
1 P.T.O

SRINIVASAN COLLEGE OF ARTS & SCIENCE
 (Affiliated Bharathidasan University, Tiruchirappalli)

PERAMBALUR-621212

Department of Computer Science

& Information Technology

COURSE MATERIAL

 Subject : Programming in C++

 Subject Code : 16SCCCS2

 Class : I-B.Sc(CS)

 Semester : II

2 P.T.O

CORE COURSE – III

PROGRAMMING IN C++

Objective:

To impart basic knowledge of Programming Skills in C++ language.

Unit I

Principles of object- Oriented Programming – Beginning with C++ - Tokens, Expressions and control

structures – Functions is C++

Unit II

Classes and Objects – Constructors and Destructors – New Operator – Operator Overloading and Type

Conversions

 Unit III

Inheritance : Extending classes – Pointers – Virtual Functions and Polymorphism

Unit IV

Managing console I/O Operations – Working with Files – Templates – Exception Handling

Unit V

Standard Template Library – Manipulating Strings – Object Oriented Systems Development

Text Book

1. Balagursamy E, Object Oriented Programming with C++, Tata McGraw Hill Publications, Sixth

Edition, 2013

Reference Books

1. Ashok Kamthane, Programming in C++, Pearson Education, 2013.

3 P.T.O

UNIT –I

Introduction:

Programmers write instructions in various programming languages to perform their computation

tasks suchas:

(i) Machine levelLanguage

(ii) Assembly levelLanguage

(iii) High levelLanguage

Machine level Language :

Machine code or machine language is a set of instructions executed directly by a computer's central

processing unit (CPU). Each instruction performs a very specific task, such as a load, a jump, or an

ALU operation on a unit of data in a CPU register or memory. Every program directly executed by a

CPU is made up of a series of such instructions.

Assembly level Language :

An assembly language (or assembler language) is a low-level programming language for a computer,

or other programmable device, in which there is a very strong (generally one-to-one) correspondence

between the language and the architecture's machine code instructions. Assembly language is

converted into executable machine code by a utility program referred to as an assembler; the

conversion process is referred to as assembly, or assembling the code.

High level Language :

High-level language is any programming language that enables development of a program in much

simpler programming context and is generally independent of the computer's hardware architecture.

High-level language has a higher level of abstraction from the computer, and focuses more on the

programming logic rather than the underlying hardware components such as memory addressing and

register utilization.

The first high-level programming languages were designed in the 1950s. Now there are dozens of

different languages, including Ada , Algol, BASIC, COBOL, C, C++, JAVA, FORTRAN, LISP,

Pascal, and Prolog. Such languages are considered high-level because they are closer to human

languages and farther from machine languages. In contrast, assembly languages are considered low-

level because they are very close to machine languages.

The high-level programming languages are broadly categorized in to two categories:

(iv) Procedure oriented programming(POP)language.

(v) Object oriented programming(OOP)language.

4 P.T.O

Function-1

Function-1

Global data

Function-3

Global data

Function-2

Local data

Function-3 Function-2

Main program

Local data

Local data

Procedure Oriented Programming Language

In the procedure oriented approach, the problem is viewed as sequence of things to be done such as
reading , calculation and printing.

Procedure oriented programming basically consist of writing a list of instruction or actions for the

computer to follow and organizing these instruction into groups known as functions.

The disadvantage of the procedure oriented programming languages is:

1. Global data access

2. It does not model real word problem very well

3. No data hiding

Characteristics of procedure oriented programming:

1. Emphasis is on doing things(algorithm)

2. Large programs are divided into smaller programs known as functions.

3. Most of the functions share global data

4. Data move openly around the system from function to function

5. Function transforms data from one form to another.

6. Employs top-down approach in program design

5 P.T.O

Communication

Object C

Data

Functions

Functions

Data

Functions

Data

Object Oriented Programing

“Object oriented programming as an approach that provides a way of modularizing programs by

creating partitioned memory area for both data and functions that can be used as templates for

creating copies of such modules on demand”.

Object A Object B

Features of the Object Oriented programming

1. Emphasis is on doing rather than procedure.

2. programs are divided into what are known as objects.

3. Data structures are designed such that they characterize the objects.

4. Functions that operate on the data of an object are tied together in the data

structure.
5. Data is hidden and can’t be accessed by external functions.

6. Objects may communicate with each other through functions.

7. New data and functions can be easily added.

8. Follows bottom-up approach in program design.

6 P.T.O

Object: Student

DATA

Name

Date-of-birth

Marks

FUNCTIONS

Total

Average

Display

BASIC CONCEPTS OF OBJECTS ORIENTED PROGRAMMING

1. Objects

2. Classes

3. Data abstraction andencapsulation

4. Inheritance

5. Polymorphism

6. Dynamicbinding

7. Message passing

OBJECTS

Objects are the basic run-time entities in an object-oriented system. They may represent a person, a

place, a bank account, a table of data or any item that the program must handle.

The fundamental idea behind object oriented approach is to combine both data and function
into a single unit and these units are called objects.

The term objects means a combination of data and program that represent some real word

entity. For example: consider an example named Amit; Amit is 25 years old and his salary is 2500.

The Amit may be represented in a computer program as an object. The data part of the object would

be (name: Amit, age: 25, salary:2500)

The program part of the object may be collection of programs (retrive of data, change age,

change of salary). In general even any user –defined type-such as employee may be used. In the

Amit object the name, age and salary are called attributes of theobject.

CLASS:

A group of objects that share common properties for data part and some program part are

collectively called as class.

In C ++ a class is a new data type that contains member variables and member functions that
operate on the variables.

A

otal T

STUDENT

isplay D

verage

7 P.T.O

DATA ABSTRACTION :

Abstraction refers to the act of representing essential features without including the back

ground details or explanations. Classes use the concept of abstraction and are defined as size, width

and cost and functions to operate on the attributes.

DATA ENCAPSALATION :

The wrapping up of data and function into a single unit (called class) is known as

encapsulation. The data is not accessible to the outside world and only those functions which are

wrapped in the class can access it. These functions provide the interface between the objects data and

the program.

INHERITENCE :

Inheritance is the process by which objects of one class acquire the properties of another

class. In the concept of inheritance provides the idea of reusablity. This mean that we can add

additional features to an existing class with out modifying it. This is possible by desining a new class

will have the combined features of both theclasses.

POLYMORPHISIM:

Polymorphism means the ability to take more than one form. An operation may exhibit different

instance. The behaviour depends upon the type of data used in the operation.

A language feature that allows a function or operator to be given more than one definition. The types

of the arguments with which the function or operator is called determines which definition will be

used.

Overloading may be operator overloading or function overloading.

It is able to express the operation of addition by a single operater say ‘+’. When this is possible you

use the expression x + y to denote the sum of x and y, for many different types of x and y; integers ,

float and complex no. You can even define the + operation for two strings to mean the concatenation

of the strings.

DYNAMIC BINDING :

Binding refers to the linking of a procedure call to the code to the executed in

response to the call. Dynamic binding means the code associated with a given procedure call is not

known untill the time of the call at run-time. It is associated with a polymorphic reference depends

upon the dynamic type of thatreference.

8 P.T.O

MESSAGE PASSING :

An object oriented program consists of a set of objects that communicate with each

other.

A message for an object is a request for execution of a procedure and therefore will

invoke a function (procedure) in the receiving object that generates the desired result. Message

passing involves specifying the name of the object, the name of the function (message) and

information to be sent.

Employee . Salary(name)

Object Information

Message

BENEFITS OF OOP:

Oop offers several benefits to both the program designer and the user. Object-oriented contributes to

the solution of many problems associated with the development and quality of software products.

The principal advantages are:

1. Through inheritance we can eliminate redundant code and extend the use of existing

classes.

2. We can build programs from the standard working modules that communicate with one

another, rather than having to start writing the code from scratch. This leads to saving of

development time and higherproductivity.

3. This principle of data hiding helps the programmer to build secure programs that can’t be
invaded by code in other parts of theprogram.

4. It is possible to have multiple instances of an object to co-exist with out anyinterference.

5. It is easy to partition the work in a project based onobjects.

6. Object-oriented systems can be easily upgraded from small to largesystems.

7. Message passing techniques for communication between objects makes the interface

description with external systems muchsimpler.
8. Software complexity can be easilymanaged.

APPLICATION OF OOP:

The most popular application of oops up to now, has been in the area of user interface

design such as windows. There are hundreds of windowing systems developed using oop

techniques.

Real business systems are often much more complex and contain many more objects

with complicated attributes and methods. Oop is useful in this type of applications because it

can simplify a complex problem. The promising areas for application of oop includes.

1. Real – Timesystems.

2. Simulation andmodeling

3. Object orienteddatabases.

4. Hypertext,hypermedia andexpertext.

9 P.T.O

5. Al and expertsystems.

6. Neural networks and parallelprogramming.

7. Dicision support and office automationsystems.

8. CIM / CAM / CADsystem.

Basics of C++

C ++ is an object oriented programming language, C ++ was developed by Jarney

Stroustrup at AT & T Bell lab, USA in early eighties. C ++ was developed from c and simula 67

language. C ++ was early called ‘C with classes’.

C++ Comments:

C++ introduces a new comment symbol //(double slash). Comments start with a

double slash symbol and terminate at the end of line. A comment may start any where in the line and

what ever follows till the end of line is ignored. Note that there is no closing symbol.

The double slash comment is basically a single line comment. Multi line comments can be
written as follows:

// this is an example of

// c++ program

// thank you

The c comment symbols /* ….*/ are still valid and more suitable for multi line comments.

/* this is an example of c++ program */

Output Operator:

The statement cout <<”Hello, world” displayed the string with in quotes on the screen. The identifier

cout can be used to display individual characters, strings and even numbers. It is a predefined object

that corresponds to the standard output stream. Stream just refers to a flow of data and the standard

Output stream normally flows to the screen display. The cout object, whose properties are defined in

iostream.h represents that stream. The insertion operator << also called the ‘put to’ operator directs

the information on its right to the object on its left.

Return Statement:

In C++ main () returns an integer type value to the operating system. Therefore every main (

) in C++ should end with a return (0) statement, otherwise a warning or an error might occur.

Input Operator:

The statement

cin>> number 1;

is an input statement and causes. The program to wait for the user to type in a number. The number

keyed in is placed in the variable number1. The identifier cin is a predefined object in C++ that

corresponds to the standard input stream. Here this stream represents the key board.

The operator >>is known as get from operator. It extracts value from the keyboard

and assigns it to the variable on itsright.

10 P.T.O

Cascading Of I/O Operator:

cout<<”sum=”<<sum<<”\n”;

cout<<”sum=”<<sum<<”\n”<<”average=”<<average<<”\n”;

cin>>number1>>number2;

Structure Of A Program :

Probably the best way to start learning a programming language is by writing a program. Therefore,
here is our first program:

// my first program in C++

#include <iostream>

using namespace std;

int main ()

{

cout <<"Hello World!";

return 0;
}

Output:-Hello World!

The first panel shows the source code for our first program. The second one shows the result of the

program once compiled and executed. The way to edit and compile a program depends on the

compiler you are using. Depending on whether it has a Development Interface or not and on its

version. Consult the compilers section and the manual or help included with your compiler if you

have doubts on how to compile a C++ console program.

The previous program is the typical program that programmer apprentices write for the first time,

and its result is the printing on screen of the "Hello World!" sentence. It is one of the simplest

programs that can be written in C++, but it already contains the fundamental components that every

C++ program has. We are going to look line by line at the code we have justwritten:

// my first program in C++

This is a comment line. All lines beginning with two slash signs (//) are considered comments and do

not have any effect on the behavior of the program. The programmer can use them to include short

explanations or observations within the source code itself. In this case, the line is a brief description

of what our program is.

#include <iostream>

Lines beginning with a hash sign (#) are directives for the preprocessor. They are not regular code

lines with expressions but indications for the compiler's preprocessor. In this case the directive

#include<iostream> tells the preprocessor to include the iostream standard file. This specific file

(iostream) includes the declarations of the basic standard input-output library in C++, and it is

included because its functionality is going to be used later in the program.

using namespace std;

All the elements of the standard C++ library are declared within what is called a namespace, the

namespace with the name std. So in order to access its functionality we declare with this expression

that we will be using these entities. This line is very frequent in C++ programs that use the standard

library, and in fact it will be included in most of the source codes included in these tutorials.

int main ()

This line corresponds to the beginning of the definition of the main function. The main function is

the point by where all C++ programs start their execution, independently of its location within the

source code. It does not matter whether there are other functions with other names defined before or

after it – the instructions contained within this function's definition will always be the first ones tobe

11 P.T.O

executed in any C++ program. For that same reason, it is essential that all C++ programs have a main

function.

The word main is followed in the code by a pair of parentheses (()). That is because it is a function

declaration: In C++, what differentiates a function declaration from other types of expressions are

these parentheses that follow its name. Optionally, these parentheses may enclose a list of parameters

within them.

Right after these parentheses we can find the body of the main function enclosed in braces ({}).

What is contained within these braces is what the function does when it isexecuted.

cout <<"Hello World!";

This line is a C++ statement. A statement is a simple or compound expression that can actually

produce some effect. In fact, this statement performs the only action that generates a visible effect in

our first program.

cout represents the standard output stream in C++, and the meaning of the entire statement is to

insert a sequence of characters (in this case the Hello World sequence of characters) into the standard

output stream (which usually is thescreen).

cout is declared in the iostream standard file within the std namespace, so that's why we needed to

include that specific file and to declare that we were going to use this specific namespace earlier in

our code.

Notice that the statement ends with a semicolon character (;). This character is used to mark the end

of the statement and in fact it must be included at the end of all expression statements in all C++

programs (one of the most common syntax errors is indeed to forget to include some semicolon after

a statement).
return 0;

The return statement causes the main function to finish. return may be followed by a return code (in

our example is followed by the return code 0). A return code of 0 for the main function is generally

interpreted as the program worked as expected without any errors during its execution. This is the

most usual way to end a C++ console program.

You may have noticed that not all the lines of this program perform actions when the code is

executed. There were lines containing only comments (those beginning by //). There were lines with

directives for the compiler's preprocessor (those beginning by #). Then there were lines that began

the declaration of a function (in this case, the main function) and, finally lines with statements (like

the insertion into cout), which were all included within the block delimited by the braces ({}) of the

mainfunction.

The program has been structured in different lines in order to be more readable, but in C++, we do
not have strict rules on how to separate instructions in different lines. For example, insteadof

int main ()

{

cout <<" Hello World!";

return 0;

}

We could have written:

int main ()

{

cout <<"Hello World!";
return 0;

}

All in just one line and this would have had exactly the same meaning as the previous code.

In C++, the separation between statements is specified with an ending semicolon (;) at the end of

each one, so the separation in different code lines does not matter at all for this purpose. We can

write many statements per line or write a single statement that takes many code lines. The divisionof

12 P.T.O

code in different lines serves only to make it more legible and schematic for the humans that may

readit.

Let us add an additional instruction to our first program:

// my second program in C++

#include <iostream>
using namespace std;

int main ()

{
cout <<"Hello World! ";

cout <<"I'm a C++ program";

return 0;

}

Output:-Hello World! I'm a C++ program

In this case, we performed two insertions into cout in two different statements. Once again, the

separation in different lines of code has been done just to give greater readability to the program,

since main could have been perfectly valid defined this way:
int main ()

{

cout <<" Hello World! ";

cout <<" I'm a C++ program ";

return 0;

}

We were also free to divide the code into more lines if we considered it more convenient:
int main ()

{

cout <<"Hello World!"; cout

<<"I'm a C++program";

return0;

}
And the result would again have been exactly the same as in the previous examples.

Preprocessor directives (those that begin by #) are out of this general rule since they are not

statements. They are lines read and processed by the preprocessor and do not produce any code by

themselves. Preprocessor directives must be specified in their own line and do not have to end with a

semicolon (;).

STRUCTURE OF C++ PROGRAM

• Include files

• Classdeclaration

• Class functions,definition

• Main functionprogram

Example :-

include<iostream.h>

class person

13 P.T.O

{

char name[30];

int age;

public:

void getdata(void);

void display(void);

};

void person :: getdata (void)

{

cout<<”enter name”;

cin>>name;

cout<<”enter age”;

cin>>age;

}

void display()

{

cout<<”\n name:”<<name;

cout<<”\n age:”<<age;

}

int main()

{

person p;

p.getdata();

p.d isplay();

return(0);

TOKENS:

The smallest individual units in program are known as tokens. C++ has the following

tokens.

i. Keywords

ii. Identifiers

iii. Constants

iv. Strings

v. Operators

KEYWORDS:

The keywords implement specific C++ language feature. They are explicitly reserved

identifiers and can’t be used as names for the program variables or other user defined program

elements. The keywords not found in ANSI C are shown in red letter.

14 P.T.O

C++ KEYWORDS:

Asm double new switch

Auto else operator template

Break enum private this

Case extern protected throw

Catch float public try

Char for register typedef

Class friend return union

Const goto short unsigned

Continue if signed virtual

Default inline sizeof void

Delete long struet while

IDENTIFIERS:

Identifiers refers to the name of variable , functions, array, class etc. created by programmer. Each
language has its own rule for naming the identifiers.

The following rules are common for both C and C++.

15 P.T.O

1. Only alphabetic chars, digits and under score arepermitted.

2. The name can’t start with adigit.

3. Upper case and lower case letters aredistinct.

4. A declared keyword can’t be used as a variablename.

In ANSI C the maximum length of a variable is 32 chars but in c++ there is no bar.

BASIC DATA TYPES IN C++

1. User Defiened Datatype

-Structure

-Union

-Class

-Enumeration

2. Derived Datatype

-Array

-Function

-Pointer

3. Built-in-Datatypes

Integral-int,char

Floating Point-float,double

Void

Both C and C++ compilers support all the built in types. With the exception of void the basic

datatypes may have several modifiers preceding them to serve the needs of various situations. The

modifiers signed, unsigned, long and short may applied to character and integer basic data types.

However the modifier long may also be applied to double.

Data types in C++ can be classified under various categories.

TYPE BYTES RANGE

char 1 -128 to – 127

usigned 1 0 to 265

sgned char 1 -128 to 127

Int 2 -32768 to 32768

unsigned int 2 0 to 65535

singed int 2 -32768 to 32768

short int 2 -32768 to 32768

long int 4 -2147483648 to 2147483648

signed long int 4 -2147483648 to 2147483648

unsigned long int 4 0 to 4294967295

16 P.T.O

float 4 3.4E-38 to 3.4E+38

double 8 1.7E -308 to 1.7E +308

long double 10 3.4E-4932 to 1.1E+ 4932

The type void normally used for:

1) To specify the return type of function when it is not returning anyvalue.

2) To indicate an empty argument list to afunction.

Example:

Void function(void);

Another interesting use of void is in the declaration of genetic pointer

Example:

Void *gp;

Assigning any pointer type to a void pointer without using a cast is allowed in both C and ANSI C.

In ANSI C we can also assign a void pointer to a non-void pointer without using a cast to non void

pointer type. This is not allowed in C++.

Example:

void *ptr1;

void *ptr2;

Are valid statement in ANSI C but not in C++. We need to use a cast operator.

ptr2=(char *) ptr1;

USER DEFINED DATA TYPES:

STRUCTERS AND CLASSES

We have used user defined data types such as struct,and union in C. While these more features have

been added to make them suitable for object oriented programming. C++ also permits us to define

another user defined data type known as class which can be used just like any other basic data type to

declare a variable. The class variables are known as objects, which are the central focus of oops.

ENUMERATED DATA TYPE:

An enumerated data type is another user defined type which provides a way for

attaching names to number, these by increasing comprehensibility of the code. The enum keyword

17 P.T.O

automatically enumerates a list of words by assigning them values 0,1,2 and soon. This facility

provides an alternative means for creating symbolic.

Example:

enum shape {circle,square,triangle}

enum colour{red,blue,green,yellow}

enum position{off,on}

The enumerated data types differ slightly in C++ when compared with ANSI C. In C++, the

tag names shape, colour, and position become new type names. That means we can declare new

variables using the tag names.

Example:

Shape ellipse;//ellipse is of type shape

colour background ; // back ground is of type colour

ANSI C defines the types of enums to be ints. In C++,each enumerated data type retains its

own separate type. This means that C++ does not allow an int value to be automatically converted to

an enum.

Example:

colour background =blue; //vaid

colour background =7; //error in c++

colour background =(colour) 7;//ok

How ever an enumerated value can be used in place of an int value.

Example:

int c=red ;//valid, colour type promoted to int

By default, the enumerators are assigned integer values starting with 0 for the first

enumerator, 1 for the second and so on. We can also write

enum color {red, blue=4,green=8};

enum color {red=5,blue,green};

18 P.T.O

C++ also permits the creation of anonymous enums (i.e, enums without tag names)

Example:

enum{off,on};

Here off is 0 and on is 1.these constants may be referenced in the same manner as regular constants.

Example:

int switch-1=off;

int switch-2=on;

ANSI C permits an enum defined with in a structure or a class, but the enum is

globally visible. In C++ an enum defined with in a class is local to that class.

SYMBOLIC CONSTANT:

There are two ways of creating symbolic constants in c++.

1. using the qualifierconst.

2. defining a set of integer constants using enumkeywords.

In both C and C++, any value declared as const can’t be modified by the program in any way.

In C++, we can use const in a constant expression. Such as

const int size = 10 ;

char name (size) ;

This would be illegal in C. const allows us to create typed constants instead of having to use #defme to

create constants that have no type information.

const size=10;

Means

const int size =10;

C++ requires a const to be initialized. ANSI C does not require an initializer, if none is given, it
initializes the const to 0.

InC++constvaluesare localandinANSICconstvaluesareglobal.Howevertheycanbemadelocal made
localbydeclaringthemasstatic.InC++ifwewant tomakeconstvalueasglobalthendeclareasextern storageclass.

Ex: externalconsttotal=100;

Anothermethod ofnamingintegerconstantsisasfollows:-

19 P.T.O

enum {x,y,z};

DECLARATION OF VARIABLES:

In ANSIC C all the variable which is to be used in programs must be declared at the beginning of the
program.ButinC++wecandeclarethevariablesanywhoseintheprogramwhere itrequires.This makesthe program
much easier to write and reduces the errors that may be caused by having to scan back and forth. It
alsomakestheprogrameasiertounderstand becausethevariablesaredeclaredinthecontextoftheiruse.

Example:

main()

{

float x,average;
floatsum=0;

for(int i=1;i<5;i++)

{

cin>>x;
sum=sum+x

}

float average;

average=sum/x;

cout<<average;

}

REFERENCE VARIABLES:

C++interfaces a new kind of variable known as the reference variable. A references variable

provides an alias.(alternative name) for a previously defined variable. For example ,if we make the

variable sum a reference to the variable total, then sum and total can be used interchangeably to represent

the variuble.
A reference variable is created as follows:

Synatx: Datatype & reference –name=variable name;

Example:

float total=1500;

float &sum=total;
Here sum is the alternative name for variables total, both the variables refer to the same data object in the
memory .

A reference variable must be initialized at the time of declaration .
Note that C++ assigns additional meaning to the symbol &here &is not an address operator

.The notation float &means reference to float.
Example:

int n[10];

int &x=n[10];

char &a=’\n’;

20 P.T.O

OPERATORS IN C++ :

C++ has a rich set of operators. All C operators are valid in C++ also. In addition. C++

introduces some new operators.

<< insertionoperator

>> extractionoperator

:: scope resolutionoperator

::* pointer to memberdeclarator

* pointer to memberoperator

.* pointer to memberoperator

Delete memory releaseoperator

Endl line feedoperator

New memory allocationoperator

Setw field widthoperator

SCOPE RESOLUTION OPERATOR:

LikeC,C++ isalsoablock-structuredlanguage.Block-structuredlanguage.Blocksand
scopes can be used in constructing programs. We know same variables can be declared in different
blocks because the variables declared in blocks are local to thatfunction.

Blocks in C++ are oftennested.
Example:

{
Int x =10;

{

Intx=1; Block2
--------------- Block1

}

}
Block2 contained in block l .Note that declaration in an inner block hides a declaration of the
same variable in an outer block and therefore each declaration of x causes it to refer to a different data object .
With in the inner block the variable x will refer to the data object declared there in.

21 P.T.O

In C,the global version of a variable can't be accessed from with in the inner block.

C++ resolves this problem by introducing a new operator :: called the scope resolution operator .This can be

used to uncover a hidden variable.

Syntax: : : variable–name;

Example:

#include <iostrcam.h>

int m=10;

main()

{

int m=20;

{

int k=m;

int m=30;

cout<<”weareininnerblock”;

cout<<"k="<<k<<endl;

cout<<"m="<<m<<endl;

cout<<":: m="<<::m<<endl;

}

cout<<”\nweareinouterblock\n”;

cout<<"m="<<m<<endl;

cout<<":: m="<<::m<<endl;

}

Memory Management Operator

C uses malloc and calloc functions to allocate memory dynamically at run time . Similarly it uses the functions
Free()to freedynamicallyallocatedmemory. Weusedynamic allocationtechniqueswhenitisnotknownin
advancehowmuchofmemoryspaceasneeded.

C++ also support those functions it also defines two unary operators new and delete that

perform the task of allocating and freeing the memory in a better and easier way.

Thenewoperatorcanbeusedtocreateobjectsofanytype.Syntax: pointer-

variable =newdatatype;

Example:

p=new int; q=new int;

Where p is a pointer of type int and q is a pointer of type float.

int *p=new int;

float *p=newfloat;

Subsequently, the statements

*p=25;

22 P.T.O

*q=7.5;

Assign25tothenewlycreatedint objectand7.5tothefloatobject.Wecanalsoinitializethememory using the
newoperator.

Syntax:

int *p=ne\v int(25);

float *q =new float(7.5);

newcanbeusedtocreateamemoryspaceforanydatatype includinguserdefinedsuchas

arrays,structures,andclasses.Thegeneralformforaone-dimensionalarrayis:

pointer-variable =new data types [size];

creates a memory space for an array of 10 integers.

If a data object is no longer needed, it is destroyed to release the memory space for reuse.

Syntax: delete pointer-variable;

Example:

delete p;
delete q;

form ofdelete.

If we want to free a dynamically allocated array ,we must use the following

delete [size] pointer-variable;

or

delete [] pointer variable;

MANIPULATERS:

Manipulators are operator that are used to format the data display. The most commonly manipulators are

endl and setw.

The endl manipulator, when used in an output statement, causes a line feed to be insert.(just like \n)

Example:

cout<<”m=”<<m<<endl;

cout<<”n=”<<n<<endl;

cout<<”p=”<<p<<endl;

Ifweassumethevaluesofthevariablesas2597,14and175respectively
m=2597; n=14;
p=175

Itwaswanttoprint allnosinright justifiedwayusesetwwhichspecifyacommonfieldwidth for all
thenos.

Example: cout<<setw(5)<<sum<<endl;

cout<<setw(10)<<”basic”<<setw(10<<basic<<endl;
Cout<<setw(10)<<”allowance”<<setw(10<<allowance<<endl;
cout<<setw(10)<<”total=”<<setw(10)<<total;

23 P.T.O

CONTROL STRUCTURES:

Like c,c++, supports all the basic control structures and implements them various control statements.

The if statement:

The if statement is impklemented in two forms:

1. simple ifstatement

2. if… elsestatement

Simple if statement:

if (condition)

{

Action;

}

If.. else statement

If (condition)

Statment1

Else

Statement2

The switch statement

Thisisamultiple-branchingstatementwhere,basedonacondition,thecontrolistransferredtooneofthemany
possiblepoints;

24 P.T.O

Switch(expr)

{

case 1:

action1;

break;

case 2:

action2;

break;

..

..

default:

message

}

The whilestatement:

Syn:

While(condition)

{

Stements

}

25 P.T.O

The do-while statement:

Syn:

do

{

Stements

} while(condition);

The for loop:

for(expression1;expression2;expression3)

{

Statements;

Statements;

}

26 P.T.O

FUNCTION IN C++ :

The main() Functon ;

ANSI does not specify any return type for the main () function which is the starting point for the execution
of a program . The definition of main() is :-

main()

{

//main program statements

}

Thisispropertyvalidbecausethemain()inANSICdoesnotreturnanyvalue.InC++,themain()returnsavalueof
typeinttotheoperatingsystem.Thefunctionsthathaveareturnvalueshouldusethereturnstatementforterminating.
Themain()functioninC++isthereforedefinedasfollows.

int main()

{

return(0)

}

Since the return type of functions is int by default, the key word int in the main() header is optional.

INLINE FUNCTION:

To eliminate the cost of calls to small functions C++ proposes a new feature called inline function.

An inline function is a function that is expanded inline when it is invoked .That is the compiler

replaces the function call with the corresponding functioncode.

The inline functions are defined as follows:-

inline function-header

{

function body;

}

Example: inline double cube (doublea)

{

return(a*a*a);

}

The above inline function can be invoked by statements like

c=cube(3.0);

d=cube(2.5+1.5);

remember that the inline keyword merely sends a request, not a command to the compliler. The

compiler may ignore this request if the function definition is too long or too complicated and compile

the function as a normal function.

Some of the situations where inline expansion may not work are:

1. For functions returning values if a loop, a switch or a go toexists.

27 P.T.O

Example:

2. for function s not returning values, if a return statementexists.

3. if functions contain staticvariables.

4. if inline functions arerecursive,.

#include<iostream.h>

#include<stdio.h>
inline float mul(float x, float y)

{
return(x*y);

}
inline double div(double p.double q)

{

}

main()

{

}

return(p/q);

float a=12.345;
float b=9.82;

cout<<mul(a,b)<<endl;

cout<<div (a,b)<<endl;

output:-

DEFAULT ARGUMENT:-

121.227898

1.257128

C++ allows us to call a function with out specifying all its arguments.In such cases, the

function assigns a default value to the parameter which does not have a matching aguments in the

function call.Default values are specified when the function is declared .The compiler looks at the

prototype to see how many arguments a function uses and alerts the program for possible default

values.

Example: float amount (float principle, int period ,floatrate=0.15);

The default value is specified in a manner syntactically similar to a variable

initialization .The above prototype declares a default value of 0.15 to the argument rate. A

subsequent function calllike

value=amount(5000,7); //one argument missing

passes the value of 5000 to principle and 7 to period and then lets the function, use default value of

0.15 forrate.

The call:- value=amount(5000,5,0.12);

//no missing argument passes an explicite value of 0.12 rate.

One important point to note is that only the trailing arguments can have default values. That is, we

must add default from right to left .We cannot provide a default to a particular argument in the

middle of an argumentlist.

Example:- int mul(int i, int j=5,int k=10);//illegal

int mul(int i=0,int j,int k=10);//illegal

int mul(int i=5,intj);//illegal
int mul(int i=2,int j=5,int k=10);//illegal

Default arguments are useful in situation whose some arguments always have the some value.

For example,bank interest may retain the same for all customers for a particular period of deposit.

28 P.T.O

Example:
#include<iostream.h>

#include<stdio.h>

mainQ

{

float amount;

float value(float p,int n,float r=0.15);

void printline(char ch=’*’,int len=40);

printline();

amount=value(5000.00,5);

cout<<”\n final value=”<<amount<<endl;

printline(‘=’);

//function definitions

float value (float p,int n, float r)

{

float si;

si=(p*n*r)/100;

return(si);

}

void printline (char ch,int len)

{

for(inti=l;i<=len;i++)

cout<<ch<<endl;

}

output:-

* * * * * * * * * * * * * * * *

final value=10056.71613

= = = = = = = = = = = = = = =

Advantage of providing the default arguments are:

1. We can use default arguments to add new parameters to the existingfunctions.

2. Default argument s can be used to combine similar functions intoone.

CONST ARGUMENT:-

In C++, an argument to a function can be declared as unit as const as shown
below.

int strlen(const char *p);

int length(const string&s);

The qualifier const tells the compiler that the function should not modify the argument .the

compiler will generate an error when this condition is violated .This type of declaration is significant

only when we pass arguments by reference or pointers.

29 P.T.O

FUNCTION OVERLOADING:

Overloading refers to the use of the same thing for different purposes . C++ also

permits overloading functions .This means that we can use the same function name to creates

functions that perform a variety of different tasks. This is known as function polymorphism in oops.

Using the concepts of function overloading , a family of functions with one function

name but with different argument lists in the functions call .The correct function to be invoked is

determined by checking the number and type of the arguments but not on the function type.
For example an overloaded add() function handles different types of data as shown

below.

//Declaration

int add(int a, int b); //prototype 1

int add (int a, int b, int c); //prototype 2

double add(double x, double y); //prototype 3

double add(double p , double q); //prototype4

//function call

cout<<add(5,10); //uses prototype 1

cout<<add(15,10.0); //uses prototype 4

cout<<add(12.5,7.5); //uses prototype 3

cout<<add(5,10,15); //uses prototype 2

cout<<add(0.75,5); //uses prototype 5

A function call first matches the prototype having the same no and type of arguments and then calls
the appropriate function for execution.

The function selection invokes the following steps:-

a) The compiler first tries to find an exact match in which the types of actual
arguments are the same and use that function.

b) If an exact match is not found the compiler uses the integral promotions to the actual

arguments such as:

char to int

float to double

to find amatch

c) When either of them tails ,the compiler tries to use the built in conversions to the actual

arguments and them uses the function whose match is unique . If the conversion is possible to have

multiple matches, then the compiler will give errormessage.

Example:

long square (long n);

double square(double x);
A function call suchas:- square(lO)

Will cause an error because int argument can be converted to either long or

double .There by creating an ambiguous situation as to which version of square()should be used.

30 P.T.O

PROGRAM

#include<iostream.h>

int volume(double,int);

double volume(double , int);

double volume(longint ,int ,int);
main()

{
cout<<volume(10)<<endl;

cout<<volume(10)<<endl; cout<<volume(10)<<endl;

}

int volume(ini s)

{

return (s*s*s); //cube

}

double volume(double r, int h)

{

return(3.1416*r*r*h); //cylinder

}

long volume (longint 1, int b, int h)

{

return(1*b*h); //cylinder

}

output:- 1000

157.2595

112500

31 P.T.O

UNIT-II

CLASS:-

Class is a group of objects that share common properties and relationships .In C++, a class is

a new data type that contains member variables and member functions that operates on the variables.

A class is defined with the keyword class. It allows the data to be hidden, if necessary from external

use. When we defining a class, we are creating a new abstract data type that can be treated like any

other built in datatype.
Generally a class specification has two parts:-

a) Class declaration

b) Class functiondefinition

the class declaration describes the type and scope of its members. The class function

definition describes how the class functions are implemented.

Syntax:-

class class-name

{

private:

variable declarations;
function declaration ;

public:

variable declarations;

function declaration;
};

The members that have been declared as private can be accessed only

from with in the class. On the other hand , public members can be accessed from outside the class

also. The data hiding is the key feature of oops. The use of keywords private is optional by default,

the members of a class are private.

The variables declared inside the class are known as data members and the functions

are known as members mid the functions. Only the member functions can have access to the private

data members and private functions. However, the public members can be accessed from the outside

the class. The binding of data and functions together into a single class type variable is referred to as

encapsulation.

Syntax:-

class item

{

public:

int member;

float cost;

void getldata (int a ,float b);

void putdata (void);

The class item contains two data members and two function members, the data

members are private by default while both the functions are public by declaration. The function

getdata() can be used to assign values to the member variables member and cost, and putdata() for

displaying their values . These functions provide the only access to the data members from outside

the class.

32 P.T.O

CREATING OBJECTS:

Once a class has been declared we can create variables of that type

by using the classname.
Example:

item x;

creates a variables x of type item. In C++, the class variables are known as objects. Therefore

x is called an object of type item.

item x, y ,z also possible.

class item

{

}x ,y ,z;

would create the objects x ,y ,z of type item.

ACCESSING CLASS MEMBER:

The private data of a class can be accessed only through the member functions of that
class. The main() cannot contains statements that the access number and cost directly.

Syntax:

object name.function-name(actualarguments);

Example:- x.getdata(100,75.5);

It assigns value 100 to number, and 75.5 to cost of the object x by

implementing the getdata() function .
similarly the statement

x. putdata (); //would display the values of data members.

x. number = 100 is illegal .Although x is an object of the type item to which number belongs ,

the number can be accessed only through a member function and not by the objectdirectly.
Example:

class xyz

{

public:

};

Intx;

Inty;

intz;

xyz p;

p.x=0; error . x isprivate

p,z=10; ok ,z ispublic

33 P.T.O

DEFINING MEMBER FUNCTION:

Member can be defined in two places

• Outside the class definition

• Inside the classfunction

OUTSIDE THE CLASS DEFlNAT1ON;

Member function that are declared inside a class have to be defined separately

outside the class.Their definition are very much like the normal functions.

An important difference between a member function and a normal

function is that a member function incorporates a membership.Identify label in the header. The

‘label’ tells the compiler which class the function belongsto.

Syntax:

return type class-name::function-name(argument declaration)

{

function-body

}

The member ship label class-name :: tells the compiler that the function function -

name belongs to the class class-name . That is the scope of the function is restricted to the class-

name specified in the header line. The :: symbol is called scope resolutionoperator.

Example:

void item :: getdata (int a , float b)

{

number=a;

cost=b;
}

void item :: putdata (void)

{

cout<<”number=:”<<number<<endl;

cout<<”cost=”<<cost<<endl;

}

The member function have some special characteristics that are often used in the program

development.

• Several different classes can use the same functionname.The "membership

label"willresolvetheirscope,memberfunctionscanaccesstheprivatedataoftheclass
.A non member function can't do so.

• A member function can call another member function directly, without using the dot
operator.

34 P.T.O

INSIDE THE CLASS DEF1NATION:

Another method of defining a member function is to replace thefunction declaration by the

actual function definition inside the class.
Example:

class item

{

public:

Intnumber;
float cost;

void getdata (int a ,float b);

void putdata(void)
{

}

};

A C++ PROGRAM WITHCLASS:
include< iostream. h>

class item
{

cout<<number<<endl; cout<<cost<<endl;

public:

int number;

float cost;

void getdata (int a , float b);

void putdala (void)
{

cout<<“number:”<<number<<endl;

cout<<”cost :”<<cost<<endl;

}

};

void item :: getdata (int a , float b)

{

number=a;

cost=b;

}

main ()

{

item x;

cout<<”\nobjectx”<<endl;

x. getdata(100,299.95);

x .putdata();

item y;

cout<<”\n object y”<<endl;

y. getdata(200,175.5);

y. putdata();

}

Output: object x

number100

35 P.T.O

cost=299.950012

object -4

cost=175.5

Q.
Write a simple program using class in C++ to input subject mark and printsit.

ans:
class marks

{
private :

int ml,m2;

public:

void getdata();

void displaydata();

};

void marks: :getdata()

{

cout<<”enter 1st subject mark:”;

cin>>ml;

cout<<”enter 2nd subject mark:”;

cin>>m2;
}

void marks: :displaydata()
{

cout<<”Ist subject mark:”<<ml<<endl ;

cout<<”2nd subject mark:”<<m2;

}
voidmain()

{

clrscr();

marks x;

x.getdata();

x.displaydata();

}

36 P.T.O

NESTING OF MEMBER FUNCTION;

A member function can be called by using its name inside another member function of the
same class. This is known as nesting of member functions.

#include <iostream.h>

class set
{

int m,n;

public:

void input(void);

void display (void);

void largest(void);
};

int set::largest (void)

{

if(m>n)

return m;

else

}

return n;

voidset::input(void)

{

cout<<”input values of m and n:”;

cin>>m>>n;
}

void set::display(void)

{

cout<<”largestvalue=”<<largest()<<”\n”;

}

void main()

{

}

output:

set A;
A.input();

A.display();

Input values of m and n:

3017

largest value= 30

37 P.T.O

Private member functions:

Although it is a normal practice to place all the data items in a private section and all the functions in

public, some situations may require contain functions to be hidden from the outside calls. Tasks such

as deleting an account in a customer file or providing increment to and employee are events of

serious consequences and therefore the functions handling such tasks should have restricted access.

We can place these functions in the privatesection.

A private member function can only be called by another function that is a member of its class. Even

an object can not invoke a private function using the dot operator.

Classsample

{

intm;

void read (void);

void write (void);

};

if si is an object of sample, then

s.read();

is illegal. How ever the function read() can be called by the function update () to

update the value of m.

void sample :: update(void)

{

read();

}

38 P.T.O

#include<iostream.h>

class part

{

private:

intmodelnum,partnum;

float cost;
public:

void setpart (int mn, int pn ,float c)

{

modelmim=mn;

partnum=pn;

cost=e;
}

void showpart ()
{

Cout<<endl<<”model:”<<modelnum<<end1;

Cout<<”num:”<< partnum <<endl

Cout<<”cost:”<<”$”<cost;
}

};

void main()

{

part pl,p2;

p1.setpart(644,73,217.55);

p2.setpart(567,89,789.55);

pl.showpart();

pl.showpart();

}

output:- model:644

num:73

cost: $217550003

model: 567

num:89

cost: $759.549988

39 P.T.O

#indude<iostream.h>

classdistance

{

private:

int feet;

floatinches;
public:

void setdist (int ft, float in)

{

feet=ft;

inches=in;

}
void getdist()

{

cout<<”enter feet:”;

cin>>feet;

cout<<”enter inches:”;

cin>>inches;

}

void showdist()

{

cout<< feet<<”_”inches«endl;

}

};

void main()

{

distance dl,d2;

d1.setdist(1 1,6.25);

d2.getdata();

cout<<endl<<”dist:”<<d 1 .showdist();
cout<<”\n”<<”dist2:”;

d2.showdist();

}

output:- enter feet: 12

enter inches:6.25

dist 1:”11’-6.1.5”

dist 2: 12’-6.25”

40 P.T.O

ARRAY WITH CLASSES:

#include<iostream.h>

#include<conio.h>

class employee

{

private:

char name[20];

int age,sal;

public:

};

void getdata();

void putdata();

void employee : : getdata ()

{

cout<<”enter name :”;

cin>>name;

cout<<”enter age :”;

cin>>age;

cout<<”enter salary:”;

cin>>sal;

return(0);

}

void employee : : putdata ()

{

cout<<name <<endl;

cout<<age<<endl;

cout<<sal<<endl;

return(0);

}

intmain()

{

41 P.T.O

employee emp[5]:

for(int i=0;i<5;i++)

{

emp[i].getdata();

}

cout<<endl;

for(i=0;i<5;i++)

{

emp[i].putdata();

}

getch();

return(0);

}

ARRAY OF OBJECTS:-

#include<iostream.h>

#include<conio.h>

class emp

{

private:

char name[20];

int age,sal;

public:

void getdata();

void putdata();

};

void emp : : getdata()

{

coul<<”enter empname”: .

cin>>name;

cout<<”enter age:”<<endl;

cin>>age;

cout<<”enter salun :”;

42 P.T.O

cin>>sal;

}

void emp :: putdata()

{

cout<<”emp name:”<<name<<endl;

cout<<”emp age:”<<age<<endl;

cout<<”emp salary:”<<sal;

}

void main()

{

emp foreman[5];

emp engineer[5];

for(int i=0;i<5;i ++)

{

cout<<” for foreman:”;

foreman[i] . getdata();

}

cout<<endl;

for(i=0;i<5;i++)

{

Foreman[i].putdata(); .

}

for(int i=0;i<5;i ++)

{

cout<<” for engineer:”;

ingineer[i].getdata();

}

for(i=0;i<5;i++)

{

ingineer[i].putdata();

}

getch();

return(0);

}

43 P.T.O

REPLACE AND SORT USING CLASS:-

#include<iostream.h>

#include<constream.h>

class sort

{

private:

int nm[30];

public;

}:

void sort :: getdata()

{

void getdata();

void putdata();

int i,j,k;

cout<<”enter 10 nos:” ;

for(i=0;i<10;i++)

{

cin>>nm[i];

}

for(i=0;i<9;i++)

{

for(j=i+l:j<10:j++)

{

if(nm[i]>nm[j])

{

}

void sort :: putdata()

{

int k;

for(k=0;k<10;k++)
{

k=nm[i];

nm[i]=nm[j];

nm[j]=k;

}

cout<<num [k] <<endl ;

44 P.T.O

}

}

int main()

{

clrscr();

sort s;

s.getdata();

s.putdata();
return(0);

}

ARRAY OF MEMBERS:

#include<iostream.h>

#include<constream.h>

const int m=50;

class items

{

public:

};

int item_code[m];

floatitem_price[m];

intcount;

void cnt(void) { count=0;}

void get_item(void);

void display_sum(void);

void remove(void);

void display _item(void);

void items :: get_item (void)

{

cout<<”enter itemcode:”;

cin>> item_code[code];

cout<<”enter item cost:”;

cin>>item_price[count];

count ++ ;
}

void items :: display _sum(void)

{
float sum=0;

for(int i=0;i<count;i++)

{

45 P.T.O

}

int main ()

{

sum=sum+item_price[i];

}

cout<< “\n total value:”<<sum<<endl;

items order;

order.cnt();

int x;
do

{

cout<<”\nyou can do the following:”;

cout<<”enter appropriate no:”;

cout<<endl<<” 1 :add an item’’;

cout<<endl<<”2: display total value :”;

cout<<endl<<”3 : display an item”;

cout<<endl<<”4 :display all item:”;

cout<<endl<<”5 : quit:”;

cout<<endl<<endl<<”what is your option:”;

cin>>x;

switch(x)

{

case 1: order.get_item(); break;

case 2: order.display_sum(); break;

cose 3: order.remove(); break;
case 4: order.display_item();break;

case 5: break;

default : cout<<”error in input; try again”;

}
} while(x!=5);

}

46 P.T.O

STATIC DATA MEMBER:

A data member of a class can be qualified as static . The

properties of a static member variable are similar to that of a static variable. A static membervariable

has contain specialcharacteristics.
Variable has contain special characteristics:-

1) It is initialized to zero when the first object of its class is created.No other

initialization ispermitted.

2) Only one copy of that member is created for the entire class and is shared by

all the objects of that class, no matter how many objects arecreated.

3) It is visible only with in the class but its life time is the entire program. Static

variables are normally used to maintain values common to the entire class.

For example a static data member can be used as a counter that records the

occurrence of all theobjects.

int item :: count; // definition of static data member

Note that the type and scope of each static member variable must be defined outside

the class definition .This is necessary because the static data members are stored separately rather

than as a part of anobject.
Example:-

#include<iostream.h>

class item

{

public:

static int count; //count is static

int number;

void getdata(int a)

. {

number=a;

count++;

}
void getcount(void)

{

cout<<”count:”;

cout<<count<<endl;
}

};
int item :: count ; //count defined

int main()

{

item a,b,c;

a.get_count();

b.get_count();

c.get_count():

a.getdata():
b.getdata();

47 P.T.O

c.getdata();

cout«"after reading data : "«endl;

a.get_count();

b.gel_count();
c.get count();

return(0);

}

The output would be

count:0

count:0

count:0

After reading data

count: 3

count:3

count:3

The static Variable count is initialized to Zero when the objects created . The count is

incremented whenever the data is read into an object. Since the data is read into objects three times

the variable count is incremented three times. Because there is only one copy of count shared by all

the three object, all the three output statements cause the value 3 to be displayed.

STATIC MEMBER FUNCTIONS:-

A member function that is declared static has following properties :-

1. Astaticfunctioncanhaveaccesstoonly otherstaticmembersdeclaredinthe

same class.

2. A static member function can be called using the class name as follows:-

class - name :: function -name;
Example:-

#include<iostream.h>

class test

{

public:

int code;

static int count; // static member variable

void set(void)

{

code=++count;

}

void showcode(void)

{

cout<<”object member : “<<code<<end;

}

static void showcount(void)

{ cout<<”count=”<<count<<endl; }

};

int test:: count;

int main()
{

48 P.T.O

test t1,t2;

t1.setcode();
t2.setcode();

test :: showcount(); '

testt3;

t3.setcode();

test:: showcount();

t1.showcode();

t2.showcode();

t3.showcode();

return(0);

output:- count : 2

count: 3

object number1

object number2

object number3

OBJECTS AS FUNCTION ARGUMENTS

Like any other data type, an object may be used as A function argument. This can cone in two ways

1. A copy of the entire object is passed to thefunction.

2. Only the address of the object is transferred to thefunction

The first method is called pass-by-value. Since a copy of the object is passed to the function, any

change made to the object inside the function do not effect the object used to call the function.

The second method is called pass-by-reference . When an address of the object is passed, the called

function works directly on the actual object used in the call. This means that any changes made to the

object inside the functions will reflect in the actual object .The pass by reference method is more

efficient since it requires to pass only the address of the object and not the entire object.

Example:-

#include<iostream.h>

class time

{

public:

int hours;

intminutes;

void gettime(int h, int m)

{

}

void puttime(void)

{

hours=h;

minutes=m;

cout<< hours<<”hours and:”;

cout<<minutes<<”minutes:”<<end;

}

49 P.T.O

void sum(time ,time);

};
void time :: sum (timet1,time t2) .

{

minutes=t1.minutes + t2.minutes;

hours=minutes%60;

minutes=minutes%60;

hours=hours+t 1.hours+t2.hours;

}

int main()

{

time T1,T2,T3;

T1.gettime(2,45);

T2.gettime(3,30);

T3.sum(T1,T2);

cout<<”T1=”;

T1.puttime();

cout<<”T2=”;

T2.puttime();

cout<<”T3=”;

T3.puttime();

return(0);

}

50 P.T.O

FRIENDLY FUNCTIONS:-

We know private members can not be accessed from outside the class. That is a non -

member function can't have an access to the private data of a class. However there could be a case

where two classes manager and scientist, have been defined we should like to use a function income-

tax to operate on the objects of both theseclasses.

In such situations, c++ allows the common function lo be made friendly with both the classes , there

by following the function to have access to the private data of these classes .Such a function need not

be a member of any of these classes.

To make an outside function "friendly" to a class, we have to simply declare this function as a friend

of the classes as shown below :

class ABC

{

public:

friend void xyz(void);

};

The function declaration should be preceded by the keyword friend , The function is defined else

where in the program like a normal C ++ function . The function definition does not use their the

keyword friend or the scope operator :: . The functions that are declared with the keyword friend are

known as friend functions. A function can be declared as a friend in any no of classes. A friend

function, as though not a member function , has full access rights to the private members of the class.

A friend function processes certain special characteristics:

a. It is not in the scope of the class to which it has been declared asfriend.

b. Since it is not in the scope of the class, it cannot be called using the object of that

class. It can be invoked like a member function without the help of anyobject.
c. Unlike memberfunctions.

Example:

#include<iostream.h>

class sample

{

public:

}

int a;

int b;

void setvalue() { a=25;b=40;}

friend float mean(sample s);

float mean (samples)

{

return (float(s.a+s.b)/2.0);

}

int main ()

{

51 P.T.O

sample x;

x . setvalue();

cout<<”mean value=”<<mean(x)<<endl;

return(0);

}

output:

mean value : 32.5

A function friendly to two classes

#include<iostream.h>

class abc;

class xyz
{

public:

};

int x;

void setvalue(int x) { x-= I; }

friend void max (xyz,abc);

class abc

{

public:

};

int a;

void setvalue(int i) {a=i; }

friend void max(xyz,abc);

void max(xyz m, abc n)

{

if(m . x >= n.a)

cout<<m.x;

else

}

cout<< n.a;

int main()

{

abc j;

j . setvalue(10);

xyz s;

s.setvalue(20);

max(s , j);

return(0);

}

SWAPPING PRIVATE DATA OF CLASSES:

#include<iostream.h>

class class-2;

class class-1
{

52 P.T.O

public:

};

int value 1;

void indata(int a) { value=a; }

void display(void) { cout<<value<<endl; }
friend void exchange (class-1 &, class-2 &);

class class-2

{

public:

int value2;

void indata(int a) { value2=a; }

void display(void) { cout<<value2<<endl; }

friend void exchange(class-l & , class-2 &);
};

void exchange (class-1 &x, class-2 &y)

{

int temp=x. value 1;

x. value I=y.valuo2;

y.value2=temp;
}

output:

int main()

{

class-1 c1;

class-2 c2;

c1.indata(l00);

c2.indata(200);

cout<<”values before exchange:”<<endl;

c1.display();

c2.display();

exchange (c1,c2);

cout<<”values after exchange :”<< endl;

c1. display ();

c2. display ();

return(0);
}

values before exchange

100

200

values after exchange

200

100

53 P.T.O

PROGRAM FOR ILLUSTRATING THE USE OF FRIEND FUNCTION:

#include< iostream.h>

classaccount1;
classaccount2

{

private:

int balance;
public:

account2() { balance=567; }

void showacc2()

{

cout<<”balanceinaccount2 is:”<<balance<<endl;

friend int transfer (account2 &acc2, account1 &acc1,int amount);

};

class acount1

{

private:

int balance;

public:

account1 () { balance=345; }

void showacc1 ()

{

cout<<”balance in account1 :”<<balance<<endl;

}

friend int transfer (account2 &acc2, account1 &acc1 ,int amount);

};

int transfer (account2 &acc2, account1 & acc1, int amount)

{
if(amount <=accl . bvalance)

{

acc2. balance + = amount;

acc1 .balance - = amount;
}

}

int main()

{

account1 aa;

account2 bb;

else

return(0);

cout << “balance in the accounts before transfer:” ;

aa . showacc1();
bb . showacc2();

cout << “amt transferred from account1 to account2 is:”;

cout<<transfer (bb,aa,100)<<endl;

54 P.T.O

}

output:

cout<< “ balance in the accounts after the transfer:”;

aa . showacc 1 ();

bb. showacc 2();

return(0);

balance in the accounts before transfer

balance in account 1 is 345

balance in account2 is 567

and transferred from account! to account2 is 100

balance in account 1 is245

balance in account2 is667

55 P.T.O

RETURNING OBJECTS:

include< iostream,h>

class complex

{

public:

float x;

float y;

void input(float real , float imag)

{

x=real;

y=imag;
}

friend complex sum(complex , complex);

void show (complex);

};
complex sum (complex c1, complex c2)

{

complex c3;

c3.x=c1.x+c2.x;

c3.y=c1.y+c2.y;

return c3;}

void complex :: show (complex c)

{

cout<<c.x<<” +j “<<c.y<<endl;

}

output:

intmain()

{

complex a, b,c;

a.input(3.1,5.65);

b.input(2.75,1.2);

c=sum(a,b);
cout <<” a=”; a.show(a);

cout <<” b= “; b.show(b);

cout <<” c=” ; c.show(c);

return(0);
}

a =3.1 + j 5.65

b= 2.75+ j 1.2

c= 5.55 + j 6.85

56 P.T.O

POINTER TO MEMBERS;

It is possible to take the address of a member of a class and assign it to a pointer. The address

of a member can be obtained by applying the operator & to a “fully qualified” class member name.

A class member pointer can be declared using the operator :: * with the class name.

For Example:

classA

{

private:

int m;

public:

};

void show();

We can define a pointer to the member m as follows :

int A :: * ip = & A :: m

The ip pointer created thus acts like a class member in that it must be invoked with a class object. In

the above statement. The phrase A :: * means “pointer - to - member of a class” . The phrase & A ::

m means the “ Address of the m member of a class”

The following statement is not valid :

int *ip=&m ; // invalid

This is because m is not simply an int type data. It has meaning only when it is associated

with the class to which it belongs. The scope operator must be applied to both the pointer and the

member.

The pointer ip can now be used toaccessthe m inside the member function (or

friendfunction).

Let us assume that “a” is an object of “ A” declared in a member function . We can

access "m" using the pointer ip as follows.

cout<< a . * ip;

cout<< a.m;

ap=&a;

cout<< ap-> * ip;

cout<<ap->a;

The deferencing operator ->* is used as to accept a member when we use pointers to

both the object and the member. The dereferencing operator. .* is used when the object itself is used

with the member pointer. Note that * ip is used like a member name.

We can also design pointers to member functions which ,then can be invoked using
the deferencing operator in the main as shownbelow.

(object-name.* pointer-to-member function)

(pointer-to -object -> * pointer-to-memberfunction)

The precedence of () is higher than that of .* and ->* , so the parenthesis are

necessary.

57 P.T.O

DEREFERENCING OPERATOR:

#include<iostream.h>

class M
{

public:

int x;

int y;

void set_xy(int a,int b)

{

}

friend int sum(M);

};

int sum (M m)

{

x=a;

y=b;

int M :: * px= &M :: x; //pointer to member x

}

int main ()

{

M m;

int M :: * py- & m ::y;//pointer to y

M * pm=&m;

int s=m.* px + pm->py;

return(s);

output:

void(M::*pf)(int,int)=&M::set-xy;//pointer to function set-xy (n*pf)(10,20);

//invokes set-xy

cout<<”sum=:”<<sum(n)<<cncil;

n *op=&n; //point to object n

(op->* pf)(30,40); // invokes set-xy

cout<<”sum=”<<sum(n)<<end 1 ;

return(0);

}

sum= 30

sum=70

58 P.T.O

CONSTRUCTOR:

A constructor is a special member function whose task is to initialize the objects of its class .

It is special because its name is the same as the class name. The constructor is invoked when ever an

object of its associated class is created. It is called constructor because it construct the values of data

members of theclass.

A constructor is declared and defined as follows:

//'class with a constructor

class integer

{

public:

};

int m,n:

integer! void);//constructor declared

integer :: integer(void)

{

m=0;

n=0;
}

When a class contains a constructor like the one defined above it is guaranteed that an

object created by the class will be initialized automatically.

For example:-

Integer int1; //object int 1 created

This declaration not only creates the object int1 of type integerbutalso initializes its

data members m and n tozero.

A constructor that accept no parameter is called the default

constructor. The default constructor for class A is A :: A(). If no such constructor is

defined, then the compiler supplies a default constructor.
Therefore a statement such as :-

A a ;//invokes the default constructor of thecompilerof the
compiler to create the object "a";

Invokes the default constructor of the compiler to create the object a.

The constructor functions have some characteristics:-

• They should be declared in the public section.

• They are invoked automatically when the objects arecreated.

• They don't have return types, not even void and therefore
they cannot returnvalues.

• They cannot be inherited , though a derived class cancall

59 P.T.O

the base class constructor .

• Like other C++ function , they can have defaultarguments,

• Constructor can't bevirtual.

• An object with a constructor can't be used as a member of

union.

Example of default constructor:

#include<iostream.h>
#include<conio.h>

class abc

{

private:

char nm[];
public:

abc ()

{

}

cout<<”enter your name:”;

cin>>nm;

void display()

{

cout<<nm;

}

};

int main()

{

clrscr();

abc d;

d.display();

getch();

return(0);

}

PARAMETERIZED CONSTRUCTOR:-

the constructors that can take arguments are called parameterized constructors.

Using parameterized constructor we can initialize the various data elements of different objects with

different values when they are created.
Example:-

class integer

{

public:

int m,n;

integer(int x, int y);

};

60 P.T.O

integer:: integer (int x, int y)

{

}

m=x;n=y;

implicitly.

the argument can be passed to the constructor by calling the constructor

integer int 1 = integer(0,100); // explicit call

integerint1(0,100); //implicitecall

CLASS WITH CONSTRUCTOR:-

#include<iostream.h>

class integer
{

public:

int m,n;

integer(int,int);
void display(void)

{

cout<<”m=:”<<m ;

cout<<”n=”<<n;
}

};

integer :: integer(int x,int y) // constructor defined

{

m=x;

n=y;
}

int main()

{

output:

object 1

m=0

n=100

object2

m=25

n=25

integer int1(0,100); // implicit call

integerint2=integer(25,75);

cout<<” \nobjectl“<<endl;
int1.display();

cout<<” \n object2 “<<endl;

int2.display();

}

Example:-
#include<iostream.h>

#include<conio.h>

class abc
{

private:

char nm [30];

int age;
public:

abc (){ }// default

abc (char x[], int y);

void get()
{

cout<<”enter your name:”;
cin>>nm;

cout<<” enter your age:”;

cin>>age;

}
void display()

{

cout<<nm«endl;

cout«age;
}

};
abc : : abc(char x[], int y)

{

}

void main()

{

abc 1;

strcpy(nm,x);

age=y;

abc m=abc("computer",20000);

l.get();
l.dispalay();

m.d isplay ();

getch();

}

OVERLOADED CONSTRUCTOR:-

#include<iostream.h>

#include<conio.h>
class sum

{

private;

int a;

int b;

int c;

float d;

double e;

public:

sum ()

{

cout<<”enter a;”;

cin>>a;

cout<<”enter b;”;

cin>>b;

cout<<”sum= “<<a+b<<endl;

}

sum(int a,int b);

sum(int a, float d,double c);

};

sum :: sum(int x,int y)

{

a=x;

b=y;
}

sum :: sum(int p, float q ,double r)

{

a=p;

d=q;

e=r;
}

void main()

{

clrscr();

sum 1;

sum m=sum(20,50);

sum n= sum(3,3.2,4.55);

getch();
}

output:

enter a : 3

enter b : 8

sum=11

sum=70

sum=10.75

COPY CONSTRUCTOR:

A copy constructor is used to declare and initialize an object from another object.

Example:-

the statement

integer 12(11);

would define the object 12 and at the same time initialize it to the values of 11.

Another form of this statement is : integer 12=11;

The process of initialization through a copy constructor is known as copy initialization.

Example:-

#incliide<iostream.h>
class code

{
int id;

public
code () { } //constructor

code (int a) { id=a; } //constructor

code(code &x)

{
Id=x.id;

}
void display()

{

cout<<id;

}

};

int main()

{

code A(100);

code B(A);

code C=A;

code D;

D=A;

cout<<” \n id of A :”; A.display();

cout<<” \nid of B :”; B.display();

cout<<” \n id of C:”; C.display();

cout<<” \n id of D:”; D.display();

}

output :-

id of A:100

id of B:100

id of C:100

id ofD:100

DYNAMICCONSTRUCTOR:-

The constructors can also be used to allocate memory while creating objects .

This will enable the system to allocate the right amount of memory for each object when the objects

are not of the same size, thus resulting in the saving of memory.

Allocate of memory to objects at the time of their construction is known as dynamic

constructors of objects. The memory is allocated with the help of new operator.
Example:-

#include<iostream.h>

#include<string.h>

class string
{

char *name;

public:

int length;

string ()

{

length=0;

name= new char [length+1]; /* one extra for \0 */

}

string(char *s) //constructor 2

{

length=strlen(s);

name=new char[length+1];

strcpy(name,s);

}

void display(void)

{
cout<<name<<endl;

}
void join(string &a .string &b)

{

length=a. length +b . length;

delete name;

name=new char[length+l]; /* dynamic allocation */

strcpy(name,a.name);
strcat(name,b.name);

}

};

int main()

{

char * first = “Joseph” ;

string name1(first),name2(“louis”),naine3(“LaGrange”),sl,s2;

sl.join(name1,name2);

s2.join(s1,name3);

namel.display();

name2.display();

name3.display();

s1.display();
s2.display();

}

output :-

Joseph

Louis

language

Joseph Louis

Joseph Louis Language

DESTRUCTOR:-

A destructor, us the name implies is used to destroy the objects that have been created by a

constructor. Like a constructor, the destructor is a member function whose name is the same as the

class name but is preceded by atilde.

ForExample:-

~ integer() { }

A destructor never takes any argument nor does it return any value. It will be invoked

implicitly by the compiler upon exit from the program to clean up storage that is no longer

accessible. It is a good practice to declare destructor in a program since it releases memory space for

future use.

Delete is used to free memory which is created by new.

Example:-

matrix : : ~ matrix()

{
for(int i=0; i<11;i++)

delete p[i];

delete p;

}

IMPLEMENTED OFDESTRUCTORS:-

#include<iostream.h>

int count=0;

class alpha
{

public:

alpha()

{

count ++;

cout<<”\n no of object created :”<<endl;

}

~alpha()

{

}

};

int main()

{

cout<<”\n no of object destroyed :” <<endl;

coutnt--;

cout<<” \n \n enter main \n:”;

alpha A1,A2,A3,A4;

{
cout<<” \n enter block 1 :\n”;

alpha A5;

}

{

cout<<” \n \n enter block2 \n”;

alphaA6;

}

cout<<\n re-enter main \n:”;

return(0);

}

output:-

enter main

no of object created 1

no of object created 2

no of object created 3

no of object created 4

enter block1

no of object created 5

no of object destroyed 5

enter block2

no of object created 5

no of object destroyed 5

re-enter main

no of object destroyed 4

no of object created 3

no of object created 2

no of object created1

Example :-

#include<iostream.h>
int x=l;

class abc

{

public:
abc()

{

}

~abc()

{

x--;

cout<<”construct the no”<<x<<endl;

cout<<”destruct the no:”<<x<<endl;

x--;

}

};

int main()

{

abc I1,I2,I3,I4;

cout«ll«12«13«l4«endl;

return(0);
}

OPERATOR OVERLOADING:-

Operator overloading provides a flexible option for the creation of new definations for most

of the C++ operators. We can overload all the C++ operators except the following:

• Class members access operator (. ,.*)

• Scope resolution operator (::)

• Size operator(sizeof)

• Condition operator (?:)

Although the semantics of an operator can be extended, we can't change its syntax, the

grammatical rules that govern its use such as the no of operands precedence and associativety. For

example the multiplication operator will enjoy higher precedence than the addition operator.

When an operator is overloaded, its original meaning is not lost. For example,

the operator +, which has been overloaded to add two vectors, can still be used to add two integers.

DEFINING OPERATOR OVERLOADING:

To define an additional task to an operator, we must specify what it means in

relation to the class to which the operator is applied . This is done with the help of a special function

called operator function, which describes the task.
Syntax:-

return-type class-name :: operator op(arg-list)

{

function body

}

Where return type is the type of value returned by the specified operation and

op is the operator being overloaded. The op is preceded by the keyword operator, operator op is the

function name.
operator functions must be either member function, or friend

function. A basic defference between them is that a friend function will have only one argument for

unary operators and two for binary operators, This is because the object used to invoke the member

function is passed implicitly and therefore is available for the member functions. Arguments may be

either by value or by reference.

operator functions are declared in. the class using prototypes as follows:-

vector operator + (vector); /./ vector addition
vector operator-(); //unary minus

friend vector operator + (vuelor, vector); // vector add

friend vectoroperator -(vector); // unary minus

vector operator - (vector&a); //substraction
int operator==(vector); //comparision

friend int operator = =(vector ,vrctor); // comparision

vector is a data type of class and may represent both magnitude and direction or a series

of points called elements.
The process of overloading involves the following steps:-

1. Create a class that defines the data type that is used in the overloadingoperation.

2. Declare the operator function operator op() in the public part of theclass

3. It may be either a member function or friendfunction.

4. Define the operator function to implement the requiredoperations.

Overloaded operator functions can be invoked by expressions such as

op x or x op;

for unary operators and

x op y

for binary opearators.

operator op(x);

for unary operator using friend function

operator op(x,y);

for binary operator usinf friend function.

Unary – operator overloading(using member function):

class abc

{

int m,n;

public:

abc()

{

m=8;

n=9;

}

void show()

{

cout<<m<<n;

}

operator --()

{

--m;

--n;

}

};

void main()

{

abc x;

x.show();

--x;

x.show();

}

Unary – - operator overloading(using friend function):

class abc

{

int m,n;

public:

abc()

{

m=8;

n=9;

}

void show()

{

cout<<m<<n;

}

friend operator --(abc &p);

};

operator -- (abc &p)

{

--p.m;

--p.n;

}

};

void main()

{

abc x;

x.show();

operator--(x);

x.show();

}

Unary operator+ for adding two complex numbers (using member function)

class complex

{

float real,img;

public:

complex()

{

real=0;

img=0;
}

complex(float r,float i)

{

real=r;
img=i;

}

void show()

{

cout<<real<<”+i”<<img;

}

complex operator+(complex &p)

{

complex w;

w.real=real+q.real;

w.img=img+q.img;

return w;
}

};

void main()

{

complex s(3,4);

complex t(4,5);

complex m;

m=s+t;

s.show();
t.show();

m.show();

}

Unary operator+ for adding two complex numbers (using friend function)

class complex

{

float real,img;

public:

complex()

{

real=0;

img=0;
}

complex(float r,float i)

{

real=r;

img=i;

}

void show()

{

cout<<real<<”+i”<<img;

}

friend complex operator+(complex &p,complex &q);

};

complex operator+(complex &p,complex &q)

{

complex w;

w.real=p.real+q.real;

w.img=p.img+q.img;

return w;

}

};

voidmain()

{

complex s(3,4);complex t(4,5);

complexm;

m=operator+(s,t);

s.show();t.show();

m.show();
}

Overloading an operator does not change its basic meaning. For example assume the +

operator can be overloaded to subtract two objects. But the code becomes unreachable.

class integer

{

intx, y;
public:

intoperator + () ;

}

int integer: : operator + ()

{

return (x-y) ;

}

Unary operators, overloaded by means of a member function, take no explicit argument and

return no explicit values. But, those overloaded by means of a friend function take one

reference argument (the object of the relevant class).

Binary operators overloaded through a member function take one explicit argument and those

which are overloaded through a friend function take two explicit arguments.

Table 7.2

Operator to
Overload

Arguments passed to the
Member Function

Arguments passed to the Friend
Function

Unary Operator No 1

Binary Operator 1 2

Type Conversions

In a mixed expression constants and variables are of different data types. The assignment operations
causes automatic type conversion between the operand as per certain rules.

The type of data to the right of an assignment operator is automatically converted to the data type of

variable on the left.

Consider the followingexample:

intx;

float y = 20.123;

x=y;

This converts float variable y to an integer before its value assigned to x. The type conversion is

automatic as far as data types involved are built in types. We can also use the assignment operator in

case of objects to copy values of all data members of right hand object to the object on left hand. The

objects in this case are of same data type. But of objects are of different data types we must apply

conversion rules for assignment.

There are three types of situations that arise where data conversion are between incompatible types.

1. Conversion from built in type to classtype.

2. Conversion from class type to built intype.

3. Conversion from one class type toanother.

Basic to Class Type

A constructor was used to build a matrix object from an int type array. Similarly, we used another

constructor to build a string type object from a char* type variable. In these examples constructors

performed a defacto type conversion from the argument's type to the constructor's class type

Consider the following constructor:

string :: string (char*a)

{
length = strlen (a);

name=new char[len+1];

strcpy (name,a);

}

This constructor builds a string type object from a char* type variable a. The variables length and

name are data members of the class string. Once you define the

constructor in the class string, it can be used for conversion from char* type to string type.

Example

string si , s2;

char* namel = “Good Morning”;

char* name2 = “ STUDENTS” ;

s1 = string(namel);
s2 = name2;

The program statement

si = string (namel);

first converts name 1 from char* type to string type and then assigns the string type values to the

object s1. The statement

s2 = name2;

performs the same job by invoking the constructor implicitly.

Consider the following example

class time
{

int hours;

intminutes;

public:

time (int t) // constructor

{

hours = t / 60; //t is inputted in minutes

minutes = t %60;
}

};

In the following conversion statements :

timeTl; //object Tl created

int period =160;

Tl= period; //int to classtype

The object Tl is created. The variable period of data type integer is converted into class type time by

invoking the constructor. After this conversion, the data member hours ofTl will have value 2 arid

minutes will have a value of 40 denoting 2 hours and 40 minutes.

Note that the constructors used for the type conversion take a single argument whose type is to be

converted.

In both the examples, the left-hand operand of = operator is always a class object. Hence, we can
also accomplish this conversion using an overloaded =operator.

Class to Basic Type

The constructor functions do not support conversion from a class to basic type. C++ allows us to

define a overloaded casting operator that convert a class type data to basic type. The general form of

an overloaded casting operator function, also referred to as a conversion function, is:
operator typename ()

{
//Program statmerit .

}

This function converts a class type data to typename. For example, the operator double() converts a
class object to type double, in the following conversion function:

vector:: operator double ()

{

double sum = 0 ;

for(int I = 0; ioize;

sum = sum + v[i] * v[i]; //scalar magnitude

returnsqrt(sum);

}

The casting operator should satisfy the following conditions.

• It must be a classmember.

• It must not specify a return type.

• It must not have any arguments. Since it is a member function, it is invoked

by the object and therefore, the values used for, Conversion inside the

function belongs to the object that invoked the function. As a result function

does not need anargument.

In the string example discussed earlier, we can convert the object string to char* as follows:

string:: operator char*()
{

return (str) ;

}

One Class to Another Class Type

We have just seen data conversion techniques from a basic to class type and a class to basic type. But

sometimes we would like to convert one class data type to another class type.

Example

Obj1 = Obj2 ; //Obj1 and Obj2 are objects of different classes.

Objl is an object of class one and Obj2 is an object of class two. The class two type data is converted

to class one type data and the converted value is assigned to the Objl. Since the conversion takes

place from class two to class one, two is known as the source and one is known as the destination

class.

Such conversion between objects of different classes can be carried out by either a

constructor or a conversion function. Which form to use, depends upon where we want the type-

conversion function to be located, whether in the source class or in the destinationclass.

We studied that the casting operator function

Operator typename()

Converts the class object of which it is a member to typename. The type name may be a built-in type

or a user defined one(another class type) . In the case of conversions between objects,

typename refers to the destination class. Therefore, when a class needs to be converted, a

casting operator function can be used. The conversion takes place in the source class and the result is

given to the destination class object.

Let us consider a single-argument constructor function which serves as an instruction for

converting the argument's type to the class type of which it is a member. The argument belongs to

the source class and is passed to the destination class for conversion. Therefore the conversion

constructor must be placed in the destinationclass.

Table 7.3

Conversion Conversion takes place in

Source class Destination class
Basic to class Not applicable Constructor

Class to Basic Casting operator Not applicable

Class to class Casting operator Constructor

When a conversion using a constructor is performed in the destination class, we must be able to

access the data members of the object sent (by the source class) as an argument. Since data members

of the source class are private, we must use special access functions in the source class to facilitate

its data flow to the destinationclass.

Consider the following example of an inventory of products in a store. One way of keeping record of

the details of the products is to record their code number, total items in the stock and the cost of each

item. Alternatively we could just specify the item code and the value of the item in the stock. The

following program uses classes and shows how to convert data of one type to another.

#include<iostream.h>

#include<conio.h>

class stock2;
class stock1

{

int code, item;

float price;

public:

stockl (int a, int b, float c)

{

code=a;

item=b;

price=c;
}

void disp()

{

cout<<”code”<<code <<”\n”;

cout<<”Items”<<item <<”\n”;

cout<<”Price per item Rs . “<<price <<”\n”;

}

int getcode()

{return code; }

int getitem()

{return item; }

int getprice()
{return price;}

operator float()

{

return (item*price);

}

};

class stock2

{

int code;

float val;

public:

stock2()

{

code=0; val=0;

}

stock2(int x, float y)

{

code=x; val=y;

}

void disp()

{

cout<< “code”<<code << “\n”;

cout<< “Total Value Rs . “ <<val<<”\n”

}

stock2 (stockl p)

{

code=p . getcode () ;

val=p.getitem() * p. getprice () ;
}

};

void main ()

{ '

Stockl il(101, 10,125.0);

Stock2 12;

float tot_val;

tot_val=i1 ;

i2=il;

cout<<” Stock Details-stockl-type” <<”\n”;

i 1 . disp () ;

cout<<” Stock value”<<”\n”;

cout<< tot_val<<”\n”;

cout<<” Stock Details-stock2-type”<< “\n”;

i2 .disp();
getch () ;

}

You should get the following output.

Stock Details-stock1-type

code 101

Items 10

Price per item Rs. 125

Stock value

1250

Stock Details-stock2-type

code 10 1

Total Value Rs. 1250

UNIT-III

Inheritance:

Reaccessability is yet another feature of OOP's. C++ strongly supports the concept of reusability.

The C++ classes can be used again in several ways. Once a class has been written and tested, it can

be adopted by another programmers. This is basically created by defining the new classes, reusing

the properties of existing ones. The mechanism of deriving a new class from an old one is called

'INHERTTENCE'. This is often referred to as IS-A' relationship because very object of the class

being defined "is" also an object of inherited class. The old class is called 'BASE' class and thenew

one iscalled'DERIEVED'class.

Defining DerivedClasses

A derived class is specified by defining its relationship with the base class in addition to its own
details. The general syntax of defining a derived class is as follows:

class d_classname : Access specifier baseclass name

{

 // members of derivedclass
};

The colon indicates that the a-class name is derived from the base class name. The access specifier or

the visibility mode is optional and, if present, may be public, private or protected. By default it is
private. Visibility mode describes the status of derived features e.g.

class xyz //baseclass

{

members of xyz

};
class ABC :publicxyz //publicderivation

{
members of ABC

};
class ABC: XYZ //private derivation (bydefault)

{
members of ABC

};

In the inheritance, some of the base class data elements and member functions are inherited into the

derived class. We can add our own data and member functions and thus extend the functionality of

the base class. Inheritance, when used to modify and extend the capabilities of the existing classes,

becomes a very powerful tool for incremental program development.

Single Inheritance

When a class inherits from a single base class, it is known as single inheritance. Following program
shows the single inheritance using public derivation.

#include<iostream.h>

#include<conio.h>

class worker

{

int age;

char name [10];
public:

void get ();

};

void worker : : get ()

{

cout <<”yout name please”
cin >> name;

cout <<”your age please” ;
cin >> age;

}
void worker :: show ()

{
cout <<”In My name is :”<<name<<”In My age is :”<<age;

}
class manager ::publicworker //derived class(publicly)

{

int now;

public:

void get () ;

void show () ;
};

void manager : : get ()
{

worker : : get (); //the calling of base class input fn.

cout << “number of workers underyou”;

cin >> now;

cin>>name>>age;

} (if they were public)
void manager :: show ()

{
worker :: show(); //calling of base class o/pfn.

cout <<“in No. of workers under me are: “ << now;

}

main ()

{

clrscr () ;

worker W1;

manager M1;

M1 .get ();
M1.show () ;

}

If you input the following to this program:

Your name please

Ravinder

Your age please

27

number of workers under you

30

Then the output will be as follows:

My name is : Ravinder

My age is : 27

No. of workers under me are : 30

The following program shows the single inheritance by private derivation.

#include<iostream.h>

#include<conio.h>

classworker //Base classdeclaration

{

int age;

char name [10] ;

public:

void get () ;

void show () ;
};
void worker : : get ()

{

cout << “your name please” ;

cin >> name;

cout << “your age please”;

cin >>age;

}
void worker : show ()

{
cout << “in my name is: “ <<name<< “in” << “my age is : “ <<age;

}
class manager : worker //Derived class (privately by default)

{

int now;

public:

void get () ;

void show () ;
};

void manager : : get ()
{

worker : : get (); //calling the get function of base

cout << “number of worker under you”; class which is

cin >> now;
}

void manager : : show ()

{

worker : : show () ;

cout << “in no. of worker under me are : “ <<now;

}
main ()

{

clrscr () ;

worker wl ;

manager ml;

ml.get () ;

ml.show ();

}
The following program shows the single inheritance using protected derivation

#include<conio.h>
#include<iostream.h>

classworker //Base class declaration

{ protected:

int age; char name [20];

public:

void get ();

void show ();
};

void worker :: get ()

{

cout >> “your name please”;

cin >>name;

cout << “your age please”;

cin >> age;
}
void worker :: show ()

{

cout << “in my name is: “ << name << “in my age is “ <<age;

}

class manager:: protected worker // protected inheritance

{

int now;

public:

void get ();
void show () ;

};

void manager : : get ()

{

cout << “please enter the name In”;

cin >> name;

cout<< “please enter the age In”; //Directly inputting thedata

cin>>age; members of baseclass

cout << “ please enter the no. of workers under you:”;

cin >> now;
}
void manager : : show ()

{

cout « "your name is : "«name«" and age is : "«age;

cout «"In no. of workers under your are : "«now;
main ()

{

clrscr () ;

manager ml;

ml.get () ;

Student Activity

1. Define Inheritance. What is the inheritance mechanism inC++?

2. What are the advantage ofInheritance?

3. What should be the structure of a class when it has to be a base for otherclasses?

cout « "\n \n";

ml.show ();

}

Making a Private Member Inheritable

Basically we have visibility modes to specify that in which mode you are deriving the another class

from the already existing base class. They are:

a. Private: when a base class is privately inherited by a derived class, 'public

members' of the base class become private members of the derived class and

therefore the public members of the base class can be accessed by its own

objects using the dot operator. The result is that we have no member of base

class that is accessible to the objects of the derivedclass.

b. Public: On the other hand, when the base class is publicly inherited, 'public

members' of the base class become 'public members' of derived class and

therefore they are accessible to the objects of the derivedclass.

c. Protected: C++ provides a third visibility modifier, protected, which serve a

little purpose in the inheritance. A member declared as protected is accessible

by the member functions within its class and any class immediately derived

from it. It cannot be accessed by functions outside these twoclasses.

The below mentioned table summarizes how the visibility of members undergo modifications when

they are inherited

Base Class Visibility Derived Class Visibility
Public Private Protected

Private X X X

Public Public Private Protected

Protected Protected Private Protected

The private and protected members of a class can be accessed by:

a. A function i.e. friend of aclass.

b. A member function of a class that is the friend of theclass.

c. A member function of a derived class.

Multilevel Inheritance

When the inheritance is such that, the class A serves as a base class for a derived class B which in

turn serves as a base class for the derived class C. This type of inheritance is called ‘MULTILEVEL

INHERITENCE’. The class B is known as the ‘INTERMEDIATE BASE CLASS’ since it provides a

link for the inheritance between A and C. The chain ABC is called ‘ITNHERITENCE*PATH’ for

e.g.

Base class

Inheritance path Intermediate base

class

Derived class

The declaration for the same would be:

Class A
{

//body

}

Class B : public A

{

//body

}

Class C : public B

{

//body

}

This declaration will form the different levels of inheritance.

Following program exhibits the multilevel inheritance.

#include<iostream.h>

#include<conio.h>
classworker // Base classdeclaration

{
int age;

char name [20] ;
public;

void get() ;

void show() ;

}

void worker: get ()

{

cout << “your name please” ;
cin >> name;

cout << “your age please” ;

}

void worker : : show ()

{

cout << “In my name is : “ <<name<< “ In my age is : “ <<age;

}

class manager : public worker //Intermediate base class derived

{ //publicly from the base class

intnow;
public:

void get () ;

void show() ;

};

void manager :: get ()

{

worker : :get (); //calling get () fn. of base class
cout << “no. of workers under you:”;

cin >> now;

}

void manager : : show ()

{

worker : : show (); //calling show () fn. of base class
cout << “In no. of workers under me are: “<<now;

}

class ceo:publicmanager //declaration of derivedclass

{ //publicly inherited fromthe

intnom; //intermediate baseclass

public:

void get () ;

void show () ;
};

void ceo : : get ()

{
manager : : get () ;

cout << “no. of managers under you are:”; cin >> nom;

}

void manager : : show ()

{

cout << “In the no. of managers under me are: In”;

cout << “nom;

}

main ()

{

clrscr () ;

ceo cl ;

cl.get () ; cout << “\n\n”;

cl.show () ;

}

Worker

Private:

int age;

char name[20];

Protected:

Private:

int age;

char name[20];

Manager:Worker

Private:

int now;

Protected:

Public:

void get()

void show()

worker::get()
worker::get()

Ceo: Manager

Public:

Protected:

Public:

All the inherited

members

Class derived : visibility basel, visibility base2

{

//body3

}

Multiple Inheritances

A class can inherit the attributes of two or more classes. This mechanism is known as ‘MULTIPLE

INHERITENCE’. Multiple inheritance allows us to combine the features

of several existing classes as a starring point for defining new classes. It is like the child inheriting

the physical feature of one parent and the intelligence of another. The syntax of the derived class is

asfollows:

Class base1

{

//body1

}

Class base2

{

// body2

}

Where the visibility refers to the access specifiers i.e. public, private or protected. Following

program shows the multipleinheritance.

#include<iostream.h>

#include<conio . h>
classfather //Declaration of baseclassl

{

int age ;

char flame [20] ;

public:

void get () ;

void show () ;
};
void father : : get ()

{

cout << “your father name please”;

cin >> name;

cout << “Enter the age”;

cin >> age;

}
void father : : show ()

{

cout<< “In my father’s name is: ‘ <<name<< “In my father’s age is:<<age;

}

classmother //Declaration of base class 2

{

char name [20] ;

int age ;

public:
void get ()

{

cout << “mother’s name please” << “In”;

cin >> name;

cout << “mother’s age please” << “in”;

cin >> age;
}

void show ()
{

cout << “In my mother’s name is: “ <<name;

cout << “In my mother’s age is: “ <<age;

}

class daughter : public father, public mother //derived class inheriting

{ //publicly

char name[20]; //the features of both the baseclass

intstd;
public:

void get () ;
void show () ;

};

void daughter :: get ()

{
father :: get () ;

mother :: get () ;

cout << “child's name: “;

cin >> name;

cout << “child's standard”;

cin >> std;
}
void daughter :: show ()

{

father :: show ();

nfather :: show () ;

cout << “In child’s name is : “ <<name;

cout << “In child's standard: “ << std;

}
main ()

{

clrscr () ;

daughter d1;

d1.get () ;

d1.show () ;
}

Diagrammatic Representation of Multiple Inheritance is asfollows:

Father Mother

Class daughter: public Father, publicMother

Private: char name[20]; int age;

Protected:

Public:

//self

void get(); void showQ;

//from Father

void get(); void show();

//from Mother

void get(); void show();

Private:

int age;

char name[20];

Private:

int age;

char name[20];

Protected: Protected:

Public:

void get()

void show()

Public:

void get()

void show()

Mid term

Hierarchical Inheritance

Another interesting application of inheritance is to use is as a support to a hierarchical design of a

class program. Many programming problems can be cast into a hierarchy where certain features of

one level are shared by many others below that level for e.g.

In general the syntax is given as

In C++, such problems can be easily converted into hierarchies. The base class will include all the

features that are common to the subclasses. A sub-class can be constructed by inheriting the features

of base class and so on.

// Program to show the hierarchical inheritance

#include<iostream.h>
include<conio. h>

classfather //Base classdeclaration

{

int age;

char name [15];

public:
void get ()

{

cout<< “father name please”; cin >> name;

Long term Short term

cout<< “father’s age please”; cin >> age;

}
void show ()

{

cout << “In father’s name is ‘: “<<name;

cout << “In father’s age is: “<< age;
}

};
class son :publicfather //derived class1

{

char name [20] ;

int age ;
public;

void get () ;

void show () ;

} ;
void son : : get ()

{

father :: get () ;

cout << “your (son) name please” << “in”; cin >>name;
cout << “your age please” << “ln”; cin>>age;

}
void son :: show ()

{
father : : show () ;

cout << “In my name is : “ <<name;

cout << “In my age is : “ <<age;

}
class daughter :publicfather //derived class2.

{

char name [15] ;

int age;

public:

void get ()
{

father : : get () ;

cout << “your (daughter’s) name please In” cin>>name;

cout << “your age please In”; cin >>age;
}

void show ()

{

father : : show () ;

cout << “in my father name is: “ << name << “

In and his age is : “<<age;
}

};
main ()

{
clrscr () ;

son S1;

daughter D1 ;

S1. get ();

D1. get () ;

S1 .show() ;

D1. show () ;

}

Hybrid Inheritance

There could be situations where we need to apply two or more types of inheritance to design a

program. Basically Hybrid Inheritance is the combination of one or more types of the inheritance.

Here is one implementation of hybrid inheritance.

//Program to show the simple hybridinheritance

#include<i sos t ream. h>

#include<conio .h>
classstudent //base classdeclaration

{
protected:

int r_no;

public:

void get _n (int a)

{

r_no =a;

}

void put_n (void)

{

cout << “Roll No. : “<< r_no;

cout << “In”;
}

};

class test : public student

{ //Intermediate baseclass

protected : int parti, par2;

public :

void get_m (int x, int y) {

parti = x; part 2 = y; }
void put_m (void) {

cout << “marks obtained: “ << “In”

<< “Part 1 = “ << part1 << “in”

<< “Part 2 = “ << part2 << “In”;
}

};
classsports // base forresult

{

protected : int score;

public:
void get_s (int s){

score = s }

void put_s (void){

cout << “ sports wt. : “ << score << “\n\n”;

Student Activity
1. What is the major use of multilevelInheritance?

2. How are arguments sent to the base constructors in multiple inheritance? Whose

responsibility isit.
3. What is the difference between hierarchical and hybridInheritance.

}

};

class result : public test, public sports //Derived from test

&sports
{

int total;

public:

void display (void);

};

void result : : display (void)

{

}

main ()

{

total = part1 + part2 + score;

put_n () ;.

put_m ();

put_S ();

cout << “Total score: “ <<total<< “\n”

clrscr () ;
result S1;

S1.get_n (347) ;

S1.get_m (30, 35);

S1.get_s (7) ;

S1.dciplay () ;

}

Virtual Base Classes

We have just discussed a situation which would require the use of both multiple and multi level

inheritance. Consider a situation, where all the three kinds of inheritance, namely multi-level,

multiple and hierarchical are involved.

Let us say the 'child' has two direct base classes ‘parent1’ and ‘parent2’ which themselves has a

common base class ‘grandparent’. The child inherits the traits of ‘grandparent’ via two separate

paths. It can also be inherit directly as shown by the broken line. The grandparent is sometimes

referred to as ‘INDIRECT BASE CLASS’. Now, the inheritance by the child might cause some

problems. All the public and protected members of ‘grandparent’ are inherited into ‘child’ twice, first

via ‘parent1’ and again via ‘parent2’. So, there occurs a duplicacy which should beavoided.

The duplication of the inherited members can be avoided by making common base class as the

virtual base class: fore.g.
classg_parent

{

//Body

};

class parent1: virtual public g_parent

{

// Body

};

class parent2: public virtual g_parent

{

// Body

};
class child : public parent1, public parent2

{
// body

};

When a class is virtual base class, C++ takes necessary care to see that only one copy

of that class is inherited, regardless of how many inheritance paths exists between

virtual base class and derived class. Note that keywords ‘virtual’ and ‘public’ can be

used in eitherorder.

//Program to show the virtual base class

#include<iostream.h>

#include<conio . h>

classstudent // Base classdeclaration

{

protected:

int r_no;

public:
void get_n (inta)

{ r_no = a; }
void put_n(void)

{ cout << “Roll No. “ << r_no<< “ln”;}

};

class test : virtual public student // Virtually declaredcommon

{ //base class 1

protected:

int part1;

int part2;

public:
void get_m (int x, int y)

{ part1= x; part2=y;}

void putm (void)

{

cout << “marks obtained: “ << “\n”;

cout << “part1 = “ << part1 << “\n”;

cout << “part2 = “<< part2 << “\n”;

}

};

class sports : public virtual student // virtually declared common

{ //base class 2

protected:

int score;

public:

void get_s (int a) {

score = a ;
}

void put_s (void)

{ cout << “sports wt.: “ <<score<< “\n”;}

};

class result: public test,publicsports //derivedclass

{

private : int total ;

public:
void show (void) ;

};
void result : : show (void)

{ total = part1 + part2 + score ;

put_n ();

put_m ();

put_s () ; cout << “\n total score= “ <<total<< “\n” ;

}

main ()

{

clrscr () ;

result S1 ;

S1.get_n (345)
S1.get_m (30, 35) ;

S1.get-S (7) ;

S1. show ();

}

//Program to show hybrid inheritance using virtual base classes

#include<iostream.h>

#include<conio.h>

Class A
{

protected:

int x;
public:

};

void get (int) ;
void show (void) ;

void A : : get (int a)

{ x = a ; }

void A : : show(void)

{ cout << X ;}
Class A1 : Virtual PublicA

{

protected:

int y ;

public:

};

void get (int) ;

void show (void);

void A1 :: get (int a)

{ y = a;}

void A1 :: show (void)

{

cout <<y ;

{

class A2 : Virtual public A

{

protected:

int z ;

public:

};

void get (int a)

{ z =a;}

void show (void)

{ cout << z;}

class A12 : public A1, public A2

{

int r, t ;

public:

void get (int a)

{ r = a;}

void show (void)

{ t = x + y + z + r ;

cout << “result =” << t ;
}

};
main ()

{

clrscr () ;

A12 r ;

r.A : : get (3) ;

r.A1 : : get (4) ;

r.A2 : : get (5) ;

r.get (6) ;

r . show () ;

}

Pointer:

Introduction

When an object is created from its class, the member variables and member functions are allocated

memory spaces. The memory spaces have unique addresses. Pointer is a mechanism to access these

memory locations using their address rather than the name assigned to them. You will study the

implications and applications of this mechanism in detail in this chapter.

Pointer is a variable which can hold the address of a memory location rather than the value at the
location. Consider the following statement

int num =84;

This statement instructs the compiler to reserve a 2-byte of memory location and puts the value 84 in

that location. Assume that the compiler allocates memory location 1001 to num. Diagrammatically,

the allocation can be shown as:

num Variablename

Value

1001 Address of memorylocation

Figure 9.1

As the memory addresses are themselves numbers, they can be assigned to some other variable For

example, ptr be the variable to hold the address of variable num.

Thus, we can access the value of num by the variable ptr. We can say “ptr points to num” as shown

in the figurebelow.

Fig 9.2

84

Pointers to Objects

An object of a class behaves identically as any other variable. Just as pointers can be defined in case

of base C++ variables so also pointers can be defined for an object type. To create a pointer variable

for the following class

class employee{

int code;

char name [20] ;

public:

inline void getdata ()= 0 ;

inline void display ()= 0 ;

};

The following codes is written

employee *abc;
This declaration creates a pointer variable abc that can point to any object of employee type.

this Pointer

C++ uses a unique keyword called "this" to represent an object that invokes a member function. 'this'

is a pointer that points to the object for which this function was called. This unique pointer is called

and it passes to the member function automatically. The pointer this acts as an implicit argument to

all the member function, fore.g.

class ABC

{

int a ;

};

The private variable ‘a’ can be used directly inside a member function, like

a=123;

We can also use the following statement to do the same job.

this → a = 123
e.g.

class stud

{

int a;

public:

void set (int a)

{

this → a = a; //here this point is used to assign a class level

} ‘a’ with the argument ‘a’

void show ()
{

cout << a;

}

};
main ()

{
stud S1, S2;

S1.bet (5) ;

S2.show ();

}

o/p = 5

Pointers to Derived Classes

Polymorphism is also accomplished using pointers in C++. It allows a pointer in a base class to point

to either a base class object or to any derived class object. We can have the following Program

segment show how we can assign a pointer to point to the object of the derived class.

class base

{

//Data Members

//Member Functions

};
class derived : public base

{

//Data Members

//Member functions

};

void main () {

base *ptr; //pointer to class base

derived obj ;
ptr =&obj; //indirect reference obj to thepointer

//Other Program statements

}

The pointer ptr points to an object of the derived class obj. But, a pointer to a derived class object

may not point to a base class object without explicit casting.

For example, the following assignment statements are not valid

void main ()

{

base obja;

derived *ptr;
ptr = &obja; //invalid.... .explicit casting required

//Other Program statements

}

A derived class pointer cannot point to base class objects. But, it is possible by using explicit casting.
void main ()

{
base obj ;

derived*ptr; // pointer of the derived class

ptr = (derived *) &obj; //correctreference

//Other Program statements

}

Student Activity

1. Define Pointers.

2. What are the various operators of pointer? Describe theirusage.

3. How will you declare a pointer inC++?

Virtual Functions

Virtual functions, one of advanced features of OOP is one that does not really exist but it« appears

real in some parts of a program. This section deals with the polymorphic features which are

incorporated using the virtual functions.

The general syntax of the virtual function declaration is:
class use_detined_name{

private:

public:

virtual return_type function_name1(arguments);

virtual return_type function_name2(arguments);

virtual return_type function_name3(arguments);

};

To make a member function virtual, the keyword virtual is used in the methods while it is declared in

the class definition but not in the member function definition. The keyword virtual precedes the

return type of the function name. The compiler gets information from the keyword virtual that it is a

virtual function and not a conventional function declaration.

For. example, the following declararion of the virtual function is valid.

class point {

intx;

inty;

public:

virtual int length ();

virtual void display ();
};

Remember that the keyword virtual should not be repeated in the definition if the definition occurs

outside the class declaration. The use of a function specifier virtual in the function definition is

invalid.

Forexample

class point {

intx;

inty ;

public:
virtual void display ();

};

virtual void point: : display () //error

{

Function Body

}

A virtual function cannot be a static member since a virtual member is always a member of a

particular object in a class rather than a member of the class as a whole.

class point {

int x ;

int y ;

public:
virtual static int length (); //error

};

int point: : length ()

{

Function body

}

A virtual function cannot have a constructor member function but it can have the destructor member

function.

class point {
int x ;

int y ;
public:

virtual point (int xx, int yy) ; // constructors, error

void display () ;

int length () ;

};

A destructor member function does not take any argument and no return type can be specified for it

not even void.

class point {

int x ;

int y ;

public:

virtual point (int xx, int yy) ; //invalid
void display ();

intlength () ;

It is an error to redefine a virtual method with a change of return data type in the derived class with

the same parameter types as those of a virtuall method in the base class.

class base {

int x,y ;

public:

virtual int sum (int xx, int yy) ; //error

} ;

class derived: public base {

intz ;

public:

virtual float sum (int xx, int yy) ;

};

The above declarations of two virtual functions are invalid. Even though these functions take

identical arguments note that the return data types aredifferent.

virtual int sum (int xx,intIT) ;//baseclass

virtual float sum (int xx, int IT) ; //derivedclass

Both the above functions can be written with int data types in the base class as well as in the derived

class as

virtual intsum (int xx,int yy) ;//base class virtual

intsum (int xx, int yy) ;//derived class

Only a member function of a class can be declared as virtual. A non member function (nonmethod)

of a class cannot be declaredvirtual.
virtual void display () //error, nonmember function

{
Function body

}

Late Binding
As we studied in the earlier unit, late binding means selecting functions during the execution.

Though late binding requires some overhead it provides increased power and flexibility. The late

binding is implemented through virtual functions as a result we have to declare an object of a class

either as a pointer to a class or a reference to aclass.

For example the following shows how a late binding or run time binding can be carried out with the
help of a virtual function.

class base {

private :

int x;

float y;

public:

virtual void display () ;

int sum () ;
};

class derivedD : public baseA

{

private :

int x ;

float y;

public:

void display (); //virtual
int sum () ;

};

void main ()

{

baseA *ptr ;

derivedD objd ;

ptr = &objd ;

Other Program statements

ptr- >di splay () ; //run time binding ptr-

>sum () ; //compile time binding
}

Note that the keyword virtual is be followed by the return type of a member function if a run time is

to be bound. Otherwise, the compile time binding will be effected as usual. In the above program

segment, only the display () function has been declared as virtual in the base class, whereas the sum

() is nonvirtual. Even though the message is given from the pointer of the base class to the objects of

the derived class, it willnot

access the sum () function of the derived class as it has been declared as nonvirtual. The sum ()

function compiles only the static binding.

The following program demonstrates the run time binding of the member functions of a class. The

same message is given to access the derived class member functions from the array of pointers. As
function are declared as virtual, the C++ compiler invokes the dynamic binding.

#include <iostream.h>

#include <conio.h>

class baseA {

public :

virtual void display () {

cout<< “One \n”;
}

};

class derivedB : public baseA

{
public:

virtual void display(){
cout<< “Two\n”; }

};

class derivedC: public derivedB

{
public:

virtual void display () {

cout<< “Three \n”; }

};
void main () {

//define three objects

baseA obja;

derivedB objb;

derivedC objc;

base A *ptr [3]; //define an array of pointers to baseA
ptr [0] =&obja;

ptr [1] = &objb;

ptr [2] =&objc;

for (inti = 0; i <=2; i ++)

ptr [i]->display (); //same message for all objects

getche ();
}

Output

One

Two

Three

The program listed below illustrates the static binding of the member functions of a class. In program

there are two classes student and academic. The class academic is derived from class student. The

two member function getdata and display are defined for both the classes. *obj is defined for class

student, the address of which is stored in the object of the class academic. The functions getdata ()

and display () of student class are invoked by the pointer to theclass.

#include<iostream.h>

#include<conio.h>

class student {

private:

int rollno;

char name [20];

public:

void getdata ();
void display ();

};

class academic: public student {
private:

char stream;
public:

void getdata ();

void display () ;

};

void student:: getdata ()

{

cout<< “enterrollno\n”;

cin>>rollno;

cout<< “enter name \n”;

cin>>name;
}

void student:: display ()
{

cout<< “the student’s roll number is “<<rollno<< “and name is”<<name ;

cout<< endl;
}

void academic :: getdata ()

{

cout<< “enter stream of a student? \n”;

cin >>stream;
}

void academic :: display () {

cout<< “students stream \n”;

cout <<stream<<endl;
}

void main ()

{

student *ptr ;

academic obj ;

ptr=&obj;

ptr->getdata () ;

ptr->display () ;

getche ();

}

output

enter rollno

25

enter name

raghu

the student’s roll number is 25 and name is raghu

The program listed below illustrates the dynamic binding of member functions of a class. In this

program there are two classes student and academic. The class academic is derived from student.

Student function has two virtual functions getdata () and display (). The pointer for student class is

defined and object . for academic class is created. The pointer is assigned the address of the object

and function of derived class are invoked by pointer to student.

#include <iostream.h>

#include <conio.h>

class student {

private:

introllno;

char name [20];

public:

virtual void getdata ();

virtual void display ();
};

class academic: public student {

private :

char stream[10];

public:

void getdata { };

void display () ;

};

void student: : getdata ()

{

cout<< “enter rollno\n”;

cin >> rollno;

cout<< “enter name \n”;

cin >>name;
}
void student:: display ()

{

cout<< “the student’s roll number is”<<rollno<< “and name is”<<name;
cout<< end1;

}

void academic: : getdata ()

{

cout << “enter stream of a student? \n”;

cin>> stream;
}

void academic:: display ()

{

cout<< “students stream \n”;

cout<< stream << endl;

}
void main ()

{

}

output

student *ptr ;

academic obj ;

ptr = &obj ;

ptr->getdata ();

ptr->dlsplay ();

getch ();

enter stream of a student?

Btech

students stream

Btech

Pure Virtual Functions

Generally a function is declared virtual inside a base class and we redefine it the derived classes. The
function declared in the base class seldom performs any task.

The following program demonstrates how a pure virtual function is defined, declared and invoked

from the object of a derived class through the pointer of the base class. In the example there are two

classes employee and grade. The class employee is base class and the grade is derived class. The

functions getdata () and display () are declared for both the classes. For the class employee the

functions are defined with empty body or no code inside the function. The code is written for the

grade class. The methods of the derived class are invoked by the pointer to the base class.

#include<iostream.h>

#include<conio.h>

class employee {

int code

char name [20] ;

public:

virtual void getdata () ;

virtual void display () ;

};

class grade: public employee

{

char grd [90] ;

float salary ;
public :

void getdata () ;
void display ();

};

void employee :: getdata ()

{

}

void employee:: display ()

{

}

void grade : : getdata ()

{

cout<< “ enter employee’s grade “;

cin>> grd ;

cout<< “\n enter the salary “ ;

cin>> salary;
}
void grade : : display ()

{

cout«" Grade salary \n";

cout« grd« ""« salary« endl;

}

void main ()

{

}

Output

employee *ptr ; grade obj ;

ptr = &obj ;

ptr->getdata () ; ptr->display (

) ; getche () ;

enter employee’s grade A

enter the salary 250000

Grade salary

A 250000

Abstract Class

Abstract Class is a class which contains atleast one Pure Virtual function in it. Abstract classes are

used to provide an Interface for its sub classes. Classes inheriting an Abstract Class must provide

definition to the pure virtual function, otherwise they will also become abstract class.

Characteristics of Abstract Class

1. Abstract class cannot be instantiated, but pointers and refrences of Abstract class type can be

created.

2. Abstract class can have normal functions and variables along with a pure virtualfunction.

3. Abstract classes are mainly used for Upcasting, so that its derived classes can useits

interface.

4. Classes inheriting an Abstract Class must implement all pure virtual functions, or else they

will become Abstracttoo.

Pure Virtual Functions

Pure virtual Functions are virtual functions with no definition. They start with virtual keyword and

ends with = 0. Here is the syntax for a pure virtual function,

virtual void f() = 0;

Example of Abstract Class

classBase //Abstract baseclass

public:
virtual void show()=0; //Pure VirtualFunction

};

class Derived:public Base

{

public:

void show()

{ cout <<"Implementation of Virtual Function in Derived class"; }

};

int main()

{

Baseobj; //Compile TimeError

Base *b;

Derived d;

b = &d;
b->show();

}

Output : Implementation of Virtual Function in Derived class

In the above example Base class is abstract, with pure virtual show() function, hence we cannot

create object of base class.

Polymorphism

Polymorphism means "many forms", and it occurs when we have many classes that are related to each

other by inheritance.

 Polymorphism uses those methods to perform different tasks. This allows us to perform a single action in

different ways.

For example, think of a base class called Animal that has a method called animalSound(). Derived classes

of Animals could be Pigs, Cats, Dogs, Birds - And they also have their own implementation of an animal

sound (the pig oinks, and the cat meows, etc.):

Example

// Base class

class Animal {

 public:

 void animalSound() {

 cout << "The animal makes a sound \n" ;

 }

};

// Derived class

class Pig : public Animal {

 public:

 void animalSound() {

 cout << "The pig says: wee wee \n" ;

 }

};

// Derived class

class Dog : public Animal {

 public:

 void animalSound() {

 cout << "The dog says: bow wow \n" ;

 }

};

UNIT-IV

Managing Console I/O

One of the most essential features of interactive programming is its ability to interact

with the users through operator console usually comprising keyboard and monitor. Accordingly,

every computer language (and compiler) provides standard
input/output functions and/or methods to facilitate console operations.

C++ accomplishes input/output operations using concept of stream. A stream is a

series of bytes whose value depends on the variable in which it is stored. This way, C++ is able to

treat all the input and output operations in a uniform manner. Thus, whether it is reading from a file

or from the keyboard, for a C++ program it is simply astream.

We have used the objects cin and cout (pre-defined in the iostream.h file) for the input

and output of data of various types. This has been made possible by overloading the operators >>

and << to recognize all the basic C++ types. The >>operator is overloaded in the istream class and «

is overloaded in the ostream class.The

following is the general format for reading data from the keyboard:

cin >> variable1 >> variable2 >>… …>> variableN;

Where variable1, variable2, are valid C++ variable names that have been declared already.

This statement will cause the computer to halt the execution and look for input data from the

keyboard. The input data for this statement would be:

data1 data2. dataN

The input data are separated by white spaces and should match the type of variable in the cin
list. Spaces, newlines and tabs will be skipped.

The operator >> reads the data character by character and assigns it to the indicated location.

The reading for a variable will be terminated at the encounter of a white space or a character that

does not match the destinationtype.

For example, consider the following code:

int code;

cin >> code;

Suppose the following data is given as input:

1267E

The operator will read the characters up to 7 and the value 1267 is assigned to code. The

character E remains in the input stream and will be input to the next cin statement. The general

format of outputtingdata:
cout << iteml <<item2 <<<< itemN;

The items, item1 through itemN may be variables or constants of any basic types.

The put() and get() Functions
The classes istream and ostream define two member functions get() and put() respectively to

handle the single character input/output operations. There are two types of get() functions. We can

use both get(char*) and get(void) prototypes to fetch a character including the blank space, tab and

the newline character. The get(char*) version assigns the input character to its argument and the

get(void) version returns the input character.

Since these functions are members of the input/output stream classes, we must invoke them

using an appropriate object. For instance, look at the code snippet given below:
char c;

cin.get (c); //get a character from keyboard and assign it to c
while (c!= '\n')

{
cout<<C; //display the character on screen cin.get(c);

//get another character

}

This code reads and displays a line of text (terminated by a newline character).

Remember, the operator>>can also be used to read a character but it will skip the white spaces and

newline character. The above while loop will not work properly if the statement
cin >> c;

is used in place of

cin.get (c);

Try using both of them and compare the results. The get(void) version is used as

follows:

char c;

c-cin.getl); //cin.get (c)replaced

The value returned by the function get() is assigned to the variable c.

The function put(), a member of ostream class, can be used to output a line of text, character

by character. For example,

cout << put (‘x’);

displays the character xand

cout << put (ch);

displays the value of variable ch.

The variable ch must contain a character value. We can also use a number as an argument to

the function put (). For example,

cout << put (68) ;

displays the character D. This statement will convert the int value 90 to a char value and display the

character whose ASCII value is 68,

The following segment of a program reads a line of text from the keyboard and displays it on

the screen.
char c;.

cin.get(c) //read a character

while (c!=‘\n’)

{

cout<< put(c); //display the character on screen cin.get (c) ;

}

The getline () and write () Functions

We can read and display a line of text more efficiently using the line-oriented input/output

functions getline() and write(). The getline() function reads a whole line of text that ends with a

newline character. This function can be invoked by using the object cin as follows:

cin.getline(line, size);

This function call invokes the function which reads character input into the variable line. The

reading is terminated as soon as either the newline character '\n' is encountered or size number of

characters are read (whichever occurs first). The newline. character is read but not saved. Instead, it

is replaced by the nullcharacter.

For example; consider the following code:

char name [20] ;

cin.getline(name, 20);

Assume that we have given the following input through the keyboard:

Neeraj good

This input will be read correctly and assigned to the character array name. Let us suppose the

input is as follows:

Object Oriented Programming

In this case, the input will be terminated after reading the following 19 characters:

Object Oriented Pro

array.

After reading the string/ cin automatically adds the terminating null character to thecharacter

Remember,thetwoblankspacescontainedinthestringarealsotakenintoaccount,i.e.
between Objects and Oriented and Pro.

We can also read strings using the operator >>as follows:

cin >> name;

But remember cin can read strings that do not contain white space. This means that cin can

read just one word and not a series of words such as “Neeraj good”.

Formatted Console I/O Operations

C++ supports a number of features that could be used for formattingtheoutput. These
featuresinclude:

• ios class functions andflags.

• Manipulators.

• User-defined outputfunctions.

The ios class contains a large number of member functions that could be used to format the
output in a number of ways. The most important ones among them are listed below.

Table 10.1

Function Task

width() To specify the required field size for displaying an output value

Precision() To specify the number of digits to be displayed after the decimal point

of a float value

fill() To specify a character that is used to fill the unused portion of a field.

self() To specify format flags that can control the form of output display

(such as Left-justification and right-justification).

Unself() To clear the flags specified.

Manipulators are special functions that can be included in these statements to alter the format

parameters of a stream. The table given below shows some important! manipulator functions that are

frequently used. To access these manipulators, the file iomanip.h should be included in the program.

Table 10.2

Manipulator Equivalent Ios function

setw() width()
Setprecision() Precision()
Setfill() fill()
setiosflags() self()

Resetiosflags() Unself()

In addition to these functions supported by the C++ library, we can create our own

manipulator functions to provide any special output formats.

Streams

C++ is designed to work with a wide variety of devices including terminals, disks, and tape

drives. Although each device is very different, the system supplies an interface to the programmer

that is independent of the actual device being accessed, This interface is known as stream.

A stream is a sequence of bytes. It acts either as a source from which the input data can be

obtained or as a destination to which the output data can be sent. The source stream that provides

data to the program is called the output stream. In other words, a program extracts the bytes from an

input stream and inserts bytes into an outputstream.

The data in the input stream can come from the keyboard or any other storage device.

Similarly, the data in the output stream can go to the screen or any other storage device. As

mentioned earlier, a stream acts as an interface between the program and the input/output device.

Therefore, a C++ program handles data (input or output) independent of the devices used.

C++ contains several pre-defined streams that are automatically opened when a

program begins its execution. They include cin and cout which have been used very often in our

earlier programs. We know that cin represents the input stream connected to the standard input

device (usually the keyboard) and cout represents the output stream connected to the standard output

device (usually the screen). Note that the keyboard and the screen are default options. We can

redirect streams to other devices or files, ifnecessary.

I/O Operations

Input and Output statements of computer languages are used to provide commu-nications

between the user and the program. In most of the computer languages, input and output are done

through statements. But in C++, these operations are carried out through its built-in functions. The

I/O functions are designed in header files like fstream.h, iostream.h etc.

Through these functions, data can be read from or written to files or standard input/output

devices like keyboard and VDU. This execution of a program can be interrupted by input/output

calls. Hence the data can be entered or output can be retrieved during execution.

The file, stream classes support a number of member functions for performing the input and

output operations on files. One pair of functions, pot() and get(), are designed for handling a single

character at a time. Another pair of functions,

write() and readQ, are designed to write and read blocks of binary data.

put() and get()Functions
The function put() writes a single character to the associated stream. Similarly, the function

get () reads a single character from the, associated stream. The program, requests for a string. On

receiving the string, the program writes it, character, by character, to the file using the pot() function

in a for loop. Note that the length of the string is used to terminate the for loop.

C++ provides a number of useful predefined stream classes for console input/output

operations. Some of the C++ the predefined stream objects are listed below.

cin This is the name ofstandard input stream, usually keyboard. The

corresponding name in C isstdin.

cout This is the name of standard output stream, usually screen of the monitor. The

corresponding name in C isstdout.

cerr This is the name of standard error output stream, usually screen of the monitor. The

corresponding name in C isstderr.

clog This is another version of cerr. It provides buffer to collect errors. C does not have a

stream equivalent tothis.

In their default roles, these streams are tied up with the keyboard and screen of the monitor as

describe above. However, you can redirect them from and to other devices and files.

 Working With Files

Streams: C++ is designed to work with a wide variety of devices including, disks and take drives.

Although each device is very different the system suppliers an interface to the

programmer that is independent of the actual device accessed. This interface is known as

stream.

1. Ofstream: This file handling class in C++ signifies the output file stream and is applied to create files for

writing information to files

2. Ifstream: This file handling class in C++ signifies the input file stream and is applied for reading

information from files

3. Fstream: This file handling class in C++ signifies the file stream generally, and has the capabilities for

representing both ofstream and ifstream

All the above three classes are derived from fstreambase and from the corresponding iostream class and

they are designed specifically to manage disk files.

Opening and Closing a File in C++

If programmers want to use a disk file for storing data, they need to decide about the following things

about the file and its intended use. These points that are to be noted are:

• A name for the file

• Data type and structure of the file

• Purpose (reading, writing data)

• Opening method

• Closing the file (after use)

Files can be opened in two ways. They are:

1. Using constructor function of the class

2. Using member function open of the class

Opening a File

The first operation generally performed on an object of one of these classes to use a file is the procedure

known as to opening a file. An open file is represented within a program by a stream and any input or

output task performed on this stream will be applied to the physical file associated with it. The syntax of

opening a file in C++ is:

open (filename, mode);

There are some mode flags used for file opening. These are:

• ios::app: append mode

• ios::ate: open a file in this mode for output and read/write controlling to the end of the file

• ios::in: open file in this mode for reading

• ios::out: open file in this mode for writing

• ios::trunk: when any file already exists, its contents will be truncated before file opening

Closing a file in C++

When any C++ program terminates, it automatically flushes out all the streams releases all the allocated

memory and closes all the opened files. But it is good to use the close() function to close the file related

streams and it is a member of ifsream, ofstream and fstream objects.

The structure of using this function is:

void close();

General functions used for File handling

1. open(): To create a file

2. close(): To close an existing file

3. get(): to read a single character from the file

4. put(): to write a single character in the file

5. read(): to read data from a file

6. write(): to write data into a file

Reading from and writing to a File

While doing C++ program, programmers write information to a file from the program using the stream

insertion operator (<<) and reads information using the stream extraction operator (>>). The only

difference is that for files programmers need to use an ofstream or fstream object instead of the cout object

and ifstream or fstream object instead of the cin object.

Example:

#include <iostream>

#include <fstream.h>

void main () {

 ofstream file;

 file.open ("egone.txt");

 file << "Writing to a file in C++....";

 file.close();

 getch();

}

Another Program for File Handling in C++

Example:

#include <iostream>

#include<fstream.h>

void main()

{

 char c,fn[10];

 cout<<"Enter the file name....:";

 cin>>fn;

 ifstream in(fn);

 if(!in)

 {

 cout<<"Error! File Does not Exist";

 getch();

 return;

 }
 cout<<endl<<endl;
 while(in.eof()==0)
 {
 in.get(c);
 cout<<c;
 }
 getch();
}

Another C++ Program to Print Hello GS to the Console
Example:
#include <iostream>
#include<fstream.h>
#include<math.h>

void main()
{
 ofstream fileo("Filethree");
 fileo<<"Hello GS";
 fileo.close();
 ifstream fin("Filethree");
 char ch;
 while(fin)
 {
 fin.get(ch);
 cout<<ch;
 }
 fin.close();
 getch();
}

Template:

Template supports generic programming, which allows developing reusable software components

such as functions, classes, etc supporting different data types in a single frame work.

A template in c++ allows the construction of a family of template functions and classes to perform

the same operation o different data types. The templates declared for functions are called class

templates. They perform appropriate operations depending on the data type of the parameters passed

tothem.

Function Templates:

A function template specifies how an individual function can be constructed.

template <class T>
return type functionnm(T arg1,T arg2)

{

fn body;

}

For example:

Input two number and swap their values

template <class T>

void swap (T &x,T & y)

{

T z;

z=x;

x=y;

y=z;

}

void main()

{

char ch1,ch2;

cout<<”enter two characters:”;

cin>>ch1>>ch2;

swap(ch1,ch2);

cout<<ch1<<ch2;

int a,b;

cout<<”enter a,b:”;

cin>>a>>b;

swap(a,b);

cout<<a<<b;

float p,q;

cout<<”enter p,q:”;

cin>>p>>q;

swap(p,q);

cout<<p<<q;

}

example 2:

find maxium between two data items.

template <class T>
T max(T a,T b)

{

if (a>b)

return a;

else

return b;

}

void main()

{

char ch1,ch2;

cout<<”enter two characters:”;

cin>>ch1>>ch2;

cout<<max(ch1,ch2);

int a,b;

cout<<”enter a,b:”;

cin>>a>>b;

cout<<max(a,b);

float p,q;

cout<<”enter p,q:”;

cin>>p>>q;

cout<<max(p,q);

}

Overloading of function template

#include<iostream.h>

template <class T>

void print(T a)

{
cout<<a;

}

template <class T>

void print(T a, int n)
{

int i;

for(i=0;i<n;i++)

cout<<a;
}

void main()

{

print(1);

print(3.4);

print(455,3);

print(“hello”,3);

}

Multiple arguments function template:

find sum of two different numbers

template <class T,class U>
T sum(T a,U b)

{
return a+(U)b;

}
void main()

{

cout<<sum(4,5.5);
cout<sum(5.4,3);

}

Class Template

similar to functions, classes can also be declared to operate on different data types. Such classes are

class templates. a class template specifies how individual classes can be constructed similar to

normal class definition. These classes model a generic class which support similar operations for

different datatypes.

syn:

template <class T>

class classnm
{

T member1;
T member2;

…

…

public:
T fun();

…

..

};

objects for class template is created like:

classnm <datatype> obj;

obj.memberfun();

perform operation which maythrow

or invoke external function ifneeded

if (failure)

throw object

catches all exceptions thrown from

within try block

Exception Handling:

Exception refers to unexpected condition in a program. The unusual conditions could be faults,

causing an error which in turn causes the program to fail. The error handling mechanism of c++ is

generally referred to as exception handling.

Generally , exceptions are classified into synchronous and asynchronous exceptions.. The exceptions

which occur during the program execution, due to some fault in the input data or technique that is not

suitable to handle the current class of data. with in a program is known as synchronous exception.

Example:

errors such as out of range,overflow,underflow and so on.

The exceptions caused by events or faults unrelated to the program and beyond the control of

program are asynchronous exceptions.
For example, errors such as keyboard interrupts, hardware malfunctions, disk failure and so on.

exception handling model:

When a program encounters an abnormal situation for which it in not designed, the user may transfer

control to some other part of the program that is designed to deal with the problem. This is done by

throwing an exception. The exception handling mechanism uses three blocks: try, throw and catch.

The try block must be followed immediately by a handler, which is a catch block. If an exception is

thrown in the try block the program control is transferred to the appropriate exception handler. The

program should attempt to catch any exception that is thrown by any function. The relationship of

these three exceptions handling constructs called the exception handling model is shown in figure:

invoke function having throw block

exception

try block

throw construct:

The keyword throw is used to raise an exception when an error is generated in the comutation. the

throw expression initialize a temporary object of the typeT used in thorw (T arg).
syntax:

throw T;

catch construct:

The exception handler is indicated by the catch keyword. It must be used immediately after the

statements marked by the try keyword. The catch handler can also occur immediately after another

catch Each handler will only evaluate an exception that matches.
syn:

catch(T)

{

// error meassges

}

try construct:

The try keyboard defines a boundary within which an exception can occur. A block of code in which

an exception can occur must be prefixed by the keyword try. Following the try keyword is a block of

code enclosed by braces. This indicates that the prepared to test for the existence of exceptions. If an

exception occurs, the program flow is interrupted.

try

{

…

if (failure)

throw T;

}

catch(T)

{

…

}

example:

#include<iostream.h>
void main()

{

int a,b;

cout<<”enter two numbers:”;
cin>>a>>b;

try

{

if (b= =0)

throw b;

else

}

cout<a/b;

catch(int x)
{

cout<<”2nd operand can’t be 0”;

}

}

Array reference out of bound:

#define max 5

class array
{

private:

int a[max];

public:

int &operator[](int i)

{

if (i<0 || i>=max)

throw i;

else

}

};

return a[i];

void main()

{

array x;

try

{

cout<<”trying to refer a[1]…”

x[1]=3;

cout<<”trying to refer a[13]…”

x[13]=5;
}

catch(int i)

{

cout<<”out of range in array references…”;

}

}

multiple catches in a program

void test(int x)

{

try{

if (x==1)

throw x;

else if (x==-1)

throw 3.4;

else if (x==0)
throw ‘s’;

}

catch (int i)

{

cout<<”caught an integer…”;

}

catch (float s)

{

cout<<”caught a float…”;

}

catch (char c)

{

cout<<”caught a character…”;

}}

void main()

{

test(1);

test(-1);

test(0);

}

catch all

void test(int x)

{

try{

if (x==1)

throw x;
else if (x==-1)

throw 3.4;
else if (x==0)

throw ‘s’;
}

catch (…)

{

cout<<”caught an error…”;

}

 Unit:V

Standard Template Library:

The C++ Standard Library can be categorized into two parts −

• The Standard Function Library − This library consists of general-purpose,stand-alone functions

that are not part of any class. The function library is inherited from C.

• The Object Oriented Class Library − This is a collection of classes and associated functions.

Standard C++ Library incorporates all the Standard C libraries also, with small additions and changes to

support type safety.

The Standard Function Library

The standard function library is divided into the following categories −

• I/O,

• String and character handling,

• Mathematical,

• Time, date, and localization,

• Dynamic allocation,

• Miscellaneous,

• Wide-character functions,

The Object Oriented Class Library

Standard C++ Object Oriented Library defines an extensive set of classes that provide support for a

number of common activities, including I/O, strings, and numeric processing. This library includes the

following −

• The Standard C++ I/O Classes

• The String Class

• The Numeric Classes

• The STL Container Classes

• The STL Algorithms

• The STL Function Objects

• The STL Iterators

• The STL Allocators

• The Localization library

• Exception Handling Classes

• Miscellaneous Support Library

Manipulating Strings:

A string is a sequence of character. As you know that C++ does not support built-in string type, you have

used earlier those null character based terminated array of characters to store and manipulate strings. These

strings are termed as C Strings. It often becomes inefficient performing operations on C strings.

Programmers can also define their own string classes with appropriate member functions to manipulate

strings. ANSI standard C++ introduces a new class called string which is an improvised version of C

strings in several ways. In many cases, the strings object may be treated like any other built-in data type.

The string is treated as another container class for C++.

Table of Contents

1. The C Style String

2. String Class in C++

3. Manipulate Null-terminated strings

4. Important functions supported by String Class

5. Important Constructors obtained by String Class

6. Operators used for String Objects

The C Style String

The C style string belongs to C language and continues to support in C++ also strings in C are the one-

dimensional array of characters which gets terminated by \0 (null character).

https://www.w3schools.in/cplusplus-tutorial/manipulating-strings/#The_C_Style_String
https://www.w3schools.in/cplusplus-tutorial/manipulating-strings/#String_Class_in_C
https://www.w3schools.in/cplusplus-tutorial/manipulating-strings/#Manipulate_Null-terminated_strings
https://www.w3schools.in/cplusplus-tutorial/manipulating-strings/#Important_functions_supported_by_String_Class
https://www.w3schools.in/cplusplus-tutorial/manipulating-strings/#Important_Constructors_obtained_by_String_Class
https://www.w3schools.in/cplusplus-tutorial/manipulating-strings/#Operators_used_for_String_Objects

This is how the strings in C are declared:

char ch[6] = {'H', 'e', 'l', 'l', 'o', '

char ch[6] = {'H', 'e', 'l', 'l', 'o', '\0'};

'};

Actually, you do not place the null character at the end of a string constant. The C++ compiler

automatically places the \0 at the end of the string when it initializes the array.

String Class in C++

The string class is huge and includes many constructors, member functions, and operators.

Programmers may use the constructors, operators and member functions to achieve the following:

• Creating string objects

• Reading string objects from keyboard

• Displaying string objects to the screen

• Finding a substring from a string

• Modifying string

• Adding objects of string

• Comparing strings

• Accessing characters of a string

• Obtaining the size or length of a string, etc...

Manipulate Null-terminated strings

C++ supports a wide range of functions that manipulate null-terminated strings. These are:

• strcpy(str1, str2): Copies string str2 into string str1.

• strcat(str1, str2): Concatenates string str2 onto the end of string str1.

• strlen(str1): Returns the length of string str1.

• strcmp(str1, str2): Returns 0 if str1 and str2 are the same; less than 0 if str1<str2; greater than 0 if

str1>str2.

• strchr(str1, ch): Returns a pointer to the first occurrence of character ch in string str1.

• strstr(str1, str2): Returns a pointer to the first occurrence of string str2 in string str1.

Important functions supported by String Class

• append(): This function appends a part of a string to another string

• assign():This function assigns a partial string

• at(): This function obtains the character stored at a specified location

• begin(): This function returns a reference to the start of the string

• capacity(): This function gives the total element that can be stored

• compare(): This function compares a string against the invoking string

• empty(): This function returns true if the string is empty

• end(): This function returns a reference to the end of the string

• erase(): This function removes character as specified

• find(): This function searches for the occurrence of a specified substring

• length(): It gives the size of a string or the number of elements of a string

• swap(): This function swaps the given string with the invoking one

Important Constructors obtained by String Class

• String(): This constructor is used for creating an empty string

• String(const char *str): This constructor is used for creating string objects from a null-terminated string

• String(const string *str): This constructor is used for creating a string object from another string object

Operators used for String Objects

1. =: assignment

2. +: concatenation

3. ==: Equality

4. !=: Inequality

5. <: Less than

6. <=: Less than or equal

7. >: Greater than

8. >=: Greater than or equal

9. []: Subscription

10. <<: Output

11. >>: Input

Object Oriented Systems Development:

The software development process consists of

(1) Analysis – Translates the user needs into system requirements and responsibilities.

(2) Design – It begins with a problem statement and ends with a detailed design that can be transformed

into an operational system.

(3) Implementation – It regines the detailed design into the system deployment that will satisfy the users

needs.

(4) Testing – Two basic approaches to system testing, they are (i) Test according to how it has been built

for. (ii) What it should do?

(5) Maintenance.

Object Oriented Systems Development Life Cycle (SDLC)

 This is also known as Classic Life Cycle Model (or) Linear Sequential Model (or) Waterfall

Method. This model has the following activities.

• System/Information Engineering and Modeling

As software is always of a large system (or business), work begins by establishing the requirements for all

system elements and then allocating some subset of these requirements to software. This system view is

essential when the software must interface with other elements such as hardware, people and other

resources. System is the basic and very critical requirement for the existence of software in any entity. So

if the system is not in place, the system should be engineered and put in place. In some cases, to extract

the maximum output, the system should be re-engineered and spruced up. Once the ideal system is

engineered or tuned, the development team studies the software requirement for the system.

• Software Requirement Analysis

This process is also known as feasibility study. In this phase, the development team visits the customer

and studies their system. They investigate the need for possible software automation in the given system.

By the end of the feasibility study, the team furnishes a document that holds the different specific

recommendations for the candidate system. It also includes the personnel assignments, costs, project

schedule, target dates etc.. The requirement gathering process is intensified and focused specially on

software. To understand the nature of the program(s) to be built, the system engineer or “Analyst” must

understand the information domain for the software, as well as required function, behavior, performance

and interfacing. The essential purpose of this phase is to find the need and to define the problem that needs

to be solved.

• System Analysis and Design

In this phase, the software development process, the software’s overall structure and its nuances are

defined. In terms of the client/server technology, the number of tiers needed for the package architecture,

the database design, the data structure design etc.. are all defined in this phase. A software development

model is thus created. Analysis and Design are very crucial in the whole development cycle. Any glitch in

the design phase could be very expensive to solve in the later stage of the software development. Much

care is taken during this phase. The logical system of the product is developed in this phase.

• Code Generation

The design must be translated into a machine-readable form. The code generation step performs this task.

If the design is performed in a detailed manner, code generation can be accomplished without much

complication. Programming tools like compilers, interpreters, debuggers etc.. are used to generate the

code. Different high level programming languages like C, C++, Pascal, Java are used for coding. With

respect to the type of application, the right programming language is chosen.

• Testing

Once the code is generated, the software program testing begins. Different testing methodologies are

available to unravel the bugs that were committed during the previous phases. Different testing tools and

methodologies are already available. Some companies build their own testing tools that are tailor made for

their own development operations.

• Maintenance

The software will definitely undergo change once it is delivered to the customer. There can be many

reasons for this change to occur. Change could happen because of some unexpected input values into the

system. In addition, the changes in the system could directly affect the software operations. The software

should be developed to accommodate changes that could happen during the post implementation period.

 Prototyping Model

 This is a cyclic version of the linear model. In this model, once the requirements analysis is

done and the design for a prototype is made, the development process gets started. Once the prototype is

created, it is given to the customer for evaluation. The customer tests the package and gives his/her feed

back to the developer who refines the product according the customer’s exact expectation. After a finite

number of iterations, the final software package is given to the customer. In this methodology, the

software is evolved as a result of periodic shuttling of information between the customer and developer.

This is the most popular development model in the contemporary IT industry. Most of the successful

software products have been developed using this model – as it is very difficult to comprehend all the

requirements of a customer in one shot. There are many variations of this model skewed with respect to

the project management styles of the companies. New versions of a software product evolve as a result of

prototyping.

 Rapid Application Development (RAD) model

 The RAD models a linear sequential software development process that emphasizes an

extremely short development cycle. The RAD model is a “high speed” adaptation of the linear sequential

model in which rapid development is achieved by using a component-based construction approach. Used

primarily for information systems applications, the RAD approach encompasses the following phases,

▪ Business modeling,

▪ Data modeling,

▪ Process modeling,

▪ Application generation,

▪ Testing and turnover.

Component Assembly Model

 Object technologies provide the technical framework for a component based process model for

software engineering. The object oriented paradigm emphasizes the creation of classes that encapsulate

both data and the algorithm that are used to manipulate the data. If properly designed and implemented,

object oriented classes are reusable across different applications and computer based system architectures.

Component Assembly Model leads to software reusability. The integration/assembly of the already

existing software components accelerates the development process. Nowadays many component libraries

are available on the Internet. If the right components are chosen, the integration aspect is made much

simpler.
