporling, resulis s peeded, and thas s n the lorm
of an outpul module, Taken together, these are relerred w as 260 CARN OIS




Sequence us
arithmetic KEsue /
and logic

DData
Functioms

{a) Programning in hardwarc

Resulis /

(b) Programming in sol‘t}u:nre

Figure 3.1 Hardware and Software Approaches
| bring instructions and

_An input, device wil
t invariably executed sequentially; it may
tion). Similarly, operations on data may
{atimeina predctcnninﬁd sequence.
“Iv both instructions and data. That
sh it from external storage or
ame memory could be used

One moTe component
data in sequentially. But a program is.no
jump around (e.g. the [AS jump instruc
require access to more than just one element a
Thus, there must be a place to store temporarily
module is called memory. or main memory 1o distingui
peripheral devices. Von Neumann pointed out that thﬁ s

to store both instructions and data.
Figure 3.2 illustrates these top-level component
among them. The CPU exchanges data with memory.
makes use of two internal (to the CPU) registers: a memory address register
(MAR), which specifies the address in memory for the next read or write, and a
memory buffer register (MBR), which contains the dala to be written into memory
or receives the data read from memory. Similarly, an 1/0O address register (HOAR)
specifies a particular 170 device. An 1/O buffer (I/OBR) register is used for the
exchange of data between an 1/0 module and the CPU. '
A memory module consists of a set of locations, d r i
bf:_n:d aciu:!rcsacs. Each location contains a binary numh;ﬁt?;? ::nsgglii?éial:ytggnl'
either an instruction or data. An /O module transfers data from external di;ces ta{:‘;

CPU and memory.and vice versa, It contains internal buffers for temporarily holding

these data until they can be sent on.
Having looked briefly at ﬂu:se, major components, We now turn Lo an overview
nents function together to execule programs

s and suggests the interactions
For this purpose, it typically

of how thesc compa

e
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CPU Main memo
- i 4 ’
System . f
pC |. .| mar || bus . !
= = Instruction i
; i Instruction .
IR MBR i
(ki | YO AR A '
'.\E::cvu’ﬂnn,}l-'-" i
L) /O BR _—
< e b T e Data
: ~ - Data
: n—2
n=1
PC = ngnm counter
IR = [Instruction register
MAR = Memory address register
MBR = Memory buffer register
I/O AR = Input/output address register
VOBR = Ipp_ut.r'uutput bitfTer register

;ﬁg:u-'rc 3.2 Computer Components: Top-Level View
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Feteh eyele Eavcule cycle

= HALT

. Execule
" Instrugtion -

Fetch next
instructlon

( START b——-—

Figure 3.3 Basic Instruction Cycle

in Figure 3.3 The two steps are referred (o as the ferch eycle and the execute cycle.
Program execution halts only if the machine is turned off, some sort of unrecoverable
ETTOr occurs, or a program mstruction that halts the computer is encountered.

i
&

Anstruction Feteh and Execute r

At the beginning of each instruction cycle, the processor fetches an instruction from
memory. In a typical processor, a register called the program counter (PC) holds the
address of the instruction 1o be fetched next. Unless told otherwise, the processor
always increments the PC afler each instruction fetch 50 that it will fetch the next
instruction in sequence (i.e., the instruction located at the next higher memory
address). So, for example, consider a computer in which each instruction occupies
one 16-bit word of memory, Assume that the program counter is set to location
300. The processor will next fetch the instruction at location 300. On succeeding
instruction cycles, it will fetch instructions from locations 301,302, 303, and so on, This
sequence may be altered, as explained presently. :

The fetched instruction is loaded-into a register in the processor known as |
the instruction register (IR). The instruction contains bits that specify the action
the processor is to take. The processar interprets the instruction and performs the
required action, In general, these actions fall into four categories:

:—-P'ruwssur-mnmoqa: Data may be transferred from Processor to memory or |
from memory to processor. \

=-Trocessor-1/0: Data may be transferred to or from a peri
transferring between the processor and an 1/O module,

*“Data processing: The processor may perform some arithmetic or logic opera-
tion on data.

*~Control: An instruction may specify that the sequence of execution be altered, .
For example, the processor may fetch an instruction from location 149, which
specifies that the next instruction be from Jocation 182. The processor will
remember this fact by setting the program counter 1o 182. Thus, on the next
fetch cycle, the instruction will be fetched from location 182 rather than 150,

pheral device by

An instruclion's exccution ma y involve a combination of these actions.

Censider a simple example using a hypothetical machine that includes the 4
characieristics listed in Figure 3.4. The processor contains a single data register, -
called an accumulator (AC). Both instructions and data are 16 bits long. Thus, it is
convenienl Lo organize memory using 16-bit words, The mstruction format provides
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0 4 15
[

i OT'CDE"C ! Z  Address ] . ‘- |

(a) Instruction format

0 1 15
I P A e ol e SR S e Sl g ;

{ Does ‘ s ¢ M.‘Igﬂlﬂld@‘- 7 = il o i i

F 3 {b) Integer format

Program counter (PC) = Address of instruction
Instruction register (IR) = Instruction being executed

;}ccurnulalm (AC) = Temporary storage

(c) Internal CPU registers

0001 = Load AC from memory
0010 = Store AC 10 memary
0101 = Add 1o AC from memory

(d) Partial list of opcodes
Figure 3.4 Characteristics of a Hypothetical Machine

4 bits for the opcode, so that there can be as many as 2 = 16 different opcodes, and

up to 212 = 4096 (4K) words of memory can be directly addressed.
Figure 3.5 illustrates a partial program execution, showing the relevant por-

tions of memory and processor registers.! The program fragment shown adds the
contents of the memory word at address 940 to the contents of the memory word at
address 941 and stores the result in the latter location. Three instructions, which can
be described as three fetch and three execute cycles, are required:

L7

1. The PC contains 300, the address of the first instruction. This instruction (the

P value 1940 in hexadecimal) is loaded into the instruction register IR and the PC
is incremented. Note that this process involves the use of a memory address
register (MAR) and a memory buffer register (MBR). For simplicity, these
intermediate registers are ignored. d
2. The first 4 bits (first hexadecimal digit) in the IR indicate that the AC is to be
loaded. The remaining 12 bits (three hexadecimal digits) specify the address
(940) from which data are to be loaded.

3. The next instruction (5941) is fetched from location 301 and the PC is incremented.

4. The old contents of thelAC and the contents of location 941 are added and the
result is stored in the AC. :

5. The next instruction (2941) is fetched from location 302 and the PC is incremented.

6. The contents of the AC are stored in location 941,

v

'Hexadecimal notation is used, in which ench digit represents 4 bits. This is the most convenient notation
for representing the contents of memory and registers when the word length is a multiple of 4. Sec
Appendix A for a basic relresher on number systems (decimal, binary, hexadecimal).
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Memory CPU registers Memory CI'U registers
wof1 940 3 0 0]pPC 0|1 9.4 0 a0 1)rc
30I59411 AC| 201|594 1 000 3]AC
0202 9 41 19 4 g|lIr 3nggy4lr194ﬂm
940[0 0 0 3 920[0 0 0 3}
941|0 0 0O 2 04110 0.0 2
Step 1 Step 2
Memory CPU registers "Memory CPU registers
300[1 9 4 0 3 0 1]pC oo[19 4 0 30 2]pC
301(5 9 41 00 0 3[AC|301[5 9 41 000 5|ac
302[(2 9 41 59 4 1]IR 1022941(594IJIR
94010 0 0 3 20|10 00 3 34+2=5
9a1[00 0 2 541 [0.0 0 2}~
Step 3 Stepd. |
Memory CPU registers Memery CPU registers
300|179 4 0 3.0 2|PC 001 9 40 3.0 3|pC
301529 4 1 0.0 D:5|AC|3D1{:5°9-4 1 000 5|AC
//£2 2-9 4 1}—-{29.4-1]IR [302(2°9 4 1] 2.9 4 1|IR

940 |0-0.0, 3 940000-3

941 (00" D 2 941 |0 0 05

Steps Step6

1
Figure 3.5 Example of Program Execution (contents of memory and
registers in hexadecimal)
e

In this example, three instruction cycles, cach consisting of a fetch cycl

execute cycle, are needed to add the contents of location 940 to the content
With a more complex sct of instructions, fewer cycles would be needed. Sor
processors, for example, included instructions that contain more than one-

address. Thus the execution cycle for 2 particular instruction on such pr
could involve more than one reference to memory. Also, instead of memo;
ences, an instruction may specify an I/O operation.

For example, the PDP-11 processor includes an mstructlon exXpress

bolically as ADD B,A, that stores the sum of the contents of memory loc:
and A into memory location A. A smgle instruction cyc[c with the fc

steps OCCurs:

Fetch the ADD instruction.
Read the contents of memory location A into the processor.

Read the contents of memory location B into the processor. In order
contents of A are not lost, the processor must have at least two regit
storing memory values, rather than a single accumulator.

Add the two values.

Write the result from the processor to memory location A.
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' Operand
fetch

Muluple
resulls

Mulviple
operands

Operand
address
caleulation

Instruction
add ress
caleulation

Return for siring
or vector dala

Instruction complete,
feich mext instruction

Figire 36 Instruction Cyele State Diagram

Thus, the execution cyvcle for a particular instruction may involve more than
one reference to memory. Also, instead of memory references, an instruction may
specify an /O operation. With these additional considerations in mind, Figure 3.6
provides a more detailed look at the basic instruction cycle of Figure 3.3. The figure
is in the form of a state diagram. For any given instruction cycle, some states may
be null and others may be visited more than once. The states can be described as
follows:

"+ Instruction address calculation (iac): Determine the address of the next instruc-
tion to be executed. Usually, this involves adding a fixed number to the address
of the previous instruction. For example, if each instruction is 16 bits long and
memory 15 organized into 16-bit words, then add 1 1o the previous address. If,
instead, memory is organized as individually addressable 8-bit bytes, then add
2 to the previous address,

* Instruction fetch (if): Read instruction from its memory location into the
Processor.

+ Instruction operation decoding (iod): Analyze instruction to determine type
of operation 1o be performed and operand(s) to be used.

* Operand address calculation (oac): If the operation involves reference 1o
an operand in memory or available via I/, then determine the address of
the operand.

* Operand fetch (of): Fetch the operand from memory or read it in from 1/0).

s Daia operation {do): Perlonn the operation indicated in the instruction,

Operand store (osk: Wrile the result into memory or out to 1/0.

States in the upper part of Figure 3.6 involve an exchange between the proces-
sor and either memory or an /O module. States in the lower parl of the diagram
involve only internal processor operations. The oac stale appears twice, because
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= Zuring that state is fundamentally the same 10 both cases, an y
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B = Also note that the diagram allows ff:rr mulhplle npgl?ﬂiﬂeil;mp]e‘ 15{: ks
0 Focause some insiructions on some machines require 1]1:;.f il e o aae OF.
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' ' sults in the following sequenc
o mslru;t:iqn ADD AB re i
B o i i i specify an operation 10 b&
T chines, a single instruction can sp : _ :
T% i, et oo : { numbers or a string (one-dimen

performed on a vector (one-dimensional anray%m
sional array) of characters. As Figure 3.6 indica
operand fetch and/or store operations.

_/h{:arrupts

Virtually gll computers provide a mechanism by which other r;";‘jl‘flfs t[;‘; oj;;g::’lgg?
may interrupt the normal processing of the processor. Tablc 1 lists e
mon classes of interrupts. The specific nature of these interrupts is examine ’
in this book, especially in Chapters 7 and 12. However, we need to introduce t hz
coneept now to understand more clearly the nature of the instruction cycle and t
implications of interrupts on the interconnection structure. _T‘ne reader nee:d not
be concerned at this stage about the details -of the generation and processing of
interrupts, but only focus on the communication between modules that results
from interrupts. : o

Interrupts are provided primarily as a way to improve processing efficiency.
For example, most external devices are much slower than the processor. Suppose
that the processor is transferring data to a printer using the instfuction cycle
scheme of Figure 3.3. After each write-operation, the processor must pause and
remain idle until the printer calches up. The length of this pause may be on the
order of many hundreds or even thousands of instruction cycles that do not
involve memory. Clearly, this is a very wasteful use of the processor.

Figure 3.7a illustrates this state of affairs. The user program performs a series
of WRITE calls interleaved with processing. Code segments 1, 2, and 3 refer to
sequences of instructions that do not involve I/O. The WRITE calls are to an I/'O

tes, this would involve repetitive

Table 3.1 Classes of Interrupis
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program thai 1 a system utility and that will perform the actual VO operation. The
11O program consists of three sections:

« A sequence of instructions, labeled 4 in the figure. to prepare for the actual 1/O
operation ‘This may include copying the data to be outpul into a special buffes
and preparing the parameters for a device command.

* The actual IfO command. Without the use of interrupis, once this command is
issued. the program must wait for the O device 10 perform the requested func-
tion (or periodically poll the device). The program might wait by simply repeal-
edly performing a test operation to determine if the IYO operation is done.

= A sequence of instructions, labeled 5 in the figure, o complete the operation.
This may include setting a flag indicating 1he success or failure of the operation.

Because the /O operation may take a relatively long time to complete, the /0O
program is hung up waiting for the operation to complete; hence, the user program
is stopped at the point of the WRITE call for some considerable period of time.

Interrupts and the Instruction Cycle With interrupts. the processor can he
engaged in executing other instructions while an /O operation is in progress. Consider
the flow of control in Figure 3.7b. As before, the user program reaches a point at which
it makes a system call in the form of a WRITE call. The [/O program that is invoked in
this case cansists only of the preparation code and the actual /O command. After these
few instructions have been executed, control returns to the user program. Meanwhile,
the external device is busy accepting data from computer memory and printing it. This
[/0 operation is conducted concurrently with the execution of instructions in the user
program. R

When the external device becomes ready 1o be serviced, that is, when it is ready
10 accept more data from the processor, the 1/O module for that external device sends
an interrupr request signal to the processor. The processor responds by suspending
operation of the current program; branching off 1o a program to service that particu-
lar /O device. known as an interrupt handler, and resurning the original execution
after the device is serviced. The points at which such interrupts occur are indicated by
an asterisk in Figure 3.7b. ) .

From the point of view of the user program, an initm'l.lpt is just that: an inter-
ruption of the normal sequence of execution. When the interrupt processing is com-
pleted, execution resumes (Figure 3.8). Thus, the user program does not have to contain
any special code to accommodate interrupts; the processor and the operating syslem are
responsible for suspending the user program and then Tesuming it at the same point.

To accommodate interrupts, an interrupi cycle is added 1o the instruction cycle, as
shown in Figure 3.9. In the interrupt cycle, the processor checks 10 see if any interrupts
have occurred, indicated by the presence of an interrupt signal. If no interrupts are
pending, the processor proceeds 1o the fetch cycle and fetches the next mstruction of
the current program. If an interrupt is pending, the processor does the following:

¢ It suspends execution of the current program being executed and saves jts
context. This means saving the address of the next instruction to be executed
(current contents of the program counter) and any other data relevant to the
processor’s current activity.

* It sets the program counter to the starting address of an interrupt handler routine.
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User program

Interrupt handler
|
2 —
I : .
nermupt
oocurs here i+ i I
M

Figure 38  Transfer of Control via Interrupts

Itis clear that there is some overhead involved in this process. Extra instructions
must be executed (in the interrupt handler) to determine the nature of the interrupt

€ action. Nevertheless, because of the relatively large

Fetch cycle Execute cyele Intarmsnd ..t
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[ O

fo} ®

Processor I 1o @ I ]:gft i
Dpc m

wait aperation

Tune

®
- ol
® TS [l
®

Proci:sslur [ /O

operation

{b) With interrupts
f

{a) Without interrupts
" Figure 3,10 Program Timing: Short 1/O Waii

amount of time that would be wasted by simply waitin% on an I/O operation, the-
processor can be employed much more efficiently with the use of interrupts.

To appreciate the gain in efficiency, consider Figure 3.10, which is a timing
diagram based on the flow of control in Figures 3.7a and 3.7b. Figures 3.7b and 3.10
assume that the time required for the I/O operation is relatively short: less than the time
to complete the execution of instructions between write operations in the user pro-
gram. The more typical case, especially for a slow device such as a printer, is that the /O
operation will take much more time than executing a sequence Qf user instructions.
Figure 3.7c indicates this state of affairs. In this case, the user program reaches the
second WRITE call before the I/O operation spawned by the first call is complete, The
result is that the user program is hung up at that point. When the preceding 1/O opera-
tion is completed, this new WRITE call may be processed, and a new 1/O operation
may be started. Figure 3.11 shows the timing for this situation with and without the use
of interrupts. We can see that there is still a gain in cfficiency because part of the time
during which the I/O operation is underway overlaps with the execution of user

instructions.
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vo @

operation o

o
opecration

B o o e

(b) With interrupts

e P

(a) Without interrupis
Figure 3.11 Program Timing: Long 1/O Wait
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Figure 3.12 shows a revised instruction cycle state diagram that includes inter-
rupt cycle processing. '

Mailtiple Interrupts The discussion so far has focused only on the occurrence of
a single interrupt. Suppose, however, that multiple interrupts can occur. For|
example, a program may be receiving data from a communications line and printing
results. The printer will generate an interrupt every time that it completes a prin' |
operation. The communication line controller will generate an interrupt every time.
a unit of data arrives. The unit could either be a single character or a block, depend- -
ing on !hlc nature of the communications discipline. In any case, it is possible ford |
communications interrupt to occur while a printer interrupt is being processed:
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Two approaches can be taken to dealing with multiple interrupts. The [irst is
to disable interrupts while an interrupt is being processed. A disabled intervup! simply
means that the processor can and will ignore that interrupt request signal. If an inter-
rupt occurs during this time, it generally remains pending and will be checked by the
processor after the processor has enabled interrupts. Thus, when a uscr program .
cuting and an interrupt occurs, interrupts are disabled immediately. After the interrupt
handler routine completes. interrupts are enabled before resuming the user program.,
and the processor checks to see if additional interrupts have occurred. This approach is
nice and simple, as interrupts are handled in strict sequential order (Figure 3.13a).

The drawback to the preceding approach is that it does not take into account rel-
ative priority or time-critical nceds. For example, when input arrives from the communi-
cations line, it may need (o be absorbed rapidly to make room for more input. If the first
batch of input has not been processed before the second batch arrives, data may be lost.

A second approach is to define priorities for interrupts and to allow an interrupt
of higher priority to cause a lower-priority interrupt handler to be itself interrupted
(Figure 3.13b). As an example of this second approach, consider a system with three
I/O devices: a printer, a disk, and a communications line, with increasing priorities of 2.
4,and 5, respectively. Figure 3.14, based on an example in [TANE97], illustrates a possi-
ble sequence. A user program begins at 1 = Q. At = 10, a printer interrupt occurs;
user information is placed on the system stack and execution continues at the printer -
interrupt service routine (ISR). While this routine is still executing, al ¢+ = 15, a com-
munications interrupt occurs. Because the communications line has higher priority than
the printer, the interrupt is honoréd. The printer ISR is interrupted, its state 1s pushed
onto the stack, and execution continues at the communications ISR. While this routine

is executing, a disk interrupt occurs (¢ = 20). Becausc this interrupt is of lower priority,
it is simply held, and the communications ISR runs to completion.

When the communications ISR is complete (¢ = 25), the previous processor

state is restored, which is the execution of the printer ISR. However, before even a
single instruction in that rq_utinc_ can be executed, the processor honors the l}ighera
priority disk interrupt and control transfers to the disk ISR. Only when that routine
is complete (t = 33) is the printer ISR resumed. When that routine completes

(t = 40), control finally returns to the user program. ;

ﬂFuuctim]

Thus far, we have discussed the operation of the computer as controlled by the proces-
sor, and we have looked primarily at the interaction of processor and_mc_mory. Tl?e
discussion has only alluded to the role of the I/O component. This role is discussed in
detail in Chapter 7, but a brief summary is in order here. - _

An /O module (e.g..a disk controller) can exchange data directly tmth the proces-
sor. Just as the processor can initiate a read or write with memory. de_s:gnatmg the ad-
dress of a specific location, the processor can also read dleua from or write data to an /O
module. In this latter case, the processor identifies a specific c!cwce that is controlled by a
particular /O module. Thus, an instruction sequence similar in form to that of Figure 3.5
could occur, with 1/ instructions rather than memory-referencing instructions

In some cases. it is desirable Lo allow I/O exchanges to occur clmf:cﬂy with mem-
ory. In such a case, the processor grants {0 an I/O module the authority to read from
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Figure L14  Example Time Sequence of Multple Im:rrupty

or write to memory. so that the VO-memory transfer can occur without tying up the
processor. During such a transfer, the /O module issues read or wrile commands i
memory. relieving the processor of responsibility for the exchange. This operation s
“known as direct memory access (DMA) and is examined Chapter 7. ‘ '

3.3 INTERCONNECTION STRUCTURES
a ' I

-
A compuler consists of a set of components or modules of three basic types (proces
sor. memory. I/O) that communicate with each other. In effect, a computer is a net

work of basic modules Thus, there must be paths for connecting the modules
The collection of paths connecting the various modules is called the interconnec-

tion structure. The design of this structure will depend on the exchanges that must be

made between modules
Figure 3.15 suggests the types of exchanges that are needed by indicating the

major forms of input and output for each module type:
« Memory: Tvpically, a memory module will consist of N words of equal |E:$ ;

~"  Each word is assigned a unique numerical address (0, 1 N —1).AYES
of data can be read from or wrilten into the memory. The nature of the oper¥
tion 1s indicated by read and write control signals. The location for the oper®

ton 1s specified by an address.
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A

i )/110 module: From an internal (to the computer system) point of view, /O is
‘¢ functionally similar to memory. There are two operations, read and write. Fur-

ther. an 1/O module may control more than one external device. We can refer

to each of the interfaces to an external device as a port and give each a unique
address (e.g;0,1,..., M — 1). In addition, there are external data paths for
the input and output of data with an external device. Finally, an /O module

/:_z'y be able to send interrupt signals to the processor.

i

]

Processor: The processor reads in instructions and data, writes out data after

processing, and uses control signals to control the overall operation of the

system. [t also receives interrupt si gnals

The preceding list defines the data to be exchznged. The interconnection
structure must support the following types of transfers:

_*"Memory to processor: The processor reads an instruction or a umit of data

from memory.

¢ “Processor to memory: The processor writes a unit of data to memory.
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/‘?' VO to processor: The processor reads data from an /0 device via an /O maodule,
* Processor to 1/0: The processor sends data to the 1/O device
'/Hﬂ to or from memory: For these two cases, an 1/O module is alfowed to

ethan_ge data directly with memory, without going through the processor
using direct memory aceass (DMA). r

Over the years, a number of interconnection structures have been tried. By far

thf: most common is the bus and various multiple-bus structures. The remainder of
this chapter is devoted to an assessment of bus siructures.

4 BUS INTERCONNECTION '

g} ‘bus is a communication pathway connecting two or more devices A key character-
istic of a bus is that it is a shared transmission medium. Multiple devices connect to the
bus, and a signal transmitied by any one device is available for reception by all other
devices attached to the bus If two devices transmit during the same time perigd, their
signals will ov p-and become garbled. Thus, only one device at a time can SlcCess-
fully transmit - ==

Typically, a bus consists of multiple communication pathways, or lines Each line
is capable of UMSHMW%_LM& binary (. Over time, a
sequence of binary digits can be transmitted across a single line. Taken together, sev-
cral lines of a bus can be used to transmit binary digits simultaneously (in parallel).
For example, an 8-bit unit of data can be transmitted over eight bus lines
8 Computer systems contain a number of different buses that provide pathways
between components at various levels of the computer system hierarchy(A bus that
connects major computer components (processor, memory, O) is called a system
bus. jIhe most common computer interconnection structures are based on the use of
ONE Or more system husg/

. Bus Structure,

f:"‘k system bus consists, typically, of from about 50 to hundl@ﬂs-?-f_sﬂl’_‘;u?;‘c..__ﬁ.l%&ch line
is assigned a particular meaning or function. Although there are many different bus de-
signs, on an.}r bus the lines can be classified into three functional groups (Figure 3.16):

Bus
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r i 3 istribution lines th
data, address, and control lines In addition, there may be power distrib
¢ power 1o the attached modules. _ o< The:
S P:‘:qu lines provide a path for moving ﬁfﬂ’}ﬂ‘f‘?ﬂlﬂ?ﬁ%’fﬁ}dﬁg sy
lines, collectively, are called the d_{rf brex, The dafﬂ bus ma}:j ign;;i}]-.c_wﬁﬁﬁf lb
hundreds of separate lines, the number of lir les being referred. i s
data bus. Becauss each line can carry only 1 tgs-l al a lime, the n#%]_ B
mines how many bits can be transferred at a time. The width of the data bus1s a &

1 svsicl - e i bus |
Taclor in delermining overall system performance. For example, lfnl-f:fstd:r::css o
8 bits wide and each instruction is 16 bils _l:_:lp_g__, t'f_I]en the processor T _Aaccess 1
memory module twice during each instruction cycle. o |
mEm]?I%E";?;ﬁs lines are -usE::d to designate the source or destination of tJ:n:2 iall'tsa lz
the data bus For example, if the processor wishes to read a word (3, 16, ln::rc& et
dg_tgﬂ;gm?:;mpm it puts the address of the desired word on the address lin i
the width of the address bus determines the maximum possible memory capaﬁ Gy 5
Syster. Fu;'lhermure, the address lines are g]:ngral]y,‘al.so Ius::d tgu%ﬁ‘fﬁm hu&@:ﬂﬂ;
ically, the higher-order hits are used to select a particular mad .
Eﬂp |U_WEFI£I1Q!_E@!3_§§L¢E.§_TEEEGHM@JLLLQ,@H__M|h___lﬂ_ the mnd.ulci Fol
example, on an §-bit address bus, address 01111111 and below might reference loca
tions in a memory module (module 0) with 128 words of memory, and addres:
10000000 and above refer to devices.attached to an /O module (module 1),
" /"The control lines are used to control the access (o and the use of the data and
address lines. Because ‘the data and address lines are shared by all components,
ieTE muist be a means of controlling their use. Control signals transmit both com-
mand and timing information between system modules. Timing signals indicate the
validity of data and address infarmation. Command, signals specify operations to be
performed. Typical control lines include-._

;/fﬁtﬁlﬁr}' wrile: Causes data on _t'}h’é bus to be written into the addressed location
* -Memory read: Causes data from the addressed location to be placed on the bus
e 1O write: Causes data on the bus to be output to the addressed [/O port
* IO read: Causes data from the addressed L'O port.to ke placed on the bus
* Transfer ACK: Indicates that data have been accepted from or placed on the bus
* Bus request: Indicates that a'module nceds to'gain'control of the bus
¢+ Bus grant: Indicates that a requesting modula has beén granted control of the bus
* Interrupt request: Indicates that an interrupt is pending ‘
* Interrupt ACK: Acknow] edges that the pending interrupt has been recognized
* Clock: Used to synchronize operations ‘
Reset: Initializes all modules '

The operation of the bus is as follows If one module wishes 10 send

: p : data fo
another, it must do two thin gs: (1) Obtain the use of the bus, and (2) mnsferm-.

the bus, If gne n':gdule.wfsgg_:g.rﬁquesLdNa from anoifar it e e
— L 1dla 1 -module, it T/ T(1)
the use of the bus, and {2) transfer a reéquest to the ather vey the Al

. i s Sitiptoseet - over the S
control and dddress lines. [Tmdst then wait for that second module (o sendilpﬁ{:}“rd_mft%me
Physically, the system bus js actually a number of parale] :

s electrica] oo q
tors. In the classic bus arrangement, these conductors are metal nduc

lines etched in a
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Hure

Boards

Fipure 3.17 Typical Physical Realization of 2 Bus
Architecture

card or board (printed circuit board). The bus extends across all of the system con,
ponents, each of which taps into some or all of the bus lines The classic np. .
arrangement is depicted in Figure 3.17. In this example, the bus consists of WO ver.
tical columns of conductors. At rcgular intervals along the columns, there ue g
‘attachment points in the form of slots that extend out horizontally to SUpport 5
printed circuit board. Each of the major system COMPORENS OCCUpies one or mye
boards and plugs into the bus at these slots. The entire arrangement is housed jp
chassis. This scheme can still be used for some of the buscs associated with i com.
puter system. However, modern systems tend to have all of the Major componenss
on the same board with more elements on the same chip as the processor. Thyg a
on-chip bus may connect the processor and cache memory, whereas an on-board bys
may connect the processor to main memory and other components

This arrangement is most convenient. A small com puter system may be acqui
and then expanded later (more memory, more 1/O) by adding more boards If a com-

ym:m on a board fails, that board can easily be removed and replaced.

Multiple-Bus Hierarchies

If a great number of devices are connected to the bus, performance will suffer. Thee
are Iwo main causes:

1. In general, the more devices attached to the bus, the greater the bus length and
hence the greater the propagation delay. This delay determines the time 4
takes for devices to coordinate the use of the bus. When control of the be
passes from one device (o another frequently, these propagation delays & =
noticeably affect performance. '
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2, ‘The bas may hecome a bottleneck an the apprepnte data transfer demand

approaches the capacity of the bus. This problem can be cnunlcrv(! to some
extent by incrensing the data rite that the bus ean carry and by using wider
pusen (e, inereasing the data bus from 32 10 64 bits), However, because the
rutes penerated by attached devices (e, praphics and video controllers,

duti ; 5
interfaces) are prowing rapidly, this is a race that a sinple bus is ulti-

network
muntely dentined 1o lose,

Accordingly, most compuler systems usc multiple buses, gencrally laid out in a
hicrarchy, A typical raditionsl structure is shown in Figure 3.18a. There is a local bus
that connects the processor 1o u cache memory and that may supporl one or more
Jocal devices The eache memory controller connects the cache not only to this local
bus, but 1o 4 system bus to which are attached all of the main memory modules. As
will be discussed in Chapter 4, the use of a cache strugture insulates the processor
from i regquirement to access main memory frequently. Hence, main memory can be
moved off of the local bus onto a system bus. In this way, /O transfers to and from
the main memory across the system bus do not interfere with the processor’s activity.

It is possible 10 connecet 1O controllers directly onto the system bus. A more
efficient solution is (o make use of one or more expansion buses for this purpose. An
expansion bus interface buffers data transfers between the system bus and the I/O
controllers on the expansion bus, This arrangement allows the system to support a
wide varicty of I/O devices and at the same time insulate memory-10-processor traf-
fic from /O traffic, p

Figure 3.18a shows some Lypical examples pf 1/O devices that might be
attached 1o the expansion bus. Network connections include local arca networks
(LLANs) such as a 10-Mbps Ethernet and connections to wide area networks
(WANSs) such as a packet-switching petwork. SCSI (small compuler system inter-
face) is itself @ type of bus used to support Jocal disk drives and other peripherals.

A serial port could be used to support a printer or scanner.

‘This traditional bus architecture is reasonably efficient but begins to break
down as higher and higher performance is secn in the VO devices. In response to
these prowing demands, a common approach taken by industry is to build a high-
speed bus that is closely integrated with the rest of the system, requiring only a
bridge between the processor's bus and the high-speed bus. This arrangement is
sometimes known as a mezzanine architecture. :

~ Figure 3.18b shows a typical realization of this approach. A gain, there is a local bus

that connects the processor 10 a cache contreller, which is in tum connected 10 a system
bus that supports main memory. The cache controller is integrated into a bridge, or
buffering device, that connects to the high-speed bus This bus supports connections
to high-speed LANSs, such as Fast Ethernet at 100 Mbps, video and graphics workstation
controllers, as well as interface controllers to local peripheral buses, including SCSI and
FireWire. The latter is a high-speed bus arrangement specifically designed to support
high-capacity 1/0 devices. Lower-specd devices are still supported off an expansion bus,
with an interface buffering traffic between the expansion bus and the high-speed bus.

The advantage of this arrangement is that the high-speed bus brings high-
demand devices inlo closer integration with the processor and at the same time is
independent of the processor. Thus, differences in processor and high-speed bus
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Figure 3.18 Example Bus Configurations

speeds and signal line definitions are tolerated. Changes in processor architecture
do not affect the high-speed bus, and vice versa.

Elements of Bus Design

Although a varicty of different bus implementations exist, there are a few basic pa-
rameters or design elements that serve to classify and differentiate buses. Table 3.2

lists key elements.
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Lable 3.2 Elements of Bus Design

Tepe L s WAt T

* ‘Dedicated i - 2 Address. ' i
“Multiplexed ral) iy '-D_gm_"

Method of Arbitration  Data Transfer Type. -1 |
Centraiad ="  Read A
Distributed L Wi : _..-'_'_'
T,!mln: i i ' : - .' 1 ; - 5 _"Fmd-llﬂﬂdi[y'wi& ._r.-.
i Smchiomoi ¢ [ ks PRI e

Bus lines can be separated into 1wo generic types: dedicated Iand mulli-
ficated bus line is permanently assigned either to one function or to a
et of computer components.
mple of functional dedication is the use ol separate dedicated address
s, which is common on many buses. However, it is not essential. For
Iress and data information may be transmitted over the same set of
n Address Valid control line. At the beginning of a data transfer, the
aced on the bus and the Address Valid line is activated. At this point,
has a specified period of time to copy the address and determine if it is
d module, The address is then removed from the bus, and the same bus
are used for the subsequent read or write data transfer. This method of
ne lines for multiple purposes is known as fime multiplexing.
vantage of time multiplexing is the use of fewer lines, which saves space
cost. The disadvantage is that more complex circuitry is neaded within
:. Also, there is a potential reduction in performance because certain
hare the same lines cannot take place in parallel.
i dedication refers to the use of multiple buses, cach of which connects only
1wodules. A typical example is the use of an /O bus to interconnect all /O
; bus is then connected to the main bus through some type of VO adapier
‘potential advantage of physical dedication is high throughput, because
wis contention. A disadvantage is the increased size and cost of the system.

“Arbitration In all but the simplest systems, more than one module may

of the bus For example, an /O module may need to read or write directly
vithout sending the data to the processor. Because only one unit at a time
dly transmit over the bus, some method of arbitration is needed. The vari-
. can be roughly classified as being cither centralized or distributed. In a
heme, a single hardware device, referred 1o as a bus controller or arbiter, is
or allocating time on the bus The device may be a separate module or part
ssor. In a distributed scheme. there is no central controller. Rather, each
ains accass control logic and the modules act together to share the bus. With
s of arbitration, the purpase is to designate one device, cither the processor
ydule, as master. The master may then initiate a data transfer (e.g., read or
sme other device, which acts as slave for this particular exchange.
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and, after a delay of one cycle, places the data en the data lines, The processor reads
the data from the data lines and drops the read signal. For 2 write operation, the
processor puts the data on the data lines at the start of the second cycle, and issuesa |}
write command after the daia lines have stabilized. The memory module copies the *
information from the data lines during the third clock cycle. i

With asynchrencus timing, the occurrence of one event on a bus follows and 4
depends on the occurrence of a previous event. In the simple read example of
Figure 3.20a, the processor places address and status signals on the bus. After paus-
ing for these signals to stabilize, it issues a read command, indicating the presence of
valid address and control signals. The appropriate memory decodes the address and
responds by placing the data on the data line. Once the data lines have stabilized,
! the memory module asserts the acknowledged line 1o signal the processor that the

R S Statussignals ~ ©  >——

lines

Adiﬁ _< - . .Stable address Sk >—

1

R ——\ .

f

lines - —< - Validdata _.ﬂ>‘

-

Acknowledge - —\ , /———~

(a) System bus read cycle

Status iy RS T T e e e s
lines vl -"r,"ﬁfﬂﬁ]S&'[ﬁl‘lﬂiﬂ ':-~"'.".'_'-:.- Ty S
lines —< vt ot Stable address -0 >__

Data T S s ;

lines R L L S e —
Write ) /
Acknowledge == -

(b) System bus write cycle
Figure 3.20 Timing of Asynchronous Bus Operations
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dara are available. Onee the master has read the data from the data lines. it deasserts
the read signal. This causes the memory module to drop the data and ;jl:_'k nowledpe
lines Finally, once the acknowledpe line is dropped, the master remuves the address
information, |

Figure 3.20b shows a simple asynchronous write operation. In this case, the mas-
ter places the data on the data line at the same time that is puts signals n|I1 the stalus
and address lines The memory module responds 10 the write command by copying
the data from the data lines and then asserting the acknowledge line, The master then
drops the write signal and the memory module drops the acknowledge signal

Synchronous timing is simpler to implement and test. However, it is less flexi-
ble than asynchronous timing. Because all devices on a synchronous bus are tied 10
a fixed clock rate, the system cannot take advantage of advances in device perfor-
mance. With asynchronous timing, a mixture of slow and fast devices, using older
and newer technology, can share a bus.

Bus Width We have already addressed the concept of bus width. The width of the
data bus has an impact on system performance: The wider the data bus, the greater
_:he number of bits transferred at one time. The width of the address bus has an
impact on system capacity: The wider the address bus, the greater the range of loca-
tions that can be referenced.

Data Transfer Type Finally, a bus supports various data transfer types, as illustrated
in Figure 3.21. All buses support both write (master to slave) and read (slave to master)
transfers. In the case of a multiplexed address/data bus, the bus is first used for specify-
ing the address and then for transfernng the data. For a read operation, there is typi-
cally a wait while the data is being fetched from the slave 1o be put on the bus. For
either a read or a write, there may also be a delay if it is necessary to go through arbi-
tration to gain control of the bus for the remainder of the operation (1.e., seize the bus
to request a read or write, then seize the bus again to perform a read or write).

In the case of dedicated address and data buses, the address is put on the
address bus and remains there while the data are put on the data bus. For a write
operation, the master puts the data onto the data bus as soon as the address has sta-
bilized and the slave has had the opportunity to recognize its address. For a read
operation, the slave puts the data onto the data bus as soon as it has recognized its
address and has fetched the data.

There are also several combination opecrations that some buses allow,
A read-modify-write operation is simply a read followed immediately by a write
to the same address The address is only broadeast once at the heginning of the
operation. The whole operation is typically indivisible to preveni any acccss to
the data element by other potential bus mast:rs._'Ihc pnqcipnl purpose of this
capability is to protecl shared memory resources in a multiprogramming sysiem

(see Chapter 8).
Read-after-
immediately by a read from the
ecking purposes. )

fﬂrmcﬂifnﬂ: ﬂ:m systsrfjs aﬁso support a block data yanafer. In this case, one address
cycle is followed by n data cycles. The first data item is transferred to or from 12; 5]-:?&.:1.-
fied address: the remaining data items are transferred to or from subsequent addresses.

write is an indivisible operation consisting of a write followed
same address. The read operation may be per-
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Address Data ‘
(1stevele) | (2nd eyele)

Write (multiplexed) operation

Access
 time

Address Data

Read (multiplexed) operation

Addness | IF‘““ Dita

________ | read: | write
Read-modily-write operation

rfiddn:ss Dum e

 lwrite | read

Read-alter-write operation
. Address Data Dﬂ_.hél- Data:
Block data transfer
Types

Fignre 321  Bus Data Transfer

1-3'5 PCI :

The peripheral component interconnect
independent bus that can function as a
other common bus specifieations, PCI delivers betier sysiem
speced 1O subsystems (e.p., praphic display adapters, network

Address | Dataand address
sent by master

R in same cycle over
i separate bus lines.

Write (non-multiplexed) operation

Time

" Address

-

.i Data

Read (non-multiplexed) operation

(PCI) is a popular high-bandwidth, processor-
mezzanine or peripheral bus, Compared with
n performance for high-
interface controllers, disk

controllers. and so on). The current standard alle the use of up to 64 data Enex ai
H 5 0

66 MHz, for a raw transfer rate of 528 Mlywess, or 4.224 Gbps. But it is not
speed that makes PCI attractive, I'CI s specifically designed 1o meet e
the YO requirements of modern systems; il requires very

just a high
; €l economically
few chips to implement and

supports other buses attached 1o the PCI byg

i 1 i e e i i S et P
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Intel began work on PCI in 1990 for its Pentium-based systems. Inte] o0,
released al! the patents to the public domain and promoted the creation of an indusipy
association. the PCI S1G. to develop further and maintain the com patibility of the pcj
specifications The result is that PCI has been widely adopted and is findin £ increasing
use in personal computer. workstation, and server systems. Because the specification
is in the public domain and is supported by a broad cross section of the MiCTOproces.
sor and peripheral industry, PCI products buiit by different vendors are Compatih]e,

FClI is designed to support a variety of microprocessor-based configurations,
including both single- and multiple-processor systems. Accordingly, it provides ;
general-purpose set of functions. It makes use of synchronous timing and a central.
ized arbitration scheme.

. Figure 3.22a shows a typical use of PCl in 2 single-processor system. A com.
bined DRAM controller and bridge to the PCI bus provides tight coupling with the
processor and the ability to deliver data at high speeds. The bridge acts as a daia
buffer so that the speed of the PCI bus may differ from that of the proccssor’s /0
capability. In a multiprocessor system (Figure 3.22b). one or more PCI configura-
tions may be connected by bridges to the processor’s system bus. The system bus
supports only the processor/cache units, main memory. and the PCI bridges. Again,
the use of bridges keeps the PCI independent of the processor speed yet provides
the ability to receive and deliver data rapidly.

Bus Structure

PCI may be configured as a 32- or 64-bit bus. Table 3.3 defines the 49 mandatory
signal lines for PCI. These are divided into the following funciional groups:

* System pins: Include the clock and reset pins.

* Address and data pins: Include 32 lines that are time multiplexed for addresses
and data. The other lines in this group are used to interpret and validate the
signal lines that carry the addresses and data.

* Interface control pins: Control the timing of transactions and provide coordi-
nation among initiators and targets. i )

* Arbitration pins: Unlike the ather PCT signal lines, these are not shared lines.
Rather, each PCI master has its own pair of arbitration lines that conneet it
directly to the PCI bus arbiter.

* Error reporting pins: Used to report parity and other errors.

In addition, the PCI specification defines 51 optional signal lines (Table 3.4),
divided into the following functional groups:

* Interrupt pins: These are provided for PCI devices that must generate requests
for service. As with the arbitration pins, these are not shared lines, Rather, cach
PCI device has its own interrupt line or lines to an interrupt controller. ™

* Cache support pins: These pins are needed 1o support a memory on PCI that
can be cached in the processor or another device. These pins support snoopy
cache protacols (see Chapter 18 for a discussion of such protocols).

* 64-bit bus extension pins: Include 32 lines that are time multiplexed for addresses
and data and that are combined with the mandatory address/data lines to form

1]
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KEY POINTSES GO
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¢ Computer memory is orgamzed into a hierarchy. At t (clos-

Lo
I:Jr

.IIIEIIIOI}' wmds Ihar. are alre;ady m.the c.aﬂm

]

est 1o the processor) are the processor registers. Next comes one Or mﬂrﬂ
levels of cache, When mull.ip]r:. levels are used, they are denoted L1, L2, ete.
Next comes main memory, which is usually made out of dynamic random-
access memory (DRAM): All of these are considered internal to the com-
puter system. The hierarchy continues with external memory. with the next
level typically being a fixed ‘hard disk, and one or more levels below that
consisting of removable media such as npur:.al disks and tape.

.As one goes down the memory hierarchy. one finds decreasmg cnsU'bﬂ

increasing capacity, and slower access time. It would be nice to use only the
fastest memory, but because that is the most expensive memory. we trade off
access time for cost by using more of the slower memory. The design chal-
lenge is to organize the data .md programs in memory so that the accessed
ma:mm‘y words are usuall}r in the Iaslcr memory.

_In general it is Tikely t]'mt mns: {uturc ‘accesses to main memory by the .
: pmr:e:ss.ur will be to locations recently accessed. So the cache automatically
-Tétains a copy of some of the recently used words from the DRAM. If the
]:caciate 15 deslgne:d pr?peﬂy, thcu most of the, tune: the prmessm will request

Although seemingly simple in concept, campﬁtq:r memory exhibits perhaps the wides{

range of type, technology, organization, performance, and cést of any feature of a com
puter system. No one technology is optimal in satisfying the memory requirements for
a computer system. As a consequence, the typical computer system is equipped with 4
hierarchy of memory subsystems, some internal to the system (directly accessible by

. the processor) and some external (accessible by the processor via an /O module).

This chapter and the next focus on internal memory elements, while Chapter 6 i
devoted to external memory. To begin, the first section examines key characteristics o
computer memories. The remainder of the chapter examines an essential element of al

modern computer systems: cache memory.
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other forms of internal memory. The processor requires its own local memory, in }llc
form of registers (e, see 1 gure 2.3). Further, as we shill sce, rlul: control unit pll:.truur;
of the processor may also require its own internal niemory. W:: will Eh:fcr discussion o
these latter two types of internal memory Lo later chapiers, Cache js rimn:hm‘ furm_ of
mternal memory, External memory consists of peripheral storage devices, such as disk
and tape, that are aceessible 1o the processor via /O controllers,

An obvious characieristic of memory is jts capacdity, For internal mernory, this is
typically expressed in terms of bytes (1 byte = & hits) or words, Common word lengths
are 8,16, and 32 bits. Externa] memory capacity is typically expressed in terms of bytes,

A related concept is the wnit of transfer, For inlu.-n;m! memory, the unit of
transfer is equal to the number of data lines into ang aut of the memory module,
This may be cqual to the waord length, but is often larger, such ay 04, 128 or 256 bits,
To elarir ¥ this point, consider (hree related Loncepts for interna) memory:

* Word: The “natural” unjy of vrganization of memory, The size of the word js

typically equal 1o the number of bits used 10 represent an integer and 1o the
Instruction length. Uﬂluﬂlll'l:lh:f}". there are many exceptions, For example
the CRAY €90 hys 5 64-bit word lengily by uses a 46-bijy infeger representa.
uun.lThc VAX has a stupendous variety of instruction lengths, expressed as
multiples of bytes, and word size of 32 s :

* Addressable units: Iy, SOme systems, the addressable ypijg is the worg, Howeyer
many systems allow addressing at (he byte level, 1y any case, the n.-lutir.}nahig;
between (ke length in birs 4 of an address ynq the k

i Tumbye 'y

et g er N of ilddru'aahlc

* Unit of transfer: For main memaory, thiy jy

_ : : : the numbery of bits reaqd
Wrillen into memary al a time, The

: wut of gy
unit of transfey need not equa|

4 word or g
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memeory, data are often transferred jp i

it. For external ;
addressable unit. For ¢ arc referred to as blocks.

larger units than a word, and the

] is the m
Another distinction among memory types Is
data. These include the following:

ethod of accessing units

i ; : nized into units of data, called recorg

* Hogmentio : E‘;ﬂ:‘a;j Tl:n ;l: ge]:ifirﬁiﬂar sequence. Sto;ed addressing inform;
,1?5::3;5 ;::; to separate records aﬂq assist in the relncﬂmj. E:g:?&nﬁ Sha:!'ﬁ

d/write mechanism is used, and this must be muveld from it: ent locatig,
:sﬂthc Aeivad leation, passing a0 r!;j.:-.?ung cac_h :ntermedzantf.; r-;?urdi n"f'
the time 1o access an arbitrary record is highly variable. Tape units, discussed j
Chapter 6, are sequential access. ‘

« Dircet access: As with sequential access, direct access involves a Sh':lrtd
read—write mechanism. However, individual blocks or records I_mve a uniqug
address based on physical location. Access is accomplished :t:y direct access tg
reach a general vicinity plus sequential searching, muntmgf Or waiting tg
reach the final location. Again, access time is variable. Disk units, discussed i
Chapter 6, are direct access.

* Random access: Each addressable location in memory has a unique, physically
wired-in addressing mechanism. The time to access'a given location is indepen-
dent of the sequence of prior accesses and is constant. Thus, an y location can be
selected at random and directly addressed and accessed. Main memory and
some cache systems are random access.

* Associative: This is a random-access type of memory that enables one to make
a comparison of desired bit locations within a word for a specified match, and
to do this for all words simultaneously. Thus, a word is retrieved based on a

. .portion of its contents rather than its address, As with ordinary random-access
memory, each location has its own addressing mechanism, and retrieval time

1s constant !.n_d_ﬁ:'_.ge‘nd‘unt of location or prior access patterns. Cache memories |
. may employ associative access, |

* Access time (latency): For random-
perform a read or wrile o :
address is presented 1o th

om-access memaory, this is the time it takes to |
peration, that s, the time-from (he instant that an |

i P b usce;:::glﬂuﬂ!}; ;ﬁéhﬂ instant that data have been stored |
G . - om- iatycins
lime it takes to position the read-writ access memory, access time is the |

* AMe : : f nism at the desjre i |
Memory cycle time: This concept is prig csired location. |
and consists of the -access memory |

before a second

may be required § : = 1

O regenerate data if 1 Of transients to die |

me T 1e .

mory cycle ime is toncerned with (he S}'Stgr: Lﬂ i dﬂtmﬂmﬂ}r' Sote 28 i

Transfer rate: This i Us, not the processor,

- hr
S : ich data €an be transferred into or out of
memory, it js “qual to 1/(cyele time).

the rate 31 W
andom-aeces
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access memory, the following relationship holds:

T =Ty4 + i (M
[BBA% o

time to read or write N bits

For non-random-

where
Ty = Average
Average access time

A
| 1]

- Number of bits
R = Transfer rate, in bits per second (bps) )

A varicty of physical types of memory have been employed. The most common
today arc semiconductor memory, magnetic surface memory, used for disk and tape,

and optical andimagneto-optical.

Several physical characteristics of data storage are important. In 2 volatile

lost when electrical power is switched

memory, information decays naturally or is
off. In a nonvolatile memory, information once recorded remains without deteriora-
is needed to retain information.

tion until deliberately changed; no ¢lectrical power 3
Magnetic-surface memories are nonvolatile. Semiconductor memory may be either
volatile or nonvolatile. Nonerasable memory cannot be altered, except by destroying
the storage unit. Semiconductor memory of this type 1$ known as read-only memory
(ROM). Of necessity,a practical nonerasable memory must also be nonvolatile.

For random-access memory, the organization is a key design issue. By orgari-
-ation is meant the physical arrangement of bits to form words. The obvious arrange-

ment is not always used, as will be explained presently. '\
. \o

The Memory Hierarchy ¢ i ‘
‘The design constraints on a computer’s memory can be summed up by three questions:
How much? How fast? How expensive? B

The question of how much is somewhat open ended. I f th.'c: capacity is there,
applications will likely be developed to use it. The question of how fast is, in a sense,
easicr to answer. To achieve greatest performance, the memory must be able to keep
up with the processor. That is, as the processor is executing instructions, we would
not want it to have to pause waiting for instructions or operands. The final question
must also be considered. For a practical system, the cost of memory must be reason-
able in relationship to other components. 2

As might be expected, there is a trade-off among the three key characteristics
of memory: namely, cost, capacity, and access time. At any given time, a varety of
technologies are used to implement memory systems. Across this spectrum of tech-
nologies. the following relationships hold: '

» Faster access lime, grealer cost per bit
= Greater capacity, smaller cost per bit
* Greater capacity, slower access time

The dilemma facing the designer is clear. The designer would like 1o use mem-
ory technologies that provide for large-capacity memory, both because the capacity
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is needed and because the cost per hit is low. However, to meet performance
requirement, the designer needs to use expensive, relatively lower-capacily memo-

ries with short access times.
The way out of this dilemma is not to rely on a single memory component or

technology, but 10 employ a memory hicrarchy. A typical hierarchy is illustrated in
Fipure 4.1. As one goes down the hierarchy, the following occur:

a. Decreasing cost per bit

. Increasing capacity

¢. Increasing access time

d. Decreasing [requency of access of the memory by the processor

Thus, smaller, more expensive, faster memories are supplemented by larger,
cheaper, slower memories. The key to the success of this organization is item (d):
decreasing frequency of access. We examine this concept in greater detail when we
discuss the cache, later in this chapter, and virtual memory in Chapter 8. A brief

explanation is provided at this point.

The Memory Hie rarchy

Figure 4.1
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Example 4.1  Suppose thal the processor has access m twu Icvnl.s af mcmnr;.r. Level 1.
contains 1000 words and has an access eme of 0.01 415; level 2 contains 100,000 words
and has an access time of 0.1 ps. Assume that if a word to be accessed is in level 1, then
the processor nocesses it directly. 16t 1S in level 2, then. the word is finst transferred o
Jevel 1 and then accessed by the processor. I-‘nrnmwuly.w: ipnore the time rcqmmd lnr
the processor 1o determine whether the word is in Jevel 1 or level 2. Figure 4.2 shows. the
gencral shape of the curve that covers this situation. The figure shows the AVerage ACCess |
time 10 a tywo-level memory as a function of the hit tatio H. where /1 is defined aﬁhn
ﬁachmof-ﬂnmﬁifﬁnuﬁthl are found in ﬂ\cfhlﬂmmj! (eg.the ud'li:] Tiis
the access time to level 1,and Ty is the access time to level 2. 1As can be scen, Iﬂrﬁrﬂi?&
n:utlgﬁ: of level lmth: n-nn;c tnul mm hm: it mul:h dmtr.tn ﬂut of Icw:'l :t
than thatoflevel 2. & © \ e
In wmﬂnmﬁﬁﬂm nmnmtr-um u:fm.md mtlu: mdrc.'l‘l:cn
the m‘cng:"umum‘lm lmrdc:n be wmdﬂ SR : : ! 1 phs ;‘r.__.a_:'_u_ s

r{ﬂﬁjtuﬂmi {tmsun.m s + n.: ,us} = umgs + n,uiss = ngl; ,u
ma&ﬁgﬁ&mlmh rich closer 10 001 ps than 10 0.1 s daécﬁ..‘_:_ et

1{ the accessed word is found in the faster memary,
accessed word is not pund in the faster memary.

T+ T:

Average accest time

T

Fraction of accesses imvolving only level | (hit ratio)
Figure 42 Performance of a Simple Two-Level Memory

that is defined as a hil. A miss occurs if the
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The use of two levels of memory to reduce average access time waork i
ciple, but only if conditions (a) through (d) apply. By employing a variety of ::‘m_
nolopies, a spectrum of memory systems cxists that satishies conditions (a) thml:h‘
{e). Fortunately, condition (d) is also generally valid.

The basis for the validity of condition (d) is a principle known as localj;
reference [DENNGE]. During the course of execution of a program, memg T
erences by the processor. for both instructions and data, tend 1o clusge, il
grams typically contain a number of iterative loops and subroutines. Onge al %
ar subroutine is entered, there are repeated references to a small set of instp,
tions, Similarly, operations on tables and arrays involve access to a Clustereq sc.
of data words. Over a long period of time, the clusters in use change, by, mﬂ“ '
short period of time, the processor is primarily working with fixed clusters -;:T"

memory references, |
Accordingly, it is possible to organize dala across the hierarchy such that the

percentage of accesses to each successively lower level is substantially legg thag

that of the level above. Consider the two-level example already presented, Ley

level 2 memory contain all program instructions and data. The current Clusters cay, |
be temporarily placed in level 1. From time to time, one of the clusters jn lg\nﬂ]l
will have to be swapped back to level 2 to make room for a new cluster COming i !
to level 1. On average, however, most references will be to instructions and datg
contained in level 1. '

This principle can be applied across more tfian two levels of memory, a5 sug-
gested by the hierarchy shown in Figure 4.1. The fastest, smallest, and most expen-
sive type of memory consists of the registers internal to the processor. Typically, s
processor will contain a few dozen such registers, although some machines contain
hundreds of registers. Skipping down two levels, main memory is the principal inter-
nal memory system of the computer. Each location in main memory has a unique
address. Main memory is usually extended with a higher-speed, smaller cache, The
cache is not usually visible to the programmer or, indeed, to the processor. It is g
device for staging the movement of data between main memory and processor rep-
isters to improve performance.

The three forms of memory just described are, typically, volatile and
employ semiconductor technology. The use of three levels exploits the fact that
semiconductor memory comes in a variety of types, which differ in speed and
cost. Data are stored more permanently on external mass storage devices, of
which the most common are hard disk and removable media, such as removable
magnetic disk, tape, and optical storage. External, nonvolatile memory is also
referred to as secondary or auxiliary memory. These are used 1o store program
and data files and are usually visible o the programmer only in terms of files
and records, as opposed to individual bytes or words, Disk is also used to provide
an extension to main memory known as virtual memory, which is discussed in
Chapter 8.

Clﬂ_mr forms of memory may be included in the hierarchy. For example, large
IBH mmnframt::s include a form of internal memory known as Expanded Storag®
”Ihl_s uses a scmmc_mductur technology that is slower and less expensive than lhﬂ!
main memory. Strictly speaking, this memory does not fit into the hicrarchy but is3
side branch: data can be moved between main memory and expanded storagé u
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not between expanded storage and exicernal memory. Other forms of secondar

memory inclade optical and magneto-optical disks. Finally, additional levels can bz
effectively added to the hierarchy in sofiware. A portion of main memory can be
used as a buffer 1o hold data temporarily that is to be read out 1o disk, Such a tech-
nique, sometimes referred to as a disk cache,? improves performance in two ways:

* Disk wriles are clustered. Instead of many small transfers of data, we have a
W b % »
few large transfers of data. This improves disk performance and minimizes
processor involvement. z

= Some data destined for write-out may be referenced by a program before the
next dump to disk. In that case, the data is retrieved rapidly from the software
cache rather than slowly from the disk,

Appendix 4A examines the performance implications of multilevel memory
struciures :

Ty
{CACHE:MEMORY PRINCIPLES ./

( Cache memoary is intended to give memory speed approaching that of the fastest mem-
ories available, and at the same time provide a large memory size at the price of less ex-
pensive types of semiconductor memories. The concept is illustrated in Figure 4.3, There
1s a relatvely large and slow main memory together with a smaller, faster cache memo-
ry. The cache contains a copy of portions of main memory. When the processor attempts
to read a word of memory, a check is made to determine if the word is in the cache. If so,
the word is delivered to the processor. If not, a block of main memory, consisting of

' some fixed number of words, is read into the cache and then the word is delivered to the
processor. Because of the phenomenon of locality of reference, when a block of data is
fetched into the cache to satisfy a single memory reference, it is likely that there will be
future references to that same memory locdtion or to other words in the block.

Fipure 4.4 depicts the structure of a cache/main-memory system. Main
memory consists of up to 2" addressable words, with each word having a unique

Figure 4.3 Cache and Main Memory

| Disk eache is generally a purely software technigue and is not examined in this book. Sce [STALOS] for

a discussion.

R

s B poa '
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1 marl M muory
aumiber  Tag Dlock address
0 = o
1 i g
2 i Hlock
I k1 {& words)
c-i =
Block length
el ——
(K Words) -
{a) Cache w
-
Block
rall

- Word

lengih
(b} Main memory

Fignre 44 Cache/Main Memory Structure

C::-hil address. For mapping purposes, this memory is considered to consist of a
umber of fixed-length blocks of K words each. That is, there are M = 2K

blocks. The cache consists of C lines. Each line contains & words, plus a tag of
a few bits; the number of words in the line is referred to as the line size. The num-
ber of lines is considerably less than the number of main memory blocks
(C == M). At any time, some subset of the blocks of memory resides in lines in
the cache. If a word in a block of memory is read, that block is transferred 1o one
of the lines of the cache. Because there are more blocks than lines, an individual
line cannot be uniquely and permanently dedicated to a particular block. Thus,
each line includes a tag that identifies which particular block is currently being

stored. The tag jsuSlIy a portion of the main memory address, as described

later in this section.
Figure 4.5 illustrates the read operation. The processor generates the address,

RA, of a word to be read. If the word is contained in the cache, it is delivered to the
processor. Otherwise, the block containing that word is loaded into the cache. and
the word is delivered to the processor. Figure 4.5 shows these last two operations
occurring in parallel and reflects the organization shown in Figure 4.6, which is typ-
ical of contemporary cache organizations. In this organization, the cache connects
to the processor via data, control, and address lines. The data and address lines also
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Figure 4.5 Cache Read Operation

attach to data and address buffers, which attach to a system bus from which main
memery is reached. When a cache hit occurs, the data and address buffers are
disabled and communication is only between processor and cache, with no system
bus traffic. When a cache miss occurs, the desired address is loaded onto the system
bus and the data are returned through the data buffer to both the ¢uche and the
processor. In other organizations, the cache is physically interposed between the
processar and the main memory for all data, address, and control lines. In this latter
case, for a cache miss, the desired word is first read into the cache and then trans-
ferred from cache 1o processor, e
A discussion of the perfafmance parameters reluted to eache use is contained
in Appendix 4A.
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4.3 ELEMENTS OF CACHE DESIGN -

This section provides an overview of cache design parameters and reports some typ-
ical results. We occasionally refer to the use of caches in high-performance comput-
ing (HPC). HPC deals with supercomputers and supercomputer software, especially
for s:::jt.‘.nl:fﬂc applications that involve large amounts of data, vector and matrix cop.
putation, and the use of parallel algorithms. Cache design for HPC i quite d'iff.:n:nt
than for other hardware platforms and applications. Indeed, many researchers have
found that HPC applications perform poorly on computer architectures that employ |
mc?e}s_]_’ﬂjalw}]_. Other researchers have since shown that a cache hierarchy caﬁlbi

um . ] . " !
ca.:hz IJ‘; K:;pét;;nlgﬂpgg;ﬁﬁamc if the application s.nftware 18, tuned to exploit the |

_ Although there are a large number of cache j I i

hasic rjes;gl,n elements that serve to classify and dz?f];:z::iz::lmni i ?re or:
Table 4.2 lists key elements. ey

Cache Size :
]

The first i

the cj;ectler: s c?rd"’ size, has already been discussed. We would like the size of -

e il s:::]a enough so that the overall average cost per bit is close to that |
'y alone and large enough so that the overall average access time i

For 3 peneral discussion of HPC, sops IDDWD%i |
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4 The two basic forms of mduﬂm ‘random access memory are

d_t,rna:mc RAM (DRAM) and staticRAM (SRAM). SRAM is faster, more

expensive; and less dense than DRAM and ts md for cache memory.

DRAMuusud{ﬂrmmnmﬁmary R e

<+ Error comrection techniques are commonly use.d In memory syslems.
These involve adding redundam bits that are a fuaction of the data bits o
form an n‘rﬂr—cﬂn&r:nng code. If a bit error occurs, the code will detect

~ and, usually, correct the error. - . .-

+ Ta compensate for the rclatm:]y sicmr s;:«.ed of DRAhL a number of
advanced DRAM organizations have been introduced. The two most
common are synchronous DRAM and RamBus DRAM. Both of these
involve us.lng the 5_'.rst¢m doc:k“m prm'ldn: for the transfer of blocks

Ot.ﬂm By < IR ---‘-"‘.1- - T -

'.‘I

-..1__.-

il e
{13~ 2

e ey

This chapter begins with a survey of semiconductor main memory subsystems,
including ROM, DRAM, and SRAM memonries. Then we look at error control tech-
niques used to enhance memory reliability. Following this, we look at more advanced

DE.AM architectures
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HAPTEW 35
Control Cuontrol
Select Sense
- Cell
{a) Write (b) Read
Vigure 51 Memory Cell Operation ©

termnnal indicates read or write, For writing. the other terminal provides an electrie:
signal that sets the state of the cell to 1 or 0. For readi ng. that terminal is used for ou
put of the cell’s state. The details of the internal organization, functioning, and n'min;
of the memory cell depend on the specific imegrated circuit technology used and ar
beyond the scope of this book, except for a brief summary. For our purposes, we wil
take it as given that individual cells can be selected fdr reading and writing operations

DRAM and SRAM

All of the memory types that we will explore in this chapter are random access. That is
individual words of memory are directly accessed through wired-in addressing logic.

Table 5.1 Lists the major types of semiconducior memory. The most common is
referred 10 as random-access memory (RAM). This is, of course, a misuse of the
term, because all of the types listed in the 1able are.random access. One distinguish-
ing characteristic of RAM is that it is possible both to read data from the memory
and 10 write new data into the memory easily and rapidly. Both the reading and
writing are accomplished through the use.of electrical sipnals.

The other distinguishing charaétéristic of RAM is that it is volatile, A RAM
must be provided with a constant power supply. If the Ppower is interrupted, then the

Tuble 5.1 Semiconductor Memory Types

X i
T U o R o e e b L P (S S, e P [T
F Memory Type | " “Category i Erasure ' © | Write Mechanism | Volatility -
Random-access Rﬁéd‘wytcmmmf i ii!emﬁu?hytelﬂer ectrical Volatile -~
memaory (RAM) " pa L el e R J e '
Read-only A #h Masks
memory { ROK ) : A
. Read-only memory Mot possible t
Programmable A 4 ;
ROM (PROM)
| Erasable PROM | LIV tight.chip-lever T Nonvolatile
' (EPROM) - igh ] Electrically
Electnically Erzsable | Read-mastly memory | Elecprica Iy, byte-level
PROM (EEFROM) ; :
Flask memory Electrically, block-level
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data are lost. Thus, RAM can be used only as temporary storage. The two ”“diliun-|
forms of RAM used in computers are DRAM and SRAM. 4

Dynamic RAM RAM technology is dividxzﬂd into two technolo
static. A dynamic RAM (DRAM) is made with cells that store rge op
capacitors. The presence or absence of charge in a Capacitor is interpreted ay 4 bing

1 or 0. Because capacitors have a natural tendency to discharge, dynamjc RAMs
require periodic charge refreshing to maintain data smr_age.T}m lerm if}:ngn,gf refers 1,
this t1endency of the stored charge to leak away, even with power continuously applieq

Figure 5.2a is a typical DRAM structure for an individual cell that Slores Dne'
bit. The address line is activated when the bit value from this cell is 1o be read g
written. The transistor acts as a switch that is closed (allowing current 10 flow) i,
voltage is applied to the address line and open (no current flows) if no voltage i
present on the address line.

For the write operation, a voltage signal is applied 1o the bit line; a hi
represents 1, and a low voltage represents 0. A signal is then applied to t
line, allowing a charge 10 be transferred to the capacitor.

For the read operation, when the address line is selected,
on and the charge stored on the capacitor is fed out onto a bit line and to a sénse
amplifier. The sense amplifier compares the capacitor voltage to a reference value
and determines if the cell contains a logic 1 or a logic 0. The readout from the ce||
discharges the eapacitor, which must be restored to complete the operation.

Although the DRAM cell is used to store a single bit (0 or 1), it is essentially
an analog device, The capacitor can store any charge value within a range: a thresh.
old value determines whether the charge is interpreted as 1 or 0.

gies: dynam
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Static RAM Inconirast, a static RAM (SRAM)isa digital device, using the SdMe g
logic elements used in the processer. In & SRAM., binary values are stored using_'j
tradinonal thp-flop log:c-gate configurations (sce Appendix B for a description of
flip-tiops). A stanc RAM will hold i1s data as long as power is supplied to ir. ¥

Figure 5.2b 1s a typical SRAM structure for an individual cell. Four transis. §
tors (T;. T-. T5. T;) zre cross connected in an arrangement that produces a slablcgﬁ
logic stale. In logic state 1, point C, is high and point C; is low: in this state, T: ang
T. are off and T; and T; are on.! In logic state 0. point C; is low and point C, js,

high: in this state, T, and T, are on and T, and T; are off. Both states are stable ag

long as the direct current (de) voltage 1s applied. Unlike the DRAM, no refresh i
nceded 1o retain data, . j
As in the DRAM. the SRAM address line s used to open or close a switch_.:
The address line controls two transistors (Ts and T,)). When a signal is applied to this :
line, the two transisiors are switch on. allowing a read or write operation. For # write
operation. the desired bit value js applied to line B, while jts complement is applied 1o *
line B. This forces the four transistors (Ty, 15, T, T;) into the proper state. For a rcadﬂ
operation, the bit value is read from line B. Z

o

®red

=

-

L=

Bl A

e

o

SRAM versus DRAM Both static and dynamic RAMs are volatile; that is, power
must be continuously supplied 1o the memory to preserve the bit values. A dynamic
memory cell is simpler and smaller than a static memory cell. Thus, 2 DRAM is more g
dense (smaller cells = more cells per unit area) and less expensive than a correspond-; &
ing SRAM. On the other hand, a DRAM requires the supporting refresh circuitry. For
larger memories, the fixed cost of the refresh circuitry is more than compensated for ;
the smaller variable cost of DRAM cells. Thus, DRAMs tend to be favored for large '/
memory requirements. A final poirit is that SRAMs are generally somewhat faster than |

DRAMSs. Because of these relative charagteristics, SRAM is used for cache memﬂr)f';
(both on and off chip), and DRAM i€ised for main memory. . o

Iypes ot RCM : i iR
AS the name suggests, a read-only memory (ROM) contains a permanent pattern off =
data that cannot be changed. A ROM is nonvolatile;\that is, no power source is ‘i
Tequired 1o maintain the bit values in memory. While it is possible 1o read a ROM, it &4
is not possible to write new data into it. An important application’ of ROMs js 4
microprogramming, discussed in Part Four. Other potential applications include

* Library subroutines for frequently wanted functions
* System programs
* Function tables \

For a modest-sized requirement, the advantage of ROM is that the data or pro- ;&
gram is permanently in main memory and need never be loaded from a secondary /g
storage device.

A ROM is created like any other integrated circuit chip, with

the data actually .- %
vired into the chip as part of the fabrication process. This presents '

two problems:
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= The data insertion siep includes a relatively large fixed o« wiether one o
thousands of copies of a particular ROM are fabricated.

= There is no room for error. If one bit is wrong. the whole batch of ROMs must
be thrown oul.

When only a small number of ROMs with a particular memory content is
needed, a less expensive alternative is the programmable ROM (PROM). Like the
ROM. the PROM is nonvolatile and may be written into only once. For the
PROM. the writing process is performed electrically and mav be performed by a
supplicr or customer at a time later than the original chip fabrication. Special
equipment is required for the writing or “programming” process. PROMs provide
flexibility and convenience. The ROM remains attractive for high-volume produc-
tion runs.

Another vanation on read-only memory is the read-mostly memory. which is
useful for applications in which read operations are far more frequent than write
operations but for which nonvolatile storage is required. There are three common
forms of read-mostly me mory: EPROM, EEPROM, and flash memaory.

The optically erasable programmable read-only memory (EPROM) is read
and written electricallv. as with PROM. However, before a write operation. all the
storage cells must be crased 10 the same initial state by exposure of the packaged
chip 1o ultraviolet radiation. Erasure is performed by shining an intense ultravioler
light through a window that is designed into the memory chip. This erasure process
can be performed repeatedly: each erasure can take as much as 20 minutes Lo per-
form. Thus. the EPROM can be altered multiple times and, like the ROM and
PROM. holds its data virtually indefinitely. For comparable amounts of storage. the
EPROM is more expensive than PROM . but it has the advantage of the multiple
update capabilitv.

A more attractive form of read-mostly memory is electricalis neanaki .
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Chip Logic
As with other integrated circuit products, semiconductor memory comes in pack-

aged chips (Figure 2.7). Each chip contains an array of memory cells.
In the memory hicrarchy as a whole. we saw that there arc irade-offs among

speed. capacity, and cost. These trade-offs also exist when we consider lh{:’ s A
of memory cells and functional logic on a chip. For semiconductor memaories. onc of the ¢
key design issues is the number of bits of data that may be read/wnitten al a ime. A.'- One
extreme is an organization in which the physical arrangement of cells in the array is the
same as the logical arrangement (as perceived by the processor) of words in DLCT Iy
The array is organized into W words of & bits cach. For example, a 16-Mbit chip could
be organized as 1M 16-bit words. At the other extreme is the so-called one-bit-per-chip _
organization, in which data is rcad/written onc bit at a time. We will illustrate memory
chip organization with a DRAM: ROM organization is similar. though simpler.

Figure 5.3 shows a typical organization of a 16-Mbit DRAM. In this case, 4 bits
arc rcad o written at a time. Logically, the memory array is organized as four square
arrays of 2048 by 2048 elements. Various physical arrangements are possible. In any
case. the clements of the array are connected by both horizontal (row) and vertical
(column) lines. Each horizontal line connects 1o the Select terminal of each cell in its -
row: cach vertical line connects to the Data-In/Sense terminal of cach cell in its column.

Address lines supply the address of the word to be selected. A total of log, W
lines are nceded. In our example. 11 address lines are needed to select one of 2048 =
rows. Thesc 11 lines are fed into a row decoder, which has 11 lines of input and 2048';
lines for output, The Jogic of the decoder activales'a single one of the 2048 outputs =

depending on the bit patiern on the 11 input lines (2" = 2048). :
An additional 11 addrcss lines select one of 2048 columns of 4 bits per column.
Four data lines arc used for the input and output of 4 bits to and from a data buffcr.,;‘{']
On input (write), the bit driver of each bil line is activated for a 1 or 0 according to*
the value of the corresponding data line. On output (read), the value of each bit line 5
is passed through a sense amplifier and presented to the data lines. The row line &
selects which row of cells is used for reading or writing. g
Because only 4 bits are read/written to this DRAM, there must be multiple 1
DRAMs connected to the memory controller to read/write a word of data to the bus. *;
Note that there are only 11 address lines (A0-A10), half the number vou would -
expect for a 2048 X 2048 array. This is done to save on the number of pi-ns The 22 |
required address lines are passed through select logic external 1o the chip and multi- |
plexed onto the 11 address lines. First, 11 address signals are passed to the chip to 3
define the row address of the array, and then the other 11 address signals are pre-
sented for the column address These signals are accompanied by row address select |
(RAS) and column address select (CAS) signals to provide timing to the chip.

The write enable (WE) and output enable (OE) pins determine whether a
write or rcad operation is performed. Two other pins, not shown in Figure 5.3. are
ground (V,,) and a voltage source (V). : |

As an aside, multiplexed addressing plus the use of square arrays result in a |
quadrupling of memory size with each new generation of memory chips. One more '
pin devoted to addressing doubles the number of rows and columns. and so the size

of the chip memory grows by a factor of 4.
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Figure 5.3 also indicatee the j

a refresh operation, A simple technj ue for r ac ool ;
DRAM chip while ajj dafa cells ar¢ re‘}rushed. gft: ]f:fs:;:m o sl
of the row values, For cach row, he oulput lines
plied to the row decader and th ine j
written back into the same locati

Chip Packaging

i B e T T
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p age, which is an 8-Mbi; chi £
nized as 1M X & In thic : =4 g it chip orga

is treated as a One—mrd-pcr—chip

is one of the standard chip Package
the following signal Jines: '

. Thﬂg' address of the word being accessed. ' For IM words, a total of 20!
220 = 1M} pins are needed (AD-A19),
* The data to be read out, consisting of 8 lines ( DD—DFT},
* The power supply to the chip (V). :
* A ground pin (V). : :
* A chip enible-tCE_‘.l pin. Becau \ ory chip,
each of which i e s i

L Ny,
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(3} B-Mbit EPROM

(b} 16-Mbit DRAM
figure 5.4 Tvpical Memory Package Pins and Signals
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logic connecied 10 the higher-order bits of the address bus (i.e.. address bits
above A19). The use of this signal is illustrated pi esently.

* A program voltage (V) that is supplied during programming { write operations).

ff'* typical DRAM pin configuration is shown in Figure 5.4b. for a 16-Mbit chip
organized as 4M X 4. There are several differences from a ROM chip. Becanse a
RAM can be updated, the data pins are input/output. The write enable (WE) and out
put enable (OE) pins indicate whether this is a write or read operation. Because the
DR AM is accessed by row and column, and the address is multiplexed, only 11 address
pins are needed (o specify the 4M row/column combinations (21 = 2! = 2% = 4M).
The functions of the row address select (RAS) and column address select (CAS) pms
were discussed previously. Finally, the no connect (NC) pin is provided so that there are
an even number of pins

Module Organization

If a RAM chip contains only 1 bit per word, then clearly we will need at least 2
number of chips equal to the number of bits per word. As an example, Figure 5.5

512 words by

Bl i
Memory address sl e - chip#
register (MB o I Sl ey
=

R) [ :
‘ullJ S35l Decode 1of
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shows how a memery module consisting, af 250K H-hil words could be arganized.
Fon 2568 words, an 15-bit addvess is needed and s supplicd o the module from
some external somee (e the addvess lines of o bus 1o which the module 15 al-
tached), The mddress s presemted 1o 8 256K = 1-bil chips, ench of which provides
the mpuotfoutput of 1 it .

This orpanization works ns long as the size of memory equals the number of
bits per chip. In the case in which lmgef memony is reguired, an array of chips is
needed, Fipure 5.6 shows the possible organizntion of a memary consisting of 1M
word by 8 bits per word, In this ease, we hove Tour columns of chips, cach column
contiaming 256K words mranged as in Figure 5.5, For IM word, 20 address lines are
necded. The 18 least sipnificant bits are vouted 1o all 32 modules. 'The high-order
2 bits are input to a group sclect logic module that sends o chip enable signal 1o one
of the four columns of modules,

5.2 ERRORICORRECTION . -

A semiconductor memory system is subject to errors, These can be calegorized os
hard Galures and soft crrors, A hard failure is o permanent physical defect so that
the menany cell or cells affected cannot relinbly store daty, but become stuck at
thor T or switch ervatically between O and 1. Hard errors can be caused by harsh
envitonmental abuse, punulacturing defects, and wear, A sofl error is o :.'-mdu;n
nondestraetive event thid alters the contents ol one or mere memory eells wnh:
ot diamaging the memory. Soft errons ean be chused by powe hlirflﬂ\'-]ltl.ll‘ll.L:'““ 0
alpha particles These patticles sesult from radionclive decay and nre l’l'l'ﬁlll.:'ﬂ'-il-l tly
commen beciuse adivactive nuclei ave Tound in spull l|in|nlilil.~-' in.lu.-u;lh' jTlllll
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Figure 5.7  Error-Correcting Code Function

materials. Both hard and soft errors are clearly undesirable, and most modery
main memory systems include logic for both detecting and correcting errors,

Figure 5.7 illustrates in peneral terms how the process is carried out. Wheq
data are to be read into memory, a calculation, depicted as a function £ is per.
formed on the data to produce a code. Both the code and the data are stored, Thig
if an M-bit word of data is to be stored, and the code is of length K bits, then the
actual size of the stored word 1s M + K bits.

When the previously stored word is read out, the code is used to detect and
possibly correct errors. A new set of K code bits is generated from the M data bi
and compared with the fetched code bits The comparison yields ane of three resylis

« No errors are detected. The fetched data bits are sent out.

* An error is detectet, and it is possible to correct the error. The data bits plus
error correction bits are fed into a corrector, which produces a corrected set of
M bits (o be sent out.

* Anerror is detected, but it is not possible to correct it. This condition is reported

Codes that operate in this fashion are referred 10 as error-correcting codes A code
is characterized by the number of bit errors in a word that it can correct and detect.

The simplest of the error-correcting codes is the Hamming code devised by
Richard Hamming at Bell Laboratories. Figure 5.8 uses Venn diagrams to illustrate
the use of this code on 4-bit words (M = 4). With three intersecting circles, there
are seven compartments. We assign the 4 data bits to the inner compartment
(Figure 5.8a). The remaining compartments are filled with what are called pari
bits. Each parity bit is chosen so that the total number of 1s in its circle is evef
(Figure 5.8b). Thus, because circle A includes three data 1s, the parity bit in that @
cle is set to 1. Now, if an error changes one of the data bils (Figure 5.8¢),it is easily
found. By checking the parity bits, discrepancies are found in circle A and circle
but not in circle B. Only one of the seven compartments is in A and C but not B
error can therefore be corrected by changing that bit.
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Figare 5.8 Hamming Error-Correcting Code,

To clarify the concepts involved, we will develop a code that can dctect and
correct single-bit errors in 8-bit words. {

To start, et us determine how long the code must be. Referring to Figure 5.7,
the comparison logic receives as input two, K-bit values. A bit-by-bit comparison is
done by taking the exclusive-OR of tHe two ihputs. The result is called the syndrome

" word. Thus, each bit of the syndrome is 0 or 1 accordmo to if there is or is not a
match in that bit position for the two inputs.

The syndrome word is therefore X bits wide and has a range between 0 and
2% — 1. The value 0 indicates that no error was detected, leaving 2% — 1 values to
indicate, if there is an error, which bit was in error. No\v because an error cou.d
occur on any of the M data bits or K check bits, we must have

y

2K—1=2M+K

This inequality gives the number of bits needed to correct a single bit error in a word
containing M data bits. For example, for a word of 8 data bits (M = 8), we have

* K'=3:2-1<84%3
* K=4:2"-1>8+4

Thus, eight data bits require four check bits. The first three columns of Table 5.2 lists
the number of check bits required for various data word lengths.

For convenience, we would like to generate a 4-bit syndrome for an 8-bit data
word with the following characteristics:
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Tuble 3.2 Increase in Ward Length with Error Correction
o Single-Error Comrection/
Single-Error Correction’ Doulile-Ervor Detection
Data Rits Claeck: it % Inerease Chesh Bits % Incremse
8 4 2 RRINET L, , &
|2 s 5 o Bl R fi i7.5
32 & IRTS 7 21.675
o 7 1094 8 125 |
128 ‘B B2k 9 703
256 - 9 S & vt S T 391

If the syndrome contains all 0s, no error has been detected.

If the syndrome contains one and only one bit sct 10 1. then an error has
occurred in one of the 4 check hits. No correction isneeded.

If the syndrome contains more than one bit set to 1, then the numerical value-
of the syndrome indicates the position of the data bit in error. This data bit is
inveried for correction.

To achieve these characteristics, the data and check bits are arranged info a
12-bit word as depicted in Figure 5.9. The bit positions are numbered from 1 to 12
Those bit positions whose position numbers are powers of 2 are designated as
check bits. The check bits are ealeulated as follows, where the symbol @ designates
the exclusive-OR operztion:

Cl=Dl& D2& Déd D5 D7
C=D1¢ Die’'Di4® D6@ D7
C4 = D@ D3I® Dd D&
CH = ) D5® D6 D7& DS

Each check bit operates on every data bit whose position number contains a |
in the same bit position as the position number of that check bit. Thus, data bit posi-
tions 3. 5.7, 9, and 11 (D1, D2. D4, D5, D7) all contain a 1 in the least significant bit
of their position number as does C1; bit positions 3, 6,7, 10,and 11 all contain a 1 in
the seeond bit position, as does C2; and so on. Looked at another way, bit position n

Bit (i '] 9 T E0 o e i 3 2 !
i Lhon ”".' ! : 2

Posiion | 1100 | 1011 | 1010 | 1001 | 1000 | 0111 | 0110 | 0101 | o100 | vor1 | coie | coot

| number

" Data bit DE D7 D6 D5 ] D4 D.j .-D2 D1 - -

Chieck bit c8 T

Figure 5.4 Layout of Data Bits and Check Bits
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1= checked by those Dyis « osuch that £F = . For example, position 7 1% ches ki I:y
bits in position 4, 2and l;and 7 = 4 + 2 + |,

Let us verily that this scheme works with an example. Assume thit the H-bit
mput ward is 00111001, with data bit D1 in the rightmost position, The calculations

are as follows:
Cl=1®8081d1a0 =1
c2 1e0@1D1®0 =1
C4=020@1da0 =1
Ci=lalada)=10 -4

Suppose now that data bit 3 sustains an error and is changed from 0 to 1. When the 4
check bits are recalculated, we have i

. Cl=1a@0a1a1a0 =] _;
Q=-lolole1e0 =0 " ]
Ci=0@1@BIB0O=10 3
CE=1@1@0@00=0 |

When the new check bits are comparcd with the old check bits, the syndrome word
is formed:

ror L g

&8 2 o1
-2 3T.F% &

@ 0 0 0 |
0

-1J 1\ 'l]'
N 4

The result is 0110, indicating that bit position 6, which contains data bit 3, is in error.

Figure 5.10 illustrates the preceding calculation. The data and check bits are &
positioned properly in the 12-bit word. Four of the data bits have a value 1 (shaded !
in the table), and their bit position values are XORed to produce the Hamming
code 0111, which forms the four check digits. The entira block that is stored is
001101001111. Suppose now that data bit 3,1n bit positioa 6, sustains an error and is

o e bt e

it 0 e . » o o s
] — I 12 f 1 10 o5y 8 C|tamil e 5 4 [EResE 2 1
Fosition p T BT e T |
fmmb“ f 1100 | 1011 | 1010 | 1001 | 1000 | 0111 | otio | o101 | oigo 00LL | D00 | 0001
[Daabic | D8 | DT | D6 | D3 D¢ | D3 | D2 DI

| Check bit | 1__ _ CH : C4 JEs 2 | oy
Word 2 T

[Slﬂﬂ:dns { o 0 By 9 Y 4] 1 0 0 1 : I____ 1 |
Word [ T

!rmhﬂj“ |I 0 ; ] | 1 0 | | ] B S 1 L |
Fosition [ 1100 [ 1011 | 1010 | 1001 | 1000 | 0111 | 0110 | 0101 | owoo | pon 0010 | 0001
numher

Check bit_| I n 0 1] L]

Figure S0 Check Bit Calculation
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fch

Hamming SEC-DEC Code
|

Figure 5.11

The resulting block is 001 101101111, with a Hamming code of!

Hamming code and all of the bit position values for nonzer,

changed from 0 to 1.
zero result detects an error and indicates that the

0111. An XOR of the
data bits results in 0110. The non
error is in bit position 6.

a single-error-correcting (SEC) code '

The code just described is known as
More commonly, semiconductor memory is equipped with a single-error-correcting

double-error-detecting (SEC-DED) code. As Table 5.2 shows, such codes require

one additional bit compared with SEC codes.
de works, again with a 4-bit data word. The -

Figure 5.11 illustrates how such a co
Figure 5.11c), the checking procedure goes

sequence shows that if two errors occur (
astray (d) and worsens the problem by creating a third error (e). To overcome the |

problem, an eighth bit is added that is set so that the total number of 1s in the dia-

gram is even. The extra parity bit catches the error (f). . =g
he cost of

An error-correcting code enhances the reliability of the memory at t
added complexity. With a one-bit-per-chip organization, an SEC-DED code &/
generally considered adequate. For example, the IBM 30xx implementations used
an 8-bit SEC-DED code for each 64 bits of data in main mémory. Thus, the size of
main memory is actually about 12% larger than is apparent to the user. The VAX.
computers used a 7-bit SEC-DED for each 32 bits of memory, for a 22% overhead
A number of contemporary DRAMs use 9 check bits for each 128 bits of data, for3!

7% overhead [SHAR97].
|
 —TEUE
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Labie 3.3 Performance Comparson of Some DRAM Aliernatives
Clock frequency | Transfer rate |
(M=) {(GB/s) : Access fime (ns) Pin couni
| SDRAM 166 13 18 168
DDR 20 32 125 104 |
| RDRAM 600 AR 12 152

wilding block of main memory remains the DRAM chip, as it has for decades: until
ecently, there had been no significant changes in DRAM architecture since the
arly 1970s. The traditional DRAM chip is constrained both by its internal architee-
ure and by its interface (o the processor’s memory bus.

We have sten that one attack on the performance problem of DRAM main
1iemory has been to insert one or more levels of high-speed SRAM cache
ctween the DRAM main memory and the processor. But SRAM is much costlier
1an DRAM, and expanding cache size beyond a certain point yields diminishing
sturns. -

In recent years, a nuniber of enhancements 1o the basic DRAM architecture
ave been explored, and some of these are now on the markel. The schemes that cur-
:ntly dominate the market are SDRAM, DDR-DRAM, and RDRAM. Table 5.3
rovides a performance comparison. CDRAM has also received considerable atten-
on. We examine each of these approaches in this section!

vischronous DRAM y e " '
ne of the most widely used forms of DRAM is the synchronous DRAM
‘DRAM) [VOGL94]. Unlike the traditional DRAM, which is asynchronous, the
JRAM cxchanges data with the processor synchronized (o an external clock sig-
tl and running at the full speed of the processor/memory bus without imposing
ait states. A
In a typical DRAM, the processor presents addresses and control levels to the
g:uury. indicating that a set of data at a particular location in memory should be
er read from or written into the DRAM. After a delay, the access time, the DRAM
ther writes or reads the data. During the access-time delay, the DRAM performs var-
s internal functions, such as activating the high capacitance of the row and column
©s,sensing the data,and routing the data out thro ugh the output buffers. The proces-
£ must simply wait through this delay, slowing system performance,  *
| With synchronous access, the DRAM moves data in and out under control of
r System clock. The processor or other master issues the instruction and address
ormation, which is latched by the DRAM. The DRAM then responds after a set
mber of clock cycles, Meanwhile, the master can salely do other tasks while the
'‘RAM is processing the request.
Figure 5.12 shows the internal logic of IBM’s 64-Mb SDRAM [1BMO1], which
ypical of SDR AM organization. and Table 5.4 defines the various pin assignments.
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pabile 54 SDHAM TMin Assignmenits
|_M1' o ALY Address inputs
Y ¥ =5 = St
ClK Clock inpul
CKEL Clock cua_!nlu:
L Chipaclect
HAS How address suobe
AS ) Column addiess strobe |
Wi Write enabile
DOO 1 DOT - [data input/outpul
DOM [Data mask

"
L]

The SDRAM employs a burst tup time and row and

a series of data bils

o |
mode to eliminate the address se
mode is useful

column line precharge time after the first access In burst mode,
can be clocked out rapidly after the first bit has been accessed. This
when all the bits 1o be accessed are in sequence and in the same row of the array as
the initial aceess. In addition, the SDRAM has a mu]tip!f-hnnk internal architecture

that improves apportunities for on-chip parallchsm.
associated control logic is another key feature differen-

The mode register and
ventional DRAMSs. It provides a mechanism 1o customizc
cifies the burst

tiating SDRAMSs from con
the SDRAM to suit speeific system needs. The mode register spe
length, which is the number of scparate units of data synchronously fed onto the
bus. The register also allows the programmer 10 adjust the latency between receipt
of a read request and the beginning of data transfer. "

The SDRAM performs best when it is transferring large blocks of data serially,
such as for applications like word processing, spreadshects, and multimedia.

Figure 5.13 shows an example of SDRAM operation. In this casc, the burst
length is 4 and the latency is 2. The burst read command is initiated by having CS and
TAS low while holding RAS and WE high at the rising cdge of the clock. The address
inputs delermine the starting column address for the burst, and the maode register scis
the type of burst (sequential or interleave) and the burst length (1, 2, 4, 8, full page).
The delay from the start of the command lo when the data from the first cell appears
on the outputs is equal to the value of the CAS latency that is set in the mode register.

T Td TS Té m T
|
]

i L]
] L]
] r
i ]

DQs

Figuic 513 SDRAM Read Timing (burst leapth = 4, CAS lateney = 7)
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“Hf\m is limited by the fact that it can only send data to the processor once per
‘ el i " . ; ‘ N

1-‘ clock cvele A new Ve rsion of SDRAM referred 1o as double-data-rate SDRAM

|1' cend data LwIee per clock cycle, onee on the rising edge of the clock pulse and

:q.l‘«‘ on the [alling cdpe,

ahe DIRAM

whe DRA M (CDRAM), developed by Mitsubishi [HIDAY0, ZHANO1], inte-
ates a small SRAM cache (16 Kb) onto a generic DRAM chip.

The SRAM on the CDRAM can be used in two ways. First, it can be used as a
je cache, consisting of a number of 64-bit lines. The cache mode of the CDRAM is
jve for ordinary random access to memory.

The SRAM on the CDRAM can aiso be used as a buffer to support the serial
cess of a block df data. For example. to refresh a bit-mapped screen, the CDRAM
o prefetch the data from the DRAM into the SRAM buffer. Subsequent accesses
the chip result in accesses solely to the SRAM.
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KEY POINTS \_\
# The computer system’s [/O architecture is jis inir:rfaci_m th“‘“ﬁlsid
world. This architecture provides a systematic .means’ of controjf;

inleraction with the outside world and pmvidtl:s 'rlh_t: 'QPEfatiﬂﬂ'S}'stgm
with the information it needs to manage 1/O activity effectively

@ There arc three principal /O techniques: programmed HO. iy ."ﬂ!:hiéh
/0 occurs under the direet and continuous control of the Progra
requesting the /O operation: interrupt-driven L/Q_in which a.py,

gram issues an I/O command and then continues 1o execute, unyj| it is
nterrupted by the [/O hardware 10 signal the end of the /O Opera.
liuil; and direct memory access (DMA). in w}uch'-.a specialized o

processor takes over control of an 1/O operation to move a large blogy,

of data. bt ek F 2

¢ Two important ‘cxamples of. external 1JO inlc_:fa-::l:;'?m Fi""?wilfﬂ__lam:] b

 InfniBand. | L O s D
o -:‘.1I_|: - N T 25 Fi Ao ._..' -, gi 1

In addition 1o the processor and a1 set of memory modules, the third key elemeny of,
computer system is a set of 'O modules. Each module interfaces to the system bus g
central switch and controls one or more peripheral devices. An 1/O module is pey sim.
ply a set of mechanical conncclors that wire a device inio the s¥stem bus. Rather, ip.
VO module contains logic for performing a comununication function between the
peripheral and the bus .

The reader may wonder why one does not connect peripherals directly 1o the
system bus The reasons are as follows:

* The data transfer rate of peripherals is often much slower than that of the

MEemaory or processor. Thus, it is impractical o use the high-speed system bus
lo communicate directly with a peripheral

* On the other hand, the data transfer rate of some peripherals is faster than tha
of the memory or Processor. Agzin, the mismaich would lead to inefficiencics i
nol managed properly.

= Peripherals often use different data formats

and word lengths than the com:
puter to which they are attached.

Thus,an 1/O module is required. This module hag two major functions ( Figure 7.1}

* Interface to the processor and memory via ¢

he system bus or central switch
* Interface to one or more peripheral devices

by tailored data links

We begin this chapter with g brjef discussion of ¢

i Xternal devices, followed by a0
overview of (he slruct

re and function of an /0 module, Then we look at the

M ~d
- Scanned with CamScanner



JI0 operations are amﬂmplisl.'!ed through a wide assortment ofiexternal devices that
provide a means of exchanging data between the external environment and the
‘computer. An external device attaches to the computer by a link to an /O module
((Figure 7.1). The link is used to exchange control, status, and data between the /O
‘module and the external device. An external device connected to an I/O module is
ofien referred to as a peripheral device or, simply, a peripheral.

We can broadly classify external devices into three categories:

* Human readable: Suitable for communicating with the computer user
* Machine readable: Suitable for communicating with equipment
* Communication: Suitable f or communicating with remote devices

Examples of human-readable devices are video display terminals (VDTs) and
ters. Examples of machine-readable devices are magnetic disk and tape systems,
%ensors and actuators, such as are used in a robotics application. Note that we are
“Wing disk and tape systems as I/O devices in this chapter, whereas in Chapter 6 we

them as memory devices. From a functional point of view, these devices are

prin
ang
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Cantrnl T Data hits
sigrouils From townd from
Uiy module L0 mndude

Data idevice-unique) ]
fo amd from
T eovironment

Figure 7.2 Block Diagram of an Externa) Device

part of the memory hierarchy, and their use is appropriately discussed in Chapter 6.
From a structural point of view, these devices are controlled by I/O modules and are
hence to be considered in this chapter.

Communication devices allow a computer to exchange data with a remote
device, which may be a human-readable device, such as a terminal, a machine-readable
device, or even another compauter,

In very general terms, the nature of an external device is indicated in Figure 7.2,
The interface to the /O module is in the form of control, data, and status signals.
Control signals delermine the function that the device will perform, such as send data
to the I/O module (INPUT or READ), accept data from the IO module (OUTPUT
or WRITE), report status, or perform some control function particular to the device
(e.g., position a disk head). Dara are in the form of a set of bits 1o be sent to or received

READY/NOT-READY to show whether the device is ready for data transfer.

Control logic associated with the device controls the device’s vperation in
response to direction from the VO module. The transducer converts data from
electrical to other forms of energy during output and from other forms to electrieal
during input. Typically, a buffer is associated with the transducer to temporarily hold
data being transferred between the LUO module and the external environment: a
buffer size of 8 1o 16 bits is common.

The interface between the IO module and the external device will be exam-
ined in Section 7.7. The interface between the external device and the Envirgnment
is beyond the scope of this book, but several brief examples are given here,

Keyboard/Monitor

The most common means of computer/user interaction is a keyboard/monitor arran pe-
ment. The user provides input through the keyboard. This input is then transmitted to
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the computer amd may abvo be displayed on the monitor. In adduion, the monitor dis-
plays dats provided by the computes

The basiec unit of exchange is the character. Associnted with each character is a
code, typcally 7 or 8 bits in length. The most commonly used text ende 1s the Interna-
tional Referenve Alphabet (1IRA) Each character in this code is represcnied by a
unigque 7-bat-binary code; thus 128 different characters can be represented. Table 7.1
hsts all of the code values In the table. the bits of cach character are labeled from b,
which is the most significant bit, to by. the least significant bit.” Characiers are of two
types: pantable and control (Table 7.2). Prntable characiers are the alphabelic,
numenc, and speaal characters that can be printed on paper or displaved on a screen.
For example. the bit representation of the character “K" is b, bbbl = 10010114.
Some of the control characters have 1o dowith conirolling the printing or displaying of
characters: an example 1s carnage return. Other control characters are concerned with
comniumications procedures.

-t N .I.
Fable 7.1 The Inteiational Reference Adphabet (IRA)
b position
by n i} 0 0 L 1 1 !
b, i 0 1 1 ™~ o 1 1
b, 1] 1 ] 1 i 1 0 I

bs by b; iy b L /
0 0 0 0 NUL DLE s | o, | @ P : P
U 0 i ] SOH DCi ' 1 A | © a q
0 0 1 0 5TX DC2 v e, B'| R b t
0 0 I t [ ETX DC3 2] 3N c | s c :
0 1 0. .. B EOT DC4 3 - 4 DN oT d t
li] 1 0 1 - EMNQ NAK ¢ % ] E u ‘e u
0 I | 0 ACK SYN e F v i v
0 1 1 1 viluBER | CETB |+ vy G W £ w
1 0 0 0 “BS CAN ( 8 |'H X h x |
1 0 0 ] HT FM ik 1 Y i ¥
1 o 1 1 LF SUB . ; J r i ;.

0 1 I YT ESC + K L k {

1 0 0 " FF =3 ; < L \ 1 [

1 0 1 CR GS = = M | m }

1 i 0 SO RS . > N . = =

1 1 I sl Us / ? " o DEL

NRA is defined in ITU-T Recommendation T.50 and was formerly known as International Alphabet
Number S [(1AS). The U.S national version of IRA is referred 1o as the American Standard Code for
Information Interchange {ASCHL). ; _ _

IR A -encoded eharacters are almost always stored and Irarlsmﬂltl.‘_.l using B L‘:l:l::'; per character. The cighth bit
is a parity hit used for error detection, The parity bit is the most significant bit and i« therefore labeled b,

5

PR TN S

e i i o

s Bty gt e e



Formal Conirol

T

BS (Backspace): Indieates movement of the
printing mechanism or display cursor
backward one position. <

HT (Horizontal Tab): Indicates movement of
the.printing mechanism or display cursor ;
forward to the next preassigned ‘tab’ or
slopping pusition.

LF (Line Feed): Indicates movement of the
printing mechanism or display cursor to the -
siart of the next line. :

Trammlssmn Control et e

VT (Vertical Tab): Indicates mm'cm_cm

prlnnng mechanism or d:sp!a:. cursor tq j;,
next of a series prcnsslgn:d pnnlmg Imu b

_FF (Form Fce:]} In&:m!cs mm«emenl of the
printing me::hamm or display curgor lnth 3 ."'u
starting position of the next page. . 3

-

form,or screen. - Fans, d,-',r -. .-.--".

- -

CR (Carriage Rcmm} fndmarc-s mnvemI qf
printing mechanism or dlsph;,r cursor fo th *h i
starting pns:lmn of the. same liner- _j". 7 :

o d= -

-
-

= O =

SOH (Start of Heading): Used 1o indicate the
start of a heading, which may contain
address or routing information

STX (Star1 of Text): Used 10 indicate the start
of the text and £o also md:r.ales the end of:
the heading. . 3

ETX (End of Text): Used 1o tnrmmmc t.'llc text :
that was started with ST){ L

EOT{End of Transmission): Indml:s the end.

of a transmission. which may have included
one of more ‘texts’ with their headings.
ENQ (Enquiry): A request for a :rc#;inh‘:;tr from
a remoie station. It may be used as a*WHO
. AREYOL! Tequest iovr a station o |dtn1.|ty ltselt

> ] el L&
_‘_.-.._;-r-. e b o i .:.._ L L} L

% j end of a block of data for communication purpass

-ACK (Acknowledge): A character hansmmm "
by a receiving device as an affirmation ¢ "
response to a sender. It i 15 used asd pl}!rhve ;
response to polling mﬁiaget 7 ffe £,

NAK (Nepative Admnw]'cdgmc:fﬂ Athanm; §
transmilted, by a réceiving deviée a5 an nggmf*;— 1
,response 1o 3 sender. 1t is used asa nzgquu.: ¥

__ Fesponse to puilmg MESSABES. % -{rpr Giei - 4 -

SYN [Synthrannuy’ldlgj Used"hjrnsjrnchmmm

.. Iransmission systcm toachieve mtbrmmrm :u

* When no data i 5 hlng semt a ij"nthmnuu{ i rL =TT
- ransmission s}rﬂcm may 5cnd S’YN :hamctm <
continwously. ~ .. ..~ ° 25 e

€ ‘lu'-.,'_n

" It is used for blu.;:l:mg d:lla wh.:r:: the; hI-Dck 2

S AT 7 2 ; < 2 strodture isnot ne:ess.anljr r-::ial:d ta !he”'

§L Sl e viong £ el 4 ks S et prmussmg format. T Y

Lo AT 3N aLs Ay ]nrurmaimn Sepa:rnlor 11 32 ~i4

FS (File Separator) %7 v e =) i "Inmrmuhun scpamlurs to beused inan - ;— #3

{-S{Group Scparatnr) R, L nptmna[maunermepuhal their h:crarthjr-— m-
{Rzmrdﬂcpmmr} o S " shall be FS (the most '.ll:lsn:l‘lusuurt}!li«:u‘l:.l‘slttl'mrfli‘.jr P

US{Umted Sepuralnr} 5.7, * i 'lﬂ-“”“d“&'“} "}AI:' 1‘??'. T ‘,:'H _';-"‘\'ﬁ::

' Mlsmlhnenus el h‘i bife 2 T .-:_'_.';_- ';_:;.-ﬂ:

#F

NUL (Null): No character. Used for fi filling in..
- time'or.filling space on tape when there are . 1~
- no data 'y o R LA
BEL (Bell): Used when there is need to call
human attertion. It may control alarm or
altention devices
50 (Shift Oui): Indicates that the code
comhinations that follow shall be interpreted
as outside of the standard character set
until a 51 character is reached.

DLE (Data Link Eﬂ:apc] A cha'rm:tc'r I:hal shall S
. change the mcanmg of one or more: cbnl:lguuuﬂjfﬂ
following characters. It can provide supplementary.
controls, or pc.-nm:s the s.n:n-dmg nrdata l::hﬂﬂtlﬂﬂ-r
havmg any bit Mmhmam Al _1-.:‘:-,._3-,
Dl DCZ DCS. D'C—I (D:w:l: Cﬂntmls} ]
Characters for t]m control of ancIllag. d:w:e; Rer
* or special terminal fealures. g

A7 . il
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For ke yhc;ard input, when the user dgpn:sses akey, this generates an electronic
. aal that is interpreted by the transducer in the keyboard and translated into the bit
E“lgm:rn of the corresponding IRA code. This bit pattern is then transmitted to the I/O
module in the computer. Al the computer, the text can be stored in the same IRA
code. On output, IRA code characters are transmitted to an external device from the
/0 module. The transducer at the device interprets this r;Ede and sends the required
slectronic signals to the output device either to display the indicated character or

perform the requested control function.
Disk Drive f{

A disk drive contains electronics for exchanging data, control, and status signals
wvith an 1/O module plus the electronics for,cﬁhn:nlling the disk read/write mecha-
sism. In a fixed-head disk, the transducer _sticapablf. of converting between the mag-
1etic patterns on the moving disk surface’and bits in the deyice’s buffer (Figure 7.2).
A moving-head disk must also be able to cause the disk arm to move radially in and
»ut across the disk’s surface.

\
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The internal resources, such o5 main memory and the system bus, must be shared
among a number of activilies, including data 1/O, Thus, the 1/ function includes a
control und timing requirement, 1o coordinate the fow of traffic between intermal

resources and L-_Jncmut devices. For example, the control of the transfer of data from
an external device 1o the processor might involve the following sequence of steps:

1. The processor interropates Lhe VO module 10 check the status of the
attached device.

2. The VO module retumns the device status,

3. If the device is operational and ready to transmit, the processor requests the
tramsfer of data, by means of a command to the IO module

4. The I'O module obtains a unit of data (e.z.. 8 or 16 hits) from the external device.
5. The data are transferred from the /O module 1o the processor.

If the system f-'l:nP]'D}'E a bus, then each of the interactions belween Lhe processor
and the /O module involves one or more bus arbitrations.

The preceding simplified scenario also 1llustrates that the /O module must

communicate with the processor and with the external device. Processor communi-
cation involves the following:

* Command decoding: The /O module accepls commands from the processor,
typically sent as signals on the control bus. For example, an [/O module for a disk
drive might accept the following commands: READ SECTOR, WRITE SEC-
TOR, SEEK track number, and SCAN record 1D The latter 1wo commands
cach include a parameter that is sent on the data bus

* Data: Data arc cxchﬁng&d between the processor and the 1/0 module over
the data bus.

= Stiatus reporting: Because peripherals are so slow, it is important 10 know the
status of the /O module. For example, if an /O module is asked o send daia

to the processor (read), it may not be ready to do so because it is still working
on the previous /O command. This fact can be reported with a status signal.

Common status signals are BUSY and READY. There may also be signals 1o
report various error conditions.

» Address recognition: Just as cach word of memory has an address, so docs
each 1/O device. Thus, an [/O module must recopnize one unique address [or
each peripheral it controls.

On the other side, the /O module must be able to perform device commumica-
tion. Thiz communication involves commands, status information, and data (Figure 7.2).

An essential task of an /O module is data buffering. The need for this function
is apparent from Figure 2.11. Whereas the transfer rate into and out of main memory
or tke processor is quite high, the rate is orders of magnitude lower for many
peripheral devices and coversa wide range. Data coming from main memory are sent
1o an 1/O module in a rapid burst. The data are buffered in the /O mm?u!e: and then
sent 1o the peripheral device at its data ratc, In the opposile direction, data are
huffered o as not to tie up the memory in a slow transfer operation. Thus, the 1/O
module must be able to operale al both device and memory speeds. Similarly, if the
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1O device operates at a rate higher than the memory aceess rate, then the I/

ule performs the needed huffering npcrzuicm.‘ . L tor snbise:

Finally, an ¥O module is often responsible for error t!eicfllﬂ'* and 1or £ = il
quently reporting errors to the processor. One class of errors includes mﬂ“'f‘“mml :m
electrical malfunctions reported by the device (eg., paper jam, "‘“? disk m-“k}'
Another class consists of unintentional changes to the bit pattern as it is transmitted
from device to /O module. Some form of error-detecting code is often used to detect
transimission errors. A simple example is the use of a parity bit on each :’_‘lllﬂ]'EIC[Er ;:11"
data. For example, the IRA character code occupies 7 bits of a byte. The eighth b.]l =
set so that the total number of 1s in the byte is even (even parity) or odd (odd parity).
When a byle is received, the /O module checks the parity to determine whether an
error has occurred,

1/0 Modale Structure

1/0 modules vary considerably in complexity and the number of external devices that
they control. We will attempt only a very general description here. (One specific
device, the Intel 82C55A, is described in Section 7.4.) Figure 7.3 provides a general
block diagram of an /O module. The module connects to the rest of the computer
through a set of signal lines (e.g., system bus lines). Data transferred to and from the
module are buffered in one or more data registers. There may also be one or more sta-
tus registers that provide cur_:"f:pl status information: A status register may also func-
tion as a control register, to accept detailed control information from the processor.
The logic within the module interacts with the processor ‘-’ia’,'a{ sct of control lines. The
processor uses the control lines to issue commands to the /0 module. Some of the
control lines may be used by the [/O module (e.g.. for arbitration and status signals).
- T

L \
Interface to ; Interface to
svstem bus i " . = . external device

L o s ey e e St o = T',:I.IT:'._-I.?"' CTRTT
et T et B B e S R e A

i T fu i,

LE o i Data
Drata registers “— o TLA =] External
o : - i device
3 e il il ! interface Status
> 7 i | s kgt
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External
Ly 4 | device
lugic - 1 interface Status
lozic
by il — Control

Yigure 7.3 Block Diagram of an O Module
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The module musl also be able (0 recognize and generale addresses associaye A i;zﬂ
devices it controls Each /O module has a unique address or, if it controlg Moy th,
Se external device, unique set of addresses. Finally, the O module congy;

upecific to the nterface with each device that it controls.

A An /0 module functions 10 allow the processor Lo view a wide range of Al
in a simple-minded way. There is a spectrum of capabilities that may be proy; did
1/O module may hide the details of timing, l'c:rf'nau_f-, and the electromechanje
external device so that the processor can function in terms of simple read apg n
commands, and possibly open and close file commapdsu In iis. simplest form, g,
module may still leave much of the work of controlling a device (e.g., rewind 5 %

visible to the processor.

An 1/O module that takes on most of the detailed processing burden, preg, :
ing a high-level interface (0 the processor, is usually refer red 1o as an [/O chaﬂmt
1O processor. An 11O module that is quite primitive and requires detailed contryy,
usually referred to as an /O controller or device controller. 1O controllers are ey
monly seen on microcomputers, whereas /O channels are used on mainframes

‘In what follows, we will use the generic term IO module when no configy,

results and will use more specific terms where necessary.

‘PROGRAMMED T/O -

Three techniques are possible for /O ::-pf:ratiaﬁs With programmed /O, data e
exchanged between the processor and the YO module. The processor executes |
program that gives it direct control of the /O operation, including sensing device
status, sending a read or write command, and transferring the data. When the
processor issues a command to the /O module, it must wait until the /O operation ||
is complete. If the processor is faster than the /O module, this is wasteful of proces |
cor time. With interrupt-driven /0, the processor issues an 1/O comrhand, continugs
to execute other instructions, and is interrupted by the 1/Omodule when the latter |
has completed its work, With both programmed and interrupt 1O, the processoris |
responsible for extracting data from main memory for output and storing data i
main memory for input. The alternative is known as direct memory access (DMA]}

In this mode, the /O module and main memory exchange data directly,
processor involvement.

Table 7.3 indicates the relationship among these three techniques. In this section
we explore programmed VO, Interrupt /O and DMA are explored in the followind

two sections, respectively.

Table 7.3 U0 Technigues

- No Interrupts” | Use oftaterripts "~

L T A B L o T PETVLY S E T e TR SR T Py e e M
P i i oA e
' Direct 'O-to-memory framsfer | . 0 | Direct memory access (DMA)
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be cleared. Another line may be designated as an [NTERRUPT REQUEST line

and tied back to the system bus. _ —
i mable via the control register, 11 car

Beonuse (he 82O 20 | devices. Figure 7.10 illustrates its use 10

1o control a variety of simple periphera : its of input. Two
O Alticntav terminal. The keyboard Prou:dﬂ_&f ?_: sﬂm l:fvboard-
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Drawbacks of Programmed and Interrup

Inll:'rlrupirdm'cn VO, though more efficient than simple programmed 10), still
requires the active intervention of the processor to transfer daia between memon,
and an /O module, and any data transfer musg Lraverse a path th rough the proces-
s0r. Thus, both these forms of U0} sulfet from twa inherent drawbacks:

L. The V'O transfer raie

is limited by the speed with which
and service a deviee.,

=Diriven 1403

the processor can test

2. The processor is tied Up in managing an

1O transfer: a number of instructions
must be executed for each 1O transier |

e.g., Figure 7.5,

There is somewhat of 3 trade-off between
transler of a block of data, Using simple program
to the task of IO and can mave data at a rather
ing else. Interrupt /O frees up the precessor ta
transfer rate. Nevertheless, bath methods have
activity and 1O transfer rate.

When large volumes of data are to be moved, a more efficient technique is
required: direct memory access (DMA),

these two drawbacks. Consider the
med /0, the processor is dedicared
high rate, at the cost of doing noth-
some extent at the expense of the 10
an adverse impact on both processor

DMA Function

DM invelves an additional module on the system hu&'n]n DMA module {F‘ugurf: T
is capable of mimicking the processor and, indeed, of taking over control of the system

—

Address lings -

DNMA request
DMA acknowledge
Intermupl - |

Regd ———————"" Il

Write

Typical DMA Block Diagram

Foure 741
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from the processor. 1t needs 1o do this 10 transfer data 10 and from memory over the
system bus. For this purpose, the DMA module must use the bus only “.’hu" the pranes.
sor does not need it or it must foree the processor to suspend upurﬂllﬂn lemporarily,
Ihe latter techmique is more common and is referred to as cyele stealing, because the
DMA module in effect steals a bus cycle. )

When the processor wishes Lo read or write a block of data, it Issues @ command
to the DMA module, by sending to the DM A module the following informalion:

" Whether a read or write is requested, using the read or write control line between
the processor and the DMA module :

* The address of the /O device involved, communicated on the data lines

* The starting location in memory to read from or write to, communicated on
the data lines and stored by the DMA module in its address register

* The number of words to be read or writlen, again communicated via the data
lines and stored in the data count regisier

The processor then continues with ather work, 1 I"I::IS delegated this I'O oper-
ation to the DMA module. The DMA module transfers the entire block of data, one
word at a time, directly to or from memory, wilhoui going through the processor,
When the transfer is complete, the DMA module sends an interrupt signal to the
processor. Thus, the processor is involved only at the beginning and end of the trans-
fer (Figure 7.5¢). _

Figure 7.12 shows where in the instruction cycle the processor may be sus-
pended. In each case, the processor s suspended just before it needs to use the bus,

The DMA module then transfers one word and seturns control to the processor.
Note that this is not an interru pt; the processor does not save a context and do
something else. Rather, the processor pauscs {or one bus cycle. The overall effect is
{0 cause the processor 1o execute more slowly. Nevertheless, for a multiple-word [/O
transfer, DMA is far more efficient than interrupt-driven or programmed I/0.

Time
———f
i Instruction cycle :
Processor | Processor l Processor [ Processor | Processor Processor
cycle cyele cyele cycle cycle cyele
Ex B o - — -
Feich Decode Fetch Execute Store Process
instruction | instruction | eperand | instruction result interrupt
L~
DMA Inferrupt
breakpoinis breakpaint

Fisure 7.12 DMA and Inierrum Breakpoinis during an Instruciion Cyele
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-;llt Wi

i s

L=



75 IHELL | MENOHEY AC oo, .
4
The DMA mechanisin can be configured in a varicly of ways. Some
jies are shown in Figure 7 13 In the first example, all modules share Lhe same g, !
bus. The DMA mocule, acling as a surrogate processor, uses Programmey | n
exchange data hetween memory and an .!JD _module t}!rnug_h_ the DMA mody. T!:;
configuration, while it may be InEcxpensive, 1 clearly inefficient. As with pro,
controlled programmed 1O, each transfer of a word consumes 1wo bus cycley
The number of required bus cycles can be cut substantially by integraj,
DMA and 1O functions. As Figure 7.13b indicates, this means that there j 3“_1’*
. between the DMA module and one or more I/O modules that does not includ, h
system bus The DMA logic.may actually he a part of an IIO_ module, or it “‘fiyb.f
separate module that controls one or more 1/0 modules. This concept can be 1y,
one step further by connecting /O modules U'.] the DM.#_& module using an Iig hl;
(Figure 7.13c). This reduces the number of 1o mle‘rt'an:es in the DMA module g,
and provides for an easily expandable configuration. In all uf_ these cases (Figuye,
7.13b and ¢), the system bus that the DMA module shares with the processy R
memory is used by the DMA module only to exchange data with memory
exchange of data between the DMA and 1/0 madules takes place off the system b,

{a) Single-hus, detached DMA

Frocessor DMA

{b) Single-bus, integrated DMA-LD
System bus

’ E DMA . Memory

/0 bus

{e) VO bus
Frgure .13 Allernative DMA Configurations
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WTILC 1t to the peripheral Then DMA decrements the counter and increments the

address pointer and repeats this process until
1s finished.

. After the DMA has finished
that it can repgain control

the count reaches rero and the 1ask

1ts job it will deactivate HROQ. signaling the CPU
over its buses,

, While the DMA is using the buses to transfer data. the
ilarly, when the processor is

processor is 1dle. Sim-
known as a fly-

using the bus, the DMA is idle. The 8237 DMA is

. by DMA controller, This means that the data being moved from
one location 1o another does not pass through

the DMA chip and is not stored in
the DMA chip. Therefore, the DMA can only

transter data between an 1O pont
and a memory address, bul not between two 1O ports or two memory locations.

However, as explained subsequently, the DMA chip can perform a memaory-
lo-memory transfer via a register.

The 8237 contains four DMA channels that can he programmed independently
and any one of the channels may be active at any moment. These channels are num-
bered 0,1.2, and 3.

The 8237 has a set of five control/command registers to program and control
DMA operation over one of its channels (Table 7.4):

* Command: The processor loads this register 1o control the operation of the
DMA, DO enables a memory-1o-memory transfer, in which channel 0 is used to
transfer a byte into an 8237 lemporary register and channel 1 is used 1o transfer

the bytc from the register to memory. When memory-to-memary is enahled, D1
can be used 1o disable increment/decrement on channel 0 so that a fixed value

can be written into a block of memory. D2 enables or disables DMA .

* Status: The processor reads this register to determine DMA status. Bits
D0-D3 are used to indicate il channels 0-3 have reached their TC (terminal
count). Bits D4-D7 are used by the processor to determine if any channel has
a DMS request pending,

* Meode: The processor sets this register to determine the mode of operation of
the DMA. Bits D0 and D1 are used 10 select a channel. The other bits select
various operation modes for the selected channel. Bits D2 and D3 determine if
the transfer is a from an /O device to memory (write) or from memory to /O
(read), or a verify operation. 1f D4 is set, then the memory address register and
the count register are rcloaded with their original values at the end of a DMA
data transfer. Bits D6 and D7 determine the way in which the 8237 is used. In
single mode, a single byte of data is translerred. Block and demand modes are

used for a block transfer. with the demand mode allowing for premature ending
of the transfer. Cascade mode allows multiple 8237s 1o be cascaded to expand
the number of channels to more than 4.

» Single Mask: The processor sets this register. Bits DO and D1 select the chan-
nel. Bit D2 clears or sets the mask bit for that channel. It is through this regis-
ter that the DREQ input of a specific channel can be masked (disabled) or
unmasked (enabled). While the command register can be used to disable the

whole DMA chip, the single mask register allows the programmer to disable
or enable a specilic channel.
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for cach channe

{ main memory Lo he affected by the transfers,

and one count register
cate the location of size 0

n of the 1/0 Function

have evolved. there has been a pzllf.f.cr.n of ]J’lc‘l’::,,':llglﬂg mmmeﬁ“
ponents. Nowhere is this more evident thap i
volution. The evolutionary st epscy,

The Evolutio

As computer sysiems nave
and sophistication of individual com ;
[/O function. We have already seen part of that e
be summarized as follows:

1. The CPU directly contrals a peripheral device. This is seen in simple Micrg

processor-controlled devices. .
3. A controller or /O module is added. The CPU uses programmed /O Withoy

interrupts. With this step, the CPU becomes somewhat divorced from the SPecify
details of external device interfaces.

3. The same configuration as in step 2 is used, but now ?nte rrupts are employed, Ty,
CPU need not spend time waiting for an I/O operation to be performed, incre
ing efficiency.

4. The I/O module is given direct access to memory via DMA. It can now move 3
block of data to or from memory without involving the CPU, except at the begi.
ning and end of the transfer.

5. The I/0 module is enhanced to become a processor in its own right, with ;
specialized instruction set tailored for /O. The CPU directs the [/O processor
to execute an I/O program in memory. The /O processor fetches and EXeCltes
these instructions without CPU intervention. This allows the CPU to specifys

sequence of I/O activities and to be interrupted only when th :
ee
has been performed. Y ntire sequence

6. The I/O module hasa local memory of its own and is, in fact, a computerinit
own r:gh!. With this architecture, a large set of I/O devices can be controlled,

:::e:n to control communication with Interactive lerminals. The 1/O processor
es care of most of the tasks involved in controlling the lcrnlina]SP
A ; . ;
tion is Pi;giizc‘:ﬂa elong this evolutionary path, more and more of the L/O func
related tasks, imprwinlu;g;;ir?:ul""E;T;ﬂnt. The CPU is increasingly relieved of 1/0-
; ; nce. With the | ’

occurs with the ing . ast two steps (5-6), a major chan

roduction of the concept of an 1/0 rnﬂdufe f.fﬂ]:lagﬂf: of ttjzcu[ingg:

| lerms are on occasion applied ©
» We will use the lerm 1O channel. =
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it ¢ an extension of the DMA concept, ap

rl.""'T“Li\:u’ul:liﬂns‘Wh.i':h gives it complete contro] over Qg

-j|.lﬂ_“w o qth such devices, the CPU does not Execute I/Q ; 3
At Wi o main memory ta be executed by as I{lstructmn&
; | itself. Thus, thelC‘PU initiates an [j() Lranspfﬁal-p
gt ® el xecult 2 program in memory. The PTOZTam will snac:
110 © o areas of memory for storage, priority, ang acn]'ﬁf;ff tge
0 be

fuctions ang con-

Lo chanpe) has the

Peratione

el

y P en
| i he t‘;"mdﬂ.'nns. The 1/O channel follows these it
Tor

in Figure 115, A
Y One time, is deg;_

Zelector
channel

[0}
irod signal
ﬁ‘:“m 1o CPU controller
I".:r
{a) Selector 3
Dats and . .
adidress channcd Lo L
fi i METHOTY .
ekt s I
Multiplexor
channel
Cantrol signal
path ta CPU

(b) Multiplexor

Menre 7
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loe hanne| Architecture
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coated 1o the transfer of dag with one ol
e device and effects the data transie
handled by a controllier, ar 1O module,

those deviees Thus, the 1O channe) seleets
r. Each deviee, or g small sel of devices, is

C . that is much like the 1O modules we have
been discussing, Thus, the 1/0) channel serves in place of 1he CPU g conirolling

these VO controllers, A multiplexor channel can handle KO with muliiple devices
al the same time. For low-speed devices, a hyte multiplexar accepls or lransmits
characters as fast as possible 1o multiple devices, For exa mple, the resultant charac-
ter stream from three devices with di ferent sates and individual sireams
A”-"I.:A _y‘l” — 131I32H_1H4 vasy Bind C.('Jg(“.;.,('.'d T ['I'.Iighl be A |B|C1ﬁl JCjﬁi 1HJC1F‘|4~

and so on. For high-speed devices, a lock multiplexor interleaves blocks of dais
from several devices,

THEEXTERNAL INTERFACE; FIREWIRE AND INFINIBAND '

Types of Interfaces

The interface to a peripheral from an 1/O module must be tailored to the nature and
operation of the peripheral. One major characteristic of the interface s whether it is
serial or parallel (Figure 7.16). In a parallel interface, there are multiple lines
connecting the VO module and the peripheral, and multiple bits are transferred
simultaneously, just as all of the bits of 2 word are transferred simultaneously over the
data bus. In a serial interface, there is only one line used to transmit data, and bits must
be transmitted one at a time. A parallel interface has traditionally been used for higher-
speed peripherals, such as tape and disk, while the serial interface has traditionally
been used for printers and terminals, With & new generation of high-speed serial
interfaces, parallel interfaces are becomin g much less common.

10 madule
Tosystem D:EEL_.D:D e ‘:::rnl
i Buffer BeEl
. " —
(a) Parallel 'Oy
/0 module
=} LEBLLEEE L
To sh}'slﬂn _ Buffer p.eriphn‘ral
us -
(b} Serial O

Figure 7.16 Parallel and Serial /O
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utes,

y the instructions it e;ff:c
rions. The collection of different

The operation of the processor is determined b
ed to as the processors

referred to as machine insfructions or computer Mstric
instructions that the processor can cxecute Is refert

frsrruction ser.

Elements of a Machine Instruction
rocessor for exect-

Ived in instruction
instruction. These

Each instruction must contain the information required by "}ﬂ P
tion. Figure 10.1, which repeats Figure 3.6, shows the steps invD
execulion and, by implication, defines the elements of 2 machine

elements are as [nilows:
ADD, 1/0). The

» QOperation code: Specifies the operation to be performed {&g“cndﬁ e rele

operation is specified by a binary code, known as the opération

* Source operand reference: The operation may involve one or im
operands, that is, operands that are inputs for the operation.’

+ Result operand reference: The operation may produce a result.

* Next instruction reference: This tells the processor where to fetch the next
instruction after the execution of this instruction is complete.

ore source

The next instruction to be fetched is located in main memory or, in the case of a
virtual memory system, in either main memory or secondary/memory (disk). In most
cases, the next instruction to be fetched immediately follows the current instruction.
In those cases, there is no explicit reference to the next instruction. When an explicit
reference is nesded, then the main memory op virfilal memory address must be sup-
plied. The form in which that address is supplied is discussed in Chapter 11. .

Multiple .
: Multiple
IRAbIS results

: Ret i
fetch mext instruction or vlf:'cmm?;::?"g

Figure HL1  Instruction Cycle State Diagram
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opera
memory address.

[nstruction Representation
reprcsemcd by a sequence of bits, The

|ds, correspanding to the constituent elements of the
instruction. A simple example of an instruction format is_shown in Figure 10.2, A¢
another example, the TAS instruction format s shown in Flgure 2.2. With mos
instruction sets, more than one format is used. During instruction execution, an
instruction is read into an sastruction register (IR} in the processor. The processor
st be able to extract the data from the various instruction fields to perform the
required operation.

Itis difficult for both the programmer and the reader of textbooks to deal with
binary representations of machine instructions, Thus, it has become common prac-
tice to use a symbolic representation of machine instructions. An example of this was

used for the IAS instruction set, in Table 2.1.
Opcodes are represented by abbreviations, called mnemonics, that indicate the

operation. Common examples include

Within the computer, each instruction 1%

instruction is divided into fie

ADD Add
SUB Subtract
MPY Multiply
DIV Divide

LOAD Load data from memory
STOR Store data to memory

Operands are also represented symbolically. For example, the instruction

ADDR.Y
4 Dits .
6 Bits )
B Opeode 6 Bits
| Operand reference Ope Ea
o — 16 Bits —— S

Figure 0.2 ¥
i L2 A Simple Instruction Forma
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consider a high-level language instruction (hay

«uch as BASIC or FORTRAN, For example, could he €Xpressed ip 5 |ﬂ“guage

K=X+Y I':

This statement instructs the computer o add the valye stored j

in X and put the result in X, How might this bﬂ‘ﬂmnplislied with
tions? Let us assume that the variables X arfqy corvespond ¢ :
Jf we assume a simple set of machine Instructions, this operayj
plished with three instructions: :

. Load a register with the contents of memory location 5§13
2. Add the contents of memory location 514 (o the register. 1
3. Store the contents of the register in memory location 513,

As can be seen, the single BASIC instruction ma
mstructions. This is l}';?ical of the relationship between a high-level language and a
machine language. A high-level lan EUAge expresses operations in a concise algebraic
form, using variables. A machine language expresses operations in a basic form
ivolving the movement of data to or from registers. !

With this simple example to guide us, let us consider the types of instructions
that must be included in a practical computer. A computer should have a set of
istructions that allows the user to [ ormulate any data processing task. Another way
loview it is to consider the capabilities of a high-level programming language. Any
frogram written in a high-level language must be translated into machine language
b exccuted. Thus, the set of machine instructions must be sufficient to express

¥ require three machine

el e . Al
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= D processing: A otlmaeie and Jogic mstoctions
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= Dt ovensents DOV imnsingcbons
* Contral: Test and branch mstractions
Urathirnse e st ueions provide computational capabilities for processing numenic
data Loere {Boolean) mstructions operate on the bits of a word as bits raher than as
tumbers; thus, they provide capabilities for processing any other type ol data the user
may wish to employ. Mhese operations are performed primarily on data in processor
tepisters Therefore. there must be memery instructions for moving daa between meme-
ory and the registers. M0 insteuctions are needed to tramsfer programs and data into
memony and the resulis of computations back out to the user, Test inslructions are used
to test the value of o data word or the status of a computation. Braach instructions are
then used 10 branch 1o a different set of instructions depending on the decision made.
We will examine the various types of instructions in greater detail later in

this chapter,

Number of Addresses

One of the traditional ways of describing processor architecture is in terms of the
number of addresses contained in each instruction. This dimension has become less
significant with the increasing complexity of processor design. Nevertheless, it is

useflul at this point to draw and analyze this distinction.
What is the maximum number of addresses one might need in an instruction?

Evidenily, arithmetic and logic instructions will require the most operands. Virtually
all arithmetic and logic operations are either unary (one source operand) or binary
(two source operands). Thus, we would need a maximum of two addresses to refer-
ence source operands. The result of an operation must be stored, supgesting a third
address, which defines a destination operand. Finally, after completion of an instruc-
tion, the next instruction must be fetched, and its address is needed.

This line of reasoning suggests that an instruction could plausibly be required
lo contain four address references: two source operands, one destination operand,
and the address of the next instruction. In practice, four-address instructions are
extremely rare. Most instructions have one,two, or three operand addresses, with the
address of the next instruction being implicit (obtained from the program counter).

Figure 10.3 compares typical one-, two-, and three-address instructions that
could be used to compute Y = (A — B)/[C + (D x E)]. With three addresses,
each instruction specifies two source operand locations and a destination operand
location. Because we choose not to alter the value of any of the operand locations, a
temporary location, T, is used to store some intermediate results. Note that there are
four instructions and that the original expression had five operands.

Three-address instruction formats are not common because they require a
relatively long instruction format to hold the three address references. With two-
address instructions, and for binary operations, one address must do double duty as
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Instruction Comment f
s Y A B Y+~ A-R
MPY T.DOE T«DxE
ADD T1.1.C TeT+C
DIV LY. T Ye¥YaT

{a) Thiee-address instructions Instructinn Comment
LOAD D ACe D
= ] ; ¢ x E
i | MPY E AC — AC
In_-ttru-ctmn Comment ADD € AC—AC+C
MOVE V. A Ve STOR Y I =40
S{J’R Y.R Yo ¥ B LOAD A AC — A
MPY T, I-‘,' 1_ —TxE Div Y AC—AC =Y
ADD T, C Te—T+C STOR Y Y — AC

DIV Y, T » Y&e=¥+T

o ik
() One-address instructions

(b) Two-address mstructions
A-B
Ficurc 1.3 Programs to Execute ¥ = o
¢ C+(DxE)

both an operand and a result. Thus, the instruction SURB ¥ B carries out the calcu-
lation Y — B and stores the result in Y. The two-address format reduces the space
requirement but also introduces some awkwardness. To avoid altering the value of
an operand, a MOVE instruction is used to move one of the values to a result or
temporary location before performing the operation. Our sample program expands
to six instructions. s

Stmpler yet is the one-address instruction For this to work, a second address
must be implicit. This was common in earlier machines, with the implied address being
a processor register known as the accumulator (AC). The accumulator contains one of
the operands and is used to store the result. In our example, eight instructions are
needed to accomplish the 1ask.

Itis,in fact, possible to make do with zero addresses for some instructions. Zero-
address instruciions are applicable to a special memory organization, called a stack.
A stack is a last-in-first-out set of locations. The stack is in 2 known location and, often,
at least the top two elements are in processor registers Thus, zero-address inst ructions
would reference the top two stack elements. Stacks are described in Appendix 10A.
Their use is explored further later in this chapter and in Chapter 11.

Table 10.1 summarizes the interpretations to be placed on instructions with
zero, one, (wo, or three addresses. In each case in the table, it js assumed that the
address of the next instruction is implicit, and that one operation with two source

operands and one result operand is to be performed.

The number of addresses per instruction is a basic design decision. Fewer
addresses per instruction result in instructions that arc more primitive, requiring a
less complex processor. It also results in instructions of shorter length. On the other
hand, programs contain more total instructions, which in general results in longer

execution times and longer, more complex programs. Also. there is an important
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baide 1) Unilizanen of Instruction Addresses (Monbranching Inslrm;tium_],
MNumber of Addresses Svmbolic Representation ?;:T‘P.:--.\_\
_'____‘-_m‘ﬂl
3 OFPA.BC A"'E"DP’?"""
2 OFA R A—A0py
) : it AC=ACOP,*
i a2 Te(1- 1) Opy
AC = accumulator ;
T = top of stack
(T = 1) = secoml element of siack
A B C = memary or register locations

threshold between one-address and multiple-address instructions. Witk on
address instructions. the programmer generally has available only ane gune;;;
purpose register, the accumulator. With multiple-address instructions, it is L-um,-rlm;
to have multiple general-purpose registers. This allows some operations to he per.
formed solely on registers. Because register references are faster than memory ref.
erences, this speeds up execution. For reasons of flexibility and ability 1o use
multiple registers, most contemporary machines employ a mixture of two- and
three-address instructions.

The design trade-offs involved in choosing the number of addresses per
instruction are complicated by other factors There is the issue of whether an address
references a memory Iocation or a register. Because there are fewer regisiers, fewer
bits are needed for a register reference. Also, as we shall see in the next chapter,a
machine may offer a variety of addressing modes, and the specification of mode takes
one or more bits. The result is that most processor desigﬁs invalve a varety of
instruction formats.

Instruction Set Design

One of the most interesting, and most analyzed, aspects of computer design is
instruction set design, The design of an instruction set is very complex because it
affects so many aspects of the computer system. The instruction set defines many of
the functions performed by the processor and thus has a significant effect on the
implementation of the processor. The instruction set is the prosrammer’s means of
controlling the processor. Thus, programmer requirements must be considered in
designing the instruction sel.

It may surprise you 1o know that some of the most fundamental issues relating
to the design of instruction sets remain in dispute. Indeed, in recent years, the level
of disagreement concerning these fundamentals has actually grown. The most
important of these fundamemal design issues include the following:

* Operation repertoire: How many and which operations 1o provide, and how
complex operations should be
* Data fypes: The various types of data upon which operations are ptl'fﬂ"”"""d

&k . size of
« Instruction format: Instruction length (in bits), number of addresses. Sz o
various fields, and so on

Scanned with CamScanner
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Machine instructions operate on data. The most important general categories of
dafa arc :

+ Addresses n
[ NumbErS

« Characlers f
+ Logical daia

We shall see, in discussing addressing modes in Chapter 11, that addresses are, in
fact, a form of data. In many cases, some calculation must be performed on the
operand reference in an instruction to determine the main or virtual memory address.
In this context, addresses can be considered to be unsigned integers.

Other common data types are numbers, characters, and logical data, and each
of these is briefly examined in this section. Beyond that, some machines define spe-
aalized data types or data structures. For example, there may be machine operations
that operate directly on a list or a string of characters.

Numbers

ﬂsi’:;'::}::f languages include numeric data types. Even in nonnumeric data pro-
"”P'ﬂrt;;m afii;tfs a _need for numbers to act as q::uuntc:rs, field widths, fand so forth. An
Sored i 5 CD:‘WUDII Frclwcen numbers used in mdmafy‘mather.naucs and numbers
¢is a limit mpt“;“’ is that the latter are limited. This is true in two senses. First,

lhe case of floayi € magnitude of num?cr_s reprc%enlabl_clnn a machine and second,
Slaced wig - de'r’;tg'P:;_mt numbers, a limit to their precision. Thus, the programmer
fee types of an ing the consequences of I:r.:rundmg. overflow, and underflow.

numerical data are common in computers:

L]
Integer o fixed point

. 9ating poing
DLTfmal

~

T

LN T
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We examined the first two in some detail in Chapter 9. It remains to say a few words

about decimal numbers.
Although all internal computer operations are binary in nature, the human

users of the system deal with decimal numbers. Thus, there is a necessity to
convert from decimal to binary on input and {rom binary to decimal on om_put.
in which there is a great deal of 1/0O and comparatively little,
ferable to store and operate on the

For applications
tation for this purpose is

comparatively simple computation, it is pre
numbers in decimal form. The most common represen

packed dccimal.’ :
I each decimal digit is represented by a 4-bit code, in the

With packed decima
obvious way, with two digits stored per byte. Thus,0 = 0000, 1 = 0001,...,8 = 1000.
and 9 = 1001. Note that this is a rather inéfficicnt code because only 10 of 16 possible

4-bit values are used. To form numbers, 4-bit cades are strung together. usually in
is 0000 0010 0100 0110. This code is clearly

multiples of 8 bits. Thus, the code for 246

less compact than a straight binary representation, but it avoids the conve rsion over-
head. Negative numbers can be represented by including a 4-bit sign digit at either the
left or right end of a string of packed decimal digits. For example, the code 1111 might
for performing operations

stand for the minus sign.
quite similar to those

Many machines provide arithmetic instructions
directly on packed decimal numbers. The algorithms are
must take into account the decimal carry operation.

described in Section 9.3 but

Characters
a is text or character strings. While textual data are most

A common form of dat

convenient for humano beings, they cannot, in character form, be easily stored or

transmitted by data processing and communications systems. Such systems arc

designed for binary data. Thus, a number of codes have been devised by which
s. Perhaps the earliest common

characters are represented by a sequence of bit
example of this is the Morse code. Today, the most commonly used character

code in the [nternational Reference Alphabet (IRA), referred 10 in the United
States as the American Standard Code for Information Interchange (ASCl: see
Table 7.1). Each character in this code is represented by a unique 7-bit pattern:
thus, 128 different characters can be represented. This is a larger number than 15
necessary to represent printable characters, and some of the patterns represent
control characters. Some of these control characters have (o do with controlling

the printing of characters on a page. Others are concerncd with communications
procedures. [RA-encoded charact Jways stored and transmitted

ers are almost a :
using § bits per character. The eighth bit may be set to 0 or used as a parity bit for
error detection. In the latter case, he total number of

the bit is set such that t |
binary Is in each octet is always odd (odd parity) or always even (even parity).

ng. BCD refers (o the

mal (BCD). Strictly speaki
to the storage of BCD-

coded deci
d decimal refers

ISR
o this as binary
4-bit sequence. Packe

ITextbooks often refer to [ :
encoding of each decimal digit by a unigue 9-0]
encoded digits using one bvie for cach two digits.



1oL

T il LI L
PRUTER 10 0 NS TRUC IO SEGS CHAR W JERISTIOS Al 1N
Y (e dieits O through 9
Note in Table 7.1 that for the IRA bit pantern 1] !A)-.hf"x._ H“]jlrliqilllm“‘ﬂ 4 Bt
dre represented hy their binary equivalents. | KK} through 1001 in iyt T A
This is the same code as packed decimal. This fucilitates conversion

and 4-bit packed decimal representation. s Decimal
Another code used to encode characters is the Extended Binary Coded De

2 a T i i-hit code,
Interchange Code (EBCDIC), EBCDIC is uscd on IBM mainframes. Ft |f5 Eg E,‘Ilrmc.; h:_-
As with IRA, EBCDIC is compatible with packed decimal. In th:; €ase O R
codes TTHINN through 11111001 represent the digits 0 through 9.

Logical Data

Normally, each word or other addressable unit (bvte, halfword, and so on) i ifﬁi}[ﬂ*_j
as a siilg'ie unit of data. It is someétimes useful, however, to consider :rr: n-hit um! a::
consisting of n 1-bit items of data. each item having the value (0 or 1. When data are
viewed this way, they are considered to be logical data, : .

There are two advantages to the bit-oriented view, First, we may sometimes
wish 1o store an array of Boalean or binary data items, in which each item can take
on only the values 1 (true) and 0 (false). With logical data, memory can be use_d most
efficiently for this storage. Second, there are accasions when we wish (o manlpufﬂ.lt‘
the bits of a data jtem. For example, if (loating-point operations are implemented in
software, we need to be able to shift significant bits in some operations. Another
example: To convert from IRA to packed decimal, we need to extract the rightmost
4 bits of each byte, p

Note that. in the preceding examples, the same data are treated sometimes as
logical and other times as numerical or text. The “type™ of a unit of data is determined
by the operation being performed on it. Whie this is not normally the case in high-

level languages, it is almost always the case with;’ achine language,

Pentium Data Types 3

The Pentium can deal with data types of § (byte), 16 (word), 32 (doublewgrd], and
64 (quadword) bits in lenpgth. To allow maximum flexibility in data structures angd
ctficient memory utilization, words need not be aligned at even-numbered addresses-
doublewards need not be aligned at addresses evenly divisible by 4; apd quadwnrds‘
need not be aligned at addresses evenly divisible by g However, when data are accessec
across a 32-bit bus, data transfers take Place in units of doublewords, bn:ginningh at
addresses divisible by 4. The processor converts the request for mjsaj gned values jnig a
sequence of requests for the bus transfer. AS with all of the Inte] 80x86 machines, the
Pentium uses the liitle-endjan style; that is, the least significant byte i stored in the
lowest address (see Appendix 10B for a discussion of endianness),

The byte, word, doubleword, and quadword are referred 1o as general daga
tvpes. In addition. the Pentium SUPPOrTs an impressjyve array of specific datq ypes [h,;l
are recognized and operated on by particular instructions, Table 102 $u!‘;'m1.'.1:'i2;q
these types. -
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Figure 1.1 Addressing Modes

These modes are illustrated in Figure 11.1. In this section, we use the following notation:

= conients of an address field in the instruction
— contents of an address field in the instruction that refers to a register
actual (effective ) address of the location containing the referenced operand

= conlenls 0

g

{ memory location X or register X

=
-
|

o ———— w6 T W



fable 1120 [sn Al sang! pwles
Maode Algarithm ‘___F|-rlnri pal mlmnluEIM
I fini ke Oyperanidl = A No memary relerence L]m:-::d qp"'"m"“ltﬂilu-;"
ey e ke i um.“m oo
:1::4.1 E;ﬁ. = {..ﬁl} Larpe address space - M“'Prﬂt memory refereney,

: EA=R No memory reference qugd 2ddress space
i;:::inmrm Ea = (R] II,nrgc address space Ff.lm I_Tlﬁ_mn:y i
Di.sphn;!rmnl EA=AT (R) Flexibility : -.-.'??Tph:'w

; EA = tapof stack Mo memaory referenct ; _._lJmned applicability
)

Stack

=y

lation p.-:rf::rmcd for each addressing mog,
cOmMmEnts necd to be made. First, ""ir[su.

ally all compulter architectures provide more than one lfl" ﬂltxl addressing mode
The question anses as 1o how the progessor i determine which address mode i
heing used in a particular instruction. Several approaches are taken. Often, differeq

opcodes will use different addressing modes. Also, one or more bits in the instrye.
tion format can 4 The value of the mode field determnes

be used as a mode fiel

which addressing mode is 10 be used. _ _
The second comment CONCCINS the interpretalion of the effective address (EA)

In a sysiem without virtual memory. the effective address will be either a main memary
address or a register. In a virtual memory system, the effective address is a virtua]
e actual mapping 10 2 physical address is a function of the pag-

address or a register. Th
ing mechanism and is invisible to the programmer.

address calcu

Table 11.1 indicates the .
is discussion, two

Before beginning th

[mmediate Addressing
m of addressing is imm
the instruction

Operand = A

This mode can be used to define and use constants or set initial values of variables
Typically, the number will be stored in twos complement form; the leftmast bit of the
operand field is used as a sign bit. When the operand is loaded into a data register
the sign bit 1s extended to the left to the full data word size.

The advantage of immediate addressing is that no memory reference othet
than the instruction fetch is required to obtain the operand, thus saving one memory
ion cycle. The disadvantage is that the size of the numbes

or cache cycle in the instruct
is restricted to the size of the address field. which, in most instruction sels, is smal

compared with the word length.

adiate addressing, in which the operand

The simplest for
value is present in

Direct Addressing
Alu-'::r:.r simple form of addressing is direct addressing, in which the add
tains the effective address of the operand: <

EA = A

ress field cov
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;‘ echnigue was common in carlier generations of computers but is not common
Ao o nrr:imcclu! H'-]'t "euives only ong memory reference and no special
é | s The obvipos limitation is that it provides only a limited address space.

i"hr R - -

1B dgmﬂ Addressing

'.ﬂ't direct addressing, the length of the address field i
th, thus limiting the aiLlier‘ss range. One solution
he address of a word in memory, which in lurn
he operand. This is known as indirect uddressing:

1 usually less than the word
15 to have the address field refer
contains a full-length address of

4 EA = (A)

As defincd earlier, the parentheses are 1o be interpreted as meaning convents af

% __g];.q.inn% ndvantagfz of this ap;:froach is that for a word length of N an address
Lspace of 2V is now available. The disa dvantage is thar instmctic;{a execution requires
mwo memory references to fetch the operand: one to get its address and a second o
0 ts value.
" Although the number of words that can be addressed is now equal to 2V, the
ber of different effective addresses that may be referenced at any one time is
d to 2, where K is the length of the address field. Typicaily, this is not a bur-
ome restriction, and it can be an asset. In a virtual memory environment, all the
= address locations can be confined 1o page 0 of any process. Because the
ress field of an instruction is sm all, it will naturally pmducvbw-numbered direct
esses, which would appear in Rpage 0. (The only restriction(is that the page size
must be greater than or equal to 2*.) When a process is active, there will be repeated
references to page (), causing it to remain in real memory. Thus, an indirect memory
ference will involve, at most, one page fault rathier than two.
A rarely used variant of indirect addressing is multilevel or cascaded indirect

+

ng:
EA = o{A) i)

-.-,._g-aSE, one bit of a full-word address is an indirect flag (I). If the 1 bit js 0, then
word contains the EA. If the I bit is 1, then another level of indirection is
d. There does not appear 1o be any particular advantage 1o this approach, and
isadvantage is that three or more memory references could be required to fetch

ster Addressing

ister addressing is similar to direct addressing. The only difference is that the
5 field refers to a register rather than a main memory address;

- EA =R

« 108

. To clarify, if the contents of a register address field in an instruetion is 5, then
. R5 is the intended address, and the operand value is contained in RS, Typi-

ress field that references registers will have f rom 3 to 5 bits, so that a

to 32 general-purpose registers can be referenced.
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e advamtages of repister addressap are that (1) only o small address field s
needed mthe mstructon, and (2) no nme-consuming memory references are reqguined
As was discussed i Chapter 4, the memory access time for a repister internal 1o the
processon s much less than that for o main memory address. The disadvantape of regns
ter addressig s that the address space is very limited.

I register addressing is heavily used in an instruction sel, this implics that
the processor registers will be heavily used. Because of the severely limited num-
ber of registers (compared with main memory locations), their use in this fashion
makes sense only if they are employed efficiently. If every operand is brought
mto a register from main memory, operated on once, and then returned to main
memory, then a wasteful intermediate step has been added. If. instead, the
Fl-pl:rand In a register 1emains in use for multiple operations, then a real savings
is achieved. An example is the intermediate result in a calculation. In particular.
suppose that the algorithm for twos complement multiplication were to be imple-
mented in software. The location labeled A in the flowchart (Figure 9.12) is refer-
enced many times and should be implemented in a register rather than a main
memory location.

Itis up to the programmer to decide which values should remain in registers and
which should be stored in main memory. Most modern processors employ multiple
general-purpose registers, placing a burden for efficient execution on the assembly-
language programmer (e.g., compiler writer).

Register Indirect Addressing

Just as register addressing is analogous to direct addressing, register indirect addressing
is analogous (o indirect addressing. In both cases, the only difference is whether the
address field refers to a memory location or a register. Thus, for register indirect address,

EA = (R)
The advantages and limitations of register indirect addressing are basically the same
as for indirect addressing. In both cases, the address space limitation (limited range
of addresses) of the address field is overcome by having that field refer 1o a word-

length location containing an address. In addition, register indirect addressing uses
one less memory reference than indirect addressing.

Displacement Addressing

A very powerful mode of addressing combines the capabilities of direct addressing
and register indirect addressing. It is known by a variety of names depending on the
context of its use, but the basic mechanism is the same. We will refer to this as

displacement addressing:

EA = A + (R)
Displacement addressing requires that the instruction have two address fields, at
least one of which is explicit, The value contained in one address field (value = A)

is used directly. The other address field, or an implicit reference based on opcode,
refers to a register whose contents arc added 10 A to produce the effective address.
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We will describe thice of the most common uses of displacement addressing:

+ Relative addressing
+ Base-register addressing
¢ Indexing

Relative f\titin*!\'ﬁil‘lg For relative addressing, alse called PC-relative addressing,
the impheitly referenced register i1s the program counter (PC). That is, the next
instruction address is added to the addreEs field 10 produce the EA. Typically. the
address field is treated as a twos complement number for this operation. Thus, the
cffective address is a displacement relative 1o the address of the instruction.
Relative addressing exploits the concept of locality that was discussed in
Chapters 4 and 8. If most memery references are relatively near to the instruction
being executed, then the use of relative addressing saves address bits in the instruction,

Basc-Register Addressing For base-register addressing,-the interpretation is
the following: The referenced register contains a main memory address. and the
address field contains a displacement (usually an unsigned integer representation)
from that address. The register reference may be explieit or implicit.

Base-register addressing also exploits the locality of memory references Itisa
convenient means of implementing segmentation, which was discussed in Chapter 8.
In some implementations, a single segment-base register is employed and is used
implicitly. In others, the programmer may choose a register to hold the base address
of a segment, and the instruction must reference it explicitly. Iniﬁlhis latter case, if the
length of the address field is K and the number of possible regisiers is N, then one

instruction can reference any one of N areas of 2% words.

s,

Indexing For indexing, the interpretation is Lypin:?fly«ihe following: The address
field references a main memory address, and the referenced register contains a pos-
iive displacement from that address. Note that this usage is just the opposite of the
interpretation for base-regisier addressing. Of course, it is more than just a matter of
user interpretation. Because the address field is considered 1o be a memory address
in indexing, it generally contains more bits than an address field ifi a comparable
base-register instruction. Also, we shall see that there are some refinements to
indexing that would nqt be as useful in the base-register context. Nevertheless, the
method of calculating the EA is the same for both base-register addressing and
indexing, and in both cases the register reference is sometimes explicit and some-
times implicit (for different processor types).

An important use of indexing is to provide an efficient mechanism for per-
forming iterative operations. Consider, for example, a list of numbers stored starting
at location A. Suppose that we would like to add 1 to each elemeni on the ljst.
We need to fetch each value, add 1 to it, and store it back. The sequence of effective
addresses that we need is A, A + 1, A + 2,..., up to the last location on the list.
With indexing, this is easily done. The value A is stored in the instruction's address
field, and the chosen regisier, called an index register, is initialized to 0. After each
operation, the index register is incremented by 1.

Because index registers are commonly used for such iterative tasks, it is typical
that there is a need 1o increment or decrement the index register after each reference
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o it. Becanse this is such a common upf:rah('lrl. some h}'SlEm? wlllr::umma[,c_a.f]}_ d
this as part of the same instruction cycle Thisiskn own as r::umm:fexmg. If r:gmf,q reg.
isters are devoted exclusively to indexing. then autoindexing can be mvoked implj,.
itly and auiomatically. If general-purpose registers are used, the autoindey operatigy,
;rn':l},' need to be signaled by a bitin the mstruction. AutomndeXing Using incremen gy,

be depicted as follows: ‘

EA = A + (R)
(R)—(R) + 1

In some machines, both indirect addressing and indexing are pru?ic.ied_ and i
is possible to employ both in the same instruction. There are two possibilities; The

indexing is performed either before or after the indirection... _ _
If indexing is performed after the indirection. it is termed postindexing:

EA = (A) + (R)

First, the contents of the address field are used to access a memory location contaip.
ing a direct address. This address is then indexed by the register value. This tech.
nigue s uselul for accessing one of a number of blocks of data of a fixed format. Fyr
example, it was described in Chapter 8 that the operaling system needs to employ a
process control block for each process. The operations performed are the same
regardless of which block is being manipulated. Thus, the addresses in the instruc-
tions that reference the block could point to a location (value = A) containing a
variable pointer 1o the start of a process control block. The index register contains

the displacement within the block.
With preindexing, the indexing is performed before the indirection:

EA = (A + (R))

An address is calculated as with simple indexing. In this case, however, the calculated
address contains not the operand, but the address of the operand. An example of the
use of this technigue is to construct a multiway branch table. At a particular point in
a program, there may be a branch (o one of a number of locations depending on con-
ditions. A table of addresses can be set up starting at location A. By indexing into this
table, the required location can be found.

Typically, an instruction set will not include both preindexing and postindexing.

Stack Addressing

The final addressing mode that we consider is stack addressing, As defined if
Appendix 94, a stack is a linear array of locations. It is sometimes referred to as 3
pushdown list or last-in-first-out queue. The stack is a reserved block of locations. Items

are appended to the 1op of the stack so tha, at any given time, the block is partially
ﬁl]ﬂd.ﬂﬁmlat&d '“r"l'[h the Stack iS a win[cr “-hmc valuc is T.hﬁ Eltidl'ﬂss ﬂf .lhe Iﬂp D['l,t‘ﬂ

staugl:. Alternatively, the top two elements of the stack may be in processor registers.
which case the stack pointer references the third element of the stack (Figure lﬂ.lﬂhf}

The stack }'I'l".'iﬂlﬂl' 15 maintained na l'egjism]-_ Thus, references to stack |locations n

memory are in fact register indirect addresses
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Ioimediale Opcrand = A
Reprater Operand LA =R
Misplacement LA = [SK] + A
Basc LA = (SR] + (B)

LA = (SR} 4 (B) + A
LA = (SR} + (1] x5+ A
LA = (SB) + (B) + (I] + A
LA=(5K)+{l} x5+ (B)+ A
LA = (PC) + A

Baze with Displacement

Scaled Index wath Displacemeni

Base with Index and Displaccment

.rl..w* with Scalcd Index and Displacement

Relative

LA hincar addiess

(X) = comtents of X

SK = scgmenl repister

I"C = program counter

A = contents of pn address field in the instruction

R = register

B = base registe

1 = index register
5 = scabing [actof

context of execution and the instruction. Each segment register holds the starting
address of the corresponding segment. Associated with each user-visible segment regis-
ter is a segment descriptor register (nol programmer visible), which records the access
rights for the scgment as well as the starting address and limit (length) of the segment.
In addition, there are two registers that may be used in constructing an address: the

base register and the index register.
Table 11.2 lists the 12 Pentium addressing modes. Let us consider each of

these in turn. :
For the immediate mode, the operand is included in the instruction. The

operand can be a byte, word, or doubleword of data.

For register operand mode, the operand is located in a register. For general
instructions, such as data transfer, arithmetic, and logical instructions, the operand
can be one of the 32-bit general registers (EAX, EBX, ECX.EDX, ESI, EDI, ESP,
EBP), one of the 16-bil general registers (AX,BX,CX, DX, 81, DI1,SP.BP), or one
of the 8-bit gencral registers (AH, BH, CH, DH, AL, BL, CL, DL). For flnar.m:g;
point operations, 64-bit operands are formed by using two 32-bit registers as a pair,
There are also some instructions that reference the segment registers (CS, DS, ES,
SS, FS, GS). _

The remaining addressing modes reference locations in memory. The memory
location must be specificd in terms of the segment containing the Iocalif:r!'t and th.u ::)I"i'-
set from the beginning of the segment. In some cases, a segment is specified explicitly;
in others, the segment is specified by simple rules that assign a segment by default.

In the displacement mode, the operand’s offset (the cffeclwc‘ address of
Figure 11.2) is contained as part of the instruction as an 8-, 16-, or 32-bit displacement.
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both of which may be any of the general-purpose registers. The effective address is the
sum of the contents of these two registers. Again, the update option causes the base
register 1o be updalted to the new cffcclive address. -

Branch Addressing Three branch addressing modes are provided. When absolute
addressing is used with unconditional branch instructions, the effective address of the
next instruction is derived from a 24-bit immediate value within the instruction. The
24-bit value is extended to a 32-bit value by addinﬁ'lwu zeros to its least significant
end (this is permissible hecause all instructions must occur on 32-bit boundaries) and
sign extending. For conditional branch instructions, the effective address of the next
instruction is derived from a 16-bit immed:ate value within the instruction. The 16-bit
value is extended 1o a 32-bit value by adding two zeros to its least signiijmm end and
sign extending.

With relative addressing, the 24-bit immediate value (unconditional branch
instructions) or 14-bit immediate value (conditional branch instructions) is extended
as before. The resulting value 1s then added to the program counter to define a loca-
tion relative to the currentl instruction. The other conditional branch addressing
mode is indirect addressing. This mode obtains the effective address of the next
instruction from either the link register or the count register. Note that in this case
the count register is used to hold the address for a branch instruction, This register

may also be used to hold a count for looping, as explained earlier.

Arithmetic Instructions For mteger arithmetic, all operands must be contained
either in registers or as pari of the insiruction. With register addressing, a source or
destination operand is specified as one of the general-purpose registers, With immedi-
ate addressing, a source operand appears as a 16-bit signed quantity in the instruction.

For floating-point arithmetic, all operands are in floating-point registers; that

15, only register addressing is used.
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Instruction Length
The most basic design issue to be faced is the instruction formar length. Ty;

" I5 dt‘.‘im

sion affects, and is_an‘ucted by, memory size, memory Organization, hyg ¢
processor complexity, and processor speed. This decision determines the MClrg,
and flexibility of the machine as seen by the assembly-language Programum Michnes
_ The most obvious trade-off here is between the desire for a powe rfu?l"'
tion repertoire and a need to save space. Programmers want more opeod Insg
operands, more addressing modes, and greater address range. More opc: “‘I More
more operands make life easier for the programmer, because shorter progra ang
be written to accomplish given tasks. Similarly, more addressing modes giT: can
programmer greater flexibility in implementing certain functions, such as taﬁe
manipulations and multiple-way branchin g- And, of course, with the increase ip mait
memory size and the increasing use of virtual memory, programmers want 1o he abl:
to address larger memory ranges. All of these things (opcodes, operands, addressing
modes, address range) require bits and push in the direction of longer instructioy
lengths. But longer instruction length may be wasieful. A 64-bit instruction occupies
twice the space of a 32-bit instruction but is probably less than twice as useful,

Beyond this basic trade-off, there are other considerations. Either the instruc-
tion length should be equal to the memory-transfer length (in a bus system, data-bus
length) or one should be a multiple of the other. Otherwise, we will not get an integral
number of instructions during a fetch eycle. A related consideration is the memory
transfer rate. This rate has not kept up with increases in processor speed. Accordingly,
memory can become a bottleneck if the processor can execute instructions faster
than it can fetch them. One solution to this problem is to use cache memory (see
Section 4.3); another 1s to use shorter instructions. Thus, 16-bit instructions can be
fetched at twice the rate of 32-bit instructions but probably can be executed less than
twice as fasl. —

A seemingly mundane but nevertheless important feature is that tl:u_: mﬁtmti
tion length should be a multiple of the character length, which is usually 8 bits, a“?tz_
the length of fixed-point numbers. To see this, we need to make use of th,‘“ '.me me
nately ill-defined word, word [FRAI83]. The word length of memory is, 10 iuthe
sense, the “natural” unit of organization. The size of a word usually determine

e
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4 £ numbers (usually the two are equal). Word g,izu is also typically
 of fixed-pomnt integrally related 1o, the memory transfer size. Because a com-
o Im%‘: n:harnmcl data, we would like a word to store an integral number
form of dgi:&-rwise. there are wasted bits in each word when storing multiple
o a ::haracicr will have to straddle a word boundary. The importance of
! 't ;::such that IBM, when it introduced the System/360 and wafﬂcd tf:r
:-hil characters, madc the wrenching der:ismfu to move frfnm lh:? 36-bit archi-
re of the scientific members of the 700/7000 series 1o a 32-bit architecture.

M on of Bits:

We've looked at some of the factors that £0 into deciding the length of the instrue-
o format. An equally difficult issue is how 1o allocate the bits in that format. The
trade-offs here are complex.

s clearly a trade-off between the number
sing Capability-Morg o
n instruction format of a

[ean more biis in the opcode field. For 5
reduces the number of bits available for

that require fewer Operands and/or Jess powerful a
I The following interrelateq factors '
,H essin g bits,

~* Number of address
- implicitly, For ex

Faran &l

g modes: Sometimes an dressing mode can be indiratad
mp]e* certain ORCNiFs minhs h
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adiivessing, Some archineciures, including s ol the Pentiunm, have a eollection
ol twe on e specialized sets (such os doa aned displicement ) € e advin-
tage of this laiter approach is that, for a fixed number of repisters, o functionil
split requines fewer bits to be used in the instruction. For example, with 1wo
sels of cight registers, only 3 bits are required 1o identily a repisier; the ipende
imphicitly will determine which set of registers is being referenced
* Address range: For addresses that reference memory. the range of addresses 1hat
can be referenced is related 10 the number of address bits. Because this imposes a
severe imitation, direct addressing is rarely used. With displacement addressing,
the range 15 opencd up to the length of the address repisier. Even so, it s still
convenient to allow rather large displacements from the repister address, which
requires a relatively large number of address bits in the instruction,
* Address granularity: For addresses that reference memory rather than registers,
another factor is the pranularity of addressing, In a system with 16- or 32-hit
words, an address can relerence a word or a byte at the designer’s choice. Byte

addressing is convenient for character manipulation but requires, for a fixed-size
memory, more address bits.

Thus, the designer is faced with a host of factors 10 consider and balance. How
critical the various choices are is not clear. As an example, we cite one study
[CRAG79] that compared various instruction format approaches, including the use
ol a stack, general-purpose regisiers, an accumulator, and only memory-lo-register
approaches. Using a consistent st of assumptions, no significant diffcrence in code
space or exccution time was observed.

Let us brieflly look at how two historical machine desipns balance these vari-
ous lactors,

PDI?-8 One of the simplest instruction designs for a pencral-purpose computer was
for the PDP-8 [BELL78b]. The PDP-8 uses 12-bit instructions and operates on 12-bit
words. There is a single gencral-purpose register, the accumulator.

Despite the limitations of this design, the addressing is quite flexible. Each
memory reference consists of 7 bits plus two 1-bit modifiers. The memory is divided
into fixed-length pages of 27 = 128 words each. Address calculation is based on ref-
erences to page 0 or the current page (page containing this nstruction) as deter-
mined by the page bit. The second modifier bit indicates whether direct or indirect
addressing is to be used. These two modes can be used in combination, so that an

indirect address is .a 12-bit address contained in & word of page 0 or the current
page. In addition, 8 dedicated words on page U are ﬂutcim.lu:_t “registers.” When an
indirect reference is made 1o one of these locations, preindexing occurs.

Figure 11.4 shows the PDP-8 instruction format. There are a 3-bit opcode and
three rﬂ_'i-::s of instructions. For opcodes 0 through 5, the format is a single-address
memory reference instruction including a page bit and an indirect bit. Thus, there are
only six basic operations. To enlarge the group of operations, opcode 7 defines a regs-
ter reference or microinstruction. In this format, the remaining bits are used 1 encode
additional operations. In general, cach bit defines a specific {::perminn {g.g.,-f:lear accu-

mulator), and these bits can be combined in a single instt}zc?wn.’[‘he microinstruction
strategy was used as far back as the PDP-1 by DEC and is, in a sense. a forerunner of
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CMA = CoMplement Accumulatar RSS = Reverse Skp Sense
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BSW = Byie SWap MOL = Multiplier Quotient Load
Figure 11,4 PDP-8 Insiruction Formais |;'*

toeday's microprogrammed machines, to be discussed in Part Four. Opcoade 6 is the
10 operation; 6 bits ase used to select one of ol &C‘V]l:e& and 3 bits specily a particular

IO command.
The PDP-§ instruction format is remarkably efficient. It supports indirect

addressing, displacement addressing, and indexing. With the use of the opcode
éxtension, it supports a total of approximately 35 instructions. Given the constraints
of a 12-bit instruction length, the designers could hardly have done better.

PP-10 A sharp contrast to the instruction set of the PDP-8 is that of the PDP-10.
The PDP-10 was designed to be a large-scale time-shared system, with an emphasis on
making the system casy to program, even if additional hardware expense was involved.

Among the desjgn principles that were emplnyed in designing the instruction

set were [BELL78¢].

* Orthogonality: Orthogonality is a principle by which two variables are inde-
pendent of each other. In the context of an instruction set, the term indicates
that other elements of an instruction are independent of (not determined by)
the opcode. The PDP-10 designers use the term to describe the fact that an
address is always computed in the same way, independent of the opcode. This
is in contrast to many machines, where the address mode sometimes depends

implicitly on the operator being used.
» Completeness: Each arithmetic data type (integer, fixed-point, real) should have
a complete and identical set of operations.
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* Direct addressing: Base plus displacement addressing, which places a m
organization burden on the programmier, was avoided in favor Q[?;‘]
addressing. S T

Each of these principles advances the main goal of case of programming,.
. The PDP-10 has a 36-bit word length and a 36-bit instruction length. The fixeq
nstruction forman is shown in Figure 11.5. The opeode occupics 9 bits, allowing yp ,
312 operations. In fact, a total of 365 different instructions are defined, Mosi mpm:
tions have two addresses, one of which is one of 16 general-purpose regismrs,'nm_,;
this operand reference occupies 4 bits. The other operand reference starts with an
18-bit memory address field. This can be used as an immediate operand or a mem
address. In the latter usage, both indexing and indirect addressing are allowed, Ty,
same general-purpose registers arc also used as index registers.

A 36-bil instruction length is true luxury. There is no need 1o do clevér things
1o gel more opcodes; a 9-bit opeode ficld is more than adequate. Addressing is als,
straightforward. An 18-bit address field makes direct addressing desirable. For
memory sizes greater than 28, indirection is provided. For the case of the program.
mer, indexing is provided for table manipulation and iterative programs. Also, with
an 18-bit operand field, immediate addressing becomes attractive,

The PDP-10 instruction set design does accomplish the objectives listed earljer
[LUND77]. It cases the task of the programmer or compiler at the expense of an
inefficient utilization of space. This was a conscious chaice made by the designers and

therefore cannot be faulted as poor design.

\'"."u'inhlu-[:mlgth Instructions

The examples we have looked at so far have used a single fixed instruction length,
and we have implicitly discussed trade-offs in that context. But the designer may
choose instead to provide a variety of instruction formats of different lerigths. This
tactic makes it easy to provide a large repertoire of opcodes, with different opcode
lengths. Addressing can be more flexible, with various combinations of register and
memory references plus addressing modes. With variable-length instructions, these
many variations can be provided efficiently and compactly.

The principal price lo pay for variable-length instructions is an increase in [llﬁ
complexity of the processor. Falling hardware prices, the use of microprogramming
(discussed in Part Four), and a general increase in understanding the principles of
processor design have all contributed to making this a small price to pay. However,
we will see that RISC and superscalar machines can-exploit the use of fixed-length
instructions to provide improved performance. W—

The use of variable-length instructions does not remove the desirability ©
making all of the instruction lengths integrally related to the word length. BEW}”"’;
the processor does not know the length of the next instruction 1o be fetched, a typie®
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stiategy is 1o fetch a number of byles o1 words equal to ot Jeast the Jongest possible
; instruction. This means thit sometimes multiple instructions are fetched. However,
HQ as we shall see in Chapter 12, this is g pond stratepy 1o follow in any casc.

Y .
b\ Pl,'?if— 11 The PDP-11 was designed 1o provide o powerful and flexible instruction
1 sel within the constraints of a 16-hit minicomputer [BELL70].
N;! T1'u.. PDP-11 cn_lP!ﬂ_}'ﬁ a sel of eight 16-bit general-purpose registers. Two of
y these registers have additional significance: One is used as a stack pointer for special-

, purpose stack DPEﬂ!ﬁﬂl'lS, and one is used as (e program counter, which coniains the
"ﬂ: address of the next instruction.

ih“ Figure 11.6 shows the PDP-11 instruction formats. Thirteen different formats
I'hq are used.encﬂmpassmg_ ZEr0-, one-, and two-address instruction types. The opcode
'ﬂ' can vary !'mm 4 10 _16 bits in lengih. Register references are 6 bits in length, Three
i bits ldcl’.l}"lfj" the regxs.tt.fr, and_the remaining 3 bits identify the addressing mode. The
JW*I PDP-11 is endowed with a rich set of addressing modes. One advantage of linking
#I the addressing mode (o the operand rather than the nfu:nd‘f'.’; as is sometimes done,
is that any addressing mode can be used with any opeode, As was mentioned, this
e indcpcndcncc‘is referred to as orthogonality.
3&&'. PDP-11 instructions are usually one word (16 bits) long. For some ipstructions,
3 OPe Or Iwo memory a:lidrr:sstzs are appended, so that 32-bit and 48-bit instructions
N are part of the rgplertmre.hThTs provides for further flexibility-in addressing.
M The PDP-11 instruction set and addressing capability are complex. This increases
both hardware cost and programming complexity. The advantage is that more efficient
E,' or compact programs can be developed.

1 VAX Most architectures provide a relatively small number of fixed instruction for-
¥ mats. This can cause two problems for the programmer. First, addressing mode and
opcode are not orthogonal. For example, farérgiven‘ operation, one operand must
come from a register and another from memory, or both from registers, and so on.
Second, only a limited number of operands can be accommodated: typically up to
two or three. Because some operations inherently require more operands, various
' strategies must, be used to achieve the desired result using two or.more instructions.
To avoid these problems, two criteria were used in designing the VAX instruc-

tion format [STRE78]:

1. All instructions should have the “natural” number of operands.
2. All operands should have the same generality in specification.

The result is a highly variable instruction format. An instruction consists of a 1- or
2-byte opcode followed by from zero Lo six operand specifiers, depending on the
opcode. The minimal instruction length is 1 byte, and instructions up to 37 bytes can
Je constructed. Figure 11.7 gives a few examples.

The VAX instruction begins with a 1-byte opcode. This suffices to handie most
VAX instructions. However, as there are over 300 different instructions, 8 bits are
101 enough. The hexadecimal codes FD and FF indicate an extended opcode, with
he actual opcode being specified in the second byte.

The remainder of the instruction consists of up to six operand specifiers. An
perand specifier is, at minimum. a 1-hyte format in which the leftmost 4 bits are the

Ly

e
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Pentium Instruction Formats

The Pentium is equipped with a variety of instruction formats. Of the elemens
described in this subsection, only the opcode field is always present. Figure 11.8 illus-
trates the general instruction format. Instructions are made up of from zero to four
optional instruction prefixes, a 1- or 2-byte opcode, an optional address specifier
{which consists of the ModR/m byte and the Scale Index byte) an optional displace-

ment, and an optional immediate field.

Daorl Darl Daorl forl  byies
Instruction| Segment D[:::nd A':.i;ﬁ
peelie ik override | override

0,1,2,3,0r 4 bytes™, Tor2 Oorl Dorl 0,1.2,0rd 0.1,2,0rd '

Mod /M SIE Displacernent Immediate

Insiruciion prefixes Opeode

. Scale Index | Base |

[“Mod | Regpeode | R
T [ 5 4 3 2 1 0 7

Pentivm Instruction Formal

Fignre 11K
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P 'IhE former may be refcrcnu:d uuphmly or. Exp]xc:tly in mac’hme e dnstruc- -

: fions User-visible registers may be. -general purpGse or have 2 spel::aal 1155,"
Ry ﬁxe:d-pmﬂt or ﬂoatmg—pumt numbe:s, addrm:es, mdmﬁs,znd Sﬂg
ent pointers. Control and status registers arensed to cnnnol:.ifcw e

of the PrOCESSOT.. 'Dne Obwous _example js-the progmm co not

. jmportant example is a program status word (PSW) that ‘contains a‘variety.

of status and condition bits. These include bfts to'reflect the Tes of the

most recent arithmetic operation, mterrupt enable bm,and an iadicator of,

 whether the pmmons«execunng . supe.n':sor or usm mod& =

- cssenCE, plpehrung 1[]\'{}1‘.."3_5 hreakm
. ber of sepan‘lte stages that

Ihis chapter discusses aspects of the
ind sets the stage for
Thapters 13 and 14,

We begin with a summary of processor brgmnzatmn Registers, which form the
iternal memory of the processor, are then analyzed. We are then in a position to
turn to the discussion (begun in Section 3.2) of the instruction cycle. A description of
€ instruction cycle and a common technique

known as instruction pipelining com-
ete our description. The chapter concludes with an examination of some additional

pects of the Pentium and PowerPC organizations,

processor not yet covered in Part Three
the discussion of R}ﬁC and superscalar architecture in

YOCESSOR ORGANIZATION.

&

understand the organization of the processor, let

us consider the requir,
‘ed on the processor, the things that it must do-: quirements

| Fetd: instruction: The processor reads an instructio
n fr :
cache, main memory). Om memory (register,

-lnterprei instruction:
is required.

B ]
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= Fetch dsta: The execution of an insiruetion i

ay require reading data from
memory or an IO module,
* Process data: The execuvtion of an instruction may

arithmetic or logical operation on data,

* Write data: The resulis of an execution may require writing data 1o memory or
an MO module,

require performing some

To do these things, it should be clear that the processor necds to store some
data temporarily. It must remember the location of the last instruction so that it can

know where to get the nex! instruction. It needs to store mnstructions and data tem-

porarily while an instruction is being executed. In oiher words, the processor needs
a small internal memonry.

Figure 12.1 is a simplified view of a
the rest of the system via the system bus.
any of the interconnection structures d

recall that the major components of the processor are an arithmeiic and logic unit
(ALU) and a conrrol unit (C 7). The ALU does the actual computation or pro-
cessing of data. The control unit controls the movement of data and instructions
in1o and out of the processor and controls the operation of the ALU. In addition,

the figure shows a minimal internal memaory, consisting of a set of storage loca-

tions, called repisters,

Figure 12.2 is a slightly more detailed view of the processor. The data transfer
and logic control paths are indicated, including an clement labeled internal processor
bus. This element is needed to transfer data between the various registers
and the ALU because the ALU in fact operales only on data in the internal proces-
sor memory. The figure also shows typical basic elements of the ALU. Note the
similarity between the internal structure of the computer as a whole and the inter-

nal structure of the processor. In both cases, there is a small collection of major

elements (computer: processor, /O, memory; processar: control unit, AL, registers)
connected by data paths. ’ y

processor, indicating its connection 1o
A similar interface would be needed for
escribed in Chapter 3. The reader will

ALU

Control
unit

)

Control Data Address
s huis bus

k_,_..-—-\t.-—-.__}

System
bus

Figure 12.1 The CPU with the System Bus



JIR DAL B2 e PREOEESSENL S VLW T ANDY TLING TN

Arithmetle aor lngie nnde l { -

AT |

""—"'I Complementer [" "

Arithmetic
and -
Haalean
logic

Internal CPU bus

'

Internal Struciure of the CPU i

Figure 12.2

As we discussed in Chapter 4, a computer system employs a memory hierarchy. :ﬂut
higher levels of the hicrarchy, memory 15 faster, smaller, and more expensive (per hit).
Within the processor, there is a set of registers that function as a level of memory
above main memory and cache in the hierarchy. The registers in the processor per-
form two roles:
» User-visible registers: Enable the machine- or assembly language programmer
to minimize main memory references by optimizing use of registers.
« Control and status registers: Used by the control unit to control the operation
of the processor and by privileged, operating system programs to control the

execution of programs.

There is not a clean separation of registers into these two categories For example,
on same machines the program counter is user visible (e.g., Pentium), but on many it is
not. For purpases of the following discussion, however, we will use these categories.

User-Visible Registers
A user-visible register is one that may be referenced by means of the machine language
that the processar executes. We can characterize these in the following categories:

» General purpose
* Data

Address
Condition codes

-
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Four registers are essential 10 instruction excecution:

* Propgram counter (PC): Contains the address of an instruction to be feiched
* Instruction register (IR): Contains the instruction most recently fetched
* Memory address register (MAR): Contains the address of a location in memory

* Memory buffer register (MBR): Contains a word of data to be written to
memory or the word most recently read

Not all processors have internal regisiers designated as MAR and MBR, but
some cquivalent buffering mechanism is needed wherehy the bits to be transferred 1o

the system bus are staged and the bits 1o be read from the data bus are lemporanly
Stored.

Typically, the processor updates the PC after each instruction fetch so that the

PC always points to the next instruction 10 be executed. A branch or skip instruction
will also modify the contents of the PC. The fetched instruction is loaded into an 1R,
where the opcode and operand specifiers are analyzed, Data are exchanged
with memory using the MAR and MBR. In a bus-organized system, the MAR con-
nects directly to the address bus, and the MBR connects directly to the data bus.
User-visible registers, in turn, exchange data with the MBR.

The four registers just mentioned are used for the movement of data berween
the processor and memory. Within the processor, data must be presented to the
ALU for processing. The ALU may have direct access to the MBR and user-visible
registers. Alternatively, there may be additional buffering registers at the boundary
to the ALU; these registers serve as input and output registers for the ALU and
exchange data with the MBR and user-visible re gisters.

. Many processor designs include a register or set of registers, often known as
the program status word (PSW), that contain status information. The PSW typically
contains condition codes plus other status information. Common fields or [ags
include the following:

* Sign: Contains the sign bit of the result of the last arithmetic operation.
* Zero: Set when the result is 0,

* Carry: Set if an operation resulted in a carry (addition) into or borrow
(subtraction) out of a high-order bit. Used for multiword arithmetic operations.

* Equal: Set if a logical compare result is equality.

* Overflow: Used to indicate arithmetic overflow.

* Interrupt enable/disable: Used to enable or disable interrupts,

* Supervisor: Indicates whether the processor is executing in supervisor or user

mode. Certain privileged instructions can be executed only in supervisor
mode, and certain areas of memory can be accessed only in supervisor mode.

A number of other registers related to status and control might be found il:l a
particular processor design. There may be a pointer to a block of memory contain-
ing additional status information (e.g., process control bluckl,s}, In rnachmes_. using
vectored interrupts, an interrupt vector register may be provided. If a stack is ustld
to implement certain functions (e g, subroutine call), then a system stack pointer is
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; : iy : wstem. Finally, registers
necded A page table pomter s used with a virtual memory systen anty

may be used in the control of 1O operations. - : register orga-

A number of factors go into the design of the ::ur'urr.-lluud hlalu; ;:;lrgulrn! infgr—
mzation. One key issue is operating system support. Certain Lypes o i it
maton are of specific utility to the operating systen. If the processor desig

W % — H T a.-
functional understanding of the operating system to be used, then the register org

nization can to some extent be tailored to the operating system. i
Another key design decision is the allocation of control information betwe

repisters and memory. It is common to dedicate the first (lowest) few hur!dr{:d or
thousand words of memory for control purposes. The designer must decide how
much control information should be in registers and how much in memory. The
usual trade-off of cost versus speed arises.

Examiple Microprogessor Register Organizations

It is instructive to examine and compare the register organizatibn of comparable
systems. In this section, we look at two 16-bit microprocessors that were designed
at about the same time: the Motorola MC68000 |STRI79] and the Intel 8086
iMDRS?HJ'_F‘iEW“ 12.3a and b depict the register organization of each; purely
mternal registers, such as a memory address register, are not shown.

o,

Data registers General registers Genéral vegliters
P ] AX Aﬁ‘umulntm-_ EAX 3 . =
BX P AX
X ECX [~ : S
: DX EBR [~ ° Bt
Tl Pointer & In
= 5P ot sy o, A PBLT Xer: |
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[T MOGSIERD partitions its 32-Iit registers nto cight data repisiers Bt
addiess registers The cight data registers are used primarily for data manipuly; Mg,
are also used in addressing as index registers. The width of the registers allows g angy
anad 32-bit data operations, iJCIL‘]’I!IiI?L‘d by upr::‘mh:. The address registers m'“ﬂ.i'ﬂ 32 f.
(oo sepmentation) addresses: two of these registers are also used as stack POinter, “hiy

for users and one for the operating system, depending on the current €XecCution " One
Both registers are numbered 7, because only one can be used at a ime. The M{‘T{ e
also includes a 32-bit program counter and a 16-bit status register. -H80ry)

The Motorola team wanted a very regular instruction set, with ng Spe

purpose registers. A concern for code efficiency led them 1o divide tp, T‘:h"th
ters into two functional components, saving one bit on each register Epﬂﬁ?{gh,
This seems a reasonable compromise between complete generality and t::'-
compaction. de

The Intel 8086 takes a different approach to register organization. E"'“ﬁ' o
ter 1s special purpose, although some registers are also usable as general pqug"“
The 8086 contains four 16-bit data registers that are addressable on a byle o 1(,_:-:'
basis, and four 16-bit pointer and index registers. The data registers can be ygeq i
general purpose in some instructions. In others, the registers arc used impli citly F::s
example, a muluply instruction always uses the accumulator, The four pointer l'tgj;'
ters are also used implicitly in a number of operations; cach contains a segmep, 0"-
set. There are also four 16-bit segment registers. Three of the four segment ]'r;:gistEr;
are used in a dedicated, implicit fashion, to point to the segment of the Clrren
instruction (useful for branch instructions), a segment containing data, and 4 seg-
ment containing a stack, respectively. These dedicated and implicit uses provide for
compact encoding at the cost of reduced flexibility. The 8086 also includes an
instruction poinier and a set of 1-bit status and control flags.

The point of this comparison should be clear. There is no universally accepted
philosophy concerning the best way to organize processor registers [T’DDNEI]_ As
with overall instruction set design and so many other processor design 1ssues, it is
still a matter of judgment and taste.

A second instructive point concerning register organization design is illustrated
in Figure 12.3c. This figure shows the user-visible register organization for the Intel
80386 [ELAYS8S5], which is a 32-bit microprocessor designed as an extension of the
8086."! The 80386 uses 32-bit registers. However, to provide upward compatibility for
programs written on the earlier machine, the 80386 retains the original register organi-
zation embedded in the new organization. Given this design constraint, the architects
of the 32-bit processors had limited flexibility in designing the register organization.
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VAPTER 12 J MUOCESSOR STRUCTURE AND FUNCTION

» Fetch: Read the next insiruction from memory into the processor.
« Execute: Interpret the opcode and perform the indicated operation,

«» Interrupt: If interrupts are enabled and an interru
t has
current process state and service the interrupt. ’ poeumed s e

Wa_arc nowin a pasitfqn to slaboriie somewhat on The isstraction eycle. First
. must introduce one additional subcycle, known as the indirect el

1e Indirect Cycle

have secn, I'ff Chapter 11, that the execution of an instruction may involve one or
re operands in memory, cach of which requires a memory access. Further, if indi-
addressing is used, then additional memory accesses are required.

We can think of the fetching of indirect addresses as one more instruction sub-

« The result is shewn in Figure 12.4. The main line of activity consists of alter-
g instruction fetch and instruction exccution activities. After an instruction is
ed, it is examined to determine if any indircet addressing is involved. If so, the
red operands are fetched using indirect addressing. Following execution, an
upt may be processed before the next instruction fetch.
Another way to view this process is shown in Figure 12.5, which is a revised
n of Figure 3.12. This illustrates more correctly the natd¥e of the instruction
Ynce an instruction is fetched, its operand specifiers must be identified. Each
yperand in memory is then fetched, and this process may require indirect
iing. Register-bascd operands need not be fetched. Onge the opcode is exe-
 similar process may be needed to store the result in main memory.

S
P L]

an instruction cycle depends on the design of

te in general terms what must happen. Let us
ddress register (MAR), a memory

nd an instruction register (IR).
L]

Jow

:t sequence of events during
-ssor. We can, however, indica
hat a processor that employs a memory a
sister (MBR), a program counter (PC), a

Figure 124 The Instruction Cycle
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Figwee 126 Data Flow, Fetch Cycle

During the fetch cyele, an instruction is read from memogy. Figure 12.6 shows
the flow of data during this cycle. The PC contains the address of the next instruc-
tion to be fetched. This address is moved to the MAR and placed on the address bus.
The control unil requests a memory read, and the result is placed on the data bus
and copied into the MBR and then moved to the IR. Meanwhile, the PC is incre-

mented by 1, preparatory for the next fetch,
Once the fetch cycle is over, the control unit examines the contents of the IR

to determine if it contains an operand specifier-iising indirect addressing. If so, an
indirect cycle is performed. As shown in Fipure 12.7, this is a simple cycle. The right-
most N bits of the MBR, which contain the address reference, are transferred to the
MAR. Then the control unit requesis a memory read, to get the desired address of

the operand into the MBR.

CPU
i It o

FMemory,

v i
&

|

Address Data Cantral
bus hus btzs

Figure 12.7  Data Flow, Indirect Cycle
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The fetch and indirect cycles are simple and predictable. The execute cycle
takes many forms: the form depends on which of the various machine instructions js
in the IR. This cycle may involve transferring data among registers, read or write
from memory or 1/0, and/or the invocation of the ALU.

Like the fetch and indirect cycles, the interrupt cycle is simple and predictable
(Figure 12.8). The current contents of the PC must be saved so that the processor can
resume normal activity after the interrupt. Thus, the contents of the PC are trans-
ferred to the MBR to be written into memory. The special memory location reserved
for this purpose is loaded into the MAR from the control unit. It might, for example,
be a stack pointer. The PC is loaded with the address of the inlermpt routine. As a
result, the next instruction cycle will begin by fetching the appropriate instruction.
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In Chapter 10, we pointed out that a machine instruction set goes a long way toward
defining the processor. If we know the macpin-:“instruction set, including an under-
standing of the effect of each opcode and” an uhderstanding of the addressing
modes, and if we know the set of user-visible registers, then we know the functions
that the processor must perform. This is not the complete picture, We must know the
external interfaces, usually through a bus, and how interrupts are handled. With this
line of reasoning, the following list of those things needed to specify the function of -

d Processor emerges:

I. Operations (opcodes)

2. Addressing modes

3. Registers

4. I/O module interface
Memory module interface

6. Interrupt processing structure

This list, though general, is rather complete. Items 1 through 3 are defined by the
instruction set. [tems 4 and 5 are typically defined by specifying the system bus.
Item 6 is defined partially by the system bus and partially by the type of support the
processor offers to the operating system.

This list of six items might be termed the functional requirements for a processor.
They determine what a processor must do. This is what occupied us in Parts Two and

tn
i



We have seen that the operation of a computer, in executing a program, consists of
a sequence of instruction cycles, with one machine instruction per cycle. Of course,
we must remember that this sequence of instruction cycles is not necessarily the
same as the written sequence of instructions that make up the program, because of
the existence of branching instructions. What we are referring to here is the execu-
tion rime sequence of instructions.

We have further seen that each instruction cycle is made up of a number of
smaller units. One subdivision that we found convenient is fetch, indirect. execute,
and interrupt, with only fetch and execute cycles always occurring.

To design a control unit, however, we need to break down the description fur-
ther. In our discussion of pipelining in Chapter 12, we began to see that a further
decomposition is possible. In fact, we will see that each of the smaller cycles involves
a series of steps, each of which involves the processor registers. We will refer to
these steps as micro-operations. The prefix micro refers 1o the fact that each step is
very simple and accomplishes very little. Figure 16.1 depicts the relationship among
the various concepts we have been discussing. To summarize, the execution of a
program consists of the sequential execution of instructions. Each instruction is exe-
cuted during an instruction cycle made up of shorter subcycles (e.g., fetch, indirect,
execute, interrupt). The performance of each subcycle involves one or more shorter
operations, that is, micro-operations.

Micro-operations are the functional, or atomic, operations of a processor. In|

thir saatnmem s eead BT oo
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events of any instruction cycle can be described as a sequence of such micro-
operations. A simple example will be used In the remainder of this chapter. we
then show how the concept of micro-operations serves as a gaide to the design of
the control unit.

The Feteh Cyele

We begin by looking at the fetch cycle, which occurs at the beginning of each instruc-
uon cycle and causes an instruction to be feiched from memory. For purposes of
dJdiscussion, we assume the organization depicted in Figure 12.6. Four registers are
involved:

« Memory address register (MAR): Is conne ted to the address lines of the
system bus. It specifies the address in memory for a read or write operation.

= Memory buffer register (MBR): Is connected to the data lines of the system bus.
It contuins the value to be stored in memory orthe lyst value read from merory.

< Program counter (PC): Holds the address of the next instruction Lo be feiched.
» Instruction register (IR): Holds the last instruction fetched.

Let us look at the sequence of events for the fetch cycle from the point of view
of its effect on the processor registers. An example appears in Figure 16.2. Al the
beginning of the fetch cycle, the address of the next instruction 1o be executed is in
ihe program counter (PC); in this case, the address is 1100100. The first step is 1o
move that address to the memory address register (MAR) because this is the only
register connected (o the address lines of the system bus. The second step is to bring
in the instruction. The desired address (in the MAR) is placed on the address bus, the

™,
FA :
MAK MAR | 0000000001100100
e — _ s
PC| 0000000001100100
IR
AC
{a) Beginning (c) Second swep
man [ 'q"u'.ﬁ:,ﬁ;g:.g-‘é_@'q';;pﬁéi:’{l}i:.iff@;gi;} MAR| 0000000001100100
MBR MAR 00D10000001000C00D
pC| 0000000002100100 | PC| 0000000001100101
AC , AL
i) Third step

{b) First step
Fiewre 16.2  Sequence of Events. Fetch Cycle
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control unil issues o READ command on the contrel bus, and the resy)y APpegr
the data bus and i copied into the memos ¥ bulfer register (MBR). We algq ne [:"
mcrement the PC by | o get ready for the next instruction, Because these mh
achons (read word from memory, add | to P'C) do not interfere with each °lh'-'r.'.-r:
can do them simultancously to save time. The third step is 10 move the CONtenty of the
MBR to the instruction register (IR). This frees up the MER for use during , Poss;
ble indirect cyele.

Thus, the simple fetch cycle actually consists of three steps and foyy Micra.
operalions. Each micro-operation involves the movement of datu intg Or ouy of %
register. So long as these movements do not inerfere with one another, Severa| of
them can take place during one slep, saving time. Symbolically, we can Write 1hi
sequence of events as follows:

Ly: MAR « (P()

Li: MBE & Memory
PC «— (PC) + }

t.: IR « (MBR)

where [ is the instruetion length. We need to make several comments about ghje
sequence. We assume that a clock js available for timing purposes and that it emits reg-

of equal duration. Each micro-operation can be performed within the time of 4 &
ime unit, The notation (1. 13, t3) represents successive time units. In words, we have

* First time unit: Move contents of PC 1o MAR.

* Second time unit: Move contents of memory location specified by MAR 1o
MBR. Increment by [ the contents of the P, :

* Third time unit: Move contents of MBR 1y IR,

Noie that the second and third MICTo-operations both take Place during the second
time unit. The third micro-o peration could have been grouped with the fourth without
affecting the fetch operation:

t;: MAR « (PC)

t2: MBR ¢ Memory

C3: PC &= (BC) +7
IR & {(MER)

The groupings of micro-operations must follaw two simple rules:

- The proper sequence of events mus be followed. Thus (MAR « (PC)) must

precede (MBR «— Memory) because the memory read operation makes use
of the address in the MAR.

2. Conflicts must he avoided. One should not atlempt (o read to and write from
the same register in one time unit, because the results would be unpredictable.
For example, the micro-operations (MBR — Memory) and (IR — MBR)
should not eecur during the same time unit,
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! recede the execute cycle. The data flow
12.7 and includes the following micro-operations:

The pudired!

ource operands. Continuing
ion format, with direct and
indirect address, then an

differs somewhat from
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ymple, Jet

jdirect cvele mm;‘l P
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t,: MAR &« (IR (Address))
t,: MBR « Memory

IR (Address) ¢ [MER(Addre;ss}}
b

'll.‘: :
d to the MAR. This is then used

eld of the instruction is transferre
dated

o fetch the address of the operand. Finally, the address field of the IR is up
rom the MBR, 50 (hat it now contains a direct rather thah an indirect address.
The IR is now in the same state as if indirect addressing had not been used,

and it is ready for the execute cycle. We skip that cycle for a moment, to consider the
'q‘

interrupt cycle. s

The address f

The Interrupt Cycle
de to determine whether any

enabled interrupts have occurred. If so, the interrupt cycle occurs. The nature of
this cycle varies greatly from one machine to another. We present a very simple

sequence of events, as illustrated in Figure 12.8. We have

At the completion of the execute cycle, a test is ma

L;: MBR « (PC)
ty: MAR + save_Address
PC « Routine_Address

t,: Memory ¢ (MBR)

- b:‘llﬂt':‘dﬁrsl step, the contents of the PC are transferred t0 the MB_R. so that they
& "'I'liﬂjldl\it- ‘fﬂl return from the interrupt. Then the MAR is loaded with the address
Oflhm-d,-:t ;—Ullit’lnls of the PCaare to ks sgved, and the PCs loaded with the address
micm.t,pw.nl-ﬂw interrupt-processing routme. These two actions may each be a single
quuisn[imd, 1on. However, because most processors prpwde mult_lplc types a‘ndf'or
save :id:irc;::mpls" it may take one or more - dditional micto-operations to obtain the

: ss and the routine_address before they ¢an be transferred to the MAR and
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PC.respectively. In any case, once this is done, the final step is 10 store the MBR. which

contains the old value of the PCinto memory. The processor is now ready Lo begin the
nex1 instruction cycle.

The Execute Cycle

The fetch, indirect, and interrupt cycles are simple and predictable. Each involves

a small. fixed sequence of micro-operations and, in each case. the same micro-
operations are repeated each time around.

This is not true of the execute cycle. For a machine with N differen: opcodes,

there are N ditferemt sequences of micro-operations that can occur. Let us consider
several hypothetical examples,

First. consider an add instruction:
ADD R1, X

which adds the contents of the location X to register R1. The following sequence of
micro-operations might occur:

t;: MAR « (IR(address))
t;: MBR « Memory
ty: R1 & (R1) + (MBR)

We begin with the IR containing the ADD instruction. In the first step, the
address portion of the IR is loaded into the MAR. Then the referenced memory
location is read. Finally, the contents of R1 and MBR are added by the ALU. Again,
this is a simplified example. Additional micro-operations may be required to extract
the register reference from the IR and perhaps to stage the ALU inputs or outputs
in some intermediate registers.

Let us look at two more complex examples. A common instruction is incremeni
and skip if zero:

ISZ X

The content of location X is incremented by 1.1f the result is 0, the next instructio:
is skipped. A possible sequence of micro-operations is

t;: MAR « (IR(address}))
ts: MBR « Memory
t,: MBR « (MBR) + 1
ty: Memory +« (MBR)
If ({(MBR) = D) then (PC « (PC) + I)

Thie new feature introduced here is the conditional action. The PC is increment
if (MBR) = 0. This test and action can be implemented as one micro-operation. N
also that this micro-operation can be performed during the same time unit dur
which the updated value in MBR is stored back 1o memory.
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Finally, consider o subroutine cill instruction. As an example, consider a
branch-ond-save-address instruction:

BSA X
BSA instruction is saved in location X,
address will later be used for

The address of the instruction that follows the
subroutine calls. The fol-

and execution continues at location X 4 I. The saved
return. This is a straightforward technigue for providing

lowing micro-operations suffice:

t;: MAR « (IR(address)]

MBR + (PC)
t,: PC « (IR(address))
s Memory + (MBR)
-4

Ly: PC & (PC) + I

The address in the PC at the start of the instruction is the address of the next
“This is saved at the address designated in the IR. The latter

mstruction in sequence
struction for the next

address is also incremented (o provide the address of the in
b

instruction cycle.

The Instruction Cycle p
H
. . I ¥
We have seen that each phase of the instruction cycle can be decomposed into a

clementary micro-operations. In our example, there is one sequence

sequence of
and, for the execute cycle, there is

each for the fetch, indirect, and interrupt cycles,

one sequence of micro-operations for each opcode.
To complete the picture, we need to tie sequences of micro-operations together,

and this is done in Figure 16.3. We assume a new 2-bit register called the instruction
cyele code (1CC). The 1CC designates the state of the processor in terms of which por-

tion of the cycle it is in:

00: Fetch

01: Indirect

10: Execute

11: Interrupt

At the end of each of the four cycles, the 1CC is set appropriately. The indirect
cvcle is always followed by the execute cycle. The interrupt cycle is always followed
e fetch cycle (see Figure 12.4). For both the fetch and execute cycles, the next
ds on the state of the system.
he flowchart of Figure 16.3 defines the complete sequence of micro-
only on the instruction sequence and the interrupt pattern.
Of course, this is a simplified example. The flowchart for an actual processor would
be more complex. In any case, we have reached the point in our discussion in which
the operation of the processor is defined as the performance of a sequence of micro-
operations. We can now consider how the control unit causes this sequence to oceur.

by tl
cycle depen

Thus, 1
operations, depending
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Fipure 16.3  Flowchart for Instruction Cycle
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, Ipiernal data paths

. pxternal data paths

i Control umit

o thought should convince you that this is a complete list. The ALU is the
essence of the computer. Registers are used to store data internal 1o the
Some registers contain status information needed to manage instruction
Huendﬂs {e.p., a program status word). Others contain data that go lo or come
-om the ALU, memory, and 1/O modules. Internal data paths are used to move data
iween FCEISErs and between register and ALU. External data paths link registers
ymemary and 1O modules, often by means of a system bus. The control unit causes

gerations 10 happen within the processor.
The execution of a program consisis of operations involving these processor

Jements. As W have seen, these operations consist of a sequence of micro-operations
o0 review of Sectioh 16.1, the reader should see that all !nicr&upzratims fall into
me of the following categories: =
« Transfer data from one register to another.
« Transfer data from a register to an external interface (e.g., system bus).

*rll

Som
,m“‘ﬁﬁﬂi-

« Transfer data from an external interface o a register.
« Perform an arithmetic or logic operation, using registers for input and output.

Al of the micro-operations needed to perform one instruction cycle, including all of
te micro-operations to execute every instruction in the instruction set, fall.into one

these categories.
~ We can now be somewhat
uil functions. The control unit performs two basig tasks:

* Sequencing: The control unit causes the processor 10 step through a series of
micro-operations in the proper sequence, based on the program being executed.

v Execution: The control unit causes each micro-operation (o be performed.

more explicit about the way in which the contrel

| The preceding is a functional description of what the control unit does. The
" to how the control unit operates is the use of control signals.

y .
“mtrol Signals

:]“hi'-'e defined the elements that make up the processor (ALL, regisiers, data
:Zi ") }ﬂﬂd the micro-operations that are performed. For the control unit to perform
h Nction, it must have inputs that allow it to determine the state of the system and
I‘-Ptﬂ;js ﬂjat allow it to control the behavior of the system. These are the external
ications of the control unit. Internally, the control unit must have the logic
Nired 10 perform its sequencing and execution functions. We defer a discussion of

. Mierna| operation of the control unit to Section 16.3 and Chapter 17. The

\ inder of this section is concerned with the interaction between the control unit
other elements of the processor.

n Figure 16.4 s a general model of the control unil, showing all of its inputs and

Dt :
["Puts. The inputs are as follows:



G2 7 Eewsd e w vy

Bl e iso 581
Inttruction rr[:-klrrj
== Cumitral sipnals
— within €111
& o -
Flags - —__‘> &
" E
— Comtrn) signals E—
Control fromm contral hus 5
umit f:r— —
Clockam——_ e - -
Contral sipnale vl
tee comiral bas

Fignre 164 Block Diagram of the Cantrol Unit

* Clock: This is how the control unit “keeps time." The control unit causes one

micro-operation (or a set of simultaneous micro-operations) to be performed
for each clock pulse. This is sometimes

or the clock cycle time.

* Instruction register: The opcode of the current instruction is used to determine
which micro-operations to perform during the execute cycle.

* Flags: These are needed by the control unit 1o determine the status of the
processor and the outcome of previous ALU operations. For example, for the

increment-and-skip-if-zero ( ISZ) instruction, the control unit will increment
the PC if the zero flag is set.

* Control signals from control bus: The control bus portion of the system bus pro-
vides signals to the control unit, such as interrupt signals and acknowledgments.

referred to as the processor cycle time.

The outputs are

* Control signals within the processor: These are (wo types: those that cause

data 1o be mioved from one register to another, and those that activate specific
ALU functions.

* Control signals to control bus: These are also of two types: control signals to
memory, and control signals to the 'O modules.

The new element that has been introduced in this figure is the control signal.
Three types of control signals are used: those that activate an ALU function, those
that activate a data path, and those that are signals on the external system bus or
other external interface. All of these signals are ultimately applied directly as binary
inputs to individual logic gates. -

Let us consider again the fetch cycle to see how the control unit maintains control,
The control unit keeps track of where it is in the instruction cycle. Al a given poind. it
knows that the fetch cycle is to be performed next. The _ﬁrst steq is 10 transfer the
contents of the PC to the MAR. The control unit does this by activating the eontrol
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signal that opens the gates between the bits of the PC and the bits of the MAR. The next
step is to read a word from memory into the MBR and increment the PC. The control
unit does this by sending the following control signals simultaneously:

« A control signai that opens gates. allowing the contents of the MAR onto the

address bus

« A memory read control signal on the control bus

» A control signal that opens the gates, allowing the contents of the data bus to

be stored in the MBR
« Control signals to logic that add 1 o the contents of the PC and stor
back to the PC
Following this, the control unit sends a control signal that opens gates be
MBR and the IR.

This compielcs‘thc fetch cycle except for onc
whether to perform an indirect cycle or an execute ¢
ines the IR to see if an indirect memory reference is made.

The indirect and interrupt cycles work similarly. For the execute cycle, the control
unit begins by examining the opcode and, on the basis of that. decides which sequence

of micro-operations to perform for the execute cycle.

e the result

tween the

thing: The control unit must decide
ycle next. Fo decide this, it exam-

~
A Control Signals Example

To illustrate the functioning of the control unit, let us examine a simple example.

Figure 16.5 illustrates the example. This is a simple processor'with a single accumula-
tor. The data paths between elements are indicated. The control paths for signals

"-‘\.
A ‘
o |
M Cn
B
_ R
Cz
: Control
[ 59 « Signals

= e 2

Clock Control
. signals

Figure 16.5 Data Paths and Control Signals
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nanating from the control umit are not shown, but the terminations of CONtpy,
gnals are labeled €, and indicated by a circle. The control unit receives mputs flqu
ie clock. the instruction register. and flags. With each clock cycle. the contyg iy
:ads all of its inputs and emits a set of control signals. Control signals po 10 threg

:parate destinations:

» Data paths: The control unit controls the internal flow of data. For example, g,
instruction fetch. the contents of the memorv buffer register are transfepyeg ki
the instruction register. For each path 1o be controlled, there is @ gate (indicateq
by a circle in the figure). A control signal from the control unit temporarily

opens the gate to let data pass.
» ALU: The control unit controls the operation of the ALU by a set of contry)
signals. These signals activate various logic devices and gates within the AL,

» System bus: The control unit sends control signals out onto the control lines of
the svstem bus (e.g.. memory READ).

The control unit must maintain knowledge of where it is in the instruction
rcle. Using this knowledge, and by reading all of its inputs. the control unit emits a
:quence of control signals that causes micro-operations to occur. It uscs the clock
1lses to time the sequence of events. allowing time between events for signal levels
 stabilize. Table 16.1 indicates the control signals that are needed for some of the
icro-operation sequences described earlier. For simplicity. the data and control
iths for incrementing the PC and for loading the fixed addresses into the PC and

‘AR are not shown.
It is worth pondering the minimal nature of the control unit. The control unit is

e engine that runs the entire computer. It does this based only on knowing the
structions to be executed and the nature of the results of arithmetic and logical

fuble 16,1  Micro-Operations and Control Signals
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| crations (e.g., positive, overflow, eic.). It never gets to se
.' :r the actual results produced. And j controls eve
f['1pgints within the processor and g few control s

’ see the data being processed
rything with a few control signals
gnals to the system bus.

}rnlfrllﬂi Processor Organization

'Fgure 16.5 indicates the use of 2 variety ot data paths, The -
grpanization should be clear. More typically, some sort of ing
a!.‘“-a_q suggested in Figure 12.2, will be used.

Using an internal processor b i

mplexity of this type of
ernal bus arrangement.

Address :
lines i -
Data .
lines . MBR

Internal CPU bus

Figure 16.6 CPU with Internal Bus
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i c:n;j tlhun.lrnl .--.ngna‘lr-;. arc provided for movement of data onio and off the bus
ch regisier. Additional control signals control data transfer to and from mé

system (external) bus and the operation of the ALU.
Two new registers, labeled ¥ and Z, have been added to the organizatnon.

:Thi:sc.-ﬁr[: nceded for l‘llﬂ' proper operation of the ALU. When an operation
involving two operands 1s performed, one can be obtained from the internzal bus,
but the other must be obtained from another source. The AC could be used for
this purpose, but this limits the flexibility of the system and would not work with
a processor with multiple general-purpose registers. Register Y provides tempo-
rary storage for the other input. The ALU is a combinatorial circuit (sec
Appendix A) with no internal storage. Thus, when control signals activate an
ALU function, the input 1o the ALU is transformed 0 the output. Thus, the out-
put of ithe ALU cannol be directly connected to the bus, because this outpul
would feed back 10 the input. Register Z provides temporary output storage.
Wwith this arrangement, an pperation 1o add a value from memory to the AC

would have the following stcps:

thtaddreasll

tq: MAR
tp,: MBR € Memory
Ca: Y = (MER)
by & * (AC) + (y)
tg: AC e« (Z)
i i ral, some sort of intcrnjal bus o
anizations ar¢ pu«ss:b[e. but, In gm;:; e 5imp1ifie5;:i;siiic$;

Other Org : common g
s Lascac 1§ uﬁﬂd The_ L]ﬁe ffni!:lmr ﬁ]’iﬂthl"-‘l— p[ﬂcllﬂt ]'E-ﬂ;i
T —nnre which may GCC'I.'IF}:
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Address and Data Signals ’ BT

High Address | A15-AE)
The lnph-order & bits of a 16-hit addiess

Addresa/Tata ( ADT-ADU) . !
The lonwer-nrder 8 bits of o 16-bil address o5 B bits of data, This multiplexing saves on pins.

Serial Inpat Data (S10Y) _
A sinple-bit input Lo accommodate devices that transmit senally fonc bit at a time}.

Serial Ompu Data (SOI)
A single-bit output to accommoedate devices thal receive serially

Timing and Contrel Signals

CLK (OLT) F g
The system clock. Each eycle represents one T state The CLK signal goes to peripheral chips and

synchronizes their liming,

X1, X2

These signiils come from an cxternal crysial or ciber device 1o drive the internal clock generator

Address Latch Ensbled (ALE) Y M
Occurs during the first clock state of 4 machine cyele and causes peripheral chips 1o storc the address lines.

This allows the address module {e.g. memory. 1A0) 1o recogpize that it is being addressed.

- T

Status (S0, 51) N
Control signals used Lo indicate whether  read or write operation is aking place. . _ .. . L Ls

10m 2 g
Used 10 enable either 1V0 or memory maodules lor read and write operalions : : .
Read Contral (RDY) | ; M S T O L -
. Andicates that the selected memory or U0 module is 1o'be read and that the data bus is avzilable for datg
transfer, i : VTR SO

Write Control (WR) TR e R R
Indicates that data on the deta bus is (o be written into the selected memory or 0 location, . - -
Memory and I/0) Initiated Symbols =
Hald SHp 3t el T
Requests the CPU to relinquish control and use of the external evsiem bus. The CPLI will complste -
execulion of the instruction presently in the IR and then eater a hold state, during which 0o sipnals are
inserted by the CPU to the eontrol. address, or data buses, During the hald state, the bus may be used for _

DMA operations.

Hold Achnowledge (HOLDA) e i

This contral unit ouilput signal acknowledges the HOLD signal and indicates that the bis is now

available. £

READY ~ : T .
Used 10 synchronize the CPU with slower memory or 1/0 devices When an addressed device asserts

READY, the CPU may proceed with an input {DBIN) or output (WR) operation. Otherwise, the CPU

enlers 2 wait slate until the device i ready. I e B, : T

{C';m.ru'rm ed)
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Intermupi-Related Signals
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A Interrupts (RST 7.5,6.5.5.5)

 rupt Hequest {(INTH) ;
e five lines are used by an external device to interrupt the CPLLThe CP1 will not honor the request if @t

ne hold state or if the interrupt is disabled. An interrupt is honored only at the completion of an instruction.
merTupiE are in descending arder of priority,

ﬂi' Acknoniedpge
scknowlcdges an inerrupi.
CPU Initizlization

GETIN - T _thapre
Canscs the cantents of the PC to he set to zero. The CPU resumes execution at Iixalinn zero.

BET OUT § ;
acknowledges that the CPU has been reset. The signal can be used 10 reset the rest of the system.

1t “Voltage and Ground |

!lSvuIlp&wrlmim;l}r- : R e L i
i £ ! Tar || = __;_-_' = --;‘_.-"-' IR .'I'_u' s -"_" s L LT
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The control unit is identified as having twa components labeled (1) instruc-
tion decoder and machine cycle encoding arid (2) timing and control. A discussion
of the first component is deferred until the next section. The essence of the control
unit is the timing and control module. This module includes a clock and accepts as
inputs the current instruction and some external control signals. Its output consists
of control signals to the other components of the processor plus control signals to

the external system bus.
The timing of processor operations is synchronized by the clock and con-

trolled by the control unit with control signals. Each instruction cycle is divided
into from omne to five machine cycles; each machine cycle is in turn divided into
from three to five states. Each state lasts one clock cycle. During a state, the
processor performs one or a set of simultaneous micro-operations as determined
by the control signals. i

The number of machine cycles is fixed for a given instruction but vanes from one
instruction to another. Machine cycles are defined to be equivalent to bus accesses.
Thus, the number of machine cycles for an instruction depends on the number of times
the processor must communicate with external devices. For example, if an instruction
consists of two 8-bit portions, then two machine cycles are required to feich the
instruction. If that instruction involves a 1-byte memory or 1/O operation, then a third
machine cycle is required for execution.

Figure 16.9 gives an example of 8085 timing, showing the value of external
control signals. Of course, at the same time, the control unit generates internal
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X, —{1 4u];— Vee
X, —{]2 39[~—— HOLD
Reset out =—{|3 38— HLDA
SOD ~—{|4 37— CLK (out)
SID —={|5 36|}=—— Resel in
Trap =—{]6 35[}— Ready
RST 7.5 —={|7 24— 10/M
RST 6.5 «—8 33— S,
RST 5.5 —{|9 ~32[}— Vpp
INTR —{] 10 31— RD
INTA —{ 11 30— WR
AD, =—{]12 29—+ Sy
AD; ~—+{113 B[ Ays
AD; —|14 ~ 21— Ay
AD,; <—{]15 26— Ay
AD, ~—+{]16 50— A
ADs ~—{| 17 28— Ay
AD, |18 23— Ay
AD, «—{]19 = = 22[— Ag
Vss —]20 1 21— Aq

Figure 16.8  Intel 8083 Pin Configuration

control signals that control internal data transfers. The diagram shows the instruction
cycle for an OUT instruction. Three machine cycles (M, Ms, M,) are needed. Dur-
ing the first, the OUT instruction is fetched. The second machine cycle fetches the
second hall of the instruction, which contains the number of the /O device selected
for output. During the third cycle, the contents of the AC are written out to the
selected device over the data bus.

The Address Latch Enabled (ALE) pulse signals the start of each machine
cycle from the control unit. The ALE pulse alerts external circuits. During timing,
state T, of machine cycle M,, the control unit sets the 10/M signal to indicate that
this is a memory operation. Also, the control unit causes the contents of the PC to
be placed on the address bus (A5 through Ag) and the address/data bus (AD,
through ADy). With the falling edge of the ALE pulse, the other modules on the
bus siare the address.
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We have discussed the control unit in terms of its inputs, output, and functions, W
now turn to the topic of control unit implementation. A wide variety of techniques
have been used. Most of these fall into one of two categornies:

« Hardwired implementation

« Microprogrammed implementation

In a hardwired implementation, the control unit is essentially a combinatorial
circwt. lts input logic signals are transformed into a set of output logic signals, which
are the control signals. This approach is examined in this section. Microprogrammed
implementation is the subject of Chapter 17.

Control Unit Inputs

Figure 16.4 depicts the control unit as we have so far discussed it. The key inputs
are the instruction register, the clock, flags, and control bus signals. In the case of
the flags and control bus signals. each individual bit typically has some meaning
(e.g., overflow). The other two inputs, however, are not directly useful to the con-
trol unit.

First consider the instruction register, The control unit makes use of the opcode
and will perform different actions (issue a different combination of control signals)
for different instructions. To simplify the control unit logic, there should be a unique
logic input for each opcode. This function can be performed by a decoder, which
takes an encoded input and produces a single output. In general, a decoder will have
n binary inputs and 2" binary outputs. Each of the 2" different input patterns will
activate a single unique output. Table 163 is an example, The decoder for a control
unit will typically have to be more complex than that, to account for variable-length
opcodes. An example of the digital logic used to implement a decoder is presented in
Appendix A.

The clock portion of the control unit issues a repetitive sequence of pulses.
This is useful for measuring the duration of micro-operations. Essentially, the period
of the clock pulses must be long enough to allow the propagation of signals along
data paths and through processor circuitry. However, as we have seen, the control
unit emits different control signals at different time units within a single instruction
cycle. Thus, we would like a counter as input to the control unit, with a different con-

trol signal being used for T,, T,, and so forth. At the end of an instruction cycle, the
control unit must feed back to the counter to reinitialize it at T,.
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CHAPTER 18 7 PARALLEL PROCESSING

As computer technology has evolved, and as the cost of computer hardware has
dropped. computer designers have sought more and more opportunities for paral-
lefism, usually to enhance performance and. in some cases, to increase availability.
After an overview. this chapter looks at some of the most prominent approaches to
parallel organization. First, we examine svmmetric multiprocessors (SMPs), one of the
carliest and still the most common example of parallel organization. In an SMP organi-
sation. multiple processors share a common memory. This organization raises the issue
of cache coherence. to which a separate section is devoted. Then we describe clusters.
which consist of multiple independent computers organized in a cooperative fashion.
Next, the chapter examines multithreaded processors and chip multiprocessors.
Clusters have become increasinglv common to support workloads that are beyond the
capacity of a single SMP. Another approach to the use of multiple processors that we
examine is that of nonuniform memory access (NUMA) machines. The NUMA
approach is relativelv new and not vet proven in the. marketplace. but is often consid-
ered as an alternative to the SMP or cluster approach. Finally. this chapter looks at
hardware organizational approaches to vector computation. These approaches opfi-
mize the ALU for processing vectors or arrays of floating-point numbers. They are
common on the class of systems known as supercompuiters.
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a shared memory. Finally, with the MIMD, there are multiple control units, each feed-
ing a separate instruction stream to its own PU. The MIMD may be a shared-memory
multiprocessor (Figure 18.2¢) or a distributed-memory multicomputer (Figure 18.2d).

The design issues relating to SMPs, clusters. and NUMA s are complex. involv-
ing issues relating to physical organization, interconnection structures, interproces-
sor communication, operating system design, and application software techniques.
Our concern here is primarily with organization, although we touch briefly on oper-

ating system design issues.
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3. All processors share access to 1/0O devices, either through the same chanpg|
through different channels that provide paths to the same device. o

4. All processors can perform the same functions (hence the term svametric)

5. The system is controlled by an integrated operating system that provide
interaction between processors and their programs at the job, task, file am;
data element levels. '
Points 1 to 4 should be self-explanatory. Point 5 illustrates one of the contrasis

with a loosely coupled multiprocessing system, such as a cluster. In the latter, the
physical unit of interaction is usually a message or complete file. In an SMP, individ-
ual data elements can constitute the level of interaction, and there can be a high

degree of cooperation between processes.
The operating system of an SMP schedules processes or threads across all of

the processors. An SMP organization has a number of potential advantages over 3
uniprocessor organization, including the following:
« Performance: If the work to be done by a computer can be organized so that

some portions of the work can be done in parallel. then a system with multiple
processors will vield greater performance than one with a single precessor of

the same type (Figure 18.3).

Time

rocess | ‘mzzz_fff/ff/ff/f/ff_.{_

T T T 7 7 7 7 T
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. Availability: In a symmetric multiprocessor, because all processors can per-
farm the same functions, the failure of a single processor docs not halt the
machine. Instead, the svstem can continue to function at reduced performance.

. Incremental growth: A user can enhance the performance of a system by
adding an additional processor.

= Scaling: Vendors can offer a rangc of products with different price and per-
formance characieristics based on the number of processors conbigured in
the system.

It isimpertant te note that these are potential, rather than guaranteed. benefits. The
pperating svstem must provide tools and functions to exploil the parallelism in an
SMP system .
Arn attractive feature of an SMP is that the existence of multiple processors 15
wransparent 1o the user. The operating system takes care of scheduling of threads or
processes an individual processors and of synchronizationamong processors.

Organization

Figure 184 depicts in general terms the organization of a n':u.{lipmn:ﬁ.::nr system.
There are two or more processors. Each processor is self-contained, including a
control unit, ALU, registers, and, typically, one or more levels of 2ache. Each processor

Interconnection
network

KX
o

Main memory

Fizne 184 Generic Block Diagram of a Tightly Coupled Multiproccssar
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has acvess waa shaned main memory and the 17O devices through some form ol inter-
connection mechamsm. The processors can communicate with cach other through
memory (messages and status information left in common data areas). It may also be
possible for processors Lo exchange signals directly. The memory is often organized so
that multiple simultancous accesses 10 separate blocks of memory are possible. In
some configurations, each processor may also have its own priviate main memory and
VO channels m addition 1o the shared resources.

The most common organization for personal computers, workstations. and
servers is the time-shared bus. The time-shared bus is the simplest mechanism for
constructing a multiprocessor system (Figure 18.5). The structure and interfaces are
basically the same as for a single-processor system that uses a bus interconnection.
The bus consists of control, address, and data lines. To facilitate DMA transfers from
/O processors, the following features are provided:

* Addressing: It must be possible 10 distinguish modules on the bus to deter-
mine the source and destination of data,

* Arbitration: Any I/O module can temporarily function as “master.” A mecha-

nism is provided 1o arbitrate competing requests for bus control, using some
sort of priority scheme.

Processor Processor rr
L1 cache . L1 cache
| L2 cache E | 'uuma
Shared bus
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+ Time sharing: When one module is controlling the bus, other modules are
tocked out and must, if necessary, suspend operation until bus access is achieved.

These uniprocessor features are directly usable in an SMP organization. In this
latter case, there are now multiple processors as well as multiple VO processors all
atfempling Lo gain access 10 one or more memory modules via the bus.

The bus organization has several attractive features:

« Simplicity: This is the simplest approach to multiprocessor organization. The
physical interface and the addressing, arbitration, and time-sharing logic of
each processor remain the same as in a single-processor system.

= Flexibility: It is generally easy 1o expand the system by attaching more proces-
sors (o the bus.

» Reliability: The bus is essentially a passive medium, and the failure of any
antached devige should not cause failure of the whole system.

The main drawback to the bus organization is performanee. All memory refer-
ences pass through the common bus Thus, the bus cycle time limits the speed of the
system. To improve performance, it is desirable to equip each processor with a cache
memory This should reduce the number of bus accesses dramatically. Typically,
workstation and PC SMPs have 1wo levels of cache, with the L1 cache internal
{same chip as the processor) and the L2 cache esther intérnal or external. Some
processors now employ a 1.3 cache as well.

The use of caches introduces some new design considerations, Because each
lecal cache contains an image of a partion of memory, if 4 word is altered in one
eache, it conld conceivably invalidate a2 word in another cache. To prevent this, the
other processors must be alerted that an update has taken place. This problem is
known as the cache coherence problem and is,_ljrpi?:‘auy addressed in hardware rather
than by the operating systemn. We address this issuc in Section 18.4.

Multiprocessor Operating System Design Considerations

An SMP operating system manages processor and other computer resources so that
the user perceives a single aperating system controlling system resources. In fact, such
a configuration should appear ss a single-processor multiprogramming, system. In
both the SMP and uniprocessor cases, multiple jobs or processes may be active at one
time, and it is the responsibility of the operating system to schedule their execution and
to allocate resources. A user may construct applications that use mulliple processes
or multiple threads within processes without regard to whether a single processor or
multiple processors will be available. Thus a multiprocessor operating system must
provide all the functionality of 2 multiprogramming system plus additional features 10
accommodate multiple processors Among the key design issues are the following:

« Simultaneous concurrent processes: OS routines need to be reentrant to allow
several processors 10 execute the same 1S code simultaneously. With multiple
processors executing the same or different parts of the OS5, OS tables and man-
agement structures must be managed praperly to avoid deadlock or invalid

operations.
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« Scheduling: Any processor may perform scheduling, so conflicts g

; 5 be
avoided, The scheduler must assign ready processes 10 available Processopg

* Synchromization: With multiple active processes having potentia access |,
shared address spaces or shared VO resources, care must be taken L0 provide
elfective synchronization. Synchronization is a facility that enfopee

; H i gy)
exclusion and event ordering.

* Memory management: Memory management on a multiprocessor mus diest] wig
all of the issues found on uniprocessor machines, as is discussed in Chapter g
In addition, the operating system needs to exploit the available hardwa,
parallelism, such as muhiported memories, (0 achieve the best performangce.
The paging mechanisms on different processors must be coordinated (o enfioree
consistency when several processors share a page or segment and to decide on
page replacemen.

* Reliability and fault 1olerance: The operating system should provide aracefyl
degradation in the face of processor lailure. The scheduler and other portions
of the operating system must recognize the loss of a processor and restrueyre
nanagement tables accordingly

A Mainframe SMP

Most PC and workstation SMPs use a bus interconnection strategy as depicted in
Figure 18.5. It is instructive 10 look at an alternative approach, which is used for a
recent implementation of the 1BM zSeries mainframe family [SIEG04, MAK04),
called the 2990. This family of systems spans a range from a uniprocessor with one
main memory card to g high-end sysiem with 48 processors and 8 memory cards,
The key components of the configuration are shown in Figure 18.6:

= Dual-core processor chip: Each processor chip includes two identical central
processors (CPs). The CP is a CISC superscalar microprocessor, in which
most of the instructions are hardwired and the rest are executed by vertical
microcode. Each CP includes a 256-KB 11 instruction cache and a 256-KB L1
data cache,

* L2 cache: Each L2 cache contains 32 MB, The L2 caches are arranged in clus-
ters of five, with each cluster supporting eight processor chips and providing
aceess to the entire main memory space.

* System control element (SCE): The SCE arbitrates system communication,
and has a central role in maintaining cache coherence.

* Main store control (MSC): The MSCs interconnect the L2 eaches and the
main memory.

* Memory card: Each card holds 32 GB aof memory. The maximum configurable
memory consists of 8 memory cards for a total of 256 GE, Memory cards
interconnect to the MSC via synchronous memory interfaces (SMis).

* Memory bus adapter (MBA): The MBA provides an interface 1o various types
of /O channels. Traffic to/from the channels goes directly to the L2 cache.
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The microprocessor i : : ompared with other
) : uncommon comp X 5
P rin the z990 is relatively < repcbions i

modern processors because, although it is superscalar, it executes 1 - eline
Strict architectural order. However, it makes up for this by having 2 shorler.pl:]?ﬂthter
and much larger caches and T1 Bs mmpére d with other processors, along wit

performance-enhane;

ng features. : unit
co -T}?e 2990 system corprises one 1o four books. Each book 1S plugg?-:leand a
s :tlammg WP 10 12 processors with up to 64 GB of memory, e adal;téE.wilhin
ysiem control element (SCE) that connects these other elements. The
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ciach book contmns a 32-MB L2 cache, which serves as the central coheren
for that particular book. Both the L2 eache and the main memary are accessible by
a processor or 1O adapier within that book or any of the other three books in the
sysiem. The SCE and L2 eache chips also connect
the other books in a ring configuration.

There are a several interesting features in the 2990 SMP configuration, which
we discuss in turn:

cy point

with corresponding clements on

= Switched inlcrconnection
= Shared L2 caches

Switched Interconnection A single shared bus is a common anmangement on
SMPs for PCs and workstations (Figure 18.5). With this arrangement, the single bus
becomes a bouleneck affecling the scalahility (ability to scale 10 larger sizes) of the
design. The 2990 copes with this problem in two ways. First, main memory is split into
multiple cards, each with its own storage controller that can handle memory accesses at
high speeds. The average tralfic load 1o main memory is cut, because of the indepen-
dent paths 10 separate parts of memory. Each book includes two memory cards, for a
total of eight cards across a maximum configuration. Second, the eonnection from
processors (actually from L2 caches) to a single memory card is not in the form of a
shared bus but rather point-to-point links. Each processor chip has a link 1o cach of the
L2 caches on the same book, and each L2 cache has a fink, via the MSC., to each of
the two memory cards on the same book. ;

Each L2 cache only connects to the two memory cards on the same book. The
system controller provides links (not shown) 10 the other books in the configura-
tion, so that all of main memory is accessible by all of the processars.

Point-to-point links rather than a bus also provides connections to O

channels. Each L2 cache on a book connects to cach of the MBAs for that baok,
The MBAs, in turn, connect to the 1/O channels.

Shared L2 Caches In a typical two-level cache scheme for an SMP, each proces-
sor has a dedicated L1 cache and a dedicated 1.2 cache. In recent years, interest in
the concept of a shared 1.2 cache has been growing. In an earlier version of its main-
frame SMPF, known as generation 3 (G3), IBM made use of dedicated L2 caches. In
its later versions (G4, G5, and z900 series), a shared L2 cache is used. Two consider-
ations dictated this change:

L. In moving from G3 to G4, IBM doubled the speed of the microprocessors.
If the G3 organization were relained, a significant increase in bus traffic
would occur. At the same time, il was desired to reuse as many G3 compo-
nents as possible. Without a significant bus upgrade, the BSNs would
become a bottleneck.

2. Analysis of typical mainframe workloads revealed a large degree of sharing of
instructions and data among processors.

These considerations led the G4 design team to consider the use of one or
more L2 caches, each of which was shared by multiple processors (each processor
having a dedicated on-chip L1 cache). At [irst glance, sharing an L2 cache migh



GHERENCEAND THE MESI PROTOCOL

In contemporary multiprocessor systems, it is customary to have one or two levels of
cache associated with cach processor. This organization is essential to achicve
reasonable performance. It does, however, create a problem known as the cache
colierence problem. The essence of the problem is this: Multiple copies of the same
data can exist in different caches simultaneously, and if processors are allowed to
updiate their own copies freely, an inconsistent view of memory can resull. In
Chapter 4 we defined two common write policies:

* Write back: Write operations are usually made only to the cache. Main memory
1s only updated when the corresponding cache line js flushed from the cache.

* Write through: All write operations are made to main memory as well as (o
the cache, ensuring that main memory is always valid.

It is clear that a write-back policy can result in incopsistency. If two caches con-
tain the same line, and the line is updated in one cache, the other cache will unknow-
ingly have an invalid value. Subsequent reads to that invalid line produce invalid
results. Even with the write-through pulj.g,r. inconsistency can occur unless other
caches monitor the memory traffic or receive some direct notification of the update.

In this section, we will briefly survey various approaches to the cache coher-
ence problem and then focus on the approach that is most widely uséd: the MESI
(modified/exclusive/shared/invalid) protocol. A version of this protocol is used on
both the Pentium 4 and PowerPC implementations.

For any cache coherence protocol, the objective is to let recently used local
variables get into the appropriate cache and stay there through numerous reads

and write, while using the protocol to maintain consistency of shared variables that
might be in multiple caches at the same time. Cache coherence approaches have
generally been divided into software and hardware approaches. Some implementa-
tions adopt a strategy that involves both software and hardware elements. Never-
theless, the classification into soltware and hardware approaches is still instructive
and is commonly used in surveying cache coherence stralegies.

Software Solutions

Software cache coherence schemes attempt to avoid the need for additional hard-
ware circuitry and logic by relying on the compiler _and operating system to deal
with the problem. Software approaches arc aitractive because the ?verhead of
detecting potential problems is transferred from run time to compile time, and the
design complexity is transferred from hardware to software. On the other hand,
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compile-time software approaches generally must make conservative d
leading to inetficient cache utilization. _

Compiler-based coherence mechanisms perform an analysis on the code g4
determine which data items may become unsafe for caching, and they mark those
iems accordingly. The operating system or hardware then prevents noncacheah),
items from being cached.

The simplest approach is to prevent any shared data variables from beip
cached. This is too conservative, because a shared data structure may be exclusivejy
used during some periods and may be effectively read-only during other periods, [y
is only during periods when at least one process may update the variable and at leasy
onc other process may access the variable that cache coherence is an issue.

More efficient approaches analyze the code to determine safe periods for
shared variables. The compiler then inserts instructions into the generated code g
cnforce cache coherence during the critical periods. A number of techniques haye
been developed for performing the analysis and for enforcing the results: see
[LILJ93] and [STENY0] for surveys.

ﬁ.’cihinml

Hardware Solutions

Hardware-based solutions are generally referred to as cache coherence protocols.
These solutions provide dynamic recognition at run time of potential Inconsistency
conditions. Because the problem is only dealt with when it actually arises, there is
more effective use of caches, leading to improved performance over a software
approach. In addition, these approaches are transparent to the programmer and the
compiler, reducing the software development burden.

Hardware schemes differ in a number of particulars, including where the state
information about data lines is held, how that information is organized, where coher-
ence is enforced, and the enforcement mechanisms, In general, hardware schemes
can be divided into two categories: directory protocols and snoopy protocols.

Directory Protocols Directory protocols collect and maintain information about
where copies of lines reside. Typically, there is a centralized controller that is part of
the main memory controller, and a directory that'is stored i main memory. The direc-
tory contains global state information about the contents of the various local caches.
When an individual cache controller makes a request, the centralized controller
checks and issues necessary commands for data transfer between memory and caches
or between caches. It is also responsible for keeping the state information up to date;
therefore, every local action that can affect the global state of a line must be reported
to the central controller.

Typically, the controller maintains information about which processors have a
copy of which lines, Before a Processor can write to a local copy of a line, it must
request exclusive access to the line from the controller. Before granting this exclu-
sive access, the controller sends a message 10 all processors with a cached copy of
this line, forcing each processor to invalidate its copy. After receiving acknowledg-
ments back from each such processor, the controller grants exclusive access to the
requesting processor. When another Processor tries io read a line that is exclusively
granted Lo another processor, it will send @ miss notification to the controller. The
controller then issues a command (o (e processor holding that line that requires the
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The most importan} measure of performance for a processor is the rate at which it
executes instructions. This can be expressed as Ll

MIPSrate = [ X IPC

where fis the processor clock frequency, in MHz, and /PC (instructions per cycle) is
the average number of instructions executed per cycle. Accordingly, designers have
pursued the goal of increased performance on two fronts: intreasing clock frequen-
cy and increasing the number of instructions executed or, more properly, the num-
ber of instructions that complete during a processor cycle. As we have seen in earlier
chapters, designers have increased IPC by using an instructién pipeline and then by
using multiple parallel instruction pipelines in a superscalar architecture. With
pipelined and multiple-pipeline designs, the principal problem is to maximize the
utilization of each pipeline stage. To improve, throughput, designers have created
ever more complex mechanisms, such as executing some instructions in a different
order from the way they occur in the instruction stream and beginning execution
of instructions that may never be needed. But as was discussed in Section 2.2,
this approach may be reaching a limit due to complexity and power consumption

concerns.
An alternative approach, which allows for a high degree of instruction-level

parallelism without increasing circuit complexity or power consumption, is called
multithreading. In essence, the instruction stream is divided into several smaller
streams, known as threads, such that the threads can be executed in parallel.

The variety of specific multithreading designs, realized in both commercial
systems and experimental systems, is vast. In this section, we give a brief survey of

the major concepts.

Implicit and Explicit Multithreading

The concept of thread used in discussing multithreaded processors may or may nol
be the same as the concept of software threads in a multiprogrammed operating sys-

tem. It will be useful to briefly define terms:

« Process: An instance of a program running on a compuler. A process embodies
two key characteristics:
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—Resonree awnership: A process includes a virtual address space to hold the
process image: the process image is the collection of program, data, stack,
and attribules that define the process. From time 1o time, a process may be
allocated control or ownership of resources, such as main memory,
14O channels, 11O devices, and files.

—Schedulingfexecution: The execution of a process follows an execution path
(trace) through one or more proprams. This excocution may be interleaved
with that of other processes. Thus, a process has an execution state (Run-
ning, Ready. eic.) and a dispaiching priority and is the entity that is sched-
uled and dispaiched by the operating system

Process swilch: An operation that swiiches the processor from one process (o

another, by saving all the process control data, registers. and other information

for the first and replacing them with the process information for the second.”

Thread: A dispatchable unit of work within a process. [t includes a -processor
context (which includes the program counter and stack pointer) and its own data
area for a stack (Lo enable subroutine branching). A thread execuies sequentially
and is interruprible so that the processor can turn to another thread.

Thread switch: The act of switching processor control from one thread to

another within the same process. Typically. this type of swilch is much less costly
than a process switch.

Thus, a thread is concerned with scheduling and execution, whereas a process
is concerned with both scheduling/execution and resource ownership. The multiple
threads within a process share the same resources. This is why a thread switch is
much less time consuming than a process switch. Traditionzl operating systems, such
as earlier versions of Unix, did not support threads. Most modern operating systems,
such as Linux, other versions of Unix, and Windows, do support threads A distine-
tion is made between userlevel threads, which are visible to the appheation pro-
oram, and kernel-level threads, which are visible only to the operating system. Both
of these may be referred to as explicit threads, defined in software.

Al of the commercial processors and most of the experimental processors 50
far have used explicit multithreading. These systems concurrently execule instruc-

tions from different explicit threads, either by interleaving instructions from different
threads on shared pipelines or by parallel execution on parallel pipelines Implicit
multithreading refers to the concurrent execution of multiple threads extracted I rom
a single sequential program. These implicit threads may be ::!eﬁned eil!:mr Slalncaﬂy
by the compiler or dynamically by the hardware. In the remainder of this section we
consider explicit multithreading.

Approaches to Explicit Multithreading

At minimum, a multithreaded processor must provide a separate program counter for
each thread of execution to be executed concurrently. The designs differ in the

M he term covadexs switch s often found in O3 literature and u:nhmgs. Unfortunately, although most of
the literature uses this term (o mean what & here caiben_:! a process switch, other sources use it 10 mean &
thread swizch, To avoid ambiguoty, the term is not used i this book,
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additional hardware used Lo support concurrent thread execution.
n a thread basis, The processor treals each
hniques for optimizing single-thread
perscalar techniques.
for greatly improved

amount and tvpe of
In general. snstruction fetching takes place o
thread separatcly and my use a number of tec
execution. including branch prediction, register renaming. and su
What is achieved 15 thread-level parallelism, which may provide
performance when marmied 10 instruction-leve] parallelism.

are four principal approaches to m ultithreading:

Broadly speaking. there

« Interleaved multithreading: This is also known as fine-grained multithreading.
The processor deals with 1wo or more thread contexts at a time, switching
from one thread 10 another at each clock cycle. If a thread is blocked because
of data dependencics of memory latencies, that thread is skipped and a ready
thread is executed.

« Blocked multithreading: This is also known as cosrse-grained multithreading.
The instructions of a thread are executed successively until an event oocurs
that may cause delay, such s a cache miss. This evogt induces a switch 10
another thread. This approach is effective on an in-order processor that would
stall the pipeline for a delay event such asa cache miss.

« Simultaneous multithreading (SMT): Instructions are simultaneously issued
from multiple threads to the execution units of a superscalar processor. This
combines the wide superscalar instruction issue capability with the use of mul-

tiple thread contexts.

« Chip multiprocessing: In th
chip and cach processor
approach is that the availab
depending on ever-increasin

is case. the entire processor is replicated on a single
handles separate threads/The advanlage of this
le logic area on a chip is used effectively without
g complexity in ‘F]pi.‘]:ine design. '

For the first two approaches. instructions from different threads are not exe-
cuted simultaneously. Instead. the processor is able to rapidly swiich from one
thread to another, using a different set of registers and other context information.
This results in a better utilization of the processor’s execution resources and avoids
a large penalty due to cache misses and other latency events The SMT approach
involves true simultaneous execution of instructions from different threads, using
replicated execution resources. Chip multiprocessing also enables simultangcous
execution of instructions from different threads.

Figure 18.8, based on one in [UNGEQ2|, illustrates some of the possible pipeline
architectures that involve multithreading and contrasts these with approaches that do
no use multithreading. Each harizontal row represents the potential issue slot or slots
for a single execution cycle: thal is. the width of each row corresponds to the maximum
number of instructions thai can be issued in a single clock cycle.® The vertical dimen-
sion represents the time sequence of clock cycles An empty ( shaded) slot represents

an unused execution slot in one pipeline. A no-op is indicated by N.

s can be issued in a given clock cycle. Hecall from
wnitiating insiruction cxecution in the processor’s
e from the decode stage of the pipeline to the

3ssuc slots are the position from which instruction
Chapter 14 that instruction issue is the process of
[unctional wnits. This occurs when an mstyuction mev
first execule stage of (he pipcline.
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The tirst three illustrations in Figure 188 show diffe L
B s ren

scalar (Le..single-issue) processgr: approaches with 4

* Single-threaded scalar: This s i |
- scalar: 5 the sim ne i iti
and CISC machines, i - mumthmﬁfﬂgpchm found in traditional RISC

* Interleaved multithreaded scal

implement. By switching from one
nple ne thread to another at each o
; : : | ock e, the
m-::th ::. :ﬁﬂg:g]zanfhc !\Ep{ fully occupied, or close 1o ully occupied. The Eﬁd w::z 1
ey d P . Ot switching from one thread context to another between cycles,
ocked multithreaded scalar: In this case, a single thread is executed until 4

d I'IC}' rs th WL me I.J'e |0CES‘|.( T
F te event o H1 “'Guld E108] l]l

Figure 18.8¢c shows a situation ; ' x '
1 n which the time to perform a thread switch is ;
T;?h:;}rzlm ‘wrﬁrcas Figure IE.E_b shows that thread switching occurs in zero cyclel-; &
A ase .I; m}e.leavcd multithreading, it is assumed that there are no control or =
pendencies between threads, which simplifies the pipeline design and the S
fore should'allow a thread switch with e b
ook : 1 switch with no delay. However, depending on the specific
esign and m'lplemt_entatmn, block multithreading may require a clock cycle to
]:ferfun_n a thread switch, as illustrated in Figure 18.8. This is true if a fetched instruc-
tion triggers the: thread switch and must be disca’:de&vémm the pipeline [UNGED3].
Although inte rleaved multithreading appears to offer better processor utilization
than b!c}c‘ked multithreading, it does so at the sacrifice of single-thread performance.
The multiple threads compete for cache resources, which raises the probability of a
cache miss for a given thread. £ -
More opportunities for parallel execution are available if the Processor can
issue multiple instructions per cycle. Figures 18.8d through 18.8i illustrate a number
of variations among processors that have hardware for issuing four instructions per
cycle. In all these cases, only instructions from a single thread are issued in a single
cycle. The following alternatives are illustrated:

* Superscalar: This is the basic superscalar approach with no multithreading.
Until relatively recently, this was the most powerful approach to providing 2
parallelism within a processor. Note that during some cycles, not all of the - 53]
available issue slots are used. During these cycles, less than the maximum
number of instructions is issued; this is referred to as horizonial loss. During
other instruction cycles, no issue slots are used; these are cycles when na
instructions can be issued; this is referred to as vertical loss.

¢ Interleaved multithreading superscalar: During each cycle, as many instructions
as possible are issued from a single thread. With this technique, potential delays
due to thread switches are eliminated, as previoushy discussed. However, the
number of instructions issued in any given cycle is still limited by dependencies
that exist within any given thread.

« Blocked multithreaded superscalar: Again. instructions from only one thread -
may be issued during any cycle, and blocked multithreading is used.

* Very long instruction word (VLIW): A VLIW architecture, such as 1A-64, places
multiple instructions in a single word. Typically, a VLIW is constructed by the
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compiler, which places operations that may be executed in parallel in the same
word. In a simple VLIW machine (Figure 18.8g).11 il 1s not possihle 10 completely
fill the word with instructions 1o be issued in parallel. no-0ps are used.

* Interleaved muhtithreading VLIW: This approach should provide similar efficiencies
1o those provided by interleaved multithreading on a superscalar architecture.

« Blocked multithreaded VLIW: This approach should provide similar efficiencies
to those provided by blocked multithreading on a superscalar archiiecture.

The final two approaches illustrated in Figure 18.8 enable the parallel, simul-
taneous execulion of muluple threads:

« Simultancous multithrending: Figure 18.8i shows a system capable of issuing
8 instructions at a time 1f one thread has a high degree of instruction-level
parallelism, it may on some cycles be able fill all of the horizontal slats. On
other cycles, instructions from two or more threads may be issued. If sufficient
threads are active, it should usually be possible to issue the maximum number
of instructions on each cycle, providing a high level of efficiency.

» Chip multiprocessor: Figure 18.8k shows a chip containing four processors,
each of which has a two-issue superscalar processor. Each processor is assigned
a thread, from which it can issue up to two instructions per cycle.

Comparing Figures 18.8j and 18.8k, we see that a chip multiprocessor with the
same instruction issue capability as an SMT cannot achieve the same degree of
instruction-level parallelism. This is because the chip multiprocessor is not able to
hide latencies by issuing instructions from other threads. On the other hand, the
chip multiprocessor should outperform a superscalar processor with the same
instruction issue capability, because the horizontal losses will be greater for the
superscalar processor. In addition, it is possible to use multithreading within cach
of the processors on a chip multiprocessor, and this is done on some contemporary

machines.

Example Systeimms

Pentiuim 4 More recent models of the Pentium 4 use a multithreading technique that
the Intel literature refers to as hyperthreading [MARRO2]. In essence, the Pentium 4
approach is to use SMT with support for two threads. Thus, the single multithreaded

processor is logically two processors.

IBM Power5 The IBM Power$ chip, which is used in high-end PowerPC products,
combines chip multiprocessing with SMT [KALLO4]. The chip has two separate
processors, each of which is a multithreaded processor capable of supporting two
threads concurrently using SMT. Interestingly, the designers simulated various
alternatives and found that having two two-way SMT processors on a single chip
provided superior performance to a single four-way SMT processor. The simulations
showed that additional multithreading beyond the support for two threads might
decrease performance because of cache thrashing, as data from one th read displaces
data needed by another thread.
Figure 18.9 shows the Power5’s instruction flow diagram. Only a few of the
elements in the processor need to be replicated, with separate elements dedicated 1o
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Single memory space: Distributed shared memory enables programs (o

share variables.
Single job-management system: Under a cluster job scheduler, a user can sub-
milt a job without specifying the host computer 1o execute the job.

Single user interface: A common graphic interface supports all users, regardless
of the workstation from which they enter the cluster.

Single 1/O space: Any node can remotely access any /O pernipheral or disk
device without knowledge of its physical location.

Single process space: A uniform process-identification scheme is used. A process
on any node can create or communicate with any other process on a remote node.

Checkpointing: This function periodically saves the process state and interme-
diate computing results, to allow rollback recovery after a failure.
Process migration: This function enables load balancing.

The last four items on the preceding list enhance the availability of the cluster

The remaining items are concerned with providing a single system image.
Returning to Figure 18.11, a cluster will also include software tools for enabling

the efficient execution of programs that are capable of parallel execution

Clusters Compared to SMP
Both clusters and symmetric multiprocessors provide a configuration with multiple
processors to support high-demand applications. Both solutions are commercially

available, a![}mugh SMP schemes have been around far longer.
The main strength of the SMP approach is that an SMP is easier to manage

and configure than a cluster. The SMP is much closer to the original single-processor
model for which nearly all applications are written. The principal change required in
going from a uniprocessor to an SMP is to the scheduler function. Another benefit
of the SMP is that it usually takes up less physical space and draws less power than
a comparable cluster. A final important benefit is that the SMP products are well

established and stable.
Over the long run, however, the advantages of the cluster approach are likely to

result in clusters dominating the high-performance server market. Clusters are far
Sup-ermr to SMPs in terms of incremental and absolute scalability. Clusters are also

superior in terms of availability, because all components of the system can readily be

made highly redundant.
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» Uniform mcmory sccess (UMA): All processors have access 1o all parts of
main memory using loads and stores, The memory Access time ol a processor
to all regions of memory is the same. The access times expericneed by different
processors are the same, The SMT organization discussed in Sections 18,2 and
1831 UMAL

» Nonuniform memory access (NUMA): All processors have access (o all paris
of main memory using loads and stores. The memory access time of a proces-
sor differs depending on which region of main memary i accesscd. The last
statement is true for all processors; however, for different processors, which
memory fegions are slower and which are faster differ.

+ Cache-coherent NUMA (CC-NUMA): A NUMA system in which cache
coherence is maintained among the caches of the various processors.

A NUMA system without cache coherence is more or less equivalent to a clus-
ter. The commercial products that have received mych attention recently are
CC-NLIMA systems, which are quite distinct from both SMPs and clusters. Usually,
but unfortunately not always, such sysiems are in fact referred to in the commercial
literature as CC-NUMA systems This section is concerned only with CC-NUMA
syslems.

Motivation *

With an SMP system, there is a practical imit to the number of processors that can be
used. An effective cache scheme reduces the bus ralfif between any one processor
and mein memory. As the number of processors increases, this bus iraffic also
increases. Also, the bus is used to exchange cache-coherence signals, further adding
to the burden. At some point, Lhe bus becorftes a performance, bottleneck. Perfor-
manee degradation seems to limit the number of processors in an SMF configuration
to somewhere between 16 and 64 processors. For example, Silicon Graphics® Power
Challenge SMP is limited to 64 R10000 processors in a single system; beyond this
number performance degrades substantially.

The processor limit in an SMP s one of the driving motivations behind the
development of cluster systems. However, with a cluster, each node has its own privaie
main memory; applications do not see a large global memory. [n effect, coherency
is maintained in software rather than hardware. This memory granularity affects

performance and, to achieve maximum performance, software must be tailored to this
environment. One approach to achieving large-scale multiprocessing while retaining
the flavor of SMP is NUMA. For exanple, the Silicon Graphics Origin NUMA system
is designed [0 support up to 1024 MIPS R10000 processors [WHIT?7] and the Sequent
NUMA-O system is designed to support up to 252 Pentium II processors [LOVE96].

The objective with NUMA is to maintain a transparent system wide memory
while permitting multiple multiprecessor nodes, each with its own bus or other
internal interconnect system,

Drganizatiﬂn

Figure 18.12 depicts a typical CC-NUMA organization. There are multiple indepen-
dent nodes, ach of which is, in effect, an SMP crganization. Thus, each node contains
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- qultiple processors, each with jis own L1 and L2 cachps ,
i j R 3 es, plus my; . .
+< the basic huflc!mg ;ﬂgc!\ of the overaj CC-NUMA ‘-"ngniz::~1ln r;'-ﬂmrj..-fht node
«ilicon Graphics Origin node includes two MIPS R1 Pmi:c:;s ?Sr Exal;:i-‘rh:. each
Ors; eae Sequent

NUMA-Q node includes rour Pemium IT processors, The nodes are in
by means of some communicatjone facility, which coujg B it 1 Iermnnleclcd
ring. or some other networking facility, itching mechanism, 4

Each node in the CC-NUM
point of view C'F the processors, hﬂweverﬁ there is on)
with each location having a unique system wide ad

a memory access, if the requested memory location is not in tha PIGEASSOrs cacho

then the L-? cache initiates a fetch operation. If the desired lipe is in the local j
of the mam meniory, the line is fetched across the local bus. If the desimd'linz 1?;'7;:0:
remote portion of the main memory, then an automatic request is sent out m]fctnch
that line across tht interconnectign network, deliver it to the Jocal bus, and then
deliver it 1o the requesting cache on that bus, All of this adtivity is automatic and
transparent 10 the processor and its cache, -
_ In this configuration, cache coherence is 4 central concern. Although implemen-
tations differ as to details, in general terms we can say that each node must maintain
some sort of directory that gives it an indication of the location of various portions of
memory and also cache status inform ation. To see how this ssheme works, we give an
example taken from [PFI$98]. Suppose that processor 3 on node 2 (P2-3) requests a
memory location 798, which isin the memory of node 1. The following sequence occurs:

I. P2-3 issues a read request on the snoopy bus of node 2 for location 798.
2. The directory on node 2 sees the request and recognizes that the location is in

-y — - -
[SEsy ~=lln|u!! Ik

node 1. & =
3. Node 2’s directory sends a request to node 1, whichis picked up by node 1's
directdry.

4. Node 1's directory, acting as a surrogate of P2-3, requests the contents of 798, as if
it were a processor.

5. Node I's main memory responds by putting the requested data on the bus,

6. Node 1's directory picks up the data from the bus. )

7. The value is transferred back to node 2's directory.

8. Node 2’s directory places the data back on node 2’s bus, acting as a surrogate for
- the memory that originally held it.

Y. The value is picked up and placed in P2-3's cache and delivered to .FZ‘B‘

The preceding sequence explains how data are read from a remote memory
using hardware mechanisms that make the transaction transparent to the proces-
sor. On top of these mechanisms, some form of cache coherence protocol is
needed. Various systems differ on exactly how this is done. We make only a few
general remarks here. First, as part of the preceding sequence, node 17 directory
keeps a record that some remote cache has a copy of the line containing location
798. Then, there needs to be a cooperative protocol to take care of modifications,
For example, if a modification is done in a cache, this fact can be broadcast to other
nodes. Each node’s directory that receives such a broadcast can then determine if
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any loeal

cache has that lipe i i
i ne and, if so, cause it 10 he purged. If the actual memory

15 at the nod ivi i

tory nceds 1o main ta'e Tectiving !h‘:'lbfff"d':ﬂﬂ notification, then that node’s direc-

remains so umtj] ' an entry indicating that that line of memory is invalid and
a wrile back occurs, If another Processor (local or remote)

Tequests the invalid line, th i
-then the local directory must force a wrife
memory before providing the daia. ! et

NUMA Pros and Cons

E:E;:f;? ha;j‘l;lﬁt?gt ;Jf ﬂfCC-NUI?.&A system 15 tha_L it ean du]iwler elfective perfor-
chisnges Wiﬁ] = ﬁ;":] » ﬁd’“muehﬁm than SMF, without re q_uir?nlg major software
el i oo ultiple NUMA nodes, the bus traffic on any individual node is lim-
and that the bus can handle. However, if many of the memaory
Accesses are 1o remote nodes, performance begins to break down. There is reason
to believe that this performance breakdown can be avoided. First, the use of L1
and L2.caches is designed 1o minimize all memory accesses, including remote
ones. If much of the software has good temporal locality, then remote memory
accesses should not be excessive. Second, if the software has good spatial locality,
and if virtual memory is in use, then the data needed for an application will reside
on a limited number of frequently used pages that can be initially loaded into the
memory local to the running application. The Sequent designers repott that such
spatial locality does appear in representative applications [LOVE96]. Finally, the
virtual memory scheme can be enhanced by including in the operating system a
page migration mechanism that will move a virtual memory page to a node that is
frequently using it; the Silicon Graphics designers report success with this
_approach [WHIT97].

There are disadvantages to the CC-NUMA approach as well. Two in particular are
discussed in detail in [PFIS98]. First, a CC-NUMA does not transparently look like an
SMP; software changes will be required to move an operating system and applications
from an SMP to a CC-NUMA system. These include page allocation, already mentioned,

: progess allocation, and load balancing by the operating system. A secqnd CONCerm 15 that
of availability. This is a rather complex issue an‘d depends on the exact implementation of
the CC-NUMA system; the interested reader is referred to [PFIS98].

18.7. VECTOR COMPUTATION

serformance of mainframe general-purpose compulers continues to
ﬁ;ﬁiﬁ?:ﬂ;gﬂsm there continue to be applications that are beyond m; react}:cci
the contemporary mainframe. There is a need‘ for_c::-.m?utexts 10 r;qlve mat‘:1&':“:1';':1ni =
problems of physical processes, suc;: as occur in disciplines mcllu ing aerody ,
- olopy, meteorology, and atomic, nucieaer and plasma physms: . ;
BRI DR lly, these problems are characterized by the need for high precision and a
pmg,:,};plfifat}r}epgmwe]y performs floating-point arithmetic operations on large

1 known as
these problems fall into the category X
IT. { numbers. Most of , into
arrays © feld simu lation. In essence, a physical situation can be described byfa
cﬂ!}ﬂﬂuﬂﬂﬁ’ gion in three dimensions (e.g., the flow of air adjacent to the surface of a
surface ur re
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rocket). This surface is approximated by a grid of points. A set of differential equa-
tions defines the physical behavior of the surface at each point. The equations are
represented as an array of values and coefficients, and the solution involves repeated
arithmetic operations on the arrays of data.

Supercomputers were developed to handle these types of problems. These
machines are typically capable of hundreds of millions of floating-point operations
per second and cost in the 10- to 15-million-dollar range. In contrast to mainframes,
which are designed for multiprogramming and intensive I/O, the supercomputer is
optimized for the type of numerical calculation just described.

The supercomputer has limited use and, because of its price 1ag, a limited mar-
ket. Comparatively few of these machines are operational, mostly at research cen-
ters and some government agencies with scientific or engineering functions. As with
other areas of computer technology, there is a constant demand to increase the per-
formance of the Supercomputer. Thus, the technology and performance of the
supercomputer continues to evolve.

There is another type of system that has been demgned to address the
need for vector computation, referred to as the array processor. Although a super-
computer is optimized for vector computation, it is a general-purpose computer,
capable of handling scalar processing and general data_processing tasks. Array
processors do not include scalar processing; they are C'Einﬁgured as peripheral
devices by both mainframe and minicomputer users to run the vectorized portions

-

of programs, ..

Approaches to Vector Co:nputaﬁon

The key to the design of a supercomputej,_r/or*array processor is to recognize
that the main task is to perform arithmetic operations on arrays or vectors of
floating-point numbers. In a general-purpose computer, this will require itera-
tion through each element of the array. For example, consider two vectors (one-
dimensional arrays) of numbers, A and B. We would like to add these and place
the result in C. In the example of Figure 18.13, this requires six separate addi-
tions. How could we spced up this computation? The answer is to introduce
some form of parallelism.

Several approaches have been taken to achieving parallelism in vector com-
putation. We illustrate this "‘vith an example. Consider the vector multiplication

R FeaTgll

S B ¥
] A

Figure 18.13  Example of Vector Addition
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1 % B, where A, B, and C are N X N matrices. The formula for ey »

C
ment of Cis

N
= Eu,-_,; x by
iml

where A, B, and C have clements a;; b,; and c;; respectively. Figure 18,
shows a FORTRAN program for this computation that can be run on an o
nary scalar processor.

One approach to Impmving performance can be referred to as vecior proce;
ing. This assumes that it is possible to operate on a one-dimensional vector of dat
Figure 18.14b is a FORTRAN program with a new form of instruction that alloy

vector computation to be spemfled The notation (J = 1, N) indicates that oper,
tions on all indices J in the given interval are to be carried out as a single operatio)

How this can be achieved is addressed shortly.
The program in Figure 18.14b indicates that all the elements of the ith ro

are to be computed in parallel, Each element in the row is a summation, and th

© DOI00I=1N |
DO 100 ==1 N _
S
DO 100K = 1, bi il - i
ca, n= C(LJ) + AQL, K) + B(K .r) G
100 CONTINUE S teign)
(a) Scalar processing
TR T00T 21, N (s e e loh _
'I C(I J}hUOU ] N)
DO le = 1 N
100/ CONTINUE' el A
' (b) Vector processing

DQSUJ=!.N—-I

FORK 100 : ,‘,, A i s
50 CON’IINUE
na g N e Shes 8 5 i
100 pozm1=1.n A el e
PP O e TR

DO K = AN e R

e, ) = o, .l) + AL RYF B(K, J) Al

200 CONTINUE A i ids]
(c) Parallel processing

Figure 18,14 Marrix Multiplication (C = A X B)
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Jcross K) are done serially rather tlhan in paralle). Even so. only N2
iwch ele. ot "'E;f'jcaiions are R‘Q‘:”ﬁ':! Lﬁf this algorithm as COmpared with N3 scalar
o0 s lor e sAler g, :
. iplication approach, parallel Pprocessing, is illustrateq in Figure i8 14c. This
il hnglhrfr F;s that we have N independent Processors tha; can function i
oroach ﬂﬁ-“f{?;c processors effectively. we must Somehow parce] gy the compy.
18.145 i fi.T.:ﬁ:T\!mmuS processors. Two primitives are used. The primitive FORK .
1ordi. gonto! dependent process 1o be started at location .1y the meantime, the

LR

N 675

quses A1 ”L'c'iS continues execution at the instruction immedia:e[y following (he
‘Ocess. _.,|5lnf1! PT,gr.r.hgxeC”‘m" of a FORK spawns a new Process. The JOIN Instruction
fdata, RK- E‘” " the inverse of the FORK. The statement JOIN N causes NV inde-
llows  ; gssenttally ses to be merged into one that continues execution at the instrue-

es
'pera- ;»;:I-:n]f EF;; the JOIN. The operating system must coordinate thjs merger, and so
ation. Ti:ﬂ“'”” does not continue until all N Processes have reacheg the JOIN

he € : - .

:j'r[c;:: ;.«rru';‘][::’ :mgram in Figure 18.14c is writte'n to mimic the behavior of the vector-
qocessing programt. In the parallel processing Program, each column of s com-
uted by a separate process. Thus, the elements in a given row of C are computed
ﬂPQIaI]EJ. : ) ) .

The preceding discussion describes dpproaches to vector cdmputation in logical
rarchitectural terms. Let us turn now to a consideration of types of processor Organi-
stion that can be used to implement these approaches. A wide variety of organizations
ave been and are being pursued. Three main categories stand ouf:

* Pipelined ALU
* Paralle] ALUs ~
* Parallel processors

assed pipelining in Chapter 12. Here the con cept is extended to the operation of the
ALU Because floatin g-point operations are rather complex, there is opportunity for
“omposing g ff oa:ing—poim Operation into stages, so that different stages can oper-
" on different sets of data concurrently. This is illustrated in Figure 18.16a. Floati ng-
nt addition js broken up into four stages (see Figure 9.22): compare, shift, add, and
Malize. A vector of numbers js presented sequentially 1o the first stage. As the
Pocessing Proceeds, four different sets of numbers will be operated on concurrently
ihe pipeine.

It shouid be clear that this organization is suitable for vector processing. To
““this, consider the instruction pipelining described in Chapter 12. The processor
Im through 4 Tepetitive cycle of fetching and processing instructions. In the
.FE”“. of branches, the processor is continuously fetching instrucm_ms‘ from
doeMtial locations, Consequently, the pipeline is kept full and a savings in time s
ru;:vw‘ Sim_"iﬂrf}', 4 pipelined ALU will save t@e only_ ifitis fedla stream ofda:
1 *quentia] locations, A single, isolated floating-point operation is not SpeE
e Y2 pipeline. The speedup is achieved when a vector of operands Iﬁlpfh‘-"

'0 the ALU, The control unit cycles the data through the ALU until the

M o, i
fe Etlﬂr]g PIGCGSSECL
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| oot
registers Pipclined ALY

gl T T frsseesy |

Memory Qutput

regisier

el [ 1 4

12) Pipelined ALL

)
Amgit ALU
registers
1 ALL
l " L
o = ALU
‘Memory - Qutput
: register

(b) Parallel ALUs
Figure 18.15 Approaches to Vector Computation

The pipeline operation can be further enhanced if the vector elements are
available in registers rather than from main memory. This is in fact suggested by
Figure 18.15a. The elements of each vector operand are loaded as a block into a vec-
tor register, which is simply a large bank of identical registers. The result is also
placed in a vector register. Thus, most operations involve only the use of registers,
and only load and store operations and the beginning and end of a vector operation
require access (o memory.

The mochanism illustrated in Figure 18.16 could be referred to as pipelining
within an operation. That is, we have a single arithmetic operation (e.g,C = A + B)
that is to be applied 1o vector operands, and pipeliming allows multiple vector ele-
ments to be processed in parallel. This mechanism can be augmented with pipelining
across operations. In this latter case, there is a sequence of arithmetic vector opera-
tions, and instruction pipelining is used to speed up processing, One approach to this,
referred to as chaining, is found on the Cray supercomputers. The basic rule for chain-
ing is this: A vector operation may start as soon as the first element of the operand
vector(s) is available and the functional unit (c.g, add. subtract, multiply, divide) is
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{b) Four parallel ALUs
Figure 18.16  Pipelined Processing of Floating-Point Operations

free. Essentially, chaining causes results issuing from one functional unit to be fed
immediately into another functional unit and so on. If vector registers are used, inter-
mediate results do not have to be stored into memory and can be used even before the
vector operation that created them runs to completion.

For example, when computing C = (s X A) + B, where A, B, and C are vectors
and s is a scalar, the Cray may execute three instructions at once. Elements fetched for
a load immediately enter a pipelined multiplier, the products are sent to a pipelined 2
adder, and the sums are placed in a vector register as soon as the adder completes them: LA

L Vector load A — Vector Register (VR1) %R
2. Vector load B— VR2 gt
3. Vector multiply s x VR]1 — VR3 :';: :
4. Vector add VR3 + VR2 — VR4

3. Vectorstore —VR4—C
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Instructions 2 and 3 can be chained (pipelined) because they involye differey,
memory locations and registers. Instruction 4 needs the resulis of instruction, 2ang
3. but it can be chained with them as well. As soon as the first elements of vectop
registers 2 and 3 are available, the operation in instruction 4 can begin,

Another way 1o achieve veetor processing is by the use of multiple A] 1, ina
single processor, under the control of a single control unit. In this case, the conyrg
unit routes daia 10 ALUs so that they ean function in parallel. It is alsa possible 1
use pipelining on each of the parallel ALUS. This is illustrated in Figure 18.16b, The
example shows a case in which four ALUs operate in parallel.

As with pipelined organization. a parallel ALU organization is stitable fo,
vector processing. The control unit routes vector elemenis to ALUs in a round-robjp,
fashion until all elements are processed, This type of organization is‘more compley
than a single-ALU CPL.

Finally, vector processing can be achieved by using multiple paralle] Proces.
sors. In this case, it is necessary to break the task up inte multiple processes o he
execuled in parallel. This organization js effective oaly if the software and hargd.
ware for effective coordination of parallel processors is available,

We cin expand our taxonomy of Section 18.1 to reflect these new structures, ag
shown in Figure [8.17. Computer organizations can be distinguished by the pres-
ence of one or more control units, Multiple control units imply multiple Processars,
Following our previous discussion, if the multiple processors can function coopera-
tively on a given task, they are termed parallel processors,

The reader should be aware of some unfortunate terminology likely 1o be

refer to a paralle]l ALU, although, again, any of the three organizations is optimized
for the processing of arrays. To make matters worse, array processor usually refers to
an auxiliary processor attached to a general-purpase processor and used to perform
vector computation. An array processor may use cither the pipelined or. parallel

ALU approach.
Al present, the pipelined ALU organization dominates the marketplace.

Single conteol unir Multipte control unis

Uniprocessor Pipelined AL Parallel ALUs Multiprocessor Paralle] processon
Figure 1817 A Taxonomy of Computer Organizations
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woan extensaon of the Svstem 370 architecture and i compatible with 1. The veclar
Lacrhiny s mtegrated into the Svstem3M architecture in the lollowang wavs

* Pxisting System/370 instructions are used for all scalar operalions

* Anthmetic operations on individual vector elements produce exact Iy the same
result as do corresponding System/370 scalar instructions For example, one
design decision coneerned the definition of the result in a float ng-point DIVIDE
operation. Should the result be exact, as it is for scalur floating-poim division, or
should am approximation be allowed that would permit higher-speed implemen-
tation bul could sometimes introduce an error in one or more low-order it posi-
tons? The decision was made to uphold complete compatibility with the
System/370 architecture at the expense of a minar performance degradation.

Viector instructions are interruptible, and their execution can be resumed from
the point of interruption after appropriate action has been taken. in a manner
compatible with the Svstem/370) program-interruption scheme.

Anthmetic exceptions are the same as. or extensions of, exceptions for the
scalar arithmetic instructions of the System/370, and similar fix-up routines
can be used. To accommodate this, a vector mterruption index is emploved
that indicates the location in a vector register that is affected by an exception
(e.g., overflow), Thus, when execution of the vector instruction resumes, the
proper place in a vector register is accessed.

* Vector data reside in virtual storage. with page faults being handled in a stan-
dard manner.

This level of integration provides a number of benefits. Existing operating sys-
tems can support the vector facility with minor extensions, Existing apphcation pro-
grams, language compilers, and other software can he run unchanged. Software that
could take advantage of the vector facility can be modified as desired.

Registers A key issue in the design of a vector facility is whether operands are
located in registers or memory. The IBM organization is referred to as register-to-
register, because the vector operands, both input and output, can be staged in vee-
tor registers. This approach is also used on the Cray supercomputer. An alternative
approach. used on Control Data machines, is 1o obtain operands directly from
memory. The main disadvaniage of the use of vector registers is that the program-
mer or compiler musi take them into account for good performance. For example,
suppose that the length of the veetor registers is K and the length of the vectors to
be processed is N > K. In this case, a vector loop must be performed, in which the
operation is performed on A elements at a time and the loop is repeated N/K times,
The main advantage of the vector register approach is that the operation is decou-
pled from slower main memory and instead takes place primarily with registers.
The speedup that can be achieved using registers is demonstrated in Figure 18.19,
The FORTRAN routine multiplies vector A by vector B to produce vector C, where
each vector has a real part (AR, BR, CR) and an imaginary part (AL BL, C1). The 3090
can perform one main-storage access per processor, or clock. cvele (either read or
wrile): has registers that can sustain (wo accesses for reading and one for writing per
cvele; and produces one resuls per evele in its arithmetic unit. Let us assume the use of
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Figure 18,09 Alternative Programs for Vector Calculation

instructions that can specify two source operands and a result.’ Part a of the figure
shows that, with memory-to-memaory instructions. each iteration of the compuiation
requires a total of 18 cycies. With 4 pure register-to-regisicr architecture (part b), this
time is reduced to 12 cycles. Of course, with register-lo-register operation, the vector
guantities must be loaded into the vector registers prior 10 camputation and stored ia
memory afterward. For large vectors, (his fixed penalty is relauvely small. Figure 18.19¢
<hows that the ability to specify both storage and register operands in onc instruction
further teduces the time 1o 10 cycles per iteration. This latter ivpe of instruction is
included in the vector architecturc.”

P

siructions RS)

ture, the only thiee-operand instructions (repisicl and sierage 'n
¢ in memony. In pait a of the example. we assume the existene
¢ in main memory. This is donu for purpescs of
the vector zrchiteciure

‘Fon the 370/390 arcnited
SpECiky TWO operands in registers and on
0! three-operand instructions in which &l operands ar
comparsen and. in fact, such an ‘sstruction format couid hzve beed chosen ot
*Compound instructions. discussed subsequently. afford a further reduciion,
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F:Lun 18. 2(} illustrates the registers that are part of the IBM 3090 vector facil-
ity. There are v:-.lcen 32-bit vector registers. The vector registers can afso be coupled
to form eight ﬁ-r bit vector registers. Any register element can hcld-an integer or
floating-point v ‘aIue Thus, the vector registers may be used for 32 bit and 64-bit
integer values, and 32-bit and 64-bit ﬂ()dl]l‘lg -point values.

The archm_ctur._ specifies that each register contains from & to 512 scalar
elements. The chotee of actual ]eng,.n involves a design trade-off. Jhe time to do a vec-
lor operation copsists essentialiv of ¢ 'ql.. overhead for pipeline startup and régister fill
ing plus one cucie per vector elerment™hus the use of a large number of regjster
elements reduces the relative startup time fm;d computation. However, this efficiency
must be halanced weainst the fdded time ‘fequired for saving and sestoring vector
TCQISErs Oon & process switeh :md the practical cost and space limits. ThHese considera-
vons led to the use of 128 elements per register in the current 305, implementation.

Three additional registers are needed by the vecter facility The vector- mask
register contaims mask bits that may be usced 10 select which Llemcnl‘é in the vector



