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defined on the basis of Newton’s law of gravitation. The mass of a body defined
on the basis of gravitational properties is called the gravitational mass.
Naturally a question arises: Is the inertial mass of a body equal to its
gravitational mass? Recently it was established that these masses are equal to

within a few parts in 1012, This equivalence of the inertial and gravitational
masses of a body is the principle of equivalence postulated by Einstein in
general relativity.

1.4 MECHANICS OF A PARTICLE

In this section, we shall discuss mainly the conservation laws for a particle in
motion in Newtonian formalism.

Conservation of Linear Momentum From Newton’s first law, we
have already indicated the law of conservation of momentum of a
single particle in Eq. (1.7). It also follows from Newton’s second
law of motion which states that

P _p

dt

If no external force is acting on the particle

dp

d_=0 or p = constant in time (1.13)
t

If the total force acting on a particle is zero, then the linear momentum p is
conserved.

Angular Momentum and Torque Angular momentum and torque
are two important quantities in rotational motion. A force causes
linear acceleration whereas a torque causes angular acceleration.
The angular momentum of a particle about a point O (say origin),
denoted by

L,isdefinedasL=r p (1.14) where r is the radius vector of
the particle. The torque (N) or moment of a force about O is



defined as N=er=r><;.ﬂ (1.15)
t

which is perpendicular to the plane containing the vectors r and F points in the
direction of the advance of a right hand screw from r to F. Since

dr dr dr
—)(p:m—}(—:{]
dt dr  dr
from Eq. (1.15), we have
N=rx @ _dEXP)
dt dt
dL
N=—
a0t (1.16)

which is the analogue of Newton's second law in rotational motion.

Conservation of Angular Momentum The angular momentum
conservation comes automatically from Eq. (1.16).
If the torgue N acting on the particle is zero, then

‘;L—‘=ﬂ or L =constant (1.17)

If the torque N acting on a particle is zero, the angular momentum L is a
constant. Planets moving around the sun and satellites around the earth are some
of the very common examples.

Work Done by a Force Work done by an external force in moving
a particle from position 1 to position 2 is given by

F 2
W,, = jF-dr: In:d—"dr
: di
Assuming the mass of the particle constant

2 2
W, = m-[ﬁ d—rdr =mj—d—v~\' di
; dr di l di
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1

=Ty—T, (1.18)

where T2 and Ty are the kinetic energies of the particle in positions 2 and
1 respectively. If To = T, W2 = 0, work is done by the force on the
particle and as a result the kinetic energy of the particle is increased. If T
> To, Wi2 < 0, work is done by the particle against the force and as a
result the kinetic energy of the particle is decreased.
Conservative Force If the force acting on a system is such that the
work done along a closed path is zero, then the force is said to be
conservative. That is, for a conservative force F
CﬁF rdr=0 (1.19)

If the closed curve encloses the surface S, by Stokes theorem, we have

(j',p.dnj(v'xl?)-dS:O (1.20)

Since the surface is arbitrary, this is possible only if
VxF=Curl F=0 (1.21)

which is the necessary and suficient condition for a force to be conservative.
The curl of a vector is zero if it can be expressed as the gradient of a scalar
function of position. Hence, we can write

F=-VV(r) (1.22)

The scalar function V(r) in Eq. (1.22) is called the potential energy of the
particle at the point or simply the potential at the point. In terms of V, the

components of the force are
1% aV aV
F =— F =— F =—
X a.;l' y ay Z az ( | 23}

Conservation of Energy The work done by a force F in moving a
particle of mass m from position 1 to position 2 is given by Eq.



(1.18). Now consider the work done W17 by taking F to be a

conservative force derivable from a potential V. Then Wy takes
2 2
the form W, =J-Fadr= —j?lﬂ'*dr

j[—f.{r+—dv+aa—vdz] jtﬂ«"
1

-

J £

= Fl - Vz | 124}

Combining Eqs. (1.18) and (1.24), we have T + Vi = T2 + V>
which gives the energy conservation theorem.

If the force acting on a particle is conservative, then the total energy of the
particle, T + V, is a constant.

Equation (1.22) is satisfied even if we replace V by V + C, where C is a

constant. Then F=_Yy =—-V(V + () (1.25)

Hence, the potential introduced through Eq. (1.22) is not unique and therefore an
absolute value of the potential has no meaning. It may be noted that the kinetic
energy also has no absolute value since we use an inertial frame of reference for
measuring the velocity and hence the kinetic energy. For measuring the absolute
kinetic energy we required a reference frame which is absolutely at rest. It is not
possible to find such a reference frame and therefore the kinetic energy we
measure is only relative.

1.5 MOTION UNDER A CONSTANT
FORCE

When the applied force F on a particle is constant in time and hence there is a
constant  acceleration, we write Eq. (1.10) in the form
d’r _dv_F
. = — =a = constant (1.26)
dr dr m

Direct integration of Eq. (1.26) is possible if the initial conditions are known.



2

System of Particles

The mechanics of a system of particles can be studied by using a straightforward
application of Newton's laws.This application of Newton’s laws considers the
forces acting between particles in addition to the externally applied forces. One
can easily extend the considerations of the mechanics of a single particle to a
system of particles also.

2.1 CENTRE OF MASS

The mass of a point particle is concentrated at a particular point. When we
consider the motion of a system of n particles, there is a point in it which
behaves as if the entire mass of the system is concentrated at that point. This
point is called the centre of mass of the system. The centre of mass C of a
system of particles

(see Fig. 2.1) whose radius vector is R is related to the masses m; and radius

vectors r; of all n particles of the system by the equation
Ya




Fig. 2.1 Centre of mass of a system of n particles,

S
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where M is the total mass of the system. For a continuous body, the co-ordinates
of the centre of mass are

I 1 I
X=—j dv r=_j AV z=_I =dV
| px |y i L

For a homogeneous body, the density p is constant and V is the volume of the
body

| | |
=— | xdV =— | vdV =— |z
X vjt‘d Y FI_\H' Z 'l-"j dv (2.1a)
¥ v v

A frame of reference with the centre of mass as the origin is called the centre of
mass frame of reference. In this frame of reference, obviously, the position
vector of the centre of mass R is equal to zero. Consequently, the linear
momentum P of the system (dR/dr) is also zero. It is the practice to deal with all
scattering problems in nuclear physics in this frame of reference.

2.2 CONSERVATION OF LINEAR
MOMENTUM

Consider a system of n particles of masses my, mo, m3, ... my;. Let their position
vectors at time f be rq, rp, r3, ... ry;. The force acting on the ith particle Fj has

two parts: (i) a force applied on the system from outside or external force (ii) an
internal force which is a force among the particles of the system. Newton's
second law for the ith particle of the system can be written as

dp; _ o _ \ gt
?-F}-F,-,:z:;li‘,} J#i (2.2)

where Fje is the external force on the ith particle and Fij is the internal force on
the ith particle due to the jth one. Since Fj; =0, j 70 i in the summation. Summing



over all particles of the system, Eq. (2.2) takes the form

d s 23
Z p’ ZFw*Z Z Jok (2.3)

i=1 i=1 j=1
Assuming that Newton’s third law is valid for the internal force Fj= —
Fjj (2.4) Use of this condition reduces the second term on the right of Eq.

(2.3) to zero. The first term z » the total external force acting on the

system. Thesumpy +pp +p3 + ... + pp =
is the total linear momentum of the system. Now Eq. (2.3) reduces to

==X, {2.3)

which provides the law of conservation of linear momentum of a system of
particles: If the external force acting on a system of particles is zero, then the
total linear momentum of the system is conserved.
When external force acting on a system is zero, it is called a closed system. For a
closed system, linear momentum is conserved.

Another interesting result is the relation connecting the total linear momentum
and the velocity of the centre of mass. With the definition of centre of mass in
Eq. (2.1)

~

dp, d* d’R
b Ve

dr®

and Eq. (2.3) takes the form

d’R dP
=—=F (2.6)

M » L
dt*  dt .

That is, the centre of mass moves as if the total external force were acting on the
entire mass of the system concentrated at the centre of mass.

2.3 ANGULAR MOMENTUM

We now derive the angular momentum L of a system of particles which is



definedas L= Zr‘ X P, 2.7)

Figure 2.2 illustrates the position vector of the centre of mass of the system and

that of the ith particle.
]

L

Fig. 2.2 Position of centre of mass and ith particle,
From Fig. 2.2 we
r=R+r’ or E=R+¥¢’
Consequently,
pi =mi; =m(R+ 1)
Substituting these values in Eq. (2.7)

L= (R+1)xm R+5)
i

:Zm'- (R x R}+[ R xzm.- 5";] "'[Z"’;"i’x n]"‘Z[’"iri’x';:']

(2.10)

have
(2.8)

(2.9)

The quantity Z"’i i vanishes as it defines the radius vector of the centre of
L

mass in the co-ordinate system in which the origin is the centre of mass. The

quantity



Hence, the total angular momentum
7 E’"" (RxR)+ z;n,..r;’ X #
=RXMVgy + ) (1 X)) (2.11)
:

where Vg is the velocity of the centre of mass with respect to the origin O

The meaning of the equation is that the total angular momentum about a point O
is equal to the sum of the angular momentum of the system concentrated at the
centre of mass and the angular momentum of the system of particles about the
centre of mass.

2.4 CONSERVATION OF ANGULAR
MOMENTUM

We now consider the angular momentum of a system of n particles which is

n
L= xp,

dL _
i pi+Zr x—-- (2.12)

The first term on the nghl is zero since the vector product of a vector with itself
is zero. Substituting for (dp;j / df) from Eq. (2.2)

dL
I:Z r,-><[l~".-,+g,F.;]
=Zu;><l-“,-,1+z Z{rixl’,;l j#i (2.13)
i i J

defined as



The second term on the right contains pairs of terms like
r; XEJ+TJ XFJ;J;
Since Fj; = — F;this pair reduces to
X x=m-5) Xl =mx ) (2.14)
which is zero if the internal forces are central, that is, the intemal forces are

along the line joining the two particles. Hence, the second term on the right of
Eq. (2.13) vanishes. Since r;j Fj, is the torque due to the external force on the ith
particle, Eq. (2.13) reduces to

dL

E:ZNQ:N, (2.15)

where N, is the total external torque acting on the system. Eq. (2.15) leads to the

conservation law: If the total torque due to external forces on a system of
particles is zero, then the total angular momentum is a constant of motion.

2.5 KINETIC ENERGY FOR A SYSTEM OF PARTICLES

For a system of particles the Kinetic energy of the system

] n
T=52m,-v;? (2.16)
i=1
The position of the centre of mass of the system and that of the ith particle is
shown in Fig. 2.2, From the figure, we have

] F 54 r
=R+r or v,=V +v

With this value of v;, Eq. (2.16) takes the form
l ’ !
T=Ezi‘m,- (Ve +V7)-(Vegyg + V)

The term me r;” vanishes as it defines the radius vector of the centre of mass

in the co-ordinate system in which the origin is the centre of mass. Hence,

| | K
= EM Vi, + 3 Zm,- v, (2.18) Thus, like angular momentum, the
i

kinetic energy also consists of two parts:
(i) the kinetic energy obtained if all the mass were concentrated at the centre of



mass, and (ii) the kinetic energy of motion about the centre of mass.

2.6 ENERGY CONSERVATION OF ASYSTEM OF PARTICLES

The energy conservation law of a single particle system can easily be extended
to a system of particles. The force acting on the ith particle is given by Eq. (2.2).
As in the case of a single particle, the work done by all forces in moving the
system from an initial position 1 to a final position 2 is given by

2 2 2
Wiz =Y IE.dr,- -y JF,—e.dr,- +y ¥ JFy.dq oy (2.19)
5y i i i 1

2
Again, reducing the integral 2 JF,- .dr; using equation of motion, we have
i 1

) 2 2
Wi, =Z JFi.dr,- =Zmi- V2 .dr; =Zm.,- -[E'Vidt
. | i 1 1 1
2
i 1 2.2
=Zm,- Vl'dVI'ZZE"E;[VI' ]l
i 1 i
=Ty =T (2.20)

where T is the total kinetic energy of the system.
Next we consider the right hand side of Eq. (2.19). If both Fje and Fjj are
conservative, they are derivable from potential functions
e =— V; Vi(r;) and F; =—VVL,- (G.1;) (2.21) where the subscript i
on the del operator indicates that the derivative is with respect to the co-

ordinates of the ith particle. The first term on the right side of Eq. (2.19) now
takes the form



IF dry = —ZJ-?.V.JI‘N"
I

In order to satisfy Newton's third law, F;; =~ F;;. Hence,
2 ZF‘J .dr,- = 2 ZFI' Jfl'j =2- 2 ZF,J +drj i# J {223}
i b i I i i
Consequently,

ZZF ;= ZZF,j (dr,—dr;) i#]j

i

_—Z ZF dr;  dry=dr-dr; i%j i

where the factor 14 is ||1rr0£lucef:l to avoid each member of a pair being included
twice, first in the i summation and then in the j summation. Substituting this

ZZJF oy =— EZIF dry %
=_ézi"zj:.1i?ﬁv&.dn} i#j
133

value

2
=“%!2 Zvﬁ] i#j (2.25)
i I 1

Here V;; stands for the gradient with respect to i
Equation (2.19) can now be written as
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Lagrangian Formulation

In the previous chapters we were able to demonstrate the effectiveness of
Newton's laws of motion in solving variety of problems. However, if the system
is subject to external constraints, solving the equations of motion may be
difficult, and sometimes it may be difficult even to formulate them. The forces of
constraints are usually very complex or unknown, which makes the formalism
more difficult. To circumvent these difficulties, two different methods,
Lagrange’s and Hamilton’s formulations, have been developed. These techniques
use an energy approach and are constructed in such a way that the Newtonian
formalism follows from it. Before going over to these procedures, we try to
understand certain terms such as constraints, generalized coordinates, ete. In this
chapter a discussion on the Lagrangian formalism is given.

3.1 CONSTRAINTS

A motion that cannot proceed arbitrarily in any manner is called a constrained
motion. The conditions which restricts the motion of the system are called
constraints. For example, gas molecules within a container are constrained by
the walls of the vessel to move only inside the container. A particle placed on the
surface of a solid sphere is restricted by the constraint, so that it can only move
on the surface or in the region exterior to the sphere. There are two main types of
constraints, holonomic and non-holonomic.

Holonomic Constraints

In holonomic constraints, the conditions of constraint are expressible as
equations connecting the coordinates and time, having the form f (rq, ro, r3,...

. 1) =0 (3.1) We give below a few typical examples of holonomic



constraint: (i) In a rigid body, the distance between any two particles of the body
remains constant during motion. This is expressible as |r, . P =q§

(3.2) where cjj is the distance between the particles i and j at r; and r;.

(ii) The sliding of a bead on a circular wire of radius a in the xy-plane is another
example. The equation of constraint is X2 + y’2 = q? (3.3) which
can also be expressed in the differential form as x dx + y dy =
0 (3.3a) Equations (3.2) and (3.3) are of the same form as
Eq. (3.1). The differential equation denoted by Eq. (3.3a) can be
integrated to obtain Eq. (3.3). Holonomic constraints are also
known as integrable constraints. The term integrable is used
here since Eq. (3.1) 1s equivalent to the differential equation

d
E —fﬁ"’: =0 (3.4) Equation (3.4) can be readily integrated to Eq.
i i

(3.1).

Non-holonomic Constraints

Non-holonomic constraints are those which are not expressible in the form of
Eq. (3.1). The coordinates in this case are restricted either by inequalities or by
non-integrable differentials.

(i) The constraint involved in the example of a particle placed on the surface of a

sphere is non-holonomic, which may be expressed as the inequality 2 —a?

= 0(3.5) where a is the radius of the sphere.
(1i) Gas molecules in a spherical container of radius R. If r; is the position vector

of the ith molecule, II-I + }-f .-zf <R? (3.6) Here, the centre of the

sphere is the origin of the coordinate system.

In non-holonomic constraints, if the constraints are expressible as relations
among the wvelocities of the particles of the system, that is,
J(xps X 0ies Xy Xa,...1) =0 (3.6a) and if these equations of non-holonomic
constraints can be integrated to give relations among the coordinates, then the
constraints become holonomic.

Scleronomous and Rheonomous Constraints Constraints are
further classified as scleronomous and rheonomous.
A scleronomous constraint is one that is independent of time



whereas a rheonomous constraint contains time explicity. A
pendulum with an inextensible string of length [ is described by

the equation x? + y? =2 (3.7) As the constraint equation is

independent of time, it is a scleronomous constraint. A pendulum
with an extensible string is rheonomous, the condition of

T . o :
constraint is x= + _1'3 = [<(t) (3.8) where [(f) is the length of
the string at time f.

Constraints introduce two types of difficulties in the solution of mechanical
problems. The coordinates r;j are no longer independent as they are connected by

the equations of constraint. In the case of holonomic constraints, this difficulty is
solved by the introduction of generalized coordinates. The second difficulty is
due to the fact that the forces of constraints cannot be specified explicitly. They
are among the unknowns of the problem and must be obtained from the solution.
This difficulty can be solved if the problem is formulated in the Lagrangian
form, in which the forces of constraint do not appear.

In most of the systems of interest, the constraints involved are holonomic.
Hence, we restrict ourselves mainly to holonomic systems.

3.2 GENERALIZED COORDINATES

Degrees of Freedom

The number of independent ways in which a mechanical system can move
without violating any constraint is called the number of degrees of freedom of
the system. It is the minimum possible number of coordinates required to
describe the system completely. When a particle moves in space, it has three
degrees of freedom. If it is constrained to move along a space curve it has only
one degree of freedom whereas it has two degrees of freedom if it moves in a
plane.

Generalized Coordinates

For a system of N particles, free from constraints, we require a total of 3N
independent coordinates to describe its configuration completely. Let there are k



constraints of the type fs (r1, r2,., IN0) =0s=1, 2, 3,..., k (3.9) acting
on the system. Now the system has only 3N — k independent coordinates or

degrees of freedom. These 3N — k independent coordinates represented by the
variables Q1s 92y G3seees Q3IN_) are called the generalized coordinates. In terms of the new

coordinates, the old coordinates gt F e ry can be written 5
=T (G Goees Gann 1)
r2=F2 (1, G2uees Q3n-i, 1) (3.10)

™N = Ty (G1s G20ees G3n-4 1)
These are the transformation equations from the set ofr variables to g, variables.
In analogy with cartesian coordinates, time derivatives §;,4¢,.4gs... are defined as
generalized velocities.

Generalized coordinates are not unique. They may or may not have

dimensions of length. Depending on the problem, it may prove more convenient
to select some of the coordinates with dimensions of energy, some others with

dimensions of L2, and yet some others could be combinations of angles and
coordinates, and so on.

Configuration Space

We have seen that the configuration of a system can be specified completely by
the values of n = 3N — k independent generalized coordinates q1, g2...., gp. It is
convenient to think of the n q’s as the coordinates of a point in an n-dimensional
space. This n-dimensional space is called the configuration space with each
dimension represented by a coordinate. As the generalized coordinates are not
necessarily position coordinates, configuration space is not necessarily
connected to the physical 3-dimensional space and the path of motion also does
not necessarily resemble the path in space of actual particle.

3.3 PRINCIPLE OF VIRTUAL WORK

A virtual displacement, denoted by dr;, refers to an imagined, infinitesimal,

instantaneous displacement of the coordinate that is consistent with the
constraints. It is different from an actual displacement dr; of the system



occurring in a time interval dt. It is called virtual as the displacement is
instantaneous. As there is no actual motion of the system, the work done by the
forces of constraint in such a virtual displacement is zero.

Consider a scleronomic system of N particles in equilibrium. Let F; be the

force acting on the ith particle. The force F; is a vector addition of the externally
applied force F7 and the forces of constraints f;. Then F, = F7 +f;, RARE

If dr; is a viral displacement of the ith particle, the virtual work done dW; on the ith particle is given by
oW, =F. .0r, (3.12) If the system is in equilibrium, the total force on each

particle must be zero:
F; = 0 for all i. Therefore, the dot product F,.dr; is also zero. That is,

W, = (Ff +£,).6r, =0 F=12 . N (3.13) The total virtual work

done on the system dW is the sum of the above vanishing products:

SW = iéw :i(Ff +£,).0r,=0

i=1 i=1

N N
=) Ff.on+ ) £.05,=0 (3.14)

i=1 i=1
Under a virtual displacement, the work done by the forces of constraints is zero.

This is valid for rigid bodies and most of the constraints that commonly occur.
Therefore, Eq. (3.14) reduces to

N

oW =Y F/.or, =0 (3.15)

i=l

which is the principle of virtual work and is stated as : In an N-particle system,
the total work done by the external forces when virtual displacements are made
is called virtual work and the total virtual work done is zero.

The coefficients ér; in Eg. (3.15) can no longer be set equal to zero as they are
not independent. It should also be noted that the principle of virtual work deals
only with statics.

3.4 D’ ALEMBERT’S PRINCIPLE

The principle of virtual work deals only with statics and the general motion of
the system is not relevant here. A principle that involves the general motion of



the system was suggested by D" Alembert.
Consider the motion of an N-particle system. Let the force acting on the ith

particle be F;. By Newton’s law F,=p, or F,—p,=0 (3.16) This means

that the ith particle in the system will be in equilibrium under a force equal to the
actual force plus a “reversed effective force”,—p..as named by D’Alembert.

Then dynamics reduces to statics. To this equivalent static problem, give a

virtual displacement 8r; which leads to
N
2, (F;— p,).05,=0 (3.17)
i=1
N
D (Ff 46— p;).05, =0 (3.18)

i=l

Restricting to situations where the virtual work done by forces of constraints is

N
Zero Z(Ff —p;).or; =0 (3.19) which is D’Alembert’s principle.

i=1

3.5 LAGRANGE’S EQUATIONS

Lagrange used D'Alembert’s principle as the starting point to derive the
equations of motion, now known as Lagrange's equations. Dropping the

N
superscript e in Eg. (3.19) Z{F}—ﬁl}.ﬁl}=i} (3.20) The wvirtual
i=1
displacements &r, in Eq. (3.20) are not independent. Lagrange changed Eq.

(3.20) into an equation involving virtual displacment of the generalized
coordinates which are independent.
Consider a system with N particles at ry, rp,..., ryy having k equations of

holonomic constraints. The system will have n = 3N — k generalized coordinates
q1, 2,.,qn- The transformation equations from the r variables to the q variables

are given by Eq. (3.10).
¥i =rj(q1, q2, .. Qu, 0) (3.21) Since virtual displacement does not
involve time, from Eq. (3.21)



o, dr;

or; - " 5, g+ == 25@:.-_4- + g a (3.22) Here dgj’s
are the virtual displacements of generahzed coordinates. From
. i dr, on., on g, ar,-
Eq. (3.21) we also have r; = = =3Tr]ql +E . q, + Yy
Z 9, 323 J_on (3.24) The f f
¥ P . e form o
aqf dg; dg

D’Alemben s principle, Eq. (3.20), can be changed easily by substituting
ér, from Eq (3.22). The first term of Eq (3.20) is

ZF c‘ir—Zl* lz ' } X{ZE%}%

F i

= 0,84 (3.25)
j=1
al""
where, Pr= ZF & (3.26)
i J

The quantity Qjis the jth component of the generalized force Q. The generalized

force components need not have the dimension of force as the ¢’s need not have
the dimension of length. However, deqj must have the dimension of work.

We now  write the inertial force term of Eq. (3.20)



Zf’f 0r; = Zmii:i Or; = iji:r' Zg: 4qj ]
“1 -
2 [ - 2 mi %gﬁ]ﬁq; (3.27)

llaqj

x

Using Eq. (3.24)

AR QG R S L al1
% (R D R DL

_d a 1 2| _d 9T
3 %, [sz.-v.- J- a3, (3.28)
where T is the total kinetic energy of the system. Changing the order of
differentiation in the second term of Eq. (3.27)
2 d al} . E.'l"r d | 2 dT
Do SAiy, Y. Wi —myvy |=—— (3.29) Use of Eqgs.
z Ildraq 'Z J‘l‘aqj aq} ;2 1 alf!'j. ] q

L]
(3.28) and (3.29) reduces Eq. (3.27) to Zﬁ; or; = Z[E 3K a_r]
i j=1 ]
(3.30) With Eqs. (3.26) and (3.30), Eq. (3.20) becomes

~[d or  or

Z(I— I 'a— = Qj]ﬁq_,- =0 (3.31) The dg's are independent and therefore
each of the coefficients must separately wvamish. From which it follows that
____—Q; =0 j=L2..n (3.32) Equation (3.32) can be

simplified further if the external forces F; are conservative: F, = -V, IV where V
- v (rg, g A ry). Then



aq (3.33)

since

a‘v aV ar,-
a4, ™ 2, 24, -
Equation (3.32) becomes

dor _oT  av _

Sl ST (3.35)

e : o aV .
If the potential V is a function of position only, [a] = (. We can now include
i
this term in Eq. (3.35). Then

d d 3 .
& 0 gevr=tarayyse el .
dr 34 =5 J ' (3.36)

1

We now introduce a new function L defined by L{g.q.1)=T(q.4.1)-V(g)
(3.37) where q stands for qp, g2, q3,.. qn and 4 stands for
GysGas G3.--s §,- This function L is called the Lagrangian function of the

system. In terms of L, Eq. (3.36) becomes Lt B_L - l:F}—I'= 0 j=123..n
dr\dg; ) dq,

(3.38) These n equations, one for each independent generalized

coordinate, are known as Lagrange’s equations. These constitute a set of n

second order differential equations for n unknown functions qj(t) and the general

solution contains
2n integration constants.



3.7 GENERALIZED MOMENTUM

Consider the motion of a particle of mass m moving along x-axis. Its linear
momentum p is mi and kinetic energy T = (%) m it Differentiating T with

- ’ .
respect to & we have —=mi=p (3.50) If the potential V is not a
¥
function of the velocity ¥, since L=T-V
ar oL . , .
p=_-.=_. (3.51) Let us use this concept to define generalized

di  di
momentum. For a system described by a set of generalized coordinates q,
q2...., Qp. we define generalized momentum p; comresponding to
dl

generalized coordinate qj as P, = (3.52) Sometimes it is also
9

known as conjugate momentum (conjugate to co-

ordinate q; ).

In general, generalized momentum is a function of the g's, ¢'s and 1. As the
Lagrangian is utmost quadratic in the ¢ ’s, p; is a linear function of the 4’s. The
generalized momentum p; need not always have the dimension of linear

momentum. However, the product of any generalized momentmum and the
associated coordinate must always have the dimension of angular momentum.

For a conservative system, the use of the expression for generalized momentum,
dL

Eq. (3.52), reduces Lagrange’s equations of motion to P; :é_q_- j=L2,..n
4

(3.53)

3.8 FIRST INTEGRALS OF MOTION AND
CYCLIC

COORDINATES

Lagrange’s equations of motion for a system having n degrees of freedom will



have n differential equations that are second order in time. As the solution of
each equation requires two integration constants, a total of 2n constants have to
be evaluated from the initial values of n-generalized coordinates and n-
generalized velocities. In general, it is either very difficult to solve the problem
completely or very tedious. However, very often a great deal of information
about the system is possible from the first integrals of equations of motion. The
first integrals of motion are functions of the generalized coordinates q’s and
generalized velocities g’'s of the form
F(G1s Gas s Gns @1s G2 s G- 1) = €&; (constant) (3.54) These first integrals
are of interest because they give good deal of information about the system. The
conservation laws of energy, momentum and angular momentum that we
deduced in Newtonian formalism are of this type. In the process, the relation
between conservation laws and the symmetry properties of the system is
revealed.

Cyclic Coordinates

Coordinates that do not appear explicitly in the Lagrangian of a system (although
it may contain the corresponding generalized velocities) are said to be cyclic or

ignorable. If Qi is a cyclic coordinate
L L(gy @i it Qiativees@as §is GaavvisGis ) (3.55) In such a case
(dL/dq)=0 and Lagrange’s equation reduces fo
fi—g‘_{'—=0 or —J‘L=¢nn$tant a,
dt dq; dq,
which means that

al.

35 =P, = constant &, (3.56) Equation (3.56) constitutes a first

integral for the equations of motion. We may state this result as a general
conservation theorem: The generalized momentum conjugate to a cyclic
coordinate is conserved during the motion,

3.9 CONSERVATION LAWS AND SYMMETRY PROPERTIES

The title suggests the possibility of a relationship between the conservation laws
and symmetries. In this section, we shall investigate the connection between the
two in detail. A closed system is one that does not interact with other systems.



Homogeneity of Space and Conservation of Linear Momentum
Homogeneity in space means that the mechanical properties of a
closed system remain unchanged by any parallel displacement of
the entire system in space. That means that the Lagrangian is
unchanged (dL = 0) if the system is displaced by an infinitesimal
amount Jr:r; = r; +dr;. The change in L due to infinitesimal

displacement dr, the velocities remaining fixed, is given by

oL
5L= EE o, (3.57) The second term in this equation

vanished as velocities remained constant (8¢, =0). Since each of the
r, in Eq. (3.57) is an arbitrary independent displacement, the

. e : oL
coefficient of each term is zero separately. Hence, -—=0

ar;
(3.58) With this condition, Lagrange’s equation reduces to
d oL oL
——=0 or —=constant
dt o, o,
p; = constant (3.59) As the p;'s are additive, the total linear

momentum p of a closed system is a constant. Thus, the homogeneity of
space implies that the linear momentum p is a constant of motion.

It can also be proved that if the Lagrangian of a system (not necessarily
closed) is invariant with respect to translation in a certain direction, then the
linear momentum of the system in that direction is constant in time.

Isotropy of Space and Conservation of Angular Momentum Space
is isotropic, which means the mechanics (i.e., the Lagrangian) of a
closed system is unaffected by an infinitesimal rotation of the
system in space, i.e.,

dL = 0. Consider a cartesian frame of reference with O as the
origin. Let rj be the radius vector of the ith particle located at P.
Let the system as a whole undergoes an infinitesimal rotation df,

The displacement is denoted by the vector df and its direction is
that of the axis of rotation. Due to this rotation, the position vector



of the ith particle is shifted from P to P and the radius vector r; to
r; + drj
| Or; | =1, sin 6, O¢
Jr_! =J‘K r; {3.6[”

When the system is rotated, the position vectors of all particles change their
directions in this way. The corresponding change in the velocity vector is given

(see Fig. 3.1)

'Y
x F
S, &;
ri
l+'&l
a
by ér, =6f xr; (3.61) O

Fig. 3.1 Change of a position vector under rotation of the system.

The condition that dL - 0 leads to



AL = Z[*—-—-:'l'l." +*—~r¥] 0 [3,'52}

Equations (3.38) and (3.52) give

L_dar_ . g AL
o diog O i
Equations (3.62) now becomes
Z[li'f o, + py ‘51']]:[} (3.63)

Substituting dr; from Eq.(3.60) and &t from Eq. (3.61)
D 1B (39 x15,) +p, (80 )]=0
i

Using the vector relation A.(B x C) = B.(C x A )= C.A x B), the above relation
can be written as

Z[&-(rx xp;)+8¢.(f, x p,)]=0
i

: d
M-ZIM xp;)=0
i

dl.
—=
o % (3.64)
where L is the total angular momentum of the system. Since df is arbitrary
dL
=)
dt
L = r x p = constant (3.65)

Thus, the rotational invariance of the Lagrangian of a closed svtem is equivalent
to the conservation of total angular momentum.

Homogeneity of Time and Conservation of Energy Homogeneity
in time implies that the Lagrangian of a closed system does not
depend explicitly on the time t. That is, (dL/9f)=0. The total time



derivative of the l._at'-rmlﬂian is
aL
& 2 Z 4t o (3.66)

Use of the condition that (JL/dr)=0 gives

qu

dL oL . dL ..
= 2_

a2 Lag, (3.67)

Replacing (dL/dg;) using Lagrange’s equation, we have
dL d dL dL d| dL d .
—_— + —_— — — (p.4.
= Z[m aq]q Yol Zfﬂ[aq q.] meﬂ,]
d -
E[ZP;*—'I.-—L}U (3.68)

That is, the quantity in parenthesis must be constant in time. Denoting the
constant by H called the  Hamiltonian of the  system

EF:";"-' =L = H (constant) (3.69) It can be shown that H is the total
.

energy of the system if (i) the potential energy V' is velocity-independent and (ii)
the transformation equations connecting the rectangular and generalized
coordinates do not depend on time explicitly. When condition (ii) is satisfied, the
kinetic energy T is a homogeneous quadratic function of the generalized

of .
velocities and by Euler’s theorem, Eq. (3.48) zéqT'fﬁ =2T (3.70) Now, Eq.
{ i

(3.69) can be written as
ar-v) .
H = g—-L=) —¢q,-L
D
aT .
=¥y —q;,—-L=2T—-(T-V)
dg;

i

H=T+ V= E (total energy) (3.71)



Substituting these values in the expression for generalized force, we have
Q, =F, E.l_x+ FTE+F_ &_:
dp “dp Cdp
= F, cos¢ + Fy sing = Fp
Qs =—F,psing+F, pcosg=pF,

Q. =F,
where Fy, Ffand Fp are the components of the force along the increasing
directions of r, fand z.

Example 3.5 Find Lagrange’s equation of motion of the bob of a simple
pendulum.

Solution: Let us select the angle g made by the string with the vertical axis as the
generalized coordinate as shown in Fig. 3.3. Since [ is a constant, kinetic energy

of the bob T= %nr(."é]z = m‘.’lf:‘:

1
2

Fig. 3.3 Simple pendulum.

Taking the mean position of the bob as the reference point



The potential energy of the bob V = mg (I — [ cos8)

The Lagrangian L=l?'m“?i'?2 — mgl (1 - cosf)
% =ml*§ and %: — mglsin@
Substituting these quantities in Lagrange’s equation
AH B,
dr\a@) o6

ml*8 + mgl sinf=0
O+ (g/l)sinf=0
which is Lagrange’s equation of motion of the bob of a simple pendulum.

Example 3.6 Obtain the equations of motion for the motion of a particle of mass
m in a potential V' (x, v, z) in spherical polar coordinates.

Solution: In spherical polar coordinates the elementary lengths are dr, rdq,
r sing df and velocities are '~ 767 Sin 69
Kinetic energy T :%m (i-z +r20% 402 sinzﬂ.&?‘]

Lagrangian L=%m (:"2 + 2% 4 2 sinzﬂézl—i’{r,itqﬁ}

d aL aL .
, - ion: —————=10 =1273,..
Lagrange’s equations of motion: & 9q; o J

Identifyving r, g and [ as as the generalized coordinates, the equations of motion
dare r coordinate:



d
(mr) —mr (f?z+sm1 ¢ )+Eﬂr" =0
dr
@ co-ordinate:
v
;(mrzﬁ]—mr sin f cos ) ¢* +?}5’ 0
¢ co-ordinate:
d . av
-_— Ag |+ —=0
= (mr sin ¢) 39
3 vV aV
Note: If the force is central, aa_a= g—¢=

Example 3.7 Masses m and 2m are connected by a light inextensible string
which passes over a pulley of mass 2m and radius a. Write the Lagrangian and
find the acceleration of the system.

Solution: The system has only one degree of freedom, and x (see Fig. 3.4) is
taken as the generalized coordinate. The length of the string be [ and the centre
of the pulley is taken as zero for potential energy.

—x

-

Fig. 3.4 A pulley with a string canying masses m and 2m at its end.



| o 1
K.E. of the system T=me2+mx +EI&F

. R [_t]’
=—mi*+—1I| —
2 2 \a

P.E. of the system V = —mgx — 2mg (I - x)

3 I
i L==mi’ + — & —mgx+ 2mgl
Lagrangian > P mgx+ 2mg
a—L—[1m+i]i a—L——mg
di \ a’ dx

Substitution of these derivatives in Lagrange’s equation gives the equation of
motion:

(3m+%)i+mg=ﬂ
a

mg £

{3m+f,.-"r11}_ 4

—

Acceleration

since moment of inertia of the disc = 3 % 2ma* = ma*.Minus sign indicates
mass m moves upwards with the acceleration g/4.

Example 3.8 A simple pendulum has a bob of mass m with a mass my at the

moving support (pendulum with moving support) which moves on a horizontal
line in the vertical plane in which the pendulum oscillates. Find the Lagrangian
and Lagrange’s equation of motion.

Solution: This pendulum (see Fig. 3.5) has two degrees of freedom, and x and q
can be taken as the generalized coordinates. Taking the point of support as the
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4

Variational Principle

In Chapter 3, Lagrange's equations of motion were derived from D’ Alembert’s
principle which is a differential principle. In this chapter the basic laws of
mechanics are obtained from an integral principle known as Hamilton’s
variational principle. In this procedure, Lagrange’s equations of motion are
obtained from a statement about the value of the time integral of the Lagrangian
between times t; and tp. In D’Alembert’s principle, we considered the

instantaneous state of the system and virtual displacements from the
instantaneous state. However, in the following wvariational procedure,
infinitesimal wvirtual variations of the entire motion from the actual one is
considered.

4.1 HAMILTON’S PRINCIPLE

Hamilton’s principle is a variational formulation of the laws of meotion in
configuration space. It is considered more fundamental than Newton’s equations
as it can be applied to a variety of physical phenomena.

The configuration of a system at any time is defined by the values of the n
generalized co-ordinates g1, 2, q3,..., Q- This corresponds to a particular point
in the n-dimensional configuration space in which the g;’s are components along

the n co-ordinate axes. Hamilton’s principle states: For a conservative
holonomic system, the motion of the system from its position at time ty to its

position at time tp follows a path for which the line integral

b f
i I‘L['?I- O [ Y A IL{'}- g.t)dt (4.1)
f h
has a stationary value.
That is, out of all possible paths by which the system point could travel from its
position at time ry to its position at time rz in the configuration space consistent

with the constraints, the path followed by the system is that for which the value



of the above integral is stationary. Mathematically, the principle can be stated as:

F
51=JIL{q-¢-f}fff=ﬂ 4.2)

h

where q;() and hence% ") is to be varied such that 0% (1) =04:(12)=0.ppe

time integral of the Lagrangian L, Eq.(4.1), is called the action integral or
simply action. The d-variation considered here refers to the variation in a
quantity at the same instant of time (see section 3.3) while the d-variation as
usual refers to a variation in quantity along a path at different instants of time
(see Fig.4.1). The two paths are infinitely close but arbitrary.

&

q 4 /

dq

L

L J

rlr = (4 dt =
(a) (b)

Fig. 4.1 (a) d-variation in motion; (b) d-variation in motion.

4.2 DEDUCTION OF HAMILTON’S PRINCIPLE

Hamilton’s principle can be easily deduced from D’Alembert’s principle given
by Eq. (3.19). Consider a system of N particles of masses mj, i = 1, 2,..., N,

located at points r; and acted upon by external forces F;. According to
D’ Alembert’s principle



N
> (K —m:&).6r, =0 4.3)

=1
The term 21-} .dr. is the virtual work 8W done by the external applied forces
F,, its value is given by Eq. (3.25):

N n
oW =3 F.o5=3 0;8; (4.4)
i=] =l

where Qj is the generalized force, defined by Eq. (3.26), and g's are the

generalized co-ordinates of the system. The second term in Eq. (4.3) can be
written as

Zm‘ E o, :%[Zm‘f*ﬁr‘} > i 56

Since virtual displacement is at the same instant of time, the order of & and
d-variations can be interchanged.

Em‘- F.0r; = ;—i{Zm‘-ﬁ .5r,-] - ‘Zm,-i-,- OF;
& -gr—[zflnr,-i:ﬂn-]—ﬁ[%;mih.h} (4.5)

The second term on the right hand side of Eq. (4.5) is the d-variation of kinetic
energy T. Now Eq. (4.5) takes the form



d
E T =— E T .0 — 6T
‘_ i o dt : m i (4.6)
Combining Egs. (4.3), (4.4) and (4.6)

d :
E;Zm,r,.ﬁrl-=5?'+ 5“" {4_?}
I

Integrating with respect to time between the limits 7, and 7,, we get

]
i 1

The right hand side is zero as dr,(1;) = 81 (1,) = 0. Replacing 6W by Eq. (4.4),
Eq. (4.8) reduces to

|
_[{J:r +6W)dt =

L

j{JT+in§qj]dI=ﬁ (4.9)

[ F=1

Eq. (4.9) is sometimes referred to as the integral form of D Alemberts principle
or the generalized version of Hamiltons principle. The integral form is more
advantageous since it is independent of the choice of co-ordinates with which we

describe the system. If the external forces are conservative, K==Vl and by

AV
Eq. (3.33), &= -atjs) Consequently,
20,04, = 2_5‘3; (4.10)
J
and Eq. (4.9) becomes
Iy
J (0T = 8V )t =
'I
3 2
_[J{T- V}dt=I5Ld:=ﬂ @.11)
fy iy

For a holonomic system the d-variation and integration can be interchanged.



I
Then :‘ij.L(q. g.t)dr=0 (4.12)

h

which is Hamilton’s principle.

4.3 LAGRANGE’S EQUATION FROM HAMILTON’S
PRINCIPLE

The action integral must have a stationary value for the actual path. Let us label
each possible path in the configuration space by an infinitesimal parameter, say
a. That is, the set of paths may be labelled by (g, a) with

q (r, 0) representing the correct path. In terms of the parameter a, each path may

be written as gj (t,a) = qj (1, 0) +a h;j (1), i =1, 2, 3., n (4.12) where
hj(t) is a completely arbitrary well-behaved function of time with the condition h
(r1) = hit2) - 0. From Eq. (4.13)
oq; = n(t)dea (4.14)
As the g;'s and 9is are only functions of  and a, for a given hy(r), the action
integral I is a function of a only:
Iy
la)= [L{g (a)g (.a)}dr i)
L
Expanding the integrand L by Taylor series

L]
dL JL .
(@)= [L{fﬁ (t,0), ¢; (1, 0)t}+ —(am;) + —_[an;l]dr (4.16)

where the higher order terms in the expansion are left out, which is reasonable as
a 0. Since the integration limits £ and t> are not dependent, differentiating with

respect o a under the integral sign



Iz[af, oL, ]dl i it

Integrating the second term on the right hand side by parts

L . aL ; d{ oL
]&q. |:af{i ']: s drl9g, e

The integrated term vanishes since #, (1,) = ,(,) = 0. Substituting Eq. (4.18)in

Eq. (4.17) we get
f
I [BL { ol ]]
= e n;(t)dt (4.19)
da ;[ 2‘ ; dr| 9g;

I
al j oL d oL
— da= — = —\|dant)d
o ,,Z[aqi draq,] Rl

Using Eq. (4.14) and remembering that the left side is simply 1.

51 = IZIB_L_EB_L]E (1) dr (4.20)

For I to be stationary, dI = 0. Since g;’s are independent, the variations dq;'s are

arbitrary and the necessary condition for the right side of Eq. (4.20) to be zero is
that  the  coefficients of dgj’s  wvanish  separately.  Hence,

——=-—=0 i=12..n (4.21)
which is Lagrange’s equation, given by Eq. (3.38).

The above result is a special case of the more general Euler-Lagrange
differential equation which determines the path v = y(x) such that the line



6

Hamiltonian Mechanics

In Lagrangian formalism, generalized coordinates (gj’s) and generalized
velocities (g;’s) are used as independent coordinates to formulate dynamical

problems which result in second order linear differential equations. In
Hamilton’s formalism, generalized coordinates and generalized momenta (p;’s)

are used as basic variables to formulate problems. The formulation is mainly
based on the Hamiltonian function of the system which is a function of g;'s and

pi’s of the system. The resulting first order linear differential equations are easier

to handle mathematically. Hamilton’s formalism also serves as the basis for
further developments such as Hamilton — Jacobi theory and quantum mechanics.
Throughout this chapter, we shall assume that the systems are holonomic and the
forces are derivable from a position-dependent potential.

6.1 THE HAMILTONIAN OF ASYSTEM

The Hamiltonian H of a system, defined by Eq. (3.69), Iis

H= z pid; —L(g.4.1) (6.1)
where, as before, g stands for g,, ¢,.....q,. Using the relation
dL
= (6.2)
",

it is possible to express ¢; in terms of p,. When this is done, we can write

H=H(p.q.1) =gy Gr1eeer iy P= PPy Py (6.3)

That is, H is expressed as a function of the generalized coordinates, generalized



momenta and time. In Lagrangian formalism, the configuration space is spanned
by the n generalized coordinates. Here, the g's and p’s are treated in the same
way and the involved space is called the phase space. It is a space of 2n
variables q1, q2,....qn, P1, P2, Ppn- Every point in the space represents both the

position and momenta of all particles in the system.

As alreadv pointed out, in general, H need not represent the total energy of the
system, However, if the transformation equations connecting the cartesian and
generalized coordinates do not depend on time explicitly, H is equal to the total
energy of the system.

6.2 HAMILTON’S EQUATIONS OF MOTION

Hamilton's equations of motion can be derived in the following different ways:
(i) From the Hamiltonian of the system (ii) From the variational principle.

In this section we shall derive them from the Hamiltonian of a system given by
Eq. (6.1). Differentiating Eq. (6.1), we have



; L .
it 2 [P:d@r' +¢; dp; - gq ﬂ!‘i‘r] L 4 (6.4)

dl
Since Pi = [E}_q,] » the first and fourth terms on the right side of Eq. (6.4) together
vanish. Hence,
dlL
dH = Z[qdp,——d J—a—m (6.5)
Taking the differential of H in Eq. (6.3)
EIH BH dH
dH = Z[ dp; ]+ i (6.6)
Comparing Eqs. (6.5) and (6.6) and using Eq. (3.53), we get
. dH
o = ap = L 2-"'1- L [6.—?}
; dH
'U"-=—'§q—l',f=1,2 ..... n {68}
dH dL
T a 3)

Equations (6.7) and (6.8) are Hamilton’s equations of motion. They are also
called the canonical equations of motion. Thev constitute a set of 2n first order
differential equations replacing the n second order differential equations of
Lagrange.

Hamilton's equations are applicable to holonomic conservative systems. If part
of the forces acting on the system is not conservative, Lagrange’s equations take
the form



Ea—'f"-'a'—f“—':i'- 6.10
i g, g W

where O, represents the forces not arising from a potential and L contains the

conservative forces. Replacing {E!Uatj!-} by p; in Eq. (6.10), we have

pi=ca—+0 (6.11)

In such cases, Hamilton’s equations are

. _OH

i o0 (6.12)
dH

pi=—a—+0 13
dg, o)

6.3 HAMILTON’S EQUATIONS FROM VARIATIONAL
PRINCIPLE

Hamilton’s  wvariational  principle  stated in  Eq. (42) s
|
S 5!@_@, f)ydt =0 (6.14)

f
Here g,(r) and hence §,(r) is to be varied such that

aq; (1) =4dg;(1;)=0 (6.15)

which refers to paths in configuration space. In Hamilton’s formalism, the
integral I has to be evaluated over the trajectory of the system point in phase
space, and the varied paths must be in the neighbourhood of this phase space
trajectory. Therefore, to make the principle applicable to phase space trajectories,
we have to express the integrand of the integral I as a function of the
independent coordinates p and g and their time derivatives. This can be achieved
onlv by replacing L in Eq. (6.14) using Eq. (6.1). We then get



I
i L i

Sg. ()= g, (1) =0

where g(t) is varied subject to and pj(t) is varied without

any end-point restriction. Since the original variational principle is modified to
suit phase space, it is known as modified Hamilton's principle. Carrving out

the variations in Eq. {6.16) we have
h
dH oH
Oq; + §,0p;, — —0q, ——p; |di=0 :
JZ[# 4+ 4o =5 00 -5 pl] 6.17)
i

We now integrate the first term in Eq. (6.17) by parts

].Ff‘s‘;";' dr = TP:'J %‘F{ at = jf Pi %5‘1’; di
f

i h

=[p;og; I:f - J pidg; dt

K

The integrated term vanishes at the end-points 1} and 5 and therefore

ty i
Imt‘f@; dt = - j pibq; di (6.18)

Ul n

Substituting Eq. (6.18) in Eq. (6.17), we have

1 ,  OH  9H
:‘2[ _[Pf+E]Jq"+[q"_a_m]5f’i]d““ (6.19)

Since the modified Hamilton’s principle is a variational principle in phase space,
the dq’s and dp’s are arbitrary and therefore the coefficients of dg; and dp; in

Eq. (6.19) must vanish separately. Hence,

Gi==—  pi=—=——  i=L2...n (6.20)



o dH
pi= —Eﬂ" (6.26)
p; = constant = b (6.27)

That is, the momentum conjugate to a generalized coordinate which is cyclic is
conserved.
Now, if we have a system in which the coordinates q1, g2...., gj are cyclic,

then the Lagrangian of the system is of the form
L=L (s s Gy G1sdareees G ) (6.28)

However, the Hamiltonian will be of the form

H=H (qi1s- s Gns By, by By Pigysees Ppat) (6.29)

When i cyclic coordinates are present in a system, in Lagrangian formalism the
problem is still one of n degrees of freedom, whereas in Hamilton’s formalism it
is one of (n — i) degrees of freedom. This is because even if gj is absent in the

Lagrangian, we have the equation
4L
dr 9q; ()

6.5 CANONICAL TRANSFORMATIONS

The transformation of one set of coordinates q; to another set Q; by

transformation equations of the type Q; = Q; (g1, g2, Gy 1) (6.31) is

called point transformation or contact transformation. What we have been doing in earlier chapters are
ransformations of this rype. In Hamilton's formalism, the momenta are also independent variables on the
same level as the generalized coordinates. Therefore, it is appropriate to have a more general type of
rransformation that involves both generalized coordinates and momenta. Considerable advantages will be
there if the equations of motion are simpler in the new set of variables (2, P) than in the original set (g, p).
If all the coordinates are made cyclic by a transformation, the solutions will be much simpler. When there is
a transformation from the original set (g, p) to the new set (@, P). a comesponding change in the
Hamiltonian H (g, p, t) to a new Hamiltonian K (@, F, t) is expected. The transformation equations for the

(q.p) o (Q, P) setare Qj = Q;j (q, p, ) and P; = Pj (q, p, t) (6.32) The (q, p) set obeys
Hamilton's canonical equations



5= g g M
= i % (6.33)

We are interested only in those transformations that are governed by Hamilton's
canonical equations

. dK .
o Pl and P e

Such transformations are called canonical transformations.
The original set of variables satisfy the modified Hamilton's principle, given
in Eq. (6.16):

.
ﬂ‘jlz pidi = Hlq P-f)} dt=0 (6.35)

The new set of variables ({2, P) should also hold the modified Hamilton's principle:

aj[z PO, - K(Q.P. f}]n‘f= 0 (6.36)

The simultaneous validity of Egs. (6.35) and (6.36) means that their integrands
must be either equal or comnected by a relation of the type

; dF
Z.ﬂ;fh - H(q, p.r]=rx[ZP,-Q.- -K(Q. P.r)}+; (6.37)

Here a is a constant independent of coordinates, momenta and time. This a is
related to a simple type of scale transformation and therefore it is always
possible to set @ = 1. F is a function of the coordinates, momenta and time. The
total time derivative of F in Eq. (6.37) will not contribute to the modified
Hamilton’s principle since



1
a_[— dt = JIdF = 8[ F(ty)— F(t;)] =F (1) - 6F (t;) =0

In the above, we have used the condition that the variation at the end-points is
zero. This leads to

, : dF
EP."-I:' H(g. p.1) =Z-’1’-Q- R (6.38)

The left hand side of Eq. (6.38) is a function of original coordinates and
momenta, and the first two terms on the right hand side depends only on the (Q,
P) set. Hence, in general, F must be a function of the original and new variables
in order for a transformation to be effected. They are 4n in all. Of these 4n, only
21 are independent as the 4n variables are connected by the 2n equations of
constraints given by Eq. (6.32). Hence, the function F can be written in 4 forms:
Fi(gq,Q,1,F2(q, P, 1), F3(p, Q1) and F4 (p, P, t). The problem in question
will dictate which form is to be selected. Next we consider these 4 types in
detail.

Type 1 - Fq (g, Q, t): When the function F is of this form, Eq. (6.38) can be

written as
dF; . aF aF
Zp.q. ZPQ +(K-H)= Z[E}q ) Q] S (639

Multiplying by df and rearranging

Z{P;—g?] ZLP——}JQ [x H—%—f]:ﬂ 0 (6.40)

Since the original and new coordinates are separately independent, Eq. (6.40) is
valid only if the coefficients of dg; and dQ; separately vanish. Therefore, from

oF,
Eq. (6.40) wehave P ==—(¢.Q.1) (6.41)
i




aF,
P =- ﬁ (¢.Q.1) (6.42)

dF
K=H +?] (6.43)

From Eq. (6.41) we can compute Q in terms of g and p if the arbitrary function
Fyis known: Q=Q(q, p, t) (6.44) Using this value of Q in Eq. (6.42) we

can compute Pinterms of gand p: P=P (q, p, I) (6.45) Eqgs. (6.44) and
(6.45) are the desired transformations from the original (q, p) to the new (Q, P)
set. Eq. (6.43) gives the relation connecting the original and new Hamiltonians.
Thus, we can express (@, P) in terms of (g, p) only if the arbitrary function Fy is

known. Hence, F is called the generating function of the transformation. If the
generating function Fy does not contain time explicitly, then K = H.

-4% ko

Type 2 - F> (g, P, t): Addition of the term i to the right hand side of
Eq. (6.38) will not affect the wvalue since Fp is arbitrary and
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JEZHQ.- m=rﬁj’2d(ﬂﬁ-) = &[ZHQ;] =0

[t follows immediately from Eq. (6.38).

ZF;% o= XPQ. K"‘zan ZEI'F!.
+E£—ZPQ EQF

(6.46)

As two terms on the right hand side together vanish, multiplying by dr and

rearranging

Z(” aq,]" *Z[*‘ g?]*"ﬁ‘*("—”—%if]d“

Since g;’s and P;’s are independent

aF,
pi===(q P.1)

i

R,
T

(. P.1)

oF
Kl s Sk
B

From Eq. (6.48)
PJ'= -Pr' f‘LP« I
Using this result in Eq. (6.49)
Qi=Qi(q.p. 0
Eqs. (6.51) and (6.52) are the required transformation equations.

0 (6.47)

(6.48)

(6.49)

(6.50)

(6.51)

(6.52)
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to the right hand side of Eq. (6.38) and simplifying

dF;
h=-55 (P20 (6.53)
]
qi =——'iP Q.1) (6.54
ap, [ ]
I,
K=H+— .55
at (6.53)
Type d - Fyip, P.1f):  Adding
d d
N P s
m; :Q.+mzr_‘,ﬂ.¢,
to the right hand side of Eq. (6.38) and simplifying
dk.
a==3>(pP.1) (6.56)
Pi
dfy
’ (p, P.t
Q= aP p.P.0y (6.57)
daF,
K=H+* £.58
5 (6.38)

In all these ransformations, ¢ is unchanged and therefore it mayv be regarded as
an independent parameter. However, in relativistic formalism this cannot be so
as space and time are treated on an equal footing. Sometimes a suitable
generating function does not conform to one of the 4 types discussed above.
Different combinations of the 4 types may be needed in such cases. If the
generating function does not contain time explicitly, K = H and Eq. (6.38)

reduces to Z{Pid‘i'.ﬂ = Fdo, } =dF (6.59)

Then the condition for a transformation t be canonical is that

> (pdg, - RAQ,)

: must be a perfect differential.
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6.11 THE PRINCIPLE OF LEAST ACTION

The principle of least action is another variational principle associated with the
Hamiltonian formulation. It involves the type of D-variation discussed in Section
6.10. To prove the principle of least action, consider the action integral

t
I = I Ldt (6.98)

i
The A-variation of [ is written using Eq. (6.97):

[* N ¥
AfLar=| 5Ldr+-zlrj% (Ldr)

fi ] L}

Al

L] I3
JEL dt + At jdL
| h

i
dL dl :
- —dg. +— &g. |d LAr|? .
IE[BE},— g; + | q'] t+| :]'I (6.99)

According to Lagrange’s equation

ol d| oL
LTty SRl 6. 100
dg;, di [a‘i'f] ; }

& i

An interchange in the order of differentiation gives

d
L (6.101)

Using Eqs. (6.100) and (6.101), the part in the parenthesis of the first term in
Eq. (6.99) is



Eq‘ L aLda, +J(BLJ§‘_

Ei£ 4= a4, dr( %) dr | 94,
aL d
o A
d:[aq q;J AL a;)

Applying Eq. (6.97) for the co-ordinate g;

d
=dg. + At — g,
ql dt?r

dq; = Aq; — Arg;
Multiplying by p;

Pidd; = Pidq; — P g,
Substituting this value of p; dg; in Eq. (6.102), we have

oL .. oL d d _
57 A Bt O . At g,
3, 24+ 504 m“" ) - dr(P' 14;)

Combining Eqgs. (6.99) and

Al= Ader_J.Z[ (p:ag;) - p,,a:q,]dm[m:]i

= lmda) - [paa); +[Lan

(6.102)

(6.103)

(6.104)
(6.104)

(6.105)



As Ag; =0 at the end-points, the first term on the right of Eq. (6.105) is zero.
Hence,

L
Ai Ml=[[i,-2p;t};]ﬁlf] (6.106)
i : n

Since H =Y. pigy — L. Eq. (6.106) reduces to

#
dji’.dr =—[H m]: (6.107)

h

; ; ; aH
Restricting to systems for which H = F {mnﬂer\fﬂtwe and ? = (I] or AH =1,

we liave

B i [ s
dIH di = j'AHdH J'H.a (dr) :_[Hd(m]

h h h 5
=[H 4t] :: (6.108)
Combining Eqs. (6.107) and (6.108)

I Iy I
Al Lar=-a[Ha or Af(L+H)d=0

i fi f
H
A Y apa=o (6.109)
g !

which is the principle of least action.

Different Forms of Least Action Principle The principle of least
action can be expressed in different forms. If the transformation
equations do not depend on time explicitly, then the Kinetic energy
is a quadratic function of the generalized velocities. In such a case
from

Eq. (3.47) we have
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i i i

Equation (6.109) now reduces to

I
ﬂ.def:ﬂ (6.111)

This is another form of the principle of least action. Further, if there is no external

force on the system, T and H are conserved and the principle of least action takes
the form

L]
ajm=ﬂ or Alty—1)=0

fy

(6.112a)

ity — i = an extremum (6.112b)

That is, of all paths possible between two points that are consistent with the
conservation of energy, the system moves along the path for which the time of
transit is the least. In this form, the principle is similar to Fermat's principle in
geometrical optics, which states that a light ray travels between two points along
such a path that the time taken is the least.

Again, when the transformation equations do not involve time, the Kinetic
energy Is given by Eq. (3.45):



e ; ;“»‘* )9 (6.113)

A configuration space for which the a;; coefficients form the metric tensor can be
constructed. The element of path length dp in this space is defined by

24—.
{dp} _g gajtJQJ@t [6114]
2
dp -
{;};] =ZZﬂMﬂx (6.115)
ik
From Egs. (6.113) and (6.115)
2
d
T=[%] or dr:Fp (6.116)

Equation (6.116) helps us to change the variable in Eq. (6.111) and the principle
of least action takes the form

Equation (6.116) helps us to change the variable in Eq. (6.111) and the principle
of least action takes the form

dderzdIdepzﬂ

h h

(6.117)

For conservative systems, H = T+ V. Consequently, Eq. (6.117) becomes

AIJH-V[q) dp=0 6118)
Ul

Eq. (6.118) is often referred to as Jacobi's form of least action principle. It
now refers to the path of the system in a curvilinear configuration space
characterized by the metric tensor with elements ajj.
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THE WAVELIKE PROPERTIES OF
PARTICLES

Just as we produce images from light waves that scatter from objects, we can also form
images from “particle waves". The electron microscope produces images from electron
waves that enable us fo visualize objects on a scale that is much smaller than the wavelength
of light. The ability to observe individual human cells and even sub-cellular objects such as
chromosomes has revolutionized our understanding of biclogical processes. It is even
possible to form images of a single atom, such as this cobalt atom on a gold surface. The

ripples on the surface show electrons from gold atoms reacting to the presence of the
intruder.
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In classical physics, the laws describing the behavior of waves and parti-
cles are fundamentally different. Projectiles obey particle-type laws, such as
Newtonian mechanics. Waves undergo interference and diffraction, which cannot
be explained by the Newtonian mechanics associated with particles. The energy
carried by a particle is confined to a small region of space; a wave, on the other
hand, distributes its energy throughout space in its wavefronts. In describing the
behavior of a particle we often want to specify its location, but this is not so easy
to do for a wave. How would you describe the exact location of a sound wave or
a water wave?

In contrast to this clear distinction found in classical physics, quantum physics
requires that particles sometimes obey the rules that we have previously established
for waves, and we shall use some of the language associated with waves to describe
particles. The system of mechanics associated with quantum systems is sometimes
called “wave mechanics™ because it deals with the wavelike behavior of particles.
In this chapter we discuss the experimental evidence in support of this wavelike
behavior for particles such as electrons.

As you study this chapter, notice the frequent references to such terms as the
probability of the outcome of a measurement, the average of many repetitions
of a measurement, and the statistical behavior of a system. These terms are
fundamental to quantum mechanics, and you cannot begin to understand quantum
behavior until you feel comfortable with discarding such classical notions as fixed
trajectories and certainty of cutcome, while substituting the quantum mechanical
notions of probability and statistically distributed outcomes.

4.1 DE BROGLIE’S HYPOTHESIS

Progress in physics often can be characterized by long periods of experimental
and theoretical drudgery punctuated occasionally by flashes of insight that cause
profound changes in the way we view the universe. Frequently the more profound
the insight and the bolder the initial step, the simpler it seems in historical
perspective, and the more likely we are to sit back and wonder, “Why didn’t
I think of that?™ Einstein's special theory of relativity is one example of such
insight; the hypothesis of the Frenchman Louis de Broglie is another.*

In the previous chapter we discussed the double-slit experiment {which can be
understood only if light behaves as a wave) and the photoelectric and Compton
effects (which can be understood only if light behaves as a particle). Is this dual
particle-wave nature a property only of light or of matenial objects as well? In
a bold and daring hypothesis in his 1924 doctoral dissertation, de Broglie chose
the latter alternative. Examining Eq. 3.20, £ = &f and Eq. 3.22, p = h/), we find
some difficulty in applying the first equation in the case of particles, for we cannot
be sure whether E should be the kinetic energy, total energy, or total relativistic
energy (all, of course, are identical for light). No such difficulties arise from the
Louis de Broglie (1892-1987, second relationship. De Broglie suggested, lacking any experimental evidence in

France). A member of an anstocratic
family, his work contributed substan-

tially to the early development of the *De Broglie’s name should be pronounced “deh-BROY™ or “deh-BROY -ch,” but it is often said as
quantum theory. “deh-BROH-lee.”
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support of his hypothesis, that associated with any material particle moving with
momentum p there is a wave of wavelength A, related to p according to

A=—
P

(4.1)

where h is Planck’s constant. The wavelength A of a particle computed according

to Eq. 4.1 is called its de Broglie wavelength.

| Example 4.1

Compute the de Broglie wavelength of the following: (a) A
1000-kg automobile traveling at 100 m/s (about 200 mi/h).
(&) A 10-g bullet traveling at 500 m/s. (c) A smoke particle
of mass 1077 g moving at | cm/s. (&) An electron with
a kinetic energy of 1 eV. {e) An electron with a kinetic
energy of 100 MeV.

Solution
(a) Using the classical relation between wvelocity and
momentum,

h ok 6.6 x 1074].
. M P il T DIDY
p mv  (10%kg)100m/s)
(&) Asin part (a),
h 6.6 x 107 .5
- = —|3x 0¥
mv . (10-2kg)(500ms) " "
(c)
h 6.6 x 1004 ].5 a0
A= =66x 10" m

mv (10~ 12kg)(10~2 mis)

{d) The rest energy (mc?) of an electron is 5.1 x 10° eV.
Because the kinetic energy (1 V') is much less than the rest
energy, we can use nonrelativistic kinematics.

p=~2Imk

= JZ(Q.] x 10730 kg)(1 eVI(L.6 x 10-19 JieV)
=54x 107" kg-m/s

Then,

h 6.6 x 1073 .5

R el N s e
p  54x10-Bkg-mis

=12x% 10" m=1.2nm

We can also find this solution in the following way, using
p=~2mK and he = 12402V - nm.

cp = v 2mK = +/2(mc)K

=251 % 10PeV)leV)= 1.0 x 1P eV

J_h_!rc 1240 eV - nm

—=————7—=12mm
p pc l0x103eV

This method may seem artificial at first, but with prac-
tice it becomes quite useful, especially because energies
are usually given in electron-volts in atomic and nuclear
physics.

(e) In this case, the kinetic energy is much greater than the
rest energy., and so we are in the extreme relativistic realm,
where K = E = pc, as in Eq. 2.40. The wavelength is

he _ 1240MeV - fm
pc 100MeV

A= = 12 fm

Note that the wavelengths computed in parts (a)., (). and (c) are far too small to be
observed in the laboratory. Only in the last two cases, in which the wavelength is
of the same order as atomic or nuclear sizes, do we have any chance of observing
the wavelength. Because of the smallness of h, only for particles of atomic or
nuclear size will the wave behavior be observable.

Two questions immediately follow. First, just what sort of wave is it that has
this de Broglie wavelength? That is, what does the amplitude of the de Broglie
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Light waves
(Plane wave fronts)

FIGURE 4.1 Light waves (repre-
sented as plane wave fronts) are inci-
dent on a narrow slit of width a.
Diffraction causes the waves to spread
after passing through the slit, and the
mtensity varies along the screen. The
photograph shows the resulting inten-
sity pattern.

wave measure? We'll discuss the answer to this question later in this chapter.
For now, we assume that, associated with the particle as it moves, there is a de
Broglie wave of wavelength A, which shows itself when a wave-fype experiment
{such as diffraction) is performed on if. The outcome of the wave-type experiment
depends on this wavelength. The de Broglie wavelength, which characterizes the
wave-type behavior of particles, is central to the quantum theory.

The second question then occurs: Why was this wavelength not directly
observed before de Broglie's time? As parts (a), (5), and {c¢) of Example 4.1
showed, for ordinary objects the de Broglie wavelength is very small. Suppose we
tried to demonstrate the wave nature of these objects through a double-slit type
of experiment. Recall from Eq. 3.16 that the spacing between adjacent fringes
in a double-slit experiment is Ay = AD/d. Putting in reasonable values for the
slit separation & and slit-to-screen distance D, you will find that there is no
achievable experimental configuration that can produce an observable separation
of the fringes (see Problem 9). There is no experiment that can be done fo
reveal the wave nature of macroscopic (laboratory-sized) objects. Experimental
verification of de Broglie’s hypothesis comes only from experiments with objects
on the atomic scale, which are discussed in the next section.

4.2 EXPERIMENTAL EVIDENCE FOR

DE BROGLIE WAUES

The indications of wave behavior come mostly from interference and diffraction
experiments. Double-slit interference, which was reviewed in Section 3.1, is
perhaps the most familiar type of interference experiment, but the experimental
difficulties of constructing double slits to do interference experiments with beams
of atomic or subatomic particles were not solved until long after the time of de
Broglie's hypothesis. We discuss these experiments later in this section. First
we'll discuss diffraction experiments with electrons.

Particle Diffraction Experiments

Diffraction of light waves is discussed in most infroductory physics texts and is
illustrated in Figure 4.1 for light diffracted by a single slit. For light of wavelength
A incident on a slit of width a, the diffraction minima are located at angles given by

asinf! = ni =123, (4+.2)

on either side of the central maximum. Note that most of the light intensity falls
in the central maximum.

The experiments that first verified de Broglie’s hypothesis involve electron
diffraction, not through an artificially constructed single slit (as for the diffraction
pattern in Figure 4.1) but instead through the atoms of a crystal. The outcomes
of these experiments resemble those of the similar X-ray diffraction experiments
illustrated in Section 3.1.

In an electron diffraction experiment, a beam of electrons is accelerated from
rest through a potential difference AV, acquiring a nonrelativistic kinetic energy
K=eAV and a momentum p = +/2mK. Wave mechanics would describe
the beam of electrons as a wave of wavelength A = h/p. The beam strikes a
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crystal, and the scattered beam is photographed (Fipure 4.2). The similarity
between electron diffraction patterns (Figure 4.2) and X-ray diffraction patterns
(Figure 3.7) strongly suggests that the electrons are behaving as waves.

The “rings” produced in X-ray diffraction of polycrystalline materials
(Figure 3.8bh) are also produced in electron diffraction, as shown in Figure 4.3,
again providing strong evidence for the similarity in the wave behavior of
electrons and X rays. Experiments of the type illustrated in Figure 4.3 were
first done in 1927 by G. P. Thomson, who shared the 1937 Nobel Prize for this
work. (Thomson’s father, J. J. Thomson, received the 1906 Nobel Prize for his
discovery of the electron and measurement of its charge-to-mass ratio. Thus
it can be said that Thomson, the father, discovered the particle nature of the
electron, while Thomson, the son, discovered its wave nature. )

An electron diffraction experiment gave the first experimental confirmation
of the wave nature of electrons (and the quantitative confirmation of the de
Broglie relationship A = &/p) soon after de Broglie's original hypothesis. In
1926, at the Bell Telephone Laboratories, Clinton Davisson and Lester Germer
were investigating the reflection of electron beams from the surface of nickel
crystals. A schematic view of their apparatus is shown in Figure 4.4. A beam of
electrons from a heated filament is accelerated through a potential difference A V.
After passing through a small aperture, the beam strikes a single crystal of nickel.
Electrons are scattered in all directions by the atoms of the crystal, some of them
striking a detector, which can be moved to any angle ¢ relative to the incident
beam and which measures the intensity of the electron beam scattered at that angle.

Figure 4.5 shows the results of one of the experiments of Davisson and Germer.

When the accelerating voltage is set at 54 V, there is an intense reflection of the
beam at the angle ¢ — 50°. Let's see how these results give confirmation of the
de Broglie wavelength.

+V

Electron [~ Detector

beam

Crystal

FIGURE 4.4 Apparatus used by
Davisson and Germer to study
electron  diffraction. Electrons
leave the filament F and are accel-
erated by the voltage V. The beam
strikes a crystal and the scattered
beam is detected at an angle ¢
relative to the incident beam. The

detector can be moved in the range
(0 to 907,

FIGURE 4.3 Electron diffraction of
polyerystalline beryllium. Note the sim-
ilarity between this pattern and the
pattern for X-ray diffraction of a poly-
crystalline material (Figure 3.85).
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FIGURE 4.2 (Top) Electron diffrac-
tion apparatus. (Bottom) Electron
diffraction pattern. Each bright dot is
a region of constructive interference,
as in the X-ray diffraction patterns of
Figure 3.7. The target is a crystal of
Ti;Nby 0.

FIGURE 4.5 Results of Davisson
and Germer. Each point on the plot
represents the relative intensity
when the detector in Figure 4.4 is
located at the corresponding angle
¢ measured from the vertical axis.
Constructive interference causes
the intensity of the reflected beam
to reach a maximum at ¢ = 50° for
F=54V.



106 Chapter 4 | The Wavelike Properties of Particles

Diffracted

FIGURE 4.6 The crystal surface acts
like a diffraction grating with spac-
ing d.

FIGURE 4.7 Diffraction of neutrons
by a sodium chloride crystal.
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FIGURE 4.8 Diffraction of |-GeV
protons by oxygen nuclei. The pat-
tern of maxima and minima is similar
to that of single-shit diffraction of
light waves. [Source: H. Palevsky et
al.. Physical Review Letters 18, 1200
{1967).]

Each of the atoms of the crystal can act as a scatterer, so the scattered electron
waves can interfere, and we have a crystal diffraction grating for the electrons.
Figure 4.6 shows a simplified representation of the nickel crystal used in the
Davisson-Germer experiment. Because the electrons were of low energy, they did
not penetrate very far into the crystal, and it is sufficient to consider the diffraction
to take place in the plane of atoms on the surface. The situation is entirely similar
to using a reflection-type diffraction grating for light; the spacing d between the
rows of atoms on the crystal is analogous to the spacing between the slits in the
optical grating. The maxima for a diffraction grating occur at angles ¢» such that
the path difference between adjacent rays d sing is equal to a whole number of
wavelengths:

dsing = ni n=123,... {4.3)
where n is the order number of the maximum.

From independent data, it is known that the spacing between the rows of atoms
in a nickel crystal is d = 0.215 nm. The peak at ¢ = 50° must be a first-order
peak (n = 1), because no peaks were observed at smaller angles. If this is indeed
an interference maximum, the corresponding wavelength is. from Eq. 4.3,

A =dsing = (0.215nm)(sin 50") = 0.165nm

We can compare this value with that expected on the basis of the de Broglie
theory. An electron accelerated through a potential difference of 54 V has a kinetic
energy of 34 eV and therefore a momentum of

1 | 1
p=+2mK = —2mK = —JZ{S] 1,000 eV)(54eV) = —(7430eV)
c c c

The de Broglie wavelength is & = h/p = hc/pc. Using hc = 1240V - nm,

A he il 1240 eV -nm

O OO il OO/ 1
pc 7430eV s

This is in excellent agreement with the value found from the diffraction maxi-
mum, and provides strong evidence in favor of the de Broglie theory. For this
experimental work, Davisson shared the 1937 Nobel Prize with G. P. Thomson.

The wave nature of particles is not exclusive to electrons; any particle with
momentum p has de Broglie wavelength h/p. Neutrons are produced in nuclear
reactors with kinetic energies comresponding to wavelengths of roughly 0.1 nm;
these also should be suitable for diffraction by crystals. Figure 4.7 shows that
diffraction of neutrons by a salt crystal produces the same characteristic patterns
as the diffraction of electrons or X rays. Clifford Shull shared the 1994 Nobel
Prize for the development of the neutron diffraction technique.

To study the nuclei of atoms, much smaller wavelengths are needed, of the order
of 107" m. Figure 4.8 shows the diffraction pattern produced by the scattering
of 1-GeV kinetic energy protons by oxygen nuclei. Maxima and minima of the
diffracted intensity appear in a pattern similar to the single-slit diffraction shown
in Figure 4.1. (The intensity at the minima does not fall to zero because nuclei
do not have a sharp boundary. The determination of nuclear sizes from such
diffraction patterns is discussed in Chapter 12.)
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Protons of kinetic energy 1.00 GeV were diffracted by
oxygen nuclei, which have a radius of 3.0 fm, to produce
the data shown in Figure 4.8. Calculate the expected angles
where the first three diffraction minima should appear.

Solution

The total relativistic energy of the protons is E=
K +mc = 1.00GeV + 0.94 GeV = 1.94 GeV is, so their
momentum is

p:;l EE— (mc2y?

1
= —/(1.94GeV)? — (0.94 GeV)? = 1.70 GeV/c
c

The corresponding de Broglie wavelength is

h_ hc  1240MeV -fm

p_pe 1700 MeV

.=P=Pc_ =0.73 fm

We can represent the oxygen nuclei as circular disks, for
which the diffraction formula is a bit different from Eq. 4.2:

a sin = 1.22n3, where a is the diameter of the diffracting
object. Based on this formula, the first diffraction minimum

{n = 1) should appear at the angle
1.22n 1.22)(1)(0.73 fm
sl 0N ) _ 0.148
6.0 fm
or # =285 Because the sine of the diffraction
angle is proportional to the index n, the n=2

minimum should appear at the angle where sin
=2 x0.148 =10.296 (8 = 17.2%), and the n = 3 minimum
where sin # =3 x 0.148 = 0.444 (# =26.4").

From the data in Figure 4.8, we see the first diffraction
minimum at an angle of about 10°, the second at about
18%, and the third at about 27°, all in very good agreement
with the expected values. The data don’t exactly follow
the formula for diffraction by a disk. because nuclei don’t
behave quite like disks. In particular, they have diffuse
rather than sharp edges, which prevents the intensity at
the diffraction minima from falling to zero and also alters
slightly the locations of the minima.

Double-Slit Experiments with Particles

The definitive evidence for the wave mature of light was deduced from the
double-slit experiment performed by Thomas Young in 1801 (discussed in
Section 3.1). In principle. it should be possible to do double-slit experiments
with parficles and thereby directly observe their wavelike behavior. However, the
technological difficulties of producing double slits for particles are formidable,
and such experiments did not become possible until long after the time of de
Broglie. The first double-slit experiment with electrons was done in 1961. A
diagram of the apparatus is shown in Figure 4.9. The electrons from a hot filament
were accelerated through 50kV (comesponding to A = 5.4 pm) and then passed
through a double slit of separation 2.0 pm and width 0.5 pm. A photograph of
the resulting intensity pattern is shown in Figure 4.10. The similarity with the
double-slit pattern for light (Figure 3.2) is striking.

A similar experiment can be done for neutrons. A beam of neutrons from
a nuclear reactor can be slowed to a room-temperature “thermal™ energy
distribution (average K =2 kT = 0.025eV), and a specific wavelength can be
sclected by a scattering process similar to Brapg diffraction (see Eq. 3.18
and Problem 32 at the end of the present chapter). In one experiment, neu-
trons of kinetic energy 0.00024 eV and de Broglie wavelength 1.85 nm passed
through a gap of diameter 148 pm in a material that absorbs wirtually all
of the neutrons incident on it (Figure 4.11). In the center of the gap was a
boron wire (also highly absorptive for neutrons) of diameter 104 pm. The neu-
trons could pass on either side of the wire through slits of width 22 um. The
intensity of neutrons that pass through this double slit was observed by sliding

Fluorescent
sCraen

Electrons I
—-—

50 kV

Photographic
film

FIGURE 49 Double-slit apparatus
for electrons. Electrons from the fila-
ment F are accelerated through 50kV
and pass through the double slit. They
produce a visible pattern when they
strike a fluorescent screen (like a TV
screen), and the resulting pattern is
photographed. A photograph is shown
in Figure 4.10. [See C. Jonsson. Amer-
ican Journal of Physics 42, 4 (1974).]
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FIGURE 4.10  Double-slit interfer-
ence pattern for electrons.
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FIGURE 412 Intensity pattern ob-
served for double-slit interference
with neutrons. The spacing between
the maxima is about 75 pem. [Source:
R. Gahler and A. Zeilinger, American
Journal of Physics 59, 316 (1991).]
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FIGURE 4.13  Intensity pattern ob-
served for double-slit interference
with helium atoms. [Sowrce: 0. Car-
nal and J. Miynek, Physical Review
Leiters 66, 2689 (1991).]
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FIGLURE 4.11 Double-slit apparatus for neutrons. Thermal neutrons from a reactor
are incident on a crystal; scattering through a particular angle selects the energy of
the neutrons. After passing through the double slit, the neutrons are counted by the
scanning slit assembly, which moves laterally.

another slit across the beam and measuring the intensity of neutrons passing
through this “scanning slit.” Figure 4.12 shows the resulting pattern of intensity
maxima and minima, which leaves no doubt that interference is occurring and that
the neutrons have a corresponding wave nature. The wavelength can be deduced
from the slit separation using Eq. 3.16 to obtain the spacing between adjacent
maxima, Ay = ¥y — ¥, Estimating the spacing Ay from Figure 4.12 to be about
75 ppm, we obtain

day (126 pm}75 pm)

D 5m

A= = 1.89nm
This result agrees very well with the de Broglie wavelength of 1.85 nm selected
for the neutron beam.

It is also possible to do a similar experiment with atoms. In this case, a
source of helium atoms formed a beam (of velocity comesponding to a kinetic
energy of (.020eV) that passed through a double slit of separation 8 pm and
width 1 pm. Again a scanning slit was used to measure the intensity of the beam
passing through the double slit. Figure 4.13 shows the resulting intensity pattern.
Although the results are not as dramatic as those for electrons and neutrons, there
is clear evidence of interference maxima and minima, and the separation of the
maxima gives a wavelength that is consistent with the de Broglie wavelength (see
Problem 8).

Diffraction can be observed with even larger objects. Figure 4.14 shows the
pattern produced by fullerene molecules {Cgg) in passing through a diffraction
grating with a spacing of & = 100 nm. The diffraction pattern was observed at
a distance of 1.2 m from the grating. Estimating the separation of the maxima
in Figure 4.14 as 50 pm, we get the angular separation of the maxima to be
8 = tan® = (50 pm)/(1.2m) = 4.2 x I(]"irad., and thus A = dsiné = 4.2 pm.
For Cgy molecules with a speed of 117 m/s used in this experiment, the expected
de Broglie wavelength is 4.7 pm, in good agreement with our estimate from the
diffraction pattern.

In this chapter we have discussed several interference and diffraction
experiments using different particles—electrons, protons, neutrons, atoms,
and molecules. These experiments are not restricted to any particular type of
particle or to any particular type of observation. They are examples of a general
phenomenon, the wave nature of particles, that was unobserved before 1920
because the necessary experiments had not yet been done. Today this wave
nature is used as a basic tool by scientists. For example, neutron diffraction
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FIGURE 4.14 Diffraction grating pat-
tern produced by Cg, molecules.
[Sowrce: O. Nairz, M. Amdt, and
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FIGURE 415 The atomic structure
of solid benzene as deduced from
neutron diffraction. The circles indi-
cate contours of constant density. The
black circles show the locations of the

A. Zeilinger, American Journal of
Physics T1, 319 (2003).]

six carbon atoms that form the familiar
benzene ring. The blue circles show
the locations of the hydrogen atoms.

gives detailed information on the structure of solid crystals and of complex
molecules (Figure 4.15). The electron microscope uses electron waves to 1llumi-
nate and form an image of objects: because the wavelength can be made thousands
of times smaller than that of visible light, it is possible to resolve and observe
small details that are not observable with visible light (Figure 4.16).

Through Which Slit Does the Particle Pass?

When we do a double-slit experiment with particles such as electrons, it is
tempting to try to determine through which slit the particle passes. For example,
we could surround each slit with an electromagnetic loop that causes a meter to
deflect whenever a charged particle or perhaps a particle with a magnetic moment
passes through the loop (Figure 4.17). If we fired the particles through the slits at
a slow enough rate, we could track each particle as it passed through one slit or
the other and then appeared on the screen.

If we performed this imaginary experiment, the result would no longer be an
interference pattern on the screen. Instead, we would observe a pattern similar to
that shown in Figure 4.17, with “hits” in front of each slit, but no interference
fringes. No matter what sort of device we use to determine through which slit the
particle passes, the interference pattern will be destroved. The classical particle
must pass through one slit or the other; only a wave can reveal interference,
which depends on parts of the wavefront passing through both slits and then
recombining.

When we ask through which slit the particle passed, we are investigating only
the particlz aspects of its behavior, and we cannot observe its wave nature (the
interference pattern). Conversely, when we study the wave nature, we cannot
simultaneously observe the particle nature. The electron will behave as a particle
or a wave, but we cannot observe bofh aspects of its behavior simultaneously.
This curious aspect of quantum mechanics was also discussed for photons in
Section 3.6, where we discovered that experiments can reveal either the particle
nature of the photon or its wave nature, but not both aspects simultaneously.

FGURE 4.16 Electron microscope
image of bacteria on the surface of
a human tongue. The magnification
here is about a factor of 5000.
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FIGURE 418 (a) A pure sine wave,
which extends from —oo to +oo.
{b) A narrow wave pulse.
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FIGURE 4.17 Apparatus to record passage of electrons through slits.
Each slit is surrounded by a loop with a meter that signals the passage
of an electron through the shit. No interference fringes are seen on the
SCTESN.

This is the basis for the principle of complementarity, which asserts that the
complete description of a photon or a particle such as an electron cannot be made
in terms of only particle properties or only wave properties, but that both aspects of
its behavior must be considered. Moreover, the particle and wave natures cannot
be observed simultaneously, and the type of behavior that we observe depends
on the kind of experiment we are doing: a particle-type experiment shows only
particle like behavior, and a wave-type experiment shows only wavelike behavior.

4.3 UNCERTAINTY RELATIONSHIPS FOR CLASSICAL

In quantum mechanics, we want to use de Broglie waves to describe particles. In
particular, the amplitude of the wave will tell us something about the location of
the particle. Clearly a pure sinusoidal wave, as in Figure 4.18a. is not much use
in locating a particle—the wave extends from —oc to 400, so the particle might
be found anywhere in that region. On the other hand, a narrow wave pulse like
Figure 4.18F does a pretty good job of locating the particle in a small region of
space, but this wave does not have an easily identifiable wavelength. In the first
case, we know the wavelength exactly but have no knowledge of the location of
the particle, while in the second case we have a good idea of the location of the
particle but a poor knowledge of its wavelength. Because wavelength is associated
with momentum by the de Broglie relationship (Eq. 4.1), a poor knowledge of the
wavelength is associated with a poor knowledge of the particle’s momentum. For
a classical particle, we would like to know baoth its location and its momentum as
precisely as possible. For a quantum particle, we are going to have to make some
compromises—the better we know its momentum (or wavelength). the less we
know about its location. We can improve our knowledge of its location only at
the expense of our knowledge of its momentum.
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This competition between knowledge of location and knowledge of wavelength
is not restricted to de Broglie waves—classical waves show the same effect. All
real waves can be represented as wave packets—disturbances that are localized to
a finite region of space. We will discuss more about constructing wave packets in
Section 4.5. In this section we will examine this competition between specifying
the location and the wavelength of classical waves more closely.

Figure 4.19a shows a very small wave packet. The disturbance is well localized
to a small region of space of length Ax. (Imagine listening to a very short burst
of sound, of such brief duration that it is hard for you to recognize the pitch or
frequency of the wave.) Let’s try to measure the wavelength of this wave packet.
Placing a measuring stick along the wave, we have some difficulty defining exactly
where the wave starts and where it ends. Our measurement of the wavelength is
therefore subject to a small uncertainfy AA. Let's represent this uncertainty as a
fraction £ of the wavelength A, so that AA ~ gA. The fraction £ is certainly less
than 1, but it is probably greater than 0.01, so we estimate that £ ~ (.1 to within
an order of magnitude. (In our discussion of uncertainty, we use the ~ symbol
to indicate a rough order-of-magnitude estimate.) That is, the uncertainty in our
measurement of the wavelength might be roughly 10% of the wavelength.

The size of this wave disturbance is roughly one wavelength, so Ax = A. For
this discussion we want to examine the product of the size of the wave packet and
the uncertainty in the wavelength, Ax times A4 with Ax = X and AL ~ =k:

AxAX ~ A2 (4.4)

This expression shows the inverse relationship between the size of the wave
packet and the uncertainty in the wavelength: for a given wavelength, the smaller
the size of the wave packet, the greater the uncertainty in our knowledge of the
wavelength. That is, as Ax gets smaller, A% must become larger.

Making a larger wave packet doesn’t help us at all. Figure 4.195 shows a larger
wave packet with the same wavelength. Suppose this larger wave packet contains
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FIGURE 4.19 (&) Measuring the wavelength of a wave represented by a
small wave packet of length roughly one wavelength. (b) Measuring the
wavelength of a wave represented by a large wave packet consisting of &
Waves.
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uncertainty in the frequency. Instead, they should be directly related—the better
we know the period, the better we know the frequency. Here is how we obtain the
relationship: Beginning with f = 1/T, we take differentials on both sides:

df:—]ﬁd?"

Mext we convert the infinitesimal differentials to finite intervals, and because we
are interested only in the magnitude of the uncertainties we can ignore the minus

sign:
Af = %a 7 (4.6)

Combining Eqs. 4.5 and 4.6, we obtain
AfAt~¢g 4.7y

Equation 4.7 shows that the longer the duration of the wave packet, the more
precisely we can measure its frequency.

| Example 4.4

An electronics salesman offers to sell you a frequency- must have an associated uncertainty of about
measuring device. When hooked up to a sinusoidal signal,

it automatically displays the frequency of the signal. and to Af ~ £ 0l
account for frequency variations, the frequency is remea- At s
sured once each second and the display is updated. The e L H

salesman claims the device to be accurate to (.01 Hz. Is

e iy i It appears that the salesman may be exaggerating the

Solution precision of this device.
Based on Eq. 4.7, and again estimating £ to be about (.1, we

know that a measurement of frequency in a time Af = s

4.4 HEISENBERG UNCERTAINTY RELATIONSHIPS

The uncertainty relationships discussed in the previous section apply to all waves,
and we should therefore apply them to de Broglie waves. We can use the basic de
Broglie relationship p = h/A to relate the uncertainty in the momentum Ap to the
uncertainty in wavelength A, using the same procedure that we used to obtain
Eq. 4.6. Starting with p = /A, we take differentials on both sides and obtain
dp = (—h/A2)d). Now we change the differentials into differences, ignoring the
minus sign:
h

Ap= A2 (4.8}
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Wemer Heisenberg (1901 - 1976, Ger-
many}. Best known for the uncertaimty
principle, he also developed a com-
plete formulation of the quantum the-
ory based on matrices.
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FIGURE 421 Single-slit diffraction
of electrons. A wide beam of electrons
is incident on a narrow sht. The elec-
trons that pass through the slit acquire
a component of momentum in the x
direction.

Anuncertainty in the momentum of the particle is directly related to the uncertainty
in the wavelength associated with the particle’s de Broglie wave packet.

Combining Eq. 4.8 with Eq. 4.4, we obtain

AxAp ~eh (4.9)
Just like Eq. 4.4, this equation suggests an inverse relationship between Ax and
Ap. The smaller the size of the wave packet of the particle, the larger is the
uncertainty in its momentum (and thus in its velocity ).

Quantum mechanics provides a formal procedure for calculating Ax and Ap
for wave packets commesponding to different physical situations and for different
schemes for confining a particle. One outcome of these calculations gives the
wave packet with the smallest possible value of the product AxAp, which turns
out to be h/4x, as we will discuss in the next chapter. Thus £ = 1 /4x in this case.
All other wave packets will have larger values for AxAp.

The combination fi/2m occurs frequently in guantum mechanics and is given
the special symbel i (*h-bar™)

h
h=—=1.05x 100%).s =658 x 107 %eV.5
2

In terms of &, we can write the uncertainty relationship as

AxAp, > 1k (4.10)
The x subscript has been added to the momentum to remind us that Eq. 4.10
applies to motion in a given direction and relates the uncertainties in position and
momentum in that direction only. Similar and independent relationships can be
applied in the other directions as necessary; thus AyAp, = A/2 or AzAp, = h/2.

Equation 4. 101s the first of the Heisenberg uncertainty relationships. It sets the
limit of the best we can possibly do in an experiment to measure simulfancously the
location and the momentum of a particle. Another way of interpreting this equation
is to say that the more we try to confine a particle, the less we know about its
momentum.

Because the limit of /i/2 represents the minimum value of the product AxAp,,
in most cases we will do worse than this limit. It is therefore quite acceptable to
take

AxAp, ~k (4.11)
as a rough estimate of the relationship between the uncertainties in location and
momentum.

As an example, let’s consider a beam of electrons incident on a single slit, as in
Figure 4.21. We know this experiment as single-slit diffraction, which produces
the characteristic diffraction pattern illustrated in Figure 4.1. We'll assume that
the particles are initially moving in the y direction and that we know their
momentum in that direction as precisely as possible. [f the electrons initially have
no component of their momentum in the x direction, we know p_ exactly (it is
exactly zero), so that Ap, = 0; thus we know nothing about the x coordinates of
the electrons (Ax = oc). This situation represents a very wide beam of electrons,
only a small fraction of which pass through the slit.

At the instant that some of the electrons pass through the slit, we know quite
a bit more about their x location. In order to pass through the slit, the uncertainty
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in their x location is no larger than a, the width of the slit; thus Ax = a. This
improvement in our knowledge of the electron’s location comes at the expense of
our knowledge of its momentum, however. According to Eq. 4.11, the uncertainty
in the x component of its momentum is now Ap, ~ hfa. Measurements beyond
the slit no longer show the particle moving precisely in the y direction (for
which p, = 0); the momentum now has a small x component as well, with values
distributed about zero but now with a range of roughly £#/a. In passing through
the slit, a particle acquires on the average an x component of momentum of
roughly #/a, according to the uncertainty principle.

Let us now find the angle & that specifies where a particle with this value of p,
lands on the screen. For small angles, sin @ = tan & and so

pe_Ma_ A

sinfm=tanf ="——-—= ~— =
Py Py lma

using & = h/p, for the de Broglie wavelength of the electrons. The first minimum
of the diffraction pattern of a single slit is located at sin & = L /a, which is larger
than the spread of angles into which most of the particles are diffracted. The
calculation shows that the distribution of transverse momentum given by the
uncertainty principle is roughly equivalent to the spreading of the beam into the
central diffraction peak. and it illustrates again the close connection between wave
behavior and uncertainty in particle location.

The diffraction (spreading) of a beam following passage through a slit is just
the effect of the uncertainty principle on our attempt to specify the location of the
particle. As we make the slit narrower, p, increases and the beam spreads even
more. In trying to obtain more precise knowledge of the location of the particle
by making the slit narrower, we have lost knowledge of the direction of its travel.
This trade-off between observations of position and momentum is the essence of
the Heisenberg uncertainty principle.

We can also apply the second of our classical uncertainty relationships (Eq. 4.7)
to de Broglie waves. If we assume the energy-frequency relationship for light,
E = hf, can be applied to particles, then we immediately obtain AE = hAf.
Combining this with Eq. 4.7, we obtain

AEAf ~ eh (4.12)
Once again, the minimum uncertainty wave packet gives £ = | /4, and so
AEAt = 1n (4.13)

This is the second of the Heisenberg uncertainty relationships. It tells us that
the more precisely we try to determine the time coordinate of a particle, the less
precisely we know its energy. For example, if a particle has a very short lifetime
between its creation and decay (Af — [), a measurement of its rest energy (and
thus its mass) will be very imprecise (A£ — oo). Conversely, the rest energy of
a stable particle (one with an infinite lifetime, so that A¢ = oc) can in principle be
measured with unlimited precision (AE = 0).
As in the case of the first Heisenberg relationship, we can take

AEAt ~ h (4.14)

as a reasonable estimate for most wave packets.
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| Example 4.5

The Heisenberg uncertainty relationships are the mathematical representations
of the Heisenberg uncertainty principle, which states:

It is not possible to make a simultaneous determination of the position and
the momentum of a particle with unlimited precision,

and

It is not possible to make a simulianeous determination of the energy and
the time coordinate of a particle with unlimited precision.

These relationships give an estimate of the minimum uncertainty that can result
from any experiment; measurement of the position and momentum of a particle
will give a spread of values of widths Ax and Ap,. We may, for other reasons, do
much worse than Eqs. 4.10 and 4.13, but we can do no better.

These relationships have a profound impact on our view of nature. It is quite
acceptable to say that there is an uncertainty in locating the position of a water
wave. It is quite another matter to make the same statement about a de Broglie
wave, because there is an implied corresponding uncertainty in the position of the
particle. Equations 4.10 and 4.13 say that nature imposes a limit on the accuracy
with which we can do experiments. To emphasize this point, the Heisenberg
relationships are sometimes called “indeterminacy™ rather than “uncertainty™
principles, because the idea of uncertainty may suggest an experimental limit
that can be reduced by using better equipment or technique. In actuality, these
coordinates are indeterminate to the limits provided by Eqs. 4.10 and 4.13—no
matter how hard we try, it is simply not possible to measure more precisely.

An electron moves in the x direction with a speed of
3.6 x 10° m/s. We can measure its speed to a precision of
1%. With what precision can we simultaneously measure
its x coordinate?

Solution
The electron’s momentum is
Py =mv, = (9.11 x 1073 kg)(3.6 x 10°m/s)
=33 107 % kg-m/s

The uncertainty Ap, is 1% of this value, or 3.3 x
10~% kg - m/s. The uncertainty in position is then

h 1.05 x 10-3].5
Ap, 33 x 107®kg.mis
=3.2nm

which is roughly 10 atomic diameters.

| Example 4.6

Repeat the calculations of the previous example in the case
of a pitched baseball {m = 0.145 kg) moving at a speed of
95 mi‘h (42.5 m/'s). Again assume that its speed can be
measured to a precision of 1%.

Solution
The baseball’s momentum is

Py =mv, = (0L145kg)(42.5m/s) = 6.16 kg-m/s
The uncertainty in momentum is 6.16 = 1072 kg-m/s, and
the corresponding uncertainty in position is
A 1.5 x 10745

Axw = —=_ " " T 1 Ix 10 Pm
Ap. 616 x 10~ 2kg-mis
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The Group Speed of deBroglie Waves

Suppose we have a localized particle, represented by a group of de Broglie
waves. For each component wave, the energy of the particle is related to the
frequency of the de Broglie wave by £ = if = Aw, and so dE = hdw. Similarly,
the momentum of the particle is related to the wavelength of the de Broglie wave
by p = k4 = hk, so dp = hdk. The group speed of the de Broglie wave then can
be expressed as

Wi — d_w = @ - ﬁ (4.29)

dk  dp/h dp

For a classical particle having only kinetic energy E = K = p*/2m, we can find
dE/dp as

&= ()

dp \2m

bk 2f
dp ~ dp m

—v (4.30)

which is the velocity of the particle.
Combining Eqs. 4.29 and 4.30 we obtain an important result:

Varoup = Vparticle (4.31)

The speed of a particle is equal to the group speed of the corresponding wave
packet. The wave packet and the particle move together—wherever the particle
goes, its de Broglie wave packet moves along with it like a shadow. If we do a
wave-type experiment on the particle, the de Broglie wave packet is always there
to reveal the wave behavior of the particle. A particle can never escape its wave
nature!

The Spreading of a Moving Wave Packet

Suppose we have a wave packet that represents a confined particle at ¢ = 0. For
example, the particle might have passed through a single-slit apparatus. Its initial
uncertainty in position is Ax, and its initial uncertainty in momentum is Ap,,.
The wave packet moves in the x direction with velocity v, but that velocity is
not precisely known—the uncertainty in its momentum gives a corresponding
uncertainty in velocity: Awy = Apy/m. Because there is an uncertainty in the
velocity of the wave packet, we can’t be sure where it will be located at time
t. That is, its location at time f is x = v f, with velocity v, = vy £ Avyy. Thus
there are two contributions to the uncertainty in its location at time f#: the initial
uncertainty Axy and an additional amount equal to Avyf that represents the
spreading of the wave packet. We'll assume that these two contributions add
quadratically, like experimental uncertainties, so that the total uncertainty in the
location of the particle is

Ax = \f (A + (Avgt)? = ‘/{ﬁxg 12+ (Apygt/m)? (4.32)

Taking Apyy = A/ Axy according to the uncertainty principle, we have

Ax = J(Axg)? + (ht/mAx,)? (433)

If we try to make the wave packet very small at f = 0( Ax; is small), then the second
term under the square root makes the wave packet expand rapidly, because Axg
appears in the denominator of that term. The more successful we are at confining
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THE SCHRODINGER EQUATION

Quantum mechanics provides a mathematical framework in which the description of a
process often includes different and possibly contradictory outcomes. A favorite illustration
of that situation is the case of Schridinger’s cat. The cat is confined in a chamber with a

radioactive atom, the decay of which will trigger the release of poison from a vial. Because
we don't know exactly when that decay will occur, until an observation of the condition of
the cat is made the quantum-mechanical description of the cat must include both “cat alive™
and “cat dead” components.
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FIGURE 3.1 (a) A light wave in air is
incident on a slab of glass, showing
transmitted and reflected waves at the
two boundaries {4 and B). (b) A sur-
face wave in water incident on a region
of smaller depth similarly has trans-
mitted and reflected waves. (c) The
de Broglie waves of electrons moving
from a region of constant zero poten-
tial to a region of constant negative
potential ¥y also have transmitted and
reflected components.

The future behavior of a particle in a classical (nonrelativistic, nonquantum}
situation may be predicted with absolute certainty using Newton's laws. If a
particle interacts with its environment through a known force F {which might
be associated with a potential energy L7), we can do the mathematics necessary
to solve Newton's second law, F = dp/dt (a second-order, linear differential
equation), and find the particle’s location Tty and velocity ¥(f) at all future times
t. The mathematics may be difficult, and in fact it may not be possible to solve the
equations in closed form {in which case an approximate solution can be obtained
with the help of a computer). Aside from any such mathematical difficulties, the
physics of the problem consists of writing down the original equation F= dp/de
and interpreting its solutions T(f) and ¥(f). For example, a satellite or planet
moving under the influence of a 1/r* gravitational force can be shown, after the
equations have been solved, to follow exactly an elliptical path.

In the case of nonrelativistic quantum physics, the basic equation to be solved
is a second-order differential equation known as the Schrddinger eguation. Like
Newton's laws, the Schrodinger equation is written for a particle interacting with
its environment, although we describe the interaction in terms of the potential
energy rather than the force. Unlike Newton's laws, the Schriodinger equation
does not give the trajectory of the particle; instead, its solution gives the wave
Sfunction of the particle, which carries information about the particle’s wavelike
behavior. In this chapter we introduce the Schridinger equation, obtain some of its
solutions for certain potential energies, and leam how to interpret those solutions.

5.1 BEHAVIOR OF A WAVE AT A BOUNDARY

In studying wave motion, we often must analyze what occurs when a wave
moves from one region or medium to a different region or medium in which the
properties of the wave may change. For example, when a light wave moves from
air into glass, its wavelength and the amplitude of its electric field both decrease.
At every such boundary, a portion of the incident wave intensity is transmitted
into the second medium and a portion is reflected back into the first medium.

Let’s consider the case of a light wave incident on a glass plate, as in
Figure 5.1a. At boundary 4, the light wave moves from air (region 1) into glass
{region 2}, while at B the light wave moves from glass into air (region 3). The
wavelength in air in region 3 is the same as the original wavelength of the incident
wave in region 1, but the amplitude in region 3 is less than the amplitude in
region |, because some of the intensity is reflected at 4 and at B.

Other types of waves show similar behavior. For example, Figure 5.15 shows
a surface water wave that moves into a region of shallower depth. In that region,
its wavelength is smaller (but its amplitude is larger) compared with the original
incident wave. When the wave enters region 3, in which the depth is the same as
in region 1, the wavelength retumns to its original value, but the amplitude of the
wave is smaller in region 3 than in region | because some of the intensity was
reflected at the two boundaries.

The same type of behavior occurs for de Broglie waves that characterize
particles. Consider, for example, the apparatus shown in Figure 5.1c. Electrons
are incident from the left and move inside a narrow metal tube that is at ground
potential { ¥ = 0). Another narrow tube in region 2 is connected to the negative
terminal of a battery, which maintains it at a uniform potential of — V. Region 3
is connected to region 1 at ground potential. The gaps between the tubes can in
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principle be made so small that we can regard the changes in potential at 4 and B as
occurring suddenly. In region I, the electrons have kinetic energy K, momentum
P = ~'2mK, and de Broglie wavelength A = h/p. In region 2, the potential energy
for the electrons is I = gV = (—el—V}) = +el). We assume that the original
kinetic energy of the electrons in region | is greater than eF}, so that the electrons
move into region 2 with a smaller kinetic energy (equal to K — e¥p), a smaller
momentum, and thus a greater wavelength. When the electrons move from region
2 into region 3, they gain back the lost kinetic energy and move with their original
kinetic energy K and thus with their original wavelength. As in the case of the
light wave or the water wave, the amplitude of the de Broglie wave in region 3
is smaller than in region 1, meaning that the current of electrons in region 3 is
smaller than the incident current, because some of the electrons are reflected at
the boundaries at 4 and B.

We can thus identify a total of 5 waves moving in the three regions: (1) a wave
moving to the right in region 1 (the incident wave); (2) a wave moving to the left
in region | (representing the net combination of waves reflected from boundary 4
plus waves reflected from boundary B and then transmitted through boundary 4
back into region 1 ); (3) a wave moving to the right in region 2 {representing waves
transmitted through boundary 4 plus waves reflected at 8 and then reflected again
at A); (4) a wave moving to the left in region 2 (waves reflected at B); and (5)
a wave moving to the right in region 3 (the transmitted wawves at boundary B).
Because we are assuming that waves are incident from region 1, it is not possible
to have a wave moving to the left in region 3.

Penetration of the Reflected Wave

Another property of classical waves that carries over into quantum waves is
penetration of a totally reflected wave into a forbidden region. When a light
wave is completely reflected from a boundary, an exponentially decreasing wave
called the evamescenf wave penetrates into the second medium. Because 100%
of the light wave intensity is reflected, the evanescent wave carries no energy
and so cannot be directly observed in the second medium. But if we make the
second medium very thin (perhaps equal to a few wavelengths of light) the light
wave can emerge on the opposite side of the second medium. We'll discuss this
phenomenon in more detail at the end of this chapter.

The same effect oceurs with de Broglie waves. Suppose we increase the battery
voltage in Figure 5.1c so that the potential energy in region 2 (equal to eFj)
is greater than the initial kinetic energy in region 1. The electrons do not have
enough energy to enter region 2 {they would have negative kinetic there) and so
all electrons are reflected back into region 1.

Like light waves, de Broglie waves can also penetrate into the forbidden region
with exponentially decreasing amplitudes. However, because de Broglie waves
are associated with the motion of electrons, that means that electrons must also
penetrate a short distance into the forbidden region. The electrons cannot be
directly observed in that region, because they have negative kinetic energy there.
Nor can we do any experiment that would reveal their “real” existence in the
forbidden region, such as measuring the speed of their passage through that region
or detecting the magnetic field that their motion might produce.

One explanation for the penetration of the electrons into the forbidden region
relies on the uncertainty principle—because we can't know exactly the energy of
the incident electrons, we can't say with certainty that they don’t have enough
kinetic energy to penatrate into the forbidden region. For short enough time At, the
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energy uncertainty AE ~ fif Af might allow the electron to travel a short distance
into the forbidden region, but this extra energy does not “belong to” the electron
in any permanent sense. Later in this chapter we’ll discuss a more mathematical
approach to this explanation of penetration into the forbidden region.

Continuity at the Boundaries

When a wave such as a light wave or a water wave crosses a boundary as in
Figure 5.1, the mathematical function that describes the wave must have two
properties at each boundary:

1. The wave function must be continuous.
2. Theslope of the wave function must be continuous, except when the boundary
height is infinite.

Figure 5.2a shows a discontinuous wave function; the wave displacement
changes suddenly at a single location. This type of behavior is not allowed.
Figure 5.2b shows a continuous wave function (there are no gaps) with a
discontinuous slope. This type of behavior is also not allowed, unless the
boundary is of infinite height. Figures 5.2¢, d show how two sine curves and an
exponential and a sine can be joined so that both the function and the slope are
continuous.

Across any non-infinite boundary, the wave must be smooth—no gaps in the
function and no sharp changes in slope. When we solve for the mathematical
form of a wave function, there are usually undetermined parameters, such as
the amplitude and phase of the wave. In order to make the wave smooth at
the boundary, we obtain the values of those coefficients by applying the two
boundary conditions to make the function and its slope continuous. For example,
at boundary A in Figure 5.1, we first evaluate the total wave function in region |
at 4 and set it equal to the wave function in region 2 at 4. This guarantees that the
total wave function is continuous at 4. We then take the derivative of the wave
function in region 1, evaluate it at 4, and set that equal to the derivative of the
wave function in region 2 evaluated at 4. This step makes the slope in region 1
match the slope in region 2 at boundary A. These two steps give us two equations
relating the parameters of the waves and allow us to find relationships between
the amplitudes and phases of the waves in regions | and 2. The process must
be repeated at every boundary, such as at B in Figure 5.1 to match the waves in
regions 2 and 3.

We can understand the exception to the continuity of the slope for infinite
boundaries with an example from classical physics. Imagine a ball dropped from
a height y = H above a stretched rubber sheet at ¥ = 0. The ball falls freely
under gravity until it strikes the sheet, which we assume behaves like an elastic
spring. The sheet stretches as the ball is brought to rest, after which the restoring
force propels the ball upward. The motion of the ball might be represented by
Figure 5.3. Above the sheet (y = 0) the motion is represented by parabolas, and
while the ball is in contact with the sheet (y < 0) the motion is described by sine
curves. Note how the curves join smoothly at ¥ = 0, and note how both y(f} and
its derivative v(f) are continuous.

On the other hand, imagine a ball hitting a steel surface. which we assume to be
perfectly rigid. The ball rebounds elastically, and at the instant it is in contact with
the surface its velocity reverses direction. The motion of the ball is represented
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in Figure 5.4. At the points of contact with the surface, there is a sudden change
in the velocity, corresponding to an infinite acceleration and thus to an infinite
force. The function y(f) is continuous, but its slope is not—the function has no
gaps, but it does have sharp “points™ where the slope changes suddenly.

The assumption of the perfectly rigid surface is an idealization that we make
to help us understand the situation and also to help simplify the mathematics. In
reality the steel surface will flex slightly and ultimately behave somewhat like
a much stiffer version of the rubber sheet. In guantum mechanics we will also
sometimes use an assumption of a perfectly rigid or impenetrable boundary to
help us understand and simplify the analysis of a more complicated physical
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situation.

In this section we have established several properties of classical waves that

also apply to quantum waves:

l. When a wave crosses a boundary between two regions, part of the wave

intensity is reflected and part is transmitted.

FIGURE 5.4 The position and veloc-
ity of a ball dropped from a height i
above a rigid surface.

2. When a wave encounters a boundary to a region from which it is forbidden,
the wave will penetrate perhaps by a few wavelengths before reflecting.

3. At a finite boundary, the wave and its slope are continuous. At an infinite
boundary, the wave is continuous but its slope is discontinuous.

J Example 5.1

In the geometry of Figure 5.1, the wave in region | is
given by y(x) = Cysin(2xxfh; — ¢y ), where C; = 11.5,
A =4.97cm, and ¢; = —63.3°. In region 2, the wave-
lengthis A; = 10.5 cm. The boundary A is located atx = 0,
and the boundary B is located at x = L, where L = 20.0 cm.
Find the wave functions in regions 2 and 3.

Solution

The general form of the wave in region 2 can be repre-
sented in a form similar to that of the wave in region 1:
¥ylx) = Gy sin(2wx /3, — ¢ ). To find the complete wave
function in region 2, we must find the amplitude C; and
the phase ¢, by applying the boundary conditions on
the function and its slope at boundary 4 (x = 0). Setting
yilx = 0) = ya(x = 0) gives

—Cy singyy = —C; sin gy

The slopes can be found from the derivative of the gen-
eral form dy/fdx = (2w /A)C cos(2mx/k — ) evaluated at
x=0:

27

2
)‘-1 C! DOS-¢‘1 = )\__ICE CUS%

Dividing the first equation by the second eliminates C;
and allows us to solve for ¢y:

A
= tan ™! (—] I.am‘tll)
A
o 497 cm
= tan
10.5¢cm

= —458°

tan(—ﬁS.JDj)

We can solve for C; using the result from applying the first
boundary condition:

_sin(—65.3%)
7 sin(—45.87)

sim gy
sing,
To find the wave function in region 3, which we assume
to have the same form yy(x) = Cysin(2mx/d; — gy), we
must apply the boundary conditions on y; and y; atx = L.
Applying the two boundary conditions in the same way we
did at x = 0, we obtain

. f2xL . 2xL
Gysin| — — g0 | = Cysin| — — ¢
A A

-2

23 2mL 2; 2L
—rlC'zccs( - —¢-2) =—TC3|:05 L—q&;
)-2 )‘2 i! }.]

CE = — C] = |4.6

Proceeding as we did before, we divide these two
equations to find ¢3 = 60.9°, and then from either
equation obtain C3; =7.36. Our two solutions are
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then yy(x) = 14.6 sin 2xx/10.5 + 45.8") and wix) =

7.36 sin(2wx/4.97 + 14.6%), with x measured in cm. 1

Figure 5.5 shows the wave in all three regions. Note Nl HCI ﬂ\ f‘

how the waves join smoothly at the boundaries. |' | II | \\ I."-" 'H'.
How is it possible that the amplitude of y, can be greater Tt | ' ; r',l L.ll

than the amplitude of »;? Keep in mind that y; represents -Illdl f\H II'JG \ ?!D \ .ﬁﬂ

the total wave in region 1, which includes the incident wave / | \\I (

and the reflected wave. Depending on the phase difference e Ur

between them, when the incident and reflected waves are

added to obtain v, the amplitude of the resultant can be

smaller than the amplitude of either wave.

FIGURE 5.5 Example 5.1.

5.2 CONFINING A PARTICLE

A free particle (that is, a particle on which no forces act anywhere) is by definition
not confined, so it can be located anywhere. It has, as we discussed in Chapter 4,
a definite wavelength, momentum, and energy (for which we can choose any
value).

A confined particle, on the other hand, is represented by a wave packet that
makes it likely to be found only in a region of space of size Ax. We construct
such a wave packet by adding together different sine or cosine waves to obtain
the desired mathematical shape.

In quantum mechanics, we often want to analyze the behavior of confined
particles, for example an electron that is attached to a specific atom or molecule.
We'll consider the properties of atomic electrons beginning in Chapter 6, but for
now let’s look at a simpler problem: an electron moving in one dimension and
confined by a series of electric fields. Figure 5.6 shows how the apparatus of
Figure 5.1c might be modified for this purpose. The center section is grounded
{so that ¥ = 0) and the two side sections are connected to batteries so that they
are at potentials of —Fy relative to the center section. As before, we assume that

gpibi i the gaps between the center section and the side sections can be made as narrow

{ 0— )| as possible, so we can regard the potential energy as changing instantaneously at

A B | the boundaries 4 and B. This arrangement is often called a potential energy well.

The potential energy of an electron in this situation is then 0 in the center

Yo = ¥a section and L = gV = (—e){— V) = +el in the two side sections as shown in

() Figure 5.6. To confine the electron, we want to consider cases in which it moves

in the center section with a kinetic energy X that is less than Lj,. For example, the

[ electron might have a kinetic energy of 5eV in the center section, and the side

sections might have potential energies of 10 eV. The electron thus does not have

enough energy to “climb™ the potential energy hill between the center section and

the side sections, and (at least from the classical point of view) the electron is
(b confined to the center section.

We'll discuss the full solution to this problem later in this chapter, but for now

FIGURE 5.6 {a) Apparatus for con- let’s simplify even further and consider the case of an infinitely high potential

fining an electron to the center region  energy barmrier at 4 and B. This is a good approximation to the situation in

of length L. (b) The potential energy  which the kinetic energy of the electron in the center section is much smaller

of an electron in this apparatus. than the potential energy supplied by the batteries. In this case the penetration

=0




into the forbidden region, which we discussed in Section 5.1, cannot occur. The
probability to find the electron in either of the side regions is therefore precisely
zero everywhere in those regions, and thus the wave amplitude is zero everywhere
in those regions, including at the boundaries (locations 4 and B). For the wave
function to be continuous, the wave function in the center section must have
values of zero at A and B.

Of all the possible waves that might be used to describe the particle in this
center section, the continuity condition restricts us to waves that have zero
amplitude at the boundaries. Some of those waves are illustrated in Figure 5.7.
Note that the wave function is continuous, but its slope is not (there are sharp
points in the function at locations 4 and B). This is an example of the exception
to the second boundary condition—the slope may be discontinuous at an infinite
barrier.

In contrast to the free particle for which the wavelength could have any value,
only certain values of the wavelength are allowed. The de Broglie relationship then
tells us that only certain values of the momentum are allowed, and consequently
only certain values of the energy are allowed. The energy is not a continuous
variable, free to take on any arbitrary value; instead, the energy is a discrete
variable that is restricted to a certain set of values. This is known as guantization
of energy.

You can see directly from Figure 5.7 that the allowed wavelengths are
20, L,2L73,. .., where L is the length of the center section. We can write these
wavelengths as
n=1;2,3,... (5.1)
This set of wavelengths is identical to the wavelengths of the classical problem
of standing waves on a string stretched between two points. From the de Broglie
relationship A = h/p we obtain

h

= n— 5.2

Pn =05 (3.2)

The energy of the particle in the center section is only kinetic energy p?/2m,
and so

2

E.= HZ#
These are the allowed or quantized values of the energy of the electron.

A wave packet describing the electron in this region must be a combination of
waves with the allowed values of the wavelengths. However, it is not necessary
to construct a wave packet from a combination of waves to describe this confined
particle. Even a single one of these waves represents the confined particle, because
the wave function must be zero in the forbidden regions. So the waveforms shown
in Figure 5.7 can represent wave packets of this confined electron, each wave
packet consisting of only a single wave.

The appearance of energy quantization accompanies every attempt to confine
a particle to a finite region of space. Quantization of energy is one of the principal
features of the quantum theory, and studying the quantized energy levels of
systems (such as by observing the energies of emitted photons) is an important
technique of experimental physics that gives us information about the properties
of atoms and nuclei.

(3:3)
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tron confined by an infinite potential
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Applying the Uncertainty Principle
to a Confined Particle

In Chapter 4 we constructed wave packets and showed how the uncertainty
principle related the size of the wave packet to the range of wavelengths that
was used in its construction. Let’s now see how the Heisenberg uncertainty
relationships apply in the case of a confined particle.

In the arrangement of Figure 5.6 (with infinitely high barriers on each side),
the particle is known to be somewhere in the center section of the apparatus, and
thus Ax ~ L is a reasonable estimate of the uncertainty in its location. To find the
uncertainty in its momentum, we use the rigorous definition of uncertainty given
in Eq. 4.15: Apy = +/(p2).y — (Py ) - The particle moving in the center section
can be considered to be moving to the left or to the nght with equal probability
{just as the classical standing-wave problem can be analyzed as the superposition
of identical waves moving to the left and to the right). Thus p, ,, = 0. If the
particle is moving with a momentum given by Eq. 5.2, pf = {ri.i;r,-‘.",}2 and so
Ap, = nh/L. Combining the uncertainties in position and momentum, we have

h
AxAp, ~ L"T —nh (5.4)

The product of the uncertainties is certainly greater than f/2, and so the result
of confining the particle is entirely consistent with the Heisenberg uncertainty
relationship. Note that even the smallest possible value of the product of the
uncertainties (which is obtained for n = 1) is still much larger than the minimum
value given by the uncertainty principle.

Later in this chapter, we will use a more rigorous way to evaluate the uncertainty
in position using a formula similar to Eq. 4.15 to find the uncertainty in position,

and we will find that the result does not differ very much from the estimate
of Eg. 5.4.

5.3 THE SCHRODINGER EQUATION

The differential equation whose solution gives us the wave behavior of particles is
called the Schridinger equation. 1t was developed in 1926 by Austrian physicist
Erwin Schridinger. The equation cannot be derived from any previous laws
or postulates; like Newton's equations of motion or Maxwell’s equations of
electromagnetism, it is a new and independent result whose correctness can
be determined only by comparing its predictions with experimental results.
For nonrelativistic motion, the Schridinger equation gives results that comectly
account for observations at the atomic and subatomic level.

. We can justify the form of the Schrodinger equation by examining the solution
Erwin Schrédinger (1887-1961, Aus-  expected for the free particle, which should give a wave whose shape at any
tria). Although he disagreed with the  particular time, specified by the wave function y(x), is that of a simple de
probabilistic interpretation that was  Broglie wave, such as yqx) = A sin kx, where 4 is the amplitude of the wave and

later given to his work, he devel- § = 27 /). If we are looking for a differential equation, then we need to take some
oped the mathematical theory of wave  derivatives:

mechanics that for the first time per-

mitted the wave behavior of physical ﬂ — Edcoskr. d* " — KA sink = —k Wix)
systems to be calculated. dx ) dx*
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Note that the second derivative gives the original function again. With the kinetic
energy K = p?/2m = (h/%)*/2m = W*k* /2m. we can then write

dy
d?

2 2
—E ) = —ﬁ—TKw(x} = —ﬁ_':(.r-: — Ui

where £ = K + U is the nonrelativistic total energy of the particle. For a free
particle, U' = 0 so E = K; however, we are using the free particle solution to try
to extend to the more general case in which there is a potential energy Uix). The
equation then becomes

2. g2
—;—m% + Uix)nx) = Eix) (5.5)
Equation 5.5 is the time-independent Schrodinger equation for one-dimensional
miotion.

The solution to Eq. 5.5 gives the shape of the wave at time { = 0. The
mathematical function that describes a one-dimensional fraveling wave must
involve both x and ¢. This wave is represented by the function W(x.¢):

W(x,f) = Pix)e ™ (5.6)

The time dependence is given by the complex exponential function &~ with
w=Efh (You can find a few useful formulas involving complex numbers in
Appendix B.) We'll discuss the time-dependent part later in this chapter. For now,
we'll concentrate on the time-independent function yix).

We assume that we know the potential energy U{x), and we wish to obtain the
wave function yx) and the energy E for that potential energy. This is a general
example of a type of problem known as an eigenvalue problem; we find that it is
possible to obtain solutions to the equation only for particular values of E, which
are known as the emergy eigenvalues.

The general procedure for solving the Schridinger equation is as follows:

1. Begin by writing Eq. 5.5 with the appropriate Uix). Note that if the potential
energy changes discontinuously [Li{x) may be represented by a discontinuous
function; Yix) may not], we may need to write different equations for different
regions of space. Examples of this sort are given in Section 5.4.

2. Using general mathematical techniques suited to the form of the equation, find
a mathematical function yax) that is a solution to the differential equation.
Because there is no one specific technique for solving differential equations,
we will study several examples to learn how to find selutions.

3. In general, several solutions may be found. By applying boundary conditions
some of these may be eliminated and some arbitrary constants may be
determined. It is generally the application of the boundary conditions that
selects out the allowed energies.

4. Ifyouare seeking solutions for a potential energy that changes discontinuously,
you must apply the continuity conditions on Yix) (and usually on dv/dx) at
the boundary between different regions.

Because the Schrodinger equation is linear, any constant multiplying a solution
is also a solution. The method to determine the amplitude of the wave function is
discussed in the next section.
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The Free Particle

For a free particle, the force is zero and so the potential energy is constant. We
may choose any value for that constant, so for convenience we’ll choose U = (1.
The solution is given by Eq. 5.16, yix) = A sinkx + B cos kx. The energy of the
particle is

W

E= 5.19
2m ( )

Owr solution has placed no restrictions on &, so the energy is permitted to have
any value (in the language of quantum physics, we say that the energy is nof quan-
tized). We note that Eq. 5.19 is the kinetic energy of a particle with momentum
p = hk or, equivalently, p = h/A. This is as we would have expected, because
the free particle can be represented by a de Broglie wave with any wavelength.

Solving for 4 and B presents some difficulties because the normalization
integral, Eq. 5.9, cannot be evaluated from —oc to oo for this wave function.
We therefore cannot determine probabilities for the free particle from the wave
function of Eq. 5.16.

It is also instructive to write the wave function in terms of complex exponentials,
using sinkx = (¢ — ¢~%)/2i and coskr = (" + ¢~ ™)/2;

S _ —tkx

i —ikx
aﬁf{x}:A( ; )+.ﬂ;(E +2'3 )=,4-'ef’“+3'e-*“ (5.20)

where ' = 4/2i + B/2and B' = —A4/2i + B/2. To interpret this solution in terms
of waves we form the complete time-dependent wave function using Eq. 5.6:

W (xf) = (A" 4 Blo oy —lol — i ity 4 pro—liktol) (5.21)

The dependence of the first term on kx — wi identifies this term as representing
a wave moving to the right (in the positive x direction) with amplitude 4’, and
the second term involving &x + i represents a wave moving to the left (in the
negative x direction) with amplitude 8.

If we want the wave to represent a beam of particles moving in the +x direction,
then we must set B’ = 0. The probability density associated with this wave is
then, according to Eq. 5.7,

P(x) = [¥x)? = |4 Pe™e ™ = |42 (5.22)

The probability density is constant, meaning the particles are equally likely to be
found anywhere along the x axis. This is consistent with our discussion of the free-
particle de Broglie wave in Chapter 4—a wave of precisely defined wavelength
extends from x= —oo to x = +oc and thus gives a completely unlocalized
particle.

Infinite Potential Energy Well

Now we'll consider the formal solution to the problem we discussed in Section 5.2:
a particle is trapped in the region between x = 0 and x = L by infinitely high
potential energy barriers. Imagine an apparatus like that of Figure 5.6, in which the
particle moves freely in this region and makes elastic collisions with the perfectly
rigid barriers that confine it. This problem is sometimes called “a particle in a
box.” For now we’ll assume that the particle moves in only one dimension; later
we'll expand to two and three dimensions.

145



146 Chapter 5 | The Schrodinger Equation

To e To o=
U=o U=0 U=os
=0 x=0L

FIGURE 5.9 The potential energy ofa
particle that moves freely (L' = 0) in
theregion 0 < x < Lbutis completely
excluded (U = o) from the regions
x < Qandx > L.

The potential energy may be expressed as:

ix) =0 D=x=1L
=m x=<lx=L (5.23)

The potential energy is shown in Figure 5.9. We are free to choose any constant
value for L7 in the region 0 = x = L; we choose it to be zero for convenience.

Because the potential energy is different in the regions inside and outside the
well, we must find separate solutions in each region. We can analyze the outside
region in either of two ways. If we examine Eq. 5.5 for the region outside the well,
we find that the only way to keep the equation from becoming meaningless when
U — oo is to require ¥ = 0, so that Uy will not become infinite. Alternatively,
we can go back to the original statement of the problem. If the walls at the
boundaries of the well are perfectly rigid, the particle must always be in the well,
and the probability for finding it outside must be zero. To make the probability
zero everywhere outside the well, we must make i = 0 everywhere outside. Thus
we have

Px) =0 x<Ox=L (5.24)

The Schriodinger equation for 0 < x < L, when Lix) = (. is identical with Eq. 5.14
with Uf; = 0 and has the same solution:

Yix) = Asinkx 4 Beoskx D=x<L (5.25)
with
——
2mE
k=./"— 5.26
1‘| ﬁz ( '

Our solution is not yet complete, for we have not evaluated 4 or B, nor have
we found the allowed values of the energy E. To do this, we must apply the
requirement that y¥{x) is continuous across any boundary. In this case. we require
that our solutions for x < 0 and x > 0 match up at x = 0; similarly, the solutions
for x = L and x < L must match at x = L.

Let us begin at x = 0. Atx = 0, we have found that v = 0, and so we must set
W(x) of Eq. 5.25 to zero at x = (.

W0} = Asin0+ Bcos0 =0 (5.27)

which gives 8§ = 0. Because v = 0 for x = L, the second boundary condition is
Wil) =0, so

L) = Asinkl + Beoskl. =0 (5.28)

We have already found B =0, so we must now have 4sinkl = 0. Either
A =0, in which case ¥ = 0 everywhere, 1#2 = 0 everywhere, and there is no
particle (a2 meaningless solution) or else sinkL = 0, which is true only when
kL =m, 2w, 3m,...,Of

kL = nm n=1273,... (5.29)
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With & = 2 /A, we have & = 2L /n; this is identical with the result obtained in
introductory mechanics for the wavelengths of the standing waves in a string of
length L fixed at both ends, which we already obtained in Section 5.2 (Eq. 5.1).
Thus the solution to the Schrédinger equation for a particle trapped in a linear
region of length L is a series of standing de Broglie waves! Not all wavelengths
are permitted; only certain values, determined from Eq. 5.29, may occur.

From Eq. 5.26 we find that, because only certain values of k are permitted by
Eq. 5.29, only certain values of E may occur—the energy is quantized! Solving
Eq. 5.29 for k and substituting into Eq. 5.26, we obtain

_KE_ Walh KA

"_E_W=W r=1,213,... (5.30)

For convenience, let E; = bEHE,’ZmLI = hz,l'SmLz', this unit of energy is
determined by the mass of the particle and the width of the well. Then E,; = n Eg,
and the only allowed energies for the particle are Ey, 4Ep, 9E,. [6E;, etc. All
intermediate values, such as 3E; or 6.2E,, are forbidden. Figure 5.10 shows the
allowed energy levels. The lowest energy state, for which n = 1, is known as the
ground siate, and the states with higher energies (n > 1) are known as excited
states.

Because the energy is purely kinetic in this case, our result means that only
certain speeds are permitted for the particle. This is very different from the case
of the classical trapped particle. in which the particle can be given any initial
velocity and will move forever, back and forth. at the same speed. In the quantum
case, this is not possible; only certain initial speeds can result in sustained states of
muotion; these special conditions represent the “stationary states.” Average values
caleulated according to Eq. 5.13 likewise do not change with time.

From one energy state, the particle can make jumps or transitions to another
energy state by absorbing or releasing an amount of energy equal to the energy
difference between the two states. By absorbing energy the particle will move to
a higher energy state, and by releasing energy it moves to a lower energy state.
A similar effect occurs for electrons in atoms, in which the absorbed or released
energy is usually in the form of a photon of visible light or other electromagnetic
radiation. For example, from the state with n = 3 (E; = 9E), the particle might
absorb an energy of AE = T7E; and jump upward to the n = 4 state (E£; = 16E)
or might release energy of AE = 5E; and jump downward to the n = 2 state

(E; = 4E,).

| Example 5.2

a=4 E, = 16E,
n=3 £y = 9F,
n=2 By = 4E,
n=1 E =Ey

FIGURE 5.10 The first four energy
levels m a one-dimensional infinite
potential energy well.

Anelectron is trapped in a one-dimensional region of length  Solution

1.00 x 107" m (a typical atomic diameter). (a) Find the (a) The basic quantity of energy needed for this

energies of the ground state and first two excited states. calculation is

{(#) How much energy must be supplied to excite the elec- e (he)?

tron from the ground state to the second excited state? By = Bmil = amcl L2

() From the second excited state, the electron drops down 3

to the first excited state. How much energy is released in this (1240 eV - nm} —17.6eV

process? = B(511,000V)(0.100 nm)?
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With £, = n'zEg. we can find the energy of the states:

n=1:
=2
B=3:

(b) The energy difference between the ground state and

E, =Ey=316eV
EZ = 4'EU = 1504GV
E; = 9E, = 338.4¢V

This is the energy that must be absorbed for the electron to

make this jump.

{c) The energy difference between the second and first

excited states is

AE=E;—E,=3384eV — 150.4eV = 188.0eV

the second excited state is

AE=E;— E; =338.4eV — 37.6eV =300.8eV

This is the energy that is released when the electron makes
this jump.

To complete the solution for ynx), we must determine the constant 4 by using
the normalization condition given in Eq. 5.9, ff;c Iﬁx}lzdx = 1. The integrand
is zero in the regions —oc < x < 0 and L < x < 400, so all that remains is

L
f Asin? T = 1 (5.31)
0 L

from which we find 4 = ../'2_,‘.“. The complete wave function for 0 =x = L is
then

Y(x) = fllz sin i

Vs a=1,23,... (5.32)

In Figure 5.11, the wave functions and probability densities 1,{12 are illustrated for
the lowest several states.

In the ground state, the particle has the greatest probability to be found near
the middle of the well (x = L/2), and the probability falls off to zero between
the center and the sides of the well. This is very different from the behavior
of a classical particle—a classical particle moving at constant speed would be
found with equal probability at every location inside the well. The quantum
particle also has constant speed but yet is still found with differing probability
at various locations in the well. It is the wave nature of the quantum particle that
is responsible for this very nonclassical behavior.

n=1 a n=3
e = Py e
<o 7 \\ "-’ \‘ r’" -
- £ b i \ ) 4]
= £ ' ) i 5
’ LY
L8 T
f 1 T 1
x=0 =1L x=0 =L
n=2 n=4
e & H % s
Praly . ) LN P Y
F ) B, K 4 [ \ r A [ 5
v b, h i ) [ X 3 F \
2 N /—\\ ) y /V-\ i 3
i
i e A ! 5
f T
r=0 \ /;L x=0 =1

FIGURE 5.11 The wave functions (solid lines) and probability densities (shaded regions) of the first four
states in the one-dimensional infinite potential energy well.
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FIGURE 5.13 Two very different probability densities with exactly the same energy.

E = 13E;. This degeneracy arises from interchanging n, and a, (which is the
same as interchanging the x and y axes). so the probability distributions in the
two cases are not very different. However, consider the state with £ = 50E, for
which there are three sets of quantum numbers: ny = 7.0y = Limy = Ln, = T;
and n, = 5,n, = 5. The first two sets of quantum numbers result from the inter-
change of J':I'I-EJ'Id n, and so have similar probability distributions, but the third
represents a very different state of motion, as shown in Figure 5.19. The level
at E = 13E, is said to be two-fold depenerate, while the level at £ = 50&; is
three-fold degenerate; we could also say that one level has a degeneracy of 2,
while the other has a degeneracy of 3.

Degeneracy occurs in general whenever a system is labeled by two or more
quantum numbers; as we have seen in the above calculation, different combinations
of quantum numbers often can give the same value of the energy. The number
of different quantum numbers required by a given physical problem turns out
to be exactly equal to the number of dimensions in which the problem is
being solved —one-dimensional problems need only one quantum number, two-
dimensional problems need two. and so forth. When we get to three dimensions,
as in Problem 19 at the end of this chapter and especially in the hydrogen atom in
Chapter 7, we find that the effects of degeneracy become more significant; in the
case of atomic physics, the degeneracy is a major contributor to the structure and
properties of atoms.

3.5 THE SIMPLE HARMONIC OSCILLATOR ]

Another situation that can be analyzed using the Schrodinger equation is the
one-dimensional simple harmonic oscillator. The classical oscillator is an object
of mass m attached to a spring of force constant k. The spring exerts a restoring
force F = —kx on the object, where x is the displacement from its equilibrium
position. Using Newton's laws, we can analyze the oscillator and show that it has
a (circular or angular) frequency ay = ./k/m and a period T = 27 \,"m_j.i'_ The
maximum distance of the oscillating object from its equilibrium position is xp,
the amplitude of the oscillation. The oscillator has its maximum kinetic energy at
x = {; its kinetic energy vanishes at the furning points x = £x;. At the turning
points the oscillator comes to rest for an instant and then reverses its direction of
motion. The motion is, of course, confined to the region —xp; =x < 4.
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[l

—Xg 0 -+ ] X

FIGURE 5.20 The probability density
for the ground state of the simple har-
monic oscillator. The classical tuming
points are atx = +x;.

Why analyze the motion of such a system using quantum mechanics? Although
we never find in nature an example of a one-dimensional quantum oscillator, there
are systems that behave approximately as one—a vibrating diatomic molecule,
for example. In fact, any system in a smoothly varying potential energy well near
its minimum behaves approximately like a simple harmonic oscillator.

A force F = —kx has the associated potential energy U = %b‘}', and so we
have the Schrodinger equation:

ndy o1
e Ebiw = Eyr (5.46)

{Because we are working in one dimension, U/ and v are functions only of x.)
There are no boundaries between different regions of potential energy here, so
the wave function must fall to zero for both x — 400 and x -+ —oo. The simplest
function that satisfies these conditions, which turns out to be the correct ground
state wave function, is yix) = Ae™™"_ The constant a and the energy E can be
found by substituting this function into Eq. 5.46. We begin by evaluating dzyfr,fdxz.

d 2

LT WPPE N

dx
d*yr e i 2
—7 = ~2a(de ™) — 2ax(—2av)de™™ = (~2a + 4a )de

Substituting into Eq. 5.46 and canceling the common factor A yields

e 2a’R? 1
e B o 3‘2+Eﬂx2:E (5.47)

m m

Equation 5.47 is not an equation to be solved for x, because we are looking for
a solution that is valid for any x, not just for one specific value. In order for this
to hold for any x, the coefficients of x> must cancel and the remaining constants
must be equal. (That is, consider the equation bx® = c. It will be true for any and
all x only if both & = 0 and ¢ = 0.) Thus

2200 1 ila o)
— +-k=0 and —=F (5.48)
2 m
which yield
~km 1
a= o and E= Eﬁ.,fkl.’m (5.49)

We can also write the energy in terms of the classical frequency wy = ,/k/n as
1
E= Eﬁmo (5.50)

The coefficient 4 is found from the normalization condition (see Problem 20 at the
end of the chapter). The result, which is valid only for this ground-state wave func-
tion, is A = (muy /im )4, The complete wave function of the ground state is then

ma, 174
yﬁx)=(k—?f) e (5.51)

The probability density for this wave function is illustrated in Figure 5.20. Note
that, as in the case of the finite potential energy well, the probability density can
penetrate into the forbidden region beyond the classical tuming points at x = +x;
{in this region the potential energy is greater than E).
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The solution we have found corresponds only to the ground state of the
oscillator. The general solution is of the form v, (x) = Afy(x)e™™ , where f}(x) is
apolynomial in which the highest power of x is x". The corresponding energies are

1
E,rz(n—i—;)ﬁ'm.& n=0,1,2,... (5.52)

These levels are shown in Figure 5.21. Note that they are wniformly spaced,
in contrast to the one-dimensional infinite potential energy well. Probability
densities are shown in Figure 5.22. All of the solutions have the property of
penetration of probability density into the forbidden region beyvond the classical
tuming points. The probability density oscillates, somewhat like a sine wave,
between the turning points, and decreases like e 1o zero beyond the turning
points. Note the great similarity between the probability densities for the quantum  FIGURE 5.21 Energy levels of the
oscillator and those of the finite potential energy well (Figure 5.14). simple harmonic oscillator. Note that
A sequence of vibrational excited states similar to Figure 521 is commonly the levels have equal spacings and
found in diatomic molecules such as HC (see Chapter 9). The spacing between  that the distance between the classical
the states is typically 0.1-1eV; the states are observed when photons (in the turning points increases with energy.
infrared region of the spectrum) are emitted or absorbed as the molecule jumps
from one state to another. A similar sequence is observed in nuclei, where the

spacing is 0.1-1MeV and the radiations are in the gamma-ray region of the
spectrum.
n=0 n=2
o x 0 5 5
n=1 n=3
o x ] T

FIGURE 5.22 Probability densities for the simple harmonic oscillator. Note how the distance between the classical
turning points (marked by the short vertical lines) increases with energy. Compare with the probability densities for
the finite potential energy well (Figure 5.14).

J Example 5.5

An electron is bound to a region of space by a springlike  er—

force with an effective spring constant of k = 95.7 eV /nnr'. _ 1 (197 6V - nm) 95.7eV/nm*

(@) What is its ground-state energy? (b) How much energy 2 Y0511 % 108 eV

must be absorbed for the electron to jump from the ground _

state to the second excited state? =& L

Solution

{a) The ground-state energy is (by The difference between adjacent emergy levels is

= fey = 2.70eV for all energy levels, so the energy that

| fT must be absorbed to go from the ground state to the second

E=glin =l - =olni— excited state is AE = 2 x 2.70eV = 5.40eV.
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the other forms of the uncertainty principle; for example, reducing the uncertainty
in x is always accompanied by an increase in the uncertainty in p,.

From this discussion you can see why the length of the angular momentum is
defined according to Eq. 7.5 and why, for example, we could not have simply
defined the length as |I_:.| = [h. If this were possible, then when m; had its
maximum value (my; = +I), we would have L, = mfi = Ii; the length of the
vector would then be egqual to its z component, and so it must lie along the
z axis with Ly = L, = 0. However, this simultaneous exact knowledge of all
three components of L violates the angular momentum form of the uncertainty
principle, and therefore this situation is not permitted to occur. It is therefore
necessary for the length of L. to be greater than [A.

7.3 THE HYDROGEN ATOM WAVE FUNCTIONS _

To find the complete spatial description of the electron in a hydrogen atom,
we must obtain three-dimensional wave functions. The Schridinger equation in
three-dimensional Cartesian coordinates has the following form:

®ofa? 32 32
T Om ( a,;ir + ?‘f 3—;;) + Ulx, y. 20 (x, v, 2) = Er(x, .2) (7.9)

where 1 is a function of x, y, and z. The usual procedure for solving a partial
differential equation of this type is to separate the variables by replacing a function
ofthree variables with the product of three functions of one variable— for example,
wix,».z) = X{x)¥ (31 Z(z). However, the Coulomb potential energy (Eq. 7.1)
written in Cartesian coordinates, Ufx,y,z) = —02;'4330.! +© 417 + 22 , does not
lead to a separable solution. :

For this calculation, it is more convenient to work in spherical polar coordinates
(r. 8, ¢) instead of Cartesian coordinates (x, y, z). The variables of spherical
polar coordinates are illustrated in Figure 7.5. This simplification in the solution
is at the expense of an increased complexity of the Schrodinger equation, which
becomes:

M raty 280 1 a _E_ay& 1 aty
2m |32 " rar " Psmeoe \*" 2 sin’ 8 o¢°

s ] (7.10)
U (r.0.0) = EYrir. 0. ¢)

where now ¥ is a function of the spherical polar coordinates r, #, and ¢. When
the potential energy depends only on » (and not on & or ¢), as is the case for the
Coulomb potential energy, we can find solutions that are separable and can be
factored as

ik ; ' e FIGURE 7.5 Spherical polar coordi-

where the radial function Ri(r), the polar function ©(8), and the azimuihal nates for the hydrogen atom. The pro-
Junction $() are each functions of a single variable. This procedure gives three  ton is at the origin and the electron is
differential equations, each of a single variable (r, &, @). at a radius r, in a direction determined

The quantum state of a particle that moves in a potential energy that depends by the polar angle # and the azimuthal
only on » can be described by angular momentum quantum numbers { and m;. angle ¢.
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The polar and azimuthal solutions are given by combinations of standard trigono-
metric functions. The remaining radial function is then obtained from solving the
radial equation:

M (&R 24R & I+ Hw?
— | —=+-—— |+ |——+ ———— | Riry = ER(r 7.12
2m (drz r d'r) ( dmegr 2mr? ) ") ) ( ;
The mass that appears in this equation is the reduced mass of the proton-electron
system defined in Eq. 6.44.

Quantum Numbers and Wave Functions

When we solve a three-dimensional equation such as the Schrodinger equation,
three parameters emerge in a natural way as indices or labels for the solutions, just
as the single index n emerged from our solution of the one-dimensional infinite
well in Section 5.4. These indices are the three quantum numbers that label the
solutions. The three quantum numbers that emerge from the solutions and their
allowed values are:

n principal quantum number | g
I angular momentum quantum number 0,1,2,....n—1
iy magnetic quantum number 0, 41,42, .., 7+

The principal quantum number # is identical to the quantum number n that we
obtained in the Bohr model. It determines the quantized energy levels:

me? 1 .

s 322 eih n ()

which is identical to Eq. 6.30. Note that the energy depends only on n and not

on the other quantum numbers [ or m;. The permitted values of the angular

momentum quantum number [ are limited by a (! ranges from 0 to n — 1) and
those of the magnetic quantum number my; are limited by 1.

Complete with quantum numbers, the separated solutions of Eq. 7.10 can be

written

WJI,l'.m;lr-es[p) = Rn.!(r]afm;(e)mm(¢} (7.14)

The indices (n, I, my) are the three quantum numbers that are necessary to describe
the solutions. Wave functions corresponding to some values of the guantum
numbers are shown in Table 7.1. The wave functions are written in terms of the
Bohr radius a; defined in Eq. 6.29.

For the ground state (n = 1), only / = 0 and m, = 0 are allowed. The complete
set of quantum numbers for the ground state is then (n,/,m;) = (1,0,0), and the
wave function for this state is given in the first line of Table 7.1. The first excited
state (m = 2) can have [ = 0 or{ = 1. For [ = 0, only m; = 0 is allowed. This state
has quantum numbers (2, 0, 0), and its wave function is given in the second line
of Table 7.1. For I = |, we can have m; = 0 or £1. There are thus three possible
sets of quantum numbers: (2, 1, 0) and (2, 1, £1). The wave functions for these
states are given in the third and fourth lines of Table 7.1. The second excited state
(n=3)canhave i =0(m=0),1=1(m=0,x1),0ord =2 (m = 0,1, £2).

For the n = 2 level, there are four different possible sets of quantum numbers
and correspondingly four different wave functions. All of these wave functions
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TABLE 7.1 Some Hydrogen Atom Wave Functions

EREE R(r) o) | e
2 1 1
| 0 0 e S
= V2 2ot
1 1
2 0 0 e — —_
(Zﬂo]]"rz ( ) 2 2T
e [3 1
r_um
2 1 ] —_—— /= cosf e
V3 gzaﬂ)m a Y2 2z
I V3 1
2 1 +1 g 2m T sin# ——ett
V3(2a0P 2 tzanFﬂ @ 2 2n
2 r 27 I 1
3 0 ] — (1t = | == —
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9+/2(3ay (ﬂo 6aj 2 NGz
8 o E V3 1
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correspond to the same energy, so the n = 2 level is degenerate. (Degeneracy was
introduced in Section 5.4.) The n = 3 level is degenerate with nine possible sets
of quantum numbers. In general, the level with principal quantum number # has a
degeneracy equal to . Figure 7.6 illustrates the labeling of the first three levels.
If different combinations of quantum numbers have exactly the same energy,
what is the purpose of listing them separately? First, as we discuss in the last
section of this chapter, the levels are not precisely degenerate, but are separated
-1.5aV
(3, 0,00 3,1 1) (3, 1,00 (3. 1,-1) 3.2, 2) (3,2, 1} (3. 2.0 {3, 2,-1) (3, 2, -2}
-3.4 eV
(2,0,0 2,1,1) 2, 1,0 (2,1,-1)
-13.6 &V

(1,0, 0)

FIGURE 7.6 The lower energy levels of hydrogen, labeled with the quantum numbers (n, [, m;). The first excited state is
four-fold degenerate and the second excited state is nine-fold degenerate.
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FIGURE 7.7 The radial wave functions of them = 1, » = 2, and n = 3 states of hydrogen. The radius coordinate is measured

in units of ay.

rsinédg

FIGURE 7.8 The volume element in
spherical polar coordinates.

by a very small energy (about 10~% eV). Second, in the study of the transitions
between the levels, we find that the intensities of the individual transitions
depend on the quantum numbers of the particular level from which the transition
originates. Third, and perhaps most important, each of these sefs of gquantum
numbers corresponds to a very different wave function, and therefore represents
a very different state of motion of the electron. These states have different spatial
probability distributions for locating the electron, and thus can affect many atomic
properties—for example. the way two atoms can form molecular bonds.

The radial wave functions for the states listed in Table 7.1 are plotted in
Figure 7.7. You can readily see the differences in the motion of the electron for
the different states. For example, in the n = 2 level, the I = 0 and { = 1 wave
functions have the same energy but their behavior is very different: the / = | wave
function falls to zero at r = 0, but the / = 0 wave function remains nonzero at
r = 0. The { = 0 electron thus has a much greater probability of being found close
to (or even inside) the nucleus, which turns out to play a large role in determining
the rates for certain radicactive decay processes.

Probability Densities

As we leamed in Chapter 5, the probability of finding the electron in any spatial
interval is determined by the square of the wave function. For the hydrogen atom,
|Wir, 8, ¢)|* gives the volume probability density (probability per unit volume) at
the location (r,#,¢). To compute the actual probability of finding the electron,
we multiply the probability per unit volume by the volume element d} located at
(r.8,¢). In spherical polar coordinates (see Figure 7.8) the volume element is

dV = ¢ sin@dr do dg (7.15)

and therefore the probability to find the electron in the volume element at that
location is

[V (s B, DI AV = Ry (1) 1O, ()| B, (9) " sinBdr dB dp  (7.16)



