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expressed in terms of the pasition or place values.

For example, the number 10523 is represented as

10523 = 1 x 10° + 0 x 10* + 5 x 10 + 2 x 10" + 3 x 10",

The digit (3) has the position value 10" and is the least significant digit (LSD).

The digit (1) has the place value 10" and is the most significant digit (MSD).

Similarly, the number 2564.397 can be expressed as

2564.397 =2 x 10°+ 5 x 102+ 6x 10' + 4x 10°+ 3x 107 + 9 x 107 + 7 x 107>,

That is the powers to the base 10 are numbered to the left of the decimal point starting with 0
and to the right of the decimal point starting with - 1.

Binary Number System

Ina binary system of representations the base (or radix) is 2. It uses only two numerals 0 and 1.
In a digital system there are only two possible states or conditions. For example, a situation may be
True or False, a switch close or open, a voltage signal High or Low etc. These states or conditions
are designated as 1 and 0 respectively. The binary digits 0 and | are termed as bits. Like the decimal
system, the hinary system also has a place or position value representation.

For example. the number 15 of decimal system is written in the binary system as 1111, since,
M = 1x2%+1x2%+1x2' +1x2°=15.
This can also be written as 1111, = 15,;, the subscript indicating the number system. In the

binary 1111, the bit I at the extreme lefl is the MSB (most significant bit) and the bit | at the extreme
right is the LSB.

Similarly, the binary 1011.011 is written in the decimal system as 11.375, since
1011011 = 1x2°+0x 274 1x2" 4 1%x2°4 0x 2 4 1x 224 1 x 270

1 1
8+0+2+I+O+E+§ =11-375

or 10]1.0112 = 11.37510

Thus, the place values of the bits in a binary number are given by ascending powers of 2 to the
left of binary point starting from 0 and to the right of binary point in the descending powers of 2

starting from - 1.
Conversion of Binary Number into Decimal Number
(A Conversion of integral binary numbers
ExampLe 1. Convert (1010), into its decimal equivalent,

1010=lx23+ﬂx2!+1x2'+0x20=8+0+2+0=l0
= (1010), = (10),,
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ExampLe 2. Convert (1011.0101), into its decimal equivalent.

101101001 =1 x 2%+ 1 x 2"+ 0x 22 4+ I1x 234+ 0x2 '+ 1x2240x23+1x2

= l+2+0+ﬂ+ﬂ+-l—+ﬂ+l

4 16
= 11.3125

Conversion of Decimal Number into Binary Number

(d Conversions of integral decimal numbers

The given decimal number is divided progressively by 2, until we get zero. The remainders
aken in the reverse order, give the binary number.

As an example let us convert the decimal 19 into its binary equivalent.

Successive divisions Remainders
2 |19 4
2 I » 1 | Top
2| 4 > 1
2 | 2 » 0
2 | 1 » 0
0 . ] Bottom

Reading the remainders from the bottom to the top, the binary equivalent of 19 is found t
e 10011, or

19,, = 10011,

ExampLe 3. Convert (25) 4 into binary number.

Remainders
2 |25 4
2 [12 - 1
2 | 6 » 0
2l > 0 | (25),,=(11001),
2|1 ]
0 > ]
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(i) Conversion of fractional-decimal numbers
The given decimal number is multiplied by 2 progressively. For each step that resultsina | in

the units place, transfer the 1 to the binary

record and repeat the process with the fractional number.

For each multiplication by 2 that results in a product less than unity. record a 0 in the binary number
and carry on the process. The last step is reached if the fractional part is zero or it is terminated when

the desired accuracy is attained. The carries are ta

the cquivalent binary.

ken in the forward (lop to bottom) direction to give

Let us convert 0.9125 into its binary equivalent.

0.9125 x 2

]

1.8250 = 0.8250 with a carry 1

0.8250 x 2 = 1.6500 = 0.6500 with a carry |

0.6500 x 2

1.3000 = 0.3000 with a carry 1

0.3000 x 2 = 0.6000 = 0.6000 with a carry 0

0.6000 x 2

1.2000 = 0.2000 with a carry 1

0.2000 x 2 = 0.4000 = 0.4000 with a carry 0
The process Is terminated here to get an approximale result, namely, representation of 0.9125

by six binary digits.

0.9125,, = 0.111010,

The point in front of the binary is referred to as the binary point.
To find the hinary equivalent of a decimal number like 35.625, we split the number into an
integer of 35 and a fraction of 0.625. Then the binary equivalent of each part is obtained separately

by methods discussed above.

First let us find out the binary equivalent of the integer part 35 by divide-by-two method

35:2=17+1
17+2 =8+1
8+2=4+0
4=2 =2+ﬂ
2+2=1+0
1+2=0+1

35,, = 100011,

remainder 1 Top
remainder 1 4
remainder 0

remainder 0

remainder 0

remainder 1

The binary equivalent of 0.625 is found by the multiply-by-two method,

0625x2 = 1.25
025x2 = 0.50
050x2 = 1.0
Taking the carrys from top to bottom
0.625,, = 101

35.625,, = 100011.101,

1+40.25 carry 1 Top
0+0.50 carry 0 \)
0+1 camry | Bottom

ExampLe 1. Convert (21.6),, into binary number.

Remalntk:rs
2 (21—
2 Lo >
2l s T
212 ¥ 1 | =10101
211 " 0
0 "
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0.6x2 Integer

——

M2x2 — 1
M4x2 — .,

carry @87-:2 JE
Do —_

(21.6),, = (10101.1001),
Binary Addition

The sum of two binary numbers is calculated by the same rules as in decimal, excepl that the
digits of the sum in any significant position can be only 0 or 1. Any “carry”™ abtained in a given

significant position is used by the pair of digits one significant position higher. Binary addition is
with the four rules ;

=.1001

-0 O

1. 0+0=0
2. 0+1=1
3. 1+0=1
4 1+ 1=10

2 (one-zero, not ten)
The last rule is often writtenas 1 + 1 = 0 witha carry of 1.

Example of addition of two binary numbers is shown below :

augend : 101101
addend : + 100111
sum : 1010100
Consider another example
1 0 1 1 (1)
+ 1 0 0 1 9)
1 0 1 0 0 (20)

Explanation. Addition is made column-wise.

Binary Subtraction

The four rules for binary subtraction are given below :

1. 0-0=0
2. 1-0 =1
3. 1-1 =20
4. 10-1 = 1.
The last rule indicates that when 1 is subtracted from 10, (= decimal 2), we get 1.
ExampLE 1.

minuend : 101101
subtrahend: - 100111
difference : 000110
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ExampLe 1. Let us subtract 1101, from 1010,.

1's Complement Method Conventional Method
1010 1010
+ 0010 (1's complement of 1101) - 1101
[(J1100 - 0011
T
No carry

Since there 1s no end-around carry (EAC) in this case, we write 1's complement of 1100 and
attach a minus sign to it. Thus

Final answer— -0011.
ExameLe 2. Consider the subtraction

1010 Minuend
- 1001 Subtrahend
I's complement of the subtrahend is 0110
1010 1010 0000
-1001 = + 0110 =+ 1
10000 0001
T
carry
1010
- 1001
0001
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(8 2's complement. The 2's com
complement.

Subtraction by 2's complement
() Find the 2's complement of the subtrahend.
(#) Add this complement to the minuend.
(7ii) Drop the carry in the last position.
(/) If the carry in the last position is 1, the result is positive.

(¥) 1M there is no I carry in the last position, determine the 2's complement of the resultl of
subtraction and attach a minus sign to it. Thus, the answer of subtraction is negative.
The following examples illustrate the procedure.

(9 Let us subtract 10001, from 10011,

plement of a binary number is obtained by adding 1 toiits 1's

2's Complement Method Conventional Method
10011 10011
+01111 (2's complement of 10001) - 10001
[1] 00010 00010
A
Drop the carry.

Therefore, final answer is : 00010.
(#) Let us subtract 1101, from 1010,.

1010 Minuend
- 1101 Subtrahend
2's complement of subtraction = 1's complement + 1 = 0010 + 1 = 0011

1010

+ 0011 (2's complement of 1101)
(] 1101

T

No carry

Thus, there is no 1 carry in the last position. Hence, we determine 2's complement of 1101
which is

0010 + 1 = 0011.
Afier attaching the minus sign, the final answer is — 0011,

Binary Multiplication
The following are the rules for binary multiplication.

() 0x0=0
(i) 0x1=0
(i) 1x0=0
(M Ixl=1

Binary multiplication Is carrled out as in decimal system.

Seanned with CamSeanner

Scanned with CamScanner



ExameLe 1. Multiply 10110 by 110.

10110 x 110 Verification
00000 22 x 6
10110 132
10110
10000100
~+ The result is 10000100.

Binary Division

Binary division is done as in decimal system.
ExampLE 2. Divide 1111 by 110.

10 Verification
110 | 1111 15 * 6 gives
110 2
11 B[EI5e
12
Ed
Quotient : 10 Quotient: 2
Remainder: 11 Remainder : 3

A%l Octal Number System

The radix or base of this svstem isR It nepcthaaioht nuimarale N 1 9 2 4 £ £ 7 Coae ameeste
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the second and so on. For example. in the hexadecimal system 10 (second digit followed by the first)

represents 16 in the decimal system. The position value for each digit is in ascending powers of 16
for integers and descending powers of 16 for fractions.

Examples of Hexadecimal to Decimal Conversion

() 3CBy=3x16°+12x16"'+8x16°
=768+ 192 + 8 = 968,

() E5FB; =14x16%+5%x 167+ 15x 16 + 8 x 16°
= 57344 + 1280 + 240 + 8 = 58,872,

BOOLEAN ALGEBRA
Boolean Algebra

The algebra of logic prominently used in the operation of computer devices is the algebra
developed by George Boole. Tt is a binary or two-valued logic, i.e.. it permits only two values or
states for its variables. These two states are ‘true’ and *false’ in logic but are represented by ‘on’ and
‘off”" states of electronic circuits.

The two variables of the Boolean algebra are usually represented by 0 and 1. Hence, every
variable is either a 0 or a 1. There are no negative or fractional numbers. Logically, we may write :

If X=0 then X=1

And if X=1 then X=z0.

Boolean algebra uses only three operations on its variables. These operations are:
() The OR addition represented by a + (plus) sign.

(in The AND multinlication represented by a x (cross). or a. (dot) sign.
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YRS Logic Expressions

NOT

The operation of an invertor (NOT circul) can be _
expressed with symbols as follows : If the input variable is A X=A
called A and the output variable is called X then X = A

This expression states that the outpul is the complement of Fig. 70.1
the input, so that if A= 0, then X'= 1, and if A= 1, then X'=0

(Fig. 70.1).
(h 0=1(HT=0
AND
The operation of a two-input AND gate can be expressed in -~ A } X AB
equation form as follows : If one input variable is A, the other §——
input variable is B, and the output variable is X_ then the Boolean
expression for this hasic gate function is X'= AB (Fig. 70.2). Fig.70.2

OR
The operation of a two-input OR gate can be expressed A
in equation form as follows : If one input is A, the other inpult g :D_ X=A+8
is B, and the output is X. then the Boolean expression is X'= A
+ B (Fig. 70.3). Fig.70.3

vl Commutative Laws

(7 The commutative law of addition for two variables is writlen algebraically as
A+ B= B+ A
Thic <tatec that the arder in which the variables are ORed makes no difference.
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This law states that ORing several variables and ANDing the result with a single variable is equivalen
several variables and then ORing the products.

0 ANDing the single variable with each of the

Rules for Boolean Algebra

Table 70.1 lists Basic rules of Boolean algebra.
Table 70.1

0 N & ;oW

12,
le ORed wit), 5 0is equ

er rules are proyeq.
MOI’gan's Thenrnm.-

Rule 1, A variah
Similarly, (he oth

De

e -

A+0=4
A+1=1
A.0=0
A. 1=4
A+ A=4
A+4=)
A A=A
A A=0
A=4

A+ AB= 4
A+ZB=A+B

(4+B (A+

O=A4+ BC
al
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Truth 'l'ahle'

AD—W=A—CD—ZE A| B|A+B|AB
B B— 0| 0 1 1
0] 1 0 0

Fig. 70.6 11 0l 0O 0

111 0 0

LOGIC GATES

{1l Digital Logic Gates

A logic gale is an electronic circuit
which performs logic functions or takes a
logic decision. It has one output and one or
more inputs. Logic gates are the building
blocks of the digital systems. They work
on the logical algebra developed by
George Boole. The Boolean operations
namely ‘OR’ operation, ‘AND’ operation
and 'NOT" operation are implemented by
three logic gates called ‘OR’ gate, ‘AND’
gate and '"NOT" gate. Binary Number and Logic Gales.

7A*®A N The OR Gate

It implements Boolean ‘OR’ operation. An "OR’ gate has two (or) more inputs and one output.
An'OR’ gate is a logic gate whose owiput is *1” state if any or all the inputs are in ‘1" siate.

Fig. 70.7 (a) shows a two input OR gate using two ideal diodes D, and D,. Here A and B
represent the two inputs and Ythe output. £ represents the output load resistor. Fig. 70.7 (J) gives
the symbolic representation of the OR gate.

D,

Pt
D, 4
A Y=A+B
1. 1.

(a) (b)

0 <
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conduct. Since D, is conducting. current flows through R. Hence, there is an output voltage, ie.,
V=1

Case (ii). When A = 0; B= 1, the diode D, is forward biased and so it conducts. D, does not

conduct. Since D, is conducting, current flows through £ Hence, there is an output voltage, fe,

Y=1.
Case (7). When A= 1; B= 1. both the diodes D, and D, are Truth Table
forward biased Hence, both are conducting. So current flows through .
Rand there is an output vollage, ie., ¥=1. A| B|Y=A+8
The logic operation of the OR gate can be summarised inatabular | 0 | 0 0
form known as Truth Table. A truth table may be defined as a table 1 0 1
which gives the output state for all possible input combinations. ‘l] : :

(0P H The AND Gate

An “AND™ gate implements Boolcan ‘AND” operation. It has two or more inputs and one
output. An*AND' gate is a logic gate whose output is *1°, if and only if all the mputs are in ‘1’ state.

Fig. 70.8 (a) shows a nwo-input AND gate using rwo ideal diodes and Fig. 70.8 (b) gives its
symbolic representation. Here A and B represent the two Inputs and ¥ the output. £ represents the
output load resistor. The two input voltages are assumed to be either 0 or 1 V,

D|

€

D, Y
Ao— Y=A.B

A 8 R
Bo—
.7 L
1v
I y i T v
(a) (b)
Fig. 70.8
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yOWEN The NOT Gate

The NOT circuit has only one input and one output. It inveris the polarity of a pulse applied
to it. If the input is 1. the output is 0 and when the input is 0 the output is 1. That is, the NOT gate
inverts the input. A ‘“NOT’ gate using transistor is shown in Fig. 70.9 (a) and its symbol in Fig. 70.9
().

() When no signal s applied at the input, Ze., A= 0V, the transistor is cut OFF, making the
collector current zero. Thus, the potential drop across Ris zero. The supply voltage of V_appears at
the output terminal. Hence, the output ¥'= V.. Truth Table for NOT Gate

Thus, when input is low, output is high.

(/) When a positive pulse is applied to A fe, A = 1, the Inpui | Output
transistor conducts (fully ON) drawing maximum collector current. A Y=4
Hence, whole of V/_ drops across R and output V=0 V. Thus, when 0 1
input is high, the output is held at a low value. 1 0

The results are tabulated in the Truth table.

VCC
R

Y=A

i 8 LI'Y -
A Clnpul Bh sk \ Output
us

e

(a) (b)
Fig. 70.9

FLIP FLOPS
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voltage levels that are complementary. If Qis high
then @ is low and vice-versa. The output remains — Q
stable till it is changed by the input signal. The two  Input
outputstable conditionsare Q=1, Q@ =0,and 9=0, —*
Q= 1, and these are called states. Q= 1 is called -
the Set state or 1 state and Q= 0 is called the Reset N
state or 0 state. Odpiks

Flip-Flop
Circuit

Clock ————
AUZEN Master-Slave Flip-Flop Fig. 70.10

A master-slave flip-flop is constructed from
two separate flip-flops. One circuit serves as a
master and the other as a slave. Fig 70.11 shows S s s Q
the logic diagram of an RS master-slave flip-flop. |—> Master T Slave
It consists of a master flip-flop. a slave flip-flop, A R R
and an inverter.

When clock pulse CPis 0, the output of the CP [>o
Inverter is 1. Since the clock Input of the slave Is
1, the flip-flop is enabled and output @ is equal to Fig. 70.11
¥ while Q is equal to ¥ The master flip-flop is
disabled because CP= 0. When the pulse becomes 1. the information then at the external £ and S
inputs 1s transmitted to the master flip-flop The slave flip-flop, however, is isolated as long as the
pulse is at its 1 level, because the output of the inverter is 0. When the pulse returns to 0, the master
flip-Nop is isolated, which prevents the external inputs from affecting it. The slave flip-flop then
goces 10 the same state as the master flip-flop

=<|

ol

APl Master-Slave JK Flip-Flop

The circuit diagram 1s shown in Fig 70.12. The clocks to the Master and Slave flip-flops are
complementary to each other. It consists of two flip-flops. Gates 1 through 4 form the master flip-
flop. Gates 5 through 8 form the slave flip-flop. The information present at the Jand X inputs is
transmitted to the master flip-flop on the positive edge of a clock pulse. It 1s held there until the
negative edge of the clock pulse occurs, after which it is allowed to pass through to the slave flip-
flop. The clock input is normally 0, which keeps the outputs of gates 1 and 2 at the 1 level. This
prevents the Jand K inputs from affecting the master flip-flop

Master Slave

Ol

Fig. 70.12
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The slave flip-flop is a clocked RS type, with the master flip-flop supplying the inputs and
the clock input being inverted by gate 9. When the clock is 0, the output of gate 9 is 1. So, outpul
Q=Yand Q=Y.

When the positive edge of a clock pulse occurs, the master flip-flop is affected and may switch
states. The slave flip-flop is isolated as long as the clock is at the 1 level, because the output of gate
9 provides a | o both inputs of the NAND basic flip-flop of gates 7 and 8. When the clock input
returns to 0. the master flip-Aop is isolated from the Jand K'inputs and the slave flip-Mlop goes to the
same state as the master flip-flop.

y(1) ¥ Counters

In digital systems possibly the most widely used block Is a counter. Counter is an instrument
used for measuring time. A counter, which s driven by a clock can be used to count the number of
clock pulses. There are two types of counters :

(» Asynchronous (or) Binary ripple counters.

(i Synchronous counter (parallel counter).

In asynchronous counters. the clock pulses (CK) are applied to the first Flip-Flop and the output
of the first Flip-Flop is used as CK for the next Flip-Flop and so on In asynchronous counters, the
FFs are connected in series and each FF takes its own propagation time. So the net output occurs
only after the total propagation time. Hence, its speed is limited.

In synchronous counters (or parallel counters), the CKs are applied simultaneously to all the
FFs. So the net propagation time becomes less and hence its speed is increased.

y[ W1l The 7493 A Four-Bit Binary Counter

It is an integrated circuit asynchronous counter. The logic diagram is shown in Fig. 70.13. Pin
numbers are in parentheses, and all J-K inputs are internally connected HIGH.

(1)
CLKB
J i J ] J B J B
(14)
CLKA —C>C >C |e—g>C e—g>C
K K K K
A R R A
2
o3 I I i
o) &) >0 o &
CLR (12) (9) (8) (1)
a,q oa Oc O.D
(LSB) (MSB)
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EXERCISE

re

o ¥ o

o ® N

10.
11,
12,
13.
14.

Sol.

15.

What is binary number system? How does It differ from decimal number system? Why Is the binary
number system used in computers?

What are binary numbers? Explain with illustrations the methods of conversion from decimal to binary
and binary to decimal numbers.

Write four basic rules for adding binary digits. Give the truth table for binary addition.
State the rules for binary subtraction. Explain 1's complement and 2°s complement method with examples.
What are octal and hexadecimal number systems?

What is Boolean algebra? Mention its unique feature. Discuss the fundamental laws of Boolean alge-
bra. [Karmatak Universiry, Dharwad. Oct. 93]

Write and explain the Boolean expressions for OR, AND and NOT circuils.
State and prove De Morgan's theorems.
(a) Draw logic symbols and truth tables of AND, OR, NOT logic gates. Explain its operation for two-
input condition.
(&) Draw the circuits of two-input AND, OR gates. Explain these two circuits. [April 95, KUD]
Explain the operation of a NOT circuit. Give its truth table and logic symbol.
[Discuss the operation of a JK master-slave flip-flop wath necessary circunt
Explain the operation of a “Four Bit Binary Counter™,
Define a register What is a shift register” Explain the operation of a Serial in-Serial out shift register
Solve the Boolean expression A'= A + Bfor the following inputs:
() A=0,B=0;(iA=1B=0;(ii A=1,B=1.
(A WhenA=0,8=0,X=0+0=0.
(i) WhenA=1,B=0X=1+0=1.
(i) WhenA=1,B=1X=1+1=1
Prove the following Boolean identities.
() AC+ ABC= AC
() A+AB=A+B
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Sel. (1 AC+ABC=ACII+&=AC('.‘I+B=I]

() A+AB=A1+7AB [Law (4)]
=Al+ B +AB [Law (2)]
=Al1+AB+ AB (Distributive law)
=A+B(A+3A) (commutative law and distributive law)
=A+B1 [Law (6)]
=A+ B

A+AB=4+ B,

16. Reduce AB+ABC+AB+ ABC using laws of Boolean algebra,
Sol. AB+ABC+AB+ ABC

= AB+AB+ ABC+ ABC [commutative law]
= B(A+ )+ AC(B+B) [Distributive law and commutative Law]
=B1+ACl [Law (6)]
=8+ AC |Law (4))

AB+ ABC+ AB+ ABC = B+ AC.
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HALF-ADDER AND FuLL
ADDER

71.1 | Half-Adder 71.2 | Full Adder
71.3 | Parallel Binary Adder

vAR N Half-Adder

A logic circuit that adds two bits producing a sum and a carry to be used in the next higher
position is called a half-adder.

Fig. 71.1 (a) shaws the circuit of a half-adder. It consists of an EXCLUSIVE OR gate and an
AND gate. The output of the exclusive OR gate is called the SUM, while the output of the AND gate
is called the CARRY. Fig. 71.1 () shows the symbol of a half-adder.

Carry C=AB
B ]
% | ) o C(Carry)
BO /
SumS=A&8
O S (sum)
(a) Half Adder
AO O Carry
Half Adder
BO O Sum
(b)
Fia. 71.1
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The two inputs Aand Brepresent the bits to be added.

Sand Care the two outputs.

Srepresents the output of EXCLUSIVE OR gate.
Crepresents the CARRY bit. It is the output of AND gate.
With two inputs A and B, there are four distinct cases.

)

(1

(1)

v

When A=0and B=0,
Carry C= AB=0
SumS=A® B=0®0=0.
When A=0and B=1,
Carry C=AB=0.1=0
SumS=A@B=0®1=1.
When A=1and B=0,
Cary C=AB=1.0=0
SumS=A8 B=160=1.
When A=1and B=1,
Camy C =AB=1.1=1
SumS=A@B=1®1=0.

The truth table for the Half-Adder operation is given in Table 1.

TRUTH TABLE 1
Input Output
A B Sum (5) Carry (0)
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1
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In the least significant column,
1+1 = 10,Sum=0, Carry = 1.
Thus for this operation, we need a half-adder.
In the next column, we must add 3 bits because of carry,
1+0+1 = 10.Sum =0, Carry = 1.
By connecting two half-adders and an OR gate, we get a full adder (Fig.71.2).

e e -
A 0—:—9 cany » : Carry
el O
| HA o
8 : Sum Carry :
HA 1
|
Ce ' . Sum :Sumv S
! 1
L et e e
Fig. 71.2

It can add three bils at a time.

Fig. 71.3 shows the symbol of a full-adder. It has two inputs Aand B, plus a third input . Input
C'is also called the CARRY IN (C). It comes from a lower-order column. There are two outputs,
Sumand Carry. The output carry is also called the CARRY OUT (C).

A O]

|—0 CARRY
so— FA

[———0 SUM
coO———
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Working
To illustrate its operation, let us take two examples:
1. A=1,B=1,C,=0
Fig. 71.4 shows the full adder with these three inputs.

1
1
A=10— > CAF1H1Y
HA
B=10— °O__, 0

HA | o SUM
C=0 - —2 0

Fig. 71.4
(1) The output of first half adder consists of 2 sum of 0 with acarry of 1.
(i) The sum 0 of first half adder and carry 0 when fed to the second half adder. give a sum of
0 with a carry of 0.
(in) The carry outputs of both the half adders is fed into the input of OR gate.
The final output is : SUM 0. CARRY 1.
We get the same result from binary addition: 1 + 1 + 0 = 10,
2. A=1,B=1,(C-=1.
(1) The output of the first half adder is a sum of 0 with a carry 1 (Fig 71.5).
(1) The output of second half adder is a sum of 1 with a carry of 0.
(inr) The final output is SUM 1 witha CARRY 1.
We get the same result from binary addition: 1 + 1+ 1= 11,

1 1
Azie—* > CAHR;Y
B=1o——» M o » 0

HA SUM
1 o1

C|= 1e -
Fin. 71.5
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Parallel Binary Adder

A parallel adder is used to add two numbers in parallel form and to produce the sum bits as
parallel outputs. By cascading a number of full adders, we can get an »-bit binary adder circuit
which is called a parallel adder:

Suppose we are required to add 4-bit binary numbers 4, 4, A, A, and B, B, B, B,. Then we gel
asum S, S; S, S, such that

A A A
+ BB, B, B,
55515355,

Here, S; indicates overflow carry if the sum exceeds four bits. For adding them (two 4-bit
numbers), we need four full adders (FA) connected in parallel. The first adder could, however, be
a half adder (HA) because only two bits are to be added and there is no carry. But all subsequent
columns need full adder because we have (o handle three bits at a time (two binary digits and a carry
generated by the previous column).

Fig. 71.7 shows a parallel four-bit binary adder.

Parallel Inpuls
————OA, ——OA, —O0A, ——OA,
FB‘ I—OB3 l—o 82 rO B1
v 5
FA carry FA " carry A carry HA
l l l l
Y S, S, 5, S,
Parallel Qutpuls
Fig. 71.7

To increase the capacity, more full adders may be connected. For example, for adding 6-bit
numbers, we will have to add two more full adders to the left, thus making a total of six.
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(d Input Impedance, Z;

For the input side, the input impedance Z, s defi ned by Ohm’s law as the following :

Vi
z= ()

If the input signal V;1s changed, the current I,can be computed using the same level of Input
impedance. In other words :

For small-signal analysis.
value can be used for changing levels of applied signal.

In particular, for frequencies in the low to mid-range (typically < 100 k/£z):
dance of a BJT transistor amplifier 1s purely resistive in nature, and depending
employed, can vary from a Sfew ohms to megohms.

once the input impedance has been determined the same numerical

The input impe
on the manner in which the iransistor s

In addition :
An ohmmeter cannot be used to measure the small-signal ac input impedance since the

operates in the dc mode.

olmmeter

Determination of Z l
i s Rsense
Eq. (1) provides a method for measuring the input AN ——]
resistance in the ac domain. In Fig. 72.2 a sensing resistor f P

9 & v, Two-port

has been added to the input side to permit a determination bt
ystem

of J,using Ohm’s law An oscilloscope or sensitive digital =
multimeter (DMM) can be used to measure the voltage V; .
and V¥, Both voltages can be the peak-to-peak. peak, or

rms values, as long as both levels use the same standard.

The input impedance is then determined in the following Fig.72.2

manner :
/ —

f; = _lf__ﬁ ..(2)

R.‘ICMF

and Z = 5 w(3)
1

(i) Output Impedance, Z,
The owtput impedance of any amplifier is defined as the ratio of output volage 1o the outpul

current keeping the input current zero (input rerminals feft open).
Determination of Z,
The output impedance 1s determined at the output terminals looki

the applied signal set to zerv.
In Fig. 72.3, the applied signal has been set to zero vols.

ng back into the system with

source HMW
—AAA—
+ 44—
I} +
Two-port hd
v, =0V System Ve &= i
‘0 -

Scanned with CamScanner



V-V, larciter

L= ..-(4) —
Rﬂlm l fﬂo _l!t.
7
and Z, = i ..(5) ForR, > R,
1, Z,=R, Ro > lg
In particular for frequencies in the low to mid-range
(typically < 100 kHz) : .
The output impedance of a BJT transistor amplifier is Fig. 72.4

resistive in nature and depending on the configuration and
the placement of the resistive elements.

Z,. can vary from a few ohms to a level that can exceed 2 MQ.
In addition :

An ohmmeter cannot be used to measure the small-signal ac output impedance since the
olummeter operates in the de mode.

Effect of Z, = R, on the load or output current /, .

For amplifier configurations where significant gain in current is desired, the level of Z, should
be as large as possible. If Z, = R, the majority of the amplifier output current will pass on to the

load (Fig. 72.4). Z, is frequently so large compared to R, that it can be replaced by an open-circuit
equivalent.

(i) Voltage Gain, A,

The voliage gain of any amplifier is defined as the ratio of the output voltage 1o the input
voltage.

The small-signal ac voltage gain of an amplifier is
A = -2 ...(6)

Determination of the no-load voltage gain.

For the system of Fig. 72.5, a load has not been connected to the output terminals. The level of
gain determined by Eq. (6) is referred to as the no-load voltage gain. Thal is,

Vo
4 =L (D
= Vilr, <=
L == (open=circull)
RW‘CE
—A AN ——O— 0
+ +
4 F
REEL .
— ——o
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v, ¥V

A = 2=_1L o
s |.; [,‘r‘ V
v Z
. A, .-(8)
"V ZRT™

Experimentally, the voltage gain A, or A, can be determined simply by measuring the
' N

appropriate voltage levels with an oscilloscope or sensitive DMM and substituting into the
appropriate equation.

Depending on the configuration, the magnitude of the voltage gain for a loaded
single-stage transistor amplifier typically ranges from just less than I to a few hundred. A mulnstage
(multiumit) system. however. can have a voltage gam in the thousands.

(/) Current Gain, A,

‘The current gan is defined by

I
A = T, ..(9)

For BJT amplifiers, the current gain typically ranges from a level just less than 1 1o a level that
may exceed 100,

Determination of the loaded current gain.

For the loaded situation of Fig. 72.6,

I [}
—’b 4_0
¥ +
BJT
V.
! Z’ amplifier gH‘- Yo
—
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BIT transistor amplifiers are referred 10 as current-controlled devices.
72.3.1. Common Base Configuration

In Fig. 72.7 (), a common-basc pnp transistor has been inserted within the two-port structure,
In Fig. 72.7 (b), the r, model for the transistor has been placed between the same four terminals.

I, /
E‘é’ O '_c’—a(: g o— ﬁh '————O_kb c
4 I.=al,
Be ——og  po— : ob
Fig. 72.7 (a) Fig. 72.7 (b)

One junction of an operating transistor is forward-biased while the other s reverse-biased

() The forward-biased junction will behave much like a diode (ignoring the effects of
changing levels of V). For the base-to-emitter junction of the transistor of Fig. 72.7 (), the diode
equivalence of Fig. 72.7 (1) between the same two terminals is quite apprapriate.

(#) The output characteristics for a common-base transistor amplifier indicate that 7, = [,
(as derived from /.= /) for the range of values of V.. The current source of Fig. 72.7(}) establishes
the fact that 7, = a/, with the controlling current /, appearing in the input side of the equivalent
circuit as dictated by Fig. 72.7 (). We have therefore established an equivalence at the input and
output terminals with the current-controlled source, providing a link between the two. So the model

of Fig. 72.7 () is a valid model of the actual device.

The ac resistance of a diode can be determined by the equation r,.= 26 m 7/, where Ipis the
dc current through the diode at the ¢ (quiescent) point. This same equation can be used to find the
ac resistance of the diode of Fig. 72.7 (£) if we simply substitute the emitter current as follows:

4
26 mV ()
Ig
The subscript e of r, emphasizes that it is the dc level of emitter current that determines the ac

level of the resistance of the diode. Substituting the resulting value of r, in Fig. 72.7 (J) results in
the model of Fig. 72.8.

"

[ [/
e _C*
eo ———oC
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(i Consider the r, Transistor Model of Fig. 72.8. Il we set the signal to zero, then /,= 0 Aand
I =l = a(0A) = 0A, resulting in an open-circuit equivalence at the output terminals.
(3 (4

=,

For the common-base configuration, npical
values of Z, are in the megohm range.

Defining Z, The output resistance of the C-B
configuration 15 determined by the slope of the
characteristic lines of the output characteristics (Fig.
72.9).1f 7, is measured graphically or experimentally,
levels typically in the range 1- to 2-MQ are obtained.
If we assume the lines to be perfectly horizontal (an
excellent approximation), Z, = = Q.

in general. for the common-base configuration
the Input impedance is relatively small and the
oulput impedance quite high

(i) We shall determine the voltage gain
A, = VJV,for the network of Fig. 72.10.

BJT
common-base

transistor
amplifier

...(3)
1
4 Ic(mA) Siope = —
o ’E =4 mA
4|
lg=3mA
A
-
le=2mA
211
-’E: 1mA
-
le=0mA
0 —>
VCB
Fig. 72.9
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72.3.2. Common Emitter Configuration
Fig. 72.12 (&) shows the C-F Configuration Jor an npn transistor,
() The input terminals are the base and emitter terminals.
(i) The output terminals are the collector and emitter terminals.
The emitter terminal is common between the input and output ports of the amplifier.
Fig. 72.12 (b) shows the approximate model for the configuration of Fig, 72.12 (a).

1
= oc *Ii_a c
fe=Ply
Bo — =1
- b
Eo oF ec o0
(a) (b)
Fig. 7212

The controlled-current source is connected between the collector and base terminals.
The diode is connected between the base and emitter lerminals.
The base current /, is the input current. The output current is /.
The base and collector currents are related by the following equation:
1. = Bl (1)
The current through the diode is therefore determined by
I = 1+1,=pl+1,

e

L= @+, (2)
Since ac p >> 1, we will use the following approximation for the current analysis:

1‘. = Blb ...(3)
- - - st 4 atecndasinn la dntarminad hu tha
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ExampLe. Ifr, = 6.5 Q and B = 160. the input impedance has
Increased to a level of
Z,=pr,=(160) (6.5 2) = 1.04 K b
For the C—E configuration, typical values of Z, defined by pr, range
from a few hundred ohms o the kilohm range. with maximums of about
6- 7k e
(i) Defining r, for the C—E configuration
Fig. 72.15 shows the output characteristics of a silicon transistor. The
slope of the curves increases with increase in collector current. The steeper the slope, the less the

level of output impedance (Z).
Al (mA)
. Slope =’°l:\

_’
Z=r,

Fig. 72.14

50 pA
40 pA

8 30 pA

10

oy > fo,
6~ 20 pA

4 10 pA

.. Slope = r_L

1 02 I
0 10 20 Vg
Fig. 72.15

Including r, in the transistor equivalent circuit

The r, model of Fig. 72.12 does not include an output impedance,
but if available from a graphical analysis or from data sheets it can be
included as shown in Fig. 72.16. o

For the C-E configuration. typical values of Z ,are in the range of 40
10 50kS.

For the model of Fig. 72.16, if the applied signal is set to zero, the
current /_is 0A. Fig. 72.16

The output impedance is

o e

Z,= 1, .(5)

5 If the contribution due to r, is ignored as in the r, model, the output impedance is defined by
=2 0

(ii)) Determination of voltage gain for the C-E transistor amplificr.

We assume that Z, = =Q (Fig. 72.17).

.'_'_',.’" L= ic_= By
o
.'.
+
BJT
Vi = common-emitter «— SR v,
Zy=r, transistor amplifier Zy = A2
—
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For the defined direction of 7, and polarity of ¥,
V=~ 1,8,

The minus sign simply reflects the fact that the direction of I, in Fig. 72.17 would establish a
voltage V, with the opposite polarity.

Vo= - IR =-IR =-BLR,
and V= 17,- 1y,
A - Vo _ _BLE,
TV I
P
¢

...(6)
CE 1,==0)

The minus sign for the voltage gain reveals that the output and input voltages are 180° out of
phase.

(/) Determination of current gain

The current gain for the configuration of Fig. 72.17 1s

[, ' —

ocC
!b

P v B §ro

Fig. 72.18
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