
SRINIVASAN COLLEGE OF ARTS AND SCIENCE

PERAMBALUR

SUBJECT : PROGRAMMING IN C

SUBJECT CODE : 16SCCIT2

CLASS : I B.Sc IT

SEMESTER : II

PROGRAMMING IN C

UNIT I

INTRODUCTION OF C LANGUAGE

C is a structured programming language developed by Dennis Ritchie in 1973 at Bell

Laboratories. It is one of the most popular computer languages today because of its structure,

high-level abstraction, machine independent feature etc. C language was developed to write the

UNIX operating system, hence it is strongly associated with UNIX, which is one of the most

popular network operating system in use today and heart of internet data superhighway.

History of C language

C language has evolved from three different structured language ALGOL, BCPL and B

Language. It uses many concepts from these languages while introduced many new concepts

such as datatypes, struct, pointer etc. In 1988, the language was formalised by American

National Standard Institute(ANSI). In 1990, a version of C language was approved by the

International Standard Organisation(ISO) and that version of C is also referred to as C89.

C Program and its Structure

• Pre-processor

• Header file

• Function

• Comments

(i) PREPROCESSOR

#include is the first word of any C program. It is also known as a pre-processor. The task of

a pre-processor is to initialize the environment of the program, i.e to link the program with

the header files required.So, when we say #include <stdio.h>, it is to inform the compiler to

include the stdio.h header file to the program before executing it.

(ii) Header file

A Header file is a collection of built-in(readymade) functions. Header files contain

definitions of the functions which can be incorporated into any C program by using pre-

processor #include statement with the header file. To use any of the standard functions, the

appropriate header file must be included. This is done at the beginning of the C source file. to

use the printf() function in a program, which is used to display anything on the screen, the

line #include <stdio.h> is required because the header file stdio.h contains the printf()

function. All header files will have an extension .h

(iii) main() function

main() function is a function that must be there in every C program. Everything inside

this function in a C program will be executed. In the above example, int written before the

main() function is the return type of main() function. we will discuss about it in detail later.

The curly braces { } just after the main() function encloses the body of main() function.

(iv) Comments

We can add comments in our program to describe what we are doing in the program.

These comments are ignored by the compiler and are not executed.

To add a single line comment, start it by adding two forward slashses // followed by the

comment.

To add multiline comment, enclode it between /* */

(V) Return statement - return 0;

A return statement is just meant to define the end of any C program.

All the C programs can be written and edited in normal text editors like Notepad or Notepad++

and must be saved with a file name with extension as .c

FIRST C PROGRAM

#include <stdio.h>

int main()

{

printf("Hello C Language");

return 0;

 }

CONSTANTS

Constants refer to fixed values that the program may not alter during its execution. These fixed

values are also called literals.

Constants can be of any of the basic data types like an integer constant, a floating constant, a

character constant, or a string literal. There are enumeration constants as well.

Constants are treated just like regular variables except that their values cannot be modified after

their definition.

Integer Literals

An integer literal can be a decimal, octal, or hexadecimal constant. A prefix specifies the base or

radix: 0x or 0X for hexadecimal, 0 for octal, and nothing for decimal.

An integer literal can also have a suffix that is a combination of U and L, for unsigned and long,

respectively. The suffix can be uppercase or lowercase and can be in any order.

Floating-point Literals

A floating-point literal has an integer part, a decimal point, a fractional part, and an exponent

part. You can represent floating point literals either in decimal form or exponential form.

Character Constants

Character literals are enclosed in single quotes, e.g., 'x' can be stored in a simple variable of char

type.A character literal can be a plain character (e.g., 'x'), an escape sequence (e.g., '\t'), or a

universal character (e.g., '\u02C0').There are certain characters in C that represent special

meaning when preceded by a backslash for example, newline (\n) or tab (\t).

String Literals

String literals or constants are enclosed in double quotes "". A string contains characters that are

similar to character literals: plain characters, escape sequences, and universal characters.

You can break a long line into multiple lines using string literals and separating them using white

spaces.

Variables

In C language we can store it in a memory space and name the memory space so that it

becomes easier to access it.

The naming of an address is known as variable. Variable is the name of memory location.

Unlike constant, variables are changeable, we can change value of a variable during execution of

a program. A programmer can choose a meaningful variable name. Example : average, height,

age, total etc.

Datatype of Variable

A variable in C language must be given a type, which defines what type of data the variable will

hold.

It can be:

• char: Can hold/store a character in it.

• int: Used to hold an integer.

• float: Used to hold a float value.

• double: Used to hold a double value.

• void

Rules to name a Variable

1. Variable name must not start with a digit.

2. Variable name can consist of alphabets, digits and special symbols like underscore _.

3. Blank or spaces are not allowed in variable name.

4. Keywords are not allowed as variable name.

5. Upper and lower case names are treated as different, as C is case-sensitive, so it is

suggested to keep the variable names in lower case.

Variable declaration and initialization

Syntax:

Datatype variable name;

Example: int a;

int a=10;

Data types

Data types specify how we enter data into our programs and what type of data we enter. C

language has some predefined set of data types to handle various kinds of data that we can use in

our program. These datatypes have different storage capacities.

C language supports 2 different type of data types:

1. Primary data types:

These are fundamental data types in C namely integer(int), floating point(float),

character(char) and void.

2. Derived data types:

Derived data types are nothing but primary datatypes but a little twisted or grouped

together like array, stucture, union and pointer. These are discussed in details later.

Data type determines the type of data a variable will hold. If a variable x is declared as int. it

means x can hold only integer values. Every variable which is used in the program must be

declared as what data-type it is.

Integer type

Integers are used to store whole numbers.

Size and range of Integer type on 16-bit machine:

Type Size(bytes) Range

int or signed int 2 -32,768 to 32767

unsigned int 2 0 to 65535

short int or signed short int 1 -128 to 127

unsigned short int 1 0 to 255

long int or signed long int 4 -2,147,483,648 to 2,147,483,647

unsigned long int 4 0 to 4,294,967,295

Floating point type

Floating types are used to store real numbers.

Size and range of Integer type on 16-bit machine

Type Size(bytes) Range

Float 4 3.4E-38 to 3.4E+38

double 8 1.7E-308 to 1.7E+308

long double 10 3.4E-4932 to 1.1E+4932

Character type

Character types are used to store characters value.

Size and range of Integer type on 16-bit machine

Type Size(bytes) Range

char or signed char 1 -128 to 127

unsigned char 1 0 to 255

void type

void type means no value. This is usually used to specify the type of functions which returns

nothing. We will get acquainted to this datatype as we start learning more advanced topics in C

language, like functions, pointers etc.

Operators

C language supports a rich set of built-in operators. An operator is a symbol that tells the

compiler to perform a certain mathematical or logical manipulation. Operators are used in

programs to manipulate data and variables.

C operators can be classified into following types:

• Arithmetic operators

• Relational operators

• Logical operators

• Bitwise operators

• Assignment operators

• Conditional operators

• Special operators

Arithmetic operators

C supports all the basic arithmetic operators. The following table shows all the basic arithmetic

operators.

Operator Description

+ adds two operands

- subtract second operands from first

* multiply two operand

/ divide numerator by denominator

% remainder of division

++ Increment operator - increases integer value by one

-- Decrement operator - decreases integer value by one

Relational operators

The following table shows all relation operators supported by C.

Operator Description

== Check if two operand are equal

!= Check if two operand are not equal.

> Check if operand on the left is greater than operand on the right

< Check operand on the left is smaller than right operand

>= check left operand is greater than or equal to right operand

<= Check if operand on left is smaller than or equal to right operand

Logical operators

C language supports following 3 logical operators. Suppose a = 1 and b = 0,

Operator Description Example

&& Logical AND (a && b) is false

|| Logical OR (a || b) is true

! Logical NOT (!a) is false

Bitwise operators

Bitwise operators perform manipulations of data at bit level. These operators also perform

shifting of bits from right to left. Bitwise operators are not applied to float or double(These are

datatypes, we will learn about them in the next tutorial).

Operator Description

& Bitwise AND

| Bitwise OR

^ Bitwise exclusive OR

<< left shift

>> right shift

Now lets see truth table for bitwise &, | and ^

a b a & b a | b a ^ b

0 0 0 0 0

0 1 0 1 1

1 0 0 1 1

1 1 1 1 0

The bitwise shift operator, shifts the bit value. The left operand specifies the value to be shifted

and the right operand specifies the number of positions that the bits in the value have to be

shifted. Both operands have the same precedence.

Assignment Operators

Assignment operators supported by C language are as follows.

Operator Description Example

= assigns values from right side operands to left side operand a=b

+= adds right operand to the left operand and assign the result

to left

a+=b is same as

a=a+b

-= subtracts right operand from the left operand and assign the

result to left operand

a-=b is same as

a=a-b

*= mutiply left operand with the right operand and assign the

result to left operand

a*=b is same as

a=a*b

/= divides left operand with the right operand and assign the

result to left operand

a/=b is same as

a=a/b

%= calculate modulus using two operands and assign the result

to left operand

a%=b is same as

a=a%b

Conditional operator

The conditional operators in C language are known by two more names

1. Ternary Operator

2. ? : Operator

It is actually the if condition that we use in C language decision making, but using conditional

operator, we turn the if condition statement into a short and simple operator.

The syntax of a conditional operator is :

expression 1 ? expression 2: expression 3

Explanation:

• The question mark "?" in the syntax represents the if part.

• The first expression (expression 1) generally returns either true or false, based on which it

is decided whether (expression 2) will be executed or (expression 3)

• If (expression 1) returns true then the expression on the left side of " : " i.e (expression

2) is executed.

• If (expression 1) returns false then the expression on the right side of " : " i.e (expression

3) is executed.

Special operator

Operator Description Example

sizeof Returns the size of an variable sizeof(x) return size of the variable x

& Returns the address of an variable &x ; return address of the variable x

* Pointer to a variable *x ; will be pointer to a variable x

Expressions

An expression is a combination of variables constants and operators written according to

the syntax of C language. In C every expression evaluates to a value i.e., every expression results

in some value of a certain type that can be assigned to a variable. Some examples of C

expressions are shown in the table given below.

Example

 a*b-c/d

Evaluation of Expressions

Expressions are evaluated using an assignment statement of the form

Variable = expression;

Variable is any valid C variable name. When the statement is encountered, the expression is

evaluated first and then replaces the previous value of the variable on the left hand side. All

variables used in the expression must be assigned values before evaluation is attempted.

recedence in Arithmetic Operators

An arithmetic expression without parenthesis will be evaluated from left to right using the rules of

precedence of operators. There are two distinct priority levels of arithmetic operators in C.

High priority * / %

Low priority + -

Rules for evaluation of expression

• First parenthesized sub expression left to right are evaluated.

• If parenthesis are nested, the evaluation begins with the innermost sub expression.

• The precedence rule is applied in determining the order of application of operators in evaluating

sub expressions.

• The associability rule is applied when two or more operators of the same precedence level appear

in the sub expression.

• Arithmetic expressions are evaluated from left to right using the rules of precedence.

• When Parenthesis are used, the expressions within parenthesis assume highest priority.

Operator precedence and associativity

Each operator in C has a precedence associated with it. The precedence is used to determine how

an expression involving more than one operator is evaluated. There are distinct levels of

precedence and an operator may belong to one of these levels. The operators of higher precedence

are evaluated first. The operators of same precedence are evaluated from right to left or from left

to right depending on the level. This is known as associativity property of an operator.

The table given below gives the precedence of each operator.

Order Category Operator
Operation

Associativity

1 Highest precedence ()

[]

?

: :

.

Function call L ? R

Left to Right

2 Unary !

~

+

-

++

- -

&

*

Size of

Logical negation (NOT)

Bitwise 1’s complement

Unary plus

Unary minus

Pre or post increment

Pre or post decrement

Address

Indirection

Size of operant in bytes

R ? L

Right -> Left

3 Member Access .*

?*

Dereference

Dereference

L ? R

4 Multiplication *

/

%

Multiply

Divide

Modulus

L ? R

5 Additive +

-

Binary Plus

Binary Minus

L ? R

6 Shift <<

>>

Shift Left

Shift Right

L ? R

7 Relational <

<=

>

>=

Less than

Less than or equal to

Greater than

Greater than or equal to

L ? R

8 Equality ==

!=

Equal to

Not Equal to

L ? R

9 Bitwise AAND & Bitwise AND L ? R

10 Bitwise XOR ^ Bitwise XOR L ? R

11 Bitwise OR | Bitwise OR L ? R

12 Logical AND && Logical AND L ? R

14 Conditional ? : Ternary Operator R ? L

15 Assignment =

*=

%=

/=

+=

-=

Assignment

Assign product

Assign reminder

Assign quotient

Assign sum

Assign difference

R ? L

&=

^=

|=

<<=

>>=

Assign bitwise AND

Assign bitwise XOR

Assign bitwise OR

Assign left shift

Assign right shift

16 Comma , Evaluate L ? R

UNIT – II

MANAGING INPUT AND OUTPUT OPERATIONS

C Input and Output

Input means to provide the program with some data to be used in the program and Output

means to display data on screen or write the data to a printer or a file.

C programming language provides many built-in functions to read any given input and to display

data on screen when there is a need to output the result.

scanf() and printf() functions

The standard input-output header file, named stdio.h contains the definition of the functions

printf() and scanf(), which are used to display output on screen and to take input from user

respectively. scanf() or printf() functions. It is known as format string and this informs the

scanf() function, what type of input to expect and in printf() it is used to give a heads up to the

compiler, what type of output to expect.

Format String Meaning

%d Scan or print an integer as signed decimal number

%f Scan or print a floating point number

%c To scan or print a character

%s To scan or print a character string. The scanning ends at whitespace.

SYNTAX:

printf("studytonight");

SYNTAX:

Scanf(“control string”, & variable name);

getchar() & putchar() functions

This function reads only single character at a time. You can use this method in a loop in case you

want to read more than one character. The putchar() function displays the character passed to it

https://www.studytonight.com/c/loops-in-c.php

on the screen and returns the same character. This function too displays only a single character at

a time.

c = getchar();

putchar(c);

gets() & puts() functions

The gets() function reads a line from stdin(standard input) into the buffer pointed to by str

pointer, until either a terminating newline or EOF (end of file) occurs. The puts() function writes

the string str and a trailing newline to stdout.

str → This is the pointer to an array of chars where the C string is stored.

Decision making statements

Decision making is about deciding the order of execution of statements based on certain

conditions or repeat a group of statements until certain specified conditions are met. C language

handles decision-making by supporting the following statements,

• if statement

• switch statement

• conditional operator statement (? : operator)

• goto statement

Decision making with if statement

The if statement may be implemented in different forms depending on the complexity of

conditions to be tested. The different forms are,

1. Simple if statement

2. if....else statement

3. Nested if....else statement

4. Using else if statement

Simple if statement

The general form of a simple if statement is,

if(expression)

{

 statement inside;

}

 statement outside;

https://www.studytonight.com/pointers-in-c.php

If the expression returns true, then the statement-inside will be executed, otherwise statement-

inside is skipped and only the statement-outside is executed.

Example:

#include <stdio.h>

void main()

{

 int x, y;

 x = 15;

 y = 13;

 if (x > y)

 {

 printf("x is greater than y");

 }

}

x is greater than y

if...else statement

The general form of a simple if...else statement is,

if(expression)

{

 statement block1;

}

else

{

 statement block2;

}

If the expression is true, the statement-block1 is executed, else statement-block1 is skipped

and statement-block2 is executed.

Example:

#include <stdio.h>

void main()

{

 int x, y;

 x = 15;

 y = 18;

 if (x > y)

 {

 printf("x is greater than y");

 }

 else

 {

 printf("y is greater than x");

 }

}

y is greater than x

Nested if....else statement

The general form of a nested if...else statement is,

if(expression)

{

 if(expression1)

 {

 statement block1;

 }

 else

 {

 statement block2;

 }

}

else

{

 statement block3;

}

if expression is false then statement-block3 will be executed, otherwise the execution continues

and enters inside the first if to perform the check for the next if block, where if expression 1 is

true the statement-block1 is executed otherwise statement-block2 is executed.

Example:

#include <stdio.h>

void main()

{

 int a, b, c;

 printf("Enter 3 numbers...");

 scanf("%d%d%d",&a, &b, &c);

 if(a > b)

 {

 if(a > c)

 {

 printf("a is the greatest");

 }

 else

 {

 printf("c is the greatest");

 }

 }

 else

 {

 if(b > c)

 {

 printf("b is the greatest");

 }

 else

 {

 printf("c is the greatest");

 }

 }

}

else if ladder

The general form of else-if ladder is,

if(expression1)

{

 statement block1;

}

else if(expression2)

{

 statement block2;

}

else if(expression3)

{

 statement block3;

}

else

 default statement;

The expression is tested from the top(of the ladder) downwards. As soon as a true condition is

found, the statement associated with it is executed.

Example :

#include <stdio.h>

void main()

{

 int a;

 printf("Enter a number...");

 scanf("%d", &a);

 if(a%5 == 0 && a%8 == 0)

 {

 printf("Divisible by both 5 and 8");

 }

 else if(a%8 == 0)

 {

 printf("Divisible by 8");

 }

 else if(a%5 == 0)

 {

 printf("Divisible by 5");

 }

 else

 {

 printf("Divisible by none");

 }

}

Switch statement

switch statement is a control statement that allows us to choose only one choice among

the many given choices. The expression in switch evaluates to return an integral value, which is

then compared to the values present in different cases. It executes that block of code which

matches the case value. If there is no match, then default block is executed(if present). The

general form of switch statement is,

switch(expression)

{

 case value-1:

 block-1;

 break;

 case value-2:

 block-2;

 break;

 case value-3:

 block-3;

 break;

 case value-4:

 block-4;

 break;

 default:

 default-block;

 break;

}

Rules for using switch statement

1. The expression (after switch keyword) must yield an integer value i.e the expression

should be an integer or a variable or an expression that evaluates to an integer.

2. The case label values must be unique.

3. The case label must end with a colon(:)

4. The next line, after the case statement, can be any valid C statement.

Looping statements

loops are used to execute a set of statements repeatedly until a particular condition is satisfied.

Types of Loop

There are 3 types of Loop in C language, namely:

1. while loop

2. for loop

3. do while loop

while loop

while loop can be addressed as an entry control loop. It is completed in 3 steps.

• Variable initialization.(e.g int x = 0;)

• condition(e.g while(x <= 10))

• Variable increment or decrement (x++ or x-- or x = x + 2)

Syntax :

variable initialization;

while(condition)

{

 statements;

 variable increment or decrement;

}

for loop

for loop is used to execute a set of statements repeatedly until a particular condition is satisfied.

We can say it is an open ended loop.. General format is,

for(initialization; condition; increment/decrement)

{

 statement-block;

}

In for loop we have exactly two semicolons, one after initialization and second after the

condition. In this loop we can have more than one initialization or increment/decrement,

separated using comma operator. But it can have only one condition.

The for loop is executed as follows:

1. It first evaluates the initialization code.

2. Then it checks the condition expression.

3. If it is true, it executes the for-loop body.

4. Then it evaluate the increment/decrement condition and again follows from step 2.

5. When the condition expression becomes false, it exits the loop.

Example: Program to print first 10 natural numbers

#include<stdio.h>

void main()

{

 int x;

 for(x = 1; x <= 10; x++)

 {

 printf("%d\t", x);

 }

}

1 2 3 4 5 6 7 8 9 10

Nested for loop

We can also have nested for loops, i.e one for loop inside another for loop. Basic syntax is,

for(initialization; condition; increment/decrement)

{

 for(initialization; condition; increment/decrement)

 {

 statement ;

 }

}

do while loop

In some situations it is necessary to execute body of the loop before testing the condition. Such

situations can be handled with the help of do-while loop. do statement evaluates the body of the

loop first and at the end, the condition is checked using while statement. It means that the body

of the loop will be executed at least once, even though the starting condition inside while is

initialized to be false. General syntax is,

do

{

}

while(condition)

Example: Program to print first 10 multiples of 5.

#include<stdio.h>

void main()

{

 int a, i;

 a = 5;

 i = 1;

 do

 {

 printf("%d\t", a*i);

 i++;

 }

 while(i <= 10);

}

5 10 15 20 25 30 35 40 45 50

Jumping Out of Loops

Sometimes, while executing a loop, it becomes necessary to skip a part of the loop or to leave the

loop as soon as certain condition becomes true. This is known as jumping out of loop.

1) break statement

When break statement is encountered inside a loop, the loop is immediately exited and the

program continues with the statement immediately following the loop.

2) continue statement

It causes the control to go directly to the test-condition and then continue the loop process. On

encountering continue, cursor leave the current cycle of loop, and starts with the next cycle.

UNIT – III

ARRAYS

Arrays:

In C language, arrays are reffered to as structured data types. An array is defined as finite

ordered collection of homogenous data, stored in contiguous memory locations.

Here the words,

• finite means data range must be defined.

• ordered means data must be stored in continuous memory addresses.

• homogenous means data must be of similar data type.

Example where arrays are used,

• to store list of Employee or Student names,

• to store marks of students,

• or to store list of numbers or characters etc.

Declaring an Array

Like any other variable, arrays must be declared before they are used. General form of array

declaration is,

data-type variable-name[size];

/* Example of array declaration */

int arr[10];

Here int is the data type, arr is the name of the array and 10 is the size of array. It means array arr

can only contain 10 elements of int type.

Index of an array starts from 0 to size-1 i.e first element of arr array will be stored at arr[0]

address and the last element will occupy arr[9].

Initialization of an Array

After an array is declared it must be initialized. Otherwise, it will contain garbage value(any

random value). An array can be initialized at either compile time or at runtime.

Compile time Array initialization

Compile time initialization of array elements is same as ordinary variable initialization. The

general form of initialization of array is,

data-type array-name[size] = { list of values };

/* Here are a few examples */

int marks[4]={ 67, 87, 56, 77 }; // integer array initialization

float area[5]={ 23.4, 6.8, 5.5 }; // float array initialization

int marks[4]={ 67, 87, 56, 77, 59 }; // Compile time error

One important thing to remember is that when you will give more initializer(array elements) than

the declared array size than the compiler will give an error.

#include<stdio.h>

void main()

{

 int i;

 int arr[] = {2, 3, 4}; // Compile time array initialization

 for(i = 0 ; i < 3 ; i++)

 {

 printf("%d\t",arr[i]);

 }

}

2 3 4

Runtime Array initialization

An array can also be initialized at runtime using scanf() function. This approach is usually used

for initializing large arrays, or to initialize arrays with user specified values. Example,

#include<stdio.h>

void main()

{

 int arr[4];

 int i, j;

 printf("Enter array element");

 for(i = 0; i < 4; i++)

 {

 scanf("%d", &arr[i]); //Run time array initialization

 }

 for(j = 0; j < 4; j++)

 {

 printf("%d\n", arr[j]);

 }

}

Two dimensional Arrays

C language supports multidimensional arrays also. The simplest form of a multidimensional

array is the two-dimensional array. Both the row's and column's index begins from 0.

Two-dimensional arrays are declared as follows,

data-type array-name[row-size][column-size]

/* Example */

int a[3][4];

An array can also be declared and initialized together. For example,

int arr[][3] = {

 {0,0,0},

 {1,1,1}

};

Note: We have not assigned any row value to our array in the above example. It means we can

initialize any number of rows. But, we must always specify number of columns, else it will give

a compile time error. Here, a 2*3 multi-dimensional matrix is created.

Runtime initialization of a two dimensional Array

#include<stdio.h>

void main()

{

 int arr[3][4];

 int i, j, k;

 printf("Enter array element");

 for(i = 0; i < 3;i++)

 {

 for(j = 0; j < 4; j++)

 {

 scanf("%d", &arr[i][j]);

 }

 }

 for(i = 0; i < 3; i++)

 {

 for(j = 0; j < 4; j++)

 {

 printf("%d", arr[i][j]);

 }

 }

}

String and Character Array

String is a sequence of characters that is treated as a single data item and terminated by null

character '\0'. Remember that C language does not support strings as a data type. A string is

actually one-dimensional array of characters in C language. These are often used to create

meaningful and readable programs.

For example: The string "hello world" contains 12 characters including '\0' character which is

automatically added by the compiler at the end of the string.

Declaring and Initializing a string variables:

There are different ways to initialize a character array variable.

char name[13] = "StudyTonight"; // valid character array initialization

char name[10] = {'L','e','s','s','o','n','s','\0'}; // valid initialization

Remember that when you initialize a character array by listing all of its characters separately

then you must supply the '\0' character explicitly.

Some examples of illegal initialization of character array are,

char ch[3] = "hell"; // Illegal

char str[4];

str = "hell"; // Illegal

String Input and Output:

Input function scanf() can be used with %s format specifier to read a string input from the

terminal. But there is one problem with scanf() function, it terminates its input on the first white

space it encounters. Therefore if you try to read an input string "Hello World" using scanf()

function, it will only read Hello and terminate after encountering white spaces.

However, C supports a format specification known as the edit set conversion code %[..] that

can be used to read a line containing a variety of characters, including white spaces.

#include<stdio.h>

#include<string.h>

void main()

{

 char str[20];

 printf("Enter a string");

 scanf("%[^\n]", &str); //scanning the whole string, including the white spaces

 printf("%s", str);

}

Another method to read character string with white spaces from terminal is by using the gets()

function.

char text[20];

gets(text);

printf("%s", text);

String Handling Functions:

C language supports a large number of string handling functions that can be used to carry out

many of the string manipulations. These functions are packaged in string.h library. Hence, you

must include string.h header file in your programs to use these functions.

The following are the most commonly used string handling functions.

Method Description

strcat() It is used to concatenate(combine) two strings

strlen() It is used to show length of a string

strrev() It is used to show reverse of a string

strcpy() Copies one string into another

strcmp() It is used to compare two string

strcat() function

strcat("hello", "world");

strcat() function will add the string "world" to "hello" i.e it will ouput helloworld.

strlen() function

strlen() function will return the length of the string passed to it.

int j;

j = strlen("studytonight");

printf("%d",j);

12

strcmp() function

strcmp() function will return the ASCII difference between first unmatching character of two

strings.

int j;

j = strcmp("study", "tonight");

printf("%d",j);

-1

strcpy() function

It copies the second string argument to the first string argument.

#include<stdio.h>

#include<string.h>

int main()

{

 char s1[50];

 char s2[50];

 strcpy(s1, "StudyTonight"); //copies "studytonight" to string s1

 strcpy(s2, s1); //copies string s1 to string s2

 printf("%s\n", s2);

 return(0);

}

StudyTonight

strrev() function

It is used to reverse the given string expression.

#include<stdio.h>

int main()

{

 char s1[50];

 printf("Enter your string: ");

 gets(s1);

 printf("\nYour reverse string is: %s",strrev(s1));

 return(0);

}

Enter your string: studytonight Your reverse string is: thginotyduts

Functions

A function is a block of code that performs a particular task.

There are many situations where we might need to write same line of code for more than once in

a program.

C language provides an approach in which you can declare and define a group of statements once

in the form of a function and it can be called and used whenever required.

These functions defined by the user are also know as User-defined Functions

C functions can be classified into two categories,

1. Library functions

2. User-defined functions

Library functions are those functions which are already defined in C library, example printf(),

scanf(), strcat() etc. You just need to include appropriate header files to use these functions.

These are already declared and defined in C libraries.

A User-defined functions on the other hand, are those functions which are defined by the user at

the time of writing program. These functions are made for code reusability and for saving time

and space.

Benefits of Using Functions

1. It provides modularity to your program's structure.

2. It makes your code reusable. You just have to call the function by its name to use it,

wherever required.

3. In case of large programs with thousands of code lines, debugging and editing becomes

easier if you use functions.

4. It makes the program more readable and easy to understand.

Function Declaration

General syntax for function declaration is,

returntype functionName(type1 parameter1, type2 parameter2,...);

Like any variable or an array, a function must also be declared before its used. Function

declaration informs the compiler about the function name, parameters is accept, and its return

type. The actual body of the function can be defined separately. It's also called as Function

Prototyping. Function declaration consists of 4 parts.

• returntype

• function name

• parameter list

• terminating semicolon

returntype :

When a function is declared to perform some sort of calculation or any operation and is expected

to provide with some result at the end, in such cases, a return statement is added at the end of

function body. Return type specifies the type of value(int, float, char, double) that function is

expected to return to the program which called the function.

Note: In case your function doesn't return any value, the return type would be void.

functionName

Function name is an identifier and it specifies the name of the function. The function name is any

valid C identifier and therefore must follow the same naming rules like other variables in C

language.

parameter list

The parameter list declares the type and number of arguments that the function expects when it is

called. Also, the parameters in the parameter list receives the argument values when the function

is called. They are often referred as formal parameters.

Function definition Syntax:

the general syntax of function definition is,

returntype functionName(type1 parameter1, type2 parameter2,...)

{

 // function body goes here

}

The first line returntype functionName(type1 parameter1, type2 parameter2,...) is known as

function header and the statement(s) within curly braces is called function body.

functionbody

The function body contains the declarations and the statements(algorithm) necessary for

performing the required task. The body is enclosed within curly braces { ... } and consists of

three parts.

• local variable declaration(if required).

• function statements to perform the task inside the function.

• a return statement to return the result evaluated by the function(if return type is void,

then no return statement is required).

https://www.studytonight.com/keywords-and-identifier.php

Calling a function

When a function is called, control of the program gets transferred to the function.

functionName(argument1, argument2,...);

In the example above, the statement multiply(i, j); inside the main() function is function call.

Passing Arguments to a function

Arguments are the values specified during the function call, for which the formal parameters are

declared while defining the function.

It is possible to have a function with parameters but no return type. It is not necessary, that if a

function accepts parameter(s), it must return a result too.

While declaring the function, we have declared two parameters a and b of type int. Therefore,

while calling that function, we need to pass two arguments, else we will get compilation error.

And the two arguments passed should be received in the function definition, which means that

the function header in the function definition should have the two parameters to hold the

argument values. These received arguments are also known as formal parameters. The name of

the variables while declaring, calling and defining a function can be different.

Returning a value from function

A function may or may not return a result. But if it does, we must use the return statement to

output the result. return statement also ends the function execution, hence it must be the last

statement of any function. If you write any statement after the return statement, it won't be

executed.

The datatype of the value returned using the return statement should be same as the return type

mentioned at function declaration and definition. If any of it mismatches, you will get

compilation error.

In the next tutorial, we will learn about the different types of user defined functions in C

language and the concept of Nesting of functions which is used in recursion.

Type of User-defined Functions :

There can be 4 different types of user-defined functions, they are:

1. Function with no arguments and no return value

2. Function with no arguments and a return value

3. Function with arguments and no return value

4. Function with arguments and a return value

Below, we will discuss about all these types, along with program examples.

1.Function with no arguments and no return value

Such functions can either be used to display information or they are completely dependent on

user inputs.

Below is an example of a function, which takes 2 numbers as input from user, and display which

is the greater number.

#include<stdio.h>

void greatNum(); // function declaration

int main()

{

 greatNum(); // function call

 return 0;

}

void greatNum() // function definition

{

 int i, j;

 printf("Enter 2 numbers that you want to compare...");

 scanf("%d%d", &i, &j);

 if(i > j) {

 printf("The greater number is: %d", i);

 }

 else {

 printf("The greater number is: %d", j);

 }

}

2.Function with no arguments and a return value

We have modified the above example to make the function greatNum() return the number which

is greater amongst the 2 input numbers.

#include<stdio.h>

int greatNum(); // function declaration

int main()

{

 int result;

 result = greatNum(); // function call

 printf("The greater number is: %d", result);

 return 0;

}

int greatNum() // function definition

{

 int i, j, greaterNum;

 printf("Enter 2 numbers that you want to compare...");

 scanf("%d%d", &i, &j);

 if(i > j) {

 greaterNum = i;

 }

 else {

 greaterNum = j;

 }

 // returning the result

 return greaterNum;

}

3.Function with arguments and no return value

We are using the same function as example again and again, to demonstrate that to solve a

problem there can be many different ways.

This time, we have modified the above example to make the function greatNum() take two int

values as arguments, but it will not be returning anything.

#include<stdio.h>

void greatNum(int a, int b); // function declaration

int main()

{

 int i, j;

 printf("Enter 2 numbers that you want to compare...");

 scanf("%d%d", &i, &j);

 greatNum(i, j); // function call

 return 0;

}

void greatNum(int x, int y) // function definition

{

 if(x > y) {

 printf("The greater number is: %d", x);

 }

 else {

 printf("The greater number is: %d", y);

 }

}

4.Function with arguments and a return value

This is the best type, as this makes the function completely independent of inputs and outputs,

and only the logic is defined inside the function body.

#include<stdio.h>

int greatNum(int a, int b); // function declaration

int main()

{

 int i, j, result;

 printf("Enter 2 numbers that you want to compare...");

 scanf("%d%d", &i, &j);

 result = greatNum(i, j); // function call

 printf("The greater number is: %d", result);

 return 0;

}

int greatNum(int x, int y) // function definition

{

 if(x > y) {

 return x;

 }

 else {

 return y;

 }

}

Nesting of Functions

C language also allows nesting of functions i.e to use/call one function inside another function's

body. We must be careful while using nested functions, because it may lead to infinite nesting.

function1()

{

 // function1 body here

 function2();

 // function1 body here

}

If function2() also has a call for function1() inside it, then in that case, it will lead to an infinite

nesting. They will keep calling each other and the program will never terminate.

Not able to understand? Lets consider that inside the main() function, function1() is called and its

execution starts, then inside function1(), we have a call for function2(), so the control of program

will go to the function2(). But as function2() also has a call to function1() in its body, it will call

function1(), which will again call function2(), and this will go on for infinite times, until you

forcefully exit from program execution.

Recursion

Recursion is a special way of nesting functions, where a function calls itself inside it. We must

have certain conditions in the function to break out of the recursion, otherwise recursion will

occur infinite times.

function1()

{

 // function1 body

 function1();

 // function1 body

}

Example: Factorial of a number using Recursion

#include<stdio.h>

int factorial(int x); //declaring the function

void main()

{

 int a, b;

 printf("Enter a number...");

 scanf("%d", &a);

 b = factorial(a); //calling the function named factorial

 printf("%d", b);

}

int factorial(int x) //defining the function

{

 int r = 1;

 if(x == 1)

 return 1;

 else

 r = x*factorial(x-1); //recursion, since the function calls itself

 return r;

}

Similarly, there are many more applications of recursion in C language. Go to the programs

section, to find out more programs using recursion.

Types of Function calls:

Functions are called by their names, we all know that, then what is this tutorial for? Well if the

function does not have any arguments, then to call a function you can directly use its name. But

for functions with arguments, we can call a function in two different ways, based on how we

specify the arguments, and these two ways are:

1. Call by Value

2. Call by Reference

1.Call by Value

Calling a function by value means, we pass the values of the arguments which are stored or

copied into the formal parameters of the function. Hence, the original values are unchanged only

the parameters inside the function changes.

#include<stdio.h>

void calc(int x);

int main()

{

 int x = 10;

 calc(x);

 // this will print the value of 'x'

 printf("\nvalue of x in main is %d", x);

 return 0;

}

void calc(int x)

{

 // changing the value of 'x'

 x = x + 10 ;

 printf("value of x in calc function is %d ", x);

}

value of x in calc function is 20 value of x in main is 10

2.Call by Reference

In call by reference we pass the address(reference) of a variable as argument to any function.

When we pass the address of any variable as argument, then the function will have access to our

variable, as it now knows where it is stored and hence can easily update its value.

In this case the formal parameter can be taken as a reference or a pointer(don't worry about

pointers, we will soon learn about them), in both the cases they will change the values of the

original variable.

#include<stdio.h>

void calc(int *p); // functin taking pointer as argument

int main()

{

 int x = 10;

 calc(&x); // passing address of 'x' as argument

 printf("value of x is %d", x);

 return(0);

}

void calc(int *p) //receiving the address in a reference pointer variable

{

 /*

 changing the value directly that is

 stored at the address passed

 */

 *p = *p + 10;

}

value of x is 20

UNIT – IV

STRUCTURES

UNIT IV

C Structures

Structure is a user-defined datatype in C language which allows us to combine data of different

types together. Structure helps to construct a complex data type which is more meaningful. It is

somewhat similar to an Array, but an array holds data of similar type only. But structure on the

other hand, can store data of any type, which is practical more useful.

Defining a structure

struct keyword is used to define a structure. struct defines a new data type which is a collection

of primary and derived datatypes.

Syntax:

struct [structure_tag]

{

 //member variable 1

 //member variable 2

 //member variable 3

 ...

}[structure_variables];

we start with the struct keyword, then it's optional to provide your structure a name, we suggest

you to give it a name, then inside the curly braces, we have to mention all the member variables,

which are nothing but normal C language variables of different types like int, float, array etc.

After the closing curly brace, we can specify one or more structure variables, again this is

optional.

Note: The closing curly brace in the structure type declaration must be followed by a

semicolon(;).

Example of Structure

struct Student

{

 char name[25];

 int age;

 char branch[10];

 // F for female and M for male

 char gender;

};

Here struct Student declares a structure to hold the details of a student which consists of 4 data

fields, namely name, age, branch and gender. These fields are called structure elements or

members.

Each member can have different datatype, like in this case, name is an array of char type and age

is of int type etc. Student is the name of the structure and is called as the structure tag.

Structure variable declaration is similar to the declaration of any normal variable of any other

datatype. Structure variables can be declared in following two ways: 1) Declaring Structure

variables separately

struct Student

{

 char name[25];

 int age;

 char branch[10];

 //F for female and M for male

 char gender;

};

struct Student S1, S2; //declaring variables of struct Student

2) Declaring Structure variables with structure definition

struct Student

{

 char name[25];

 int age;

 char branch[10];

 //F for female and M for male

 char gender;

}S1, S2;

Structure Initialization

Like a variable of any other datatype, structure variable can also be initialized at compile time.

struct Patient

{

 float height;

 int weight;

 int age;

};

struct Patient p1 = { 180.75 , 73, 23 };

Nested Structures

Nesting of structures, is also permitted in C language. Nested structures means, that one structure

has another stucture as member variable.

Example:

struct Student

{

 char[30] name;

 int age;

 /* here Address is a structure */

 struct Address

 {

 char[50] locality;

 char[50] city;

 int pincode;

 }addr;

};

Unions in C

Unions are conceptually similar to structures. The syntax to declare/define a union is also

similar to that of a structure. The only differences is in terms of storage. In structure each

member has its own storage location, whereas all members of union uses a single shared

memory location which is equal to the size of its largest data member.

This implies that although a union may contain many members of different types, it cannot

handle all the members at the same time. A union is declared using the union keyword.

union item

{

 int m;

 float x;

 char c;

}It1;

This union contains three members each with a different data type. However only one of them

can be used at a time. This is due to the fact that only one location is allocated for all the union

variables, irrespective of their size.

Pointers

A Pointer in C language is a variable which holds the address of another variable of same data

type.

Pointers are used to access memory and manipulate the address.

Pointers are one of the most distinct and exciting features of C language. It provides power and

flexibility to the language. Although pointers may appear a little confusing and complicated in

the beginning, but trust me, once you understand the concept, you will be able to do so much

more with C language.

Address in C

Whenever a variable is defined in C language, a memory location is assigned for it, in which it's

value will be stored. We can easily check this memory address, using the & symbol.

If var is the name of the variable, then &var will give it's address.

#include<stdio.h>

void main()

{

 int var = 7;

 printf("Value of the variable var is: %d\n", var);

 printf("Memory address of the variable var is: %x\n", &var);

}

The variables which are used to hold memory addresses are called Pointer variables.

A pointer variable is therefore nothing but a variable which holds an address of some other

variable. And the value of a pointer variable gets stored in another memory location.

Benefits of using pointers

Below we have listed a few benefits of using pointers:

1. Pointers are more efficient in handling Arrays and Structures.

2. Pointers allow references to function and thereby helps in passing of function as

arguments to other functions.

3. It reduces length of the program and its execution time as well.

4. It allows C language to support Dynamic Memory management.

Declaring, Initializing and using a pointer variable in C

1. While declaring/initializing the pointer variable, * indicates that the variable is a pointer.

2. The address of any variable is given by preceding the variable name with Ampersand &.

3. The pointer variable stores the address of a variable. The declaration int *a doesn't mean

that a is going to contain an integer value. It means that a is going to contain the address

of a variable storing integer value.

4. To access the value of a certain address stored by a pointer variable, * is used. Here, the *

can be read as 'value at'.

SYNTAX

datatype *pointer_name;

EXAMPLE

int *ip // pointer to integer variable

float *fp; // pointer to float variable

double *dp; // pointer to double variable

char *cp; // pointer to char variable

Initialization of C Pointer variable

Pointer Initialization is the process of assigning address of a variable to a pointer variable.

Pointer variable can only contain address of a variable of the same data type. In C language

address operator & is used to determine the address of a variable. The & (immediately

preceding a variable name) returns the address of the variable associated with it.

#include<stdio.h>

void main()

{

 int a = 10;

 int *ptr; //pointer declaration

 ptr = &a; //pointer initialization

}

Pointer to a Pointer in C(Double Pointer)

Pointers are used to store the address of other variables of similar datatype. But if you want to

store the address of a pointer variable, then you again need a pointer to store it. Thus, when one

pointer variable stores the address of another pointer variable, it is known as Pointer to Pointer

variable or Double Pointer.

Syntax:

int **p1;

Here, we have used two indirection operator(*) which stores and points to the address of a

pointer variable i.e, int *. If we want to store the address of this (double pointer) variable p1, then

the syntax would become:

int ***p2

Simple program to represent Pointer to a Pointer

#include <stdio.h>

int main() {

 int a = 10;

 int *p1; //this can store the address of variable a

 int **p2;

 /*

 this can store the address of pointer variable p1 only.

 It cannot store the address of variable 'a'

 */

 p1 = &a;

 p2 = &p1;

 printf("Address of a = %u\n", &a);

 printf("Address of p1 = %u\n", &p1);

 printf("Address of p2 = %u\n\n", &p2);

 // below print statement will give the address of 'a'

 printf("Value at the address stored by p2 = %u\n", *p2);

 printf("Value at the address stored by p1 = %d\n\n", *p1);

 printf("Value of **p2 = %d\n", **p2); //read this *(*p2)

 /*

 This is not allowed, it will give a compile time error-

 p2 = &a;

 printf("%u", p2);

 */

 return 0;

}

Address of a = 2686724 Address of p1 = 2686728 Address of p2 = 2686732 Value at the address

stored by p2 = 2686724 Value at the address stored by p1 = 10 Value of **p2 = 10

Explanation of the above program

• p1 pointer variable can only hold the address of the variable a (i.e Number of indirection

operator(*)-1 variable). Similarly, p2 variable can only hold the address of variable p1. It

cannot hold the address of variable a.

• *p2 gives us the value at an address stored by the p2 pointer. p2 stores the address of p1

pointer and value at the address of p1 is the address of variable a. Thus, *p2 prints

address of a.

• **p2 can be read as *(*p2). Hence, it gives us the value stored at the address *p2. From

above statement, you know *p2 means the address of variable a. Hence, the value at the

address *p2 is 10. Thus, **p2 prints 10.

Pointer and Arrays in C

When an array is declared, compiler allocates sufficient amount of memory to contain all the

elements of the array. Base address i.e address of the first element of the array is also allocated

by the compiler.

Suppose we declare an array arr,

int arr[5] = { 1, 2, 3, 4, 5 };

Assuming that the base address of arr is 1000 and each integer requires two bytes, the five

elements will be stored as follows:

Here variable arr will give the base address, which is a constant pointer pointing to the first

element of the array, arr[0]. Hence arr contains the address of arr[0] i.e 1000. In short, arr has

two purpose - it is the name of the array and it acts as a pointer pointing towards the first element

in the array.

arr is equal to &arr[0] by default

We can also declare a pointer of type int to point to the array arr.

int *p;

p = arr;

// or,

p = &arr[0]; //both the statements are equivalent.

Now we can access every element of the array arr using p++ to move from one element to

another.

NOTE: You cannot decrement a pointer once incremented. p-- won't work.

1.Pointer to Array

As studied above, we can use a pointer to point to an array, and then we can use that pointer to

access the array elements. Lets have an example,

#include <stdio.h>

int main()

{

 int i;

 int a[5] = {1, 2, 3, 4, 5};

 int *p = a; // same as int*p = &a[0]

 for (i = 0; i < 5; i++)

 {

 printf("%d", *p);

 p++;

 }

 return 0;

}

In the above program, the pointer *p will print all the values stored in the array one by one. We

can also use the Base address (a in above case) to act as a pointer and print all the values.

he generalized form for using pointer with an array,

*(a+i)

is same as:

a[i]

2.Array of Pointers

We can also have array of pointers. Pointers are very helpful in handling character array with

rows of varying length.

char *name[3] = {

 "Adam",

 "chris",

 "Deniel"

};

//Now lets see same array without using pointer

char name[3][20] = {

 "Adam",

 "chris",

 "Deniel"

};

In the second approach memory wastage is more, hence it is prefered to use pointer in such

cases.

When we say memory wastage, it doesn't means that the strings will start occupying less space,

no, characters will take the same space, but when we define array of characters, a contiguos

memory space is located equal to the maximum size of the array, which is a wastage, which can

be avoided if we use pointers instead.

Pointer to Array of Structures in C

Like we have array of integers, array of pointers etc, we can also have array of structure

variables. And to use the array of structure variables efficiently, we use pointers of structure

type. We can also have pointer to a single structure variable, but it is mostly used when we are

dealing with array of structure variables.

#include <stdio.h>

struct Book

{

 char name[10];

 int price;

}

int main()

{

 struct Book a; //Single structure variable

 struct Book* ptr; //Pointer of Structure type

 ptr = &a;

 struct Book b[10]; //Array of structure variables

 struct Book* p; //Pointer of Structure type

 p = &b;

 return 0;

}

Accessing Structure Members with Pointer

To access members of structure using the structure variable, we used the dot . operator. But when

we have a pointer of structure type, we use arrow -> to access structure members.

#include <stdio.h>

struct my_structure {

 char name[20];

 int number;

 int rank;

};

int main()

{

 struct my_structure variable = {"StudyTonight", 35, 1};

 struct my_structure *ptr;

 ptr = &variable;

 printf("NAME: %s\n", ptr->name);

 printf("NUMBER: %d\n", ptr->number);

 printf("RANK: %d", ptr->rank);

 return 0;

}

NAME: StudyTonight NUMBER: 35 RANK: 1

Pointers as Function Argument in C

Pointer as a function parameter is used to hold addresses of arguments passed during function

call. This is also known as call by reference. When a function is called by reference any change

made to the reference variable will effect the original variable.

Example Time: Swapping two numbers using Pointer

#include <stdio.h>

void swap(int *a, int *b);

int main()

{

 int m = 10, n = 20;

 printf("m = %d\n", m);

 printf("n = %d\n\n", n);

 swap(&m, &n); //passing address of m and n to the swap function

 printf("After Swapping:\n\n");

 printf("m = %d\n", m);

 printf("n = %d", n);

 return 0;

}

/*

 pointer 'a' and 'b' holds and

 points to the address of 'm' and 'n'

*/

void swap(int *a, int *b)

{

 int temp;

 temp = *a;

 *a = *b;

 *b = temp;

}

m = 10 n = 20 After Swapping: m = 20 n = 10

1.Functions returning Pointer variables

A function can also return a pointer to the calling function. In this case you must be careful,

because local variables of function doesn't live outside the function. They have scope only inside

the function. Hence if you return a pointer connected to a local variable, that pointer will be

pointing to nothing when the function ends.

#include <stdio.h>

int* larger(int*, int*);

void main()

{

 int a = 15;

 int b = 92;

 int *p;

 p = larger(&a, &b);

 printf("%d is larger",*p);

}

int* larger(int *x, int *y)

{

 if(*x > *y)

 return x;

 else

 return y;

}

92 is larger

2.Pointer to functions

It is possible to declare a pointer pointing to a function which can then be used as an argument in

another function. A pointer to a function is declared as follows,

type (*pointer-name)(parameter);

Here is an example :

int (*sum)(); //legal declaration of pointer to function

int *sum(); //This is not a declaration of pointer to function

A function pointer can point to a specific function when it is assigned the name of that function.

int sum(int, int);

int (*s)(int, int);

s = sum;

Here s is a pointer to a function sum. Now sum can be called using function pointer s along with

providing the required argument values.

s (10, 20);

Example of Pointer to Function

#include <stdio.h>

int sum(int x, int y)

{

 return x+y;

}

int main()

{

 int (*fp)(int, int);

 fp = sum;

 int s = fp(10, 15);

 printf("Sum is %d", s);

 return 0;

}

25

File Input/Output

A file represents a sequence of bytes on the disk where a group of related data is stored. File is

created for permanent storage of data. It is a ready made structure.

In C language, we use a structure pointer of file type to declare a file.

FILE *fp;

C provides a number of functions that helps to perform basic file operations. Following are the

functions,

Function description

fopen() create a new file or open a existing file

fclose() closes a file

getc() reads a character from a file

putc() writes a character to a file

fscanf() reads a set of data from a file

fprintf() writes a set of data to a file

getw() reads a integer from a file

putw() writes a integer to a file

fseek() set the position to desire point

ftell() gives current position in the file

rewind() set the position to the begining point

Opening a File or Creating a File

The fopen() function is used to create a new file or to open an existing file.

General Syntax:

*fp = FILE *fopen(const char *filename, const char *mode);

Here, *fp is the FILE pointer (FILE *fp), which will hold the reference to the opened(or created)

file.

filename is the name of the file to be opened and mode specifies the purpose of opening the file.

Mode can be of following types,

mode description

r opens a text file in reading mode

w opens or create a text file in writing mode.

a opens a text file in append mode

r+ opens a text file in both reading and writing mode

w+ opens a text file in both reading and writing mode

a+ opens a text file in both reading and writing mode

rb opens a binary file in reading mode

wb opens or create a binary file in writing mode

ab opens a binary file in append mode

rb+ opens a binary file in both reading and writing mode

wb+ opens a binary file in both reading and writing mode

ab+ opens a binary file in both reading and writing mode

Closing a File

The fclose() function is used to close an already opened file.

General Syntax :

int fclose(FILE *fp);

Here fclose() function closes the file and returns zero on success, or EOF if there is an error in

closing the file. This EOF is a constant defined in the header file stdio.h.

Input/Output operation on File

In the above table we have discussed about various file I/O functions to perform reading and

writing on file. getc() and putc() are the simplest functions which can be used to read and write

individual characters to a file.

#include<stdio.h>

int main()

{

 FILE *fp;

 char ch;

 fp = fopen("one.txt", "w");

 printf("Enter data...");

 while((ch = getchar()) != EOF) {

 putc(ch, fp);

 }

 fclose(fp);

 fp = fopen("one.txt", "r");

 while((ch = getc(fp)! = EOF)

 printf("%c",ch);

 // closing the file pointer

 fclose(fp);

 return 0;

}

1.Reading and Writing to File using fprintf() and fscanf()

#include<stdio.h>

struct emp

{

 char name[10];

 int age;

};

void main()

{

 struct emp e;

 FILE *p,*q;

 p = fopen("one.txt", "a");

 q = fopen("one.txt", "r");

 printf("Enter Name and Age:");

 scanf("%s %d", e.name, &e.age);

 fprintf(p,"%s %d", e.name, e.age);

 fclose(p);

 do

 {

 fscanf(q,"%s %d", e.name, e.age);

 printf("%s %d", e.name, e.age);

 }

 while(!feof(q));

}

In this program, we have created two FILE pointers and both are refering to the same file but in

different modes.

fprintf() function directly writes into the file, while fscanf() reads from the file, which can then

be printed on the console using standard printf() function.

2.Difference between Append and Write Mode

Write (w) mode and Append (a) mode, while opening a file are almost the same. Both are used to

write in a file. In both the modes, new file is created if it doesn't exists already.

The only difference they have is, when you open a file in the write mode, the file is reset,

resulting in deletion of any data already present in the file. While in append mode this will not

happen. Append mode is used to append or add data to the existing data of file(if any). Hence,

when you open a file in Append(a) mode, the cursor is positioned at the end of the present data in

the file.

3.Reading and Writing in a Binary File

A Binary file is similar to a text file, but it contains only large numerical data. The Opening

modes are mentioned in the table for opening modes above.

fread() and fwrite() functions are used to read and write is a binary file.

fwrite(data-element-to-be-written, size_of_elements, number_of_elements, pointer-to-file);

fread() is also used in the same way, with the same arguments like fwrite() function. Below

mentioned is a simple example of writing into a binary file

const char *mytext = "The quick brown fox jumps over the lazy dog";

FILE *bfp= fopen("test.txt", "wb");

if (bfp)

{

 fwrite(mytext, sizeof(char), strlen(mytext), bfp);

 fclose(bfp);

}

fseek(), ftell() and rewind() functions

• fseek(): It is used to move the reading control to different positions using fseek function.

• ftell(): It tells the byte location of current position of cursor in file pointer.

• rewind(): It moves the control to beginning of the file.

Some File Handling Program Examples

• List all the Files present in a Directory

• Read Content of a File and Display it on screen

• Finding Size of a File

• Create a File and store Information in it

• Reverse the Content of File and Print it

• Copy Content of one File into Another File

https://www.studytonight.com/c/programs/files-and-streams/program-to-list-files-in-directory
https://www.studytonight.com/c/programs/files-and-streams/program-to-read-data-from-file
https://www.studytonight.com/c/programs/files-and-streams/program-to-find-size-of-file
https://www.studytonight.com/c/programs/files-and-streams/program-to-write-in-file
https://www.studytonight.com/c/programs/files-and-streams/program-to-reverse-content-of-file
https://www.studytonight.com/c/programs/files-and-streams/program-copy-file-to-another-file

UNIT – V

Dynamic Memory Allocation in C

The process of allocating memory at runtime is known as dynamic memory allocation. Library

routines known as memory management functions are used for allocating and freeing memory

during execution of a program. These functions are defined in stdlib.h header file.

Function Description

malloc() allocates requested size of bytes and returns a void pointer pointing to the first byte

of the allocated space

calloc() allocates space for an array of elements, initialize them to zero and then returns a

void pointer to the memory

free releases previously allocated memory

realloc modify the size of previously allocated space

Memory Allocation Process

Global variables, static variables and program instructions get their memory in permanent

storage area whereas local variables are stored in a memory area called Stack.

The memory space between these two region is known as Heap area. This region is used for

dynamic memory allocation during execution of the program. The size of heap keep changing.

Allocating block of Memory

malloc() function is used for allocating block of memory at runtime. This function reserves a

block of memory of the given size and returns a pointer of type void. This means that we can

assign it to any type of pointer using typecasting. If it fails to allocate enough space as specified,

it returns a NULL pointer.

Syntax:

void* malloc(byte-size)

Time for an Example: malloc()

int *x;

x = (int*)malloc(50 * sizeof(int)); //memory space allocated to variable x

free(x); //releases the memory allocated to variable x

calloc() is another memory allocation function that is used for allocating memory at runtime.

calloc function is normally used for allocating memory to derived data types such as arrays and

structures. If it fails to allocate enough space as specified, it returns a NULL pointer.

Syntax:

void *calloc(number of items, element-size)

Time for an Example: calloc()

struct employee

{

 char *name;

 int salary;

};

typedef struct employee emp;

emp *e1;

e1 = (emp*)calloc(30,sizeof(emp));

realloc() changes memory size that is already allocated dynamically to a variable.

Syntax:

void* realloc(pointer, new-size)

Time for an Example: realloc()

int *x;

x = (int*)malloc(50 * sizeof(int));

x = (int*)realloc(x,100); //allocated a new memory to variable x

Diffrence between malloc() and calloc()

calloc() malloc()

calloc() initializes the allocated memory

with 0 value.

malloc() initializes the allocated memory with

garbage values.

Number of arguments is 2 Number of argument is 1

Syntax :

(cast_type *)calloc(blocks ,

size_of_block);

Syntax :

(cast_type *)malloc(Size_in_bytes);

Program to represent Dynamic Memory Allocation(using calloc())

#include <stdio.h>

#include <stdlib.h>

int main()

{

 int i, n;

 int *element;

 printf("Enter total number of elements: ");

 scanf("%d", &n);

 /*

 returns a void pointer(which is type-casted to int*)

 pointing to the first block of the allocated space

 */

 element = (int*) calloc(n,sizeof(int));

 /*

 If it fails to allocate enough space as specified,

 it returns a NULL pointer.

 */

 if(element == NULL)

 {

 printf("Error.Not enough space available");

 exit(0);

 }

 for(i = 0; i < n; i++)

 {

 /*

 storing elements from the user

 in the allocated space

 */

 scanf("%d", element+i);

 }

 for(i = 1; i < n; i++)

 {

 if(*element > *(element+i))

 {

 *element = *(element+i);

 }

 }

 printf("Smallest element is %d", *element);

 return 0;

}

Enter total number of elements: 5 4 2 1 5 3 Smallest element is 1

Allocating block of Memory

malloc() function is used for allocating block of memory at runtime. This function reserves a

block of memory of the given size and returns a pointer of type void. This means that we can

assign it to any type of pointer using typecasting. If it fails to allocate enough space as specified,

it returns a NULL pointer.

Syntax:

void* malloc(byte-size)

Time for an Example: malloc()

int *x;

x = (int*)malloc(50 * sizeof(int)); //memory space allocated to variable x

free(x); //releases the memory allocated to variable x

calloc() is another memory allocation function that is used for allocating memory at runtime.

calloc function is normally used for allocating memory to derived data types such as arrays and

structures. If it fails to allocate enough space as specified, it returns a NULL pointer.

Syntax:

void *calloc(number of items, element-size)

Time for an Example: calloc()

struct employee

{

 char *name;

 int salary;

};

typedef struct employee emp;

emp *e1;

e1 = (emp*)calloc(30,sizeof(emp));

realloc() changes memory size that is already allocated dynamically to a variable.

Syntax:

void* realloc(pointer, new-size)

Time for an Example: realloc()

int *x;

x = (int*)malloc(50 * sizeof(int));

x = (int*)realloc(x,100); //allocated a new memory to variable x

Diffrence between malloc() and calloc()

calloc() malloc()

calloc() initializes the allocated memory

with 0 value.

malloc() initializes the allocated memory with

garbage values.

Number of arguments is 2 Number of argument is 1

Syntax :

(cast_type *)calloc(blocks ,

size_of_block);

Syntax :

(cast_type *)malloc(Size_in_bytes);

Program to represent Dynamic Memory Allocation(using calloc())

#include <stdio.h>

#include <stdlib.h>

int main()

{

 int i, n;

 int *element;

 printf("Enter total number of elements: ");

 scanf("%d", &n);

 /*

 returns a void pointer(which is type-casted to int*)

 pointing to the first block of the allocated space

 */

 element = (int*) calloc(n,sizeof(int));

 /*

 If it fails to allocate enough space as specified,

 it returns a NULL pointer.

 */

 if(element == NULL)

 {

 printf("Error.Not enough space available");

 exit(0);

 }

 for(i = 0; i < n; i++)

 {

 /*

 storing elements from the user

 in the allocated space

 */

 scanf("%d", element+i);

 }

 for(i = 1; i < n; i++)

 {

 if(*element > *(element+i))

 {

 *element = *(element+i);

 }

 }

 printf("Smallest element is %d", *element);

 return 0;

}

Enter total number of elements: 5 4 2 1 5 3 Smallest element is 1

Linked List

Like arrays, Linked List is a linear data structure. Unlike arrays, linked list elements are

not stored at a contiguous location; the elements are linked using pointers.

https://media.geeksforgeeks.org/wp-content/cdn-uploads/gq/2013/03/Linkedlist.png

Definition of Linked List

Arrays can be used to store linear data of similar types, but arrays have the following limitations.

1) The size of the arrays is fixed: So we must know the upper limit on the number of elements in

advance. Also, generally, the allocated memory is equal to the upper limit irrespective of the

usage.

2) Inserting a new element in an array of elements is expensive because the room has to be

created for the new elements and to create room existing elements have to be shifted.

Advantages over arrays

1) Dynamic size

2) Ease of insertion/deletion

Drawbacks:

1) Random access is not allowed. We have to access elements sequentially starting from the first

node. So we cannot do binary search with linked lists efficiently with its default implementation.

Read about it here.

2) Extra memory space for a pointer is required with each element of the list.

3) Not cache friendly. Since array elements are contiguous locations, there is locality of

reference which is not there in case of linked lists.

Representation:

A linked list is represented by a pointer to the first node of the linked list. The first node

is called the head. If the linked list is empty, then the value of the head is NULL.

Each node in a list consists of at least two parts:

1) data

2) Pointer (Or Reference) to the next node

Preprocessor:

 C Preprocessor is not a part of the compiler, but is a separate step in the compilation process. In

simple terms, a C Preprocessor is just a text substitution tool and it instructs the compiler to do

required pre-processing before the actual compilation. We'll refer to the C Preprocessor as CPP.

All preprocessor commands begin with a hash symbol (#). It must be the first nonblank

character, and for readability, a preprocessor directive should begin in the first column. The

following section lists down all the important preprocessor directives −

Sr.No. Directive & Description

1 #define

Substitutes a preprocessor macro.

2 #include

Inserts a particular header from another file.

3 #undef

Undefines a preprocessor macro.

https://www.geeksforgeeks.org/binary-search-on-singly-linked-list/

4 #ifdef

Returns true if this macro is defined.

5 #ifndef

Returns true if this macro is not defined.

6 #if

Tests if a compile time condition is true.

7 #else

The alternative for #if.

8 #elif

#else and #if in one statement.

9 #endif

Ends preprocessor conditional.

10 #error

Prints error message on stderr.

11 #pragma

Issues special commands to the compiler, using a standardized method.

Preprocessors Examples

Analyze the following examples to understand various directives.

#define MAX_ARRAY_LENGTH 20

This directive tells the CPP to replace instances of MAX_ARRAY_LENGTH with 20.

Use #define for constants to increase readability.

#include <stdio.h>

#include "myheader.h"

These directives tell the CPP to get stdio.h from System Libraries and add the text to the current

source file. The next line tells CPP to get myheader.h from the local directory and add the content

to the current source file.

#undef FILE_SIZE

#define FILE_SIZE 42

It tells the CPP to undefine existing FILE_SIZE and define it as 42.

#ifndef MESSAGE

 #define MESSAGE "You wish!"

#endif

It tells the CPP to define MESSAGE only if MESSAGE isn't already defined.

#ifdef DEBUG

 /* Your debugging statements here */

#endif

PROGRAMMING GUIDELINES

Coding Standards and Guidelines

Different modules specified in the design document are coded in the Coding phase according to

the module specification. The main goal of the coding phase is to code from the design document

prepared after the design phase through a high-level language and then to unit test this code.

Good software development organizations want their programmers to maintain to some well-

defined and standard style of coding called coding standards. They usually make their own

coding standards and guidelines depending on what suits their organization best and based on the

types of software they develop. It is very important for the programmers to maintain the coding

standards otherwise the code will be rejected during code review.

Purpose of Having Coding Standards:

• A coding standard gives a uniform appearance to the codes written by different engineers.

• It improves readability, and maintainability of the code and it reduces complexity also.

• It helps in code reuse and helps to detect error easily.

• It promotes sound programming practices and increases efficiency of the programmers.

Some of the coding standards are given below:

1. Limited use of globals:

These rules tell about which types of data that can be declared global and the data that

can’t be.

2. Standard headers for different modules:

For better understanding and maintenance of the code, the header of different modules

should follow some standard format and information. The header format must contain

below things that is being used in various companies:

• Name of the module

• Date of module creation

• Author of the module

• Modification history

• Synopsis of the module about what the module does

• Different functions supported in the module along with their input output parameters

• Global variables accessed or modified by the module

3. Naming conventions for local variables, global variables, constants and functions:

Some of the naming conventions are given below:

• Meaningful and understandable variables name helps anyone to understand the

reason of using it.

• Local variables should be named using camel case lettering starting with small letter

(e.g. localData) whereas Global variables names should start with a capital letter

(e.g. GlobalData). Constant names should be formed using capital letters only

(e.g. CONSDATA).

• It is better to avoid the use of digits in variable names.

• The names of the function should be written in camel case starting with small letters.

• The name of the function must describe the reason of using the function clearly and

briefly.

4. Indentation:

Proper indentation is very important to increase the readability of the code. For making the

code readable, programmers should use White spaces properly. Some of the spacing

conventions are given below:

• There must be a space after giving a comma between two function arguments.

• Each nested block should be properly indented and spaced.

• Proper Indentation should be there at the beginning and at the end of each block in

the program.

• All braces should start from a new line and the code following the end of braces also

start from a new line.

5. Error return values and exception handling conventions:

All functions that encountering an error condition should either return a 0 or 1 for

simplifying the debugging.

On the other hand, Coding guidelines give some general suggestions regarding the coding

style that to be followed for the betterment of understandability and readability of the

code. Some of the coding guidelines are given below :

6. Avoid using a coding style that is too difficult to understand:

Code should be easily understandable. The complex code makes maintenance and

debugging difficult and expensive.

7. Avoid using an identifier for multiple purposes:

Each variable should be given a descriptive and meaningful name indicating the reason

behind using it. This is not possible if an identifier is used for multiple purposes and thus it

can lead to confusion to the reader. Moreover, it leads to more difficulty during future

enhancements.

8. Code should be well documented:

The code should be properly commented for understanding easily. Comments regarding

the statements increase the understandability of the code.

9. Length of functions should not be very large:

Lengthy functions are very difficult to understand. That’s why functions should be small

enough to carry out small work and lengthy functions should be broken into small ones for

completing small tasks.

10. Try not to use GOTO statement:

GOTO statement makes the program unstructured, thus it reduces the understandability of

the program and also debugging becomes difficult.

Advantages of Coding Guidelines:

• Coding guidelines increase the efficiency of the software and reduces the development

time.

• Coding guidelines help in detecting errors in the early phases, so it helps to reduce the

extra cost incurred by the software project.

• If coding guidelines are maintained properly, then the software code increases readability

and understandability thus it reduces the complexity of the code.

• It reduces the hidden cost for developing the software.

	INTRODUCTION OF C LANGUAGE
	C is a structured programming language developed by Dennis Ritchie in 1973 at Bell Laboratories. It is one of the most popular computer languages today because of its structure, high-level abstraction, machine independent feature etc. C language was d...
	History of C language
	C Program and its Structure
	(ii) Header file
	(iii) main() function
	(iv) Comments
	(V) Return statement - return 0;
	FIRST C PROGRAM
	Integer Literals
	Floating-point Literals
	Character Constants
	String Literals

	Variables
	Datatype of Variable
	Rules to name a Variable

	Data types
	Integer type
	Floating point type
	Character type
	void type

	Operators
	Arithmetic operators
	Relational operators
	Logical operators
	Bitwise operators
	Assignment Operators
	Conditional operator
	Special operator
	Evaluation of Expressions
	Variable is any valid C variable name. When the statement is encountered, the expression is evaluated first and then replaces the previous value of the variable on the left hand side. All variables used in the expression must be assigned values before...
	Rules for evaluation of expression
	Operator precedence and associativity

	C Input and Output
	scanf() and printf() functions
	getchar() & putchar() functions
	gets() & puts() functions
	Decision making statements
	Decision making with if statement
	Simple if statement
	if...else statement
	Nested if....else statement
	else if ladder
	Rules for using switch statement

	Looping statements
	Types of Loop
	while loop
	for loop
	Example: Program to print first 10 natural numbers

	Nested for loop
	do while loop
	Example: Program to print first 10 multiples of 5.

	Jumping Out of Loops
	1) break statement
	2) continue statement

	Arrays:
	Example where arrays are used,

	Declaring an Array
	Initialization of an Array
	Compile time Array initialization
	Runtime Array initialization

	Two dimensional Arrays
	Runtime initialization of a two dimensional Array

	String and Character Array
	Declaring and Initializing a string variables:
	String Input and Output:
	String Handling Functions:
	strcat() function
	strlen() function
	strcmp() function
	strcpy() function
	strrev() function

	Functions
	Benefits of Using Functions
	Function Declaration
	returntype :
	functionName
	parameter list
	Function definition Syntax:
	functionbody
	Calling a function
	Passing Arguments to a function
	Returning a value from function

	Type of User-defined Functions :
	1.Function with no arguments and no return value
	2.Function with no arguments and a return value
	3.Function with arguments and no return value
	4.Function with arguments and a return value
	Nesting of Functions
	Recursion
	Example: Factorial of a number using Recursion

	Types of Function calls:
	1.Call by Value
	2.Call by Reference

	C Structures
	Defining a structure
	Example of Structure
	Structure variable declaration is similar to the declaration of any normal variable of any other datatype. Structure variables can be declared in following two ways: 1) Declaring Structure variables separately
	2) Declaring Structure variables with structure definition

	Structure Initialization
	Nested Structures

	Unions in C
	Pointers
	Address in C
	Benefits of using pointers

	Declaring, Initializing and using a pointer variable in C
	Initialization of C Pointer variable

	Pointer to a Pointer in C(Double Pointer)
	Simple program to represent Pointer to a Pointer
	Explanation of the above program

	Pointer and Arrays in C
	1.Pointer to Array
	2.Array of Pointers

	Pointer to Array of Structures in C
	Accessing Structure Members with Pointer

	Pointers as Function Argument in C
	Example Time: Swapping two numbers using Pointer
	1.Functions returning Pointer variables
	2.Pointer to functions
	Example of Pointer to Function

	File Input/Output
	Opening a File or Creating a File
	Closing a File
	Input/Output operation on File
	1.Reading and Writing to File using fprintf() and fscanf()
	2.Difference between Append and Write Mode
	3.Reading and Writing in a Binary File
	fseek(), ftell() and rewind() functions
	Some File Handling Program Examples

	Dynamic Memory Allocation in C
	Memory Allocation Process
	Allocating block of Memory
	Time for an Example: malloc()
	Time for an Example: calloc()
	Time for an Example: realloc()
	Diffrence between malloc() and calloc()
	Program to represent Dynamic Memory Allocation(using calloc())

	Allocating block of Memory
	Time for an Example: malloc()
	Time for an Example: calloc()
	Time for an Example: realloc()
	Diffrence between malloc() and calloc()
	Program to represent Dynamic Memory Allocation(using calloc())

	Linked List
	Preprocessors Examples

	Coding Standards and Guidelines

