
1 
 

 

 

Basics: 

Variable: 

▪ Variables are used to store information in the memory location. 

▪ This means when you create a variable you reserve some space in memory. 

▪ To store information in a variable we have various data types 

-character 

-integer 

-floating point 

-double floating point 

-boolean 

Note: Based on the data type of a variable, the operating system allocates memory 

 

Type Keyword 

Boolean bool 

Character char 

Integer int 

Floating point float 

Double floating 

point 

double 

Valueless void 

Wide character wchar_t 

 

Type Modifiers: 

- Signed 

- Unsigned 

- Short 

- Long 

 

Type Typical Bit 

char 1 byte 

unsigned char 1byte 

signed char 1 byte 

int 4 bytes 

unsigned int 4 bytes 



2 
 

signed int 4 bytes 

short int 2 bytes 

unsigned short int  2 bytes 

signed short int  2 bytes 

long int  4 bytes 

signed long int  8 bytes 

unsigned long int 4 bytes 

long long int 8 bytes 

unsigned long long int 8 bytes 

float 4 bytes 

double 8 bytes 

long double 12 bytes 

wchar_t 2 or 4 bytes 

 

You can also find size of type using program: 

Program 

#include<iostream> 

using namespace std 

int main() 

{ 

 cout<< “ size of char:” <<sizeof(char)<<endl; 

 cout<< “ size of int:” <<sizeof(int)<<endl; 

cout<< “ size of float:” <<sizeof(float)<<endl; 

 return 0; 

} 

Output 

size of char: 1 

size of int: 4 

size of float: 4 

endl - which insert new line 

Example Program in C++ 

 

#include<iostream> 

usingnamespace std; 

 

// main() is where program execution begins. 

int main(){ 

cout<<"Hello World";// prints Hello World 

return0; 



3 
 

} 

Output  

Hello World 

 

 

Local variable: 

Variables that are declared inside a function or block are local variables. They can be used 

only by statements that are inside that function or block of code. Local variables are not 

known outside of the function. 

 

Program  

 

#include<iostream> 

usingnamespace std; 

 

int main (){ 

// Local variable declaration: 

intnum1,num2; 

intsum; 

 

// actual initialization 

num1=10; 

num2=20; 

sum=num1+num2; 

 

cout<<sum; 

 

return0; 

} 

 

Output  

30 

Global Variables 

Global variables are defined outside of all the functions, usually on top of the program. A 

global variable can be accessed by any function. That is, a global variable is available for 

use throughout your entire program after its declaration. 

Program 

#include<iostream> 

usingnamespace std; 

 

// Global variable declaration: 



4 
 

intsum; 

 

int main (){ 

// Local variable declaration: 

intnum1,num2; 

 

// actual initialization 

num1=10; 

num2=20; 

sum=num1+num2; 

 

cout<<sum; 

 

return0; 

} 

 

Output 

30 

*Note: if the program has same name for local and global variables but value of local 

variable inside a function will take preference. 

Program 

#include<iostream> 

usingnamespace std; 

 

// Global variable declaration: 

intnum=20; 

 

int main (){ 

// Local variable declaration: 

intnum=10; 

 

cout<<num; 

 

return0; 

} 

 

Output 

10 

Defining constants 

In two ways, we can define a constant 

- Using #define preprocessor 

- Using const keyword 

Using #define preprocessor can define a constant 



5 
 

syntax 

#define identifier value 

 

Program 

#include<iostream> 

usingnamespace std; 

 

#define LENGTH 10 

#define WIDTH  5 

#define NEWLINE '\n'// this gives new line 

 

int main(){ 

int area; 

 

   area = LENGTH * WIDTH; 

cout<< area; 

cout<< NEWLINE; 

return0; 

} 

 

output 

50 

Using const keyword 

You can use const prefix to declare constants with a specific type  

Syntax 

 

 

Program 

#include<iostream> 

usingnamespace std; 

 

int main(){ 

constint  LENGTH =10; 

constint  WIDTH  =5; 

constchar NEWLINE ='\n'; 

int area; 

 

   area = LENGTH * WIDTH; 

cout<< area; 

cout<< NEWLINE; 

return0; 

} 

const type variable = value; 
 



6 
 

Output 

50 

Operators:  

An operator is a symbol that tells the compiler to perform specific mathematical or logical 

manipulations. C++ is rich in built-in operators and provide the following types of 

operators  

• Arithmetic Operators 

• Relational Operators 

• Logical Operators 

• Bitwise Operators 

• Assignment Operators 

Arithmetic operator 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



7 
 

Program 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

#include <iostream> 

using namespace std; 

int main()  

{ 

int num1,num2,Add,Sub,Mul,Div,Mol; 

cout<<"Enter a first number : "; 

cin>>num1; 

cout<<"\nEnter the second number\n"; 

cin>>num2; 

 //Addition 

 Add=num1+num2; 

cout<< "\n Addition:"<<Add; 

 //Subtraction 

 Sub=num1-num2; 

cout<<"\n Subtraction:"<<Sub; 

 //Multiplication 

Mul=num1*num2; 

cout<<"\n Multiplication:"<<Mul; 

  //Divide 

Div=num1/num2;   //it returns the quotient  

cout<<"\n Divide:"<<Div; 

  //Modulus 

 Mol=num1%num2;   //it returns the reminder 

cout<<"\n Modulus:"<<Mol; 

//Increment and Decrement 

 num1++; //it increases by plus 1 

 num2--; // it decreases by minus 1 

cout<<"\n Increment:"<<num1; 

cout<<"\n Decrement:"<<num2; 

 return 0; 

} 



8 
 

 

 

Output: 

Enter the first number: 8 

Enter the second number: 5 

Addition: 13 

Subtraction: 3 

Multiplication: 40 

Divide: 1 

Modulus: 3 

Increment: 9 

Decrement:4 

Relational operator 

Operator Description Example 

== Checks if the values of two operands are 
equal or not, if yes then condition becomes 
true. 

(A == B) is not true. 

!= Checks if the values of two operands are 
equal or not, if values are not equal then 
condition becomes true. 

(A != B) is true. 

> Checks if the value of left operand is greater 
than the value of right operand, if yes then 
condition becomes true. 

(A > B) is not true. 

< Checks if the value of left operand is less 
than the value of right operand, if yes then 
condition becomes true. 

(A < B) is true. 

>= Checks if the value of left operand is greater 
than or equal to the value of right operand, if 
yes then condition becomes true. 

(A >= B) is not true. 



9 
 

<= Checks if the value of left operand is less 
than or equal to the value of right operand, if 
yes then condition becomes true. 

(A <= B) is true. 

 

 

 

 

Program 

#include<iostream> 

usingnamespace std; 

 

main(){ 

int a =21; 

int b =10; 

int c ; 

 

if( a == b ){ 

cout<<" a is equal to b"<<endl; 

}else{ 

cout<<" a is not equal to b"<<endl; 

} 

 

if( a < b ){ 

cout<<"a is less than b"<<endl; 

}else{ 

cout<<"a is not less than b"<<endl; 

} 

 

if( a > b ){ 

cout<<" a is greater than b"<<endl; 

}else{ 

cout<<" a is not greater than b"<<endl; 

} 

 

/* Let's change the values of a and b */ 

   a =5; 

   b =20; 

if( a <= b ){ 

cout<<"a is either less than \ or equal to b"<<endl; 

} 

 

if( b >= a ){ 

cout<<" b is either greater than \ or equal to b"<<endl; 

} 

 

return0; 

} 



10 
 

 

Output: 

a is not equal to b 

a is not less than b 

a is greater than b 

a is either less than or equalto b 

b is either greater than or equal to b 

 

 

 

Logical operator 

Operator Description Example 

&& Called Logical AND operator. If both the 
operands are non-zero, then condition 
becomes true. 

(A && B) is false. 

|| Called Logical OR Operator. If any of the two 
operands is non-zero, then condition 
becomes true. 

(A || B) is true. 

! Called Logical NOT Operator. Use to 
reverses the logical state of its operand. If a 
condition is true, then Logical NOT operator 
will make false. 

!(A && B) is true. 

 

Program 

#include<iostream> 

usingnamespace std; 

 

main(){ 

int a =5; 

int b =20; 

int c ; 

 

if(a && b){ 

cout<<" Condition is true"<<endl; 

} 

 

if(a || b){ 

cout<<" Condition is true"<<endl; 



11 
 

} 

 

/* Let's change the values of  a and b */ 

   a =0; 

   b =10; 

 

if(a && b){ 

cout<<" Condition is true"<<endl; 

}else{ 

cout<<" Condition is not true"<<endl; 

} 

 

if(!(a && b)){ 

cout<<" Condition is true"<<endl; 

} 

 

return0; 

} 

 

Output 

Condition is true 

Condition is true 

Condition is not true 

Condition is true 

 

Bitwise operator 

Bitwise operator works on bits and perform bit-by-bit operation. The truth tables for &, |, 

and ^ are 

p q p & q p | q p ^ q 

0 0 0 0 0 

0 1 0 1 1 

1 1 1 1 0 

1 0 0 1 1 

 

Operator Description Example 



12 
 

& Binary AND Operator copies a bit to the 
result if it exists in both operands. 

(A & B) will give 12 which is 0000 1100 

| Binary OR Operator copies a bit if it exists in 
either operand. 

(A | B) will give 61 which is 0011 1101 

^ Binary XOR Operator copies the bit if it is set 
in one operand but not both. 

(A ^ B) will give 49 which is 0011 0001 

~ Binary Ones Complement Operator is unary 
and has the effect of 'flipping' bits. 

(~A ) will give -61 which is 1100 0011 in 2's 
complement form due to a signed binary 
number. 

<< Binary Left Shift Operator. The left operands 
value is moved left by the number of bits 
specified by the right operand. 

A << 2 will give 240 which is 1111 0000 

>> Binary Right Shift Operator. The left 
operands value is moved right by the number 
of bits specified by the right operand. 

A >> 2 will give 15 which is 0000 1111 

 

Program 

Assume if A = 60; and B = 13; now in binary format 

#include<iostream> 

usingnamespace std; 

 

main(){ 

unsignedint a =60; // 60 = 0011 1100   

unsignedint b =13; // 13 = 0000 1101 

int c =0; 

 

   c = a & b;// 12 = 0000 1100 

cout<<" Value of c is : "<< c <<endl; 

 

   c = a | b;// 61 = 0011 1101 

cout<<" Value of c is: "<< c <<endl; 

 

   c = a ^ b;// 49 = 0011 0001 

cout<<" Value of c is: "<< c <<endl; 

 

   c =~a;// -61 = 1100 0011 

cout<<" Value of c is: "<< c <<endl; 

 

   c = a <<2;// 240 = 1111 0000 



13 
 

cout<<" Value of c is: "<< c <<endl; 

 

   c = a >>2;// 15 = 0000 1111 

cout<<" Value of c is: "<< c <<endl; 

 

return0; 

} 

 

Output 

Value of c is:12 

Value of c is: 61 

Value of c is: 49 

Value of c is: -61 

Value of c is: 240 

Value of c is: 15 

 

Assignment Operator 

Operator Description Example 

= Simple assignment operator, Assigns values 
from right side operands to left side operand. 

C = A + B will assign value of A + B into C 

+= Add AND assignment operator, It adds right 
operand to the left operand and assign the 
result to left operand. 

C += A is equivalent to C = C + A 

-= Subtract AND assignment operator, It subtracts 
right operand from the left operand and assign 
the result to left operand. 

C -= A is equivalent to C = C - A 

*= Multiply AND assignment operator, It multiplies 
right operand with the left operand and assign 
the result to left operand. 

C *= A is equivalent to C = C * A 

/= Divide AND assignment operator, It divides left 
operand with the right operand and assign the 
result to left operand. 

C /= A is equivalent to C = C / A 

%= Modulus AND assignment operator, It takes 
modulus using two operands and assign the 
result to left operand. 

C %= A is equivalent to C = C % A 



14 
 

<<= Left shift AND assignment operator. C <<= 2 is same as C = C << 2 

>>= Right shift AND assignment operator. C >>= 2 is same as C = C >> 2 

&= Bitwise AND assignment operator. C &= 2 is same as C = C & 2 

^= Bitwise exclusive OR and assignment operator. C ^= 2 is same as C = C ^ 2 

|= Bitwise inclusive OR and assignment operator. C |= 2 is same as C = C | 2 

 

Program 

#include<iostream> 

usingnamespace std; 

 

main(){ 

int a =21; 

int c ; 

 

   c =  a; 

cout<<" =  Operator, Value of c = : "<<c<<endl; 

 

   c +=  a; 

cout<<" += Operator, Value of c = : "<<c<<endl; 

 

   c -=  a; 

cout<<" -= Operator, Value of c = : "<<c<<endl; 

 

c*=  a; 

cout<<" *= Operator, Value of c = : "<<c<<endl; 

 

c/=  a; 

cout<<" /= Operator, Value of c = : "<<c<<endl; 

 

c  =200; 

c%=  a; 

cout<<" %= Operator, Value of c = : "<<c<<endl; 

 

   c <<=2; 

cout<<" <<= Operator, Value of c = : "<<c<<endl; 

 

   c >>=2; 

cout<<" >>= Operator, Value of c = : "<<c<<endl; 

 

c&=2; 

cout<<" &= Operator, Value of c = : "<<c<<endl; 



15 
 

 

c^=2; 

cout<<" ^= Operator, Value of c = : "<<c<<endl; 

 

c|=2; 

cout<<" |= Operator, Value of c = : "<<c<<endl; 

 

return0; 

} 

 

Output 

=  Operator, Value of c = : 21 

+= Operator, Value of c = : 42 

-= Operator, Value of c = : 21 

*= Operator, Value of c = : 441 

/= Operator, Value of c = : 21 

%= Operator, Value of c = : 11 

<<= Operator, Value of c = : 44 

>>= Operator, Value of c = : 11 

&= Operator, Value of c = : 2 

^= Operator, Value of c = : 0 

|= Operator, Value of c = : 2 

Misc Operator 

 

Sl.No Operator & Description 

1 
sizeof 

sizeof operator returns the size of a variable. For example, sizeof(a), where ‘a’ is integer, and 
will return 4. 

2 
Condition ? X : Y 

Conditional operator (?). If Condition is true then it returns value of X otherwise returns value of 
Y. 

3 
, 

Comma operator causes a sequence of operations to be performed. The value of the entire 
comma expression is the value of the last expression of the comma-separated list. 

4 
. (dot) and -> (arrow) 

Member operators are used to reference individual members of classes, structures, and unions. 

5 
Cast 

https://www.tutorialspoint.com/cplusplus/cpp_sizeof_operator.htm
https://www.tutorialspoint.com/cplusplus/cpp_conditional_operator.htm
https://www.tutorialspoint.com/cplusplus/cpp_comma_operator.htm
https://www.tutorialspoint.com/cplusplus/cpp_member_operators.htm


16 
 

Casting operators convert one data type to another. For example, int(2.2000) would return 2. 

6 
& 

Pointer operator & returns the address of a variable. For example &a; will give actual address of 
the variable. 

7 
* 

Pointer operator * is pointer to a variable. For example *var; will pointer to a variable var. 

 

Operators Precedence in C++ 

▪ Operator precedence determines the grouping of terms in an expression. This 

affects how an expression is evaluated. Certain operators have higher precedence 

than others; for example, the multiplication operator has higher precedence than 

the addition operator − 

▪ For example x = 7 + 3 * 2; here, x is assigned 13, not 20 because operator * has 

higher precedence than +, so it first gets multiplied with 3*2 and then adds into 7. 

▪ Here, operators with the highest precedence appear at the top of the table, those 

with the lowest appear at the bottom. Within an expression, higher precedence 

operators will be evaluated first. 

 

 

Category  Operator  Associativity  

Postfix  () [] -> . ++ - -   Left to right  

Unary  + - ! ~ ++ - - (type)* &sizeof  Right to left  

Multiplicative   * / %  Left to right  

Additive   + -  Left to right  

Shift   <<>>  Left to right  

Relational   <<= >>=  Left to right  

https://www.tutorialspoint.com/cplusplus/cpp_casting_operators.htm
https://www.tutorialspoint.com/cplusplus/cpp_pointer_operators.htm
https://www.tutorialspoint.com/cplusplus/cpp_pointer_operators.htm


17 
 

Equality   == !=  Left to right  

Bitwise AND  &  Left to right  

Bitwise XOR  ^  Left to right  

Bitwise OR  |  Left to right  

Logical AND  &&  Left to right  

Logical OR  ||  Left to right  

Conditional  ?:  Right to left  

Assignment  = += -= *= /= %=>>= <<= &= ^= |=  Right to left  

Comma  ,  Left to right  

 

cProgram 

#include<iostream> 

usingnamespace std; 

 

main(){ 

int a =20; 

int b =10; 

int c =15; 

int d =5; 

int e; 

 

   e =(a + b)* c / d;// ( 30 * 15 ) / 5 

cout<<"Value of (a + b) * c / d is :"<< e <<endl; 

 

   e =((a + b)* c)/ d;// (30 * 15 ) / 5 

cout<<"Value of ((a + b) * c) / d is  :"<< e <<endl; 

 

   e =(a + b)*(c / d);// (30) * (15/5) 

cout<<"Value of (a + b) * (c / d) is  :"<< e <<endl; 

 

   e = a +(b * c)/ d;//  20 + (150/5) 

cout<<"Value of a + (b * c) / d is  :"<< e <<endl; 

 



18 
 

return0; 

} 

 

Output 

Value of (a + b) * c / d is :90 

Value of ((a + b) * c) / d is  :90 

Value of (a + b) * (c / d) is  :90 

Value of a + (b * c) / d is  :50 

 

Loops in C++ 

 

▪ when you need to execute a block of code several number of times. Programming 

languages provide various control structures that allow for more complicated 

execution paths. 

▪ A loop statement allows us to execute a statement or group of statements multiple 

times and following is the general from of a loop statement in most of the 

programming languages. 

Sl.No Loop Type & Description 

1 while loop 

Repeats a statement or group of statements while a given condition is true. It tests the condition 
before executing the loop body. 

2 for loop 

Execute a sequence of statements multiple times and abbreviates the code that manages the 
loop variable. 

3 do...while loop 

Like a ‘while’ statement, except that it tests the condition at the end of the loop body. 

4 nested loops 

You can use one or more loop inside any another ‘while’, ‘for’ or ‘do..while’ loop. 

 

While loop 

 

A while loop statement repeatedly executes a target statement as long as a given condition 

is true. 

 

https://www.tutorialspoint.com/cplusplus/cpp_while_loop.htm
https://www.tutorialspoint.com/cplusplus/cpp_for_loop.htm
https://www.tutorialspoint.com/cplusplus/cpp_do_while_loop.htm
https://www.tutorialspoint.com/cplusplus/cpp_nested_loops.htm


19 
 

Syntax 
 

while(condition) { 

   statement(s); 

} 

 

Flow diagram 

 

Program 

#include<iostream> 

usingnamespace std; 

 

int main (){ 

// Local variable declaration: 

int a =10; 

 

// while loop execution 

while( a <20){ 

cout<<"value of a: "<< a <<endl; 

      a++; 

} 

 

return0; 

} 

 

Output 

value of a: 10 

value of a: 11 

value of a: 12 



20 
 

value of a: 13 

value of a: 14 

value of a: 15 

value of a: 16 

value of a: 17 

value of a: 18 

value of a: 19 

 

 

For loop 

A for loop is a repetition control structure that allows you to efficiently write a loop that 

needs to execute a specific number of times. 

Syntax 

 

for ( init; condition; increment ) { 

   statement(s); 

} 

 

• The init step is executed first, and only once. This step allows you to declare and 

initialize any loop control variables. You are not required to put a statement here, as 

long as a semicolon appears. 

• Next, the condition is evaluated. If it is true, the body of the loop is executed. If it is 

false, the body of the loop does not execute and flow of control jumps to the next 

statement just after the for loop. 

• After the body of the for loop executes, the flow of control jumps back up to 

the increment statement. This statement can be left blank, as long as a semicolon 

appears after the condition. 

• The condition is now evaluated again. If it is true, the loop executes and the process 

repeats itself (body of loop, then increment step, and then again condition). After the 

condition becomes false, the for loop terminates. 

Flow Diagram 



21 
 

 

Program 

#include<iostream> 

usingnamespace std; 

 

int main (){ 

// for loop execution 

for(int a =10; a <20; a = a +1){ 

cout<<"value of a: "<< a <<endl; 

} 

 

return0; 

} 

 

Output 

value of a: 10 

 

value of a: 11 

value of a: 12 

value of a: 13 

value of a: 14 

value of a: 15 

value of a: 16 

value of a: 17 

value of a: 18 

value of a: 19 

 

do while loop 

 do...while loop checks its condition at the bottom of the loop. 

Syntax 

 do { 
   statement(s); 

}  

while( condition ); 



22 
 

 

 

The conditional expression appears at the end of the loop, so the statement(s) in the loop 

execute once before the condition is tested. 

If the condition is true, the flow of control jumps back up to do, and the statement(s) in the 

loop execute again. This process repeats until the given condition becomes false. 

 

 

 

Flow Diagram 

 

 

 

Program 

#include<iostream> 

usingnamespace std; 

 

int main (){ 

// Local variable declaration: 

int a =10; 

 

// do loop execution 

do{ 

cout<<"value of a: "<< a <<endl; 

      a = a +1; 

}while( a <20); 

 

return0; 



23 
 

} 

 

Output 

value of a: 10 

value of a: 11 

value of a: 12 

value of a: 13 

value of a: 14 

value of a: 15 

value of a: 16 

value of a: 17 

value of a: 18 

value of a: 19 

 

Nested for loop 

Syntax 

  

 

 

 

 

 

Program 

 

#include<iostream> 

usingnamespace std; 

 

int main (){ 

inti, j; 

 

for(i=2;i<100;i++){ 

for(j =2; j <=(i/j); j++) 

if(!(i%j))break;// if factor found, not prime 

if(j >(i/j))cout<<i<<" is prime\n"; 

} 

 

return0; 

} 

 

Output  

2 is prime 

for ( init; condition; increment 

) { 

for ( init; condition; increment 

) { 

      statement(s); 

   } 

   statement(s); // you can put 

more statements. 

} 

 



24 
 

3 is prime 

5 is prime 

7 is prime 

11 is prime 

13 is prime 

17 is prime 

19 is prime 

23 is prime 

29 is prime 

31 is prime 

37 is prime 

41 is prime 

43 is prime 

47 is prime 

53 is prime 

59 is prime 

61 is prime 

67 is prime 

71 is prime 

73 is prime 

79 is prime 

83 is prime 

89 is prime 

97 is prime 

 

Loop control structure 

 

Sl.No Control Statement & Description 

1 break statement 

Terminates the loop or switch statement and transfers execution to the statement immediately 
following the loop or switch. 

2 continue statement 

Causes the loop to skip the remainder of its body and immediately retest its condition prior to 
reiterating. 

3 goto statement 

Transfers control to the labeled statement. Though it is not advised to use goto statement in 
your program. 

 

Decision making statements in C++ 

Sl.No Statement & Description 

https://www.tutorialspoint.com/cplusplus/cpp_break_statement.htm
https://www.tutorialspoint.com/cplusplus/cpp_continue_statement.htm
https://www.tutorialspoint.com/cplusplus/cpp_goto_statement.htm


25 
 

1 if statement 

An ‘if’ statement consists of a boolean expression followed by one or more statements. 

2 if...else statement 

An ‘if’ statement can be followed by an optional ‘else’ statement, which executes when the 
boolean expression is false. 

3 switch statement 

A ‘switch’ statement allows a variable to be tested for equality against a list of values. 

4 nested if statements 

You can use one ‘if’ or ‘else if’ statement inside another ‘if’ or ‘else if’ statement(s). 

5 nested switch statements 

You can use one ‘switch’ statement inside another ‘switch’ statement(s). 

 

 

if statement 

An if statement consists of a boolean expression followed by one or more statements. 

Syntax 

 

 

 

If the boolean expression evaluates to true, then the block of code inside the if statement 

will be executed. If boolean expression evaluates to false, then the first set of code after the 

end of the if statement (after the closing curly brace) will be executed. 

Flow Diagram 

if(boolean_expression) { 

   // statement(s) will execute if the 

boolean expression is true 

} 

 

https://www.tutorialspoint.com/cplusplus/cpp_if_statement.htm
https://www.tutorialspoint.com/cplusplus/cpp_if_else_statement.htm
https://www.tutorialspoint.com/cplusplus/cpp_switch_statement.htm
https://www.tutorialspoint.com/cplusplus/cpp_nested_if.htm
https://www.tutorialspoint.com/cplusplus/cpp_nested_switch.htm


26 
 

 

Program 

#include<iostream> 

usingnamespace std; 

 

int main (){ 

// local variable declaration: 

int a =10; 

 

// check the boolean condition 

if( a <20){ 

// if condition is true then print the following 

cout<<"a is less than 20"<<endl; 

} 

cout<<"value of a is : "<< a <<endl; 

 

return0; 

} 

 

Output 

a is less than 20 

value of a is : 10 

 

if else statement 

An if statement can be followed by an optional else statement, which executes when the 

boolean expression is false. 

Syntax 

 

 

if(boolean_expression) { 

   // statement(s) will execute if the boolean 

expression is true 

} else { 

  // statement(s) will execute if the boolean 

expression is false 

} 

 



27 
 

 

 

 

Flow Diagram 

 

 

 

 

 

Program 

#include<iostream> 

usingnamespace std; 

 

int main (){ 

// local variable declaration: 

int a =100; 

 

// check the boolean condition 

if( a <20){ 

// if condition is true then print the following 

cout<<"a is less than 20;"<<endl; 

}else{ 

// if condition is false then print the following 

cout<<"a is not less than 20"<<endl; 

} 

cout<<"value of a is : "<< a <<endl; 

 

return0; 

} 

 



28 
 

Output  

a is not less than 20 

value of a is : 100 

 

if else if statement 

An if statement can be followed by an optional else if...else statement, which is very usefull 

to test various conditions using single if...else if statement. 

Syntax 

 

 

 

 

 

 

 

 

Program 

#include<iostream> 

usingnamespace std; 

 

int main (){ 

// local variable declaration: 

int a =100; 

 

// check the boolean condition 

if( a ==10){ 

// if condition is true then print the following 

cout<<"Value of a is 10"<<endl; 

}elseif( a ==20){ 

// if else if condition is true 

cout<<"Value of a is 20"<<endl; 

}elseif( a ==30){ 

// if else if condition is true  

cout<<"Value of a is 30"<<endl; 

}else{ 

// if none of the conditions is true 

cout<<"Value of a is not matching"<<endl; 

} 

cout<<"Exact value of a is : "<< a <<endl; 

 

return0; 

if(boolean_expression 1) { 

   // Executes when the boolean 

expression 1 is true 

} else if(boolean_expression 2) { 

   // Executes when the boolean 

expression 2 is true 

} else if(boolean_expression 3) { 

   // Executes when the boolean 

expression 3 is true 

} else { 

   // executes when the none of the 

above condition is true. 

} 

 



29 
 

} 

 

Output 

Value of a is not matching 

Exact value of a is : 100 

 

Switch statement 

A switch statement allows a variable to be tested for equality against a list of values. Each 

value is called a case, and the variable being switched on is checked for each case. 

Syntax 

 

 

 

 

 

 

 

 

• You can have any number of case statements within a switch. Each case is followed 

by the value to be compared to and a colon. 

• The constant-expression for a case must be the same data type as the variable in the 

switch, and it must be a constant or a literal. 

• When the variable being switched on is equal to a case, the statements following that 

case will execute until a break statement is reached. 

• When a break statement is reached, the switch terminates, and the flow of control 

jumps to the next line following the switch statement. 

• Not every case needs to contain a break. If no break appears, the flow of control 

will fall through to subsequent cases until a break is reached. 

• A switch statement can have an optional default case, which must appear at the end 

of the switch. The default case can be used for performing a task when none of the 

cases is true. No break is needed in the default case. 

Flow Diagram 

switch(expression) { 

case constant-expression  : 

      statement(s); 

      break; //optional 

case constant-expression  : 

      statement(s); 

      break; //optional 

 

   // you can have any number of case 

statements. 

default : //Optional 

      statement(s); 

} 

 



30 
 

 

Program 

#include<iostream> 

usingnamespace std; 

 

int main (){ 

// local variable declaration: 

char grade ='D'; 

 

switch(grade){ 

case'A': 

cout<<"Excellent!"<<endl; 

break; 

case'B': 

 cout<<"Good"<<endl; 

break; 

case'C': 

cout<<"Well done"<<endl; 

break; 

case'D': 

cout<<"You passed"<<endl; 

break; 

case'F': 

cout<<"Better try again"<<endl; 

break; 

default: 

cout<<"Invalid grade"<<endl; 

} 

cout<<"Your grade is "<< grade <<endl; 

 



31 
 

return0; 

} 

 

Output 

You passed 

Your grade is D 

 

Contidional ? : operator 

 

 

if(y < 10) {  

   var = 30; 

} else { 

   var = 40; 

} 

 

This can be written as  

 

 

Program 

#include<iostream> 

usingnamespace std; 

 

int main (){ 

// Local variable declaration: 

int x, y =10; 

 

   x =(y <10)?30:40; 

cout<<"value of x: "<< x <<endl; 

 

return0; 

} 

 

Output 

value of x: 40 

 

 

 

 

Exp1 ?Exp2 : Exp3; 

 

var = (y < 10) ? 30 : 40; 

 



32 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Unit I 

Principles of Object- Oriented Programming – Beginning with C++ - Tokens, 

Expressions and Control Structures – Functions in C++ 

CHARACTERISTICS OF AN OBJECT ORIENTED PROGRAMMING LANGUAGE 

OBJECT-ORIENTED PROGRAMMING 

C++ fully supports object-oriented programming, including the four pillars of object-

oriented development. Object-oriented programming aims to implement real-world entities 

like inheritance, hiding, polymorphism, etc in programming. The main aim of OOP is to 

bind together the data and the functions that operate on them so that no other part of the 

code can access this data except that function 

• Class 

• Objects 

• Encapsulation 

• Data Abstraction 

• Polymorphism 

• Inheritance 

https://www.geeksforgeeks.org/object-oriented-programming-in-cpp/#class
https://www.geeksforgeeks.org/object-oriented-programming-in-cpp/#obj
https://www.geeksforgeeks.org/object-oriented-programming-in-cpp/#encapsulation
https://www.geeksforgeeks.org/object-oriented-programming-in-cpp/#abstraction
https://www.geeksforgeeks.org/object-oriented-programming-in-cpp/#polymorphism
https://www.geeksforgeeks.org/object-oriented-programming-in-cpp/#inheritance


33 
 

• Dynamic Binding 

• Message Passing 

 

1.CLASS 

The building block of C++ that leads to Object-Oriented programming is a Class. It is a 

user-defined data type, which holds its own data members and member functions, which 

can be accessed and used by creating an instance of that class. A class is like a blueprint for 

an object. 

• A Class is a user-defined data-type which has data members and member functions. 

• Data members are the data variables and member functions are the functions used to 

manipulate these variables and together these data members and member functions 

define the properties and behaviour of the objects in a Class. 

• A class is defined in C++ using keyword class followed by the name of class.  

• The body of class is defined inside the curly brackets and terminated by a semicolon 

at the end. 

 

Member Functions in Classes 

There are 2 ways to define a member function: 

• Inside class definition 

• Outside class definition 

To define a member function outside the class definition we have to use the scope 

resolution :: operator along with class name and function name. 

2.OBJECT: 

 An Object is an instance of a Class. When a class is defined, no memory is allocated 

but when it is instantiated (i.e. an object is created) memory is allocated. 

Declaring Objects:  

https://www.geeksforgeeks.org/object-oriented-programming-in-cpp/#db
https://www.geeksforgeeks.org/object-oriented-programming-in-cpp/#mp
https://www.geeksforgeeks.org/c-classes-and-objects/


34 
 

When a class is defined, only the specification for the object is defined; no memory 

or storage is allocated. To use the data and access functions defined in the class, you need to 

create objects. 

Syntax 

ClassNameObjectName; 

EXAMPLE 

class person 

{ 

char name[20]; 

int id; 

public: 

voidgetdetails(){} 

}; 

int main() 

{ 

person p1; // p1 is an object 

} 

3. ENCAPSULATION 

Encapsulation is defined as wrapping up of data and information under a single unit. 

In Object-Oriented Programming, Encapsulation is defined as binding together the data and 

the functions that manipulate them. 

Encapsulation also leads to data abstraction or hiding. As using encapsulation also hides 

the data. Example, the data of any of the section like sales, finance or accounts are hidden 

from any other section. 



35 
 

 

4.DATA ABSTRACTION 

 Data abstraction is one of the most essential and important features of object-oriented 

programming in C++. Abstraction means displaying only essential information and hiding 

the details. Data abstraction refers to providing only essential information about the data to 

the outside world, hiding the background details or implementation. 

• ABSTRACTION USING CLASSES:  

We can implement Abstraction in C++ using classes. The class helps us to group data 

members and member functions using available access specifiers. A Class can decide 

which data member will be visible to the outside world and which is not. 

 

• ABSTRACTION IN HEADER FILES: 

 One more type of abstraction in C++ can be header files. For example, consider the 

pow() method present in math.h header file. Whenever we need to calculate the power  

 

of a number, we simply call the function pow() present in the math.h header file and 

pass the numbers as arguments without knowing the underlying algorithm according to 

which the function is actually calculating the power of numbers. 

Advantages of Data Abstraction: 

• Helps the user to avoid writing the low level code 

• Avoids code duplication and increases reusability. 

• Can change internal implementation of class independently without affecting the user. 

• Helps to increase security of an application or program as only important details are 

provided to the user. 

 

5. POLYMORPHISM 

• The word polymorphism means having many forms. In simple words, we can define 

polymorphism as the ability of a message to be displayed in more than one form. 

• A person at the same time can have different characteristic. Like a man at the same 

time is a father, a husband, an employee. So the same person possess different 

behaviour in different situations. This is called polymorphism. 

• An operation may exhibit different behaviourin different instances. The behaviour 

depends upon the types of data used in the operation. 



36 
 

C++ supports operator overloading and function overloading. 

Operator Overloading:  

• The process of making an operator to exhibit different behaviour in different instances 

is known as operator overloading. 

Function Overloading:  

• Function overloading is using a single function name to perform different types of 

tasks. 

Polymorphism is extensively used in implementing inheritance. 

 

 
 

 

 

 

6. INHERITANCE 

The capability of a class to derive properties and characteristics from another class is called 

Inheritance. Inheritance is one of the most important features of Object-Oriented 

Programming. 

• Sub Class:  

The class that inherits properties from another class is called Sub class or Derived 

Class. 

• Super Class: 

The class whose properties are inherited by sub class is called Base Class or Super 

class. 

• Reusability: 

 Inheritance supports the concept of “reusability”, i.e. when we want to create a new 

class and there is already a class that includes some of the code that we want, we can 

https://www.geeksforgeeks.org/inheritance-in-c/


37 
 

derive our new class from the existing class. By doing this, we are reusing the fields 

and methods of the existing class. 

 

Implementing Inheritance InC++ 

 For creating a sub-class which is inherited from the base class we have to follow the below 

syntax. 

Syntax 

 

classsubclass_name : access_modebase_class_name 

{ 

  //body of subclass 

}; 

Here, subclass_name is the name of the sub class, access_mode is the mode in which you 

want to inherit this sub class for example: public, private etc. and base_class_name is the 

name of the base class from which you want to inherit the sub class. 

 

Note: A derived class doesn’t inherit access to private data members. However, it does 

inherit a full parent object, which contains any private members which that class declares. 

filter_none 

 

 

 

 

 

7. Dynamic Binding: 

 In dynamic binding, the code to be executed in response to function call is decided at 

runtime. C++ has virtual functions to support this. 

 

8. Message Passing:  

Objects communicate with one another by sending and receiving information to each 

other. A message for an object is a request for execution of a procedure and therefore will 

invoke a function in the receiving object that generates the desired results. Message passing 

involves specifying the name of the object, the name of the function and the information to 

be sent. 

Benefits of OOPs 

https://www.geeksforgeeks.org/virtual-functions-and-runtime-polymorphism-in-c-set-1-introduction/


38 
 

• Through, inheritance, we can eliminate redundate code and extend the use of existing 

classes. 

• We can build programs from the standard working modules that communicate with 

one another, rather than having to start writing the code from scratch. This leads to 

saving  of developing time and higher productivity. 

• The principle of data hiding helps the programmer to build secure program that 

cannot be invaded by code in other parts of the program. 

• It is possible to have multiple instances of an object to co-exist without any 

interference. 

• It is possible to map objects in the problem domain to those in the program. 

• It is easy to partition the work in a project based on objects. 

• The data-centered design approach enables us to capture more details of a model in 

implementable form. 

• Object-oriented systems can be easily upgraded from small to large systems. 

• Message passing techniques for communication between objects makes the interface 

descriptions with external systems much simpler. 

• Software complexity can be easily managed. 

 

Object- oriented languages 

Object-oriented programming concepts can be implemented using languages such as C and 

Pascal. However, programming becomes clumsy and may generate confusion when the 

programs grow large. A language that is specially designed to support the OOP concepts 

makes it easier to implement them. 

 

The language should support several of the OOP concepts to claim that they are object-

oriented. Depending upon the features they support, they can be classified into the 

following two categories: 

1. Objects-based  programming languages 

2. Object-oriented programming languages 

Object-based Programming language is the style of programming that primarily supports 

encapsulation and object identity. Major feature that are required for object-based 

programming are; 

1. Data encapsulation 

2. Data hiding and access mechanisms 

3. Automatic initialization and clear-up of objects 

4. Operator overloading 



39 
 

Object-oriented programmingincorporates all the object-based programming features 

along with two additional features, namely, inheritance and dynamic binding. Object-

oriented programming can thereof be characterized by following statement: 

                                    Object-based features + inheritance + dynamic binding 

 

Data abstraction refers to putting together essential feature without including background 

details. 

Inheritance is process by which objects of one class acquire properties of objects of 

another class 

Polymorphism means one name, multiple forms. It allows us to have more than one 

function with the same name in a program. It also allows overloading of operators so that an 

operation can exhibit different behaviours in different instances. 

Dynamic binding means that the code associated with a given procedure is not known until 

the time of the call at run-time 

Message passing involves specifying the name of the object, the name of the function and 

the information to be sent. 

Object-oriented technology offers several benefits over the conventional programming 

methods—the most important one begin the reusability. 

 

 

 

STANDARD LIBRARIES 

Standard C++ consists of three important parts − 

• The core language giving all the building blocks including variables, data types and 

literals, etc. 

• The C++ Standard Library giving a rich set of functions manipulating files, strings, 

etc. 

• The Standard Template Library (STL) giving a rich set of methods manipulating data 

structures, etc. 

THE ANSI STANDARD 



40 
 

• The ANSI standard is an attempt to ensure that C++ is portable; that code you write 

for Microsoft's compiler will compile without errors, using a compiler on a Mac, 

UNIX, a Windows box, or an Alpha. 

• The ANSI standard has been stable for a while, and all the major C++ compiler 

manufacturers support the ANSI standard. 

BEGINNING WITH C++ 

• C++ is a statically typed, compiled, general-purpose, case-sensitive, free-form 

programming language that supports procedural, object-oriented, and generic 

programming. 

• C++ is regarded as a middle-level language, as it comprises a combination of both 

high-level and low-level language features. 

• C++ was developed by BjarneStroustrup starting in 1979 at Bell Labs in Murray 

Hill, New Jersey, as an enhancement to the C language and originally named C with 

Classes but later it was renamed C++ in 1983. 

• C++ is a superset of C, and that virtually any legal C program is a legal C++ 

program. 

• C++ is a bottom-up approach ie.code is developed for modules and then these 

modules are integrated with main() function. 

Note − A programming language is said to use static typing when type checking is 

performed during compile-time as opposed to run-time. 

USE OF C++ 

• C++ is used by hundreds of thousands of programmers in essentially every 

application domain. 

 

 

• C++ is being highly used to write device drivers and other software that rely on 

direct manipulation of hardware under realtime constraints. 

• C++ is widely used for teaching and research because it is clean enough for 

successful teaching of basic concepts. 

• Anyone who has used either an Apple Macintosh or a PC running Windows has 

indirectly used C++ because the primary user interfaces of these systems are written 

in C++. 

• The most important thing while learning C++ is to focus on concepts. 

• The purpose of learning a programming language is to become a better programmer; 

that is, to become more effective at designing and implementing new systems and at 

maintaining old ones. 



41 
 

• C++ supports a variety of programming styles. You can write in the style of Fortran, 

C, Smalltalk, etc., in any language. Each style can achieve its aims effectively while 

maintaining runtime and space efficiency 

APPLICATIONS OF C++ PROGRAMMING 

As mentioned before, C++ is one of the most widely used programming languages. It has 

it's presence in almost every area of software development. I'm going to list few of them 

here: 

• Application Software Development - C++ programming has been used in 

developing almost all the major Operating Systems like Windows, Mac OSX and 

Linux. Apart from the operating systems, the core part of many browsers like 

Mozilla Firefox and Chrome have been written using C++. C++ also has been used 

in developing the most popular database system called MySQL. 

• Programming Languages Development - C++ has been used extensively in 

developing new programming languages like C#, Java, JavaScript, Perl, UNIX’s C 

Shell, PHP and Python, and Verilog etc. 

• Computation Programming - C++ is the best friends of scientists because of fast 

speed and computational efficiencies. 

• Games Development - C++ is extremely fast which allows programmers to do 

procedural programming for CPU intensive functions and provides greater control 

over hardware, because of which it has been widely used in development of gaming 

engines. 

• Embedded System - C++ is being heavily used in developing Medical and 

Engineering Applications like software for MRI machines, high-end CAD/CAM 

systems etc. 

This list goes on, there are various areas where software developers are happily using C++ 

to provide great software. I highly recommend you to learn C++ and contribute great 

software to the community. 

STRUCTURE OF C++ 



42 
 

 

C++ TOKENS 

Smallest individual units in a program are known as tokens. C++ has following tokens: 

• Keywords 

• Identifiers 

• Constants 

• Strings  

• Operators 

C++ CONTROL STRUCTURES 

• When a program runs, the code is read by the compiler line by line (from top to 

bottom, and for the most part left to right). This is known as "code flow." 

• When the code is being read from top to bottom, it may encounter a point where 

it needs to make a decision. Based on the decision, the program may jump to a 

different part of the code. It may even make the compiler re-run a specific piece 

again, or just skip a bunch of code. 

C++ SYNTAX 

• The syntax is a layout of words, expression, and symbols. 

• Well, it's because an email address has its well-defined syntax. You need some 

combination of letters, numbers, potentially with underscores (_) or periods (.) in 

between, followed by an at the rate (@) symbol, followed by some website domain 

(company.com). 

• So, syntax in a programming language is much the same. They are some well-defined 

set of rules that allow you to create some piece of well-functioning software. 



43 
 

• But, if you don't abide by the rules of a programming language or syntax, you'll get 

errors. 

C++ TOOLS 

• In the real world, a tool is something (usually a physical object) that helps you to get 

a certain job done promptly. 

• Well, this holds true with the programming world too. A tool in programming is 

some piece of software which when used with the code allows you to program faster. 

• There are probably tens of thousands, if not millions of different tools across all the 

programming languages. 

• Most crucial tool, considered by many, is an IDE, an Integrated Development 

Environment. An IDE is a software which will make your coding life so much 

easier. IDEs ensure that your files and folders are organized and give you a nice and 

clean way to view them. 

C++ VARIABLES 

• Variables are the backbone of any programming language. 

• A variable is merely a way to store some information for later use. We can retrieve 

this value or data by referring to a "word" that will describe this information. 

• Once declared and defined they may be used many times within the scope in which 

they were declared 

A variable provides us with a named storage capability. It allows programmer to manipulate 

data as per the need. Every variable in C++ has a type. The variable type helps to determine 

the size and layout of the variable's memory map, the range of values that can be stored 

within that memory, and the set of operations that can be applied to it. 

Variable Name or Identifiers 

Identifiers can be composed of some letters, digits, and the underscore character or some 

combination of them. No limit is imposed on name length. 

Rules for Identifiers 

• begin with either a letter or an underscore ('_'). 

• And are case-sensitive; upper and lowercase letters are distinct. 

 

 

FUNCTIONS IN C++ 



44 
 

• A function is a group of statements that together perform a task.  

• Every C++ program has at least one function, which is main(), and all the most 

trivial programs can define additional functions. 

Create a Function 

C++ provides some pre-defined functions, such as main(), which is used to execute code. 

But you can also create your own functions to perform certain actions. 

To create (often referred to as declare) a function, specify the name of the function, 

followed by parentheses (): 

Syntax 

void myFunction() { 

  // code to be executed 

} 

Example Explained 

• myFunction() is the name of the function 

• void means that the function doesn’t have return value. You will learn more about 

return values later in the next chapter 

• inside the function (the body), add code that defines what the function should do 

FUNCTION DECLARATION AND DEFINITION 

A C++ function consist of two parts: 

• Declaration: the function's name, return type, and parameters (if any) 

• Definition: the body of the function (code to be executed) 

void myFunction() { // declaration 

  // the body of the function (definition) 

} 

Example 

// Function declaration 

void myFunction(); 

 

// The main method 

int main() { 

  myFunction();  // call the function 

  return 0; 



45 
 

} 

 

 

Example 

 

 

FUNCTION DEFINITION 

C++ function definition consists of a function header and a function body. Here are all the 

parts of a function  

• Return Type  

 A function may return a value. The return_type is the data type of the value the 

function returns. Some functions perform the desired operations without returning a 

value. In this case, the return_type is the keyword void. 

• Function Name   

This is the actual name of the function. The function name and the parameter list 

together constitute the function signature. 

• Parameters  

 A parameter is like a placeholder. When a function is invoked, you pass a value to 

the parameter. This value is referred to as actual parameter or argument. The 

parameter list refers to the type, order, and number of the parameters of a function. 

Parameters are optional; that is, a function may contain no parameters. 

• Function Body  

 The function body contains a collection of statements that define what the function 

does. 

CALL A FUNCTION 

• Declared functions are not executed immediately. They are "saved for later use", and 

will be executed later, when they are called. 

• To call a function, write the function's name followed by two parentheses () and a 

semicolon ; 

• In the following example, myFunction() is used to print a text (the action), when it is 

called: 

void myFunction() { 

  cout<< "I just got executed!\n"; 

} 

 
 



46 
 

Example 

Inside main, call myFunction(): 

// Create a function 

void myFunction() { 

  cout<< "I just got executed!"; 

} 

 

int main() { 

  myFunction(); // call the function 

  return 0; 

}// Outputs "I just got executed!" 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Unit II 

void myFunction() { 

  cout<< "I just got executed!\n"; 

} 

 

int main() { 
  myFunction(); 

  myFunction(); 

  myFunction(); 

  return 0; 
} 



47 
 

Classes and Objects – Constructors and Destructors – New Operator – Operator 

Overloading and Type Conversions 

CLASSES AND OBJECTS 

Class: A class in C++ is the building block, that leads to Object-Oriented programming. It 

is a user-defined data type, which holds its own data members and member functions, 

which can be accessed and used by creating an instance of that class. A C++ class is like a 

blueprint for an object. 

For Example: Consider the Class of Cars. There may be many cars with different names 

and brand but all of them will share some common properties like all of them will have 4 

wheels, Speed Limit, Mileage range etc. So here, Car is the class and wheels, speed limits, 

mileage are their properties. 

• A Class is a user defined data-type which has data members and member functions. 

• Data members are the data variables and member functions are the functions used to 

manipulate these variables and together these data members and member functions 

defines the properties and behavior of the objects in a Class. 

• In the above example of class Car, the data member will be speed limit, mileage etc 

and member functions can be apply brakes, increase speed etc. 

An Object is an instance of a Class. When a class is defined, no memory is allocated but 

when it is instantiated (i.e. an object is created) memory is allocated. 

Syntax 

class Classname 

   { 

   // Access Modifier 

   // data member 

   // member function 

   }; 

 

EXAMPLE FOR Class In C++ 

classTest 

{ 

private: 

int data1; 

float data2; 

 

public: 

void function1() 

{ 



48 
 

data1 =2;} 

 

float function2() 

{ 

            data2 =3.5; 

return data2; 

} 

}; 

 

ACCESS MODIFIERS IN C++ 

• Access modifiers are used to implement an important feature of Object-Oriented 

Programming known a data hiding 

• Access Modifiers or Access Specifiers in a classare used to set the accessibility of the 

class members. That is, it sets some restrictions on the class members not to get 

directly accessed by the outside functions. 

There are 3 types of access modifiers available in C++: 

1. Public 

2. Private 

3. Protected 

 

Note: If we do not specify any access modifiers for the members inside the class then by 

default the access modifier for the members will be Private. 

 

1.Public:  

All the class members declared under public will be available to everyone. The data 

members and member functions declared public can be accessed by other classes too. The 

public members of a class can be accessed from anywhere in the program using the direct 

member access operator (.) with the object of that class. 

 

Example  

#include<iostream> 

using namespace std;  

 

// class definition  

class Circle  

{  



49 
 

    public:   

        double radius;  

 

double  compute_area(); 

 

};  

double Circle::compute_area() 

{ 

    radius=4; 

std::cout<< radius*radius << std::endl; 

} 

int main() 

{ 

    Circle circle; 

circle.compute_area(); 

} 

2.private 

 

The class members declared as private can be accessed only by the functions inside 

the class. They are not allowed to be accessed directly by any object or function outside the 

class. Only the member functions or the friend functions are allowed to access the private 

data members of a class. 

Example: 

#include<iostream> 

using namespace std;  

 

// class definition  

class Circle  

{  

    private:  //private data member 

https://www.geeksforgeeks.org/friend-class-function-cpp/


50 
 

        double radius;  

    public:       

double  compute_area(); 

 

};  

double Circle::compute_area() 

{ 

    radius=4; 

std::cout<< radius*radius << std::endl; 

} 

int main() 

{ 

    Circle circle; 

circle.compute_area(); 

} 

3.Protected 

Protected access modifier is similar to that of private access modifiers, the difference 

is that the class member declared as Protected are inaccessible outside the class but they can 

be accessed by any subclass(derived class) of that class. 

Example 

#include <iostream> 

using namespace std;  

   

// base class  

class Parent {  

   

    // protected data members  

protected:  

    int id_protected;  

};  

   

// sub class or derived class  

class Child : public Parent {  



51 
 

   

public:  

    void setId(int id)  

    {  

   

        // Child class is able to access the inherited  

        // protected data members of the base class  

   

        id_protected = id;  

    }  

   

    void displayId()  

    {  

        cout<< "id_protected is: " 

             <<id_protected<<endl;  

    }  

};  

   

// main function  

int main()  

{  

   

    Child obj1;  

   

    // member function of the derived class can  

    // access the protected data members of the base class  

   

    obj1.setId(81);  

    obj1.displayId();  

    return 0;  

}  

float function2() 

{ 

            data2 =3.5; 

return data2; 

} 

}; 

 

intmain() 

{ 

Test t; 

 

} 



52 
 

CLASSNAME OBJECTVARIABLENAME; 

Example 

classTest 

{ 

private: 

int data1; 

float data2; 

 

public: 

void function1() 

{ 

 data1 =2; 

} 
 

Example: Object and Class in C++ Programming 

 

Program to illustrate the working of objects and class in C++ Programming 

#include<iostream> 

usingnamespace std; 

 

classTest 

{ 

private: 

int data1; 

float data2; 

 

public: 

 

voidinsertIntegerData(int d) 

{ 

          data1 = d; 

cout<<"Number: "<< data1; 

} 

 

floatinsertFloatData() 

{ 

cout<<"\nEnter data: "; 

cin>> data2; 

return data2; 

} 

}; 

 

intmain() 



53 
 

{ 

Test o1, o2; 

float secondDataOfObject2; 

 

      o1.insertIntegerData(12); 

      secondDataOfObject2 = o2.insertFloatData(); 

 

cout<<"You entered "<< secondDataOfObject2; 

return0; 

} 

 

Output 

Number: 12 

Enter data: 23.3 

You entered 23.3 

 

CONSTRUCTORS AND DESTRUCTORS 

 

CONSTRUCTORS 

A constructor is a member function of a class which initializes objects of a class. In C++, 

Constructor is automatically called when object(instance of class) create. It is special 

member function of the class. 

constructors are different from a normal function 

• Constructor has same name as the class itself 

• Constructors don’t have return type 

• A constructor is automatically called when an object is created. 

• If we do not specify a constructor, C++ compiler generates a default constructor for us  

 

 

Types of Constructors 

• Default Constructor 

• Parameterized Constructor 

• Copy Constructor 

 

Default Constructors:  

https://www.geeksforgeeks.org/c-internals-default-constructors-set-1/


54 
 

Default constructor is the constructor which doesn’t take any argument. It has no 

parameters. 

 

EXAMPLE FOR DEFAULT CONSTRUCTORS: 

 

#include <iostream> 

using namespace std;  

   

class construct {  

public:  

    int a, b;  

   

    // Default Constructor  

    construct()  

    {  

        a = 10;  

        b = 20;  

    }  

};  

   

int main()  

{  

    // Default constructor called automatically  

    // when the object is created  

    construct c;  

    cout<< "a: " <<c.a<<endl 

         << "b: " <<c.b;  

    return 1;  

}  

Output: 

a: 10 

b: 20 

 

 

Parameterized Constructor 

Parameterized Constructor is possible to pass arguments to constructors. Typically, these 

arguments help initialize an object when it is created. To create a parameterized constructor, 

simply add parameters to it the way you would to any other function. When you define the 

constructor’s body, use the parameters to initialize the object. 

 

 

 

EXAMPLE FOR PARAMETERIZED CONSTRUCTOR 



55 
 

#include <iostream> 

using namespace std;  

   

class Point {  

private:  

    int x, y;  

   

public:  

    // Parameterized Constructor  

    Point(int x1, int y1)  

    {  

        x = x1;  

        y = y1;  

    }  

   

    int getX()  

    {  

        return x;  

    }  

    int getY()  

    {  

        return y;  

    }  

};  

   

int main()  

{  

    // Constructor called  

    Point p1(10, 15);  

   

    // Access values assigned by constructor  

    cout<< "p1.x = " << p1.getX() << ", p1.y = " << p1.getY();  

   

    return 0; 

}  

Output: 

p1.x = 10, p1.y = 15 

 

 

Uses of Parameterized constructor: 

1. It is used to initialize the various data elements of different objects with different 

values when they are created. 

2. It is used to overload constructors. 



56 
 

3.  we have more than one constructors in a class is called Constructor Overloading. 

 

Copy Constructor: 

• A copy constructor is a member function which initializes an object using another 

object of the same class. Detailed article on Copy Constructor. 

• Whenever we define one or more non-default constructors( with parameters ) for a 

class, a default constructor( without parameters ) should also be explicitly defined as 

the compiler will not provide a default constructor in this case. However, it is not 

necessary but it’s considered to be the best practice to always define a default 

constructor. 

Example for copy constructor 

#include <iostream> 

using namespace std;  

   

class Point {  

private:  

  double x, y;  

   

public:  

   

  Point (double px, double py)  // Non-default Constructor & default Constructor 

{  

    x = px, y = py;  

  }  

 

Point(const Point &p2) 

 { 

      X=p2.x; 

      Y =p2.y; 

  } 

  double getx( ) 

   { 

       return x; 

      } 

  double gety( ) 

  { 

     return y; 

    } 

};  

   

int main(void) 

{ 

https://www.geeksforgeeks.org/constructor-overloading-c/
https://www.geeksforgeeks.org/copy-constructor-in-cpp/


57 
 

 Point p1(10,5) 

 Point p2=p1; 

cout<< ”p1.x” <<p1.getx(); 

cout<< ”p1.y” <<p1.gety(); 

cout<<”p2.x”<< p2.getx(); 

cout<<”p2.y”<<p2.gety(); 

 

Output: 

p1.x=10,p2=15 

p1.x=10,p2=15 

 

DESTRUCTORS in C++ 

 

A destructor is a special member function that works just opposite to constructor, 

unlike constructors that are used for initializing an object, destructors destroy (or delete) the 

object. 
 

Syntax of Destructor 

~class_name() 

{ 

//Some code    

} 

USES OF DESTRUCTORS in C++ 

 

A destructor is automatically called when: 

1) The program finished execution. 

2) When a scope (the { } parenthesis) containing local variable ends. 

3) When you call the delete operator. 

 

Destructor Example 

#include<iostream> 

usingnamespace std; 

classHelloWorld{ 

public: 

//Constructor 

HelloWorld(){ 

cout<<"Constructor is called"<<endl; 

https://beginnersbook.com/2017/08/cpp-constructors/
https://beginnersbook.com/2017/08/cpp-variables/


58 
 

} 

//Destructor 

~HelloWorld(){ 

cout<<"Destructor is called"<<endl; 

} 

//Member function 

voiddisplay(){ 

cout<<"Hello World!"<<endl; 

} 

}; 

intmain(){ 

//Object created 

HelloWorld obj; 

//Member function called 

obj.display(); 

return0; 

} 

 

 

Output: 

Constructoris called 

HelloWorld! 

Destructoris called 

 

 

 

Write The Difference Between Constructor And Member Function 

SNO CONSTRUCTOR MEMBER FUNCTION 

1 Constructor doesn’t have a return type Member function has a return type 



59 
 

2 Constructor is automatically called 

when we create the object of the class 
Member function needs to be called 

explicitly using object of class 

3 When we do not create any constructor 

in our class, C++ compiler generates a 

default constructor and insert it into our 

code. 

The same does not apply to member 

functions. 

 

 

NEW OPERATOR 

Dynamic memory allocation in C++ refers to performing memory allocation manually by 

programmer. Dynamically allocated memory is allocated on Heap and non-static and local 

variables get memory allocated on Stack. 

Applications of new operator 

• One use of dynamically allocated memory is to allocate memory of variable size which 

is not possible with compiler allocated memory except variable length arrays. 

• The most important use is flexibility provided to programmers. We are free to allocate 

and deallocate memory whenever we need and whenever we don’t need anymore. 

There are many cases where this flexibility helps. Examples of such cases are Linked 

List, Tree, etc. 

 

Memory allocated vs Normal variables 

For normal variables like “int a”, “char str[10]”, etc, memory is automatically allocated and 

deallocated. For dynamically allocated memory like “int *p = new int[10]”, it is 

programmers responsibility to deallocate memory when no longer needed. If programmer 

doesn’t deallocate memory, it causes memory leak (memory is not deallocated until 

program terminates). 

 

Memory allocated/deallocated in C++ 

C uses malloc() and calloc() function to allocate memory dynamically at run time and uses 

free() function to free dynamically allocated memory. C++ supports these functions and 

also has two operators new anddelete that perform the task of allocating and freeing the 

memory in a better and easier way. The new operator denotes a request for memory 

allocation on the Heap. If sufficient memory is available, new operator initializes the 

memory and returns the address of the newly allocated and initialized memory to the 

pointer variable. 

 

Syntax 

pointer-variable = new data-type; 

 

Here, pointer-variable is the pointer of type data-type. Data-type could be any built-in data 

type including array or any user defined data types including structure and class. 

Example: 

https://www.geeksforgeeks.org/variable-length-arrays-in-c-and-c/
https://www.geeksforgeeks.org/data-structures/linked-list/
https://www.geeksforgeeks.org/data-structures/linked-list/
https://www.geeksforgeeks.org/binary-tree-2/
https://www.geeksforgeeks.org/what-is-memory-leak-how-can-we-avoid/
https://www.geeksforgeeks.org/calloc-versus-malloc/


60 
 

// Pointer initialized with NULL 

// Then request memory for the variable 

int *p = NULL;  

p = new int;    

Initialize memory: We can also initialize the memory using new operator: 

pointer-variable = new data-type(value); 

Example: 

int *p = new int(25); 

float *q = new float(75.25); 

 

Allocate block of memory: new operator is also used to allocate a block(an array) of 

memory of type data-type. 

pointer-variable = new data-type[size]; 

 

• where size(a variable) specifies the number of elements in an array. 

Example 

    int *p = new int[10] 

Dynamically allocates memory for 10 integers continuously of type int and returns 

pointer to the first element of the sequence, which is assigned to p(a pointer). p[0] 

refers to first element, p[1] refers to second element and so on. 

 

 

Normal Array Declaration vs Using new 

There is a difference between declaring a normal array and allocating a block of memory 

using new. The most important difference is, normal arrays are deallocated by compiler (If 

array is local, then deallocated when function returns or completes). However, dynamically 

allocated arrays always remain there until either they are deallocated by programmer or 

program terminates. 

 

DELETE OPERATOR 

Since it is programmer’s responsibility to deallocate dynamically allocated memory, 

programmers are provided delete operator by C++ language. 

Syntax: 

// Release memory pointed by pointer-variable 

delete pointer-variable;   

Here, pointer-variable is the pointer that points to the data object created by new. 

Examples: 

  delete p; 



61 
 

  delete q; 

To free the dynamically allocated array pointed by pointer-variable, use following form 

of delete: 
// Release block of memory  

// pointed by pointer-variable 

delete[] pointer-variable;   

 

Example: 

   // It will free the entire array 

   // pointed by p. 

   delete[] p; 

Example  Program 

// C++ program to illustrate dynamic allocation  

// and deallocation of memory using new and delete  

#include <iostream>  

using namespace std;  

 

int main ()  

{  

 // Pointer initialization to null  

 int* p = NULL;  

 

 // Request memory for the variable  

 // using new operator  

 p = new(nothrow) int;  

 if (!p)  

  cout << "allocation of memory failed\n";  

 else 



62 
 

 {  

  // Store value at allocated address  

  *p = 29;  

  cout << "Value of p: " << *p << endl;  

 }  

 

 // Request block of memory  

 // using new operator  

 float *r = new float(75.25);  

 

 cout << "Value of r: " << *r << endl;  

 

 // Request block of memory of size n  

 int n = 5;  

 int *q = new(nothrow) int[n];  

 

 if (!q)  

  cout << "allocation of memory failed\n";  

 else 

 {  

  for (int i = 0; i < n; i++)  

   q[i] = i+1;  

 

  cout << "Value store in block of memory: ";  

  for (int i = 0; i < n; i++)  



63 
 

   cout << q[i] << " ";  

 }  

 

 // freed the allocated memory  

 delete p;  

 delete r;  

 

 // freed the block of allocated memory  

 delete[] q;  

 

 return 0;  

} 

OVERLOADING 

Operator overloading is a compile-time polymorphism in which 

the operator is overloaded to provide the special meaning to the user-defined data 

type. Operator overloading is used to overload or redefines most of the operators available 

in C++. It is used to perform the operation on the user-defined data type. 

 

 

 

 

 

Operators Overloading 



64 
 

Operator overloading is an important concept in C++. It is a type of polymorphism in which 

an operator is overloaded to give user defined meaning to it. Overloaded operator is used to 

perform operation on user-defined data type.  

For example '+' operator can be overloaded to perform addition on various data types, like 

for Integer, String(concatenation) etc. 

 

Types of Operator 

• Unary operator loading 

• Binary operator loading 

• Binary operator overloading using Friend Function 

Rules for Operator Overloading 

• In case of a non-static function, the binary operator should have only one argument and 

unary should not have an argument. 

• In the case of a friend function, the binary operator should have only two argument and 

unary should have only one argument. 

• All the class member object should be public if operator overloading is implemented. 

• Operators that cannot be overloaded are . .* :: ?: 

• Operator cannot be used to overload when declaring that function as friend 

function = () [] ->. 

 

Syntax 

return_type class_name  : : operator op(argument_list)   

{   

     // body of the function.   

}   

 

Example for Unary operator overloading 

#include<iostream> 

using namespace std;  

 

class Complex {  

private:  

 int real, imag;  

public:  

 Complex(int r = 0, int i =0)  

{ 

real = r;  

imag = i; 

}  



65 
 

  

 // This is automatically called when '+' is used with  

 // between two Complex objects  

 Complex operator + (Complex const &obj) {  

  Complex res;  

  res.real = real + obj.real;  

  res.imag = imag + obj.imag;  

  return res;  

 }  

 void print()  

{  

cout<< real << " + i" <<imag<<endl;  

}  

};  

 

int main()  

{  

 Complex c1(10, 5), c2(2, 4);  

 Complex c3 = c1 + c2; // An example call to "operator+"  

 c3.print();  

}  

Output 

3.1 + i1.5 

1.2 + i2.2 

4.3 + i3.7 

 

Overloading Binary Operator: In binary operator overloading function, there should be 

one argument to be passed. It is overloading of an operator operating on two operands. 

 

Example for Binary operator overloading 

// C++ program to show binary operator overloading  

#include <iostream> 

 

using namespace std;  

 

class Distance {  

public:  

 // Member Object  

 int feet, inch;  

 // No Parameter Constructor  

 Distance()  

 {  



66 
 

  this->feet = 0;  

  this->inch = 0;  

 }  

 

 // Constructor to initialize the object's value  

 // Parametrized Constructor  

 Distance(int f, int i)  

 {  

  this->feet = f;  

  this->inch = i;  

 }  

 

 // Overloading (+) operator to perform addition of  

 // two distance object  

 Distance operator+(Distance& d2) // Call by reference  

 {  

  // Create an object to return  

  Distance d3;  

 

  // Perform addition of feet and inches  

  d3.feet = this->feet + d2.feet;  

  d3.inch = this->inch + d2.inch;  

 

  // Return the resulting object  

  return d3;  

 }  

};  

 

// Driver Code  

int main()  

{  

 // Declaring and Initializing first object  

 Distance d1(8, 9);  

 

 // Declaring and Initializing second object  

 Distance d2(10, 2);  

 

 // Declaring third object  

 Distance d3;  

 

 // Use overloaded operator  

 d3 = d1 + d2;  

 



67 
 

 // Display the result  

 cout<< "\nTotal Feet & Inches: " << d3.feet<< "'" << d3.inch;  

 return 0;  

} 

 

 

Overloading Binary Operator using a Friend function: In this approach, the operator 

overloading function must precede with friend keyword, and declare a function class scope. 

Keeping in mind, friend operator function takes two parameters in a binary operator, varies 

one parameter in a unary operator. All the working and implementation would same as 

binary operator function except this function will be implemented outside of the class 

scope. 

Let’s take the same example using the friend function. 

 

// C++ program to show binary operator overloading  

#include <iostream> 

 

using namespace std;  

 

class Distance {  

public:  

 

 // Member Object  

 int feet, inch;  

 

 // No Parameter Constructor  

 Distance()  

 {  

  this->feet = 0;  

  this->inch = 0;  

 }  

 

 // Constructor to initialize the object's value  

 // Parametrized Constructor  

 Distance(int f, int i)  

 {  

  this->feet = f;  

  this->inch = i;  

 }  

 

 // Declaring friend function using friend keyword  

 friend Distance operator+(Distance&, Distance&);  

};  



68 
 

 

// Implementing friend function with two parameters  

Distance operator+(Distance& d1, Distance& d2) // Call by reference  

{  

 // Create an object to return  

 Distance d3;  

 

 // Perform addition of feet and inches  

 d3.feet = d1.feet + d2.feet;  

 d3.inch = d1.inch + d2.inch;  

 

 // Return the resulting object  

 return d3;  

}  

 

// Driver Code  

int main()  

{  

 // Declaring and Initializing first object  

 Distance d1(8, 9);  

 

 // Declaring and Initializing second object  

 Distance d2(10, 2);  

 

 // Declaring third object  

 Distance d3;  

 

 // Use overloaded operator  

 d3 = d1 + d2;  

 

 // Display the result  

 cout<< "\nTotal Feet & Inches: " << d3.feet<< "'" << d3.inch;  

 return 0;  

} 

 

 

Can we overload all operators? 

Almost all operators can be overloaded except few. Following is the list of operators that 

cannot be overloaded. 

 

 

 
   . (dot)  



69 
 

   ::  

   ?:  

sizeof 

 

Type Conversion in C++ 

A type cast is basically a conversion from one type of data to another type. 

int x; 

float x = 3.14; 

m=x; 

There are two types of type conversion: 

 

 
 

Advantages of Type Conversion: 

• This is done to take advantage of certain features of type hierarchies or type 

representations. 

• It helps to compute expressions containing variables of different data types. 

 

Implicit Type Conversion Also known as ‘automatic type conversion’. 

• Done by the compiler on its own, without any external trigger from the user. 

• Generally takes place when in an expression more than one data type is present. In 

such condition type conversion (type promotion) takes place to avoid lose of data. 

• All the data types of the variables are upgraded to the data type of the variable with 

largest data type. 

• It is possible for implicit conversions to lose information, signs can be lost (when 

signed is implicitly converted to unsigned), and overflow can occur (when long long is 

implicitly converted to float). 

Example  Implicit Conversion 

#include <iostream> 

usingnamespacestd;  

   

intmain()  

{  

    intx = 10; // integer x  

    chary = 'a'; // character c  



70 
 

   

    // y implicitly converted to int. ASCII  

    // value of 'a' is 97  

    x = x + y;  

   

    // x is implicitly converted to float  

    floatz = x + 1.0;  

   

    cout<< "x = "<< x <<endl 

         << "y = "<< y <<endl 

         << "z = "<< z <<endl;  

   

    return0;  

}  

 

Explicit Type Conversion: This process is also called type casting and it is user-defined. 

Here the user can typecast the result to make it of a particular data type. 

In C++, it can be done by two ways: 

1. Converting by assignment 

2. Conversion using Cast operator 

• Converting by assignment: This is done by explicitly defining the required type in 

front of the expression in parenthesis. This can be also considered as forceful casting. 

Syntax 

(type) expression 

where type indicates the data type to which the final result is converted. 

Example: 

#include <iostream> 

usingnamespacestd;  

   

intmain()  

{  

    doublex = 1.2;  

   

    // Explicit conversion from double to int  

    intsum = (int)x + 1;  

   

    cout<< "Sum = "<< sum;  

   

    return0;  

}  

Output: 

Sum = 2 



71 
 

Conversion using Cast operator: A Cast operator is an unary operator which forces one 

data type to be converted into another data type. 

C++ supports four types of casting 

• Static Cast 

• Dynamic Cast 

• Const Cast 

• Reinterpret Cast 

Example 

 

#include <iostream> 

using namespace std;  

int main()  

{  

    float f = 3.5;  

   

    // using cast operator  

    int b = static_cast<int>(f);  

   

    cout<< b;  

}  

Output: 

3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.geeksforgeeks.org/static_cast-in-c-type-casting-operators/
https://www.geeksforgeeks.org/casting-operators-in-c-set-1-const_cast/
https://www.geeksforgeeks.org/reinterpret_cast-in-cpp/


72 
 

 

 

 

Unit II 

Classes and Objects – Constructors and Destructors – New Operator – Operator 

Overloading and Type Conversions 

CLASSES AND OBJECTS 

Class: A class in C++ is the building block, that leads to Object-Oriented programming. It 

is a user-defined data type, which holds its own data members and member functions, 

which can be accessed and used by creating an instance of that class. A C++ class is like a 

blueprint for an object. 

For Example: Consider the Class of Cars. There may be many cars with different names 

and brand but all of them will share some common properties like all of them will have 4 

wheels, Speed Limit, Mileage range etc. So here, Car is the class and wheels, speed limits, 

mileage are their properties. 

• A Class is a user defined data-type which has data members and member functions. 

• Data members are the data variables and member functions are the functions used to 

manipulate these variables and together these data members and member functions 

defines the properties and behavior of the objects in a Class. 

• In the above example of class Car, the data member will be speed limit, mileage etc 

and member functions can be apply brakes, increase speed etc. 

An Object is an instance of a Class. When a class is defined, no memory is allocated but 

when it is instantiated (i.e. an object is created) memory is allocated. 

Syntax 

class Classname 

   { 

   // Access Modifier 

   // data member 

   // member function 

   }; 

 

 

 

 

EXAMPLE FOR Class In C++ 



73 
 

class Test 

{ 

    private: 

        int data1; 

        float data2;   

 

    public:   

        void function1() 

        {    

         data1 = 2;  }  

 

        float function2() 

        {  

            data2 = 3.5; 

            return data2; 

        } 

   }; 

 

ACCESS MODIFIERS IN C++ 

• Access modifiers are used to implement an important feature of Object-Oriented 

Programming known a data hiding  

• Access Modifiers or Access Specifiers in a class are used to set the accessibility of 

the class members. That is, it sets some restrictions on the class members not to get 

directly accessed by the outside functions. 

There are 3 types of access modifiers available in C++: 

4. Public 

5. Private 

6. Protected 

 

Note: If we do not specify any access modifiers for the members inside the class then by 

default the access modifier for the members will be Private. 

 

1.Public:  

All the class members declared under public will be available to everyone. The data 

members and member functions declared public can be accessed by other classes too. The 

public members of a class can be accessed from anywhere in the program using the direct 

member access operator (.) with the object of that class. 

 

Example  



74 
 

#include<iostream>  

using namespace std;  

   

// class definition  

class Circle  

{  

    public:   

        double radius;  

           

        double  compute_area(); 

       

};  

double Circle::compute_area() 

{ 

    radius=4; 

    std::cout << radius*radius << std::endl; 

} 

int main() 

{ 

    Circle circle; 

    circle.compute_area(); 

} 

 

2.private 

 

The class members declared as private can be accessed only by the functions inside 

the class. They are not allowed to be accessed directly by any object or function outside the 

class. Only the member functions or the friend functions are allowed to access the private 

data members of a class. 

Example: 

https://www.geeksforgeeks.org/friend-class-function-cpp/


75 
 

#include<iostream> 

using namespace std;  

   

// class definition  

class Circle  

{  

    private:  //private data member 

        double radius;  

    public:       

        double  compute_area(); 

       

};  

double Circle::compute_area() 

{ 

    radius=4; 

    std::cout << radius*radius << std::endl; 

} 

int main() 

{ 

    Circle circle; 

    circle.compute_area(); 

} 

3.Protected 

Protected access modifier is similar to that of private access modifiers, the difference 

is that the class member declared as Protected are inaccessible outside the class but they can 

be accessed by any subclass(derived class) of that class. 

Example 

#include <iostream>  

using namespace std;  



76 
 

   

// base class  

class Parent {  

   

    // protected data members  

protected:  

    int id_protected;  

};  

   

// sub class or derived class  

class Child : public Parent {  

   

public:  

    void setId(int id)  

    {  

   

        // Child class is able to access the inherited  

        // protected data members of the base class  

   

        id_protected = id;  

    }  

   

    void displayId()  

    {  

        cout << "id_protected is: " 

             << id_protected << endl;  

    }  

};  

   

// main function  

int main()  

{  

   

    Child obj1;  

   

    // member function of the derived class can  

    // access the protected data members of the base class  

   

    obj1.setId(81);  

    obj1.displayId();  

    return 0;  

}  

float function2() 



77 
 

        {  

            data2 = 3.5; 

            return data2; 

        } 

   }; 

 

int main() 

{ 

    Test t; 

      

} 

 

CLASSNAME OBJECTVARIABLENAME; 

 Example 

class Test 

{ 

    private: 

        int data1; 

        float data2;   

 

    public:   

        void function1() 

        {   

         data1 = 2;   

}  
        
Example: Object and Class in C++ Programming 

 

Program to illustrate the working of objects and class in C++ Programming 

#include <iostream> 

using namespace std; 

 

class Test 

{ 

    private: 

        int data1; 

        float data2; 

 

    public: 

        

       void insertIntegerData(int d) 

       { 



78 
 

          data1 = d; 

          cout << "Number: " << data1; 

        } 

 

       float insertFloatData() 

       { 

           cout << "\nEnter data: "; 

           cin >> data2; 

           return data2; 

        } 

}; 

 

 int main() 

 { 

      Test o1, o2; 

      float secondDataOfObject2; 

 

      o1.insertIntegerData(12); 

      secondDataOfObject2 = o2.insertFloatData(); 

 

      cout << "You entered " << secondDataOfObject2; 

      return 0; 

 } 

 

Output 

Number: 12 

Enter data: 23.3 

You entered 23.3 

 

CONSTRUCTORS AND DESTRUCTORS 

 

CONSTRUCTORS 

A constructor is a member function of a class which initializes objects of a class. In C++, 

Constructor is automatically called when object(instance of class) create. It is special 

member function of the class. 



79 
 

                                                                                             

 
constructors are different from a normal function 

• Constructor has same name as the class itself 

• Constructors don’t have return type 

• A constructor is automatically called when an object is created. 

• If we do not specify a constructor, C++ compiler generates a default constructor for us  

 

 

Types of Constructors 

• Default Constructor 

• Parameterized Constructor 

• Copy Constructor 

 

Default Constructors:  

 

Default constructor is the constructor which doesn’t take any argument. It has no 

parameters. 

 

EXAMPLE FOR DEFAULT CONSTRUCTORS: 

 

#include <iostream>  

using namespace std;  

   

class construct {  

public:  

    int a, b;  

   

    // Default Constructor  

    construct()  

    {  

        a = 10;  

        b = 20;  

    }  

};  

   

int main()  

https://www.geeksforgeeks.org/c-internals-default-constructors-set-1/


80 
 

{  

    // Default constructor called automatically  

    // when the object is created  

    construct c;  

    cout << "a: " << c.a << endl  

         << "b: " << c.b;  

    return 1;  

}  

Output: 

a: 10 

b: 20 

 

 

Parameterized Constructor 

Parameterized Constructor is possible to pass arguments to constructors. Typically, 

these arguments help initialize an object when it is created. To create a parameterized 

constructor, simply add parameters to it the way you would to any other function. When 

you define the constructor’s body, use the parameters to initialize the object. 

 

 

 

EXAMPLE FOR PARAMETERIZED CONSTRUCTOR 

#include <iostream>  

using namespace std;  

   

class Point {  

private:  

    int x, y;  

   

public:  

    // Parameterized Constructor  

    Point(int x1, int y1)  

    {  

        x = x1;  

        y = y1;  

    }  

   

    int getX()  

    {  

        return x;  

    }  

    int getY()  

    {  



81 
 

        return y;  

    }  

};  

   

int main()  

{  

    // Constructor called  

    Point p1(10, 15);  

   

    // Access values assigned by constructor  

    cout << "p1.x = " << p1.getX() << ", p1.y = " << p1.getY();  

   

    return 0; 

}  

Output: 

p1.x = 10, p1.y = 15 

 

 

Uses of Parameterized constructor: 

4. It is used to initialize the various data elements of different objects with different 

values when they are created. 

5. It is used to overload constructors. 

6.  we have more than one constructors in a class is called Constructor Overloading. 

 

Copy Constructor: 

• A copy constructor is a member function which initializes an object using another 

object of the same class. Detailed article on Copy Constructor. 

• Whenever we define one or more non-default constructors( with parameters ) for a 

class, a default constructor( without parameters ) should also be explicitly defined as 

the compiler will not provide a default constructor in this case. However, it is not 

necessary but it’s considered to be the best practice to always define a default 

constructor. 

Example for copy constructor 

#include <iostream>  

using namespace std;  

   

class Point {  

private:  

  double x, y;  

   

public:  

   

https://www.geeksforgeeks.org/constructor-overloading-c/
https://www.geeksforgeeks.org/copy-constructor-in-cpp/


82 
 

  Point (double px, double py)  // Non-default Constructor & default Constructor 

 {  

    x = px, y = py;  

  }  

 

 Point(const Point &p2) 

 { 

      X=p2.x; 

      Y =p2.y; 

  } 

  double getx( ) 

   { 

       return x; 

      } 

  double gety( ) 

  { 

     return y; 

    } 

};  

   

int main(void) 

{ 

 Point p1(10,5) 

 Point p2=p1; 

cout<< ”p1.x” <<p1.getx(); 

cout<< ”p1.y” <<p1.gety(); 

 cout<<”p2.x”<< p2.getx(); 

 cout<<”p2.y”<<p2.gety(); 

 

Output: 

p1.x=10,p2=15 

p1.x=10,p2=15 

 

DESTRUCTORS in C++ 

 

A destructor is a special member function that works just opposite to constructor, 

unlike constructors that are used for initializing an object, destructors destroy (or delete) the 

object. 
 

Syntax of Destructor 

~class_name()     

{    

https://beginnersbook.com/2017/08/cpp-constructors/


83 
 

   //Some code    

} 

USES OF DESTRUCTORS in C++ 

 

A destructor is automatically called when: 

1) The program finished execution. 

2) When a scope (the { } parenthesis) containing local variable ends. 

3) When you call the delete operator. 

 

Destructor Example 

#include <iostream> 

using namespace std; 

class HelloWorld{ 

public: 

  //Constructor 

  HelloWorld(){ 

    cout<<"Constructor is called"<<endl; 

  } 

  //Destructor 

  ~HelloWorld(){ 

    cout<<"Destructor is called"<<endl; 

   } 

   //Member function 

   void display(){ 

     cout<<"Hello World!"<<endl; 

   } 

}; 

int main(){ 

   //Object created 

   HelloWorld obj; 

   //Member function called 

   obj.display(); 

https://beginnersbook.com/2017/08/cpp-variables/


84 
 

   return 0; 

} 

 

 

Output: 

Constructor is called 

Hello World! 

Destructor is called 

 

Write The Difference Between Constructor And Member Function 

SNO CONSTRUCTOR MEMBER FUNCTION 

1 Constructor doesn’t have a return type Member function has a return type 

2 Constructor is automatically called 

when we create the object of the class 
Member function needs to be called 

explicitly using object of class 

3 When we do not create any constructor 

in our class, C++ compiler generates a 

default constructor and insert it into our 

code. 

The same does not apply to member 

functions. 

 

 

Overloading 

Operator overloading is a compile-time polymorphism in which 

the operator is overloaded to provide the special meaning to the user-defined data 

type. Operator overloading is used to overload or redefines most of the operators available 

in C++. It is used to perform the operation on the user-defined data type. 

 

 

 



85 
 

 

Operators Overloading 

Operator overloading is an important concept in C++. It is a type of polymorphism in which 

an operator is overloaded to give user defined meaning to it. Overloaded operator is used to 

perform operation on user-defined data type.  

For example '+' operator can be overloaded to perform addition on various data types, like 

for Integer, String(concatenation) etc. 

 

Types of Operator 

• Unary operator loading 

• Binary operator loading 

• Binary operator overloading using Friend Function 

Rules for Operator Overloading 

• In case of a non-static function, the binary operator should have only one argument and 

unary should not have an argument. 

• In the case of a friend function, the binary operator should have only two argument and 

unary should have only one argument. 

• All the class member object should be public if operator overloading is implemented. 

• Operators that cannot be overloaded are . .* :: ?: 

• Operator cannot be used to overload when declaring that function as friend 

function = () [] ->. 

 

Syntax 

return_type class_name  : : operator op(argument_list)   

{   

     // body of the function.   

}   

 

Example for Unary operator overloading 

#include<iostream>  

using namespace std;  

 

class Complex {  

private:  

 int real, imag;  

public:  

 Complex(int r = 0, int i =0)  

          { 



86 
 

             real = r;  

             imag = i; 

          }  

  

 // This is automatically called when '+' is used with  

 // between two Complex objects  

 Complex operator + (Complex const &obj) {  

  Complex res;  

  res.real = real + obj.real;  

  res.imag = imag + obj.imag;  

  return res;  

 }  

 void print()  

            {  

               cout << real << " + i" << imag << endl;  

             }  

};  

 

int main()  

{  

 Complex c1(10, 5), c2(2, 4);  

 Complex c3 = c1 + c2; // An example call to "operator+"  

 c3.print();  

}  

Output 

3.1 + i1.5 

1.2 + i2.2 

4.3 + i3.7 

 

Overloading Binary Operator: In binary operator overloading function, there should be 

one argument to be passed. It is overloading of an operator operating on two operands. 

 

 

Example for Binary operator overloading 

// C++ program to show binary operator overloading  

#include <iostream>  

 

using namespace std;  

 

class Distance {  

public:  

 // Member Object  



87 
 

 int feet, inch;  

 // No Parameter Constructor  

 Distance()  

 {  

  this->feet = 0;  

  this->inch = 0;  

 }  

 

 // Constructor to initialize the object's value  

 // Parametrized Constructor  

 Distance(int f, int i)  

 {  

  this->feet = f;  

  this->inch = i;  

 }  

 

 // Overloading (+) operator to perform addition of  

 // two distance object  

 Distance operator+(Distance& d2) // Call by reference  

 {  

  // Create an object to return  

  Distance d3;  

 

  // Perform addition of feet and inches  

  d3.feet = this->feet + d2.feet;  

  d3.inch = this->inch + d2.inch;  

 

  // Return the resulting object  

  return d3;  

 }  

};  

 

// Driver Code  

int main()  

{  

 // Declaring and Initializing first object  

 Distance d1(8, 9);  

 

 // Declaring and Initializing second object  

 Distance d2(10, 2);  

 

 // Declaring third object  

 Distance d3;  



88 
 

 

 // Use overloaded operator  

 d3 = d1 + d2;  

 

 // Display the result  

 cout << "\nTotal Feet & Inches: " << d3.feet << "'" << d3.inch;  

 return 0;  

} 

 

Overloading Binary Operator using a Friend function: In this approach, the operator 

overloading function must precede with friend keyword, and declare a function class scope. 

Keeping in mind, friend operator function takes two parameters in a binary operator, varies 

one parameter in a unary operator. All the working and implementation would same as 

binary operator function except this function will be implemented outside of the class 

scope. 

Let’s take the same example using the friend function. 

 

// C++ program to show binary operator overloading  

#include <iostream>  

 

using namespace std;  

 

class Distance {  

public:  

 

 // Member Object  

 int feet, inch;  

 

 // No Parameter Constructor  

 Distance()  

 {  

  this->feet = 0;  

  this->inch = 0;  

 }  

 

 // Constructor to initialize the object's value  

 // Parametrized Constructor  

 Distance(int f, int i)  

 {  

  this->feet = f;  

  this->inch = i;  

 }  

 



89 
 

 // Declaring friend function using friend keyword  

 friend Distance operator+(Distance&, Distance&);  

};  

 

// Implementing friend function with two parameters  

Distance operator+(Distance& d1, Distance& d2) // Call by reference  

{  

 // Create an object to return  

 Distance d3;  

 

 // Perform addition of feet and inches  

 d3.feet = d1.feet + d2.feet;  

 d3.inch = d1.inch + d2.inch;  

 

 // Return the resulting object  

 return d3;  

}  

 

// Driver Code  

int main()  

{  

 // Declaring and Initializing first object  

 Distance d1(8, 9);  

 

 // Declaring and Initializing second object  

 Distance d2(10, 2);  

 

 // Declaring third object  

 Distance d3;  

 

 // Use overloaded operator  

 d3 = d1 + d2;  

 

 // Display the result  

 cout << "\nTotal Feet & Inches: " << d3.feet << "'" << d3.inch;  

 return 0;  

} 

 

 

Can we overload all operators? 

Almost all operators can be overloaded except few. Following is the list of operators that 

cannot be overloaded. 
   . (dot)  



90 
 

   ::  

   ?:  

   sizeof  

 

Type Conversion in C++ 

A type cast is basically a conversion from one type to another. There are two types of type 

conversion: 

 

 
 

Advantages of Type Conversion: 

• This is done to take advantage of certain features of type hierarchies or type 

representations. 

• It helps to compute expressions containing variables of different data types. 

 

Implicit Type Conversion Also known as ‘automatic type conversion’. 

• Done by the compiler on its own, without any external trigger from the user. 

• Generally takes place when in an expression more than one data type is present. In 

such condition type conversion (type promotion) takes place to avoid lose of data. 

• All the data types of the variables are upgraded to the data type of the variable with 

largest data type. 

• It is possible for implicit conversions to lose information, signs can be lost (when 

signed is implicitly converted to unsigned), and overflow can occur (when long long is 

implicitly converted to float). 

Example  Implicit Conversion 

#include <iostream>  

using namespace std;  

   

int main()  

{  

    int x = 10; // integer x  

    char y = 'a'; // character c  

   

    // y implicitly converted to int. ASCII  

    // value of 'a' is 97  

    x = x + y;  



91 
 

   

    // x is implicitly converted to float  

    float z = x + 1.0;  

   

    cout << "x = " << x << endl  

         << "y = " << y << endl  

         << "z = " << z << endl;  

   

    return 0;  

}  

 

Explicit Type Conversion: This process is also called type casting and it is user-defined. 

Here the user can typecast the result to make it of a particular data type. 

In C++, it can be done by two ways: 

1. Converting by assignment 

2. Conversion using Cast operator 

• Converting by assignment: This is done by explicitly defining the required type in 

front of the expression in parenthesis. This can be also considered as forceful casting. 

Syntax: 

(type) expression 

where type indicates the data type to which the final result is converted. 

Example: 

#include <iostream>  

using namespace std;  

   

int main()  

{  

    double x = 1.2;  

   

    // Explicit conversion from double to int  

    int sum = (int)x + 1;  

   

    cout << "Sum = " << sum;  

   

    return 0;  

}  

Output: 

Sum = 2 

Conversion using Cast operator: A Cast operator is an unary operator which forces one 

data type to be converted into another data type. 

C++ supports four types of casting 



92 
 

• Static Cast 

• Dynamic Cast 

• Const Cast 

• Reinterpret Cast 

Example 

 

#include <iostream>  

using namespace std;  

int main()  

{  

    float f = 3.5;  

   

    // using cast operator  

    int b = static_cast<int>(f);  

   

    cout << b;  

}  

Output: 

3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.geeksforgeeks.org/static_cast-in-c-type-casting-operators/
https://www.geeksforgeeks.org/casting-operators-in-c-set-1-const_cast/
https://www.geeksforgeeks.org/reinterpret_cast-in-cpp/


93 
 

 

 

Unit- III 

Inheritance: Extending Classes – Pointers – Virtual Functions and Polymorphism  

 

INHERITANCE: EXTENDING CLASSES IN C++ 

• In C++, inheritance is a process in which one object acquires all the properties and 

behaviors of its parent object automatically.  

• In such way, you can reuse, extend or modify the attributes and behaviors which are 

defined in other class. 

• In C++, the class which inherits the members of another class is called derived class 

and the class whose members are inherited is called base class.  

• The derived class is the specialized class for the base class. 

Derived Classes 

• A Derived class is defined as the class derived from the base class. 

The Syntax of Derived class: 

class derived_class_name : visibility-mode base_class_name   

{   

    // body of the derived class.   

}   

derived_class_name: It is the name of the derived class. 

visibility mode: The visibility mode specifies whether the features of the base class are 

publicly inherited or privately inherited. It can be public or private. 

base_class_name: It is the name of the base class. 

• When the base class is privately inherited by the derived class, public members of the 

base class becomes the private members of the derived class. 

• Therefore, the public members of the base class are not accessible by the objects of 

the derived class only by the member functions of the derived class. 



94 
 

• When the base class is publicly inherited by the derived class, public members of the 

base class also become the public members of the derived class.  

• Therefore, the public members of the base class are accessible by the objects of the 

derived class as well as by the member functions of the base class. 

Note: 

o In C++, the default mode of visibility is private. 

o The private members of the base class are never inherited. 

ADVANTAGE OF C++ INHERITANCE 

Code reusability: Now you can reuse the members of your parent class. So, there is no 

need to define the member again. So, less code is required in the class. 

Types of Inheritance 

o Single inheritance 

o Multiple inheritance 

o Hierarchical inheritance 

o Multilevel inheritance 

o Hybrid inheritance 

SINGLE INHERITANCE 

Single inheritance is defined as the inheritance in which a derived class is inherited from 

the only one base class. 

 

Where 'A' is the base class, and 'B' is the derived class. 

 



95 
 

 

Example Program 

#include <iostream> 

using namespace std;   

class Account {   

public:   

float salary = 60000;    

 };   

class Programmer: public Account {   

public:   

float bonus = 5000;  

 };        

int main(void)  

{   

Programmer p1;   

cout<<"Salary: "<<p1.salary<<endl; 

cout<<"Bonus: "<<p1.bonus<<endl;    

return 0;   

}   

 

Output: 

Salary: 60000 



96 
 

Bonus: 5000 

Example using Animal Characteristics 

#include <iostream>   

using namespace std;   

 class Animal  

{   

 public:   

 void eat()  

{    

    cout<<"Eating..."<<endl;    

 }     

 };   

  

class Dog: public Animal     

{     

 public:   

 void bark() 

{   

    cout<<"Barking...";    

  }     

};    

int main(void) {   

    Dog d1;   

    d1.eat();   

    d1.bark();   

    return 0;   

}   

Output: 

Eating... 

Barking... 

 

How to make a Inherit Access Modifier  



97 
 

• The private member is not inheritable. If we modify the visibility mode by making it 

public, but this takes away the advantage of data hiding. 

• C++ introduces a third visibility modifier, i.e., protected.  

• The member which is declared as protected will be accessible to all the member 

functions within the class as well as the class immediately derived from it. 

Visibility modes can be classified into three categories: 

• Public: When the member is declared as public, it is accessible to all the functions of 

the program. 

• Private: When the member is declared as private, it is accessible within the class 

only. 

• Protected: When the member is declared as protected, it is accessible within its own 

class as well as the class immediately derived from it. 

• Visibility of Inherited Members 

 

Base class visibility Derived class visibility 

Public Private Protected 

Private Not Inherited Not Inherited Not Inherited 

Protected Protected Private Protected 

Public Public Private Protected 

MULTILEVEL INHERITANCE 

• Multilevel inheritance is a process of deriving a class from another derived class. 

 



98 
 

• When one class inherits another class which is further inherited by another class, it is 

known as multi-level inheritance in C++.  

• Inheritance is transitive so the last derived class acquires all the members of all its 

base classes. 

Example Program 

#include <iostream> 

using namespace std;   

class Animal  

{   

public:   

void eat()  

{    

cout<<"Eating..."<<endl;    

 }     

};   

class Dog: public Animal    

{     

public:   

void bark() 

{   

cout<<"Barking..."<<endl;    

}     

};    

classBabyDog: public Dog    

{     

public:   

void weep()  

{   



99 
 

cout<<"Weeping...";    

 }     

};    

int main(void) {   

BabyDog d1;   

d1.eat();   

d1.bark();   

d1.weep();   

return 0;   

}   

Output: 

Eating... 

Barking... 

Weeping... 

 

MULTIPLE INHERITANCE 

• Multiple inheritance is the process of deriving a new class that inherits the attributes 

from two or more classes. 

 

Syntax of the Derived class: 

class D : visibility B-1, visibility B-2 

{   

    // Body of the class;   

}    



100 
 

 

Example: 

#include <iostream> 

using namespace std;   

class A   

{   

protected:   

int a;   

public:   

voidget_a(int n)   

    {   

        a = n;   

    }   

};   

 

class B   

{   

protected:   

int b;   

public:   

voidget_b(int n)   

    {   

        b = n;   

    }   

};   

class C : public A,public B   

{   



101 
 

public:   

void display()   

    {   

std::cout<< "The value of a is : " <<a<<std::endl;   

std::cout<< "The value of b is : " <<b<<std::endl;   

cout<<"Addition of a and b is : "<<a+b;   

    }   

};   

int main()   

{   

   C c; 

c.get_a(10);   

c.get_b(20);   

c.display();   

return 0;   

}   

Output: 

The value of a is : 10 

The value of b is : 20 

Addition of a and b is : 30 

 

 

 

 

 

HYBRID INHERITANCE 

• Hybrid inheritance is a combination of more than one type of inheritance. 



102 
 

 
 

 

Example 

 

#include <iostream>   

using namespace std;   

class A   

{   

    protected:   

    int a;   

    public:   

    void get_a()   

    {  

        std::cout << "Enter the value of 'a' : " << std::endl;   

       cin>>a;   

    }   

};   

   

class B : public A    

{   

    protected:   

    int b;   

    public:   

    void get_b()   

    {   

        std::cout << "Enter the value of 'b' : " << std::endl;   

       cin>>b;   



103 
 

    }   

};   

class C    

{   

    protected:   

    int c;   

    public:   

    void get_c()   

    {   

        std::cout << "Enter the value of c is : " << std::endl;   

        cin>>c;   

    }   

};   

   

class D : public B, public C   

{   

    protected:   

    int d;   

    public:   

    void mul()   

    {   

         get_a();   

         get_b();   

         get_c();   

         std::cout << "Multiplication of a,b,c is : " <<a*b*c<< std::endl;   

    }   

};   

int main()   

{   

    D d;   

    d.mul();   

    return 0;   

}   

Output: 

Enter the value of 'a' : 

10               



104 
 

Enter the value of 'b' : 

20       

Enter the value of c is : 

30   

Multiplication of a,b,c is : 6000 

HIERARCHICAL INHERITANCE 

• Hierarchical inheritance is defined as the process of deriving more than one class 

from a base class. 

 

Syntax of Hierarchical inheritance: 

class A   

{   

    // body of the class A.   

}     

class B : public A    

{   

   // body of class B.   

} 

 class C : public A   

{   

    // body of class C.   

}    

class D : public A   

{   

    // body of class D.   

}    

 

Example Program: 



105 
 

 

#include <iostream>   

using namespace std;   

class Shape                 // Declaration of base class.   

{   

    public:   

    int a;   

    int b;   

    void get_data(int n,int m)   

    {   

        a= n;   

        b = m;   

    }   

};   

class Rectangle : public Shape  // inheriting Shape class   

{   

    public:   

    int rect_area()   

    {   

        int result = a*b;   

        return result;   

    }   

};   

class Triangle : public Shape    // inheriting Shape class   

{   

    public:   

    int triangle_area()   

    {   

        float result = 0.5*a*b;   

        return result;   

    }   

};   

int main()   

{   

    Rectangle r;   

    Triangle t;   

    int length, breadth, base, height;   

    std::cout << "Enter the length and breadth of a rectangle: " << std::endl;   



106 
 

    cin>>length>>breadth;   

    r.get_data(length,breadth);   

    int m = r.rect_area();   

    std::cout << "Area of the rectangle is : " <<m<< std::endl;   

    std::cout << "Enter the base and height of the triangle: " << std::endl;   

    cin>>base>>height;   

    t.get_data(base,height);   

    float n = t.triangle_area();   

    std::cout <<"Area of the triangle is : "  << n<<std::endl;   

    return 0;   

}   

 

Output: 

Enter the length and breadth of a rectangle: 

23   

20   

Area of the rectangle is : 460           

Enter the base and height of the triangle:   

2    

5 

Area of the triangle is : 5  

 

POINTERS 

• Pointers are symbolic representation of addresses. They enable programs to simulate 

call-by-reference as well as to create and manipulate dynamic data structures.  

Syntax: 

 

datatype *var_name;  

int *ptr;   //ptr can point to an address which holds int data 

 



107 
 

 

 

How to use a pointer? 

• Define a pointer variable 

• Assigning the address of a variable to a pointer using unary operator (&) which returns 

the address of that variable. 

• Accessing the value stored in the address using unary operator (*) which returns the 

value of the variable located at the address specified by its operand. 

The reason we associate data type to a pointer is that it knows how many bytes the data is 

stored in. When we increment a pointer, we increase the pointer by the size of data type to 

which it points. 

 

 
 

 

 

 

 

Example: 

 

#include <iostream.h> 

using namespace std;  

https://media.geeksforgeeks.org/wp-content/uploads/pointers-in-c.png


108 
 

void geeks()  

{  

 intvar = 20;  

  

  //declare pointer variable  

 int *ptr;  

  

 //note that data type of ptr and var must be same  

 ptr = &var;  

 

 // assign the address of a variable to a pointer  

 cout<< "Value at ptr = " <<ptr<< "\n";  

 cout<< "Value at var = " <<var<< "\n";  

 cout<< "Value at *ptr = " << *ptr<< "\n";  

}  

//Driver program  

int main()  

{  

 geeks();  

} 

 

Output: 

Value at ptr = 0x7ffcb9e9ea4c 

Value at var = 20 

Value at *ptr = 20 

 

REFERENCES AND POINTERS 

There are 3 ways to pass C++ arguments to a function: 

• call-by-value 

• call-by-reference with pointer argument 

• call-by-reference with reference argument 

// C++ program to illustrate call-by-methods in C++  

 

#include <iostream.h> 



109 
 

using namespace std;  

//Pass-by-Value  

int square1(int n)  

{  

 //Address of n in square1() is not the same as n1 in main()  

 cout<< "address of n1 in square1(): " <<&n << "\n";  

  

 // clone modified inside the function  

 n *= n;  

 return n;  

}  

//Pass-by-Reference with Pointer Arguments  

void square2(int *n)  

{  

 //Address of n in square2() is the same as n2 in main()  

 cout<< "address of n2 in square2(): " << n << "\n";  

  

 // Explicit de-referencing to get the value pointed-to  

 *n *= *n;  

}  

//Pass-by-Reference with Reference Arguments  

void square3(int&n)  

{  

 //Address of n in square3() is the same as n3 in main()  

 cout<< "address of n3 in square3(): " <<&n << "\n";  

  

 // Implicit de-referencing (without '*')  



110 
 

 n *= n;  

}  

void geeks()  

{  

 //Call-by-Value  

 int n1=8;  

 cout<< "address of n1 in main(): " <<&n1 << "\n";  

 cout<< "Square of n1: " << square1(n1) << "\n";  

 cout<< "No change in n1: " << n1 << "\n";  

  

 //Call-by-Reference with Pointer Arguments  

 int n2=8;  

 cout<< "address of n2 in main(): " <<&n2 << "\n";  

 square2(&n2);  

 cout<< "Square of n2: " << n2 << "\n";  

 cout<< "Change reflected in n2: " << n2 << "\n";  

  

 //Call-by-Reference with Reference Arguments  

 int n3=8;  

 cout<< "address of n3 in main(): " <<&n3 << "\n";  

 square3(n3);  

 cout<< "Square of n3: " << n3 << "\n";  

 cout<< "Change reflected in n3: " << n3 << "\n";  

}  

//Driver program  

int main()  

{  



111 
 

 geeks();  

} 

 

Output: 

address of n1 in main(): 0x7ffcdb2b4a44 

address of n1 in square1(): 0x7ffcdb2b4a2c 

Square of n1: 64 

No change in n1: 8 

address of n2 in main(): 0x7ffcdb2b4a48 

address of n2 in square2(): 0x7ffcdb2b4a48 

Square of n2: 64 

Change reflected in n2: 64 

address of n3 in main(): 0x7ffcdb2b4a4c 

address of n3 in square3(): 0x7ffcdb2b4a4c 

Square of n3: 64 

Change reflected in n3: 64 

 

• In C++, by default arguments are passed by value and the changes made in the called 

function will not reflect in the passed variable.  

• The changes are made into a clone made by the called function. 

If wish to modify the original copy directly (especially in passing huge object or 

array) and/or avoid the overhead of cloning, we use pass-by-reference.  

• Pass-by-reference with Reference Arguments does not require any clumsy syntax for 

referencing and dereferencing. 

• Function pointers in C 

• Pointer to a function 

 

ARRAY NAME AS POINTERS 

https://www.geeksforgeeks.org/function-pointer-in-c/
https://www.geeksforgeeks.org/how-to-declare-a-pointer-to-a-function/


112 
 

• An array name contains the address of first element of the array which acts like 

constant pointer. It means, the address stored in array name can’t be changed. 

For example, if we have an array named val then val and &val[0] can be used 

interchangeably. 

 

Example 

#include <iostream> 

using namespace std;  

void geeks()  

{  

 //Declare an array  

 int val [3] = { 5, 10, 20 };  

  

 //declare pointer variable  

 int *ptr;  

  

 //Assign the address of val[0] to ptr 

 // We can use ptr=&val[0];(both are same)  

 ptr = val ;  

 cout<< "Elements of the array are: ";  

 cout<<ptr [0] << " " <<ptr [1] << " " <<ptr [2];  

}  

//Driver program  

int main()  

{  

 geeks();  

} 

 

Output: 

Elements of the array are: 5 10 20 

 

 

• If pointer ptr is sent to a function as an argument, the array val can be accessed in a 

similar fashion. 

https://media.geeksforgeeks.org/wp-content/uploads/Untitled-presentation-2.png
https://media.geeksforgeeks.org/wp-content/uploads/Untitled-presentation-2.png


113 
 

Pointer Expressions and Pointer Arithmetic 

A limited set of arithmetic operations can be performed on pointers which are: 

• incremented ( ++ ) 

• decremented ( — ) 

• an integer may be added to a pointer ( + or += ) 

• an integer may be subtracted from a pointer ( – or -= ) 

• difference between two pointers (p1-p2) 

 

// C++ program to illustrate Pointer Arithmetic in C++  

#include <bits/stdc++.h> 

using namespace std;  

void geeks()  

{  

 //Declare an array  

 int v[3] = {10, 100, 200};  

  

 //declare pointer variable  

 int *ptr;  

  

 //Assign the address of v[0] to ptr 

 ptr = v;  

  

 for (inti = 0; i< 3; i++)  

 {  

   cout<< "Value at ptr = " <<ptr<< "\n";  

   cout<< "Value at *ptr = " << *ptr<< "\n";  

    

   // Increment pointer ptr by 1  



114 
 

   ptr++;  

 }  

}  

 

//Driver program  

int main()  

{  

 geeks();  

} 

 

Output: 

Value at ptr = 0x7fff9a9e7920 

Value at *ptr = 10 

Value at ptr = 0x7fff9a9e7924 

Value at *ptr = 100 

Value at ptr = 0x7fff9a9e7928 

Value at *ptr = 200 

 

 

 

Advanced Pointer Notation 

• Consider pointer notation for the two-dimensional numeric arrays. consider the 

following declaration 

int nums[2][3]  =  { { 16, 18, 20 }, { 25, 26, 27 } }; 

https://media.geeksforgeeks.org/wp-content/uploads/Untitled-presentation-31.png
https://media.geeksforgeeks.org/wp-content/uploads/Untitled-presentation-31.png


115 
 

 

In general, nums[ i ][ j ] is equivalent to *(*(nums+i)+j) 

 
Pointers and String literals 

String literals are arrays containing null-terminated character sequences. String literals are 

arrays of type character plus terminating null-character, with each of the elements being of 

type const char (as characters of string can’t be modified). 

 

const char * ptr = "geek"; 

 

This declares an array with the literal representation for “geek”, and then a pointer to its 

first element is assigned to ptr. If we imagine that “geek” is stored at the memory locations 

that start at address 1800, we can represent the previous declaration as: 

 
As pointers and arrays behave in the same way in expressions, ptr can be used to access the 

characters of string literal. For example: 

char x = *(ptr+3); 

char y = ptr[3]; 

 

Here, both x and y contain k stored at 1803 (1800+3). 

 

POINTERS TO POINTERS 

https://media.geeksforgeeks.org/wp-content/uploads/Screenshot-222.png
https://media.geeksforgeeks.org/wp-content/uploads/Screenshot-23.png


116 
 

• In C++, we can create a pointer to a pointer that in turn may point to data or other 

pointer.  

• The syntax simply requires the unary operator (*) for each level of indirection while 

declaring the pointer. 

char a; 

char *b; 

char ** c; 

a = ’g’; 

b = &a; 

c = &b; 

 

• Here b points to a char that stores ‘g’ and c points to the pointer b. 

VOID POINTERS 

• This is a special type of pointer available in C++ which represents absence of type.  

• void pointers are pointers that point to a value that has no type (and thus also an 

undetermined length and undetermined dereferencing properties). 

• This means that void pointers have great flexibility as it can point to any data type. 

There is payoff for this flexibility.  

• These pointers cannot be directly dereferenced.  

• They have to be first transformed into some other pointer type that points to a 

concrete data type before being dereferenced. 

#include <iostream.h> 

using namespace std;  

void increase(void *data,int ptrsize)  

{  

 if(ptrsize == sizeof(char))  

 {  

  char *ptrchar;  

http://quiz.geeksforgeeks.org/void-pointer-c/


117 
 

   

  //Typecast data to a char pointer  

  ptrchar = (char*)data;  

   

  //Increase the char stored at *ptrchar by 1  

  (*ptrchar)++;  

  cout<< "*data points to a char"<<"\n";  

 }  

 else if(ptrsize == sizeof(int))  

 {  

  int *ptrint;  

   

  //Typecast data to aint pointer  

  ptrint = (int*)data;  

   

  //Increase the int stored at *ptrchar by 1  

  (*ptrint)++;  

  cout<< "*data points to an int"<<"\n";  

 }  

}  

void geek()  

{  



118 
 

 // Declare a character  

 char c='x';  

  

 // Declare an integer  

 inti=10;  

  

 //Call increase function using a char and int address respectively  

 increase(&c,sizeof(c));  

 cout<< "The new value of c is: " << c <<"\n";  

 increase(&i,sizeof(i));  

 cout<< "The new value of i is: " <<i<<"\n";  

  

}  

//Driver program  

int main()  

{  

 geek();  

} 

 

Output: 

*data points to a char 

The new value of c is: y 

*data points to an int 



119 
 

The new value of i is: 11 

 

Invalid pointers 

• A pointer should point to a valid address but not necessarily to valid elements (like 

for arrays). These are called invalid pointers. Uninitialized pointers are also invalid 

pointers. 

int *ptr1; 

int arr[10]; 

int *ptr2 = arr+20;  

• Here, ptr1 is uninitialized so it becomes an invalid pointer and ptr2 is out of bounds 

of arr so it also becomes an invalid pointer. 

(Note: invalid pointers do not necessarily raise compile errors) 

NULL Pointers 

• Null pointer is a pointer which point nowhere and not just an invalid address. 

• Following are 2 methods to assign a pointer as NULL; 

int *ptr1 = 0; 

int *ptr2 = NULL; 

 

this POINTER 

• Every object in C++ has access to its own address through an important pointer 

called this pointer.  

• The this pointer is an implicit parameter to all member functions. Therefore, inside a 

member function, this may be used to refer to the invoking object. 

• Friend functions do not have a this pointer, because friends are not members of a 

class. Only member functions have a this pointer. 

 

Example 

#include <iostream> 

  

using namespace std; 

 

class Box { 

   public: 

      // Constructor definition 

http://quiz.geeksforgeeks.org/few-bytes-on-null-pointer-in-c/


120 
 

      Box(double l = 2.0, double b = 2.0, double h = 2.0) { 

         cout <<"Constructor called." << endl; 

         length = l; 

         breadth = b; 

         height = h; 

      } 

      double Volume() { 

         return length * breadth * height; 

      } 

      int compare(Box box) { 

         return this->Volume() > box.Volume(); 

      } 

       

   private: 

      double length;     // Length of a box 

      double breadth;    // Breadth of a box 

      double height;     // Height of a box 

}; 

 

int main(void) { 

   Box Box1(3.3, 1.2, 1.5);    // Declare box1 

   Box Box2(8.5, 6.0, 2.0);    // Declare box2 

 

   if(Box1.compare(Box2)) { 

      cout << "Box2 is smaller than Box1" <<endl; 

   } else { 

      cout << "Box2 is equal to or larger than Box1" <<endl; 

   } 

    

   return 0; 

} 

 

POLYMORPHISM IN C++ 

• The word polymorphism means having many forms. In simple words, we can define 

polymorphism as the ability of a message to be displayed in more than one form. 

• Real life example of polymorphism, a person at the same time can have different 

characteristic. Like a man at the same time is a father, a husband, an employee. So 

the same person posses different behavior in different situations. This is called 

polymorphism. 

• Polymorphism is considered as one of the important features of Object Oriented 

Programming. 

In C++ polymorphism is mainly divided into two types: 



121 
 

• Compile time Polymorphism 

• Runtime Polymorphism 

 

 
 

 

 

Compile time polymorphism:  

• The overloaded functions are invoked by matching the type and number of 

arguments. This information is available at the compile time and, therefore, compiler 

selects the appropriate function at the compile time. It is achieved by function 

overloading and operator overloading which is also known as static binding or early 

binding.  

• Now, let's consider the case where function name and prototype is same  

 

Types of compile time polymorphism: 

• Function Overloading 

• Operator overloading  

Function Overloading:  

• When there are multiple functions with same name but different parameters then 

these functions are said to be overloaded.  

• Functions can be overloaded by change in number of arguments or/and change in 

type of arguments. 

Rules of Function Overloading 

1) Function declarations that differ only in the return type. 

2) Member function declarations with the same name and the name parameter-type-list 

cannot be overloaded if any of them is a static member function declaration.  

https://www.geeksforgeeks.org/function-overloading-c/
https://www.geeksforgeeks.org/function-overloading-in-c/
https://media.geeksforgeeks.org/wp-content/uploads/20190705113259/Polymorphism-1.jpg


122 
 

3) Parameter declarations that differ only in a pointer * versus an array [] are equivalent. 

That is, the array declaration is adjusted to become a pointer declaration. Only the 

second and subsequent array dimensions are significant in parameter types. 

4) Parameter declarations that differ only in that one is a function type and the other is a 

pointer to the same function type are equivalent. 

5) Parameter declarations that differ only in the presence or absence of const and/or 

volatile are equivalent. That is, the const and volatile type-specifiers for each 

parameter type are ignored when determining which function is being declared, 

defined, or called.  

 

 

 

Example: 

#include <iostream.h> 

 

using namespace std;  

class Geeks  

{  

 public:  

  

 // function with 1 int parameter  

 void func(int x)  

 {  

  cout<< "value of x is " << x <<endl;  

 }  

  

 // function with same name but 1 double parameter  

 void func(double x)  

 {  

  cout<< "value of x is " << x <<endl;  

 }  

  

 // function with same name and 2 int parameters  

 void func(int x, int y)  

 {  

  cout<< "value of x and y is " << x << ", " << y <<endl;  

 }  



123 
 

};  

 

int main() {  

  

 Geeks obj1;  

  

 // Which function is called will depend on the parameters passed  

 // The first 'func' is called  

 obj1.func(7);  

  

 // The second 'func' is called  

 obj1.func(9.132);  

  

 // The third 'func' is called  

 obj1.func(85,64);  

 return 0;  

} 

 

Output  

value of x is 7 

value of x is 9.132 

value of x and y is 85, 64 

Operator Overloading:  

• C++ also provide option to overload operators.  

• For example, we can make the operator (‘+’) for string class to concatenate two 

strings.  

• We know that this is the addition operator whose task is to add two operands. So a 

single operator ‘+’ when placed between integer operands, adds them and when 

placed between string operands, concatenates them. 

Example  

// Operator Overloading  

#include<iostream>  

using namespace std;  

https://www.geeksforgeeks.org/operator-overloading-c/


124 
 

 

class Complex {  

private:  

 int real, imag;  

public:  

 Complex(int r = 0, int i =0) {real = r; imag = i;}  

  

 // This is automatically called when '+' is used with  

 // between two Complex objects  

 Complex operator + (Complex const &obj) {  

  Complex res;  

  res.real = real + obj.real;  

  res.imag = imag + obj.imag;  

  return res;  

 }  

 void print() { cout << real << " + i" << imag << endl; }  

};  

 

int main()  

{  

 Complex c1(10, 5), c2(2, 4);  

 Complex c3 = c1 + c2; // An example call to "operator+"  

 c3.print();  

} 

 

Output: 



125 
 

12 + i9 

 

• In the above example the operator ‘+’ is overloaded. The operator ‘+’ is an addition 

operator and can add two numbers(integers or floating point) but here the operator is 

made to perform addition of two imaginary or complex numbers.  

 

VIRTUAL FUNCTION IN C++ 

• A virtual function is a member function which is declared within a base class and is 

re-defined (Overriden) by a derived class.  

• When you refer to a derived class object using a pointer or a reference to the base 

class, you can call a virtual function for that object and execute the derived class’s 

version of the function. 

• Virtual functions ensure that the correct function is called for an object, regardless of 

the type of reference (or pointer) used for function call. 

• They are mainly used to achieve Runtime polymorphism 

• Functions are declared with a virtual keyword in base class. 

• The resolving of function call is done at Run-time. 

 

RULES FOR VIRTUAL FUNCTIONS 

1. Virtual functions cannot be static and also cannot be a friend function of another class. 

2. Virtual functions should be accessed using pointer or reference of base class type to 

achieve run time polymorphism. 

3. The prototype of virtual functions should be same in base as well as derived class. 

4. They are always defined in base class and overridden in derived class. It is not 

mandatory for derived class to override (or re-define the virtual function), in that case 

base class version of function is used. 

5. A class may have virtual destructor but it cannot have a virtual constructor. 

Example 

#include <iostream>  

using namespace std;  

 

https://www.geeksforgeeks.org/polymorphism-in-c/
https://www.geeksforgeeks.org/virtual-destructor/


126 
 

class base {  

public:  

 virtual void print()  

 {  

  cout << "print base class" << endl;  

 }  

 

 void show()  

 {  

  cout << "show base class" << endl;  

 }  

};  

 

class derived : public base {  

public:  

 void print()  

 {  

  cout << "print derived class" << endl;  

 }  

 

 void show()  

 {  



127 
 

  cout << "show derived class" << endl;  

 }  

};  

 

int main()  

{  

 base* bptr;  

 derived d;  

 bptr = &d;  

 

 // virtual function, binded at runtime  

 bptr->print();  

 

 // Non-virtual function, binded at compile time  

 bptr->show();  

}  

 

Output: 

print derived class 

show base class 

 



128 
 

PURE VIRTUAL FUNCTIONS AND ABSTRACT CLASSES IN C++ 

• Sometimes implementation of all function cannot be provided in a base class because 

we don’t know the implementation.  

• Such a class is called abstract class.  

• For example, let Shape be a base class. We cannot provide implementation of 

function draw() in Shape, but we know every derived class must have 

implementation of draw().  

• Similarly an Animal class doesn’t have implementation of move() (assuming that all 

animals move), but all animals must know how to move. We cannot create objects of 

abstract classes. 

• A pure virtual function (or abstract function) in C++ is a virtual function for which 

we don’t have implementation, we only declare it.  

• A pure virtual function is declared by assigning 0 in declaration. See the following 

example. 
 

 

// An abstract class  

class Test  

{     

    // Data members of class  

public:  

    // Pure Virtual Function  

    virtual void show() = 0;  

     

   /* Other members */ 

};  

Example 

#include<iostream>  

using namespace std;  

   

class Base  

{  

   int x;  

public:  

    virtual void fun() = 0;  

    int getX() { return x; }  

};  

   

// This class inherits from Base and implements fun()  

class Derived: public Base  

https://www.geeksforgeeks.org/virtual-functions-and-runtime-polymorphism-in-c-set-1-introduction/


129 
 

{  

    int y;  

public:  

    void fun() { cout << "fun() called"; }  

};  

   

int main(void)  

{  

    Derived d;  

    d.fun();  

    return 0;  

}  

Output 

fun() called 

DIFFERENCES B/W COMPILE TIME AND RUN TIME POLYMORPHISM 

Compile time polymorphism Run time polymorphism 

The function to be invoked is 

known at the compile time. 

The function to be invoked is 

known at the run time. 

It is also known as overloading, 

early binding and static binding. 

It is also known as overriding, 

Dynamic binding and late 

binding. 

Overloading is a compile time 

polymorphism where more than one 

method is having the same name 

but with the different number of 

parameters or the type of the 

parameters. 

Overriding is a run time 

polymorphism where more than 

one method is having the same 

name, number of parameters and 

the type of the parameters. 

It is achieved by function 

overloading and operator 

overloading. 

It is achieved by virtual 

functions and pointers. 

It provides fast execution as it is 

known at the compile time. 

It provides slow execution as it 

is known at the run time. 



130 
 

It is less flexible as mainly all the 

things execute at the compile time. 

It is more flexible as all the 

things execute at the run time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



131 
 

 

 

Unit –IV- Managing Console I/O Operations – Working with Files – Templates – 

Exception Handling  

Basic Input / Output in C++ 

• C++ comes with libraries which provides us with many ways for performing input and 

output. In C++ input and output is performed in the form of a sequence of bytes or 

more commonly known as streams. 

• Input Stream: If the direction of flow of bytes is from the device(for example, 

Keyboard) to the main memory then this process is called input. 

• Output Stream: If the direction of flow of bytes is opposite, i.e. from main memory 

to device( display screen ) then this process is called output. 

 
 

Header files available in C++ for Input/Output operations are: 

1. iostream: iostream stands for standard input-output stream. This header file contains 

definitions to objects like cin, cout, cerr etc. 

2. iomanip: iomanip stands for input output manipulators. The methods declared in this 

files are used for manipulating streams. This file contains definitions of setw, 

setprecision etc. 

 

Standard output stream (cout): Usually the standard output device is the display 

screen. The C++ cout statement is the instance of the ostream class. It is used to produce 

output on the standard output device which is usually the display screen. The data needed 

to be displayed on the screen is inserted in the standard output stream (cout) using the 

insertion operator(<<). 

 

 



132 
 

 
 

#include <iostream>  

 

using namespace std;  

 

int main()  

{  

 char sample[] = "GeeksforGeeks";  

 

 cout << sample << " - A computer science portal for geeks";  

 

 return 0;  

} 

 

Output : 

 

GeeksforGeeks - A computer science portal for geeks 

 

• In the above program the insertion operator(<<) inserts the value of the string 

variable sample followed by the string “A computer science portal for geeks” in 

the standard output stream cout which is then displayed on screen. 

standard input stream (cin): Usually the input device in a computer is the keyboard. C++ 

cin statement is the instance of the class istream and is used to read input from the standard 

input device which is usually a keyboard. 

• The extraction operator(>>) is used along with the object cin for reading inputs. 

The extraction operator extracts the data from the object cin which is entered 

using the keyboard. 

 



133 
 

Example program 

 

#include <iostream>  

using namespace std;  

 

int main()  

{  

 int age;  

 

 cout << "Enter your age:";  

 cin >> age;  

 cout << "\nYour age is: " << age;  

 

 return 0;  

} 

 

Input : 

18 

 

Output: 

Enter your age: 

Your age is: 18 

 

• The above program asks the user to input the age. The object cin is connected to 

the input device.  

• The age entered by the user is extracted from cin using the extraction 

operator(>>) and the extracted data is then stored in the variable age present on 

the right side of the extraction operator. 

Un-buffered standard error stream (cerr): The C++ cerr is the standard error stream 

which is used to output the errors. This is also an instance of the ostream class. As cerr in 

C++ is un-buffered so it is used when one needs to display the error message immediately. 

It does not have any buffer to store the error message and display later. 

 

Example Progam 

#include <iostream>  

 



134 
 

using namespace std;  

int main()  

{  

   cerr << "An error occured";  

    return 0;  

} 

 

Output: 

An error occurred 

Buffered standard error stream (clog): This is also an instance of iostream class and used 

to display errors but unlike cerr the error is first inserted into a buffer and is stored in the 

buffer until it is not fully filled. The error message will be displayed on the screen too. 

Example Program 

#include <iostream>  

using namespace std;  

int main()  

{  

   clog << "An error occured";  

    return 0;  

} 

 

 

Output: 

An error occurred 

Types of console I/O operations form: 

• Unformatted console input/output operation 

• Formatted console input/output operation 

Unformatted console input output operations 

• These input / output operations are in unformatted mode. The following are 

operations of unformatted console input / output operations: 

get() function 

• The classes istream and ostream defines two member function get() and put() 

representation to handle the single character input/output operation. 



135 
 

• We can use get(char *) and get(void) to fetch a character including the blank 

space, tab and the newline character. 

• get(char *) – assign input character to its argument  

• get(void) – returns the type of input character 

put() function 

• put() function is a member of ostream class, can be used to output a line of text 

character by character. 

Syntax 

cout.put(ch); 

ch – must be character value. 

cout.put(68)-can use the number as an argument but display the character (68- D) 

Example program 

#include<iostream> 

using namespace std; 

int main() 

{ 

 int cout=0; 

 char c; 

cout<<”INPUT TEXT\n”; 

cin.get(c); 

while(c!=’\n’) 

{ 

 cout.put(c); 



136 
 

 cout++; 

 cin.get(c); 

} 

cout<<”\n Number of characters = “ <<c<<”\n”; 

return 0; 

} 

Output: 

INPUT TEXT 

Object oriented programming 

Number of characters = 27 

 

getline()  

• getline() reads whole line of text that ends with newline character. This function can 

be invoked by using the object cin as follows 

Syntax: 

cin.getline(line,size); 

char name[20]; 

cin.getline(name,20) 

Example: 

int main() 

{ 

 int size=20; 



137 
 

 char city[20]; 

          cout<<"Enter your city name :"; 

 cin.getline(city,20); //It takes 20 characters as input; 

 cout<<”your city name:”<<city<<endl; 

 return 0; 

} 

Output 

Enter your city name : Trichy 

Your city name: Trichy 

 

write() function 

• write() function displays an entire line  

Syntax 

cout.write(line, size)  

• The first argument - line – name of the string to be displayed. 

• The second argument – size – indicates the number of characters to display. 

Example Program 

#include< iostream> 

#include<string> 

using namespace std; 

int main() 

{ 

 char *string1=”c++”; 

 char *string2=”programming”; 

 int m=strlen(string1); 

 int n=strlen(string2); 

  



138 
 

 for(int i=1; i<n;i++) 

 { 

  cout.write(string2,i); 

  cout<<”\n”; 

 } 

 for(i=n;i>0;i++) 

 { 

  cout.write(string2,i); 

  cout<<”\n”; 

 } 

 cout.write(string1,m).write(string2,n); 

 cout <<”\n”; 

  

 cout.write(string1,10); 

 return 0; 

} 

 

Output 

P 

Pr 

Pro 

Prog 

Progr 

Progra 

Program 

Programm 

Programmi 

Programmin 

Programming 

Programmin 

Programmi 

Programm 

Program 

Progra 

Progr 

Prog 

Pro 

Pr 



139 
 

P 

C++ Programming 

C++ Progr 

 

Formatted console I/O operation 

C++ supports a number of features that could be used for formatting the output. 

These features include: 

• ios class functions and flags 

• Manipulators 

• User-defined output functions 

 

ios class function and flags 

• The ios class contain a large number of member functions that would helps 

us to format the output in a number of ways. 

• Width() 

• Precision() 

• Fill() 

• Setf() 

• Unsef() 

 

Width() 

• width() function to define the width of a field necessary for the output of an 

item. Since, it is a member function, we have to use an object to invoke it. 

 

Syntax 

cout.width(w); 

 

• w- is the field width (number of column). 

• The output will be printed in a field of w character wide at the right end of the 

field. 

• width() can specify the field width only one item which immediately follows after 

that it will revert back to default. 

Example 

#include<iostream> 

using namespace std; 

int main() 

{ 



140 
 

int item[4] = {10,8,12,15}; 

int const[4] = {75,100,60,99}; 

 

cout.width(5); 

cout<< “ITEMS”; 

cout.width(8); 

cout<<”COST”; 

 

cout.width(15); 

cout<<”TOTAL VALUE”<<”\n”; 

 

int sum=0; 

for(int i =0; i<4; i++) 

{ 

cout.width(5); 

cout<<item[i]; 

 

cout<<width(8); 

cout<<cost[i]; 

int value = item[i] *cost[i]; 

cout.width(15); 

cout<<value<<”\n”; 

sum =sum + value; 

} 

cout<<”\n” Grand Total =”; 

cout.width(2); 

cout<<sum<<”\n”; 

return 0; 

} 

 

Output 

ITEM      COST    TOTAL VALUE 

10                 75                          750 

8                  100                          800 

12                  60                          720 

15                  99                        1485 

 

Precision() 



141 
 

• By default, the floating numbers are printed with six digits after the decimal 

point. 

• We can specify the number of digits to be displayed after the decimal point while 

printing the floating-point number. 

• This can be done by using the precision() member function as follows: 

 

Syntax 

cout.precision(d); 

 

Example  

#include<iostream> 

#include<cmath> 

using namespace std: 

int main() 

{ 

cout<<Precision set to 3 digits \n\n”; 

cout.precision(3); 

 

cout.width(10); 

cout<<”VALUE”; 

cout.width(15); 

cout<<”SQRT_OF_VALUE”<<”\n”; 

 

for(int n =1; n<=5;n++) 

{ 

 cout.width(8); 

cout<<n; 

cout.width(13); 

cout<<sqrt(n) <<”\n”; 

} 

cout <<”\n precision set to 5 digits \n\n”; 

cout.precision(5); 

cout<<”sqrt(10) = “ <<sqrt(10) << “\n\n”; 

 

cout.precision(0); 

cout<< “sqrt(10) = “ <<sqrt(10) <<”\n\n”; 

return 0; 

} 



142 
 

Output  

Precision set to 3 digit 

VALUE      SQRT_OF_VALUE 

1 1 

2                                 1.41 

            3                                 1.73 

            4                                      2 

            5                                 2.24 

Precision set to 5 digits 

Sqrt(10) = 3.1623 

Sqrt(10) = 3.162278 (default setting) 

 

fill() 

 

• we have printing much large field width than required by the value. 

• The unused position is filled with white space by default. 

• We can use the fill()  function to fill the unused position by any desired 

character. 

Syntax 

cout.fill(ch); 

 

Example 

#include<iostream> 

using namespace std; 

int main() 

{ 

cout.fill(‘<’); 

cout.precision(3); 

 

for(int n=1; n<=6; n++) 

{ 

cout.width(5); 

cout<<n; 

cout.width(10); 

cout<< 1.0/float(n) << “\n”; 

if(n==3) 

{ 

  cout.fill(‘>’); 



143 
 

} 

cout<<’’\Padding changed \n\n”; 

cout.fill(‘#’); 

cout.width(15); 

cout<<12.345678 <<”\n”; 

return 0; 

} 

 

Output: 

<<<<1<<<<<<<<<<<1 

<<<<2<<<<<<<<<<0.5 

<<<<3<<<<<<<<0.333 

>>>>4>>>>>>>>>0.25 

>>>>5>>>>>>>>>>0.2 

>>>>6>>>>>>>>0.167 

 

Padding changed 

##########12.346 

 

Formatting Flags setf() 

• When the width() is used the value and is printed right-justified in the field 

width created. 

• But it is usual practice to print the text left-justified. 

• Using setf() we can print text as left-justified and print with scientific notation. 

• setf() – member function of the ios class. 

Syntax 

cout.setf(arg1,arg2)  

 

Example: 

cout.fill(‘*’); 

cout.setf(ios::left,ios::adjustfield); 

cout.width(15); 

cout<<”TABLE 1”<<”\n” 

 

Output 

TABLE 1 ******** 

 

Manipulators 



144 
 

 

• Manipulator are special functions that can be included in the I/O statements 

to alter the format parameters of a stream. 

• To access these manipulators, the file iomanip should be included in the 

program. 

• Setw() 

• Setprecision() 

• Setfill() 

• Setioflags() 

• Resetioflags() 

 

 

FILE HANDLING THROUGH C++ CLASSES 

• Many real-life scenarios are there that handle a large number of data, and in such 

situations, you need to use some secondary storage to store the data.  

• The data are stored in the secondary device using the concept of files.  

• Files are the collection of related data stored in a particular area on the disk. 

Programs can be written to perform read and write operations on these files. 

Working with files generally requires the following kinds of data communication 

methodologies: 

• Data transfer between console units 

• Data transfer between the program and the disk file 

 

 

Standard file handling classes 

1. Ofstream: This file handling class in C++ signifies the output file stream and is applied to 

create files for writing information to files 

2. Ifstream: This file handling class in C++ signifies the input file stream and is applied for 

reading information from files 

3. fstream: This file handling class in C++ signifies the file stream generally, and has the 

capabilities for representing both ofstream and ifstream 

All the above three classes are derived from fstreambase and from the corresponding 

iostream class and they are designed specifically to manage disk files. 



145 
 

 
 

Opening and closing a file 

If programmers want to use a disk file for storing data, they need to decide about the 

following things about the file and its intended use. These points that are to be noted are: 

• A name for the file 

• Data type and structure of the file 

• Purpose (reading, writing data) 

• Opening method 

• Closing the file (after use) 

Files can be opened in two ways. They are: 

1. Using constructor function of the class 

2. Using member function open of the class 

OPENING A FILE 

The first operation generally performed on an object of one of these classes to use a file is 

the procedure known as to opening a file. An open file is represented within a program by a 

stream and any input or output task performed on this stream will be applied to the physical 

file associated with it. The syntax of opening a file in C++ is: 

 

 



146 
 

open (filename, mode); 

There are some mode flags used for file opening. These are: 

• ios::app: append mode 

• ios::ate: open a file in this mode for output and read/write controlling to the end of the file 

• ios::in: open file in this mode for reading 

• ios::out: open file in this mode for writing 

• ios::trunk: when any file already exists, its contents will be truncated before file opening 

CLOSING A FILE IN C++ 

When any C++ program terminates, it automatically flushes out all the streams releases all 

the allocated memory and closes all the opened files. But it is good to use the close() 

function to close the file related streams and it is a member of ifsream, ofstream and fstream 

objects. 

The structure of using this function is: 

 

void close(); 

General functions used for File handling 

1. open(): To create a file 

2. close(): To close an existing file 

3. get(): to read a single character from the file 

4. put(): to write a single character in the file 

5. read(): to read data from a file 

6. write(): to write data into a file 

READING AND WRITING A FILE 

• While doing C++ program, programmers write information to a file from the program 

using the stream insertion operator (<<) and reads information using the stream 

extraction operator (>>).  



147 
 

• The only difference is that for files programmers need to use an ofstream or fstream 

object instead of the cout object and ifstream or fstream object instead of the cin 

object. 

Example: 

#include <iostream> 

#include <fstream.h> 

 

void main () { 

  ofstream file; 

  file.open ("egone.txt"); 

  file << "Writing to a file in C++...."; 

  file.close(); 

  getch(); 

} 

 

FILE POSITION POINTERS 

• Both istream and ostream provide member functions for repositioning the file-

position pointer. These member functions are seekg ("seek get") for istream 

and seekp ("seek put") for ostream. 

• The argument to seekg and seekp normally is a long integer. A second argument can 

be specified to indicate the seek direction.  

• The seek direction can be ios::beg (the default) for positioning relative to the 

beginning of a stream, ios::cur for positioning relative to the current position in a 

stream or ios::end for positioning relative to the end of a stream. 



148 
 

• The file-position pointer is an integer value that specifies the location in the file as a 

number of bytes from the file's starting location. Some examples of positioning the 

"get" file-position pointer are − 

// position to the nth byte of fileObject (assumes ios::beg) 

fileObject.seekg( n ); 

 

// position n bytes forward in fileObject 

fileObject.seekg( n, ios::cur ); 

 

// position n bytes back from end of fileObject 

fileObject.seekg( n, ios::end ); 

 

// position at end of fileObject 

fileObject.seekg( 0, ios::end ); 

ERROR HANDLING DURING FILE OPERATION 

• Sometimes during file operations, errors may also occur. For example, a file being 

opened for reading might not exist. Or a file name used for a new file may already 

exist. Or an attempt could be made to read past the end-of-file. Or such as invalid 

operation may be performed. There might not be enough space in the disk for storing 

data. 

• To check for such errors and to ensure smooth processing, C++ file streams inherit 

'stream-state' members from the ios class that store the information on the status of a 

file that is being currently used.  

• The current state of the I/O system is held in an integer, in which the following flags 

are encoded  

C++ ERROR HANDLING FUNCTIONS 

There are several error handling functions supported by class ios that help you read and 

process the status recorded in a file stream. 

Following table lists these error handling functions and their meaning : 

Function Meaning 



149 
 

int bad() 

Returns a non-zero value if an invalid operation is attempted or any 

unrecoverable error has occurred. However, if it is zero (false value), 

it may be possible to recover from any other error reported and 

continue operations. 

int eof() 
Returns non-zero (true value) if end-of-file is encountered while 

reading; otherwise returns zero (false value). 

int fail() Returns non-zero (true) when an input or output operation has failed. 

int good() 

Returns non-zero (true) if no error has occurred. This means, all the 

above functions are false. For example, if fin.good() is true, 

everything is okay with the stream named as fin and we can proceed 

to perform I/O operations. When it returns zero, no further operations 

can be carried out. 

clear() Resets the error state so that further operations can be attempted. 

• The above functions can be summarized as eof() returns true if eofbit is set; bad() 

returns true if badbit is set.  

• The fail() function returns true if failbit is set; the good() returns true there are no 

errors. Otherwise, they return false. 

• These functions may be used in the appropriate places in a program to locate the 

status of a file stream and thereby take the necessary corrective measures.  

Example 

#include<iostream.h> 

#include<fstream.h> 

#include<process.h> 

#include<conio.h> 

void main() 

{ 

 clrscr(); 

 char fname[20]; 

 cout<<"Enter file name: "; 

 cin.getline(fname, 20); 



150 
 

 ifstream fin(fname, ios::in); 

 if(!fin) 

 { 

  cout<<"Error in opening the file\n"; 

  cout<<"Press a key to exit...\n"; 

  getch(); 

  exit(1); 

 } 

 int val1, val2; 

 int res=0; 

 char op; 

 fin>>val1>>val2>>op; 

 switch(op) 

 { 

  case '+': 

   res = val1 + val2; 

   cout<<"\n"<<val1<<" + "<<val2<<" = "<<res; 

   break; 

  case '-': 

   res = val1 - val2; 

   cout<<"\n"<<val1<<" - "<<val2<<" = "<<res; 

   break; 

  case '*': 

   res = val1 * val2; 

   cout<<"\n"<<val1<<" * "<<val2<<" = "<<res; 

   break; 

  case '/': 

   if(val2==0) 

   { 

    cout<<"\nDivide by Zero Error..!!\n"; 

    cout<<"\nPress any key to exit...\n"; 

    getch(); 

    exit(2); 

   } 

   res = val1 / val2; 

   cout<<"\n"<<val1<<" / "<<val2<<" = "<<res; 

   break; 

 



151 
 

 } 

 

 fin.close(); 

 

 cout<<"\n\nPress any key to exit...\n"; 

 getch(); 

} 

 

TEMPLATES IN C++ 

• Templates are mostly implemented for crafting a family of classes or functions 

having similar features.  

• For example, a class template for an array of the class would create an array having 

various data types such as float array and char array.  

• Similarly, you can define a template for a function that helps you to create multiple 

versions of the same function for a specific purpose. 

• A template can be considered as a type of macro; When a particular type of object is 

defined for use, then the template definition for that class is substituted with the 

required data type.  

• A template can be considered as a formula or blueprints for generic class or function 

creations. This allows a function or class to work on different data types, without 

having to re-write them again for each. 

Templates can be of two types in C++: 

• Function templates 

• Class templates 

Function Templates 

A function template defines a family of functions. 

Syntax: 

template < parameter-list > function-declaration 

 

export template < parameter-list > function-declaration 



152 
 

• where function-declaration is the function name declared that becomes a template 

name and parameter-list is a non-empty comma-separated list of the template 

parameters. 

• The general form of a function template is: 

Syntax: 

template <class type> ret-type func-name(parameter list) 

{ 

    // body of function 

} 

• Function template plays a significant role, but it is neither a type by itself nor a 

function alone.  

• It is not even an entity.  

• They define a family of functions.  

• No program gets generated from its source file which contains only template 

definitions.  

• So, for showing a code, a template must have to be instantiated, i.e., the template 

arguments must have to be established so that the compiler can generate an actual 

function (or class, from a class template). 

 

Syntax: 

template returnType  nameOfTemplate <listOfArgument> (listOfParameter); 

Example: 

#include<iostream.h> 

#include<conio.h> 

template<class swap> 

 

void swapp(swap &i, swap &j) 



153 
 

{ 

    swap t; 

    t=i; 

    i=j; 

    j=t; 

} 

  

int main() { 

    int e,f; 

    char g,r; 

    float x,y; 

 

    cout<<"\n Please insert 2 Integer Values:"; cin>>e>>f; 

    swapp(e,f); 

    cout<<"\nInteger values after Swapping:"; 

    cout<<e<<"\t"<<f<<"\n\n"; 

     

    cout<<"\n Please insert 2 Character Values:"; cin>>g>>r; 

    swapp(g,r); 

    cout<<"\n Character Values after Swapping:"; 

     



154 
 

    cout<<g<<"\t"<<r<<"\n\n"; 

    cout<<"\n please insert 2 Float Values:"; cin>>x>>y; 

    swapp(x,y); 

    cout<<"\n The resultant float values after swapping:"; 

    cout<<x<<"\t"<<y<<"\n\n"; 

} 

Output: 

Please insert 2 Integer Values: 12 10 

Integer values after Swapping:1012 

 

Please insert 2 Character Values: A B 

Character Values after Swapping: A 

 

Please insert 2 Float Values:1.1 2.1 

The resultant float values after swapping:2.11.1 

Class Template 

A class template defines a family of classes. 

Syntax: 

template < parameter-list > class-declaration 

• Where a class declaration is the class name which became the template name. 

Parameter - the list is a non-empty comma-separated list of the template parameters. 

• A class template by itself is not a type, or an object, or any other entity.  



155 
 

• No code is generated from a source file that contains only template definitions. 

Syntax: 

template class name < argument-list >;       // Explicit instantiation definition 

 

extern template class name < argument-list >;// Explicit instantiation declaration 

 

Overloading of Template Function 

• A template function may be overloaded wither by template function or by ordinary 

functions of its name. 

•  In such programming cases, the overloading resolution is accomplished as follows: 

1. Call an ordinary function that has an exact match 

2. A template function is called that could be created with an exact match 

3. Try normal overloading resolution to ordinary functions and call the one that matches 

Disadvantages of Using Template 

1. Some compilers have poor support of template. 

2. Many compilers lack clear instructions when they detect the error in the definition of the 

template. 

3. Many compilers do not support nesting of templates. 

4. When templates are used, all codes get exposed. 

5.  

6. The templates are in the header, in which the complete rebuild of all project pieces is 

required when the changes occur. 

EXCEPTIONS HANDLING IN C++ 

• Exceptions allow a method to react to exceptional circumstances and errors (like 

runtime errors) within programs by transferring control to special functions called 

handlers.  



156 
 

• For catching exceptions, a portion of code is placed under exception inspection. 

Exception handling was not a part of the original C++.  

• It is a new feature that ANSI C++ included in it. Now almost all C++ compilers 

support this feature.  

• Exception handling technology offers a securely integrated approach to avoid the 

unusual predictable problems that arise while executing a program. 

 

There are two types of exceptions: 

1. Synchronous exceptions 

2. Asynchronous exceptions 

• Errors such as: out of range index and overflow fall under the category 

of synchronous type exceptions.  

• Those errors that are caused by events beyond the control of the program are 

called asynchronous exceptions.  

• The main motive of the exceptional handling concept is to provide a means to detect 

and report an exception so that appropriate action can be taken. 

• This mechanism needs a separate error handling code that performs the following 

tasks: 

• Find and hit the problem (exception) 

• Inform that the error has occurred (throw exception) 

• Receive the error information (Catch the exception) 

• Take corrective actions (handle exception) 

The error handling mechanism basically consists of two parts. These are: 

1. To detect errors 

2. To throw exceptions and then take appropriate actions 

Exception handling in C++ is built on three keywords: try, catch, and throw. 

• try 

• throw: A program throws an exception when a problem is detected which is done using a 

keyword "throw". 

• catch: A program catches an exception with an exception handler where programmers 

want to handle the anomaly. The keyword catch is used for catching exceptions. 



157 
 

The Catch blocks catching exceptions must immediately follow the try block that throws an 

exception. 

 

 

Syntax: 

try 

{ 

    throw exception; 

} 

 

catch(type arg) 

{ 

    //some code 

} 

• If the try block throws an exception then program control leaves the block and enters 

into the catch statement of the catch block.  

• If the type of object thrown matches the argument type in the catch statement, the 

catch block is executed for handling the exception.  

• Divided-by-zero is a common form of exception generally occurred in arithmetic 

based programs. 

Example: 

#include<iostream> 

using namespace std; 

 

int main() 



158 
 

{ 

    try { 

        throw 6; 

    } 

 

    catch (int a) { 

        cout << "An exception occurred!" << endl; 

        cout << "Exception number is: " << a << endl; 

    } 

} 

Example: 

#include<iostream> 

using namespace std; 

 

double division(int var1, int var2) 

{ 

    if (var2 == 0) { 

        throw "Division by Zero."; 

    } 

    return (var1 / var2); 

} 



159 
 

 

int main() 

{ 

    int a = 30; 

    int b = 0; 

    double d = 0; 

 

    try { 

        d = division(a, b); 

        cout << d << endl; 

    } 

    catch (const char* error) { 

        cout << error << endl; 

    } 

 

    return 0; 

} 

Output 

Division by zero. 



160 
 

Advantages of Exception Handling 

1. Programmers can deal with them at some level within the program 

2. If an error can't be dealt with at one level, then it will automatically be shown at the next 

level, where it can be dealt with. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



161 
 

 

 

Unit V - Standard Template Library – Manipulating Strings – Object Oriented Systems 

Development 

 

THE C++ STANDARD TEMPLATE LIBRARY (STL) 

• The Standard Template Library (STL) is a set of C++ template classes to provide 

common programming data structures and functions such as lists, stacks, arrays, etc.  

• It is a library of container classes, algorithms, and iterators. It is a generalized library 

and so, its components are parameterized.  

• A working knowledge of template classes is a prerequisite for working with STL. 

STL has four components 

• Algorithms 

• Containers 

• Functions 

• Iterators 

Algorithms 

• The header algorithm defines a collection of functions especially designed to be used 

on ranges of elements. 

• They act on containers and provide means for various operations for the contents of 

the containers. 

Algorithm 

• Sorting 

• Searching 

• Important STL Algorithms 

• Useful Array algorithms 

• Partition Operations 

Numeric 

• valarray class 

 

 

 

Containers 

• Containers or container classes store objects and data.  

https://www.geeksforgeeks.org/templates-cpp/
http://quiz.geeksforgeeks.org/sort-algorithms-the-c-standard-template-library-stl/
http://quiz.geeksforgeeks.org/binary-search-algorithms-the-c-standard-template-library-stl/
https://www.geeksforgeeks.org/c-magicians-stl-algorithms/
https://www.geeksforgeeks.org/useful-array-algorithms-in-c-stl/
https://www.geeksforgeeks.org/stdpartition-in-c-stl/
https://www.geeksforgeeks.org/std-valarray-class-c/


162 
 

• There are in total seven standard “first-class” container classes and three container 

adaptor classes and only seven header files that provide access to these containers or 

container adaptors. 

Sequence Containers: implement data structures which can be accessed in a 

sequential manner. 

• vector 

• list 

• deque 

• arrays 

• forward_list( Introduced in C++11) 

Container Adaptors : provide a different interface for sequential containers. 

• queue 

• priority_queue 

• stack 

Associative Containers : implement sorted data structures that can be quickly 

searched (O(log n) complexity). 

• set 

• multiset 

• map 

• multimap 

Unordered Associative Containers : implement unordered data structures that can be 

quickly searched 

• unordered_set  

• unordered_multiset  

• unordered_map  

• unordered_multimap  

http://quiz.geeksforgeeks.org/vector-sequence-containers-the-c-standard-template-library-stl-set-1/
http://quiz.geeksforgeeks.org/list-sequence-containers-the-c-standard-template-library-stl/
http://quiz.geeksforgeeks.org/deque-sequence-containers-the-c-standard-template-library-stl/
https://www.geeksforgeeks.org/array-class-c/
https://www.geeksforgeeks.org/forward-list-c-set-1-introduction-important-functions/
http://quiz.geeksforgeeks.org/queue-container-adaptors-the-c-standard-template-library-stl/
http://quiz.geeksforgeeks.org/priority-queue-container-adaptors-the-c-standard-template-library-stl/
http://quiz.geeksforgeeks.org/stack-container-adaptors-the-c-standard-template-library-stl/
http://quiz.geeksforgeeks.org/set-associative-containers-the-c-standard-template-library-stl/
http://quiz.geeksforgeeks.org/multiset-associative-containers-the-c-standard-template-library-stl/
http://quiz.geeksforgeeks.org/map-associative-containers-the-c-standard-template-library-stl/
http://quiz.geeksforgeeks.org/multimap-associative-containers-the-c-standard-template-library-stl/
https://www.geeksforgeeks.org/unordered_set-in-cpp-stl/
https://www.geeksforgeeks.org/unordered_multiset-and-its-uses/
https://www.geeksforgeeks.org/unordered_map-in-cpp-stl/
https://www.geeksforgeeks.org/unordered_multimap-and-its-application/


163 
 

 

Flowchart of Adaptive Containers and Unordered Containers 

 

 

 

Flowchart of Sequence containers and ordered containers 

Functions 



164 
 

The STL includes classes that overload the function call operator. Instances of such classes 

are called function objects or functors. Functors allow the working of the associated 

function to be customized with the help of parameters to be passed. 

• Functors 

Iterators 

As the name suggests, iterators are used for working upon a sequence of values. They are 

the major feature that allow generality in STL. 

• Iterators 

Utility Library 

Defined in header <utility>. 

• pair 

MANIPULATION OF STRING 

C Style String 

The C style string belongs to C language and continues to support in C++ also strings in C 

are the one-dimensional array of characters which gets terminated by \0 (null character). 

This is how the strings in C are declared: 

char ch[6] = {'H', 'e', 'l', 'l', 'o', ' 

char ch[6] = {'H', 'e', 'l', 'l', 'o', '\0'}; 

'}; 

Actually, you do not place the null character at the end of a string constant. The C++ 

compiler automatically places the \0 at the end of the string when it initializes the array. 

String Class in C++ 

The string class is huge and includes many constructors, member functions, and operators. 

• Creating string objects 

• Reading string objects from keyboard 

• Displaying string objects to the screen 

• Finding a substring from a string 

• Modifying string 

• Adding objects of string 

• Comparing strings 

https://www.geeksforgeeks.org/functors-in-cpp/
https://www.geeksforgeeks.org/iterators-c-stl/
http://quiz.geeksforgeeks.org/pair-simple-containers-the-c-standard-template-library-stl/


165 
 

• Accessing characters of a string 

• Obtaining the size or length of a string, etc... 

Manipulate Null-terminated strings 

• strcpy(str1, str2): Copies string str2 into string str1. 

• strcat(str1, str2): Concatenates string str2 onto the end of string str1. 

• strlen(str1): Returns the length of string str1. 

• strcmp(str1, str2): Returns 0 if str1 and str2 are the same; less than 0 if str1<str2; greater 

than 0 if str1>str2. 

• strchr(str1, ch): Returns a pointer to the first occurrence of character ch in string str1. 

• strstr(str1, str2): Returns a pointer to the first occurrence of string str2 in string str1. 

Important functions supported by String Class 

• append(): This function appends a part of a string to another string 

• assign():This function assigns a partial string 

• at(): This function obtains the character stored at a specified location 

• begin(): This function returns a reference to the start of the string 

• capacity(): This function gives the total element that can be stored 

• compare(): This function compares a string against the invoking string 

• empty(): This function returns true if the string is empty 

• end(): This function returns a reference to the end of the string 

• erase(): This function removes character as specified 

• find(): This function searches for the occurrence of a specified substring 

• length(): It gives the size of a string or the number of elements of a string 

• swap(): This function swaps the given string with the invoking one 

Important Constructors obtained by String Class 

• String(): This constructor is used for creating an empty string 

• String(const char *str): This constructor is used for creating string objects from a null-

terminated string 

• String(const string *str): This constructor is used for creating a string object from another 

string object 

Operators used for String Objects 



166 
 

1. =: assignment 

2. +: concatenation 

3. ==: Equality 

4. !=: Inequality 

5. <: Less than 

6. <=: Less than or equal 

7. >: Greater than 

8. >=: Greater than or equal 

9. []: Subscription 

10. <<: Output 

11. >>: Input 

Example 

#include <iostream> 

#include <cstring> 

 

using namespace std; 

 

int main () { 

 

   char str1[10] = "Hello"; 

   char str2[10] = "World"; 

   char str3[10]; 

   int  len ; 

 

   // copy str1 into str3 

   strcpy( str3, str1); 

   cout << "strcpy( str3, str1) : " << str3 << endl; 

 

   // concatenates str1 and str2 

   strcat( str1, str2); 

   cout << "strcat( str1, str2): " << str1 << endl; 

 

   // total lenghth of str1 after concatenation 

   len = strlen(str1); 

   cout << "strlen(str1) : " << len << endl; 

 

   return 0; 

} 



167 
 

 

 

Output 

 

strcpy( str3, str1) : Hello 

strcat( str1, str2): HelloWorld 

strlen(str1) : 10 

 

Example 

 

#include <iostream> 

#include <string> 

 

using namespace std; 

 

int main () { 

 

   string str1 = "Hello"; 

   string str2 = "World"; 

   string str3; 

   int  len ; 

 

   // copy str1 into str3 

   str3 = str1; 

   cout << "str3 : " << str3 << endl; 

 

   // concatenates str1 and str2 

   str3 = str1 + str2; 

   cout << "str1 + str2 : " << str3 << endl; 

 

   // total length of str3 after concatenation 

   len = str3.size(); 

   cout << "str3.size() :  " << len << endl; 

 

   return 0; 

} 

Output 

str3 : Hello 

str1 + str2 : HelloWorld 

str3.size() :  10 

 



168 
 

• As seen in the above code, we can get the length of the string by size() as well as 

length() but length() is preferred for strings.  

• We can concat a string to another string by += or by append(), but += is slightly 

slower than append() because each time + is called a new string (creation of new 

buffer) is made which is returned that is a bit overhead in case of many append 

operation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


