fore taken as negative.

. after ¢ scconds is

CHAPTER 111
PROJECTILE::

Introduction: In this chapter we shy;

of a particle pyojectcd from a point on the ez

« ing assumptions. (a) The resistance offered :

particle is negligibly small. () The accele,
remains constant at all points in the paths.

- consider the motion
‘th malung the follow-

ation  due to gravity

3-1. Vertical motion uader gravity :
projected vertically upwards from a point on
the upward direction as the positive direction.

, produces an acceleration g déwnwards on the partticle,

When a particle is

¥ is there-

TFhe cquation of motion.of the particle proj
upwards from the earth are obtained by substituting — g {nstead of

a in the cquations of motion of a particle nmoving with uniform
acceleration along a straight line.

The velocity of the particle ¢ seconds afte;

' projection is given
by . Y=u—gt

‘ eennd(l)
The displacement of the particle in time ¢ 3 given by .
= ut— jgt? ' )

and the relation between the velocity of projcct on, .md the vclocny

v =yl — g ! (3

3-2. Motion of a part:cle pro]ected Ionzonlally from a
point above the emh Let a

=t ___pa.rudc be pm_;octcd honzontally
P Lo T T with vdocuy u ‘rom a point P'at'a
helght y above the earth.. In this
casé, the force Jue to gravity which
acts vertically downwards has no
effect on the motion .of the particle
“in' the horizont: | direction. Hence
the horizontal v ‘locjty remains con-
stant throughou. the motion.of the
patticle. But ¢uc to the force of
‘Fig 15 gravity, the ini ial’ velocity. verti-
b ©. ) cally dowawar's is zero. The

[ P

0y dr to tlie moving .-

the carth, we regard
The force of gravity |

](.C(cd vertically |

PROJECTILES 3s

particle will have an acceleration g vertically downwards. The
velocity with which the particle hits the ground vernically alter

1 seconds is given by v=gt )
The vertical distance described by the particle is
y=1gn weeenn(5)
also V=2 e .(6)
The horizontal displacement of the projectile in 1 sec is
x =ut ) aexessl)
Therefore 1=" - '
u
Substituting this value of ¢ in equation (5), we have
o= dgX s L(®
u=

In equation (8) since g and u are constant, y is quadratic, func-
tion cf x. The graph showing the relation between v and x3 |s a
p.n'dbnla fig. 15.

3-3. Particle projected in any direction : (}:’htn»u particle
is projected in wny direction from a point on th&earth, the angle
which the direction of projection makes with the horizontal planc
through the point of projection is called the angle‘og EEE'&"“‘“” The
path described by the particle is called its trajcclor) Tie distance
measured from the point of pro;ccuorr‘l?;‘“thc point. where the
particle reaches the horizontal planc through the point ol projection
is called the range_on the horizontal plane. The interval of time
from the instﬁﬁojcclion to thegnstant.the particle reaches the

. horizontal plane through the point é[ projection is called the ring
w‘l’—— . . - .

<~ Let a particle be projected from a point P on the ground with
velocity u in a dircction making an angle « with the horizontal
through the point of projection, fig. 16. Resolving the velocnty ol
projection into components along the horizontal and vertical
through the point of projection, the horizontal and vertical com-
‘ponents ure ¢ cpse and usine respectively, By the principle of
physical indcpendence of vectors, we can consider the horizontal
and vertical motions separately, Since the force of gravity acts
vertically downwards it has no effect on the horizoatal velogity,

Hence lhe horizental component of the velocuty of projection
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remains constant wwughout the motion. The displacement of the
particle in the horizontal dircction in time ¢ seconds after projection
is given by X =ucosa X { veeens(9)

The companent velocity in the vertical direction is Yetarded by

the gravitntlonal acceleration. Hence'the vertical displacement of]

the prOJcctllc in time f seconds after projection is given by

=usina.r—ig2 ... (10)

Thc velocity of the projectile ¢ secords after projection is given

by v=usina—gt = ... (11
Also v2 = y?sin%a —2gy . Gt (12) |

Substituting the value of ¢ from equatlon (9) in equauon (10
. x3
& cosa — - u?.cos?a -

oy —_u,sma g

2
y—xtanaé--—gx s (13) |

 2u? costa
From equation (13) it is easily seen that, y is a quadratic func-
tion of x.. Hence the path of the projected particle is a parabola.

9 @ Velocity t seconds afrer projection.’
e

t the p'lmcle projected” from P reach the point @ on the !

parabola f seconds after projection.
Va .« The horizontal component at Q is
X 7 = u cos , while the vertical component
is reduced to u sinx — gr. Therefore,
\:] : the resultant velocity of the p.xruclc to
©Q Q is given by .
; S S ’V?"“Flcosla A+ (1 sin « — gt)2
= u1—2ugt sina + g212

| S M P X or V = J[u? — 2ugf sin « -} g7
Fig. 16 § s (14)
If 6 be the inclination of the resultant \clocny to m.. horizontay

usins—gr - g
at Q i ‘tan.f = "cosa, IR (15

@ Time of flight. . i Mlﬂﬂ’lf?
—The interval of time from e idstant of projection to the

{nstant the particle reaches the horizontal plane through the polm
of projcct{on is called time of flight, ‘

LX)
%4

or h= 2¢
. Rungc on the horizontal plane.

)

Lt 7 be the time of flight, Then, in this time the verticy, dis.

| tance travelled y = 0.

. Therelore substituting this condition in equation. (10)

O=usina.T—4gT?

Jusin a

erefore ' T=
N
@ Greatest height attained by the projectile.

At the highest point of the trajectory, the vertical companen

of velocity is reduced to zero.

At the highest point, we have
02 =u?sin?a — 2gh

w?sina

R=unucosa.T

2usin e 2ulsin @ cos a _ u?sin 29

, =ucosax . -—-—=
! g

g

.o

The range on the horizontal plane is maximum for a given value

of u, when sin 2x = 1, i.e., when 22 = 90° or & = 45°.

range is «°/g.

Maximum

Ol‘n&w'} Path of a Projectile is a Parabola: let a panicle be
\r(o projectef [rom a point P with velocity . Let x be the angle of

projection, A the highest point_and$% . _ _
. PPy thi- range ‘on the honzonta{,
planeardlct AM be drawn perpendi-
cularto PP’y. Lct Q bea pointon . -u

A W’)L-
¥

the path ol the particle after a time R

i from the instant of projection
(Fig. 1'7.. »

| Draw QL and @N perpendicular
| to PPyand AM respectively. Ithas T L
been alceady shown that 5
’ : AM = W2 Sin2a
2g
'7u=

and PPT— g—sm a.cosa

M i

. Fig. 17

sensns(1)

1::11'(2)‘
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ut
Hence, PAf = iy, o cos a,

Also QL = usina | g
Cl—pp

and PL=wcosa ., bar S C))

AN = AM—-NM = .4A:'A_QL """ (5)

. Sub§tiﬂ_lﬁﬂg the values of AAf and QL in (5a) ee(Sa)

’ u? sin2 ' ' N
AN = 37 — (1 sin o | t—}gn)
=;g[£.s_"ﬁ «_ 1
g A Ay (6)
Also ON=Par—pr, . .
_ #sinacosa e (6a)
\g — —'cosa .,y
=ucos x (m-a-‘ »-t) (
: T Ty 7)
Squaring equation ™,
ON? = 12 cos?a [M .
z 'l .. (8)
Substituting for [" 222 — 0 ] the vailue 24V
g T t the value s glven by
equation (6), we have T
ON*= 12 cos?a ¢ 24N _ 2u? costa }
a x AN 9)

,Ieré a point on AM s.uch lhflt
AS="2 ;os?a: s g .
cquation (9) reducés to- ON2 = 458 X AN T e
N aic:u::x:incgoggrgmts a parabola, having S-hs its focus with
5 ‘Hie vertex at 4 and 1.wing a latus rectum

which is 445 equal to zi‘z___coszf
: 4
WhAlx.tcr. ?phsider the position £ of the p-
1 when its hgr'.zontal displacement x — U, .
. x =
u'cos a

ojectile at any istant
I =ucosa.t(_
or = .
The vertical dical. .-
ettical dlsplacemem ¥ at this instan: is such that
. -}’=-u,,(—t8(z k

=usina R = - x2 : . X
uUCcCos a ‘g u? CO.Z:z— : ) .."..(2)

\

. veeen(1) '

- 'PROJECTILES . 19

I€ this relatiun between x and y is to satisfy the cquation of a
purdbola it should be of the forms -
(x=hP = —d4u (y—k)
In order to make the coefficient of x2 to be onc mulljpny cqua-

£ E— P } 2
tion (2) throughout by =2l oV 2 e get
_ 2t cos?a ¥ L 2ulsina cosa +x?
g g
P 2ul sin @ cos a 1 sin? a cos?a
ie, x1— z
- g ’ g
2u? cos? @ o 14 sin2 @ cos? o
S e 0 ¢ —— -+ —
4 " \
utsin a cos x 2 2u? cosax u? sinZa
or |x————72""C =-_—§— —y—-t\——
o
o RS

Tkis equation is of the fotm
. (x—h2= —4a[y—Kk] .
This is the cquation of an inverted parabola with the point

. 2 cost e s
(I, k) as its vertex and =25 ¢ its latus rectum. :

'I‘_her-:i‘orc'thc path of a projectile is a parabola.

A @ Ra'ng.e of a projectile on a2 plane ioclined to the

horizdatal:” Let a partide be projectéd from a point 4 with velo-
city u in -a direction making an angle
a. with the l}orizonial -plane l.hrou;ii

~A.. Tt is required to find the range
ABona plancinclined at an arigls 8
with the horizontal. The direction of
projection lies in a vertical plane
through A8. Let BC be the per-
pendicufar from B to. the hotizontal
through 4.

cig. 18

The initial velocity of projection u can be resolved into a
compornent u cos(x — B) along the -planc and a component
u sin(@ — #) perpendicular to_the plane. The acceleration due to
gravity g, which acts vertically down can be resolved into o com-
ponent — g sin 2 up the plane and—g cos g perpendicular to the

-+ plane: Let T be the time which the particle takes to go from 4 to B.
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Then in thig ¢ y
18 time .
cular to the p the distance tra

lane is zero.

SO De=y sinfa—g), 7 fgcosp. I

Hence, 7T m 2U8in (a—p)
- Durin

s 8 this time T, the horix,

OS &) remains constant,

is giv Infe -2

S given by AC =, 2u? sin(a — f) cos &
t Cos | T = 18N

,,,,, 12)
' g cos B
The range on the inclined plane
AB = AC — 2u?sin(a— g1 cos it
R;m ) cos 8 g cos'g
gcon the inclined plane '
) [
- un Sinla — 8\ cos o : (3
gcosig T i
Aliter. Durip is ti .
the plane 45, & this time T, corisider the motion na-w.lliel 10

AB = y cos (x—g8 .
T} 2
= YC0s(x—2) 2y sip ("‘_15’) rgsmp. T

) . 412 sin? (a —
~.Z2cos g - —igsing. ”_”"’2‘_:0%’_5;
22 5. . g
== Snla—4s)cos(a—p) _ 2u’sin? (a—2)sin 8
S sty BTy
— sinla — ) . . € : P g
- = S .S — B sin ;
W_ﬂ [COS (a—ﬂ)—‘%gi]
‘2u? st . L
..=_tu Sln(a;ﬁ) cos (a_ﬂ) cos B —sin (a—3) sin 8
" T .gcosp . Y e ]
— 2u’sin(a— Bicos a - o T T
z cost 7 ol

3'6. Maximom Range on the Inclioed Plane:

R=2isin(—p) cos x
i g cosig .

'

'] o
SA

1w
b : R= g———-—cos,ﬁ [Stflf(zl’l‘— )-'—S’ln [ﬂ] '
For given values of « and 8, R is'maxjmumy when
.4 sin 2a—p) =1, i.e., when (26—=p) = 90°

i . ,0r . a == (45% + “3) N,

versed by the projectile perpendi-

- ied  imwvens O]
gcosp

ontal. velacity of the projectile
Hence the horizontal distance described

ET imum range on the inclined pi
v J'y, represents the Taxx " s

. u
eorr g TR T G T E s

Rm =

3.74. For a glven velocity of prajection there are twg
diréctions of prOjecllon, in order to obtain a g{lven range on (g,
fnclined plane and these two directions of projection e
cqually jaclined to the direction glving the maximum Tange,

Now, R= ’gs,  (sin(2e — )= sia ]

"""(l)

For given values of 4, § and u and R, sin B is constant. Ther,
are two values of (2¢—f).¢each less than 180° that can satigfy 1
above cquation.  Let (2z—B) and (202—B) be the two values,

Then 20y—f = 180°—(212—4)

wenrd2)
o B
Hence. ay— % = 90°— (az_ 7)
e (45°+ %‘, Y (45"-}‘—;;)—::,. o3

Cince {45° %+ 8[2} is the angle of projection givin_g the maxi-
mum range, it follows that the direction giving maximum range

bisécts the angle between the two angles of projection that can give
a panicular range.

"~.g. The velocity at any point in the path of a projectile
§s equal in maghnitade to that acquired by it ia falling freely

from the directrix to that pointy.

" 1et PAP, be the path of a pz{;ticle f;rbjectgd' from P. with velo-

" city 1+ «t angle  with the horizontal through P. Let XTX, be the

direcrix and S the focus of the

° L]
paraiola: . X T "\,_‘
. ul cos?a
“hen AT=AS= T
“te height of the directrix:
abov: PPy = MT . P .
' =AM+ AT L M .
ol st ;i:,a ’-‘E-f,%sia : Fig. 19
ut ~

\:5} -d&
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IMPULSE AND IMPACT OF ELASTIC RODIES

/Qf(ﬂ"@,; Impulse of n force: Ifa constant force acts on a body
_Aor a given tnterval of time, the product of the force and jhe time
Juring which it acts, measures the impulse of the force. If F be the

constant foree and ¢ the time during which it acts, the impulse of

(he force is given by J=F ¥t
By Newton's sccond law of motion,
F = ma

here m is the mass of the body and a the acceleration produced.

" Thercfore I‘=”ma:

'I If u be the initial velocity of the body and v the vclocilty after

/ ﬁnn: t a= 4 _; -
Therefore I=m(v—u)

The impulse of a force acting on 2 body for an interval of time

is mcasixtéd by the change of momentum it produces.

3 | ity .
t : When the force is variable,-the impulse of the force is calca-
3
L
|

W

Jated as follows. Let f be the force at any instant of time ¢ a=d
hort time dr.- The impulse during the tame -
lie force remains constant for e

lse of the force during a dcfinite

let .- this force act fora s
dt is fdt it being assumed thatt
Jhort interval of time. The impu

interval of time ? is given by

0o

By Newton's second law of motion
‘ ' dv
=nm =

s dt

' .
' . ,dp d
fherefore T = f n. g J
' 0

==in(v-—-'u)i B

" Hence the impulsc of i force is measurcd by the c}mngc of
momentum produced, whether the force is constant or variable.
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(52, [mpulsive force; Tpe effect of a finite force acting omn:
ab OF & Ninite time {g measured by (1) the displacement of the
body.during the time and (2) the change of momentum produced.
If the' magnitude of the force becomes indefinitely Jarge und the
time during which the force acts is infinitely small, the displacement
produced in the body is negligible and the entire effect of the force
is measured by the change of momentum produced in the body.
Such an enormous force acting for a very short time producing a
finite effect is called ag ‘impulsive force angd the cntire effect of such:
a force is measured by the change of momentum produced, 50131"
cxamples of impulsive force are (1 the blow of a hammer on a pile
(i7) the force excrted by the baton a cricket ball. )

@ 330 Impact between two smooth bodles: It is a matter of
common observat Y

fon ¢hat, if smooth balls of different materials
like plass, ivory and stee] are dropped from the same height above
a marble floor, they rise to different heights after rebounding. This
shows that the velocities with which the different balls rebound
from the floor are different, even though they strike the floor with
the same velocity. Again it will be observed that the velocity of
rebound also depends on the nature of, the material of the floor.
This property of bodies by virfue of which they rebound from the
floor with different velocities is attributed to their clasticity.

When two bodies’ like two smooth si).hcrcs inpinge, the only

force acting at their point of con'tac;'; is directed along the common . -

normal at the point of contact, ’I'}}c.fqr';cgsl;g:_twq_en -the spheres by
* Newton’s third law of motion dre Equhl'ilnl‘magnitudc but opposite
in direction. Consequéntly the gain of momentum along the com-

' mon normal for one smooth sphere must, be equal to the loss of"

momemum for the other in the same direction, Hence the tota]
momentum of the two spheres along the common nérmal before the
impact must be equal to the total momentum of the system after
impact in the same direction
of conservation of momentum,

Impact between "Lwo'smootli".sphérck {is'said t6 be direct, It
the direction of motion of cach. smooth ,sphere, before impact, is.

I th vt o ool 2t et Bt o hied i e

. This is in accardance with princpile
e : :

. llowing prigc;
between two smooth bodies, the fo = Prncipleg
of 'm; act be

! od: : |
mu .t 'ways hold go of the two bodies after impag
um rmal must be equal to fhEir oty
ed along the same direction.

1. The total moment i
measu ed along the commo:a;Sur
mormes tum before impact m s 0 ot gl
: lative velocity of the sphere e vq:ﬁl

e bears a constant ratio to e o opo ¥

o i .
comman normallon the same direction nél cent of fesﬁlu(iong:r
et o 'ogis known as the CO; ?tterc !

is constant ratl A he I )
;r:;:ﬁ:::i ,:m of elasticity and is denoted by e o sphendi
: ere i sentjal action between seh
3. There is no tang m this it follows that due to the impag,
o ! impa
S velocity of each sphere in a direction
e their point of contact.

the point of conlact:
theee i+ no change 1n
perpendicular to the common norm
) eres: Leta
( \ i impact between two smooth s?h L
(.5 Direct imp A T elocity un, il
smose/ sphere of mass s r;:onngf il 2 e L
th ere o > . elocity
ircctls on another smooth sp ) b
(i"?";ﬂt- ¢ same direction’.. Let e be the cocfﬁnc.nt of f;rscte( a];ul
N ' y . . s no
betweer them. Since the impact is direct, the:; : :-mm[ commg
the con mon tangent between the two spheriat‘m ;,?1 e
Hence. the velocities of two spl:xercs after : : i 1_2( b
the corimon normal at the point of contact. L thee v
bev, and va. By the principle of conservation o o
luta; momentum after the 1mpactalong~thc §011|T(;x:rt;<::|;mpact e
point ¢ “contact is equal to the tbtal moinentum impa
the sarr ¢ direction. iz

nvy = vy = iy 4 Ny

Fig. 26~
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By Newton's experimental law, the relitis ¢
the spheres along the common norma|

IMPULSE AND',IMPACT OF ELASTIC BODIES
Velocity '

13
alter inpacy "weey . ' common normal i
ive velock Lps S equ is cqu s
zimes the rclautc \f.lQClty between them along (e 's'::\" :1_.\1 W e i 16 the $ame dircclio;\l al to the total momentum before the impact
put is opposite in sign. PENE direetyg), . _
M= = = ¢ (uy—uy) ‘ IMVy €os 0+ myvq COs ¢ = myuy cos a+m,uzc§s B ... )
Multiplying equation (21 by 1, and (1) addingro (2)
, (= MV ve=uy (1 4 - oy —enpy)
= M (l+ e+ u ()~ emy) ! |
(4 ) T 3 ,
Multiplying equation (2)'by s and sublr:lc:ing from (l.' | !
tm + ) va =muy (1 +e)+ u, umy—emy) ' X
_ nmuy (1+ e+ uy n; — eny) .
= 7 . \
ny <+ ny » ) SENE i ‘
Equations (3) and (4) gives the velocities of two sp} i l\ 8 ‘
impact along the common normal. - pheres after l
CoroLLARY 1. If the two spheres are of cqual mags and ar Fig. 27
= ¢ Q 4
perfectly elastic, my =m; and-e = 1, therefore v, = y, and : :
- . o= ' =t = Newton’s experimental law
The two spheres interchange their velocities af e; impact, - 1 By 7, ¢OS Up—;'z cos § = —e(u; cos x—u; cos f) enl2)
' e . o Che .
i Coﬂ-l}m&(, 5 h;l'h : u!:_pulse ofithc blowin lh.e S_phcre I mass: Since therc is no tangential action, there is no change in the
m is cq o the change c} momn(:ntum 1;roduocd in it. oy " velocity of cither sphere perpendicular to the common norc-al.l
= (v —uy) . ) ) i h : -
_ numa (L 4:.{);(3,__1,! fo R _— Therefore 1y sin = wsina ......(i)
- iy ' v;sin 9 =u; sin B veernn(4)
) 3 Sy g N . Multiplying equation (2) by mzgnd adding to (1)
.. .The impulse of the blow on the sphere of Mai o O ... Multiplying equation () by ni2Q0¢ acaiag u
opposite tégﬁ'a't‘-'on my T AR 9, cr f ,E*J:{'S:,f'!_zﬁ},s..,f(l‘lf ! 3% {/ . .7 (mykma) vy cos G =mauz cos B.(Ikelhuy cos @ (m—em) ......(5)°
) T s L ' L /. Multiplying equation (2) by n1, and subtracting
CoroLLArY 3. If the two spheres: are iiclastic, ¢ = 0 and . . 1pvilcog,5 ¢q.=ml.u,<(:o)s uy(l-;-e)-!-uz cos f (ma—en) o..eea(6)
, 1hcrcrorc,35. = ;. ' : ’ T . . v; can be obtained by squaring (3 and (5) and adding
R " v, can be'obtained by squaring (4) and (61 and adding
Oblique impact between-iwo smas:a spheres; Let a ,
sm

ooth sphere of mass m, moving with vcldciﬁ,'n‘ impinge obliquely
on-a smooth sphere of mass m, moving with 1 docity v,. Let ‘the
directions of motion of the spheres before un6 - make angles @ and
B with the common normal at their pointofivo taét and the velo-

0 is obtnined by cividing (3) by (5) and ¢ by diving (4) by (6)
‘CoROLLARY 1. Ife=1and my =y
v, €0s § =1:; cos B and v, cos f =t oS &

iy : ; o OR . N . ‘COROLLARY.2. The impulse of the blow on my
cities of the spheres be v; and v, making agge ¢.and o. with the = T == m.v, coS § — uy cos &)
c«imm?n normal after impact. By the pr'lm’i‘ l.cz of conservation | . | . ‘ :nlnh(l +e\(vl wsa_u‘ cob a)
of momentum, the total momentum aftef tie ‘impact along the = e

i , i , . )
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%

2 sc
P
=-.The im: ulse ol the blo\\ onm l

' on M -~
impulse-of the blow ey
impu} e '
pL

D ohére th fixe
l"mplc( of a smooth sphércon f smoo

stitution is e, impin A
ggr: <lmoolh fixed corizontal plan
PQ. Let Abethe
and AO the common norm

oint of contact. _
’ Letu be -the velocity of .the
i i i n

. sphere before impact in a directio
making an angle & with the common
normal. Let the velocity 'of . th;
sphere after the impact be ¥ incline

Fig. 28 o at an angle @ with the common

. ~‘normal. : .

al at the

o

By Newton’s experimental faw T
vCos f—0 = —¢ [—u cosa—0]
"Or vcosf@ieucosa — i)

Since both the sphere and the. plane are smooth, there is no
chaage in the velocity of the sphere in a direction perpendicular to
the common normal. : '

Therefore vsin g =usine ) wen(2)

Squaring equation (1) and (2) and adding "
E V2= u? sin’a'=ghicostg " L

or v=u {(sin2a + e? cos’a) - et ......(3).
Dividing equation (2) by eguation I . .
: 1an a A
tan§ = T S 4)

CoroLLARY I. If ¢ =1, i.e
Y=uvand § =q, Thus,
obliquely on a fixed 'smo
magnitude but (he directi
make equal angles with the
. COROLLARY 2. Ifa —
Impinges directly on a gm

, if theé}p};erc is_perfectly. clastic
oth".plang, the " velocity is unaltered in
on of ‘motion.-before a
comiton ngrmal.; =

ooth fixed plan,

| !
& , e

qual and opposite to the

d horlzon-
¥ »cocmCic%éwn;gr
- of mass.m and-whose c0Ss oly 7
Tt & smooth sphere ingé obliqu

o

point of* contact

il a ‘perfectly ,clastic_sphere impinges
nd after impact
“n I

0,0=0 ﬁhd‘v% eu. If a sméblﬁ sph'crc
& 1t rebounds along the

TTT SLAS1IC NODIlEes =
commHn normul w
before impact.

g . . 25
ith its velocity reduced to e times jig Velogy.
L

ty

CoroLLArY 3, If ¢ = 0, i.e., if the sphere is inelastic

0=0andv=ysina,

. > f_ff,‘:’u 12}
/1 clastic smooth sphere after oblﬁt.:c impact with 4

s
fixed y lane slides along the planc with veloci§ o %in a. Mook,

CoOROLLARY 4. The impulse of the pressure on the sphere & '
measured by the change of momentum produced in the sphere.
I'=mcosf —(—u cos a)]
ni (v cosf + u cosa) = (encosa+ u cos )
mucosa (1 + e).

I

T e impulse of the force on the plane is equal and opposite g
the i sulse of the pressure on the sphere.

CHROLLARY 3. The change in K.E. of the sphere due to impact
on the plane is given by im (v — u?) R
=im @ 4+ u)(v—u)

Bum@ —u)=1I the impulse of the force of the Sp}iefc on the
plax;c.

i Thercfore change in K.E. = (v 4+ u.
| @ Loss of kinetic energy due to direct impact betwcen

two oth spheres : By §5°4, the impulse of the blow [ on the

spherc of mass m, is in the directio} 0,0, while the impul<e of the

blow cn m; is also 1 but is in the direction 050y v v
T w¢ change in K.E. of i, = imy (2 —u?)

= gy — Wiy + uy)
But 7 =mp vy — uy) i

“Therefore change in K.E. of my = }I(vy + 1y)
The change in'the K.E. of the sphere nia
= {n (W2 — u2) LMm2 (v2— wa)(v2 + u3)
But mj (vo —up)=—1 :
Therefore change in K.E. of ny = — }1(1; + dgh————
- ‘Total change in K.E, = §7 (vy—u)) — {1 (1 — 103).
' = 31 [(vg — ¥2) — (u — u3)]
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=} [(ni— v2) + (uy — u3))
_ mymytl — e?) (uy — v3)?
2Amy + my)

Loss K.E. due to direct impact betwee : the spheres
mymy (1 — €?) (wy — u)* -
2 (g4 mty) = 4/ (1), — u) (1 —e)

—
-—

CorOLLARY 1. 1f the spheres are pe ‘ectly clastice =1, the
v . .
loss in K.E. 15 z¢ro.

COROLLARY 2. If the spheres are incli tic e =0,

Loss in KB« Mitia(ty - ta)?
T 2 (g A )

Loss of kizetic emergy due to « blique impact between
Since the velocities of the ¢ »heres perpendicular to
the common normal remain unaltered duc to the oblique impact
between the two spheres, there can be no lo s in K.E. perpendicular
to the common normal. The only change i 1 K.E. will be along the
common normal. An expression for the los - of K.E. due to oblique
impact between the two spheres is obtained 0y substituting w, cos ¢
for u, and u, cos § for uy in the expression obtained in §8.7. Loss
of KLE. due to oblique impact. ) :

mm{l — &) (uy cosa — 'J_:LCOS,'E_}E
B - 2my + m)

"~
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) @ Centripetal and -centrifupa) ¢ "
epable’a particle ol mass m {3 describe a ‘, ::r:r
A crcle o

upiform speed v, a force is required to j; ‘0.

radiug ,
. w »
upi rt the norma| uccc‘l‘ch

=00 mred, |
. [} ’ A
should be directed towards the centre of the his force

centripetal force.l This force can be prodllcc; lriclc ::pd ‘is Kiown g,
_For cxample, wh.cn a particle tied to one end .of“ ¥varicty of ways.
| round, the centnpcta.] force is supplied by the t a.smng is whirled

In the case of a cyclist riding with ey cn;mn of the Btring,.

road, the necessary centripetal force js l)ro. I_:;Zd along o ¢ircular

A . 5
ration. ~ The magnitude of this force is L

friction between the tyres of:the wheels and : he by the foree of
the ro

of a planet moving round’ the A ad. 1In the
. . sun In an = : ] Case
orbit, the centripetal force is provided by‘»?:ro“{‘a?e_ly éjrcu]ar
exerted by the sun on the planet. Sﬂwuauonql force
) By Newton’s thxrd.l'aw of motion, for ey :‘}" setion thel

e an equal .and Opposite reaction, Hence th: re must a ere must
on lht_: particle dCSlebll’lg uniform circular notion aSO be acting
?pposuc foyce. This force is known as cent ifuga » an ?qual and
is always directed away from the centre, SCACON and 1t

: , . Fora i .
end of 2 string -and whirled in a circle wiiy uujtler‘;x u"scséctg Tllxe
, , the

stone in turn exerts an equal a i

nd opposite orce o

. . n

is on.account of the centrifugal reaction, the 1 the lund. It
centripetal force and centrifugal reaction arc
opposite in direction. '

tring is kept taut. The

7

‘-‘6’}/ Hodograph "?'-Uéf. il;'i"" el P l I

! aph I Let-a"iparticle P Sumoving: lgng ad
c.:urved path, If from a ﬁ:scql point O in the :am?ixlai:{:x?l?ﬁe :?Y
is drawn parallel and proportional to the spe d of P, thcn\‘u\‘c cuwQe

traced out by 0, as P moves in th thisce: f
oo p. : e cpa h is ciiled tht hodograph of”
The hodograph of a_ particle moving - ith }‘tinii‘&rm :\lvclo'éity-

along a straight path is fixed point Q at a dis nce v.from 0.
The ,hodograph‘ vo‘f a pgrsl‘plp _m_c.)_v.ix;g :qug a: cur\le_'__y(r_ith:

. H 4 !
cup s AR GE
A A

speed v is another curve whose radius ‘is proportional to ' the -

magnitude of the velocity of P. -

It can. be shown that the velocity of the point @ inithe
hodograph at any instant, represents in
magnitude and dircction, the accele-
ration of P in its path at the same
instant. Let Py and P; be.the positions
of the particle P in a short. interval of Qs P2
time &. Let 0Qy and 0Q:; be the Q “
velocitics ¥y and v, of the particle P at
P, and P,. Then the curve Q1 Q1 is the
hodograph of the particle P in its path-

In time &, the velocity of the particle P 0
changes from 0Qy to 0 Qa. Now 01 02 Fig. 9

“ represents the change of velocity of the . .
particle 0 in the hodograph in the time 3t. Hence the acceleration

Ve,

Py

of Prinits path is Lt 2 — 0 Q'?,Q: = velocity of Q in the hodo-

graph. Therefore the -velocity of @ in the hodograph represents
the acceleration of P in its path. ‘

¢qualin magnitude but.

; @ . -Expressiod for normal acceleration by the bedograph
metbud; Let.a particle P move along a circle with ceatre O and

radius r with uniform speed v. Let P, and P; represent the position
of P before and after a shost interval
of'time .El. Let 0 Qv and 0, Q2 be
drawn from O, parallel and propor-
tional to the velocitics of the panticle
at P, and P, respectivdy. Then

. - Q1 Qpis the hodograph of the particle

F“w : P.. {"Q!;Qz is an arg ol‘ a ciff:le of

o ‘radius’v. . The velocity "of Q in the
hodograph is 0'5?1 . If the angle P, OP, =134, the angle 0, O; 02

“ is also 0. '

Now arc PiPy = r&0 and arc Qy Q2 =W8
arc 0,02 _ w88 _ v

arc PPy — 180 = eeenns(1)
Therefore EY—C—Q—'&'/“—‘:—P'E’c L eenne(2)
5t } - T
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When the speed of rotation of the shaft in

p rise moving the collar D upwards, “This clomy S Weleht
2dmitting steam to the cylinders partially and -lhu:“: the valve
' ©

supply of steam and therefore lowers the specd of th duces the
;t.regoins its normal value, ¢ englne untj

simili;flyv,“'hcn the speed decrcases, tic w
gescend lowering D. This opens the valve so that
admi“‘:d to the cylinders until the speed is b ought toml;‘rc o
v * yalue. The govermor of a steam enginc m1y be re "3 il
gJouble conical peadulum. e g

’ Motion of a cyclist along a curv d path: Ifa 1i
9 /is (5mégotiate 3 circular path, he invariably l:ans from the vzlC al
1owards the centre of the circular path and thus presses the grotlxcan:
i ap iaclined position. The horizontal component of reaaionif
Be ‘ground supplies the centripetal force necessary for circular
motion.

AB represents a section of the cycle with the cyclist; D the 1
- centre of the circul:+ path, mg the totar |

.wcxglft_ of the circle and the cyclist, R the !
reaction of the giround and .0 dhe incli- |
nation of the cycle 1o the vertical, - i
The vertical ¢cmpopent R éos 8 of

the reaction balance s mg the weight of the ‘5
cycle and cyclist while -the horizontal |
component of the re \ction R sin ¢ supplies!

moliOE}". ‘f:"n-'.’.'. s o o
Fig. 43 i .

' Therefore “R cs 8 = mg
e ,

and Rsalf= "—:_—V

)

where v is the velocity of the cyclist aﬁd r the radius of the circular

path, Di,viding equation (2) by equation (1)
! ‘ 2

rg.

{ _tan 8 =
Equation (3) gives the incliation ‘of thc planc of the cycle to.
the vertical in order that the cyclist may describe a circular path of -~
radius r('with a uniform speed vo &+ o ¢ y ;

cighls A and B :.-.

the certripetal forc: needed for circular|

I

i

I ¢ ) (i

increases and r decroases, @

g ion o find that as v :
From cquation (3) we fin felling to the ground, if he

increascs and the cyclist runs the risk of

takes a sharp turn whilc moving with 2 great specd.

4 ~ g Y d a Curved Track:.

d flway Carrizge Rouo

h\)%\dotlon L el und a horizontal circular track,.
¢ .

D

) tailway carriage moves 10
the nccessary centripetal force for
executing circular motion 1S SUp-

plied by the ﬁrcssurc’ excrted by
the rails on the flanges of the wheels.

Let ABCD represent 2 vertical

Cc

&

section of a railway carriage thro“_sh - X1 R Mg Xz Re
the line joining the centre ofgravity =5 A B
.G of the carriage and the centre O . Fig. &

of the circular track of radiusr. Let g ]
A and B be the points where the wheels, of the carriage touc the
rails. Ry and R are the vertical reactions and X! .and X2 the
pressures of the rails on the flanges at A and B respectively fig. 44.)
Let v be the speed of the carriage. Now, Ri+ Rz bx}lnnccs the
weight of the carriage Mg and X1 + Xz supplics the centripetal force,
required for circular motion.

v Hence R +R1=Mg
My
X1+ Re=—"

The equation bélds_ good- also in the aase of a motor car
running along a circular road-way with a ycloci_ty v. In this case
X;and X; represent the forces of {rigtion between the tyres and the
ground. . .- .

Level Track:
(}-\'{ij) should.

act'through'the centre of gravity G of the carriage. ‘This is not the
cage in practice as this force acts at the points of contact of the
_wheels on' the rails. . - /Consequently, tﬂc momeat of the centripetali
force about G has a tendency to upset the carriage while necgotiating
the curve at high speed, Let X be the resultant of the pressures of
therailsat A.and B. The resultant force is equal to 8 single force:

ctting of a Carriage on a Carved

T . y - 3
Zntripetal force necessary for circular motion
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r08 DYNAMICS

X at G in a parallel direction together with a couple which tends 10
Toats the carriage in the direction ABCD. I h be the height of G
above AB and 24 the distance between the rails, thc moment of the
to upset the carriage is

. Xihe MV,

I y

But the moment of the weight Mg of the carriage about A =Mg.a.
counteracts this tendency of the carriage to upset.” Hencethe pre-
‘Venting the upsetting of the crriage, we must have ' .

. Mags‘#.h

.§2<%‘31;°i. V< | (gg_r.)

Covple’that tends”

A,

The tendency to upset is least, if q is large and 4 is small. For

given values of g apg h, the tendency to upset is further reduced by

n.:aking the speed of the carriage v small and the radius r of the
carcular track large. :

Since there is no vertical motion
Ri+Ro=Mg - (1)

Taking moments about the point where the vertical throngh G
. meets the ground, we have : '

Therefore R, —~R, ;}‘:—f h

From equatjons (1) and (3, 7. " |

- me

" and Rz-='%!(g - —) :"

From ;é;ﬁatidn (5:) we ﬁ;il'ﬁxat it "
This means the inner ﬁhﬁéls‘.qo.nqg'g;scft" ny pressure on the rail,
Con.sc'quc,';xd“y,‘i..f )fﬁ\>_, /5;_“ ,;thc' Ca#xagc wxll h?vc a -tcndcncj to
upset tow!nrd"é\\!hc outside of curvcd’rnil(v,ayl !

N \ . Y

{p,)t E #OTION ON A PLANE CURVE 1%
\F

%’,‘; :to the horizontal, and there is no

4 ked wp carve: Jp W

. Motlon of a carrfage on = ban )

raildeate 1 1id along a curve at the same horwonlt':l l;:)Vcl, the centy;.
p b o = i —

potal fore required for circular m s teyr
€xerted by the rails on the flanges of the wheels. By .Ncwton s thirg
law, the fl inges of the wheels exert cqual_ and oppfos:t'ci p;em"c =
the rails. This would result in the wearing out of rails due to yp,
large amo int of friction that it is called into play.

To avoid this wearing out of the rails, the plane of the trag
is tilted svitably so as to completely eliminate the flange Pressure
on the rai's, This is done by tilting the sleepers up so that iy,
outer rail is raised above the.inner one, sO that. the ﬂ?or f’f the
carriage is inclined to the horizontal. The normal reactions in thj
case will b inclined to the vertical so that their Yertical componepg
M&m&of the carriage, while the horizontal componepg
supply the necessary force for circular motion.

Let 4 3CD be a vertical section of the carriage through the line
joining the centre of gravity G and
the centre O of the circular track.
Let ‘the oater rail be raised over
the inner, s0 that the floor of the
carriage 4.7 is inclined at an angle §

lateral prossure exerted by the
Tlanges of 1he wheels on the rails,

If Ry 1nd R, be the normal re- ., . Fig. 4§
.actions at ihe inner and outer tails, 7 .

Regolring vénically, we hnve

(R1+ Ry) cos§ = mg ()
Resol: ing horizontally, we have . ' _ ,

(Ry 4+ Ry) sin§ = mv3[r ceeenl2)
wheré v is - he velocity of the carriage and r the radius of circular
path. _ : .

Dividi 1g equation (2) by equation (1), we have *

-tang =vrg i)
Equat >n (3) gives the angle through which the slccpcié aro to

bo tilted fm the horlzontal 60 that there i5 no Iatera] fange pr
surc on the rails,. ' .
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If, however, a Lamagc moving with a « ifferent Vdomty has 1o
pass round the carve, it is not possiple
to eliminate ¢ vmplctcly the lateral

‘ prcsshrc exerted by the flanges on the
rails.

Assuming th it the height of the rail
over the inner is wdjusted so that there is

no flange pressuie for a critical speed v,
let F be the addmonal lateral flange press.re acting from B to 4

for a carriage moving along the curve with  velocity V.

Thcn, resolving vertically and horizont iully, wehave
(R1+R2|cos § — Fsin § = mg
and (Rt Ry) sin § 4 F cos 7 = mV3|r srenn(5)

Multiplying equation (4) by sin § an:! equation (5) by cos §
and subtracting, F = #-zoos §—mgsin § = " cosé

Fig. 46

(V2—rgtan ).

But tan § — E’- Hence, F = 7 ‘1‘5—"1 (V3—p2),

=
If ¥V > v, Fis positive and the additic nal lateral pressure acts
along B4, i.e,, the pressure is exerted at th outer rail.

If ¥ <v, Fisnegative and therefore a ts along AB, the flange
pressure in this case is cxc:tcd at 'lhc inner -ail,
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Therefore 7 _ Mg oS § 7_"“"

> mn o
o Te Tt mgcoyy
’ --.--.(2)

Wriling

‘quation (h :;nd

m

. T=-l [u!_*_gu_l)l (
...... 3
Equation (1) and @3 )

) 8ive the velocit .
tension of the string at p. ; veloc ~) of the partjcle and (he

From equation 1) we find that y

. et dec
attains a minimum valye at the hig

“ases as i increageg and

hest point B of the ¢
i ini [
Denoting the minimum value of v by vs, we have ircle,
5 C VB = V(u? —4gl) @
Also from equation (3) we find that s s § .
- B i \ncreases . T
and attains a minimum value at B. If e denote this ‘\iv:lctt::ast:;
m - 0
Tp we have Ty = 7 v(u? =5y |teids)
(&) If the partii:lc is to p:rl‘orch' [ mpfctc rcvolulloe ;
: . ; . bot
v and T should not vanish anywhere ia the circular m‘?‘; ﬁ»:":
A to B. ' ; L |
Fory not to vanish, the conditionis ;.
e /. 4/"g(;_>,_'(_)‘,,,‘ RIS
: - ’ or u? >ifdgl - TR
or u>J& Leeee(6)
For T not to vanish v '
m ’ PR
T %0
or uts> S .
or u>Adgl - o sl
) . i r‘:[:-:)\'. . 0 A ‘,'-"_.
.Since the first condition is co‘vcrcgl.._l y‘.th'c;,!‘»c,cond, lh_t;?gmclg -
will be able to describe complete rcvol;lt.aqs_xf, \ .
4 ¢ €3 > '5g, i S&
{ s’ ,
VoA L

\
4 o

or-uf:-#??l

:‘\-\

MOTION ON A PLANE CURVE 1s

10w = §5g1, the particle Just performs u complete revolution,

(¢ If u < y5g1, the particle will ecither oscillate about the
lowest point A or leave the circular path altogcther.

Let'the velocity of the particle vanish at a height i then
' 0= ut—2gh,

2
or = ;E

The tension of the string vanishes
at a height /r given by

" The-particle performs oscillations
about A. if v-vanishes while 7 remains
positive i.c., if fy < Iy

Ut it ogl
e ifs—<
1t 2g T

. or -ut> 2g]

Fig. 30

'

or u> (3gl ) weeen(8)

The particle will leave the circular path, if T vanishes while r

is positive i.e.. if by < Iy . . '
. L w + &l ‘.‘i

i.e., -if- < ; < 9%
fe., ifu?<2gl

o i T et T o <.J2gl . '.-.-......(9)

. "To summarise, if « > \@, the particle will exccute complete
revolutions, S :

Ifu > v2gl and < v5gl, the part’gt:»l‘é’ will oscillate about 4.
If u_,</42_g! the particle will lcave the circular path.

6'«15/. Effect of the Earth’s rotation on the value of the
acceleration dwe to zravity: Let OA and, OB represent -the
cquatorial and polar r:dii of the carth respectively.” Let P be a
point on the carth’s surface whose latitude. ) :

. LPOA=.
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A 3

N

Consider a particle of mass m ‘situated at P at latitude

pull acts nlong £0. Let this force

be represented by PD. As the carth

rotates about its polar nxls- with

angular velocity w, the particle which

shares the carth's rotation about its

axis describes a .circle with C as

centre and pC as radius. I the

radius of the carth is R,

PC — REOSX..

Toenable the particle at 2 to execute
- circular motion with angular velocity
: @, the centripetal force nccessary fis
mR cos X . w? along PC. Let this be represented by PE. This
centripetal force on the particle is supplied by the carth’s pull mg
on the particle. Complete the parallelogram P.EDF'. Now £F repre-
ssnts the effective pull of the earth. Let this cause anacceleration
g’ along PF. Resolve mg along PO into two: components, onc
mg cos A along PC and myg sin A perpendicular to PC. Qut of mg
€os X a part of it namely ma? R cos X to produce centripetal
force and the rest force along PC is

mg cos X\ — me? R cos \.

Fig. 51

.

The'component mg sin X is not affected by rotation,

Thercfore, the effective weight of the body mg’ along PF is
mg" = [(mg cos A —ma? R cds A) + (g sin A )¢
~=um[g2cost A + o' R? COSLA*= 2gw? R cost )\ 4- gisin? ATk

o ¢ [1 -2 A8 X ]
. " 2R cos? \ o I .
= g[]._ T]ch]ectmgwj term- ......(10)

From equiition (IO!,_ix is easily scen that, if "Rt = 5, ;,-.' - 0

. - 3.
In this case, the entire force of gravity.on the particle will be used up

in providing ‘for ﬂ]{: particlé cc_r,llripcml force to cxecute circular
. motion and nothing .is lcft to’ o#_crcqmcr'thc weight 'of the particle. :

Thus the particle.on the equator will fly off from thc;earth’s surface.
It can be shown that thc’,nngular'-\gclbcily’wi'tll' which® the carth

"should rotafe round its axis in order that'a‘particle on (ho cquator

oo LS '

A. LPOA = A. The gravitational

|
|
f

MOTION ON A PLANE CURVE 1

may ly off, is about 17 times the normal angular velocity of the
carth

@ Variation of g with altitude : Consider a Unllll mass
on ths surface of the-carth of radius R, the mass of the c;an being
M. et g be the acceleration due to gravity on the Sur]ace of the
carth  The gravitational force on the unit mass duc to the mass A

. G
actin ¢ at the centre, &= gt
LsuUe 78 UL u\.u.;uai;un

L.ONBIUET LIC DALIC WL Wadd> al &l @

M
duc t) gravity is g o= '(Tc-TIT)Z . e (2)
&_ R R?
g R+ A RIA+ARP
St by
g~ (’ + R)

g1 = g(l—?;)whenh<8

g decreases as altitude increases.

Example 1. A body of mass 4 kg rests on a sniooth horizontal

plane and is connected by a rope of length | metre to a fixed peg on
the plane. If it is whirled so as to execute circular- ma.lion on the

table :naking 240 r.p.m., find the tension of the rope.
No. o rev. per scco.nd = %0= 4;/ ST .
‘Angular velocity of the body ™~~~ .
= 2r X 4 = 8= radians|sec
* C:ntripetal force required for circular motion
=mra?=4 X1 X 64xt = 25672 N
T ais force is obviously provided by the tension of the rope. _
Therefore T = 2562 N
‘¥ cample 2. 4 cqrd2 metre long can just support without snap-
ping ¢ welght of 10 kg. ' If one end of the cord is attached to a fixed

pegol a horizontal table and a mass of 4 kg attached to the other end
and is made to revolve in a circle on the table with uniform angular

velocity about the fived point, fird the mavimum possible velpaity for

the mass.
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- /EqR: 2 0.9) (64 x10) = 6369 ms
o 3= 3

&, VARIATION OF g WITH LATITUDE OR ROTATION OF THE EARTH msimanss

Let us assume that the earth is a uniform sphere of radius R revolving N
about its polar diameter NS (Fig. 6.5). Consider a particle of mass mon the B 40‘/\ P
surface of the carth ata latitude . If the earth were at rest, a particle of mass 4
m placed at P will experience a force mg along the radius PO towards O\ A v A. E
Let o be the angular velocity of the earth. As the earth revolves, the o
particle at P will execute circular motion with B as centre and BP as radius.
A centrifugal force will develop and the centrifugal forcé acting on P along
i A s
ay fin = mBP. ©°.
BP. away from B = BP. e ¢4

=m (R cosA) @ ("> BP=Rcos )
=mRolcosh
Force mg acts along PO. Resolve mg into two rectangular components (i) mg sin A along PA
and (i) mg cos & 2long PB. Out of the resolved component along PB, a portion m R ®? cos A is used
in overcoming centrifugal force.
Let the net force be represented by PC. Then
PC=mg cos h—mR @? cos A and PA = mg sin A.
The resultant force (mg’) experienced by P is along PQ, such that
(PQY = (PCY + (PA)* or PQ=[(PC)* + (PA]'"
ie., mg = [(mg cos A—mR @? cos )* + (mg sin )22
1

2 4 2 3
= mg[1+ R (;) cos’ l—sz cos? }»]
g g
. 2RW? 2 _ 2 4
mg' = mg [1 = —;r)—cosz l:‘ [neglect'mg S t;) cos? A |
g
[ Ro?® cos’ A]
- mg|1-——=
g

( -; Rw¥g is small, its higher powers can be neglected)
R @*cos? 2
4

Example 6: How many times faster than the present speed would the earth have to rotate
about its axis, in order that the apparent weight of bodies at equator be zero ? What should be the
new period of rotation ?

2.2
We have g= g(l— M)
4
where g = value of acceleration due to gravity at latitude A

At the equator, A=0and .. cos?2A =1,

g - g[l—ﬁ)
SRR ¢

Hence,

E|

i 2.

{ /VﬂRIATION OF WITH g ALTITUDE

 (Fig. 6.6). Mass of the earth is M and radius of the earth is R. Let g be tie acceleration
. due fo gravity on the surface of the earth, Then

Jaton urs
2 - 0 vl "y
Now, o Gl (YL g
g 9.78 86164) 289 ) -
In order that the weight of a body at equator may be zero, the value of g should be zero.
"2
If the new angular speed of carth were @', then M), 1 -(2)
o'\
Dividing (2) by (1), ((—) =289
0}
o
or (;) =289 =17 or o' = 170.

Hence the carth should have about seventeen times the present angular velocity in order that
Bpirent weight of bodies at equator be zero.
~ Now the carth makes one complete revolution in 86164 seconds. When the earth rotates 17
lines faster, its new period will be 86164/17 = 5069 seconds = 1h24m29s.

Example 7 : I[f the earth were lo cease rotating about its axis, what will be the change in the
Yalue of g at a place of latitude 45°, assuming the earth 1o be a sphere of radius 6.38 * 10° metres.

i< (1_ Re? cos’ l}

We have,
g
[where g’ = value of acceleration due to-gravity at latitude A] ie.,
g =g-Ra?cos?:
[where g = value of acceleration due to gravity, if the earth were at rest).

Hence, g—g =change in the value of g = Rw? cos? A.

Here R=6.38x106m'u)=—ﬂ—mds";

s ’ 24 x 60 % 60

1 -
A =45°and . coszl=5 (g-&)=?

2
2n 1
o 6y x [ ——2—| x= =00169 ms.
g8 (6'38)(10))((.24x60x60} 2 e

Let P be a point on the surface of the earth and Q another point at an altitude it

The force experienced by GMm

: =mg= ————2 '"(i)

a body of mass mat P R

The force experienced by| _ GMm‘2 (i) Tig. 66
a body of mass m atQ (R+h)

where g’ is the acceleration due to gravity at an altitude A,
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+ Dividing (ii) by (i),

Properties of Malter

E =L— R nY?
P T )
(-2
R
(12

or g’_g(l R)

This shows that the acceleration due to gravity decreases with increase in altitude.

) Example 8 : How far away from earth does acceleration due to gravity become one percenl
of its value at the earth’s surface ? Assume that the earth is a sphere of radius 6.38 x 10° metres.

Acceleration due to gravity} GM
=g=

[neglecting higher powers of 4/R]

on the earth's surface ra
. ' . GM
Acceleration due to gravity at a height h=g'= -
(R+h)

Here, R=638%10°m; g =(1/100 )g
g _ 1 .
Y

. g 100
g RE 1 R? 1_ R
= = Tie,—= 7 Of —=—
g (R+k)? 100 (R+k? 10 R+h

or h=9R=9x638x105=5.742 x 10" m.

Exampie 9 : A pendulum that beats seconds on the surface of the earth, is found to lose 10.8
seconds per dgy, when taken to thé fop of a hill 800 m high. What is the radius of the earth ? .
Let M and R be the mass and radius of the earth. Let g be the acceleration due to gravity on
the surface of the earth. Then,
_oM
-
Let g’ be the acceleration due to gravity on the top of the hill. Then,
GM
€= Remt

Hence, £ = (ﬂ)z Let Tand T' be the periods on the earth and on the top of the hill.
2 gl '

R B
2. @y
Then, ¢ 17
.-, 86400 _ 86400 _,
Here} T=25iT'= §5a00-108 ~ 863892

Ty _( 86400 )z
¢  \86389.2

(50 38 RN G2 el s

332

Gravitation 99
R+h 86400
- =1.00012
Hence, R 863892
6(0 or L +R8°° = 100012 or R = 6.666 x 105 m.

6 /Vl/\FHATION OF g WITH DEPTH
Let g and g' be the values of acceleration due to gravity at P and Q
respectively (Fig. 6.7). At P, the whole mass of the earth attracts the body.

GMm -
R’

m = mass of the body,

M = mass of the earth and

R = Radius of the earth

At 0, the body is attracted by the mass of the earth of radius (R — A).
GM'm

(R-h)?

mg =

where

2

mg =

4
Here, M= gnijand 1\/[':51:(R—h)3p

where p is the mean density of the earth.

Dividing ) by (1, £ = MR
ividing (2) by (1), g M R-AY

TRR-wp

N R? _(R—h)-=(l_i)
gnmp (R-m? R R

-t

Therefore, the acceleration due to gravity decreases with increase of depth.

6.10. THE COMPOUND PENDULUM

Any rigid body capable of oscillating freely about a horizontal axis passing through it is'a
compound pendulum,

To find the period of oscillation of a compound pendulum :

Let O be khe\rpoim of suspension and G the centre of mass (Fig. 6.8).
In the equilibrivm position, OG is vertical. OG = h. Suppose the body is
given a small angular displacement about O and let go. The centre of mass
G is displaced to G'. The body oscillates about the equilibrium position. It
can be shown that the motion is simple harmonic. Let M be the mass of the
pendulum. The restoring couple due to gravity = Mgh sin 8. The couple isalso”
tqual to J (P0/di?) where [ = M.L of the body about the axis of rotation and
{(#0/df*) = angular acceleration. -

The equation of motion of the body is

e T
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(.3 "NEWTON'S LAW OF GRAVITATION =z s e

Ladnt i LE 2 = S -

Statement : Every particle of matter in the universe attracts every other particle with a force
Which is directly proportional to the product of their masses and inversely proportional to the square
¢l the distance between them.

. Explmmltmn 2 10.my and m, are the masses of two particles situated at a distance r apart, the
ores of attraction between them is given by

m m Gm.m
FA T o p  Lmm,

7 E

“here Gis a universal constant, called the

! Universal gravitational constant, The law of gravitation is
universal. It holds from huge interplanetary distances to extremely smal! distances. The law does not

tale good for interatomic distances, which are as small as 10-° m. The force of attraction between any
twa bodies is not affected by the intervening medium. This force is also not affected by the nature.
State or chemical structure of the bodies involved but depends only on their masses. Even temperature

Fas no appreciable effect on gravitation. (nz LioT5 M 0—5 Y m*gy” <

. Definition of G.If m = m,= 1 kgand r= 1 m, then F= G. Thus, the Gravitational constant
13 equal to the force of attraction between two unit masses of matter unit distance apart.

Fr
I, '

| Dimensions of G. G =

‘ 2 2
Dimensions of G are given by (G] = ﬂL—AT/;Z—L =M P T2

/Mﬁ'ss and Density of earth : If mis the mass of a body and g the acceleration due to gravity,
the force of attraction of the earth on the mass m = mig.

Let M = mass of the earth ; R = radius of the earth.
Gravitational force of attraction between) _ GMm

a body of mass mand earth R
' GMm R.g
== anm. M=="_56

>— =M. gor ke

Volume of the earth = V= %uRJ.

) | _(R*g/G) _ 3g
Density of the earth = p = T e " ARG
'5' n
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In " 1 The mass of a body may be determined by measuring the aceeleration a 3 ~
~Inertial mass : ¢ Ma
Juced on it by a known force F. . L ) o GMm o060 - GMm (D

l'Ll'thus m = F/a. The mass m thus determined is called inertial mass. ational # I 7 or 900 ——Rz (

, m=F/a. . : casuring the gravitational

Gravitational mass : The mass of abody may also be determined by measuring the g U e the weight of the body-of the sutface of Mars,
& exe i arth.
¢ exerted on it by e: - The“‘ . G. (M/92)m or W= GArgm xi o)

_GMm . _FR® (R/2) R
Rr? GM '

, itati Diyi w4
The mass m thus determined is called gravitational mass. , lvldmg (2) by (1), 500 = 5 or W =400 kgf.
i bil " Sun to be
: . Estimate the mass of the Sun, assuming the orbit of the earth round the
e oo ewecn e , 9 x 10" m, and G = 6.66 1071 Nm? kg“’. know, Ex“"lp]c 4 : Show how the mass of the earth may be compared with that of the sun from a

The distance between the Sun and the earth is 1.4

ele. ) M : with 1 8¢ of the time-periods of the earth round the sun and of the moon round the earth, together
Force of ﬂt;ﬂgc“o':t:e'_‘"em} - __zﬁ ;f"mlii of their respective orbits, (taken to be circular).
the sun and the e R M and M, be the masses of the sun and the earth ctively. Let R be the radius of the
) arth'e . s @ A a n and the earth respectively. Let R,
Here. A= mass of the Sun ; m = mass of the earth, and R = Radius of the carth’s orbit round S 0rbit round the sun. Let o, be the angular velocity of the earth. -~
3 G.M, M
Siin ' A 4 ) \ in its orbit ‘Th(.'n, xz e _ Mr R'm 2
This clearly supplies the centripetal force to the earth as it goes round the Sun in its orbit. } R,
The centripetal force = m>/R. : . or GM,=R}0? (D)
Here, v = velocity of the earth in its circular orbit. :S' ; G M, M,
Now v =2nRIT . (Smilarly, ~zz = M,R, o2
1 m
where T = Time period of the earth’s motion round the Sun. . & herd . -
) 5 Wherel =mass of the moon, R, = radius of moon’s orbit round the earth and o, = angular veloity
Centripetal force = DURNRITY . (R . of themoon, .
R 1 g G.M,=R}.0? (i)
i 2 2p3
GMm m4n°R - 4n°R 3 2 s
ilibrium, ——— = = M, R \
~ Forequilibrium, 2 7 M 2.G : From (i) and (if), < = i] [m—"J : (i)
11 2 o2 ! M ke it
= 11 = = = r % . .
Here, = R=149x10 ’;1’ T=365 ‘:?3;5 365x24x 60 x 605, G=6.66 x 107! Nm” kg Let 7, and T, be the time periods of the earth and the moon respectively. Then
1.49x10 H s
= r ( "2,7), ——=1971x10% kg 1 o (0, (LY . 2x
(365x24x60x 60)° (6.66x107"") : o ) ST . A (D—T
. . . e m o
Example 2 : Calculate the mass of the earth and the mean density of the earth from the : i ' 3 2
owing data : A . From (iii) M, _ (R_'"} (IL]
Radius of the earth = 6.4 x 10°m ; g = 9.8 ms™ ;.G = 6.67 x 10~ SI units. 4 ‘ s \R)\T,
We have, mass of the earth = M= k2. glG. | “Thus knowing R,R,TandT,, the mass of the earth can be compared with that of the sun.
Here, R=64x10°m;g=9.8ms?;G=667x 10-" SI units i i -
6.2 T 6.2 }(EPT.‘ER’S LAWS OF PLANETARY MOTION
_ (6.4x10°)°(9.8) i v X
s T (1) Every planet moves in an elliptical orbit around the sun, the sun being at one of the foci.

=6.017x 10% kg

ity L

(6.67x107')

A, (2) The radius vector, drawn from the sun to a planet sweeps out equal areas in equal times
Density of the earth = p =3g/(4n RG)

| e, the areal velocity of the radius vector is constant (dA/dt = constant).
(3) The square of the period of revolution of the planet around the sun is proportional to the
cube of the semi-major axis of the ellipse (T* « o). :

22

- 23538 =5480 kg m™? -
4n(64x10%) (6.67x10711) B
Example 3 : 4 body weighs 900 kg on the surface of the earth. How ill it wei
) ; much will it
face of Mars whose mass is one-ninth and radius ore-haif that of the earth ? e

Let Mand R be the mass and radius of the earth, Lt
o which he R m be the mass of the body, Then, the force, ;

D/Edl._ Ction of Newton's Law of Gravitation from Kepler's Laws

(Consider two planets of masses m, and m,. Let r, and r, be the radii of their circular orbits.
Let 7, and T, be their periods of revolution round the sun. v :
‘The centrifugal force acting on Lhc? first plang G

T T e O P

pore
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2n
Fy=mr . o?=mrn (TI)
g on the second planet
27’

Fy=mnr, 7

mh _ﬂz
mn\T

Similarly, the centrifugal force actin,

I
Now, ;_f =
2
. . 5 )
But according to Kepler’s third law, (?] = (TJ
1 i

3 2
R _ma(n)Y _m.n

or E el T
2 my.n\h m .5

" . . m m H
_i.e., the force on the planet is directly proportional to —-or Fo—. Therefore, the force 1s
r r

proportional to the mass of the planet. Since the attraction is mutual, the force is also proportional

Mm GM o
to the mass of the sun M. Hence ¥ < ——or F = zm which is Newton’s Law of Gravitation.
r r

6.3}/‘DETERMINATION OF G-BOYS' EXPERIMENT
" The apparatus consists of two co-axial glass tubes 7, and 7, mounted on a platform provided

with levelling screws (Fig. 6.1). The inner tube T, is fixed, while the outer tube T, can be rotated

about the common axis. A small mirror, RS, is suspended in the inner tube H

by a fine quartz fibre £ from a torsion head . From the two ends of the A

miirror, two gold spheres 4 and B are suspended, such that the spheres are :

; Spcnlsli]s,:];gfgn;r o!‘t!\c mirrqr strip under this couple is resisted by the torsion or twist set up in the
sy - The mirror str{p comes to rest whf:n the deflecting couple due to gravitational pull

anced l)y. the restoring torsional couple set up in the suspension fibre. Now;, if ¢ be the torsional
Ple per unit twist, then for angular deflection 0, the total restoring couple is ¢ . 0.

In cquilibrium position, G;\Zm

0y

x2 =¢0.

e From this, the value of G can be calculated. Using the arrangement of the quartz fibre and the
i - :
Yor strip with gold balls as a torsion pendulum, the period T is found. Then T = 2m v/7 /¢’ where
~Moment of inertia of the suspended system. From this ¢ can be calculated. .
6 The results obtained by him arc very accurate. The value obtained for G by Boys is
6576 x 10-11 Nm2 kg2,
5 Aflvantages : (1) The size of the apparatus is very much reduced. The disturbances due to
NVection currents are therefore almost negligible.
B (2) By arranging the masses at different levels, the effect of the attraction of the heavier mass
M the remote smaller mass is very much reduced.
(3) By the lamp and scale arrangement, very small deflections can be measured accurately.
(4) The use of a quartz fibre has made the apparatus very sensitive and accurate.

5

> 3 ERKVITATIONAL FIELD AND GRAVITATIONAL POTENTIAL

J Gravitational Field : The space around a body within which its gravitational force of attraction
Perceptible is called its gravitational field.

) 'The gravxitational field is an example of a vector field. Each point in this field has a vector

“Ssociated with it. The intensity of the gravitational field at a point due to a body is the force experienced

_DAunit mass placed at that paint.
Gravitational Potential : The work done in moving a unit mass from infinity to a point in a

at different depths below the mirror. In the outelr f:o—:}).(;al tu}?ehth,tt}:vo lartzi: r] itational field is called the gravitational potential at that point.
lc}ag t;al_ls ]C ‘flex}d wl.l) d:r;l :xix;?d;i f::::,— Ltso;egoi s\';zgle:’ e]S::itht t:at oefi;:nd Ll |l i levuat.nonal potential is always negative in sign, its highest value being zero at infinity. It is
of Cisinle , Scalar quantity,
the distance AC = BD. Two rubber pads P, and P, are placed below the X o . )
tweo ]::S“In: heres. as a safeguard agari)nst dalmage i; case they should fall k Q ‘hf'tenslty of gravntatlonal field at a point : It is defined as the space rate of change of
acci de;lta “}; ’ Bu: * 57'av11411;onal potential at the point. i.e., F = — dV/dr where dV is the small change of gravitational
’ . poyential for a small distance dr.
s g i T -

The experiment is performed by rotating the outer glass tube until H 1 Genvitati . .
the large lead spheres lie on the-opposite sides of the two gold balls, soas & [P il I [Pal1] o dera:lp;i::Tlaf:tfili‘:::;:cgu: ;:": :‘";‘;"‘;“ss; e X =mmmman >A B
1o exert the maximum moment on the suspended system. In this position, js ma.-;‘s.m (Fig. 6.2). ; particle o <_“- — }P ; '
the angle through which the mirror (RS) tums is maximum. The outer glass Fig. 6.1 d i ) ) . -=> <‘_—>dx
tube is then rotated so that the lead spheres now lie on the other sides of the orce 0. Attraction experienced i G.m Fig. 6.2
gold balls, in an exactly similar position, producing the greatest deflection. The mean of these two by a unit mass at 4 [N
observations gives the deflection of the mirror 8. - Work done in displacing the unit mass o

A lamp and scale arrangement is used to measure 6. o - g } G.m

' om A to B through S 2 :
Force of attraction between spheres A and C = GMm/(AC)? gh a distance dx x
; = 2
Force of attraction between spheres B and D = GMm/(BD) : The potential difference between 4 and B=§V = L .2m dx

Since AC= BD, the two forces are equal, parallel and act in opposite directions, thus constituting:
a couple. ;

G!V{m x 2/

x2l =

. Themoment of the| _ GMm
= deflecting couple
(where 2 /= the length of the mirror strip RS and AC = d).

B (AC)? d .

X

j Hence the total work done in moving the unit mass from infinity to P ox"
 The potential at P= 7= [8V = J’Q _ G
x? r

@
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Thus the gravitational potential has the maximuam value of vero at infinity and decreases as
distance is decreased.
Equipotential Surface : A surface at all the points of which the gravitational potential is the
ne'is called an equipotential surface.
For example, a spherical surface around a point mass with the mass as centre, is an equipotential
face. Since the potential on this surface is constant, no work is done against the gravitational force

moving a unit (or any other) mass along it.
@ "GnAvnTAnONAL POTENTIAL AND FIELD DUE TO A SPHERICAL SHELL =z
07\, (/) Point outside the shell : Consider a point P outside

: spherical shell at a distance r from its centre O (Fig. 6.3).
@t a be the radius of the shell, p the mass per unit area of
@ : surface of the shell, and A its total mass. Join OP and let
>= . Consider a thin slice of the shell contained between

o planes 48 and CD drawn close to each other at right
gles to OP. Join Oand 4, Oand C and 4 and P.

Let Z40P =8, and £L40C = db.
AE = Radius of the slice=asin 8)
Circumference of the slice =2n x AE=2 nasin 6. -
Width of the slice = C4 =a db.
Hence. surface area of the slice =2z a sin 6 x a d®
=27 a*sin 6 dB. A
Mass of the slice =2 a? p sin 8 d8.”
Let 24 = x. Every point on the slice may be taken to be practically equidistant from P.

Potential at P } / -G2na’psin® dG)
x

Now,

=dV= (1)

due to the ring

To find the value of x, consider the triangle O4P.
X =a+r*-2arcos®

'Differemiating, dx= /ar sin6do [+ a and r are constants]
7 a.rsinBd0
- ==& ’

Substituting this value of x in (1),
_ -G2na’psiigdBdr -2na.pG

a.r sirﬁ){ﬂ r

dx )

‘qv

If the entire shell is split up into slices of this kind, the value of P4 will vary from (» - a) 10," 4
-+ a). Hence, . R |

= . " r4a
the potential at P due} V= J- -2napG ey
r

to the entire shell
r-a

_=2mapG

S
4 1 & p = Mass of the whole shell.
‘ G.M

s ==

-2napG 20____4nazp£
r r

Now

i
&

e el . |
3 & 4
i

R e i i 93
||‘u.l%rhn potential 1s the same as due to a mass
“were concentrated at ity centre.

Mat 0. Hence, the mass of the shell behaves as .

Shej Ui Point an the surface of the shell, Let us consider a point which lies on the surface of the
Y The Timits for the value of x will be 0 and 2a. Hence

Potential at a pointon | lf “tapG 5
—rY
the surface of the shell » .

) _.;n,(,.p_(,'[xhz\,,:—d.muzp.G:A(i.M -G.M

; P T =———i(r=a)

_-G.M
a

v

(iif) Point inside the shell. Let the point P be situated at

? K inside the shell, t! =
Miits for the value of x will be (a - r) and (a + r), e shell, such that OK =,

Potential at a point (K P
Por p )]=V: J- Zﬂap,de
inside the shell f ] P

-2nap.G .
& ‘\r%x ar=—4map.G.

-4ndp.G_-G.M
a B a

Multiplying and dividing by a, V' =

G.M

a

V=-

. Hence the potential at all points inside a spherical shell is the same and is equal to the value of
tiegravitational potential on the surface.

GRAVITATIONAL FIELD. The intensity of the gravitational field Fis given by F=— dV/dr.

(i) At a point outside the shell: V= il '
r

—-av d|-G.M
F= =——|= =
dr dr [ r }
The negative sign indicates that the force is towards the centre O.
(il) Atapcint on the outer surface of the shell : Putting 7= @ in the expression (i), we get
teintensity of the gravitational field at a point on the surface of the shell.

2
al

-G.M
— @)

r

F=-

(iii) At a point inside the shell.
L a constant. i
a = dar

dV Hence there is no gravitational field inside a spherical shell.

GRAVITATIONAL POTENTIAL AND FIELD DUE TO A SOLID SPHERE
7 )" Point outside the sphere. : Let P be a point outside the sphere at a distance r from the

Potential ¥ =

gire O [Fig. 6.4(a)). Let M be the mass of the sphere, a its radius and p its density. A solid sphere
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rface of the

0K =1

Propuives v
¢ shells produces
re O.

>

may be imagined t
0 be
£Potential at the point ;ag::’;; gt; lar};;‘cl;mmhcr ofconcentric shells. Each one of th
o s ¢ shell, as if i N A

Thus if »7 is the mass of one such th:; il its entire mass is concentrated at the cent

The potential at  due to the shell = —O

r

Potential due to the whole sphere 1= - £ o Gy
==—=3Im i
' . . . Fig. 6.4 (2)
Clearly, ©m = A= Mass of the solid sphere.
p o —GM
: ()

(i) Point on the surface : i 1
Py G : Ifthe point P lies on the surface of the solid sphere, we have r=a.
GM

The potential at a point on the surface = —
a

(éii) Point inside th :Le i
the comie e the sphere : Let the point now lie inside the solid sphere at a distance r from
The soli I i
e, o[;ziisrp::;c may be imagined to be made up of (i) an inner solid
i s (;:)eraehollow sphcre of internal radius 7 and external .
il _Spg == :::iyt::magmed to be made up of concentric
Potential at P due 1o the whole solid sphere is
V= Potentizl at P due to the i i i
Vo g o e inner solid sphere (¥,) + Potential at P
é;) Te determine the potential at P due to the inner solid sphere
e point P lies on the surface i i
oY of the inner solid sphere of radius

Fig. 6.4 (b)

Mass of the inner sphere = ;,[H .

Potential at P due to the inner sphere

-G ;l xrp 4
=Y =—2  —_G=n,

f = G 3P .
(b) To determine the potential at P due to all the outer shells

Consider one such shell of radius x and thickness dx. The poi ies insi
z . The point P lies inside the spheri
Mass of the shell =4 wx*dx p. + ) e

. . _ 2
~ Potential at P due to this shell = —S+ 222 __ G 4 nx dip
X

Potential at P due a
to all sheils ’ =V2=I_G4’”‘d"9
s r

~~Gtnp Jrase-Gam[ % | —-Gam(22)
2

r r

S99 3 i R N

£

Wivation

GRA/VITATIONAL FIELD

. and therefore

e

Total potential at P = =y +V,
4 2 ? 4 14 -3¢
= -0 ;ﬂr)p -.«;4,',,[1‘.7,_}“__(;;”‘,1 ,Ba - ﬂj

2

: 13t 4 Iat -
-0 m[zf_,_:kzu ,;.r_}:_c,{ np{ o -
4 5 |3a® - r” N s
=-G=rnap (multiplying and dividing by &)
3 | 24
3a - 7* 4 .
= ce~map=M
v GM[ = l { ]

- GM

(i) Point outside the sphere. Potential ¥'=

—dV_—d[—G.M:\z:_G_;LI @

intensity F = 7-—;‘ —7—

r
(if) Point on the surface of the sphere. For a point on the surface of the solid sphere, r =4,

_- G . M [puning r=a.in (O}

a
(iii) Point inside the sphere. Potential at a point ins|

the centre O,
22
y= —G.M[;a - ]
2a

N 2_ 2
Intensity of the —F= _gV__:_i -GM(SQ 3r }
fieldat P dr dr 2a

ide the solid sphere at a distance 7 from

GM &

==

a

Thus, the intensity of the gravitational field ata point inside a solid sphere is directly proportional
1o the distance of the point from the centre of the sphere.

Example 5 : With what velodity Should a body be projecte
surface of the earth so that it may first attain a height of R/2 where R is th
(R=6.4 x 10° m).
At the surface of the earth i.e., ata distance R from its centre,

PE. of the bady = — m MGIR =—mg RYR=-mgR

d vertically upwards from the
e radius of the earth ?

(- MG = gR?)
o R 3
At a distance (—,; + R) or ~2-R from the centre of the earth
. 3 2
PE. of the body =— MmG!/ (-Z-R )=- 3 mg R

Increasein PE| 2 meR 2 1 xed
e w1 (= mgR) =3 mg

; < GRS 1
If v be its velocity of projection, Its KE.= —2-va =—"§ mgR.
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. DYNAMICS OF RIGID BODIES
i

Iranslatory and Rotatory motions of a r'ig.i'd.hody.: A
rigid body may be defincd as onc whose size and shape s invariable

so that the distance between any two parts of it is always unaltcr'cd.
The motion of a rigid body is said to be translatory if each Pgm.clc
of the body undergoes the same displacement in the same direction

in a given interval of time i.e., all the particles of the body have
the same velocity, The instantaneous velocity of each particle in

this kind of motion is given by dx/df and the instantancous accele-
ration of any particle is given by d2x/d:2.

The motion of a rigid body is said to be rotational, if ¢ach
particle of the body rotates in a circle, the locus of the centres of all

these circlesis a straight line called the axis of rotation perpendi-
cular to the plane of rotation.

|
Consider a rigid body rotating about a fixed axis through 0O

perpendicular to the plane of the paper. Tt is easily scen that the

linear velocities of particles like P and Q at different distances from
- the axis of rotation are different. Since P and Q describe the arce
PPy and QQ, in the same time, it follows that, the angular velocity of

cach particle of the rigid body about the fixed axis hasthe same value.
p

92 Moment of Inertia:_ A rigid body rotating about an
axis has always a tendency to
the same wa

called its Moment of inertia.

A particle of mass (m sitnated :!{-a distance r
Ehc product mr? {s called” the moment of
tnertia of the particle about the given
axis.

_ AL asystem of particles of masses
my mj, nty .....

. comprising a body are at
dxstanccs "rfary.. from a given axis,
then the moment of i

nertia of the system

from a given axis,

about the given axis is given by °
—I-—-m;n?-{-m_;r;’-l-m;r;"-{- e =Smr2
In the case of a rigid body where (hcre. is
> continuous distribution of mafter the
moment of incrtia about a given axis is

Fig. 79
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he mass of part mertin

obtained by integration, If dm be t oment

o M ¢
rigid body at a distance fmmlh_c S\_‘C“ axis, t
of the body about the given axis is given by
. [=fridm’ . pout &
‘s 5 rotating oY
Hence the moment of inertia of rigid bods r,ob'm ‘also on the
fixed axis depends not only on the mass of.th‘-‘ bo )cl 1o the axis.
manner in which the mass is distributed with respe

entrated
If we imagine the entire mass of arigid body t© bcis,z:cnx 5 is
at some pointin the body whose distance froff e 8 .
and the product AfA? = Smr?, then we may write
Ie= MR,

X 0
Here & is called the radius of gyration of the body ab

given axis ke /f‘ .
Ve M

937 -Kiaoetic energy of a body rotating abont a fixed lxl!,.
Consider 2 rigid body of mass M rotating uniformly about an axis
through 2 point O perpendicular to the plane of the paper.  Let mi,
™, m3 .. ..be the masses of particles of the body at distances r, Iz,
73......from the axis of rotation.

ut the

If @ be the angular velocity of the body and v, vg, Vyeerethe

}in:ar velocities of the particles of mass ay, m, my...;..at that
astent, then vy = rjw; ¥ = o} 13 = ryw and 50 on. .
K_E. of the panticles of mass m
T=1imyv? = {mrle?
K_E. of the particles of mass m,

. n=:{myvy? = lr-n-g'r',,im2 :
K_E, of the particle of mass iy '

i imyvs? = myryla?
The K.E. of rotation of the whole bod

energics of the several particles {hat
constitute the body, ~.© -

“K.E! of the'Whole body'
o= dAmra 4 fmyrer
i HAmnar g
= Jad.mrp2 g
- =3 Iyrt
=},

N

1 ¢ body about the given axis I
given: by: the sum of the Kkinetic:

it mrgd gy

J Y-

DYNAMICS OF RIGID BODIES

I8y
~The efore K.E. of rotation of a rigid body
= 3lu.;

9'4. Angular momentum of a rotating body : Cong;
rigid bo« y of mass M rotating about an axis through o perldq
cular to the planc of the paper with uniform angular "elogcndi'
Let my, .0y, my be the masses of particles of the body a; distt w,
ry, r2, ry .. from the axis of rotation and let v, vy, v, baucc:
linear ve ocities of these particles. ¢ the

Vi =rw, V2 =rw,v;=ry e and so on.

Monientum of particle of mass my is myv; = nyr o

Monient of the momentum of the particle m; aboyy the 4.0
through 2 =mrle s

. Monientum of the particle of mass m;

=Mmyr w .
Moriient of momentum of the particle
may about the axis through O
= mzr22
and so ca. The snm of the moments of
momentt m of all the particles of the body
about th: axis through O is called the
angular 1 1omentum of the body.
Ang lar momentum
=m ,.1.,, + m;rxzu + m;r;’-i + ......
: =o Zmﬂ =Jw
Apg lar momentum of a rotating body is a vector quantity

w

:and the 1 cctor representing the angular momentum is drawn along

the-axis « [ rotation of the body. " /

9'5. Relatlon between the Torgue sod Angular accele
ration of a rigid body: Considera
rigid body of mass M rotating abolt

a fived axis through Q%
to the plane of the paper. Let

a particle of the body of mass mata
distance r from the axis. Let the body
rotate through a small angle df in?
very small interval of time dt about
the axis. Let the linear displacenest

of P perpendicular to O ia this of

. time dtf be dx.
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measuroy: of‘thq\nngulnr impulse during the “mc '
angilari impilsciin ahmte ﬁme r.is given by

fcar= fFrdl—e ‘de‘X'

= Momcm of thc lmcar impulse.
Also deI== []_=J‘Idu

Angulapimpulse = I(m — wz\ 4 1, be the
9'7. /Theorem of Perpendicalar axes: If I, and v Jaming
‘moments of ‘inertia of 8 plans d oY
2z of-mass M dbout two axcs 0X an its
| at right angles to cach other m, lot'
. plane, then the moment of {nertia 'd-
thielamina about the axes OZ perpendi-
ctilar ‘o~ the plane of the lamina s
given'by I, = I + 1. .
. LetPbea panicle of mass dm in
Fig. 83 the plane: othe lamina whose distances
‘ffom 0X,'0Y-and OZ are y, x-and r :cspcdtlvely.
- Morient of inertia of the particle about 0Z
= riddm = dm (x* + y\.
Moment of inertia of the whole lamina about 0Z
' =] (x2+y)dm
Sl : ' —-M(x2+y’)—'Mx’+My'—I,+I,
98/ Theorem of -Parallel axes: If I be the moment’ of
inertia.of a body oL mass M about any '
. axis CD and I,, its moment of inertia | |
about:a; parhllcl axis AB passing through -
the C.G.of-{he body and athe distance
between the two axes, then )
Ll 17 ‘TeJy+ Mad.
"Lét P be a particle of mass m at a-.

Mo o
'nbo'ut AB . iy
qucnt\or-lncxﬁn of the partlclo
: aboutCD~m(a+S)’ 4

L

S

length. Let 04 be-a thin uniform rod

DYNAMICS OF R1IGID BODIES

h
e Imia 4 x)1 = Tmat 4+ 3mnx? 4 2q Smx
© = o+ Mat

" Znic=0 since’ the body balanccs about a knife

below t-e C.G. 8 o iy “dee Placeg

9'9. "Moment of inertis of a aniform rod:

(@) 4bout an axis passing through one end perpendiculg, ¢, .
iy

Y

of lengt: [ and mass M and YY, an axis

through O perpendicularto;04. " ..
Mars per unit. lengthof -the rod.

l . Consider an element of therod of - r

length d» at a dlstancc xfrom the axis ' )
Yor,. Y,

Mas; of the clcmem = %—ldx. Fig. 8

‘Morent of § mcma of-the clement about the axis YOY,

'=—a’x)<:c2

Morient of incr{ia of the whole rod about Yon

M[x? M n
2 .
[F i 11 ]

(b). . bout an axis rhraugh the C.G. of thc rod gergegﬂg@g

its Icngm

Y
A ‘ = d.z‘ B
ﬁ":z':?:b
M
“Fig. 8
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194 A DYNAMicg
_9«‘1 Acceleration of.

. '
plane without slipping: A b\ 2 ody

-’ \
: \
Y rolhrn Mo dowy o, | DYNAMICS OF RIGID BODIES 198
w“houl shppmg has two motjoy i down g e l"“h:d ( -
/h orizontal axis through s Ccmr °)f Totating nal ‘l“*\ ane , (o) Solid sphere: For a solid sphere k? = 373,
motion down the plane, mas; ayg (b “(:::l 'l““’ll\ \ Therefore a= gr:m ‘- g-,s_l:f = $gsing
. Let a solid sphere of masg My sl : 251 z
oll from ' 5r2
inclined at a,: 'Stg“t : % plane \ ' (b) Spherical shell: Tn this casc k? = 3r2.
1] ‘ - .
tal Withou sli Ppu\g t °Blhc horfy Zon \ Therefore a= g,:m LARSY s_‘: LI zgsint
x along the - place,. Lo :\sl&ncg; . kb 3
¢ , .
acqunc a lin:ar vcloc“y body ,' . ‘ " 2
angular velo. ' and g (c) Adisc: Hete k2= T
of rotatio "t1¥1 @ dbout e axis | ’
: n. 1ty i i si
travelled byt ertical distance -+ + .. Thercfore a=% uml__gend. igsing
9% ) Ytiebadyin Moving fro | ” : f+1
. Fig. AtOBnglV(nb "=Xsm, m .i?z+
The loss in potential cnergy in moving {ror 4 10 B r2
= Mgx sin g. (d) Solid cylinder - k=
If 1 be the moment of inertia and k the ra ‘{us of | .
' ~at Therefore a = 3g sin 8
- body about the axis of rotauon, the gmn in the k%?xc:\t‘:oc:;:r e i ° STaE
rotation in moving from A to B gy of |
= {lw? = {Mkw? = i

9:18. Osclllations of a2 small sphere oo a large coocave
*Mk’v— lnce m?

smooth surface: Letm be the mass of a small sphere of radiusr
_ oscillating on o large smooth concave smooth surface of radius R,
o o ies < : : ‘Let A be the position of the centre of the ball in its equilibrium
The gain ?f l-nncuo energy of ‘trnnsl atica =: §Mv2, ‘ position. 4 will now be vertically-below the centre of the copcave
By the principle of oonsetvatlon of encrgy, £ surface., ) ?
iMk’ + UL«IV’ = Mgx smB : ; Let Bbe the p?sition of the centre ot ':hc sphere atan instant
i of time ¢ after it has passed the equilibrium position. Let
; LAOB = § (small) and the 4B wlnch is also small =x,
My (l +,-—2) A,{?f EI.”..;-.:‘ % £, " The potcnual energy of the spt;crc at B
- gsi -”—\ o "‘ Now dDem GAo0D
' kz g1 X : T
Therefore v =2 ( 1(} . . = (R-r(1—cos 8)
N K b ] ) - =2 (R—r)sin? }0
This is of the form v? = 2as. ' tined | . =2 (R-r) {0t
Therefore the acceleration of the body rolhng down aninclined | (when @ is small)
plane vmhout slipping is given by g i £ . . t?BE ‘at' the instant the sphere
. g sin et Cee isa .
a=k_ | g : = Mg X 2R3
| LR ik . .= {Mg (R-f)""
Wo his cxpre' slon for various regular oo
: e,chull ﬁnd the value of t ' i But Qe X
\u&m . L RN s R
s :

LR

% . Fig, 97
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I)YﬁAMlCS,

'1‘l\crcfore PR, atp

lht R~ ‘--—x,. = -—Mg—""" %4
M R=n) == (k="

Spherg o il o represent the lincar -and angular, vel

: t the instant it is at B, kinetic energy of £0
Phere at | v

=ilot =gl ML

[because v =

ocitles of the
tatlon of the

rw and | = Mr]
= M2,
K.E-. of translation at B = { Mv2,
Total' K E, at B -
=M 4 LMV = M2,
dx .

'But y s
Y=

Total K.E. at < L & (457
_ at’B 10M i

+ By the principle of conservation of cnergy
'. K.E. 4 PE at B = a ‘constant.

.Thercfor_c ;LOM (4,):'4_ _Mg  a._

de 2 (R—l’) x
a constant. Differéntiatingw.r.to ¢, . : '
' T oy hd% dx . Mg dx e
M A at swmen X Fa Tl L
. dix 5¢ ... ~dm .. 5g
Tt TR FTV O =T T®w-T

Since _",7' f{g_._r)is a 'cogstani, the ‘aqc'el‘c'r-ation of the ball is

directly pro_porﬂonél to its -d'isplaccmcnt. The oscillations of the
ball on the/concave surface are simple harmonic for small oscilla-
.tions. e '
~The period of oscillation is given by’ .
) 20 T R=T).
RN Te—Ton -'-'i_?“. J-—--——- Sg )
g Lo J’I(R-r)' g T
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' 9:20] The Compound Pcndolum : A compound pc.dule
consists of a rigid body capable of rotation about a fixed hoczontal
axis under gravity, Let the axis of rotation ' ne
pass through the point O in a_vertical scction
of the body taken through the centre of
gravity G of the body. In the cquilibrium
position OG will be vertical. Let OG=h.
If § is the small angular displacement of the
body from the cquilibrium position in time ¢ -
and M the mass of the body, the couple
tending to restore the body to its equilibrium |
posiion is Mgh sin . The couple will

2
produce an angular acceleration j{g . If I be the moment of inertaj

of the body about the axis of rotation, the prod"uct of moment of

_ incria and the angular acceleration is also cqual o the cample act-

. . dg ;
ing. Therefore I = Mghsind e (1)

The significance of the negative sign is that the angular accele-
ration and the angular displacement.are oppositely directed.

When 4 is small, sin 8 = 6.

" Therefore [ ﬂ=—Mghﬂ

dr A .}
a8 Mgh | -
Of 3=~ "y~ 0 —eee}(2)
If k be the radius of gyration abgut the axis of rotatioa then
.,I=Mk3. - d28/ o |
) g , g~
. Therefore ,, =—1j. -. eavse:(3) |
This represents a simple harmonic oscillation of period -
Te2 2 [¥ e (4)
gh gh o o
2 |

If K be the radius of _gjration about an axis through G, parallcl
to the axis of rotation, then by parallel axes theorem wehave |
' k3= K2+ MR or K=K +Hh. - . wenee(5)

Therefore T = 2w «/th_; S ()

chéc T =2¢ 1_(34,_},_:
o hg
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changeable.

P - DT v .
S // ‘ o.rll"""" :
'ZI." Caontre of Suspension |.|n|l Centro ;’c chrflell l?li‘nc.
The'point O where the axis-of rotation meels -“cnllcd thocentre
through the ceatre of gravity G of the rigid body i €1 :
of suspension. ) ho gi'vcn
A simple pendulum which has the same period l;"' cquivalent
component pendulum is callcc!t ¢ o sliiple
simple pendulum. The cquivalen
k2 K40

pendulum L=-17 or ——5—

reeed
,\..--)_'O

-a~—

110 a point C such that

OC = L the length of the cquivalent sim
pendulum, the point C is called t n :
oscillation. The centre of _oscllluuoq is
obvious]y a point at which the mass of ‘the
body may be considered to be concentrated
without any change in the periodic time.

o

(9]

Fig. 100 If the body is suspended about a parallcl
| axis through C, we¢ have CG=L —h. The |
/ Iength of the equivalent simple pendulum will be

' g Lo KL — m?
X 1= L —4

C2 4 p2

But L = K2+ K
h
we have K=Lh—h?
Lh—h L2 —2Lh+ k2. LL—F)
or. L= : —
- L—h = TL=h = L.

Hence the centres -of suspension and

oscillation are inter-

9:22. Centre of Percassion: When a body capable of rota-
tion about a fixed axis is given-a blow at a suitable point such that
there is no impulsive force exerted on the fixed axis; that point is
kn.own as the Centre of Percussion of the body with respect to the

axis. . .

If a pendulum supported on the axis tlirough d s glven n‘blo‘;v.
at,tho centre of osclllation C, It wlll rotate about o withaut any -
Jar on the ‘nxls\ol‘ rotation. The centré of oscillation €
of the reasqn is also called the centre of percussion, . g

ple
he centre of

on account «

o
2|
3

.it. ‘Tleyod is fitted at each end

DYNAMICS OF RIGID RABIRG

23, Minlmum perfods of a compound ‘l"“dﬂlnxvn;

- at 2 K2 4 p2 L Ry
the ¢ .pression Te=2m ./(T )
perio 1.5 depends on the length of the cquivalent sim

K2+ h?

P

sy 1
“Tog
we find that the Value'of %
3

ple Pedduy,
namc y

et e dT
1 7is mmlmum-,ﬁ =0
Fdh(l%z-i-h)=0 ie, 1— f—:=0
or K2=h? cr K= =+ h.

A mpound‘ pendulum will have its period 2 minimum Whey
the deptl: of the centre of gravity of the pendulum below the centre
of susoersion is equal in magnitude 2o the radius of gyration aboy,
an axis through the centre of gravity parallel to the axis of .

rotation, - F

ie.,

9:24. “Kater’s Pendalum : . The fact that the centres of sus-.
pension and oscillation of 2 compound pendulum are
interchar geable and their distance apart is cqual to
the Iengih of the equivalent simple pendulum is used
by Kater in the construction of a reversible perdulum-
which could be used to determine accurately the value
of g a’ a place. it A ~

. Katc's pendulum ‘consists of a long rod of metal
proviczd with two fixed knife edges 4 and B on each
side o tl ¢ centre of gravity at unequal distances from ;
_ th cylinder cne of
which is of boxwood and the other of metal. T
adjust: bl masses are also attached on the rod between
the kn'fe edges. One af these masses is of wood and &
the otier of metal, Their adjustment enables the-
C.G. of the pendulum 'to shift to such a position as
to make thc periods of oscillation of the pendulum =p
about cither knife cdge t0 be the same. Then the
distance between the two knife edges is equal to the
length L of the equivalént simple pendutum. I T be
tho equal period about clther knife edge then

Tes 2_? /.!‘.. . :
Yy :

Fig. Il
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& FRICTION

| oyt
[51) F d
Dot rcs:‘:;;icnso(l; fr;C!ion L If two bodies -which arc pcr!‘cc(l)’
the comm ach other, the only force between them is 81088
§ on normal at the point of c o it js DOt
Y@ossible to “have two perf ontact, In practice it ! o
so there will always perfectly smooth surfaces in cootact, 49
45 resist the sliding o{OCXlS! a force between them which tends
(ythc force of Trriction Fnc surface over another. This force is called
“¥ife. For example :  cFiction plays a prominent rolein everyday
fe. Forexample, a railway engine caonot move over the rails unless
. force is exerted in the forward direction. If the wheels and the
"”.""s i pcrfcctlly smooth, the wheels rotate without moVing
Qlorwnrds The slipping will be prevented only if there is a force of
~'riction between the driving wheels and the rni)l's

5 II'a block of metal placed on a horizontal table is pulled by a
{ annge w':\l'l a very small force, the force of friction is called into play
gl crueen the block and the table -and preveats the motion of the
[oiuek. If the pulling force is gradually increased, the force of friction
,{}alsv gradually lFICrcﬂSCS to such a value so as tc; be just sufficient to
i prevent the motion of the block. For a certain value of the pulling
] ::D:mcc. th:? frictional force attains a ‘maximum vdlue, If the pulling
toree 15 fncrcnsed further, the block begin's to move on the table
| The maximum value of the force of friction which Jjust rcvcnts‘
Wwmotion is called limiting friction. Pre
. |
/3 52 ‘ Lavv:s of friction: (1) When two bodies are in contact
'-)mc direction of the frictional force between them js always opposite.
i ‘v the direction in which one body tends to slide over the other.

2) The magnitude of the force of friction between two bodijes
w equihbrium s just sufficient to prevent one body slidir(g over the
orher It attains a maximum value, when ope body is Jjust on the

paint of sliding over the other.

L

e (3) The force of Jimiting friction always bears a constant ratio
10 the normal reaction and this ratio is' denoted by the lettcr # and
is called the coeficient of friction. The value of # depends
oli the nature of the substance of which the bodies are composed.

4

y?

\**) 1he force : "
Or the shape Oflhc:{‘ulf"m“"']z friction is independent of the extent
is Unaltereq, aces in contact, provided the;normal Yeaction

(5) Whe, .
Still exists bc:lw::,:c :°d! moves over another, the fores of friction
than foreaiol 1 'n'l cm 9pposmg xp,otion. but its value is shghtly less
of the body lll;mnng frncflon and it is independent of the' velocity
reaction i ;” hltllt thle ratio of the force of friction to the normul
point of moliogn. ¥ less than that when the body is just, on v
1

fricte?. Iv\vnhgcle ol:' frl.ctll‘on. result_nn.t reaction and cone ol
if the for;:c 0”9 a .°dy is just on the point of moving over another
theny aos imiting !‘rlcnon _F and the normal reaction R between

are compounded into a single force S, then the anzle between

this force S and the normal reactiop R is
<alled the angle of friction. It is denoted by S "
the letter X\.. The single force S is called the ‘\ i
resultant reaction . \ ‘
) >
F N|
1 S
an X\ R — T
. 3
But = = s
R ‘o
Therefore tan ==>f‘-

The tangent of the anglé of friction is equal to the coeflicient

friction.

Also S?= F2 4 R?or S = J(F2 + RY.
Since the maximum value of the force of friction is F = MR, the
greatest angle which the resultant reaction can make with the nor .
mal reaction is the angle of friction X' = tan—'X.

When the equilibrium between two bodies is himiting, if
imagine a cone with the point of contact between the bodies ux
the vertex, the normal reaction as axis and semi-vertical anul:
equal to the angle of friction, it is possible for the resuliant reactio.,
to lic on the surface of the cone or inside the cone but not outside »
Such an imaginary cone is called the cone of friction. (Fig. 81)

@ Equilibrium of a body on a rough plar;e inclined
to t “horizontal: Cousider a body of weight I placed on
rough plane whose inclination to the horizontal is graduall
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STATICS

1.od Leta bethe inclination of the planc to the horizontal
.= the equilibrium is Limiting- :

The forces acting oD the body are (1) its weight W
verticaJly downwards (2) the force of
limiting friction MR up the plane
and (3) the normal reaction R per-
pendicular to the plane. Resolving
the weight W ioto W sin.« down
the plane and W cos « perpendicular
to the plane we have

Wsin « = MR
82 ’ Wcosa =R
tan @ = £ =tan X
a=X\
Hence a body placed on a .rough inclined plane will be just
¢ Jiding down the plane when the inclination: -of the
al becomes egqual to the angle of friction.

aerefore

ne paint
-~ rofc heorizni
I-:qu_ilib jum of a body on 2 ;ough plane under the
of a force|when the inclination of the plane with the
.+sontal is greater than the angle of friction: Suppose a

- ot weight ¥ rests ona rough
~ed pf'éme inclined at an angle
A with the horizontal being;:
~oried by a force P acting at ap
.+ g with the inclined plane. )
Aten the body is just on the point
nving down the plane, the forces:
«= an the body are the weight 124
cally downwards, the’ normal. . . Fig. 83
.ion R at.right apgles to the inclined plan
¢ up the plane and force P inclined at apgle 8 widh the plane.
parallel ‘and rpcr-pendicular:to.thc plane,

Resolving the forces
: Pcosé +HR=Wsima .= ' = e (D
Psin§ £+ R=Wcosa e .(2)
}rom equation (2) :
veaees(3)

R— Wecosa —Psin b
o ubstituting the value of R in equation (1), we have
’ P cos 8 4 #W cosm.— #Psin 6= W sin «
P (cos 6 =} sin §) = W (sin.a-— H cos «)

e, the force of friction.

FRICTION

(ituting # = tan A - ¢
Sl"})’s[clos d—tan A sin 0] =W (D a——tan.)\;,os &)
Eg,}:[cosﬂ cos A —sin fsin A | = Sos N ; \
. (sin @ cos X —cos = sin \) |
&

' sin (. — A : .
P=W s (@F X - : el

Let Py bethe magaitude of the external force when the body :
;s just on the point of mcving up the plape. In this case KR acts b

down the plane. !
Resolving parallcl-_and perpcndiéular to the planc
P(COSB=W‘SiﬂG+FR ______ (5 t
...... (6

pysin 6+ R=Wcosa ,

d (6) we have
- psin (e — A) eld
P",_Wcos(ﬂ—,;\) i

From equations (5) ao

The force Py is midimd/rix ifcos (8 —A)=1 i.e, g—Xx=0
or@=X\-" ’ ;

Special case ’ } -
P is parallel to the plane, the value of P-for the

If the force
t of sliding down the plane is

body to be just om the poin
sin (@ — X\)
P=W=sx

The-value of P when the body is just on the point of moving
. o _w sin(a + X))
up the plane is Pr=W ——— o8

For all values between Py and Pr the body will be in equilibrium

which is not limiting.

tion-dynamometer: The fact that'a rope or belt
of exerting d' great Eouple on the
between the surfaces is made use
which is used for

5:6. The fric
coiled round'a cylinder is capable
cylinder on account of the friction
of in'the.construction of the Sfriction dynamdmeter,
the measurémient of power. )
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gV STATICS

.. In this device, a large pulley A is rigidly fixed to the shaft B
a-motor whose power is to be measured. A flexible cord or belt
~x ing wooden blocks on its underside js passed round the pulley.

*end of the cord is attached to the hook of a spring balance

. -1 ched to a rigid support on the 3
he ; ground. To the oth the
i‘ls attached a loaded bucket. The load in the obu:c;n(r’n:; be
asted Turml It remains at rest without rising or falling. The total
u:xg(l;t cf the bucket ¥ and the reading of the spring balance S are

Let a be the rad
P ooeli,

Eps of the pulley and 4 the outer radius of the

of the sbaft, we have the moment of
the resultant of forces duc'to Wand S
= (W—s) (2 -|2- b

If F be the force of friction, the
moment of the frictional ‘force about

the axis of the shaft = F x a
‘When there js equilibrium,

Fa = (W_S')'(“_'g”)
or  F=U=SXa+b)

If the shaft is making n revolu-
tion per second, the distance through
hich the edge of the pulley moves against the frictional force per
cond = 2m7an. Therefore the work done per sec. in overcoming
iction = 2wan X F. Substitutiong the value for F, we have work
nec per second

Fig. 84

(W — S)a -+.2)
2a

= wn(a 4 b)(W — S), ]
But the work done per sec. is the power of the engine. Hence,
r‘% engine = mn(a + &)(W — S).

= 27an X

he\friction clatch: .A clutch is a mechanism by which
ry motion of one shaft can be¢ transmitted to another shaft,

ts being mounted coaxially. In one type of clutch known as

Taking moments about the axis

‘great to overcome the resistance between the discs.

(e

FRICTION »

&‘{,gma’yal engagement clutch, one . of th . -
While the other is cither stationary or movi: shafts rotates rapidly
the engagement of the clutch proceeds, the ri;:clitlh 2 low speed  As
Tetarded wh.ile the slowly moving shaft is accelerayxegfov-lrnhg sttt ®
BOes On until the two shafts rotate as one with the same s ec ;:;of}c?
clutch is now said to be fally engaged: The clutch usedpi: t.no‘oc
car bc.twccn the engine and the gear box is based on the action 0‘t
Ll;edifer;c\:i}?:a] force that is called into p.lay between two rotating

n they are pressed together. This type ol clutch is known
as friction clutch. .

To uoderstand the action of the friction clutch, let us consider
two shafts C and D (Fig. 85) supported on bearings 4 and B so that
they are free to rotate about a common axis PQ. FE and Fare two
circular discs which face each other and which are keyed to the ends
of the shafts. Soppose the shaft C with its discs £ 1s rotaung
rapidly while the shaft D with its-disc £ is stationary; the two shafts
being pressed together endways when the faces of the discs come
ioto contact the force of friction between them tends to retard the
speed of the disc. E. As the force with which the discs press on each
other gradually increases, the- frictional force between them also
gradually increases and at a certain: stage it becomes sufficiently
Thereafter the
disc F begins to rotate with its speed gradually increasing. This
goes on until the two discs move with 4
the same speed. At this stage there:
is no slip between the discs and the
clutch is fully engaged.

In the motor car clutches, the
discs are kept pressed against each
other by means of a spring. The elas-
ticity of the spring always keep the
clurch in engagement. Whenever it is

Fig. 85
required to disengage the clutch, one of the discs is pulled back
against the pressure of the spring.

L 4

Example 1 Two weights each eqnal to W rest on (he faces o) .
double inclined plane whose inclinations with the horizontal are ¢ ar:
8’ and are connected by a light in%ensible string after passing over
light smooth pulley fixed at the common vertex. Find the value .

coefficient of friction. if the equilibrium of the weights is limiting
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— Centre of Gravity

33 'I'ntroduction.

X Del‘mition
rcsultant of the

e orienration
act at i centre

t The centre of gravity of a body is the point at which ,IZE
Weights of all the particles of the body acts, whatever ma)d to
of the body. The total weight of the body may be suppose

of gravity,

Suppose the particles A, B,C......- of
ZT - abody have masses mjy, My, M3y-ceceer Let
their coordinates in a rectangular
cartesian coordinate system be
Podm (X1 Y1 21)s (s Y20 22Dy wooe (K, Yo Zn)-
Then, the coordinates of the centre
Z of gravity G of the body are
X O 4 — Y - Zmrrxn .
X = ]
5 zmn

=

5= ' '
zm, 2.m,
Suppose an element P of the body
has a mass dm (Fig. 3.1) and its coordinates are x,y,z . Then,

d
,?:J:Fd:le/[—jxdm; E:jj)‘dm : Zéﬁszdm

X// : Zm,,)',, . mpZ, .

Fig. 3.1

Here, the integrals extend over all elements of the body, and
M=Idm= Total mass of the body.

Distinction between C. G and C. M. |

1. Now weights of the different particles constituting the body are proportional
to the respective masses. Hence, C.G.. » If itexists is the same as the C.M. .

2. If the body be removed to an infinite distance .in Spaée where the
attracting force of the earth is inoperative or if it be imagined to be taken to
. the centre of the earth, the force of gravity there will be zero. The body will

lose its weight. Hence, there arises no question of centre of gravity Bt’lt th
body will have centre of mass as it will retain its mass which is inde.:pendeni

of gravity and is an inherent property of matter. Thus 2 body may not have
centre of gravity but it has a centre of mass. N

29
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. Centrc of gravity of a trepezoidal Lamina : Let ABCD
: o $ be a trepezoidal lamina where the

_ lengths of the parallel sides 4B and

/ C/ . CD are 2a and 2brespectively.  Let F

{7 and Ebe the mid-points of ABand CD.

: 3 Join AE and ‘BE. The trepezoidal

\‘L . Tt&. B . lamina is divided into three triangular
A

laminae ADE, AEB and BCE.

1AL

The, v(”enghli; ol the triangular lami-nae ADE, AEB and BEC are
~roportional to their areas which in turn are proportional to their

nases b 2a and b respectively since the altitudes of the triangles are
cqual ) |

The wt of

Ja 2a 2a .
50 'md —fat A. E and B:respectively.

AER.is 'proportional to 2a and is equivalent to

The w'éight of ADE is
propornon al to b and is equivalent to 4b, 3b and 3bat 4, D and E

respectively. The weight of BEC is proportional to b and is equi-
valent to 3h. b/3 and }b at B, Erand .C respectively.

S , 4a + 2b
The wcights'zﬁa -} g a1 A2and B are equivalent to il
2 A _

‘ 3
) . ._ ﬁ 2b
ok F Similarly, 36 at Dard §biat C are equivalent to - at E.
2a 4b 2a + 4b
The total weight at. E is.sproportional to T 4+ — or i
ox E
4 Zb 2a + 4b .
The resultant of a+ at _Eand__..z——m E will act at G
such that _ T .
(40-’-1—‘*‘211 FG e (2a+4h)GE
A 3 3
. FG'_} a+‘uﬁ=a+2b. _‘
o1 GE= Aax 2~ 2d+b" |\
- v \ b
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v 33/¢ . nics and May,
y jentre of gravity of o right solid cone .

Let ABC represent i
e - a solid ¢o i
be con:;lje‘:glxcalt,angle  (Fig, 3-2).r'll?h:rcsslgh( !
Bcutni 0 be made up of 4 large numl: >
gmv“yofeal:h;:;rall?l to the base, The cemer 0
e isc lies at itg centre. Therefor, e
oS i € cone should lje along the axj £
o XIS AD of
Consider a disc B|C of thickness dy at 5

distance y below
the vertex : .
the disc, then A. If ris the radiys of

al Physics

Fig. 3.2

r=ytano
Volume of the disc = Area x thickness = my? tan2 o dy
Mass of the disc =dm =mny?p tan? « dy.
where p = density of the cone.
The distance of the C. G. of the cone from the vertex is given by
J':ny3 p tan?c dy J.hy3 dy
_ 0 3
= = — = h N
f:nyz p tan? o dy Jh)'z dy 4
0

Therefore, the C. G., of the cone is along its axis at a distance of% h from

the vertex.
3.3. Centre of gravity of a hollow right circular cone (without base)

+~ Let h be the height of the cone. The slant
A surface of the cone may be divided into an infinite
number of triangles ABC, ACD, ....etc., by joining

the vertex A to the points on the edge of the base

(Fig. 3.3). The centre of gravity of each such

triangular area is at its centroid. It is at a height of

/3 above the circular base of the cone. Hence, the

C. G., of the whole cone must lie on a plane parallel

* to the base at a height #/3 from it. By symmetry,

D thec G., must also lie on the axis of the con¢ AL.

B o
Hence, the C. G., of the hollow cone is at G such.
|
Fig. 3.3 GL_1
that AL -3

Gravity
[ gravity ofa

Let A . .
O and density P (Fig. 3.4). Consider an elememary

e with radius y and thickness dx, at 5

3 \
solid hemisphere :

j Cgllf”’ ”f
BC represent a solid hemisphere of radiys
S 7,

4 centre
slice of the hemispher
distance x from 0.
Volume of the slice = ny2de =1 (2= x2) d.
Mass of the slice = dm=pn (P - x?) dx.
The distance of the C. G., of the hemisphere from o

B is given by
Fig. 3.4 r r
2 _,2) 2= 3
) jxdm foxprr,(r‘ x) dx jo(rx x°) dx
. x= J’ =p =
). - et dm 7t (2 — x?) dx P-x)d
Ufs ' Bt J’op . J '[;( S
Pt }‘:%r_

Hence, the C. G., of the solid hemisphere is on its axis at a distance 3 r-

¢

! from the centre.

| f Centre of gravity

f a hollow hemisphere

Let ACB be a section of a hemisphere
of radius r,centre O and surface density p [Fig.
3.5). Imagine the surface of the hemisphere to
be divided into slices like PQQ|P| by planes
parallel to AB. If ZLPOC= 6 and
Z POQ = db, then

radius of the ring =r sin 6

width of the ring =r d0

Area of thering = 2nsin 0. rdd

*. mass of the ring
=dm=2npsin6dob.

The C. G., of this ring is at the centre of the

ring at a distance r cos 6 from O.

The distance of the C. G., of the hollow hemisphere from O is

Fig. 3.5

; given by

2

| ;_J'xdm J:)V (rcosG).’anzpsinedG ﬂ)vzrsinecosede
H T (dm = 7

: foim [[*2nP p sino de [“sinoae

l’ x=r/2.
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ThexC. G. «of a hollow hemisphere is on its axis at a distance 172 from
the cefitre, i. e, the centre of gravity is at the mid point of the radius OC.

3.6, Cgmre of gravity of a solid tetrahedron

\;,/ Let ABCD be the tetrahedron and G the
centre of gravity of the base BCD (Fig. 3.6).
Let h be the altitude of the tetrahedron and p
its density. Suppose the tetrahedron is divided
into thin slices by planes parallel to the base
BCD. Consider one such slice B{C|D; of
thickness dx ata depth x below A. Let S be the
area of the triangular base BCD. Then we

Y B »
Fig. 36 &

. If a; and a are the altitudes of triangles
B\CD, and BCD respectively,

VR ‘N E
Now, area of A BC,D, =‘EB‘C1 X alD] </
Areaof ABCD=1BCxa=s.
Ar
Hence, eaof AB,C,D; _ B\C, xa—l—-ﬁ
S B a B2
. Areaof ABICID =S/K (., y\ie o
Volume of the slice B,C,D, = Sx2dx/h?
Mass of the slice = dm = pSx2 dx/h?

The distance of the ¢ i
el entre of gravity of the tetrahedron from A is

__Jxam _J':)xip 52 de/1? thﬂ* dx

x J. = - =3y
dm rPszdx/hz jhxzdx !
B 0

Hence, the C.-G. ,of a uniform tetrahedron li i

a ol ies at i
AH such that AG: GH=3:1 b
3.7. Centre of gravity of a compound body

. Let G, G, be the centres of gravity of the two bodies A and B. Their
weights W, and W, are like parallel forces acting vertically downwards at

3
i
H
b
b
t

Fig. 3.7

G, and G, (Fig.3.7). Their resultant is Wy + Wpand acts ata point G in
G, G, such that

W,
=——G i
W, x GG =Wy xGyG or GG Wt W, 1 G2
This gives the position of the centre of gravity of th

e whole body.
Example 1. A solid homogenous body consists of a C)'Iindf-r and a cone
having their common bases joined together. If the centre of gravity of the body

is at the centre of the common base, find the ratio of the heights of the cone
and the cylinder. '

Sol. Let b, and h, be the heights of the cone and the cylinder. Let Gjand
A

G, be the centres of gravity of the cone and the
cylinder [Fig. 3.8]. The weight of the cone
l}nrzh‘ p acts at G, such that AG, =3:h\ or
GG\=‘:h|. The weight of the cylinder

Phy p acts at G, such that GG = hy/2.

h h
o L L = ph S N
: 3n12h\ pxgh =nrhy p X 2 or ™ =6
Example 2. A solid cone and a solid hemisphere of the same material
have a common base. Find the ratio of the height of the cone to the radius of
the hemisphere, if the C. G., of the combination coincides with the centre of
8 the common base.

Sol. Let h be the height of the cone
and r the radius of the hemisphere. Let
G, and G, be the centres of gravity of the
cone and hemisphere [Fig. 3.91. The C.
G., of the combination is at G, the centre

NG

A
Fig.39
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Le i ’ ivi
t the horizontal iine B’C’ divide the area into two parts, so that the

thrusts on these portions are i e
are equal. Let i a i
! ! q this line be at a distance xabove the

Thrust on AB'C’

= pressure at its C.G. x =(h-2,
G. X area (h 5") ng%X.B'C'

= —g l ~.a;t ’

. 1
Thrust on AB'C’ = 5 X Thrust on the whole triangle.

2. 1ooax_ 1.1
(h 3z)pgxix h=ixghzapg
or (h—%x)x2=éh3
or 45 -6 2h+h3=0
or @x—h) (22 -2xh—hH) =0
h
2x—h=0 =_-
or x 2

4.3/ Centre of pressure .

We know that the liquid pressure acts normally at every point of the
immersed area. The force acting on an elementary area like dS is hpgds. The
thrusts on different elements of the plane form a set of like parallel forces. All
these parallel forces can be compounded into aresultant acting at some definite
point on the plane area. This point is called the centre of pressure.

The centre of pressure of a plane surface in contact with a fluid is the
point on the surface through which the line of action of the resultant of the
thrusts on the various elements of the area passes.

Determination of Centre of pressure—General case -

Consider a plane surface of area S immersed
vertically in a liquid of density p. Let XY be the

X ks Y surface of the liquid (Fig. 4.7).
ll'l Thrust on an elementary area dS ata depth i = h pgdS
1 Moment of this thrust about XY
! = (hpgdS) X h= K2 pgdS

Resultant moment of all thrusts = I thgdS'
S  where the integration is carrjed over all the

elements of the plane area. o
Resultant thrust on the p[lan‘e area

Fig. 4.7
N = [ hpgds
Let the centre of pressure of the plane area be at the point P. Let the
distance of P from XY be H.

Iydrostatics 47

Moment of the resultant thrust about XY = H j hpg dS. :

B e
My definition of the resultant of several forces, we get
oment of resultant force = resuitant of the moments of the forces .

or H [ hpg ds = [ npg ds
or H_fhzds
" [hnas

The result holds good for any inclined position of the plane also.
4.4 /Cf,ntre of pressure of a rectangular lamina immersed vertically
in a liquid with one edge in the surface of the liquid.
Let ABCD be a plane rectans
lamina immersed vertically in a liquid of

ctangular

X2 B8

1 Ef * Y density p with one edge AB in the surface

' ™ XY of the liquid (Fig. 4.8). Let AB =aand

1 Iy AD = b. Divide the rectangle into a num-

l|> } f ber of narrow strips parallel to AB. Con-

| : N sider one such strip of widtlf dx at a depth

{ 77 /!//v/7 dx x below the surface of the hquld..

1 | The thrust acting on the stnp

J’D . F: c = (xpg) % (adx) =xpga dx
~——qa---->> . Moment of this thrust about AB

Fig.‘4.8 =(xpgadx) X x= xnga dx

Sum of the moments of the thrusts on all the strips = Jb x2pga dx
i : 0
Resultant of the thrusts on all the strips = jb xpga dx
& 0

Moment of the resultant thrust about AB = H r xpga dx
0

where H = depth of the centre of pressure below AB.

.H,r;xpga dx= J':’)xnga dx

gl WP - S D
or HPga‘z =pga> or H='§b.
The thrust on every elementary stxip‘ acts 'thx;ou i i H
oy e Y Su gh its midpoint.
the centre of pressure will lie on EF where E'and F are the mid-l:x:innttsl-(l:f“:;

and DC.
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4.5, Celltl e of pressure of

liquid with its vertex

a triangular lamina immersed vertically it @
horizontal.

in the surface of the liquid and its bas¢

Sol. Let ABC be a triangular 1amina
immersed vertically in-a liquid w".h n
vertex A in the surface XY of the llqu.ld
and with its base BC horizontal (Fig.
4.12). BC= a. Let the depth of the base
of the lamina be b from the free Sl.nface
of the liquid. Divide the triangle 10t 2
number of elementary strips of width dx
: parallel to the base BC. Consider oné sug
strip By C 1 of width dx at a depth x below the surface XY.

Area of the strip B) C, = B, C, dx = (ax/b)dx

Thrust on the strip B) Cy =(xp g) x (ax/b) dx

Fig.4.12

Moment of this thrust about XY = ﬁbﬂﬁ dx
Total moment due to all the strips = J'b —q%g- 2 dx.

0 ;
Resultant of the thrusts on all the strips = _[z g%g x2dx.

Moment of the resultant thrust about XY = H JZ ﬁ%&_ x2dx.

Here H= the depth of the centre of pressure below- XY.
Since the two moments are cqual}, !

-JZ%?&:HJE-@%&-E@

: b* b’

or ; apg |2 |_yape o |
b |4 ] b |3
or " H= % b.
The centre of pressure lies on the line joining the mid-points of the strips.
i.e., lies on the median AD at a depth 36/4 below the surface XY,
% Centre of pressure of a triangular lamina immersed in a liquid -

with one side in the surface, when there is no external pressure.

g Be———a- - = 5C

Fig. 4.13

- A an L ene JTUB v e (AW

e 4
v Hydro.y,a,,m o 5

b ol (hLl‘-tABC be a triangular lamina immersed in a liquid with its base BC =
E ey : Esurfacc XY of the liquid (Fig. 4.13). Let AD be a median of the triangle.
b . © the depth of the vertex A below the surface XY. Divide the triangle

. inyy ’ : ]
4§ On: : "“h'“er of elementary strips of width dx parallel to the base BC. Consider
ueh strip B, C, at a depth x below BC.

ArcaoftheslripBl C,=B,C, d“‘:ﬂbb;qu

{S‘ BiC p- x)
ince =
a b

. Moment of this thrust about XY =2 Pg g(bbitl dx

Thrust on the strip B; C; = xpg g(Il-b__X). i

Total moment due to all the strips =r xng el b'b— = dx.
: 2 0

Resultant of the thrusts on all the strips =r xpg ggbb—-_x) dx .
0
Let H be the depth of the centre of pressure below XY.
- Moment of the rcsultan; thrust about XY = H r xpg ﬁ%l dx.
0

ab-x) , .- a(b—x)
Jszpg b dx—Hijpg 5 dx.

or . HJf)x(b—x)dx:_r;xz(b—-x)dx
I R N
i o H[z" 3]‘[03..'7} .
orb

2
“~~The centre of pressure is on the median AD at a depth b/2 below XY.
Example 1. A triangle is wholly immersed in a liquid with its base in the
Siirface. Show that a horizontal straight line drawn through the centre of pressure
“of thetriangle divides it into two parts, the. pressures on which are equal.
. & b Sol. We know that the depth of C.P.
i?mx\w&:-’ LNMR D v 'C ' is % of the height of the triangle. P is the
= [¥) .

centre of pressure. P is at a depth AL/2

G below BC.EF is a line drawn through the
15 CP Il to BC (Fig. 4.14 ). As ABC and
9/~ — — T AEFaesimilar.
TR o e . EF_AP |\ . up_lap
e ai  mmm r ** BC A 2 ( 2 )
EF=3BC (1)
Fig. 4.14
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H)’droﬂ“"' = |
' pe pC=a and p = the density of (¢ liquid Then
. 1,

v area of the
L ad.
2

1S
lri-ﬂ"glc e into account the ¢ ‘
Now let us take into ¢ ¢ atmospheric presy

N sure, 'Ihc
oy alent to a heigat \p
e 18 equivalent to a heigat i of water. Now, the thrusts
§8 :
lﬂ:ulllc AL
(e

: | | ’
(i) the pressure 5 dpg X ) ad acting at P o

atmospheric
Acting on the

a dcpth %d below 5 ¢
. the additional thrus 4 | 5
(if) the additional thrust hpg x 5 ad due to (he atmospheric pressyre
_ centre of gravity which is at ; L '
ing at the g Y \ depth > d fromB C |
Let P’ be the new position of the centre of ressu s at ¢
from BC: Taking moments about BC, ! e 118 ata depth 4

1 1 da)al
H(z dpg X 3ad + hpg x z“dJ*a dpg x 3 ad x L d

+hpg‘/~%adx%d.
L g )
) 8d apg+gd apgh
) 1
3 d pPga+ 3 dpgha
=1y 3d+4h
6 | d+2hn
Hence the vertical distance between p and P’ = ld -H -
2

:ld_ld 3d+4h‘_1 hd
R 2 6 | d+2n | T3 dyon|
yﬁoaﬁng Bodies
. Laws of Floatation : (1) The weight of
weight of the liquid displaced by it

7 :(2) The centre of gravity of the floating body and the centre of gravity of

the liquid displaced (i.e., the centre f buoyancy) are inthe same vertical line,
— _ tability of Floating bodies :

The equilibrium of a freely floating body is
- said to be stable, if on being slightly displaced, the
body returns to the original equilibrium position.
Consider a floating body in equilibrium. G
is the centre of gravity of the floating body and B
is the centre of buoyancy. The line BG is vertical
(Fig. 4.16).
When the floating body is slightly displaced
;"n'- : ~(Fig. 4.17) C is the new centre of bugyancy. The
vertical line through C meets the original vertical line BG atM. M is called the

the floating body is equal to the
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54 Mechanics and Malhematlca
‘metacentre’ of the floating body. GM is
called the meracentric height. The weight
of the body W acts vertically downwards
through G. The upthrust of value W acts
vertically upwards through C. If the
metacentre is above G, the couple due to
the_ forces at G and C is anticlockwise and
brings the floating body back to its
onginal position. Hence in this case the
equilibrium is stable. Fig. 4.17

But if M lies below G (Fig. 4.18), gl i
SRS thc)couplc due to the forces at G ?nd lC is

clock-wise and the couple tend%l!g turn
the body away from the t:qm .1 num
position. Hence this equilibrium 1s
unstable. Hence for a floating body to be
in stable equilibrium, the metacentre
must be always above the centre of
gravity of the body.

Note : In the case of a sphere
floating in a liquid, a tilt one way or other
does not change the shape of t?‘e
displaced liquid. Hence M coincides with
G all the time. Therefore, itis said to be in neutral equilibrium and it continues

Fig. 4.18

2
Hydrostatics

The weight W of the ship acting downwards at G and. an equivalgm
upward thrust at the new centre of buoyancy H’ form acouple withan opposing

_moment W x GM sin ©. For equilibrium in the tilted position of ship,

wl
WxGMsin(;:wxlcoseorGM:m
or GM = %IB [0 being small, tan 8 = 8).

Thus knowing W, w, [ and 9, we can easily calculate the metacentric
height of the ship.-

Example 1. A ship is of 20000 tons displacement. A load of 30 tons
N 3
moved SO metres across the deck makes the ship tilt through (;)°. Calculate
the metacentric height.
Sol. Here, w = 30 tons, ! =50m, W =20000 tons,

0= (%)" = % x 1t/180 radians.

30x 50

= = 5.79m.
20000 x % x1t/180

Example 2. Calculate the ‘nietacentric height and determine the
necessary condition for the stable equilibrium of a cylinder of length |, radius
r and density p, floating vertically in a liquid of density G.

Sol. Let x be the height of the immersed
part of the cylinder (Fig. 4.20). By the law of
floatation, Weight of the floating body =
Weight of the liquid displaced by it
nlp =nr’xG or~x =Ip/c.

to float jff all positions.
Axperimental determination of the metacentric height of a ship.

The weight of the ship W is deter-
mined by the displacement method. Two
identical boats are attached one on each  §!
side of the ship. In' Fig. 4.19, A and B a3
represent the boats at adistance / aparton  §
the deck. Filling A and B alternately with  f
water is equivalent to moving a known
weight w from A to B across the deck.
Filling the boat B with the same mass of
water as in A, tums the ship through an
angle 6. The tilt 8 is determined by means

Let O be the centre of the bottom face
of the cylinder. Let H, G and M be the centre
of buoyancy, centre of gravity and metacentre
respectively. Now,

OH =x/2=1p/(2G). 0G = /2

The: HG=0G-oH=1_lo _lo-p)

s of a plumb line suspended in the ship. e i
. 4. Now, this shift of wej

to B is equivalent to a downward force ard Torve

is e w at B and an upward f,

constituting a couple of moment wl cos 8. Let H and H'Fi)c the ::;c: w] e

altered positions of centres of buoyancy, G the centre of gravit ? -

and GM the metacentric height. y ol the
A X D -

. We know that the distance between the centre of buoyancy of the
displaced liquid and the metacentre is AK2/V where AK> is the ML, of the
surface-plane of the cylinder about its diameter, .- K2=p >

face: > . KE=rf/4,
radius of gyration of the: plane about the surface-lin e

3 X A € O i "
cylinder. V is the volume of the immersed part of the bo':i;%‘e diameter of the

and
ship
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C=log, py.

IMIECTIUTIILD  Wrise avaveersvirives v "”ySic_y DAt .
% g ing for C in Eq. (2), | 2.
H o [Ol » y =
At n2(r2/4 =f_ Substituting og, Po] kgx
nrx 4x B
P ke or = po—k
For stability, HM>HG. “ o ¢ P =poe” &
_ri>£<_7_:_(-22 Example 1. Show that if {he allitut{e increases in arithmetical
4x 20 ‘pmgressian,-lhe pressure decreases in geometrical progression.
2 >1 c— [+ pelot Suppose we have a number of heights xy, x,, X3, ... in AP. Then,
ot 4lp/c 20 p/a) xg— X1 =X3 T X2 T X4 X3 and so on . Let py, p, ps,..... be the pressures at
N .
~_ 2 P these heights.
— l - — -
2 >s c Then, py=Po¢ gl Py=poe” K82, P3=poe s ...

This is , therefore, the necessary condition for stable equilibrium.

4.8 Atmospheric pressure

- Air is a mixture of gases like oXygen, nitrogen, carbon dioxide etc. It
envelops the earth-and this envelope is called the atmosphere. Since air has
weight, it exerts pressure on all the surfaces in contact with it. The thrust
exerted by the atmosphere on unit area of the earth’s surface is called the
atmospheric pressure. The atmospheric pressure is greatest at the surface of
the earth. The normal atmospheric pressure may be taken as the pressure
exerted by a column of mercury at 0°C and height 0-76 m. The atmospheric
pressure decreases as we go higher and higher above the earth’s surface. The

atmospheric pressure at any place can be measured by a barometer.

Variation of atmospheric pressure with altitude :

Let A and B be two points at heights x and x + dx
Bt p-dp above the earth’s surface. Let p be the pressure at A (Fig.
4.21). Since the density of air and, therefore, its pressure
decreases with altitude, the pressure at B will be

dx p —dp. Let p be the density of air between A and B.
alp Then —dp=pgdx e (1),
r The negative sign indicates that the pressure decreases
i with height. _
x If the temperature of the air is assumed to be constant,
l p o< p or p = kp where k is a constant.
,’ Substituting this value of p in Eq. (1),
—gip:kpgdxor——dg=kg dx
Fig. 4.21 d P
or Lo kg dx
P
Integrating, logp=~kgx+C (2

where C is the constant of integration. .
Let p, be the pressure at sea level. Then, when x=0, p=p,. Hence

P P2
Now, log, pz)—kg (x;—x;) and log, p—3 =kg (x3—x5)

P
Since x; — x; =x3 — X, we have log, =L\= log, =2,
P> pP3
P1/P2=py/P3.-
i.e., p1» P2 P3.-.- arein G.P.
Example 2. What is meant by the height of the homogeneous
atmosphere ? Find its value assuming the normal pressure is 0-76 metres of
mercury and density of air and mercury to be 1-293 and 13600 kg/m’

respectively.

Sol. The pressure of air and hence its density decreases with increase of
altitude. Hence atmospheric air is not of uniform density. Suppose the
atmospheric air were of uniform density p extending to a height H above the
surface of the earth. Then the pressure exerted by this air column is Hpg. If
this pressure Hpg is equal to the standard atmospheric pressure, the height H
is called the height of the homogeneous atmosphere.

Hpg =0-76 x 13600 x 9-8

or Hx1293%x9-8=0-76 X 13600 X 9-8

or H=7990m.

Hence, the height of the homogeneous atmosphere is nearly 8
kilometres.

Example 3 . Calculate the difference in height between two stations
from the barometric heights.

Sol. Let H, and H, be the barometric heights at altitudes h; and h; and
P) and p, the corresponding atmospheric pressures. p,/p, = H/H,.

PL=Po€ keh,  and P2a=pPoe keh,

log. (p,/P7)
log, (p1/p;) =kg (hy—=hy) ot hy — hy v
log, (H,/H5) ’
or hy—hy= T
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