KINEMATICS

3.1. Speed:

The speed of a moving point is the rate at which it describes u.'s
path without any reference to its direction of motion. Thus, spec.d is
a quantity having magnitude only but no direction. Hence 1t 1s a
scalar.

The speed of a particle is said to be uniform when it describes
equal lengths of its path in equal intervals of time, however small
these equal time intervals may be. When a particle is moving with
uniform speed, its spced can be got by measuring the distance
travelled in one unit of time. :

The average speed of a particle in any time interval is got by
dividing the distance travelled in that time interval by the time
interval. For instance, when we say that the speed of a train is 30
km/h, it means that it would describe 30 kms. in an hour, if its speed
recmained constant during that hour. In other words, the average
speed of the train is 30 kms. per hour..

The speed of a particle at any instant is given by the ratio of
the distance described by it in a very short interval of time including
that instant to the interval, when the interval is made sufficiently
small.

Using the notation of Differential Calculus, let s be the
distance travelled in time t and s + As be the distance travelled in
time t+ At. The distance travelled in the time interval At = As.
As
At

m_aking At sufficiently small, the fraction %s{ will give

Hence the average speed of the particle during time At = . By

approximately the speed at the instant t.

Hence the speed at time t is given by Lt L = g8
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In the F.P.S. system, the unit of speed is 1 foot per second,
abbreviated to 1 ft/scc or 1 L. per sec. In the C.G.S. system, the unit
of speed is 1 centimetre per sccond, abbreviated to 1 cm/sec or 1
cm.per sec. In the M.K.S. system, thc unit of spced is 1 metre per

second abbreviated to 1 m/sec.

Specds are often expressed in other units, such as miles per
hour (abbreviated to m.p.h.) and kilometres per hour (abbreviuted (o
km/h). The unit of speed used in navigation is the knot which means
the speed of 1 nautical mile (6080 (1.) per hour.

3.2. Displacement:

The displacement of a moving point in any interval of time is
its change of position. I{ O and P arc the initial and final positions of
a particle in its path in a certain time interval, then its displacement
is represented by OP. Thus displacement of a moving point is a
veclor.

§ 3.3. Velocity:

The velocity of a moving point is the rate of its displacement. A
velocity therefore has both magnitude and direction and is a vector
quantity.

A point is said to be moving with wniform velocity, if it moves
always in the same dircction and describes cqual distances in equal
intc‘rvals of time, however small these intervals may be. When
uniform, the velocity, of a moving point is measured by il
displacement per unit of time, |

\’-thn there is a change in the magnitudce or in the dircction of
a moving particle, its velocity is said to be variable. The velocity of
a particle at any instant may be defined as follows:

I.T/re velocity of a particle at an v instant is given by the ratio of
the displacement described by it in a very short interval of time

uzc!fm"mg that instant, (o the interval when the interval is made
sufficiently small.

; Leta point describe » length s (measured from a fixed pointon
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. As
during 8118 == The magnitude of

At the wvelocity at time t
AS _ 48 ot e
=“L10 AL - qp dnd s direction is along the tangent to the path.

When a point is moving in a straight line,
same as its speed. But in the case of
not the same as the speed.

its velocity is the
all other paths, the velocity is
For instance, suppose a point to be
describing a circle uniformly, so that it describes cqual lengths of
arc in cqual intervals of time
however small. Clearly its speed
is constant. But its direction of
motion, namely the tangent to the
circle is  different at  different
points  of the circumference.
Hence the velocity of the point is
not constant. It is variable.

Consider a particle moving

on a curve. Suppose in time t it is

Fig. 11 at a point P whose position vector
is rand at time t + Atlet it be at

Q whose position vector is r + Ar.

Since OP + PO = OO0,
Q=00 - oP

=r+Ar-r = Ar

‘ Ar
Velocity at P = Lt —
At 4 03 Al
- dr = v (sav)
dt

As Al —0. Ar also —0 and the chord QP of the curve
. L -~ . 5 X "
becamen, the tangent at P. Hence the veloctty vector v of a moving
PO P iy e r?mu derivative of the position vector r and it 1s
Wrgential 1o the curve at P.
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A patlicle may possess simultaneously more than one velocity.
A simplest example of this is when a man walks on the deck of a
moving ship {from one point of the deck to another. The man shares
the motion of the ship and so has the velocity of the ship. In
addition, he has his own velocity. So his motion in space will be
entirely different from what it would have been either in the case
when the ship had remained at rest or in the case if he had stayed at
the same original position of the ship.

Thus we can think of a number of simultancous motions of the
same particle. In such cases, we can always find a single velocity
which produces the same effect on the particle as the different
velocities. This single velocity is called the resultant of the given
simultaneous velocities which, in their twrn, are called the
componenis of he single resultant. The process of finding thc
resultant velogity is called composition of velocities.

§ 3.4. Composition of velocities: Parallelogram Law:
Since vclocity is a vector quantity, the method for composition
of two or more velocities of a particle is the same as the rule for
addition of vectors. Thus if a particle has simultaneously two
velocities in directions inclined to
each other, the resultant velocity
is obtained by applying the
Parallclogram Law of Velocities:
If a moving point has
simultaneously two  velocities
which are represented in
magnitude and direction by the
mwo sides of a parallelogram
drawn from a point, the resultant
velocity is represented in magnitude and direction by the diagonal

of the parallelogram drawn from that point.

Let OA and OB represent the two velocities u and v. Complete
the parallelogram AOBC. By the vector law of addition,
OA + OB = OC.Hence OC s the resultant velocity.

Fig. 12
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Analytical results:
Let ZAOB = a and V the magnitude of the resultant velocity.
Draw CD 1 to OA.
Fromrt ZdACAD, AD = AC.cosa=v cos a and
CD = ACsina=vsina
From rt. £d A COD, OC? = OD? + CD?
= (OA+AD)? + CD?
= 0A% + 20A.AD + (AD2+CD2)
= OA® + 20A.AD + AC?

=uz+2uvc:<:>sent-l—v2

i.e. V = Vu?+2uv cos a +v2 (1)
; CD CD Vv sin a
Alsoan 0 = = = i
S0 tan OD OA+AD u+ vcos a 2)

(1) gives the magnitude V and (2) the direction 6 of the
resultant velocity.

Particular Cases:
(NIf a=0, V=Vu*+2uv+vi=u+vand 6= 0

i.e. The resultant of two simultaneous velocities along the same
line and in the same directions is their sun.

GDIf a=m V=Vul-2uv+vZ = u~ vand 8 = 0

i.e. The resultant of two simultaneous velocities along the same
line but in opposite directions is their algebraic sum.

(111)1['(1--:—2:\/ =Vu?+v? and 6 = tan™! E

(iv) When v=1u, V = Vu?+2u? cos o + u?

= V2u® (1 + cos a)

- 2 2 & . L
'\/(211 . 2cos 2) 2u cos >
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i.e. 6 = 2

e resultant of wo €

] coSs L ina direction biseclin
velocity 2u >

qual velocities, u, wat an angle o js ,

So th g the angle between them.

n of Velocities:
arallclogram law 1O resolve a given velocity

' onent velocities. It is clear that this can be donc in an
!m{.) t.wo COHLPCI- of wavs, for an infinitc number of parallelograms
égflml;lce ;;sTride h;,_vi;g a given line OC as d.izlgonalé (scc.ﬁ'g_u
page 17) If AOBC is any onc of these, the velocity OC is equivalent
lo the two component velocitics OA and OB.

§ 3.5. Resolutio
We can use the p

The most important case of resolution of a velocily occurs
when a given velocity is to be resolved in
two directions at right angles, onc of thesc
directions being given. In this case, the
magniludes of the component velocitics are
casily got as follows: 4

Let OC represent the given velocity v » o ¢
and OX be a line inclined at an angle 0 to
OC. Let OY be perpendicular to OX. Draw
gA 1 to OX and complete the parallelogram V{
lOzfil*nhCB. Th‘cn the velocity OC is equivalent e

¢ IWo component velocijtjes OA and OB.

Also OA = 0C¢q

Fig. 13
S8 = ucos 0

and i
OB =AC= OC.sin 0 = u Sin 0

chcc
Wc [ . i .
have (he [ollowing important proposition:
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A velocity w is equivalent to a velocity u cos © along a line
making an angle 0 with its own direction, together with a velocity
wsin ® perpendicular to the direction of the first component.

When a given velocity is resolved into two components in two
mutually perpendicular dircctions, the components are referred 1o as
the resolved parts in the corresponding directions.

§ 3.6. Components of a velocity along two given
directions:

velocity u and OX, OY be two lines
making angles o« and 3 with OC,
Draw CA parallel to OY and CB
parallel  to  OX, making  the
parallclogram OACB as shown in
ig.14. Then OA and OB are the
components of the velocity OC
along OX and OY respectively.

From A OAC,

Let OC represent a  given Y/
B

OA ~ AC ___0OcC
sin £LOCA =~ £ sin AOC Zsin OAC
OA AC oC

1.C,

sin 3 - S (L s.in' { 180° = (1 + [-J’)T_-

e = B sina  sin (a+P)
. OA = —usinf

sin (¢ + [3)

U SN
sin (w + 3)

and OB = AC =

s 3T, Triangle of Velocities: Theorem.

If a moving point possesses simultaneously two velocities
represented in magnitwde and direction successively by the two
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sides of a triangle taken in order, their resultant will be represented
in magnitude and direction by the third side taken in the reverse
order.

Let AB and BC represent the two velocities u and v in
magnitude and direction. Complete the parallelogram ABCD.

BC.

are

Since AD is equal and parallel to
BC, it represents the same velocity-as
Hence the two simultaneous
velocities u and v of the moving point
represented in magnitude and

direction by AB and AD.

So, by parallelogram law, their |
resultant velocity is represented by the Fig. 15
diagonal AC.

In vector notation, we write this as AB + BC = AC
Corollary 1. 1f a moving point simultaneously three velocities

which are represented in magnitude
and direction by the three sides of a
triangle taken in order, it will be at rest.

Corollary 2. If a moving point
possesses two velocities represented by
A. OA and pn. OB (A, p being

AL G " constants), then their resultant velocity
Fig. 16 is represented by (A + w). OG, where
' G is a point on AB such’that AAG =
uGB. . .
From A OAG, 0G + GA = OA .. (1)
Multiplying (1) by A,
A OG + .. GA= A OA sil2)
From A OBG, OG + GB = OB (3
Multiplying (3) by ' u,
wO0G + . GB= n.OB s (4)

Adding (2) and (4)

A+1)0G + AGA + UGB = AOA + u OB - )
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1,3‘“ the velocities A GA and p GB are equal in magnitude but
opposite in direction. They destroy one another.

. (5)becomes (A+ p) OG = A OA + p OB ... (6)
Corollary 3. PutA = 1 = pin the above result.

then AG = GB and G is the midpoint of AB.
-. OA + OB = 20G

-3.8. Polygon of Velocities : Theorem

If a moving point possesses simultaneously velocities
represented by the sides AB, BC, CD. . .MN of a polygon ABCD. . .
MN taken in order, the resultant velocity is represented by AN.

AB + BC = AC from AABC
~AB +BC +CD = AC + CD

= AD from A ACD
Thus AB + BC + CD + ...+ MN = AN

[t is obvious that this result also holds if the sides of the
polygon are not in one plane.

Corollary: If a moving point has simultaneously several
velocities which are represented in magnitude and direction by the
sides of a closed polygon taken in order, it will be at rest.

§ 3.9. Resultant of several simultaneous coplanar
velocities of a particle:

Let a point O have

several simultaneous

velocities represented by

vectors uj, Uy, Uj..etC. in
directions inclined at angles
6,, 6, 63 ... 10 a fixed line

OX and let OY be 1 to OX.

Let i and j be unit
vectors along OX and OY

ando_Ar=u1
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From Aq, draw AjL L 1o OX.
uy = (j?\l = O—L 3 ]11 = COS Bli + U SinBl j.
Similarly u, = upcos 631 + Uz sin 65 j and so on.

Let V be the vector representing the resultant velocity.

V =uy + Uz + Uz + ...

= (uycos B i+ uysind;j) + (upy cosBy i+ uysind, j) +
= (uy cos B; + uy cos O, + ) i+ (U sin©; +uysin 6, )

Magnitude of the resultant velocity

V = \/(ul cos B, + u, cos 6, + )% + (uy sin 0, + u; sin 6, ..)?

(1)
If the vector V makes and angle 6 with OX,
g 8 _l = Com_Poncnl 0[ V _ lll Sin 91 + 1]2 Sin 82 *
i — component of V u, cos 6; + u,y cos 6, + ...
55 (2)

Equations (1) and (2) give the magnitude and direction of the
resultant.

WORKED EXAMPLES

Ex.1. A boat capable of moving in still water with a Sngf’d a
Yokims. an hour, crosses a river, Yo km broad, flowing wzthht:
velocity of 3/2 kms. an hour. Find (i) the time of crossing by'!
shortqst route (ti) the minimum time of crossing.

and E the

(2

Let O be the position of the boat on one bank est rout
d

directly opposite point on the other bank. OE is the shor

O cross by the shortest route, the resultant velocity of the
the current must be along OE.
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In {ig.18, let OA = velocity of the current =;;j

OB = velocity of the boat =

SRV

The resultant velocity is OC, the diy
AOB and it is perpendicular to OA.

From rightangled ACOA,

gonal of the parallelogram

2 2
OC? = CA? - 0A2 - (—5-) = (—3—) =4; - 0OC=2
i.e. The resultant velotity of the boat js 2
ol crossing by the shortest route,
OE () 1

- = —— = — hour =15 minules.
2 " 4

km/h. Hence the time

; : 3
In 1ig.19, let OA = velocity of current = > and the boat be

steered in the direction OB making an angle o with OA.

S
Let OB = velocity of boat = =

Complete the parallelogram AOB and the resultant velocity is
4long the diagonal OC.

Produce OC to meet the opposite bank at D.

Then OD is the length of the path described by the boat with
the resulant velocity represented by OC.

Draw DL and CM 1 to OA.
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Time of crossing =

DL =
~ M (Il A sy :
()

AC.sin o

Clearly this time of crossing is least, when sin o is greatest.

je.whensina = 1 or a = 90°
- : , 1 ; '
Minimum time of crossing = 5 hour = 12 minutes.

Ex.2. A particle has two p ) D c
simultaneous velocities of equal :
magnitudes in two directions. If one
of them is halved in magnitude, the
angle which the resultant velocity
makes with the other is halved also.

Find the angle between the A B’ B
directions. (B.Sc. 52 Madras Uty.) |
Let the velocitites of equal Fig. 20

magnitudes  but  in  different

directions be represented by the sides AB, AD of || gm. BADC.
Then AB = AD and the resultant velocity will be along the diagonal
AC, bisecting £BAD. (Refer particular case iv on page 18)

In the scecond case, one of the vclocities is halved in
magnitude. Let B’ be the midpoint of AB. Now the particle has two
velocities rcprescntfcd by AB’ and AD. bomplete the || gm B'AD .
The diagonal AD' will be the new resultant. Clearly D' is the

midpoint of DC. It is given that the angle between AD and

1
AD = 5 % angle between AC and AD.

AD' bisects ZCAD.
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go from A to another point C of ils own enbankment and return to A

if AC = a p -

=NI <|.J

§ 3.10.Relative Velocity: ay, a8

Let two particles A and B move - —;— )’
along the same straight line and at °4_.x‘_‘.:‘ 2
time t their displacements measured ¢ X —>
from some fixed origin O on the line »
be x, and Xxp respectively. The _
velocities of A and B are Flg. 2<

dxA de

Vo = —dTand VB ':T

The displacement of B relative
10 A (i.e. displacement of B as measured (rom A)

= Xg - Xa and the rate of this displacement is called the
velocity of B relative to A.

~. The velocity of B rclative 1o A

_d_x_x _de_dxA-v—v
dt(B A) dt dt B~ "A

Clearly this is the velocity which B appears to have as scen

from A.

The above idea of one-dimensional relative motion can be
casily extended to motion in two dimensions.

Let ry and rgbe the position
vectors at tlime t of two moving
particles with respect 1o a fixed origin
O. The velocities v and vp are then

given by

B

drp drg
Vo = —-d—l—and VB "'d—'

By the triangle law,
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OA + AB = OB

~AB = OB - GA - rg — ra = R (say)

AB is the displacement of B relative to A and R is the position
vector of B relative 10 A. The velocity v of B relative to A is defined
as the time derivative of R.

dRrR drg  drp
e - = — — -V -V + (—V (1
Gl i Pl e a " VBT VA" VB (=va) (1)
(1) shows that the relative velocity of two moving points is the
vector difference of their absolute velocities.
Let vg,, denote the velocity of B relative to A.

(2

Similarly vay, = va - vp 3)
From (2) and (3), we find that the relative velocity vector of

onc moving point B with respect 10 another moving point A is
obtained by compounding the velocity vector of B with a vector

velocily equal and opposite to that of a.
From(2), vg = vp, + vu

.. The truc velocity of B is got by compounding the relative
velocity of B and the velocity of A.

Analytical Results:
Let two points A and B be moving with velocities u and v

along OC and O;D inclined at an
angle a. The velocity v can be
*,‘" binel

resolved into two components (i) i
veos a || to OC and (ii) vsin o L ' /
to OC. : ~
b k-: . e + - - e e

ThcanA - VB — Va

a-aed

The velocity of B relative to O, V Cos ok
A, 10 || OCis =vcos a - u. Since
. . A ——
A has no velocity perpendicular to o w C

OC, the velocity of B relative to A,
L to OC is =vsina-=0-
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.. vsin a. Let V be the resultant ol these two components, at ar

angle 6 to OC.
vz = (\.rcc:nsc::n—u)2 + v2sin®a = u? + v? - 2uvcosa (1)
Component L to OC v sin a

Component || to OC v Ccos oL-Uu

tan@ = (2)
(1) and (2) give respectively the magnitude V and direction 8
of the relative velocity of A with respect to B.

Ex.4. A ship P is sailing due east at a speed of 16 kn/h when
another ship Q which is due north of P at a distance of 10 kn'a. from
it, starts at a speed of 12 km/h in a southern direction. Find the
velocity of Q relative to P. What is the least distance apart that Q
will attain from P and how long after starting will it attain it?

(B.A. 44 Madras Ury.)

The relative velocity of Q with respect to P is got by
compounding with the velocity of Q (12 km/h duc south) a velocity
cqual and opposite (o that of P (16 km/h due west).

Q
B e o)
(=]
W 1L
< FaS {. P
Fig. 25

In the figurc, OA = 12 and OB - 16

Complete the reclangle AOB. Then OC represents the
relative velocity of Q with respect to P.

OC?2 = 0OA? + AC? = 122 4+ 162 = 400

. OC=20

Let ZAOC =6

Bnl = AC .:.-]E - 4
OA 12 K.
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Hence the velocity of Q relative to P is 20 km/h at an angle

4
tan~! 5 west of south.

Now keeping P at rest, allow Q 1o move along the relative path
QM, as shown in the figure.
Q is due north of Pand PQ = 10.

From P, draw PL perpendicular to QM, the relative path. The
ships are nearest to each other when Q comes to L.

Least distiance between Pand Q

= PL =PQ.sinB =10 x i = 8 km.

= 6 km.

5
3
QL =PQ.cos0 =10 x 3

Time taken by Q 10 travel 6km. along the relative path

QL

6 .
= ; z = — hour = 18 minules
Relative velocity 20

Aliter: The least distance between P and Q can be got as
follows:

At 4 certain instant, Q is due north of P and PQ = 10km. At the
end of time t hours, let P; and Q, be their actual positions and

PIQI = X

Then PP = 161 and QQ | = 12t Q
. PO, = PQ - QQ; = 10 - 121 &
X
Hence, x% = PP12 + PQ ,? =
= (161)%2 + (10 -121)? L S
= 25612 + 100 - 240t + 14412 '
- 2

Letx* =y

.y =400 - 2401 + 100 .. (2)

Scanned with CamScanner

Scanned by CamScanner



Differentiating (2) with respecttot;,

2- ' .-
B - 800t — 240 and L5 800 = posilive

dt d 12
.y is minimum when: 3 0
i.e. when 800t-240=0

{ 240 3 hours
ort = 3800 ~ 10 '

i.c. after 18 minutes, the ships.are.ncarestlo each other.

. 3
Putting t = 5 in (1),

100
=36 - 72 + 100=64

X% = (400x—9—)—(240x—1§6

) + 100

.. % = 8km. and this is the lecast distance: betweem thiem.

Ex.5. To a man-walking along a level road ar 5kmih, the rain
appears to be beating mto his face at8kin/h at:an angle 60° with the

vertical. Find the true direction and velocity ofithe'ra in.
(BlA..30:Madras Uty)

Let OB represent the actual
velocity v of the rain at an angle 0 10
the vertical. Draw OA westwards 10
represent the velocity of the man in the
opposite driection. i.e. QA represents
the reversed velocity of the man.
Completc the parallelogram AOB. The
diagonal OC gives the relative velocity
of the rain and this is given to be at an
~angle 60° to the vertical.

In the figure, OA = 5, OC = 8,
OB=v, £LAOC=30°
ZCOL=60° 4BOL= 0
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v and that the time that elapses before they arrive at their nearest

distance is"—z-‘—l

\a (B.Sc. 53 Madras Uty)

11. Two particles move with uniform velocities u and Vv

respectively along perpendicular lines XO and YO intersecting at O,

the particles moving towards O. If they are initially at distances a

and b from O, show that they will be nearest to each other at the
bv+ au

lime t given by t = )

+ V2
(B.Sc. 75 Applied Science Madras Uty)
(B.Sc 94 Bharathidasan Uly)

12. Two cars A and B are moving due north and due east at 40
and 30km per hour respectively. At noon B is west of A, at a
distance of 20km. When are the cars closest to each other and what
is the distance between them at that time?  (B.Sc. 71 Madurai Uty)

13. To a cyclist riding due west at 10 km. per hour, the wind
appears to him to blow from south. When he doubles his speed, it
appears to him to blow from southwest. Show that the speed of the
wind is 10 V2 km. per hour and it is from southeast.

(B.Sc.94 Bharathidasan Uty)

§ 3.11. Angular Velocity: Definition:

If a particle P be moving
along any path in a plane and
if O be a fixed point in the P
plane and OA a fixed straight
line through O, the rate at
which the angle AOP increases o A
is called the angular velocity of &
P about O.

If we take any other ﬁxf:d
line OB through O as the initial Fig. 29
line instead of OA, the angular
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velocity of P about O is the rate at which the angle BOP increases.
But this is the same as the rate at which the angle AOP increases,
since the angle AOB is the same [or all positions of the moving
point P. Hence the angular velocity about O is independent of the
line through O, taken as the initial line.

Let the particle P be moving with uniform angular velocity and
8 be the angle in radian measure described by OP in t seconds. Then

the angular velocity about O is given by w = -?— radians/sec.

To get a measure (or variable angular velocity, we proceed as
follows: Let B and 6 + A Bbe the angles made by OP with OA in
limes tand t + At respectively. The average angular velocity of P in
AB
AL

angular velocity at At — 0 is the angular velocity of P about O and
so it is given by

the short interval of time At = The limiting value of this

o 1 b6 _de

At —0 QO dt

Angular velocity is always expressed in radians per second.
Examples:
(1) I the line OP turns through 2 right angles in one second, the

: T
angular velocityof P= 2 x = =

v

n radians per sec.

(if) Il OP makes 4 rcevolutions in one second, the angular
velocity ol P = 4 x 27 = 8 n radians per scc.

§ 3.12 Angular velocity of a particle moving along
a circle with uniform speed:

Let a point move with uniform speed v along a circle centre O
and radius r. Let P be its position at time { secs and s be the arc AP

measured [rom a fixed point A on the circle.

OA is a fixed direction and let ZAOP = 0.
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Attime 1+ A tsecs, let the point
be at Q such that £LPOQ = A9 and
are PQ = A s.

Then we know that As=1. A B

AsS A6
At Al

Taking limits,
Ll A_S_= 3 __e
aM— 0 At m—vUAl
d

Fig. 30

L

—_— =1 — .
i.e - r l (1)

Now -Ei_T is the rate at which the length of the path is described

and so it is the lincar velocity v of the particle.

-a-?- is the angular velocity w.

So (1) becomes, v=rw

v
or w = -
r

Corolloary: Let O’ be any point on the circumference.
We know that £ POQ =2 £ PO Q

-, Rate of change of £ POQ = 2 x rate of change of £ PO Q
. Angular velocity about the centre O

= 2 x angular velocity about O
i

. Angular velocity about O

= % x angular velocity about O
1 X,
=2 7 o
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§ 3.13.Angular velocity of a particle moving along

any curve:

Let a particle move along
any curve and P and Q be its two
consecutive positions at times t
and t + At + At respectively. OX
is a fixed line.

OP=r,0Q=r+ AT

4L XOP =6 and £ XOQ = o
6+ A6

Let v be the linear velocity
of the point at time t. |

This velocity is along PT,
the tangent at P.

Fig. 31

From Q,draw QM L0 OP. Let L TPM =@

Arcual distance described along the curve during the short

"time At = v. At nearly.

As Q is close to P, arc QP = chord PQ nearly.

.. PQ= v. At
Also £ QPM = £ TPM nearly = @
From right angled AQPM,

QM =PQ.sin ZQOM = v. AL sin @ -+« (1)

From right angled AQOM,
QM = OQ.sinA6
=(r+ Ar)sinA®

=(r+Ar)A6 (A6 issmall) o 5 (2)

Equating (1) and (2),
(r+ Ar)AB = v. At. sin @

AB vsing
At r+Ar
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10. A and B describe concentric circles of radii a and b with
uniform speeds, u, v the motion being the same way round. Prove
that the angular velocity of either with respect to the other is zero
when the line joining them subtends at the centre an angle whose
au + bv '
av + bu’

11. Two planets describe circles of radii a and b round the sun
as centre, with speeds varying inversely as the square roots of the
radii; show that their relative angular velocity vanishes when the
angle © between the radii to those planets is given by

Yab
cos O = B.Sc. 82 Madras Uty.)
. a— Vvab + b (

§ 3.16. Change of velocity:
Since a velocity has both magnitude and direction, it will be
changed if one of these changes or both change.

cosine 1s

B
T’ 2
Q /v
e >
P L T O (T8 A
Fig. 35

Suppose a particle is moving along a curve. Let P be its
position at a certain instantand Q its position after an interval. Let u
and v be the velocities at P and Q. These are along the tangents PT
and QT’. From any point O, draw OA and OB to represent the

velocities u and v respectively.

By the triangle of velocities, we have OA + AB = OB

Hence a velocity represented by AB has been added to the
velocity at P, to give thelvclocity at Q. Thus the change in velocity
in that interval is represented in magnitude and direction by AB.
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PROJECTILES

§ 6.1. In the present chapter, we shall consider motion of a
particle projected into the air in any direction and with any velocity.
Such a particle is called a projectile. The two forces that act on the
~projectile are its weight and the resistance of air. For simplicity, we
suppose the motion to take place within such a moderate distance
from the surface of the earth that we can neglect the variations in the
acceleration due to gravity, This means that g may be considered to
be constant in magnitude throughout the motion of the projectile.
Secondly, we shall neglect the resistance of the air and consider the
~ motion to take place in vaccum. |

§ 6.2.Definitions:
The following terms are used in connection with projectiles:

The angle of projection is the angle that the direction in which
the particle is initially projected makes with the horizontal plane
through the point of projection. |

The velocity of projection is the velocity with which the paricle
' is projected.

The trajectory is the path which the particle describes.

The range on a plane through the point of projection is the
distance between the point of projection and the point where the
trajectory meets that plane.

The time of flight is the interval of time that elapses from the
instant of projection till the instant when the particle again meets the
horizontal plane through the point of projection.

§ 6.3. Two fundamental principles:

To discuss the motion of a projectile, we consider the
horizontal and vertical components of the motion separately. The
only force acting on the projectile is gravity and this acts v:ertically
downwards. Hence by the Physical Independence of forces, it has no
effect on the horizontal motion of the particle. So the horizontal
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velocity remains constant throughout the motion, as there'is no

force to cause any acceleration in that-direction. On the o}her han.d,
the weight of the particle acting vertically downwards, will have 1ts
full effcct on the vertical motion of the particle. The weight mg
acting vertically downwards on a particle of mass m will produce an
acceleration g vertically downwards. Hence the vertical cqmponefu
of the velocity will be subject to a retardation g. These two main

@ principles will help us 1o study the motion of a projectile.

§ 6.4. To show that the path of a projectile (in
vacuo) is a parabola:
Let a particle be projected
L from O, with a velocity u at an
angle o to the horizon. Take O
A as the origin, the horizontal and
the upward vertical through O as
axes of x and y respectively. The
initial velocity u can be split into
two components, which are
B € * ucos a in the horizontal
direction and u sin o in the
Fig. 70 vertical direction. The horizontal
component u cos a is constant
throughout the motion as there is no horizontal acceleration. The
vertical componentu sin ais subject to an acceleration g
downwards. |

£

ae

2
x4 DYSPPRINPN.

(o]
8

Let P(x, y) be the position of the particle at time t secs. after
projection. Then

x = horizontal distance described intsecs. = (ucosa).t .. (1)
i S N-...______-I‘

y = vertical distance described in t secs. = (usin o)t --% gt? ...(2)

——————

(1) and (2) can be taken as the parametric equations of the
trajectory. The equation to the path is got by eliminating t between
them.
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x L] [ ] L[]
< = —— and putting this in (2) we get
From (1),t = ——— and pulling (2 weg

. X 1 X )2
y =usina. resa 28 |ucosa

)
: X
i.c. y = xlano - —=— e (3)

| 2U° Cos* ot

Multiplying (3) by 2 u* cos® a,

4 sin o 7
2u?cos?a.y = 2ulcosta . X - gx©
cos a
. »  2u?sin a cos o 2u”Z cos % a
i.e. x° — X = -
£ £
., 2
or [y _ usina cosa wsin® acos? o 2u? cos?
: g g? g
2 .
2u? cos? a ’ u? sin? o
g 2g
Transfer the origin to the point
2 . 9 . )
u®sina cosat  u”sin® o
g T 2g
The above equation then becomes
9
x2 U~ O™ 1k
= - 3 '4)
g e (4

] (4)7 s clearly the cquation 10 a parabola of latus reetum
20" cos* o

;whose axis is vertical and downwards and whose vertex

Lt % B

- 3 u - Lo
is the point L =0 L SNy

g 2g

Note: The latus rectum of the above parabola is

,
2 - cos? 2 >
= " = E . (ucos a)
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= 5 X square ol the horizontal velocity

So the latus rectum
of the initial vertical ve
velocity.

(i.c. the size of the parabola) is independent
locity and depends only on the horizontal g

§ 6.5. Characteristics of the motion of a projectile:

Refer 1o fig. 70 on page 140. Let a particle be projected from O
v«{ilh velocity u at an angle o to the horizontal OX. Let A be the
highest point of the path and C the point where it again meets the
horizontal plane through O. Using the two fundamental principles

given in § 6.3. page 139, we can derive the following results relating
1o the motion of a projectilc.

(1) Greatest height attained by a projectile.

Al A, the highest point, the particle will be moving only
horizontally, having lost all its vertical velocity. Let AB = h = the
greatest height reached. Considering vertical motion separately,
initial upward vertical velocity = usina and the acceleration in this
direction is -g. The final vertical velocity at A is = 0.

¢
u= simn- a

2g
i.c. the vertex of the parabola is the highest point of the path.

Hence O = (usina)? — 2g.h ie.| h =

(2) Time taken to reach the greatest height.

Let T be the time from O 1o A. Then, in time T, the initial
vertical velocity  u sin ais reduced. o zero, acled on by an

N —— S

acceleration -g. Henee 0 = usina - gT.

usin a
g
(3) Time of flight [e. the time taken to return to the same ‘

']-=

horizontal level as O.
When the particle arrives at O, the clfective vertical dislanc? it
has described is zero. Hence if tis the time of [light, considering

- 2 o2
vertical motion, we have 0 = usinat - = gl=.
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2u sin &
g
t = 0 is the instant of projection when also the vertical di
travelled is zero.

ie. t=0 or =

stance

2u sin &
g

We find that the time of flight is twice the ti
the highest point, as we should expect from symmeltry.

-, | The time of flight =

me taken 10 reach

(4) The range on the horizontal plane through the point of
projection.

M. During this time, the

g
nt and is equal (0 ucos @

The time of flight is t =

horizontal velocity remains consta

Hence OC = horizontal distance described in time

susina  2u’sinacos &
= \

= uUcosc.l = ucosa .
g g

Hence

2u? sina. cosa uZ sin 2a

g £
Note: (1) The horizontal range can also be found thus: The

the horizontal range R =

gx> .
2u? cos? @ (1)

cqualtion to the path is y = X lana

The equation 1o the X axis isy = 0.

o2
gx - 0

n
2u? cos? a

Putting y = 0in (1), we have xtana =

2u2 cos? o tana.  2u® sin a cos o

je.x=00rx = -
g g

x = 0 corresponds to the point of projection and so the other

2u? sin a cosa . :
- gives the horizontal range.

value
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(2) Horizontal 2 e 2u? sinat cosat _ 2(ucos @) . (usin o)

g g

= ZP—Y where U and V are the initial

horizontal and vertical velocitjes.

§ 6-6: A particle is Projected horizontally from a
Point at a certain height above the ground; to
show that the path described by it is a parabola.

Let a particle be projected horizontally with a velocity u from a
= point A at a height h above the
T * ground level. Let it strike the ground

g g at M. Take A as origin, the

P& horizontal through A as x axis and

x the downward vertical through A as
y axis. Let P(x,y) be the position of

K the particle at time t. As there is no
o | horizontal acceleration, the
Fig. 71 horizontal velocity remains constant
throughout the motion.
So x = horizontal distance described in time t = ut . (1)

Due to gravity, the vertical acceleration during the motion is g
downwards.

y = vertical distance described in time t = -;— gt2 s (2)
Eliminate t between (1) and (2).

1 xz . 2 2[12
We havey = Eg.'l?l.c.x --—g—y . (3

(3) shows that y is a quadratic function of x. So it represents a
parabola with vertex at A and axis AN.

WORKED EXAMPLES

Ex.1. A body is projected with a velocity of 98 metres per sec.
in a direction making an angle tan’'3 with the horizon; show that it
rises to a vertical height of 441 metres and that its time of flight is

Scanned with CamScanner

Scanned by CamScanner



- about 19 secs. Find also horizontal range through the point of
projection (g=938 metres/sec?)

Hereu=98; a = tan-! 3 i.e. ana = 3.

o SHLE = =ar . oS ™ eom V1 + tan“a V10
sin 1
_ u? sin’ a 98 x 98 x 9
Greatest height reached = —_—Zg 10 x 2 x 9.8
= 441 mclres.

Time of {light =

2u sin @

=2X98XJ=6\/1—0

= 6 x 3.162

V10 x 9.8

18.972 = 19 secs. nearly

by | .
2u- SInQ cosa

Horizontal range =

_2x98x98
- 9.8

*~Vio T vYio -

g

3 1

588 metres .

Ex.2. If the greatest lieight attained by the particle is a quarrter
of its range on the horizontal plane through the point of projection,

find the angle of projectior

(B.Sc. 67 Madras Uty.)

Let u be the initial velocity and a the angle of projection.

7P e
Then, the greatest height = ——t &
- 2g
. 2u? si
and horizontal range = 3 0. CORG
g
— u® sin? a 1 Pl i
It is given that — e 2 ZU” sina cosa
2g 4 g
2 ) :
ip S8 u? sina cosa
2g 2g
le. sina = cosa or ina =1 - o = 45°

=
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Ex. 3. A stone is thrown with a velocity of 39.2 m/sec. at 3 ° to
the horizontal. Find at what times it will be at a height of 14.7m
(g = 9.8m/sec?)

Initial vertical velocity = 39.2 x sin 30° = 19.6 m/sec..

This is subject to an acceleration -g.

Let the particle be at a height 14.7 m after time t sec.

Applying the formula " s = ut + %atz2 " we have

14.7 = 19.61 — —gi® = 1961 — 4.9

i
2
i.c. 3=41-1* or -41+3=0

ie. (1-3) (1-1)=0;1=1 or 1=3.

Hence at the end of 1 scc. and again at the end of 3 secs. it will
be at a height of 14.7m

Ex.4. A bomb was released from an aeroplane when it was at a

height of 1960 m. above a point A on the ground and was moving
horizontally with a speed of 100m per sec. Find the distance from A

of the point where the bomb strikes the ground. (g = 9.8 mfsec?)

Let us consider the motion of the bomb in the horizontal and
the vertical directions scparately. The dynamical details of each

motion may be presented as follows:

Horizontal Motion Vertical Motion
Initial velocity (upwards +ve)
= 100 m/scc. Initial velocity =0 g

Acceleration = -9.8m/scc
( Distance = -1960m

Acceleration =0 ( "o it is downwards)

Let t be the time taken by the bomb to strike the point on the
ground.

i i B
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§ 6.7. To determine when the horizontal range of a
projectile is maximum, given the magnjtude u of
the velocity of projection.

If u is the initial velocity and o is the angl
rangc R on the horizontal plane through the poi

e of projcction, the

given by
R = 2u? sin a cos o _ u? sin 2 o o (1)
g g

Now, g being a constant, for a given value of u, the value of R
is greatest when sin 2 a is greatest.

i.e. whensin 2 a = 1.

This happens when 2 o = 90%i.e. & = 459, Hence for a given
velocity of projection, the horizontal range is a maximum when the

particle is projected at an angle of 459 to the horizontal. i.e. the
direction of projection for maximum horizontal range bisects the

angle between the horizontal and the vertical. Also when

u
= 450, 1 ’ R = = ,
o4 (1) 5

-

i.e. The maximum horizontal range is —
R w
G6.8. To show that, for a given ilxitial velocity of

projection there are, in general two possible
directions of projections so as to obtain a given

horizontal range.

Let u be the velocity of projection of a particle, and «a the
necessary angle of projection so as to get a given horizontal range

equal to k.

k u’sin2a X gk
-_—m, .-l Sln 2 = sea
Then q @ =3 (1)
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and g is a constant, the R.H.S. of (1) i

ince u and k arc given ;
. u>. we can determine an acute

a known positive quantity. If gk <

S

- angle 6 whose sine is exactly equal 10 3

Then (1) becomes sin 2 & =sin © ws [2)
0 3
2a =06 ora=-7 o {7
Since sin ( 180° - 8) = sin B, (2) can also be wrilten as
sin 2o = sin (180° - 8); .. 2a = 180 - 6
0 ;
ic. a =900 - e (1)

From (3) and (4) we find that there are Iwo values of acand so
two directions of projection, cach giving the same rdnge k. Lect
a, and a, be these two values of «.

0 0 [
Then o; = 3 and o, = 909 - S5 g ¥ , = 90"

As B< 90° o < 45° andso «, > 43"

: o 0 e
NO\V 45 - Cf.I = 45 - 5
) - R -
and o, — 45° = 907 - - = 45% = J3° - =
e, 457 =y = Gy - 43 (5

But 459 is the angle ol projection to get maximum horizontal
range  with the  same  initial
velocity. So (8) shows that the
two directions o and o are
equally inclined to the dircction
ol maximum range. This is shown

in {ig.73.
“ In fig.73, OT, and OT, ar¢
the directions o8 and L)
k.

necessary o get a given range
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OT is the direction giving maximum horizontal range.
LT, OT = £ XOT - £ XOT;= 45° - o
£ T,0T = £ XOT, - £XOT = ay - 45°
and T, 0T = £T,0T
In other words. OT biscets the angle between OTy and OTo.

[tu-=gkitrom (1), sin 2a = 1.

Then 2 = 90" or w = 43¢, Only one value of «is
possible and this corresponds to the case of maximum rangce.

II'u? < gk, the RAHLS. of (1) is greater than T and so we cannol
act a real value tor e, There is no angle of projection to get o

range  greater than which is rcally the maximum rangc

possible.
Note: To gct a given horizontal range K, we lind  that
u” = gk. So the minimum value ol u = VgK.

Ex.8. If  und W' be the greatest heights in the nvo paths of a
rojectile with a goven velocity Jor a given rangeR, prove that

)
ra\ R =4 V(hh)

(B.Sc. S1.73.80 Madras Uty B.Sce. 83 Madurai Uty.)

Let o0 and o be the two angles ol projection with o given
veloeity u to geta given range R

Then we know thit ¢+« =907 ic. a = 90" = «w ... (1)

ey} .
2U- s oL COS oL ,
Also R = 0 vos (2)
] | u“l in-\ (‘Lr
- - i — : —S 2
h = waim_S . (3) and h = . (4)
24 ' 2g
] = oy ;
i 'I.II:'\III' k. H_.lﬂ.-.-__"j:
9.- hh E—3 o = — - -‘_-.
Jp-

-
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ll2 Sin?' (04 sin (900"' (L) USing (‘1)

2 .+ 9 « 9 ]
- u-sin“ o .sin” o
Hence Vhh' = 2 = 28

u? sin a cos o
=
28
ie. R = 4Vhb' /}’ |
Ex.9. A shell bursts on contact with the ground and pieces
from it fly in all directions with all velocities uplo 30 metres per
second. Show that a man 30m away is in danger for Ssecs. nearly.
30m, and the given range R = 30m.

= —34 using (2)

Here the given velocity u =
9 .
: 5 2
Since R = b a,
g
gR  9.81 x 30 _ 327

SI. S0 =5l ™ 30, 30

we have

From the tables, 2a = 199 5" or 1607 55'
ie. o =9932 15" or 80727V

These are the two angles of projection to get the given range.
Let t, and t, be the two times of flight for the two particular picces
which fly in the dircctions 9°321" and 80° 27 L' respectively.
These two pieces will strike the man and so he is in danger for the

‘interval t, - t; secs.

2usin9932Vs' 2 x 30sin9Y321A°
g 9.81

Now 1, =

L o 2usin 80027V," | 2 x 30x sin80027Va" _ (35
2 g P01

Period of danger=1, {; = 6.032 - 1.014
= 5.018 = 5 secs. (nearly)

Ex.10. The range of a rifle bullet is 1000m. when o is the
ang!e of projection. Show that if the bullet is fired with the same
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elevation from a car travelling 36km/h towards the target, the range
1000vtan a
1 i (g = 9.8m/sec?)

will be increased by

Let u m/sec be the velocity of projection. The horizontal range

. (1)

2u? sin o
- €S _ 1000 (given)

Also R = é (ucosa). (usina)

R =

= —z-(horizonlal velocity ) x (initial vertical velocity ) ... (2)

g
When the bullet is fired from a moving car, the horizontal

velocity is increascd and the increase

36 x 1000
= 36 km/h = 20 < 60 - 10 m/sec.

Ncw horizontal velocity = u cos o + 10
As therc is no change in the vertical motion, new initial

vertical velocity = u sin o
Hence in the sccond case, horizontal rangce

Z{(u cos o + 10) (u sin o) using the form given in (2).

'

R' =
g
) Cp T SR
R'—R=f-(uu’).~;f.c-+-]0)(usinc:|t)-"u Sl o £O5: 5
g g
20 u sin @
= ek
2 3)
P g x 1000 500 g
From (1), u 2 sin a cos o sin acosa (4)
Putting this value of u in (3),
, 20 sin \/ 500 g 20 x 10 x Vian'ax 5
R -R=s=—m— X . - Vo \
g sin a cos a g

oViana V5  200Vitan o V5 x V10
;! VO.8 = Vo8
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shol is projected at the same elevation, the velocity of projection

3 V2

tb d ,

3 MOSUEEACTEISE (V2 - gh)” (B.Sc. 73, Madras Uty.)
- . -
- § 6.9. To find the velocity of the projectile in

magnitude and direction at the end of time t:

Let a particle be projected from O with a_velocity ‘u’ at an
angle o to the horizon. After time ‘t’, let it be at Pjand *v’ be its
velocity inclined at an angle O to the horizontal.. We know that the
horizontal component of the velocity is conslant and cqual 10
u cos o, throughout the motion. The horizontal componcnt o‘f the

velocityatP=vcos 6.

v cos B= u cos'a —y

pneck ¢lx

Fig. 74
The vertical component of the initial velocity of projection =
u sin o and this is subject to a retardation g,

The vertical component of the velogity at P = vsin 6.

—

"7, v sin 6= u sin a- gt ssis (2)

—_—

Squaring (1) and (2) and adding, we have

2v? = u?cos? o + (usin o - gt)? = u? - 2usinagt + g2t

. ove Vu? - 2usinagt + g*t? s (3)
Dividing (2) by (1), tan 6 = = :12(:;‘@ ... (4)
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Equations (3) and (4) give ¢ v’ and 6 i.e. the velocity at P in
magnitude and direction.

Note: (i) If t < L SN X v hich is the time taken to reach the

highest point A, u sin o - gt is +ve. So tan 8 is +ve and 6 is also

. u sin &
+ve. After the time taken to reach A, t > ———. In that

case Ois -ve. If 1 = w, tan 6= 0 and so 68 = O.Hence at

the highest point A, the direction of the velocity is horizontal.

(ii) Putting 1 = 3’-——?—‘*— which is the time of flight, in (3)

and (4) we have

. r) .« 7
; - ; 2u sin o s 4usin“ o
v = U= = 20 SIMag, —————= g p=, 5

24 o=

L=~

2 i) « D 2 .
= V u* - 4u” sin-a + 4u sin“a = u

) 2usina
usina — g. ———
24
tin 6 = = = - lUn Ao . i.c. = -
u cos o i.e. © ok

Hence the particle strikes the horizontal plane downwards at B
with the same velocity as the initial velocity and at the same angle as
that with which it was projccted.

(iii) Equation (3) can be deduced from the Principle of Encrgyv.
Change in kinctic energy of the particle when it moves from O 1

1 2 1 LA b ' :
P=—-mv — —-mu-, ‘m’ being its mass.

Z— Z

Work done by the external force (gravity) against the particle
during its motion from O to P = mg.y where 'y’ is the vertical height
of P above 0.

But y =-vertical distance travelled in time t

- 1 5 g
= usin . 1 - ':'-, g (consndcnngvc'rlica] motion)
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7. If the focus of a trajectory lies as much below the horizonta
plane as the vertex is above, show that the angle of projection is

3
l

' by sin d -

(Hint: In a parabola, the tangent at any point P bisccts the angle
between SP and the perpendicular from P to the directrix.)

8. If S is the focus and P any point of the path of a projccitile,
show that the components of the wvclocity at P along and
perpendicular to SP are rcspectively ecqual to its vertical and
horizontal components. (Andhra Uty.)

9. A particle is to pass through a given point whose horizontal
and vertical distances from the point of projection are x and v and (o
travel in a direction making an angle 6 with the horizontal. Find
the velocity and the direction of projection.

§ G6.11. Given the magnitude of the velocity of
projection, to show that there are two directions
of projection for the particle so as to reach a
given point:
Let V be the velocity and a the angle of projection. The
cquation 1o the path of the particle is

3
-

y =X lan a - ;"k - (1)
2 V= ¢os*° T

[t the given point be (i, b).

This will lic on (1), if

b=atana - ga” ga 8

N g o 8 an o - ;;—2- (1+tn°a)

: 2 {51
1.€. ga“an o - 2a V2 un o + (g:12+2V1b)=0 ws (2)

Sin ‘ : )
hence h-,ici:,b’ ! are given, equation (2) is a quadratic in tan « and
POSSibIc‘dirc ? ro‘ols, Th.c corresponding values of o are the (W0
clions of projection 1o hit the point (a.b).

Ex-13. 1 o . )
distanco & frP IS a pcm-:r at a horizontal distance a and a'uemcal
om the point of projection. It is required to projc’c'f a
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.;.;amc!e to pass through P, with an initial velocity V. Show that this

;5? impossible } 7 VA g (b+Va*+b) and that, if
V-> g (b+ az+ b>) there are

g two possible directions of
projection.

(B.Sc. 61 Madras Uty. B.Sc. 71 Calicut Uty.)
Prove also thau, o and

: _ B are the inclinations of the rwo
directions, b tan (x+B)+ g =

0.

Rt?te.rnng 0§ 6.11 if « is the angle of projection the
quadratic in tan « s

“2 ; 2 - 7 ) b,
gaTln” o - 20 Viun a+ ((ga+ 2V-b) = 0 (1)

The two roows of (1) will be real, only when the discriminant is

positive or zero.
Discriminant
L 9 )
= (2aV=)" - dga” (ga? +2V2p }me Bt VA= 2V2gh - g a?)
.. This should be positive.

e, V- 2Vv2ah - g24? s ()

2 2

i, (VP—gh)? —g2b2-g2a? 50 or (Vi-gb)® > g>(a?+b2)
.. V"—gh > gVa-+b” aorV- > g(b+Va-+b-)
It this condition is satisfied, the quadratic (1), will give two
real values of tan  « and so. there are two angles of projection.
AT R . s . .
II' V- < ¢ (b + Va- + b° ), the discriminant of the above
quadratic will be negative and so we cannot get real values for
& the angle of projection. In that case, it will be impossible to hit
the particular point, with the given velocity.
Il V2= g(b + Va© + b?), the two roots are equal giving us
only one direction of projection.

If o and (3 arc the two angles of projection to hit the point,
an o and wn B will be the roots of (1).

2V 2V- : i ga® + 2V%b
. amM=—m— = lanalanp = 2
tan & + Lan | e - ga
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EXERCISES

1. At what angle should a ball be thrown with a velocity of
14 V6 m./sec to reach the top of a cliff 40m. high and 40 V3 away

{rom the point of projection. (g = 9.8m./sec?)

2. The angular elevation of an enemy’s position on a hill h'
high is B . Show that, in order to shell it, the velocity of projection

must not be less than ’\/gh (1 + cosec f3) (B.Sc. 57 Madras Uty.)

3. A particle is 1o the projected from a point P so as lo pass
through anotlier point Q. Show that the product of the two times of

flight from P 10 Q with a given velocity of projection is 2 p?
(B.Sc. 82 Madras Uty.)

4. Show that the least speed with which a particle can be

projected from. a point on the ground so that it may pass over a
vertical wall of height 50m. at a distance of 50 V3 m. from the point

of projection, is that due to a fall of 75m. and find the dircction of
projection.

5. A particle is projected from a poin.l A s0 as 1o pass through a
sccond point B which is at a depth of 50m. below A and at a
horizontal distance of 100m. from A. Show that the two possible
directions of projection are at right angles if the velocity of
projection is that due to a fall from a height of 100m.

(B.Sc. 72 Calicut Uty.)

§ 6.12. Range on an inclined plane:
From a point on a plane, which is inclined at an angle B to
- the horizon, a particle is projected
with a velocity u at an angle o
with the horizontal, in a plane
passing through the normal 10 the
inclined plane and the line of
greatest slope. To find the range
on the inclined plane.

Y

ettt
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- acceleration g cap be

Let P be the point of projection and the particle strike (.
inclined plane at Q. Then PQ is the range on the inclined plane. L
PQ = r. Taking P as the origin and the horizontal and the verticy
through P as the axes of x and v respectively the equation to the path

1S,

g x?

v )
2 u? cos? a

(1)

.Yy =Xtana -

Draw QN 1 to the horizontal planc through P. The
co-ordinates of Q arc (r cos B, rsin §). Substituting these in (1),

2 cos 3

e ]
COS™ x

rsinf} = rcosf3 . tanax — fr
2u

tJ

. . . ) 2’ . .
Multiplying by 2u® cos?a and canceling r throughout, we
have

2 2 . ) .
2u” cos~a sinf3 = 2u? cosP sina coso — er cos?f3

2 .
2u” cosfd sina cosat ~ 2u? cos2a sinf3
2
gcos- f3

2u” cosat (sina cosP = cose sinf3)

0 Cos” 3

3 i
e pow 2u- cosat sin (o — )

geos? 3

e rp:]hft-l.‘l\-)\t can study separately the motion of the partick
:Th(,!b' 1:' llm med plane and the motion Perpendicular (o the plane
) I & Ten .y . M 2
i ct;lg:;a \El)nul}r ocan be resolved  intg wo  component

) > pemendicular (o e inclined planc. TH

e & {lL_solvcd N (wo components (i) g cos i

g the L ”;(-’d Planc in the downward direction 4
- . . > Inc lﬂ(:d hl . ’ " A . i.‘
shown in the ligure, Leq T be lhl:‘ oy “J\\r‘ard:, P. This resolution N
¢ ime which the particle takes W08

from P 1o Q. Al .
. ler time T g i
e 56, during limcmjlf Tl‘ th_I’ill‘llclu IS again on the inclined Pl
—rh v The Jisiavms i ' ¥
inclined plane js = 0 © distance travelled perpendicular © t
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0 = usin (a- §).T -%gcosﬁ.Tz

ie. T - 2usin(a-g)
gcos f

This is the time of flight on the inclined plane. During this
time, the horizontal velocily remains constant and = u cosa. So
horizontal distance described ip time T = PN = ucosaT. But
PN = PQcosf ... PQ. cosf} = ucosa T

ic. PQ = ucos a . _ ucosa  2usin(a - f)
cos 3 cos 3 - g cosP
_ 2u? sin (a - B) cos a
b cos® B

§ 6.13. To find the greatest distance of the
Projectile from the inclined plane and show that
is attained in half the total time of flight:

Let us consider the motion perpendicular to the inclined plane.
As cxplained in § 6.12., the initial velocity in this direction is
usin (a - B) and this is subject 10 an acceleration g cos B in the
same direction but acting downwards. Let y be the distance travelled

by the particle in this direction in time . Then /? \ s 2 x T
e W -
. (D)

1
y = usin(o—-B) . 1 - Sgcosp.t°

Differentiating with respect to t,
%% = usin (o —fB) — gcosp .t (2
d? ;
and T,,X = - g cosﬁ = negatve.
ln-
d
So y is maximum when _djti = 0
i.ﬁ. when u sin (a - [3) - g COS‘3 .t =0

usin (o = f) s (3)
gcosf3

e, 1 =
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Substituting (3) in (1), maximum value ofy
. - , J 2 s 2 o - ﬁ
-usin(a-f:’;).usm(a ) _1 ﬁ.usm ( )

— gcos
g cosf 2 F g2 cos*f
ulsin? (a—f) ulsin?(a-Pp) _ w'sin’(x—P) @
- g cosP 2g cosP 2g cosf
(4) is the greatest distance of the projectile from the inclined plane.
usin (a =) _/

Also, from (3), time to this greatest distance " = g cosp and

———-

this is clearly half of the time of flight.

Aliter: When the particle is at the greatesl distance from the
inclined plane, it will have all its velocity ‘only parallel to the
inclined plane. Hence the component velocity perpendicular to the
inclined plane is zero. So, if s is the greatest distance, we have

0 = [usin(a—-p)]* — 2gcosB.s

) u? sin® (o - B)
ie. s =
2g cosf

Also if t is the corresponding time,
u sin (o = B)
g cosp
§ 6.14. To determine when the range on the
inclined plane is maximum, given the magnitude
u of the velocity of projection:

From § 6.12 the range R on the inclined plane is given by
2u? cos a sin (a — B) u? .
= sin (2a - B) - si
g cosB .~ gcos?B [sin ( B) — sinf] ... (1)

0 = usin(a—-fB) — gcosft or t =

R =

Now u and B are given. The quantity outside the bracket,
2
u

is constant. So R is maximum, when
gc052 5 o the value of the

expression inside the bracket is a maximum.

i.e. when sin (2a - f) is greatest.

ie. when 2a-f8 = -%:
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QA = —3-: + g— for maximum range.

When o takes this value,
a-f=(2a-f) - a=90°-«a

Referring to fig. 76,
a-f = £LTPN - £QPN = £TPQ and

90° - a = LYPT

Hence from (2), £LTPQ = LYPT.
i.e. PT, the direction of projection for maximum range bisects
the angle between the vertical and the inclined plane.

1.C.

- (2)

From (1), the value of maximum range
2

UZ . v
= ZeoB (1 - sinf}) = g (1 + sinp)

6.15. To show that, for a given initial velocity of
projection, there are, in general, two possible
directions of projection so as to obtain a given
range on an inclined plane: | _

Let u be the velocity of projection of a particle and o the
nceessary angle of projection so as to gel a given range K on an
inclined plane of inclination f3 to the horizontal.
2u” sin (o — ) cose  u* (sin (2a - B) — sinf)

g cos”f - g cos? f - (1)

k cos® B
R + sin f3 - (2

From (1), sin (2a - f8) = =
u

Then kK =

Since k,u, 3 are given, the R.H.S. of (2) is a known positive
quantity. So we can delermine an acute angle 6 whose sine is

7 J
E——Ek =05 + sin B

xactly 1 5

¢xactly o u2

f\Thcn (2) becomes, sin (2a - ) = sin 6 w (3)
i 200-f3 = O or a-%+'g . (4)
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L. Since  sin (‘180“ - (rﬂ f = 180°-0 A
R i = :
. snGa-h) - = o,
= ie. o =90° — Q il o (5)
W ;
+ B ,fcl o value of « ing ¢
From (4) and (5) 2 ‘](. same range k. "
two directions of PTOJQQ flnd that 111 V t ;
lio g =
Let @, and Qy n, Cach giv if e 0 B
' QSQl O e S e
W . t) i »
Thcn CII = 3 " E OVd] (')L - 2
> . / 0 B
“h' - -_— = e ] G
S Now (45° 4+ ) & 2
27~ 7 0
(_x_ A S o - = 450 -— =
1 = ad A
and o, — (45° 4+ ﬁ) o 45 | A- 2 2
2 S0 0 Jj g 3
B T3t 2 L, D) (6
(45° + 2) i = ,jf" “ )
_ . % oy — ¢ non for maximum ity
But 45° 4+ B i 4’-‘ 11](’ two directions - 19
on the inclined planc, the Angle of i iy ndX1IMum range Hihg
i i
&, arc cqually incling (6) shows t' < :
d ot _““" '(',1 TR § 6.15 the directi,,
Important Notg, ] ¢ direct! 1 e horizontal, We ¢ Can Of
- . v ’ k
projection is cxprcasc_q Y Brlictes & C plane. 1n P“‘hhm\ N
take the elevation re, S an Clevatic ik -f"f _cangles is given. 0
should be carcfully Inlq e | i m-ii‘t ;
v o the ] (o smooth lnclumd
§ 6.16 Motion Oy " Uwhich '
lane:- £
P € surfac L a4 DParticle be I““Kkl i
- 4 acily won the surface o, "
\;‘: ot ulle(‘d plane ABCD
. \\,lil ,||‘, o dnunon malmud .
qll" 0 .I of the pl.im, Th:
| i i ion due to gravity cap -
Lol _]Ef“ into two compnnenL
. - -|,:l
b
ac )t
!
rer

PRogecTi”

A also be &vrmqn
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- U = V u
sin (a - B) cosa _ cosP

u sin (a - B) and V = u cos &

U neoo >
cos fB cos P
UV  2usin(a—B) ucosa  2u?sin (a-—f)cosx

o 2—__ = b4 =

g gcosf - cos B g cos? B
= range on the inclined plane. ;

?@J (o™

JBS\'O' Ex. 16. Show that, for a given velocity of projection the ;

" maximum range down an inclined plane of inclination o bears 10
1 + sina

'—\7 the maximum range up the inclined plane the ratio 1 it &

(B.Sc. 69 Madurai Uty. B.Sc. 92 Madras Uty.)

Let u be the given
velocity of projecti and
0 the inclination 3; the
direction of projection with the
plane. The velocity u can be
resolved into two componenis
ucos 8 -along the upward

Fig. 79 inclined plane and
u sin 6 perpendicular to the
inclined plane. The

acceleration g can be resolved into two components, gsin aalong
{he downward inclined plane and gcoS o perpendicular 10 the

inclined plane and downwards.
erpendicular to the inclined plane. Let T

Consider the maotion p
dicular to the incl ined

be the time of flight. Distance travelled perpen

i 1 1 = 0. %

plane in time Tis ) & i a(t
O-usinB.T—-Z-gcosa.ngc_,LA -

2u sin 6

ie. .
g cos
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During this lime, the distance travelled along the plane

= Ucos® . T - %gsina.Tz

2usin 6 1 . 4u?sin® 6
- —gsina .
g cos a 2

]

ucos 0 .

7 . » .
2u°sin B cos®  2u?sina sinZ 6

= -—

g cos a g cos® a
2u’ sin 6 . :
= 5— (cos a cos® - sin asin 0),
g cos- o
2u’ sin 6 u? ;
= ———— cos(B+a) = ——— . 2cos (B + at)sin B
£ Cos~ o gcos~ o -
»-
= ———>_ [sin(280+ a) - sina]
g Cos” o

This is the range R up the inclined plane.
R, is maximum, when sin (20 +a) = 1

Maximum range up the planc

b 2

u- ) u-

= ——— (l1=-sina) = '
g cos® a ( ) g (1 + sin a)

When the particle is projected down the plane from B at the
same angle to the plane, the time of flight has the same value
2u sin 6
g cos a
inclined planc is  ucos@downwards and the component
accclcration gsin a is also downwards.

But the component of the initial velocity along the

Hence range down the plane
R, = distance travelled along the plane in time T

= ut:ose.'l‘-i-%gsinot.T2

2u” sin 6
g cos® a

(cos acos B + sin asin B)
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2 . 2
- M‘{ﬁ cos (8 - CL) = "'u_.)" [Sin (28 - CI) - Sin U.]
g cos” a g cos™ a

R, is maximum, when sin (26 - a) = 1.
So maximum range down the plane
2 2
u- U=

i, e 1] 1 ez
g cos? o (o slnee) g (1 -sin a)

Max. range down the plane
Max. range up the plane
2

_ u g2(1 + sina) 1+sina

: S g(l-sina) ’ u” l1-sma

-,

4 ‘9\3 Note: The range R, down the plance can be got from the range
| R, up the plane, by changing o into - o

Ex.17. A particle is projected at an angle o with a velocity y

and it strikes up an inclined plane of inclination B at right angles to
the plane. Prove that (i)cot} = 2tan (a - B)

(B.Sc. 84, 87 Madras Uty; B.Sc. 79,80; Madurai Uty and B.Sc. 71
Calicut Uty;

(11) colf} = tana - 2tanf (B.Sc. 77 Madras Uty; B.Sc.
71 Calicut Uty)
If the plane is struck horizontally, show that tan o, = 2t

an 3

Refer 1o fig. 76 § 6.12 page 172. The initial velocity and
acccleration are split into components along the plane and
perpendicular to the plane as explained. We have shown that the

2u i —f
time of flightis T = 2U G > B) (1)
g COS |3 “ow

Since the particle strikes the inclined plane normally, its
velocity parallel to the inclined planc af the end of time Tis=0.

ic. 0 = ucos(a-fB) -~ gsinB.T

_ bhcos (a-f)
or T Ssin b . @

Equating (1) and ( 2), we have
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2usin (- B) _ ucos(a-p)
g cos B gsin

ie. cotf = 2tan (a- ) o (D)
2 (tan o« — tan B)
1 + tan o tan B
Cross-multiplying,

cotf + tana = 2tana - 2tan B or

cotfp = tano — 2tanf wo A1)

If the plane is struck horizontally, the vertical velocity of the
projectile at the end of time T is = 0. Initial vertical velocity =
usina , and acceleration in this direction = g downwards. '

je. cotff =

Vertical velocity intime T = usimoa - gT
usinoe — g = 0 or T = usina/g s AD)
Equating (1) and (3), we havc
2usin (a—-f3)  usina
gcos B g

or 2sin (ot — ) = sina cosp
i.c. 2(sinacos 3 — cos sinf}) = sin o cos f.
tan o = 2tan f3.

i.c. sinacosp = 2cos asinfi or

EXERCISES
piven velocity of projection on a

1. The greatest range with a ,
The greate 5 Find the greatest ranges up and

horizontal planc is 3000 metres. |
down a plane inclincd at 30° to the horizon. f 30° to the

2.(a) An inclined plane is inclined at ad e e t(l)le maximum
horizon. Show that, for a given velocily of projection,

. wn the plane:
finge - aximum range do .
8% tip the plans Is 1/3 01 the 1 clined plane is three umes

If the greatest range down an 1me= ie inclined at 30°
ity gl‘g:l)esl - the plane, show that the plane 1S m:dl'lzmq Uty)
B hehoripon 4 (B.Se. 76, 83 Macrt 60°

orizon. inclined at
. ne inclin
3. A particle is projected fron (i) 30° above the
0 the horizontal. If the direction t

\ the top of a pla
f prujcction 1S
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4% B

COLLISION OF ELASTIC BODIES

. 8.1. Introduction:

A solid body has a definite shape. When a force is applied at
any point of it tending to change"its shape, in general, all solids
which we meef with in nature yields slightly and get more or less
deformed near the point. Immediately, internal forces come into
play tending to restore the body to its original form anfi .as soon as
" _the disturbing force is removed, the body regains its orlgmal sha]:!e.
-/ The internal force which acts, when a body tends to recover Its
“—original shape after a deformation or compression is called the force

of restitution. Also,{the property which causes a solid body 1o
recover its shape is called elastic_ig'.” If a body does not tend to
recover its shape, it will cause no force of restitution and such a
body is said to be inelastic.

3
|
.
e
>

btk 811106 MRS > H i o 1741

Suppose a ball is dropped from any height h upon a hard floor.
It strikes the floor with a velocity u = V2gh and makes an impacl.
Soon it rebounds and moves vertically upwards with a velocity v.

' . p : \Y .
The height h; to which it rebounds is given by h; = :E 1.€.

v = V2gh, . Generally we (ind that h, <h. So v<u. Assoon as the

ball strikes the floor, the impulsive action of the floor rapidly stops
the downward velocity of the ball and at the same time causes a
temporary compression near the point of contact. Due 1o the elastic
property of the solid, the ball tends to regain its original form
quickly. It presses the floor and receives an equal and opposite
impulsive reaction from it and with a new upward velocity, it
rebounds. ~

Now, bodies made of various materials are elastic in different
degrees. If balls of different materials (like iron, glass, lead etc) are
dropped from the same height upon a floor or if the same ball is
dropped upon floors of different constitution (like wooden floor,
marble floor etc), it will be found that the heights to which they
rebound after striking the floor will be different. In all these cases,
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the velocity of the ball on reaching the floor is the same, as it is
dropped from the same height. But the velocity of the ball after
impact is not the same in each case, as the height to which it
rebounds is different. Thus due to the elastic property of solid
bodies, a change in velocity takes place when they strike each other.

If v = u, the velocity with which the ball leaves the floor is the
same as that with which it strikes it. In this case, the ball is said 1o be
perfectly elastic. If v = 0, the ball does not rebound at all. It is said to
be inelastic. More generally, when a body completely regains its
shapc after a collision, it is said 1o be perfectly elastic. I[ it does not
come 1o its original shape, it is said to be perfectly inelastic. f:l"hesc

two cases of bodies are only ideal. i

o

In this chapter, we shall study some simple cases of the impact
of clastic bodies. We shall consider the cases of particles in collision
with parlicles, or planes and of spheres in collision with planes or
spheres. In all cases, we consider the impinging bodies 1o be
smooth, so that the only mutual action they can have on each other
will be along the common normal at the point where they touch.

§ 8.2. Definitions:

Two bodies are said to impinge directly when the direction of
motion of each beforc impact is along the common normal at the

point where they touch./

/f—\
| They are said to impinge obliquely, if the direction of motion

of cither body or both is not along the common normal at the point
where they louch/

The common normal at the point of contact is called the line of
impact. Thus, in the case of two spheres, the line of impact is the
line joining their centres.

§ 8.3. Fundamental Laws of Impact:

The following three general principles hold good when two
smooth moving bodies make an impact.
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1. Newton’s Experimental Law:
Newton studied the rebound of clastic bodies expc::nmema“y
and the result of his experiments is embodied in the following law:

When two bodies impinge directly, their relative velociQ- after
impact bears a constant ratio 10 their relative 've!c'lcz't}_' before impact
and is in the opposite direction. If two bodies impinge obliquely,
their relative velocity resolved along their common normcf! after
impact bears a constant ratio to their relative vc!oc.z'ry before impac!,
resolved in the same direction, and is of opposite st grD

The constant ratio depends on the material of which the bodics
arc made and is independent of their masses. It is generally denoted
by ¢, and is called the coefficient (or modulus) of elasticity (or
restitution or resilience).

This law can be put symbolically as follows: If u,, u, arc the
components of the veclocitics of two impinging bodies along their
common normal before impact and v, v, their component velocitics
along the same line after impact, all components being measured in
the same direction nrcd«*is the coclflicient of restitution, then

A\ A=

== - -

U.1 - Ul

rThc quantity ¢, which is a positive number, is never greater
than unity. It lies between 0 and 1. Its value differs widgly for
diflerent bodies; for two glass balls it is about 0.9; for ivory 0.8;
while for lead it is 0.2. For two balls, one of lead and the other of
iron, its value is about 0.13. Thus, when one or both the bodies are
altered, e becomes dillerent but so long as both the bodies remain
the same, e is constant. Bodies for which € = 0 are said to be
inelastic while for perfectly elastic bodies, e = 1. Probably, there ar¢
no bodies in nature coming strictly under either of these headings:

I*.lcwlon's law is purely empirical and is true only approximately,
like many experimental laws.
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2. Motion of two smooth bodies perpendicular to the
line of Impact:

When two smooth bodies impinge, the only force between -
them at the time of impact is the mutual reaction which acts along
the common normal. There is no force acting along the common
tangent and hence there is no change of velocity in that direction.
Hence e velocity of either body resolved in a irection
perpendicular to the line of impact is not altered by impaczj

3. Principle of Conservation of Momentum:

We can apply the law gf~conservation of momentum in the
case of two impinging bodics({The algebraic sum of the momenta of
the impinging bodies after m&nﬁ.‘t is equal to the algebraic sum of

their momenta before impact, all momenta being measured along
the common normal.

The above three principles are sufficient to study the changes
in the motion of two impinging elastic bodies.

0 We shall now proceed to discuss particular cases)

. § 8.4.Impact of a smooth sphere on a fixed smooth
plane:
A smooth sphere, or particle whose mass is m and whose
coefficient of restitution is ¢, impinges obliquely on a smooth fixed
9 plane; to find its velocity and direction of motion after impact.
Lct AB be the plane and P the point at which the sphere strikes
y it. The common normal at P
1 i the wvertical line at P
o\ eucog< € passing through the centre of
the sphere. Let it be PC. This
<le is the line of impact. Let the
R velocity of the sphere before
c w sim« impact be u at an angle o
with CP and v its velocity
\_ after impact at an angle
A P » 6 with CN as shown in the
Fig. 86 (igure.
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Since the plane and the sphere are smooth, the only force
acting during impact is the impulsive reaction and this is along the
common normal. There is no force parallel to the plane during

* jmpact. Hence the velocity of the sphere, resolved in a direction

parallel to the plane is unaltered by the impact.
Hence vsin® = usina . (1)

By Newton’s experimental law, the relative velocity of the
sphere along the common normal after impact is (-e) time its relative
velocity along the common normal before impact. Hence

vcos® - 0 = —e(~ucosa — 0)

i.c. vcosO = eucosa T

Squaring (1) and (2), and adding, we have

v: = u?(sinfa + e?cos?a) ie. Vv = u'\/sinza + e2cos’a ... (3)
Dividing (2) by (1), we have cot 6 = ecota . (4

Hence (3) and (4) give the velocity and direction of motion
afler impact.

Corollary 1: If e = 1, we find that from (3) v =uand from
(4) 6 = o Henceifa perfectly elastic sphere impinges on a fixed
smooth plane, its velocity is not altered by impact and the angle of
reflection is equal to the angle of incidence.

Cor. 2: If e = 0, then from (2), vcos@ = Oand from (3);
v = usinca. Hence cosB = Oie. 6 = 90°. Hence the inclastic
sphere slides along the plane with velocity u sin a.

Cor. 3: If the impact is dircct we have a = 0. Then 6 = O

and from (3) v = cu. Hence if an elastic sphere strikes a plane
normally with velocity w, it will rebound in the same direction with

velocity eu.

Cor 4: The impulse of the pressure on the plane is equal and
opposite 1o the impulse of the pressure on the sphere. The impulse 1
on the sphere is measured by the change in momentum of the

sphere along the common normal.

| = mvcos® - (- mucosa) = m(vcosO + ucos )
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= m(eucosa + ucosa) = mucos (1 +e)

Cor. 5 : Loss of kinetic energy due to the impact
1 1

1 1 s g B 1B 4 2 2
2 v .S 2 - (0]
s " - mu® - mu“ (sin“ a + €“ Cos )

. 1 _ 2
= -12—mu2 (1 - sin? o — e?cos? ) = s mu? (cos? a - e?cos? a)

1
2

If the sphere is perfectly elastic e = 1 and the loss of kinetic
energy is zero.

(1 -e?) mu?cos?a

WORKED EXAMPLES

Ex.1. A smooth circular table is surrounded by a smooth rim
whose interior surface is vertical. Show that a ball projected along
the table from a point A on the rim in a direction making an angle

o with the radius through A will return to the point of projection
(2)
e

after two impacts if tan o =

1 +e¢+e?
(B.Sc. 59,62 Madras Uty. B.Sc. 73, 87 Madurai Uty.)

Prove also that when the ball returns to the point of projection, its
velocity is to its original velocity as e

(3/2):1

Let the ball starting from A return
to it after two reflections at B and C. At
B, the point of the first impact, the
common normal is the radius OB and at
C, the point of the second impact, the
common normal is OC,

Let ZOBC = 8 and LOCA = y.
Then ZOCB = Band LOAC = Y.
Considering the impact at B, and applying equation (4) of

§ 8.4, we have cotf} = ecotai.e. tan B = A tan o (1)
c

Fig. 87
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Similarly, considering the impact at C, coty = ecot

l 1 -ew
i.e. lany-—-;lanﬁ=§tana (2)

Now,inAABC, LA + 4B + £4C = 2o+ 2B + 2y = 18(°
~a+P+y =90°o0ora = 90° - (B+y)
~tana = tan (90°- B+ y) = cot (B + v)

1 1 - tanPBtany
T tan(B+ v) tan B + tany
le. ana(tan B + tany) = 1 - tan B tan y

1

: 1 1 1
.e. tan o (— tana + S tana) = 1 - —tano . — tano
¢ g C e

c
uaing (1) and (2)
5
or tan?ol 4 —1—) -1 - AN«

e c2 c3
. > 1 1 1 1+e+e2
Le. an“a(=+=S+-%) = 1 or tan? o = 1
(¥ 5 =3) (S5
3
¢
ie. tan® o = ~ (3)
1+4+c¢+ ¢ W
c(¥2)
Ofr @Wno =
l+c¢c+ ¢2

‘Let u be the velocit
the ball after the first ig
second impact at C,

Y of projection from A,

v be the velocity of
NMpact at B and w be (h

€ velocity after the

Applying equation (3)of § 8.4, we have
2 o 02 fcin2

v U (sin‘o + @2 cos? a)and w2 o 2 (sinzﬁ + €2 cos® B)

_’ 4 cos? o) (sin2 B + e cos? B)

COs™a (an® @ + €2) | (og2 B (tan® B + e?)

_ Y% (tan? o + e?) (tan?

(1 + tan2

. 2 o
- W m y- (szu 4ol
L uz

B+ e?)
@) (1+wan2g)y
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1 :
u? (an® o+ €*) (S tan? o + ¢?)
c” :
- 7 using (1)
(1+un’a) (1+ e tan” &)
e

=
4 l
u? (lan®a+ e2) (un2a+ ¢')  u?(lan®a+ef) |
= . 2 .
(1 +tan® a) (¢ + tan” @) (1 + tan~ o) i
1
54 |
2 g2 A
! [1 + ¢+ c2 * el |
= 3 e substituting from (3)
c
1+ ——
I 1+ c¢+c?
u? (3 +c¢t + e+ ) _ el
T (1 +ce+et+c?)
w = u.c® or w:iuw = ™1

Ex.2. A particle falls from a height h upon a fixed horizontal
plane: if ¢ be the coefficient of restitution, show that the t.vho!.e
distance described before the particle has finished rebounding is

h( R "2). (B.Sc. 71 Madras Uty; B.Sc. 75, 81, 85 Madurai Uty.)
i ="

. L . 1€ 2h
Show also that the whole tune taken 1S 1-¢ 5

(B.Sc. 71 Calicut Uty.)

Let u the velocity of the particle on l'ir:.;l hitting the pl.ane.
Then u? = 2ch . Alter the [irstimpact, the paruc-lc rebounds with a
velocity cu and ascends a certain h(..’:lghl, retraces its path and rnake.‘:sl
a second impact with the planc'wnll vclocity eu. Afwf the sa.::i:o;
impact, it rebounds with a velocity ¢7u and ll.w proccess :s‘; repeated a
number of times. The velocities aller the third, fourth etc. impacts

are ey, ¢fu etc.

The height ascended after the first impact with velocity eu
2.8

" (velocity)? _ cu
2g 26,
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The height ascended after the second impact with
velocity e’u = e?u?/2g and so on.

Total distance travelled before the particle stops
rebounding

2.2 4,2 6 u2
e‘u e’'u e’ u
= h+2 ses 840 o0
(Zg ¥ 2g " 2g ¥ )
2.e%u?
- h 2 4 ¢
+ 2g (L+e“+e” + ... .u 10°°)
2?2
e- u- 1 62.2Q,h 1
= h + g = h
g 1-¢€* T h 1- e
2 22
=h1+(262)=h.!1+"2!
1-¢€ (1- e)

Considering the motion before the first impact, we have the
initial velocity = O, acceleration = g, final velocity = u and so if t is
the time taken, u = 0 + gt.

el = velocity

g g
Time interval between the first and second impacts is
- 2 x time taken for gravity to reduce the velocity eu to 0.
= 2.velocity /g=2eu/g. |
Similarly time interval between the second and third impacts
= 2 e?u/g and so on.

So total time laken

-+ 2 (= + + + o )
g g g g
11 YR 3 o )
g g
u 2e
__U_+28ll 1 - 21+ ]
g g 1-c¢ 1-¢
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{_.__-' _ &u (1+c) \/Zgh(1+e) (1+c) /2h
) g ‘1-e g 'l1-e 1-e€ 8
Ny Ex.3. A particle of elasticity ‘e’ is dropped from a vertical
X P ty :
J)t reight ‘a’ upon the highest point of a plane which is of length b and
® - & is inclined at an angle . to the horizon and descends to the bottom
& in three jumps. Show that
’ b =4dae(l+e) (1+€?) (1+e+ €°) sina

The downward vertical velocity at A before striking = v2ga
and let this be = u. This can be

resolved into two components as
ucosa perpendicular to the
inclined plane and u sin o parallel
to the plane. At the impact at A,
there is no force parallel to the
plane and there is only the
impulsive reaction normal to the
plane. So the component u sin a
is not affected by impact while the
1 component u cos o is reversed as

cu cos oo . Hence the particle describes a parabola and strikes the
plane at B with a velocity eu cos a perpendicular to it. After impact,
this is reversed as ¢?u cos a . The particle strikes the inclined plane
at C with a velocity e?u cos a normal to it, which is reversed as
¢3u cos a . Let 1y, ty, 3 be the times taken to describe the paths AB,

BC and CD respectively.

Consider the motion perpendicular to the inclined plane.
Distance travelled in that direction in the time t; = 0. Applying the

1
formula "s = ut + 3 f t2 " we have

1
0 = eucosa .l - Zgcosa . f; %

. 2 cu cos a 2eu
1 g cos o g
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2¢3u

Similarly, t, = and t; = "
Hence the total time taken from A to D
2cu

(1+e+e?)

In this period the particle has described a distance b down the
inclined plane, starting with an initial velocity u sin o and acted oy
by an acceleration g sin o .

: 1 .
“ b =usina(ly +i+1)+=gsina(ly + 1, + 13)?

2
. . 2cu 1 4eu’
ie. b =usina. =—((1+c+c?) + =gsina . -
. 2 g’

x (1 + e+ ¢?)?

2eu? sin 2u? sj
- - o3 (1+e+c3) . 2c<u Sma(l-i-e-e-cz)z
2eu? sin o 2
.= (1+e+e)[1+c(]+c+ez)]
g
(2eu? sin a
= ) (l+e+c3)('1+ e 4 c3+e3)
g
_2¢ . 2g2 . sina 5
z — (l+e+e?) (14e) (1 +e2)

= daesina (1+c) (1+e?) (1+ca c¢?)

p E";-‘ﬂ- A par ticle 15 pr *_Ojt?cred from a point on an wiclined plan¢
ana at the rth impact it strikes the plane perpendicularly and at the

:::h zzzzfvictl isoa: the point of projection. Show that
e (B.Sc. 49 Madras Uty.)

Let o be the inclination of the plane to the horizontal and u the

velocity of projection at
velocity can be resolved j

gsinaalong th Non B can be resolved into two component
g the downward inclined plane and gcos®
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perpendicular to the inclined ol i
. , planc and downwards. Consider
motion perpendicular to the plane.

Let t; be the time upto the first impact.

Distance travelled perpendicular to the plane in time t, is 0.

" _‘o 1 :
LB, 0=usln8.ll—';s.{t:usu.lll
2u sin 6

tl = .
£ COos

The particle strikes the plane the first time with a velocity
u sin 8 perpendicular to it and after this impact, this component is
reversed as eusin 8. Hence time interval between the [irst and
second impacts = 2cusin 6 /g cos «. The particle strikes the plane
a second time with a velocity eu sin 0 perpendicular to it and after
the second impact, this component is reversed as e*u sin 0. Hence
time interval between  the  sccond  and  third  impacts

= 2 e?usinB/g cosa and so on.

Time till the rth impact

51 2cusin B 2¢-u sin O
_ 2u sin O , 2eus 5 & o Tol i TEEE
g Ccos & g COs (X 2 Cos &
24 si
= Busin© (1+C+C+ . (0 1 terms)
L CON (k
. ‘r
B 2u sin O (I—L) e
- B BN E

g Ccos
the particle strikes the plane

At the end ol this umeg, |
pumllc[ to the plane at that instant

perpendicularly. So the velocity
= 0.
, 2u sin 6 (l—c’)n 5
Hence ucos® - gsinc . —-——-—-—‘g = % " Vioe
2 gin asin 8 (1 - ef) . (2

ic. cos O cos a(l - e) =

Putting 1 = n in (1)-
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13. A small elastic sphere is projected with a given velocity V
from the foot of a vertical wall, in the vertical plane normal to the
wall. It strikes a second parallel wall at a distance ‘a’ and after
rebounding, strikes the first wall at P. Show that the greatest height

1

| 2 2
. of P above the point of projection is — [ vz - {i+el e ]

e? V2
(B.Sc. 38 Madras Uty.)

14. A billiard ball of coefficient of elasticity e is projected from
the centre of a billiard table ABCD where AB = CD = 2a and BC =
AD = 2b so as to return to the centre after three impacts, first with
AB, then with BC and afterwards with CD. Show that if «is the
angle the direction of projection makes with AB.

b(1+
( - °) (B.Sc. 35 Madras Uty.)

2g

lana =

15. A smooth ring is fixed horizontally on a smooth table and
from a point of the ring a particle is projected along the surface of
the table. If e be the coefficient of restitution between the-ring and
the particle, show that, the latter will after three rebounds return to
the point of projection, if its initial direction of projection makes an
angle tan! (e ®/?)) with the normal to the ring.

16. A smooth elliptical tray is surrounded by a smooth vertical
rim. Prove that a perfectly elastic particle projected from a focus
along the tray in any direction will after two impacts return to the

fogus. (B.Sc. 72 Madras Uty.)
@ /ﬁ 8.5. Direct impact of two smooth spheres:

A smooth sphere of mass m; impinges directly with velocity u,
on another smooth sphere of mass m,, moving in the same direction
with velocity u,; if the coefficient of restitution is e, to find their
velocities after the impact:

AB is the line of impact, i.e. the common normal. Due to the
impact there is no tangential force and hence, for either sphere the
velocity along the tangent is not altered by impact. But before
impact, the spheres had been moving only along the line AB (as this

is a case of direct impact). Hence for either sphere tangential
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velocity after impact = its tangent velocity
before impact = 0. So, after impact, th,
spheres will move only in the directiop

‘ﬂ AB. Let their velocities be v; and v,.
vw By Newton’s experimental law, the

relative velocity of m, with respect to m,
after impact is (-€) times  the

Fig. 90 : . )
corresponding relative velocity before
impact.

V) = vy =—e (uy—uy) s (1)

By the principle of conservation of momentum, the total
momentum along the common normal after impact is equal to the
total momentum in the same direction before impact.

My vy + MyVy = Myu; + ms Uy sow (2)
(2)-(1) x m,gives
vi(m;+m,) = Mmpu +myu;+em;(u,—u,)
=myu,(1l+e) + (ml—f:m:,.)u1

myu(1+e) + (m, —em,)uy,
m, + m, ()

.a VI ==

(1) x m; + (2 gives

v, (m, + = - ¢
2 (m, m, ) unl(ul—u])-i- myu; + m, v,

"M (lte) + (m; —em ),

¥, mu (l+e) 4+ (m; -em, )y,

ml + mz e (4)

Equations (3) and (4) giv t Aol
impact, (4) give the velocities of the spheres after

Y My IS moving originally in a direction
egative. Also it is most
1 and v, must be specified clearly.
Clion as from left 1o right and then

?pposilc o that of m,, the gj
important that the directions of v
Usually we take the positive dire
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assume that both vy and v, are in this direction. If either of them is
actually in the opposite direction, the value obtained for it will turn
to be negative.

In writing equation (1) corresponding to Newton’s law, the
velocities must be subtracted in the same order on both sides. In all
problems it is better to draw a diagram showing clearly the positive
direction and the directions of the velocities of the bodies.

Corollary 1. If the two spheres are perfectly clastic and of
equal mass, then ¢ =1 and m; = m,. Then, from equations (3) and
(4), we have

m,u, .2+ 0 m,u, .2 + 0
1 =1
= U, and v, = =

Vl = = Ul.

2m, 2m,

i.e. If two equal perfectly elastic spheres impinge directly, they
interchange their velocities.

Cor. 2. The impulse of the blow on the sphere A of mass m; =
change of momentum of A = m, (V;-uy).

m,u,(1+e) + (m, -em,) u

m; + m,

= my | - u; ]

mzuz(]+c) + m,u; —cmpuy —myu; —mpu

= m
| m, + m,

m, [m_,_uz(1+c) —myu;(1+e)]

m; + M

mym,(1+c¢) (u; —uy )

m, + mg

@ The impulsive blow on my will be cqual and opposite to the

impulsive blow on m;.

@ 8.6. Loss of kinetic energy due to direct impact of

two smooth spheres:
Two spheres of given masses w:‘{
directly; (o show that there is a loss of kin
amount:

h given velocities impinge
etic energy and to find the
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Let m; m, be the masses of the spheres, u, and u,, v; and v, be
their velocities before and after impact and e the coefficient of
restitution.

By Newton’s law, v,-v; = -e(u;-u,) we' (1)
By the principle of conservation of momentum,
m;V; + MV, = mu; + myu, wi{2)

Total kinetic energy before impact

= % m, u, > + %mz u, 2 and}lﬂnctic encrgy}flcr impact
1 2 1 2 &

Change in K.E. = initial K.E. - final K.E.
1

= "%'mlul:Z + %mzuzz-%ml"lz— :—Z‘mz"z2

1 1
'5““1(“1"’1-)(“1*"1) + Emz(uz-—vz)(u2+v2).

1 1 |

[ m,(uy;-vy) = my (v;—uy) from(2) ]

1 _ - v)]
=2 m (- v)[u- - (-
-%m](ul—vl)[ul—uzﬁ-e(uz- ul)] USing (1) .
- 2 my(uy - vy) (- wp) (1-¢) =2,8)

Now, from (2), m; (u, - vy) = my (vy — uy)
U= vy + Vo= 1
ml + mz

Uy -V V, = U
: L o 2amdm:at:h-
m; m,
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(u-uy) + (v2=V)

ie.each =
m1+m2
(uy-uy) —e (uy-uy)
- e (1
(uyy=-uy) (1 +e)
= m1+m2

m, (u;-u,) (1+e)
m1+ m2

and substituting this in (3),

.o ul - Vl =

1 mlmz(“r‘uz)(l‘*e)(“r‘“z)(1"3)

Change in K.E. =

N |

m; + m,
1 mymy(u —uy)? (1-€?)
-1 - (4)
2 (my + my)

As e < 1, the expression (4) is always positive and so the
initial K.E. of the system is greater than the final K.E. So there is
actually a loss of total K.E. by a collision. Only in the case, when
e=1, i.e. only when the bodies are perfectly elastic, the expression
(4) becomes zero and hence the total K.E. is unchanged by impact.

Ex.7. A ball of mass 8gm. moving with a velocity of 10 cm. per
sec. impinges directly on another of mass 24 gm., moving at 2cm per
sec. in the same direction. If e = 2, find the velocities after impact.
Also calculate the loss in kinetic energy.

(B.Sc. 71 Calicut Uty.)
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Let v; and v, cm. per sec. be the velocities of the masses 8gy,
and 24gm respectively after impact.

By Newton’s Law, v, -V, = —% (2-10) = 4 - (1)

By the principle of momentum,
24v, + 8v; =24 x 2 + 8 x 10 = 128

ie. 3vy, + v; = 16 s (2)

Solving (1) and (2), v; = 1 cm. / sec., v, = 5 cm./ sec.

The K.E. before impact = %.8.102 + —12—.24.22

= 448 dynes

The K.E. after impact = 8.1° + 24.5% = 304 dynes.

1
=

1
S -
Loss in K.E. = 144 dynes

Ex.8. If the 24gm. mass in the
previous question be moving in a
direction opposite to that of the S8gm.
mass, find the velocities after impact.

Let v, and v, cm/scc. be the
velocities of the 8gms and 24 gms
mass respectively after impact. fFig. 92

By Newton’s law,
vz_vl--.%(-?.-—l())mﬁ s (1)

By conservation of momentum,

24v, + Bv = 24 x (=2)+ 8x 10 = 32 ie. 3v, + vy = 4..(2

Solving (1) and (2), v, = -

2 | =

5
cm/sec v, = - cm/sec.

The negative sign of v; shows that the direction of motion zf
the 8gm. mass is reversed, as we had taken the direction left to rig

: - -
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as posiive and assumed v, to be in this cirection. Since v, is
pOSlflVC,}hc 24gm. ball moves from left to right «fter impact, so that
its direction of motion is also reversed.

Ex. 9. A ball overtakes another ball of m times its mass, which
: : P | , ;
is moving with - th of its velocity in the same direction. If the

impact reduces the first ball to rest, prove that the coefficient of
m+n

m(n-1)

(B.Sc. 52 Madras; B.Sc 83 Madurai; B.Sc. 71 Kerala Uty.)

elasticity is

(B.Sc. 72 Madras Uty;

Deduce that m > .
n-2

B.Sc. 94 Bharathidasan Uty.)

Taking AB in fig. 91 as the positive direction, let the mass of
the first ball be k and u its velocity along AB before impact. Then,

: u ;
for the second ball, the mass is mk and; is the velocity before

impact. After impact, the first ball is reduced to rest and let v be the
velocity of the second ball.
By Newton’s law of impact, we have

v—0=—c.(§—u)i.c.v=cu(l:1—1) ws (1)

By principle of conservation of momentum along AB,

k x O+ mk.v = ku+mk-%u

m u(m+n '
i.c. mv=u+FU= (n ) v K2)

Substituting the value of v from (1) in (2), we have

meu(n-1) u(m+n) . _ (m+n)
n n m(n-l)

Now e is positive and less than 1.

~m(n-1)> m+n ic. mn - 2m > n
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n
n-2

Ex.10. Two equal spheres A and B, of masses 2 gm. and 30
X7 gm. respectively lie on a smooth floor, so that their line of centres is
C &l perpendicular to a fixed vertical wall. A being nearer to the wall. A
— IS projected towards B. Show that if the coefficient of restitution
= between the two spheres and that between the first sphere and the

. S m(n=-2)>n or m>

wall is %, then A will be reduced to rest after its second impact with
B. (B.Sc. 62 Madras, B.Sc. 86 Calicut
- B.Sc. 70 Kerala Uty., B.Sc. 76 Madurai Uty.)

Consider the impact
between A and B. Taking AB as
the positive direction, let the

>0 /E\ velocity of A before impact be u.
B B > B is at rest. After the impact, let
y q'" / = the velocities of A and B be v,
and v, respectively in the same

direction.

By Newton’ s rule,

vz—vl-—e(O-u)-%u we (1)

By conservation of momentum along AB,
30vp+2vy = 30 x 0 + 2 x uie. 15v; + vy = u ... (2)

Solving (1) and (2), we get v, = —% and v, = -lu—o .

Since v, is negative, the velocity of A after the impact towards

the wall and = -% while the velocity of B is -il-l-d away from the wall.

Now A strikes the wall with a velocity % . Alter this impact,

its velocity will be reversed as e.(-g) = % % = -:lig- With this
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velocity, A moves in the direction AB, away from the wall and
strikes B a second time. Let the velocities of A and B be v, and 7

al"ler lhis_ impact, in the direction AB. For convenience, the velocity
distribution can be noted as follows:

: A (2) B (30)
Before impact 3u u
10 10
After impact Vs vy
By Newton’s rule,

u 3u 3u
V4-V3'—c('ia—za =~ S5 e (3)
By conservation of momentum,

u 3u 18u
30\’ = = o =
4 + 2v3 = 30 10-!-210 5
i.e. 15v4 + v; = 9—5u- ws: (4
Multiplying (3) by 15, we have
15V4 - 15V3 - —952 ane (5)

Subtracting (5) from (4), 16 v3 = 0 or v; = 0.
i.e. A is reduccd to rest after its second impact with B,

Ex. 11. Two equal marble balls A, B lie in a horizontal
circular groove at the opposite ends of a diameter; A is projected
along the groove and after time ¢, impinges on B; show that a second

. 2
impact takes place after a further interval =

(B.Sc. 95 Bharathidasan Uty.;
B.Sc. 63 Madms Uty; B.Sc. 85 Calicut)
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Let the ball A move with velocity u. As there is no tangentiq)

force acting on A at any point of its path, its speed f?njains the
same throughout. Hence it impingeg

on B with a velocity u.
'3 . .
T Since the time from A to B is =1, we
A B T
- Uu s= — eee
getut =yt r or ” (1)
Let v and v' be the velocities

of A and B respectively after impact,

Fig. 94 Then, by the principle of
momentum,
mv + mv' = mu (m being the mass of cach ball )
ie. v+ v =u - (2)
Also, by Newton’s law, v — v' = -e(u-0)
ie. v - v = —eu

- (3)

Solving (2) and (3), we get v = % (1-c); v = % (1+¢)

than v. Hence B will move in advance of
ecs. aflter the first impact,

The velocity of B relative 10 A, after the first impact = v/

=eu {rom 3) V - v
Before striking again, B
X » B should : 5
1o the circumference relative to A, Fover a distance ¢qual Iength
(V- V) - :
) 1 27‘31'1.(‘.. 3U.t1 = 27r
t, = 25F  2ny .
eu nr using (1)
€. (—)
t
2
e

e

The second i 2t
mpact occuyrg
e SCCs. after the first,
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the balls is e, show that, the cocfﬁcxent of rcstltutxon between the

l1=¢
ball and the\cushion i Is 32 -1 - ('B A. 51 Andhra Uty,)

§ 8.7.Oblique impact of two smooth spheres:

A smooth sphere of mass m; impinges obl:que(y with velocity
u, on another smooth sphere of mass m, moving with velocity u,. If
the directions of motion before impact make angles o, and «,

respectively with the line joining the centres of the spheres and if the

coefficient of restitution be e, to find the velocities and directions of
motion after impact.

Fig. 95

Let the velocities of the spheres after impact be v, and v, in
directions inclined at angles 6; and. 0, respectively to the line of
centres. Since the spheres are smooth, there is no force
pcrpcndlcular to the line of centres and therefore, for cach sphere the
velocities in the tangcnual thrcct:on are not affected by impact.

W Vi sin Bl - dl'sln oy e (1) and
v, sin 0, = uy sm %y < (2)

yeal

By Newton’s law concemmg velocities along the common
normal AB,

v,cos 0, ~ v; cos 0, = —e(uzcosaz - u; cos ay ). (3)

By the, ptln(:lplc of, conservauon of momcntum along AB,
m,. vzcos62+ m,; .v,cos B, =m,.u, COSa,+m, .U, cos o, (4)
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(4) - (3) x my gives

cos o
- u, COS O, + my Uy COS &y
v1cose1-(m1+m2) M2 ™2

+ emy (uycos &z ~ uy cos o, )
-emy )+ m,u,cos oy (1+e)

u, cos oy (my
ji.e. v, cos 6, = m; + My

(4) + (3) x m, gives

uchsaz(mz-cm1)+ m,; 4y
Vv, COS 6, = m, + my

cosa, (1+e)

. (6)

2

From (1) and (5), by squaring and adding, we obtain v; “ and

by division, we have tan 6,. Similarly from (2) and (6) we get v, ?
and tan 6, . Hence thc motion after impact is completely determined.

Corollary 1. If the two spheres are perfectly elastic and of
equal mass, then e = 1 and m; = m,.

Then from equations (5) and (6) we have

v, cos B, = L 2 s
1 ! 2 2
2m,

0 + myu,cosa,.2

and v, cos 6, = = Uy COs

2m1

Hence if two equal perfectly elastic spheres impinge, they
interchange their velocities in the direction of the line of centres.

Corollary 2. Usually, in most problems on oblique impact, one
of the spheres is at rest. Suppose m, is at rest i.e. u, = 0.

From equation (2), v, sin 6, = 0 ie. 0, = 0. Hence m,

moves along AB a[u::r impact. This is seen independently, since the
only force on m, during impact is along the line of centres.

Corollary 3:
~ The impulse of the blow on the sphere A of mass m,

= change of momentum of A along the common normal
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[l e ]
=my (vy cosB; - u; cosa,)

uy cos ay (my —emp )+ myuycos oy (1+e€)
m; + m,

=my [ —u, cos 0 ]

m, [ m; u; COS @ —em, U; Cos &, + m, U, COS Q, + €M, U, COS &y

= ]

m, e 5 M,

my [myu, cosa, (1+€e) — myuycos oy (1+¢€)]

m; + Iy

mm,(1+e)
- 12 (u, cos o, — u;cos o)
m, + m,

The impulsive blow on m, will be equal and opposite to the
impulsive blow on m,.

§ 8.8.Loss of kinetic energy due to oblique impact
of two smooth spheres:

Two spheres of masses m, and m,, moving with velocities u,
and u. at angles o, and o, with their line of centres, come into

collision. To find an expression for the loss of kinetic energy:

The velocities perpendicular to the line of centres are not
altered by impact. Hence the loss of ‘kinetic energy in the case of
oblique impact is therefore the same as in the case of direct impact if
we replace in the expression (4) on page 236, the quantities
u; and u, by u; cos a; and u;cos & respectively. Therefore the

m; m -
loss is ~ B (1-c3)(ulcosa1~uzcosa?_) :
2 m; + my

We shall now derive this independently.

he velocities of the spheres after impact, in
and 0, respectively to the line of

y of each sphere

Let v, and v, be (
directions inclined at angles 6,
Centres. As explained in § 8.7 the tangential velocit
IS not altered by impact.

- vysin@, = u, sina; - (1) and v, sin 8, = uysinay ... (2)

Scanned with CamScanner

Scanned by CamScanner



By Newton’s of rule, 2
Va 00892 - V; COS 91 = —C (uZ Cos Oy — u; COS al) "'( )

By conservation of momenta,

m, v, cos @, + my v, cos B = mpuy COS Gy + My Uy €O oy
i.e. m; (u; cos a; — v, cos 8;) = my (v, cos 6,._ Uy €COS Op) - (4)
Change in K.E.

1 s 1 N

1 2 _ 1 . v.2
=M upt 5 M =5 m;Vv;" - 5 M2 V2
; 1 v g in2
-%mluf(coszal+smzotl)-t--,.:,mzuz (cos? a, + sin‘ o)
. 1 2 2 . « 2
- %mlvlz(coszel+ sin? 8; ) — 5 my V3 ( cos? B, + sin® 6,)
L 1 2 ana2
-% m, uj cos’ oy +3 m, uj cos? ap — 5 my Vi cos” 6,
—~ —;- m, v3 cos? 0, using (1) and (2)
1 2 062 anl— V2 cos?
- % m, (u? cos a; - vicos? ;) +2 my (uz cos® ay—V;cos 6, )

= —li ml(ulcosa1+v1cosel) (u, cos o, =V, cos6,)
+ % m; ( uy €os &y + V5 cos B, ) (u, cos o, — V5 cos 6,)

- % m, (u, cos o + v, cos 8y ) (u, cos a; —v,cos6,)

- jl?‘- (uycos ay +vycos8,).my (uycos ay —vycosB,)

using (4)
- m, (u, cos a; - v; cos 6;) (u; cos a; + v, cos 6,
- u,cosa, — V, cos 6,)

> m; (u; cos oy — v, cos 8, ) [u;cos a; —u, cos &,

+e (u,cos ay — u, cosa, )] using (3)
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1 | e
) m, (uy cos ay - vy cos 6, ) (uycos a;-uycos op) (1 )
.. (5)
Now from (4), .
ucosa — vycosB; Vv, €086 - u, Cos &,
my = m,

u;cos o, — v;cos 8 + vpcos 6, - u, Cos

and each = my + m,

(u;cosay — uycosa,) + (vycos6; - v, cos 0 )

u,cosa; — u;cosa, —e (U Cos oy — u, cos o )
m; + m,

using (3)

(u; cos @; — u,cos ;) (1+e¢)

m2 (1+ e)
ml+ mz

. uy cos a; — vy cos 6, = (u, cos oy — u, COS Op)

Substituting in (5),
m, m, (1+¢€)

1
chsnge in K.E. = 3 (u; cos a; — u; cos ay)

m, + m,
x (u;cosa;-ucosa,) (1-¢)

m; m
1 22 (1-€?)(u,cos a; —u, cos ay)?

E my +1m,
If the spheres are perfectly elastic, e = 1 and the loss of kinetic
energy is zero.

§ 8.9.Dissipation of energy due to impact:
We have found that in any impact, except where the coefficient

of restitution is unity, some Kinetic energy is lost. This missing
kinetic energy is converted into other forms of energy and chiefly
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reappears in the shape of heat. Hence the Principle of Conservatig,,

11 not hold. good in problems of impact.
o Engf.);:lg ball of rfass 8 gms. moving v!n'th v:eloc:ty 4cms. per
sec. impinges on a ball of mass 4 gms. moymg with velo[czty % cm.
per sec. If their velocities before impact be inclined at angle 309 ang
60° to the line joining their centres at the moment of impact, find
1

their velocities after impact when e = > (B.Sc. 50 Madras Uty)
Refer to fig. 95 on page 244. m;=8;u; =4;a, =30
m, = 4; u, = 2; ot = 60° Let v, and v, be the velocities after impact
in directions making 6, and B, respectively with AB. The
tangential velocity of each sphere is not affected by impact.
. v,sinB8; = 4sin 300 = 2 .. (1)
and v,sin 8, = 2 sin 60° = V3 v (2)

By Newton’s law,
V,C08 8, — vy cos B, =-c¢ (2cos 60° -4 cos 30°)

V3
- 4‘—2—)

1
= £2

- 5 (2v3-1) o )

By conservation of momenta along AB,

4v,cos 8, + 8vicos B, = 4.2 cos 60° + 8.4 cos 30°

| =4 + 16V3
1.e. V; cos B, + 2v, cos B8,=1 + 4v3

. (@

. 3VICO581= 1+ 4\/?_..]2;(2@_ 1)- 3 + 6ﬁ

2
.e. Vy cos B, = 1+2v3

2 . () |
From(4),v2c0582-1+4\/§'_ 1 - 2V3 = V3 ... (6)

i
]
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From (1) and (5), v? = (1+2\/_)

- e 1+4\/‘ +12 29+4V3

4 = 4
V29 = av3 |
V= > cm. per sec.
N 4
Dividing (1) by (5), t =
g (1) by (5), tan 6, =

From (2) and (6).
sz = 3 + 12 = 15 and So Vo= V15 cm /sec

Dividing (2) by (6), tan 8, = = .

Ex.13. A smooth sphere of mass m impinges obliquely on a
smooth sphere of mass M which is at rest. Show that if m = eM, the
directions of motion after impact are at right angles. (e is the

coefficient of restitution)
(B.Sc. 76 Madurai Uty. B.Sc. 68 Madras Uty.)

Considering the sphere M, its tangential velocity before impact
is zero and hence after impact
also, ilts tangential velocity is
zero. (*° During impact, there
is no force acting along the
common langent). Hence, after
impact, M will move along
AB. Let its velocily be v,. Let
«s, Fig. 96 the velocity of m be v, at an
angle 6 to AB, after impact.
—ucosa)

By Newlton’s rule v, —V; €OS 8 =-c(0

- (1)

i.e. v, =V, COS @ = eu cos a

By conservation of momenia along AB,
0s « 5 {2)

(1) by M and subtracting from (2),

.ucC
M.Vz + IN Vlcose =M.0+ mu

Multiplying
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Find also the velocity with which each. of the other two balls Move,
Also, find the kinetic energy lost by the impact.

§ 8.10.Compression and Restitution:

When two clastic bodics impinge, the time during which (j,
impact lasts may be divided into two:stages. During the first slage,
the bodies: are slightly compressing one another and during (pe
second stage,. they are recovering their shape. We ¢
experimentally show that bodies are compre -ed during impac,
Suppose we drop a billiard ball on a floor, whi : has becn already
covered with finc coloured powder. At the spot where the ball comes
into contact with the floor, it will be seen that the powder is removed
not merely from a geomctrical point but from a small circle. Thic
shows that, near the point of contact, the ball actually meets the floor
in a small circle. Hence at that time the ball must have undergone j
slight deformation and subsequently recovered its shape.

The first portion of the impact where bodies gel compressed
las 1"they are Instantancously moving with the same velocity.
Forces then come into play tending to make the bodies recover their
shape. The mutual action between with bodies during the firs!
portion of the impact is often called “the force of CO???})?'G‘-SSI-OH'N and

that during the'second portion the force Of)‘esrim@

Ex.16. Prove that the ratio of the

M impulses of the forces of
restiution and compression is ¢ / J

qual o the cocfficient of restitution.
(B.Sc. 57 Madras Uty.)

Let a sphe i . ; .
it hcp (.rcrof MAss m impinge (.III'CCH}: with velocity uy of
"EL e O mmass, i, MOVING in the same direction with

velocit '
\ locity uy.. Let v be (he common vclocily of the spheres al the

over. Also ey Vi, Vv, be their final
Mg compression, m; (u,-V) is the loss of
and‘ mMy(V-u,) is the gain of momentum
the impulse of (he (orce of compression:

momentum by the first ball
by the second ball, 5o i 1is
we have

I =2 ml (UI'-V) = mz(\,__uj)

(1)
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SIMPLE HARMONIC MOTION

§ 10.1.Introduction: | o

A very common and important type of motion occurring In
nature is that which involves oscillations backwards and forwarc?s
about some fixed point. For instance, suppose on¢ end of an elasuc
string is tied 1o a fixed point and a heavy particle is attachecil .lo the
other end. If the particle is disturbed vertically from its position c.’f
equilibrium, it is found that it oscillates to-and fro about this
position. Clearly the particle cannot be moving under constant
acceleration. 1t is found that it has an acceleration which is always
directed towards the equilibrium position and varies in magnitude as
the distance of the particle from that position. This Kind of motion
occurs frequently in nature and since it is of the type which produces
all musical notes, it is called Simple -Harmonic Motion (Shortly
written as S.H.M). The oscillations of a simple pendulum and the
transverse vibrations of a plucked violin string are examples of
simple-harmonic motion.

§ 10.2.Simple Harmonic Motion in a Straight line:
Definition: When a particle moves in a straight line so that its
acceleration is always directed towards a fixed point in the line and
proportiona! to the distance from that point, its motion is called
Simple Harmonic Motion.
Let O be a fixed point on
the straight line A! OA on

) Joe _ which a. particle is having
AN P —> O«P A simple harmonic motion. Take
. O as the origin and OA as the X

Fig. 120 axis. Let P be the position of

. the particle at time t such that
OP = x. The magnitude of the acceleration at P = px ‘where K is a
positive constant. As this acceleration acts towards O, the

acceleration at P in the positive direction of the X axis is - ux.
H [ d2 x i

Hence the equation of motion of Pis — m — pu x
@ T TEx -
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Here it must be noted that for a position of P to the right ;’fo’ g
. d“x . |
the x-coordinate x is positive and so the acceleration - dt2 IS

negative, directed towards O. If Py is a position c;f the particle to the

- » d x . s -
left of O, x is negative and so the acceleration % is positive again
towards O. Hence the same equation of motion (1) holds good for all
positions of P on the line.

Equation (1) is the fundamental differential equation
representing a S.H.M. We now proceed to solve it.

If v is the velocity of the particle at time t, (1) can be written as

v% = — ux ie. vdv = - pxdx e (2)
2 1 x2
Integrating (2), we have -l E~—2 +C w (3)

where c is the constant of integration.

Initially let the particle start from rest at the point A where
OA = a and let us measure time also from this instant.

Hence when x =a, v=0.

2 2
Putting these in (3), 0 = — J‘Ta b & B - J%
2

v e = ux? + pa? = n(a® - x2)

vezxVp@?- x?)

Equation (4) gives the velocity v corresponding to any
displacement x.

Now as t increases, X decreases. So %}—: is negative
; t '

Hence taking the negative sign in 4),

dx

V- Vee - %) (5
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dx - Vpdt
9 .
of - J-D

X _vpt+ A
; 1= =
Integrating, €05 W

[nitially when t = 0,
_11_0+A i.Co A=0'

CcOS =

LS T |

Hence cos ™7 =

x = acosVpt - (6)

je. = = cosVput or
d

Equation (6) gives th .
When the particle comes 10 O, x = 0 and by (5),' its vellocily

then = — aVp . So the particle passcs through O and immediately
the acceleration alters its direction and tends .to decrease the
velocity. From (5), v = 0 when x = -a. So the paru'cle comes 1o resl
at a point A’ 1o the left of O such that OA = OA . It then retraces
its path, passes through O, and again is instantaneously at rest ?t A.
The whole motion of the particle is an oscillation from A to A and

back.
To get the time from A to A , put x = -a in (0).

¢ displacement x in terms of time t.

T

l = — = = T =
We have cos VL 1 COS TU t i
g ' 2K
The time from A to A and back =
VL

- Equation (6) can be wrilten as
X =acosVput = acos(Vit i + 27m) = acos (Vi t + 4 m) elc

= acosVu (1 + %_3)

4x

o ) etc.

| . 1e a!
. This shows that the displacement of the particl
Pparticular time t, is repeated at times

= acos Vi (t +
3113'

Scanned with CamScanner

Scanned by CamScanner




t1+'\/-|-—l-’ 1 \/-ﬁetc.

Differentiating (6),

& _ _ avit . sinViT t
dt

- —avpusin(Vpt + 2m) = - a*fu_sin(\/it+4n) etc

~avpsin vV (U +

n

27 -
T/ﬁ) = - aVirsinviL (t + 38) ¢c

. dx
This shows that the values of Et_ are the same if t is increased

27 . 21
by VTOT by any multiple of 0 Hence after a time %me

particle is again at the same particular point moving with the same
velocity in the same direction as before, having covered the whole
path of the motion just once. The particle is said to have the period
£)

27

ik

Definitions: The period or the periodic time of a simple
harmonic motion is the interval of time that elapses from any instant
till a subsequent instant when the particle is again moving through
the same position with the same velocity in the'same dirccti:c:-n. :T'llC
Jr ¢quency of the oscillation is the number of complete oscﬂ.lauons
| that the particle makes in onc second. So frequency is the reciprocal
Ofthe period and is equal to ) -

s 2 7

moves away from the

The distance through which the particle he amplitude of the

Centre of motion on either side of it i1s called t
L Dsclllali()n.

.o _OA= OA' =a.
Thus in the above case, amplitude = OA

ing = _Z_EE, is independent
We notice that the periodic time being ,/'p‘{

cent
Of the amplitude which is the distance from the

Scanned with CamScanner

Scanned by CamScanner



particle started. It depends only on the constant p which is the
acceleration at unit distance from the centre.

2 _
Note: (1) Since 3—%{- = — WX, maximum acceleration
1 .

corresponds to the greatest value of x and so it is numerically
- Wh.a=pu. (amplitude)

(2) Since v = V(a2 - x?) , the greatest value of v is gotatx
=0anditis = avVp = Vi . (amplitude).

§ 10.3. General solution of the S.FHLM. equati?m
d2 |

: X
. The S.H.M. equationis —= = — u X
9 d wx
) d? x
1.e. — + x =0 1
Tz t W (1)

(1) is a linear differential equation of the second order with
constant coefficients. Its most general solution is of the form

X = AcosVpt + BsinVp 't | wo (2)
where A and B are arbitrary constants.

Other forms of the solution equivalent to (2) are
x =Ccos(Viit + €) .. (3)and x = Dsin(Vp t + @) ... @)

The constants A and B in (2), Cand € in (3)and D and «in

(4) arc known if we know the values of x and %2:- corresponding to a

gi\}en time t.
'From (3) and (4), the maximum value of x = Cor D.

Hence if a is the amplitude of the motion, the forms (3) and (4)
can be respectively put as

X =acos(ViLt + €) ... (5) and X = asin(VL t + Q) ... (6)

When the solution of the S.H.M. equation is expressed as
x = acos (Vi t + €), the quantity eis called the epoch. The
phase of a S.H.M, at any instant is the time that has elapséd since the
particle was at ils maximum distance in the positive direction.
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From equation (5), x is maximum when cos Vi + €)= 1.

If t is the then value of t, Viu't, + € = 0.

1.€. to

i o
C Vi

€ \[|.T1+G
Hencephascattimet=t—to-t-i-—v,ﬁ== Ty

Note: Two simple harmonic motions of the same period can be
represented by -

X, = ayjcos (Vi t + &) and X, = aycos (Vi t + €).

d. . h 81 - Ez
The difference in phase = \/E

If ¢, = &, the motions are in the same phase.
If ¢, = €, = m, they are in opposite phases.

§ 10.4. Geometrical Representation of a Simple
Harmonic Motion: |

Let a point Q describe, with
uniform angular velocity w, a
circle of radius ‘a’ and centre O of
which A'OA is a fixed diameter.
Let P be the foot of the
perpendicular from Q on AA'. As
Q moves round the circle. P will
move to and fro on the diameter.,
We can show that the motion of P

. along AA’is simple harmonic,
Fig. 121 with O as centre.

Let Q move in the direction AQA’' as shown in the figure. As
Q moves uniformly in a circle, its only acceleration is w?. QO
along QO. The velocity of Q in the circle is -w . QO along the
tangent QT. The velocity and acceleration of P must be the same as

the resolved part?; along AA', of the velocity and acceleration of Q.
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3y

2 00 . cos LPOQ
Hence accele QO . cos
| PO

. 2
_ mZQo,—-—-—QO = w*. PO towards 0

rationof P = @

=
B
2 ]
[oien
.

—

n of P is always directed towards Q apq

: acceleratio . ;
i.e. the from O. Hence the motion of P is simple

proportional to its distance

harmonic. | |
The various formulae of a S.H.M. derived in § 10.2, can be

deduced by considering the motion of Q along the circle.
Taking O as the origin and OA as the positive direction of
measuring displacement, let OF =X and £QOP = 0.
Velocity of Q = a w along QT.
Hence velocity of P = resolved part of velocity of Q along AA'.
= aw.cos ZTQN = a w.sin ZOQN

) P
=aw.sinB =aw.—

LA

= wVOQ? - OP?
= wVa’ - x? (in magnitude) . (@)
and this velocity of P is along AO towards O.

As Q moves round the circle from A to A and back (0 AP
moves from A to A’ through O and back 1o A.

Hence the periodic time of the S.H.M. described by P

= Time taken for Q to describe the circle = CUC
(u

X

o cos™} ("a')

Also, if t is the time [romAtoQ, t = =2 = —
? w w

G

wt=co'1l{.
S (a)OI' x=aCOS(Dl

; in
The acceleration of p tlowards O = w?.POand Pultlg

(1)2-:”,_
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e, W = Viuin (1), (2), (3) we get

(i) the velocity of P = Vi, V32 7,7 magnitude

(ii) the periodic time of P = 2Z

n
(iii) the displacement X = acos Vi t.

These are the formulae derived in § 10.2.

§ 10.5. Change of origin:

2
A differential equation of the form CE i x where pis a

de?
positive number, always represents a simple harmonic motion of
period -2‘7_& which is independent of the amplitude. The centre of the

S.H.M. is the origin from where the displacement X is measured.

Consider now the cquation.

d'-’:; = — ux + a .. (1), Thiscanbe written as
de
d” x _a . @
[ SN
; = (= —, X = 0.
Put x - ﬁ- & X O When X i

are transferring the origin for measuring

B - iginal origin.
B . . b ym the origl
displacement to the point distant 1 e

So this means that we

Dilferentiating (3) twice, i 4

Cx _ X 2) becomes 9"'7,)'(" --nX )
Ei‘ - and hence (2) be de*

dt the new

: :on about
. < Ach nic moli

(4) Clearly represents simple harmo
Origin,
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WORKED EXAMPLES

Ex.1. A particle is moving with S.H.M. and while making an
oscillation from one extreme position to the other, its distances from

the centre of oscillation at 3 consecutive seconds are X Xz X3
2%

X, + X
=1 gt 3.
| cos (—*——--2 - -)
| (B.E. 65, Andhra Uty; B.Sc. 71 Calicut Uty.)
If a is the amplitude, p the constant of the S.H.M. and x is the
displacement at time t, we know that X = a Cos vt (1)

Prove that the period of oscillation is

| Let at three consecutive seconds t;, t,+ 1, ti+ 2 the
corresponding displacements be X, X3, X3- |

Then X, = acos ViL N . (2
X, = acos Vi (t; +1) = acos(ViLt, +vp) .. (3)
and x; = acos Vi (tj +2) = acos (Vi t4 +--2\@_), as L0

Xy +Xg = a [cos (VR t; + 2VQ) + cosVp t; ]
Vit + 2V + Vo ty Vet +2V =V

‘= 8.2 COS —> . COS 5

- 2acos(Vitt, + Vit) . cosVip = 2% . cos Viu

X X; + X3
575 L cosviE or Vi = o057 (T )
2%, 2
- o 2: 27
Period = _‘/:H: = X, + X3
‘ -1
cos™" ( 7%, )

Ex. 2. If the displacement of a moving point at any time be
given by an equation of the form x = acosw! + b sin w t, show
that the motion is a simple harmonic motion. (B.Sc. 71 .Madras Uty.)
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Ifa=3b=4, o= 2 determine the period, amplitude, maximum

velocity and maximum acceleration of the motion.
| (B.Sc. 50 Madras Uty.)

X = acoswti+ bsinwt ©
We have to show that the acceleration varies directly as the
displacement. Differentiating (1) with respect to &, '

dx . ‘

E; = - g3 msin ot + bwcoswt (2)
d2 )

——2&- - - awlcoswt — bw?sinwt

dt

= - w?(acoswt + bsinwt) = - w?x .. (3)

(3) shows that the motion is simple harmonic.

The constant p of the S.HM. = w?.

Period 2% = L - 2K = JT Secs
v w 2 )
Amplitude is the greatest value of x.

. . dx
When x is maximum , ~o = 0.

_ awsinwt + bocoswt = 0 ie. asinwt = bcoswt.

b

4 i y
or anwt = > =73 using the given values.
a

LW

4 4
When tan ot = -5, sin wt = 5 and cos wt =

Putting these values in (1), greatest value of x

3 4 3a+4b  3.3+44

Hence amplitude = 5.
Using the formulae of § 10.2,

Maxﬁ. acceleration = W . amplitude = 4 x 5 = 20
= v . amplitude= 2 x 5 = 10.

Maf_,.vclo'c'ity

!
|
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Ex.3. A horizontal shelf moves vertically with S.H.M whs,
complete period is one second; find the greatest amplitude iy
centimeters, it can have, so that an object resting on the shelf may
always remain in contact.

Let m be the mass of an object lying on the shelf, O the centre
of the S.H.M. and P the position of m at time t. Let OP = x. The
forces acting on the mass at P are: (i) its weight mg acting vertically
downwards and (ii) the normal reaction R due to the shelf acting
upwards. Resultant force on the mass = mg - R and so the
acceleration on it = me— = n: L and this acts towards O. Since the
particle is moving with S.H.M. towards O,
accclerationat P = n. PO = pux.

[ mg - R
m
ic. Remg - mux = m(g - nx) S
. 27 .
Period of the S H.M. = " 1 (given)

Vb = 21 or p =475
From (1), R = m (g - 4 x®x)

For the mass to remain always in contact with the shell,
reaction R must not be negative.

m(g - 4n*x) = 0

ic. g - 4n’x = 0 or % g R

4 °
.~ Greatest valuec of x = —g—;; = _9&:_1" = 24.8 cms.
4 n- 4 -

Ex.4. A particle P, of mass m, moves in a straight line oX
under a force m | (distance) directed towards a point A which
moves in the straight line OX with constant acceleration o . Show
that the motion of P is simple harmonic, of period 2 m/Viu aboutd
moving centre which is always at a distance a / W behind A.

(B.Sc. 55 Madras; B.Sc. 82 Madurai Uty.)

Let at time 1, the particle be at P where OP = x and A be suct
that OA = y. The equation of motion of P is
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Com

(o) B A
D B_ —_— P
Fig. 122
d* x :
@ == e PA  (since the acceleration is towards A)
== pix-y)
w (1)
2
The equati [ i 5 2LY
cquation of motion of A is ™ )
Subtracting (2) from (1) we have
dx d?y a
Piit, % = ¥ & = =
y o+ i Z - (4)
: - d>’x d’y d’z
Differentiat 4 - =
2 s
-z - )

Hence (3) becomes B

The displacement z is simple harmonic and the period

s o 27
Vi
~ The centre of the S.H.M. represented by (5) is clearly the new
ongin from where z is measured.

o

a a

o

lJ, ]

If B is a point behind A such thal BA =

We have 2 = AP + BA = BP.
: ¢ p measured from B-

Le. z'denotes the displacement ©
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he plate will not leave it, provided n* 5 &

of mass m resting on
a

it leaves, find its velocity then.
(B.Sc. 82 Madras Uty.)

In the case, when

20. A particle is moving in a straight line with simple harmonic
motion of amplitude ‘a’. At a distance s from the centre of motion,
the particle receives 2 blow in the direction of motion which
instantaneously doubles the velocity. Find the new amplitude.

(B.A. 48 Madras Uty.)

Simple Harmonic

§ 10.6. Composition of two
d and in the same

Motions of the same perio
straight line:
Since the period is depend
separate simple harmonic mo
. : . d?
differential equation dlt); = — U X.

ent only on the cosntant t, the two
tions are expresscd by the same

Let x; and X, be the displacements for the separatc motions.

Then we can take |
Xy = a, cos (Vi t + g,)and X, = a, cos (ViU U + £y) -
et x be the resultant displaccment.
T‘hcn X = x1 + x?'
- HICOS(\/[.—ll + gq) + azcos(ﬁl—t + €9)
— cos Vit t (a; COS €, + @, COS €))
- sinVit t(a;sing; + a sin €,)
— cosVil . Acose — sinVpt. Asine - (1)

where A cos€ = 4, COsS g} + d; COS €2 (2)
and Asine = a,sing, + a,Sin & €
We can find the new constants A and €.
Squaring (2) and (3) and adding,
Q

A? = alz + azz + 2a,a, cos (g, - €5)
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; . , a, si i
pividing (3)by(2), tane = -2 € + a,siy €,

1) becomes X = A (co ]
NOW( ) _ A( S\\/E_IOOSE —smﬁtsins)
COS(MI+£) ...(6)
The result.ant d1§placement given by (6) also Tepresents a
gmple harmonic motion of the same period as the individual
molions. A, the new amplitude, is the diagonal of the parallelogram
whose sides are the original amplitudes a; and a, inclined to one
Jpother ai an angle &; — €;, the difference of the epochs.

g 10.7. Composition of two Simple Harmonic
Motions of the same period in two perpendicular
directions:

If a particle possesses two simple harmonic motions. in
perpendicular directions and of the same period, we can prove thatt_
its path is an ellipse. Take the two perpendicular lines as the axescln
x and y. The displacements of the particle due 1o the separafe
motions can be taken as

X = a, cos Vit t (1) y=azcos(\/[fl+s) . (2
= 1 < _

: - inatine t between
The path of the particle is obtaincd by eliminaling & &=

(1) and (2). From (2),

; $1 Lt . SInE
Y = 4,cos VLt . COSE — a, sin Vi

X in € -
= 38,C0S€ . = ~ a, sin
a;
i.c. -l - _)_*'_(59_5_2 = - SiIlE .
a a3
Squarin D)
g, 2 .,
X _sin” €
2 2 2 2xy cos € sin2£ ~ a 2
R ol , Xicos'e 2Xy €~ = )
A - a
9" a7 S
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A¥
i¥

15

14

2 2
X _ 2 ose + 'LE - sin®e . (3)

i.e. =
;" 418 az

This is of the form ax? + 2hxy + by? = A = (&)

COSE . _ 1

d
where a. = —, h = - "

Clearly (4) represents a conic with centre at the origin.

2 1 cos“e _ SIME _
AISO,ab—h - a2a2 — azaz 3232 + ve
182 . 83" ' .9y T2

Hence (4) rcpreserits. an ellipse.

If e =0, equatio_ri (3) gives = -ji- = 0 which is a straight
4 2

line.

If ¢ = x, (3) gives ai +.-aY-'- 0 which is also a straight
1 g _

line.
: X2 2 ‘
If € = T (3) gives —3 1—2 = 1 which is an ellipse
2 a." a, ; J
ncipal axes are along the axes of x and y.

whose pri

If € = % and a; = 2y, the pat

h is the circle X2 + y* = a;°

resultant of two simple harmonic motions

me direction and of equal periodic time, the amplitude of

that of the other and its phase a quarter of a period

le harmonic motion of amplitude V5 times that
tan~! 2
of a

phase'is in advance of the first by s

Ex.7. Show that the

in the sa
one being twice
in advance, 1s a Stmp

of the first and whose

period. |
Referring to § 10.6. let the separate displacements be
x, = a3 cos (VL L + €) .. (1)and
|
w (2

x, = acos (Vi t + €5)
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g |
2 = phase difference

Here €
ere a, = 2a, and =i

4 = Y

; x x
€ — & = Of g =5 + &

We know that the resultant displacement is
= Acos(Vpt + €) . (3)

where A? = 312 * :a2 + 23, az cos (g, — £3)
= 2,2 + 42,2 + 4a,% cos (-90°) = 5a,%

. Amplitude of the resultant motion = A = 3; V5

a,;sing; + a;sing,

Also taneg =
a; COs €, + 3,COS €y

a,sine; + 2a,sin (90° + &,)

a; cos gy + 2a; cos (90° + &)

sin € sin g, + 2 COS €4

i.e. = _ :
COSE COSE; — 2SInEg;

smu:osza1 — 2sinesing; = sin €, COS€ + 2COS €; COS €
or sm(s - §) = 2 cos (e - €,) ie tan(e - g) = 2

. = ’ -l'n
orf B = -y = B -2

E — & tan~! 2 = tan~12 (215-)
e \/p, = ‘\/iI 2% \/l._l.-
1
n2 e .
- o of a period.

This is the phase difference of the resultant simple harmonic

motion.
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EXERCISES

tions in the same straight Jip, of

- jt -
periods and differing in phase by Tare impregsy

1. Two simple harmonic mo

equal
simultaneously on a particle. 1f the amplitudes are 4 and 6, fing the
amplitude and phase of the resulting motion.

(B.A. 38 Physics Madras Uty.)

2. A particle possesses two simple harmonic motions of the
same 'pl:riod with amplitudes a and b and phase difference % in two

perpendicular directions. Show that the particle traces an ellipse
whosc semi-major and minor axcs arcaand b. (B.E. 67,S.V. Uty,)

§ 10.8.Force necessary to produce Simple
Harmonic Motion:

If F is the force required to produce an acceleration f in 2
particle of mass m, then by Newton’s second law of motion. F = mf.
If m is constant, F must obey the same law as f. Hence to produce 3
s:m.ple harmonic motion, the force must be always directed {owards
a fl?((:d centre which is usually the equilibrium position of the
particle and its magnitude must be proportional to the t:liSplaccmﬁ“I
from that position. The force tending (o restore an elastic body 10 i
natural shape or size is found to ~hc of the above nature and 2

practical instance is the i iral
. OTCC cxe Y . . or S ]ra
spring. ricd by an clastic string or SP
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Let A be the fixed point and AR = a, the y
the spring. Let m be the mass of the particle, nstretched length of

The particle will pull the string further

be the equilibrium
AT A and BC= /.

and come 1o rest. Let C
position of the particle

. The forces acting at C are: (i) mg, the
A weight of the particle acting vertically
downwards and (ii) the upward tension.
These two must be equal.

B oo W By Hooke’s law, tension
e -2 (ac- aB) =M
C 4 N =
B et J'x Hence ?—;I = mg (1)
Fig. 123 Let the particle be slightly displaced

vertically downwards through a certain
distance and then released. Clearly it will begin to move upwards.
Let P be the subsequent position of the particle so that CP = X (x |
being measured in the direction CP). i

he weight and the upward tension.

The forces acting at P are
Hence the equation of mouon 18

dzx
2

dt-

= Resultant downward force

m

A - AB)
_ _ = (AP
=mg — upward tension = M& = 4 (

B TEE L i o s Mg e a CTTWR W St e T

2 X )
=mg-%(BP)=mg“a =

M
= - _?lx_, since mg= " 1

d

.. (2
d%x A

e, —2 o — X

de? am
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MOTION UNDER THE ACTION
OF CENTRAL FORCES

§ 11.1.Introduction:

In the previous chapters, we have considered some particular
cases of motion of a particle in two dimensions. To fix the position
of a particle in a plane, we require two coordinates and to study the
motion of the particle, we require its component velocities and
accelerations in two mutually perpendicular directions. We had
previously used cartesian coordinatcs. In this chapter we shall use
polar coordinates.

§ 11.2.Velocity and Acceleration in Polar Coordinates:
Let P be the position of a moving particle at time L Taking O
as the pole and OX as the initial line, let the polar coordinates of P
be (r, 6). OP = ris the position vector of P. Hence the velocity of P
d

. d .
- o (r). Since r has modulus r and amplitude 6, T (r) will have

components r along OP and r B to OP.
(Refer rule of differentiation of a
vector given in § 9.1). Hence the
velocity vector v at P has components
r along OP in the direction in which r
increases and r6 L to OP in the
direction in which 8 increases. These
are respectively called the radial and
(ransverse components of v.

<

Fig. 131

The acceleration vector at P is

the derivative ol the velocity vector V.
The radial component ol Vv is a veclor with modulus r and amplitude
8 Hence the derivative of r will have  components (i)

-5- (r) = r along OP in the direction in which r increases and (i)

l L=

r di (8) = £ L to OP in the direction in which 6 increases.
L

This is shown in fig. 132
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’ |
The transverse component of v is a vector with modulus

'.'i*f:l' and amplitude @ = g’: + 0. Hence the derivative of r@ will

-

- have components ®. 5 (r 6) - rB + 6 1 along  the line

'roer in the ,dm@cnon L 1o OP and

.(ii) 18 = (":E +0) = r 62 in the direction L to thé"line ofr6

ie.in the dlrectlon PO. (This component is towards O, as it is in the
direcnon m which @ 1ncreases) This is shown in fig. 133

H-f-— K

o A O  Dperivalive
2 “3}'3:“ " ' | RIZN
- Fig. 132 - | F-ig,_q;as

Hence the totals of the componems of acceleration
aret — rO* in the direction oP andrB + 210 in the
perpendicular direction.

Now lg- (26) = 2(28 + 210 ) =18 + 210
r dat r

d

1
. Acceleration L to OP is also . 0)
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The above results are collected in a table of reference.

Magnitude Direction Sense

. |Radial Along the In the direction
component of r radius vector |in whichr
velocity increases

. | Transverse Perpendicular |In the direction
component of r@ to the radius in which 6
velocity vector increases

. |Radial Along the In the direction
component of r — r0? |radius vector. |in whichr
acceleration increases

. |Transverse 14 _ |Perpendicular |(In the direction
component of =i (? 0) |to the radius  |in which 6
acceleration vector increases.

Corollary: (1) Suppose the parucle P is describing a circle of

radius ‘a’. Then r = a throughout the motion.

Hence T = 0and the radial acceleration = T — r 62

The acceleration.l to OP

=0-2a20%2=-282

d . - .
"‘(1'29)=%a28 = af

Hence for a particle describing a circle of radjus a, the

acceleration at any point P has the components a 8 along the tangent
at P and a 62 along the radius to the centre.

(2) The magnitude of the resultant velocity of P

='\/f2+(r9)2 -V ee

and the magnitude of the resultant acceleration
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WORKED EXAMPLES
rticle along and perpendicular to a
origin  are hr’ and
the equation to the

Ex. 1. The velocities of a pa
radius  vector ' from a fixed
1 02 where n and A are constants. Show that

path of the particle zs-g'- + C = -2—*:—2-where C is a constant.

(B.Sc. 76 Applied Sciences, Madras; B.Sc. 69 Madurai Uty.)

Show also that the accelerations along and perpendicular to

the radius vector are

uZ 94

2A° P - - - and p(Ar@? +

2u6’°
= )

Radial velocity = _3{ = AP |- s (1)

d 6

Transverse velocity = r “= = u 62 e (2)

Dividing (2) by (1), we have
2
d6 _uné ;. 243 . 5 ar

fF —— =

. Ar 6?
: A
Integrating, — &

L _oZ2ic | zull3)

ie.>7 =9
(3) is the equation to the path,

d*r dr

Differentiating (1), % = A. 2r =

= 2221 using (1)
Radial acceleration
d’r de

—.l:—l'ézndlz—r(——)z
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| 2 2 nd
Sonf - (e 228 - B using ()
Transverse acgeleration
d2gy_ 1 4 2pé
t(]rze)"r'dt(r2 )

1 4d B e o 6 g dr
=T @ (wr®) = T [P0 50+ 8% ]

=F‘f[2r.e“riz + @ . A2]=np [3“—9— + A1 8?]

Ex. 2 Show that the path of a point P which possesses two
constant velocities u and v, the first of which is in a fixed direction
- and the second of which is perpendicular to the radius OP drawn
from a fixed point O, is a conic whose focus is O and whose

eccentricity is% . (B.Sc. 82 Madras; B.Sc. 81, 84 Madurai Uty.)

Take O as the pole and the line OX parallel to the given

direction as the initial line. P has two velocities u parallel to OX and
v perpendicular to OP.

Resolving the velocities along and perpendicular to OP, we

have

u cos 6 . (1)

do ;
r'a--v-usme s (2}

To get the equation to the path,
we have to eliminate t.

Dividing (2) by (1), we have

rde v — u sin 0

dr ucos 9
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2

h

Putting this is (1): 3 = Pr (2
ht d

= o (3)

We know that P = ;5' -

Substituting (3) in (2),

h—z .lﬁ ap r ie. L o
p? = p> " dr P r
Integrating, logp = logr + log A ie.p=Ar .. (4)

(4)1is c]earl;{ the (p,r) equation to an cquiangular spiral.

From (4), %Irl = A . Substituting this in (3),

h? Ah? .
P=— . A= using (4
3 PO g (4)
h? 1., . 1
= “;E(‘;E) 1.C. P « S k
EXERCISES

1. Find the law of force towards the pole under which the
following curves can be described:

(i) * = a% cos 26 (i) r% = 4" cos

N

(iii) r° cos nO = a°

(iv) ™" = A cos n 6 + B sin no.
[Hint: The €quation can be taken as M = Acos(nf + a)]
(M a=rsinne vi)r=asinng i 2 - o

r

Viii = el .
(Viii) r = ac Cmm(”{)1"=.'u=4;osh no
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called an apse and the length OA is the corresponding apsidal .
distance. Hence at an apse, the particle is moving at right angles to |
the radius vector.

| du 1 .
We know that —1:; =u? + (——=)> where u = = and p is
; P* do r
the perpendicular from the centre of force upon the tangent. At an

apse, p =T = -l. Hence from the above relation. we

u
get -dilé- = (0 atan apse.

§ 11.13. Given the law of force to the pole, to find

- the orbit: i
We now consider the second type of problems namely given
the value of the central acceleration P, we will find the path. We use

the ( u, 8) equation

d?u

To solve the differential equation (1), we multiply both sides

u

by 2-(—ii We then have

do
du du d?u e du
e’y o) - .
2"d8+"d8' de 2h3u3 do
et () (T o . OU
'd e d6'de’ ~ hZu? db
Integrating both sides with respect o 9,
2 du 2P
u + ( ja’ = f 2372 du + constant i kL)

When the principle is understood, the solution (2) could be
immediately written down. The method of procedure is illustrated
by the following worked examples.

Ex. 9. A particle moves with an acceleration
W [3au® - 2(a®-b%)u®)and is projected from an apse at @

Scanned with CamScanner

Scanned by CamScanner



distance (a+b) with a velocity -&%. Prove that the equation to its
orbitisr=a + bcos© (B.Sc. 71 Calicut Uty.)
Here P = p [3au? — 2(a?-b?)v’]
The differential equation to the path is

d? u P 2 2 12 3
"t e T h2u2='1|:_2[3au - 2(a2-p*)v’] (D)

Multiplying (1) by Z-dd% and integrating with respect
to © we get

du 7 |
2 qau - U 2 _ 2 w8
u +(d9) = hzf[?:au 2(a*-b“)u’]du + C

4
_2p 3 _ 2 _ja2s Wb >
=3 [ au 2(a b)z]_-t—C o (&)
Now h = pv = constant = p, v, where p, and v, are the initial

values of p and v respectively.

The initial conditions are -

vV, = __\/_p_b and p, = a + b as the particle is projected from
a+

an apse.

viu .
Hence h = (a+b) 2 Vi ie h? =

a+b

So (2) becomes

u2+(——)2=2[au3-—(az-bz)-‘§]+c o (3)

d
Initially at the apse, -d—ue— = 0 and u =

Hence substituting these in (3), we have

B NPT S b
(a;-i-b)2l= [(a+b)3 2(a+b)?

]+ C
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22 (a=b) , o __ 1

= - - + C
(a+b)? (a+b) (a+b)?
So C =0 and (3) reduces 10O

(S50 = 220 - (a?-b?)ut — u?

'\/Zau - (a®-b*)u*=uv® =u \/Zau - (az—bz)u3_—i—

d8
- (4)
ie. ay - do
u‘/Zau w (a® «b2 Yt = 1
. 1 1
To integrate, put u = - Then du =s— = dr
-
'"1'5 . T Al =d06
r \/23 aZ - b?)
—_— = i 1
r ) K
dr s
= — do ie. L - do
\/2ar—(.a-—132)—r2 —(r=-a)
Integrating, cos™! (r—a) =€ + Iy

b
where « is the constant of integration.

If B is measured from the apsc line, r = a + b when 8= 0.
Hence

. a+b-a
cos™! (_“E‘—") =0+ a ie cos'1 = a or o=0.
Hence (5) becomes cos [~ 4 . cos®
or r=a+bcos 0.
Note: i : du can
On taking the Squre root in equation (4) above, 7 7g 90 —icd

be taken either with the Positive or negative sign. We will get the
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