CORE COURSE VIII

PARTIAL DIFFERENTIAL EQUATIONS

Objectives

- 1. To give an in-depth knowledge of solving partial differential equations and apply them in scientific and engineering problems.
- 2. To study the other aspects of PDE

UNIT I

Partial differential equations- origins of first order Partial differential equations-Cauchy's problem for first order equations- Linear equations of the first order- Integral surfaces Passing through a Given curve- surfaces Orthogonal to a given system of surfaces -Non linear Partial differential equations of the first order.

UNIT II

Cauchy's method of characteristics- compatible systems of first order equations-Charpits method- Special types of first order equations- Solutions satisfying given conditions- Jacobi's method.

UNIT III

Partial differential equations of the second order : The origin of second order equations -second order equations in Physics – Higher order equations in Physics - Linear partial differential equations with constant co-efficient- Equations with variable coefficients-Characteristic curves of second order equations

UNIT IV

Characteristics of equations in three variables- The solution of Linear Hyperbolic equations-Separation of variables. The method of Integral Transforms – Non Linear equations of the second order.

Unit V

Laplace equation : Elementary solutions of Laplace's equations-Families of equipotential Surfaces- Boundary value problems-Separation of variables –Problems with Axial Symmetry.

TEXT BOOK

Ian N. Sneddon, Elements of Partial differential equations, Dover Publication –INC, New York, 2006.

UNIT I Chapter II Sections 1 to 7 UNIT II Chapter II Sections 8 to 13 UNIT III Chapter III Sections 1 to 6 UNIT IV Chapter III Sections 7 to 11 UNIT V Chapter IV Sections 2 to 6

REFERENCES

- 1. **M.D.Raisinghania**, Advanced Differential Equations , S.Chand and company Ltd., New Delhi,2001.
- 2. E.T.Copson, Partial Differential Equations, Cambridge University Press

UNIT-V CONTRACTOR STATEMENT (MODIA)

industrial issue

Elementary soln of replace equations - Families of Equipotential surfaces - Boundary Value problems - separation of Variables - problems with Axial symmetry. TEXT BOOK:

Ian. N. Sneddon, Elements of partial Differential equation Dover publications - INC. Newyork - 2006. . nobi 1 121 UNIT-I -> ch-I -> sec 1-7 11 - CIMO UNIT-II -> ch-II -> sec 8-13 Real of Sheers UNIT- II -> ch II -> Sec 1-6. " ups could be p UNIT- I -> ch- II-> Sec 7-11 and smallwar - without word UNIT-J- ch- IV -> SR2-6 I studie the state REFERENCES: (Addia AND TI UNT TRIS LAWART) IN THE 1. M. D. Raisinghanier, Advanced D. E. S. chand & company, New Pelhi - 2001. i upo ob o reapiti 2. E.T. Copson p.D.E. Combaidge university press.

at upor

+ Inpation pu

And the state of per-

estimation of

I pair Out then In THURS I MARKED but Marine Pair partial differential Equation: An equation involving a function and (on if partial derivatives $\frac{\partial \Theta}{\partial x}$, $\frac{\partial \Theta}{\partial y}$, $\frac{\partial \Theta}{\partial z}$, $\frac{\partial \Phi}{\partial t}$ will 11 1 1 1 m be non-zero. Highen derivatives op The types, $\frac{\partial^2 \Theta}{\partial x^2}$, $\frac{\partial^2 \Theta}{\partial q^2 \partial x \partial t}$, $\frac{\partial^3 \Theta}{\partial x^2 \partial t}$ etc... A relation between The desuivatives of a kind $F\left(\frac{\partial^2 \Theta}{\partial x}, \frac{\partial^2 \Theta}{\partial x^2}, \frac{\partial^2 \Theta}{\partial x \partial t}, \dots\right) = 0$ Such an equation relating partial derivatives is called " partial diggenential equation". Fuist order equation in two variables, The equation $\left(\frac{\partial \Theta}{\partial x}\right)^3 + \frac{\partial \Theta}{\partial t} = 0$ Fuist under equation in Three Variables, The equation, $x \cdot \frac{\partial \Theta}{\partial x} + y \cdot \frac{\partial \Theta}{\partial y} + z \frac{\partial \Theta}{\partial z} = 0$ Second onder equation in two variables, The equation, $\frac{\partial^2 \Theta}{\partial x^2} = \frac{\partial x}{\partial t}$ consider partial differential équations of the goist order, line) The equation of the type

 $F\left(\Theta,\frac{\partial\Theta}{\partial x}\cdots\right)=0$

Suppose That There are two independent Variable , and that The dependent variable is denoted by z. $\dot{P} = \frac{\partial z}{\partial x}$, $q = \frac{\partial z}{\partial y}$ 2 Such an equation can be written in The form Origins of first order PDE: 1 Eleminate The orbitary constants for This equation $x^2 + y^2 + (z - c)^2 = a^2$. where The constant a and c and cribitary. a Routh in John solu ! Given equation : $-x^2 + y^2 + (z - c)^2 = a^2 - 0$ Diff equ (1) partially w. r. to "x". $2x + 2(z - c)^{2}, \frac{\partial z^{2}}{\partial x} = 0$ 7. 10 to 10 2x+ 2(z-c) p=0 2.5 1. 15x + (z - c) p = 0(z-c)p = -x $z - c = \frac{-x}{p} - \frac{(z)}{p}$ Diff equ (2) pontially w. z. lo "y": $2y+2(z-c) \frac{\partial z}{\partial y}=0$

$$2y + 2(z - c) q = 0$$

$$y + (z - c) q = 0$$

$$(z - c) q = -y$$

$$z - c = \frac{-y}{q} - (z)$$
Equating equation (z), (z)
$$-\frac{\pi}{p} = -\frac{y}{q}$$

$$xq = yp$$

$$xq - yp = 0$$
3. Eliminate The constant from The given equation
$$x^{2} + y^{2} = (z - c)^{2} \tan^{2} \alpha \quad \text{where The constants } c \text{ and } \alpha$$
Solution
(given equ is $x^{2} + y^{2} = (z - c)^{2} \tan^{2} \alpha - 0$
Diff equ (1) partially w. n. to "x"
$$2x = 2(z - c) \cdot \frac{\partial z}{\partial x} \tan^{2} \alpha$$

$$x = (z - c) p \tan^{2} \alpha - (z)$$
Diff equ (1) partially w. n. to "y"
$$2y = 2(z - c) \cdot \frac{\partial z}{\partial y} \tan^{2} \alpha$$

$$y = (z - c) \cdot \frac{\partial z}{\partial y} \tan^{2} \alpha$$

$$y = (z - c) \cdot \frac{\partial z}{\partial y} \tan^{2} \alpha$$

$$y = (z - c) \cdot \frac{\partial z}{\partial y} \tan^{2} \alpha$$

$$y = (z - c) \cdot 2 \tan^{2} \alpha - (z)$$

Equating (21, (3) S. FORS (FW) × = 1/2 xq = yPthe constart grow the equation xq - yp = 0 $(x-a)^2 + (y-b)^2 + z^2 = 1$ where a, b are orbitary lonstant 3. Eliminate Given equ is $(z-a)^2 + (y-b)^2 + z^2 = 1$ (1) dh. bx. Diff. (1) partially w.r. to ">" 0 = 48 - 1 K $2(x-a)(1) + 2z \cdot \frac{\partial z}{\partial x} = 0$ 2(x-a) = -2zp $\chi - a = -z\beta => \chi - a/\beta = -z - (2)$ pipp (1) partially w. n. to y" $2(y-b) + 2z \cdot \frac{\partial z}{\partial y} = 0$ $\frac{\partial y}{\partial y} = d \cdot r \cdot u \quad u \text{ bining (1) up of fit$ y-b = -72 Equating (2), (3) =) $\frac{x-a}{b} = \frac{y-b}{2}$ - 1 not (- 3) q(x-a) = p(y-b)as peterstand to gr 13K q(x-a) - p(y-b) = 0 $(2) \Rightarrow -zp = x-a \quad \text{jin (1)}$ $(3) \Rightarrow -zq = y-b \quad \text{jin (2)}$ $(-zp)^{2} + (-zq)^{2} + z^{2} = 1$ $z^{2}p^{2} + z^{2}q^{2} + z^{2} = 1 \implies z^{2}(p^{2} + q^{2} + 1) - 1 = 0$

$$\begin{array}{l} \textbf{C} \cdot \textbf{Eliminate the constant from the equation} \\ \textbf{Z} = (x+a)(y+b) \quad \text{where } a, b \quad \text{are constants} \\ \textbf{Solu:} \\ (\text{riven equ is to $z \equiv (x+a)(y+b) \longrightarrow (1), \\ \textbf{Diffs} \quad \text{with } (1) \text{ partially with } s + b \quad x'' \\ \frac{\partial z}{\partial x} = y+b \\ \frac{\partial z}{\partial x} = y+b \\ \frac{\partial z}{\partial x} = y+b \\ b = y+b \longrightarrow (z), \\ b = y-y \quad \frac{\partial z}{\partial y} = (x+a)(1+o) \\ \frac{\partial z}{\partial y} = x+a \\ q = x+a \longrightarrow (3), \\ z = (n)(q) \\ \frac{\partial z}{z = pq} \\ \frac{(z+pq) = o}{z} \\ \frac{(z+pq) = o}{z} \\ \end{array}$$$

Finimizer the unstant from The equation

$$2z = (ax+y)^2 + b$$

Solu:
(liven equation $2z' = (ax+y)^2 + b \longrightarrow (1)$
Diff (1) partially with x. to 'x"
 $2\frac{9z}{9x} = 2(ax+y) a$
 $p = e(ax+y) a$
 $\frac{b}{a} = ax+y \longrightarrow (3)$
Diff (1) partially with x. to y"
 $2 \cdot \frac{9z}{9y} = 2(ax+y)(1)$
 $\frac{9z}{9y} = (ax+y)$
 $2 \cdot \frac{9z}{9y} = 2(ax+y)(1)$
 $\frac{9z}{9y} = (ax+y)$
 $2 = ax+y \longrightarrow (3)$
Equating (2), (3) we get
 $\frac{b}{a} = q \implies P/q = a \longrightarrow (a)$
 $p = qa = b = (h/q)x + y$
 $p - qq = b$
 $p - qq = c$
 $q = (h/q)x + y$
 $p - qq = c$
 $p - qq = c$
 $p = p - qq = 1$
 $p = p - qq = 1$
 $p - qq = 2$
 $p - qq = 1$

(given equ is
$$ax^2 + by^2 + z^2 = 1$$
 (1)
Diff (1) partially with x, to "x".
 $2ax (\#) + o + 2z \cdot \frac{\partial z}{\partial x} = 0$
 $2ax + 2z \cdot \frac{\partial z}{\partial x} = 0$
 $2z \cdot b = -2ax$
 $zb = -aax$ (2) => $2z = -\frac{2x}{b} \Rightarrow a = -\frac{zp}{bx}$
Diff (1) partially with a to "y"
 $o + 2by + 2z \frac{\partial z}{\partial y} = 0$
 $2by = -2zb \frac{\partial z}{\partial y}$
 $z + (-z^2f/y)y^2 + z^2 = 1$
 $axq = byb$
 $-zbx - zqy = -z^2 + 1$
 $-zbx - zqy = -z^2 + 1$
 $z(bx + qy) = -z^2 + 1$

Eliminate the antitally function
$$f = f nom$$
 the equation
 $z = f(x^2+y^2)$
(iven equ is $z = f(x^2+y^2) \longrightarrow 0$
diff (i) partially w. n. to "x"
 $\frac{\partial z}{\partial x} = f^1(x^2+y^2) \longrightarrow (2)$
 $\frac{\partial z}{\partial x} = f^1(x^2+y^2) \longrightarrow (2)$
 $\frac{\partial z}{\partial y} = f^1(x^2+y^2) \longrightarrow (2)$
 $\frac{\partial z}{\partial y} = f^1(x^2+y^2) \longrightarrow (2)$
 $\frac{\partial z}{\partial y} = f^1(x^2+y^2) \longrightarrow (3)$ is for $f = 0$
Equating (2), (3) => $b/2x = 2/2y$ => $b/x = 2/3$
 $b/2x = 2/2y$
 $b/2 = x^2 + f(x^2+y^2) \longrightarrow (3)$ is for the equation
 $z = xy + f(x^2+y^2) \longrightarrow (3)$ is for $f = 0$
(a) $f = 0$
(b) $f = 0$ for $f = 0$
 $f = 0$
 $f = 0$ for $f = 0$
 $f = 0$

diff (1) partially w.n. to "y"

$$\frac{\partial z}{\partial y} = x(1) + f^{1}(x^{2}+y^{2}) - (z)$$

$$\frac{q-x}{2y} = f^{1}(x^{2}+y^{2}) - (z)$$
Squalling (2), (3) =) $\frac{b-y}{yx} = \frac{q-x}{2y}$

$$\frac{b-y}{yx} = \frac{q-x}{2}$$

$$\frac{b-y}{y} = \frac{q-x}{2}$$

$$\frac{b-y}{y} = x(q-x)$$

$$by - y^{2} = xq - x^{2}$$

$$by - xq - y^{2} + x^{2} = 0$$

$$x^{2} - y^{2} - xq + by = 0$$
3. Eliminate The arbitrary function from the equation
$$z = x+y+f(xy)$$

$$\frac{b-y}{2x} = 1+0+f^{1}(xy)(y)$$

$$\frac{b-1}{y} = f^{1}(xy) - (z)$$

$$\frac{b-1}{y} = f^{1}(xy) - (z)$$

$$\frac{b-1}{2y} = f^{1}(xy)(y) = y - (z)$$

= <u>9-1</u> x $(2), (3) = 5 \frac{p-1}{4}$ Squating x(p-1) = y(q-1)px-x = 2y-y -x+y-y2+xp px - qy - x + y = 0The arbitrary function from the equation 4. Eliminate $Z = f\left(\frac{xy}{Z}\right)$ That $z = f\left(\frac{xy}{z}\right) - \frac{y}{z}$ Given Diff (1) partially 10. n. to "x" $\frac{\partial z}{\partial x} = f'(xy/z) \begin{bmatrix} \frac{1}{2}y + \frac{1}{2}y + \frac{1}{2}y \\ \frac{1}{2}y + \frac{1}{2$ $p = f'(xy/z) \left[\frac{zy-xy}{z^2}\right]^{1/2}$ = f'(xy/z) - (2)' + (2)'zy-xyp Diff (1) partially w. r. to "y" $\frac{\partial z}{\partial y} = f'(\frac{xy}{z}) \left[\frac{zx - xy \cdot \frac{\partial z}{\partial y}}{z^2} \right]$ $= f'(\frac{xy}{z}) \left[\frac{zx-xy}{z^2}\right]$

$\frac{92^{2}}{2} = f'(\frac{xy}{z}) - \frac{(x)}{2}$	
z_{x-xy2}	
Squating (21, (3) we get	0-1
$p z/z = 2 z^2$	
zy-xyp zx-xyq	an an an
p(zx - xyq) = q(zy - xyp)	na de ser agri La T
pzx - pxyq = qzy - xyqp	647 - 13 ⁻ 17
x pz - px yq - qzy + xypq = 0	
xpz-yqz=0	5
Z(xp-yz)=0	from
$\chi p - yq = 0$ the equ	
forom .	
5- Eliminate The aubitary function	15 70 4 8
5. Eliminate the aubitary function $Z = f(x-y)$,	And all are
5. Eliminate the aubitary function $Z = f(x-y)$, (liven equ $z = f(x-y) - u$	And Course
5. Eliminate the aubitary function Z = f(x-y), (riven equ $z = f(x-y) - cy$ Digg (1) partially w.n. to "x".	adara and
5. Eliminate the aubitary function Z = f(x-y), (liven equ $z = f(x-y) - cy$ Diff (1) partially w.s. to "x". $\frac{\partial z}{\partial x} = f'(x-y)(1)$	adara ara ara
5. Eliminate the aubitary function $Z = f_{1}(x-y),$ (iven equ $Z = f(x-y) - (y)$ Diff (1) partially $w \cdot y \cdot to \ x'$. $\frac{\partial Z}{\partial x} = f'(x-y)(1)$ $p = f'(xy-(x-y)(1)$	adaman and and a
5. Eliminate the aubitary function $Z = f_{1}(x-y),$ (liven equ $z = f(x-y) - (y)$ Diff (1) partially $w \cdot y \cdot tb x'$. $\frac{\partial z}{\partial x} = f'(x-y)(1)$ $p = f'(x-y) - (x-y)(1)$	
5. Eliminate the arbitrary function $Z = f(x-y),$ (liven eque $z = f(x-y) - (y)$ Digg (1) partially $w \cdot x \cdot to "x".$ $\frac{\partial z}{\partial x} = f'(x-y) (1)$ $P = f'(x-y) - (x-y) (1)$ $P = f'(x-y) - (2)$ Digg (1) partially $w \cdot x \cdot to "y"$	
5. Eliminate the arbitrary function $T = f(x-y)$, (liven equ $z = f(x-y) - 0$) Diff (1) partially $w \cdot x \cdot to x''$. $\frac{\partial z}{\partial x} = f'(x-y)(1)$ p = f'(x-y) - 0 p = f'(x-y) - 0 Diff (1) partially $w \cdot x \cdot to y''$ $\frac{\partial z}{\partial y} = f'(x-y)(-1)$	
5. Eliminate The arbitrary function 1^{-1} Z = f (x-y), (liven equ $z = f (x-y) - (y)$ Diff (1) partially $w \cdot x \cdot to x^{-1}$. $\frac{\partial z}{\partial x} = f^{1} (x - y) (1)$ $p = f^{1} (x - y) - (x - y) (1)$ $p = f^{1} (x - y) - (x - y) (1)$ Diff (1) partially $w \cdot x \cdot to y^{-1}$ $\frac{\partial z}{\partial y} = f^{1} (x - y) (-1)$ $-q = f^{1} (x - y) - (x)$	

Linear Equation of 1st order P. D. E :-Lagrange's linear Equation: -The equation of the form Pp+Qq = R-1u) is known as lagrange's Equation, where PIQ, R are quinctions of x, y and z To solve the equation it is enough to solve the Subsidary equations. and a state $\frac{dx}{b} = \frac{dy}{R} = \frac{dz}{R} \rightarrow (2)$ If The soln of the subsidiary equation is of the form U(x1y) = c1 and V(x1y) = c2. Then the soln of the gn lagrange's equation is $\phi(u,v) = 0$ 5. Eliminate To solve the subsidary equation we have two methods. Interiment (19 7319 1) Method of grouping i) Method of multipliers. () Method of grouping:-Consider the subsidery equation $\frac{dx}{D} = \frac{dy}{Q} = \frac{dz}{R}$ Take any two members say first two members (02) two members are first and last member. last Now, consider the first two members. $\frac{dx}{p} = \frac{dy}{p}$. If p and to contains Z (other than x x y)

to eliminate it.
Now direct integration gives u(xiy) = e,.
Similarly, take another two members say dy/e = dz/R · If e
and R contains x [.(i-e) other than y ε z] try to eliminate it
Now, direct integration gives V(y,z) = c2
.: The soln of the given Lagrange's equation is φ(u,v) = 0
(ii) Method of Multipliers:-

Choose any three multipliers $l_{1}m,n$ be constants (co questions of $x_{1}y$ and $z \cdot Such that in,$ $\frac{dx}{p} = \frac{dy}{q} = \frac{dz}{R} = \frac{1dx + mdy + ndz}{1p + mq + nR}$ The expression lp + mq + nR = 0. Hence, ldx + mdy + ndz = 0Hence, ldx + mdy + ndz = 0 [Each of the above stations is equal to a lenstants] [Each of the above stations is equal to a lenstants] $(i-e) \frac{dx}{p} = \frac{dy}{q} = \frac{dz}{R} = \frac{1dx + mdy + ndz}{1p + mq + nR}$ (i.e) ldx + mdy + ndz = k (lp + mq + nR) Iq lp + mq + nR = 0. The ldx + mdy + ndz = 0

Now direct integration gives $u(x_1y_1z) = c_1$ Similarly, Choose another set of multipliers l', m', n'

which That in $\frac{dx}{p} = \frac{dy}{a} = \frac{dz}{R} = \frac{J'dx + m'dy + n'dz}{Jp + ma + nR}$

The expression
$$lp+me+nR = D$$
, $l'dx + m'dy + n'dz = o[q_1]$.
explained failer
Divide integration gives $V(x_1y_1z) = C_2$.
The soln of the dagrange's equ is $\phi(u_1v) = b$.
The soln of the dagrange's equ is $\phi(u_1v) = b$.
It Find the lagrange's soln of $y^2 p + xyq = x(z - ay)$
in equ is $y^2 p + xyq = x(z - 2y)$.
Hagnange's equ. $p \cdot p + (Q_1 = R)$
 $p = y^2 + Q = -xy + rR = x(z - 2y)$.
The subsidiary equ, $\frac{dx}{p} = \frac{dy}{Q} = \frac{dz}{R}$.
 $\frac{dx}{y^2} = \frac{dy}{-xy} = \frac{dz}{x(z - xy)}$.
Consider 1st si and patio.
 $\frac{dx}{y^2} = \frac{dy}{-xy}$
 $-x dx = y dy$
 $\int m dx = \int y dy$
 $-\frac{x^2}{2} = \frac{y^2}{2} + C$
 $-\frac{x^2}{2} = \frac{y^2}{2} = C$
 $\frac{x^2 + y^2}{2} = C$

$$x^{2} + y^{2} = 2c$$

$$x^{L} + y^{2} = c_{1}$$
tonsider and $c_{1} = 3rd$ static:

$$\frac{dy}{-ry} = \frac{dz}{r(z-ry)}$$

$$\frac{dy}{-y} = \frac{dz}{(z-ry)}$$

$$\frac{dy}{-y} = \frac{dz}{(z-ry)}$$

$$\frac{dy}{-y} = \frac{dz}{(z-ry)}$$

$$\frac{dy}{r} = \frac{dz}{(z-ry)}$$

$$\frac{dy}{r} = \frac{dz}{(z-ry)}$$

$$\frac{dy}{r} = \frac{dz}{r(z-ry)}$$

$$\frac{dy}{r} = \frac{dz}{r(z-ry)}$$

$$\frac{dy}{r} = \frac{ry}{r} = \frac{ry}{r} = \frac{ry}{r}$$

$$\frac{dy}{r} = \frac{ry}{r}$$

	and the second se
$D - x^2, D = y^2, R = (x+y)$)Z
The subsidiary equation $\frac{dx}{p} = \frac{dx}{p}$	$\frac{dy}{d} = \frac{dz}{R}$ (16)
$\frac{dx}{x^2} = \frac{dy}{y^2} = \frac{dz}{(x+y)\cdot z}$	
Lonsider 1st & 2nd ratios,	(46.44)
$\frac{dx}{x^2} = \frac{dy}{y^2}$	(the set of the set of the
$\chi^{-2} dx = y^{-2} dy$	she i li si tir v
jing on b.s we get,	At is an - have
$\int x^{-2} dx = \int y^{-2} dy$	Lette Party 6413
$\frac{x^{-1}}{-1} = \frac{y^{-1}}{-1}$	69 संटी - (टस्टाम]
$-x^{-1} = -y^{-1}$	67 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
$-\frac{1}{n} = -\frac{1}{y}$	an internet
$\frac{-1}{x} + \frac{1}{y} = 0$	e perto de minier a
$\frac{1}{y} - \frac{1}{x} = 0$	at yo c-p out h
chouse (1,-1,0) as long:	riange's multipliers
$\frac{qx-qy}{dz} = \frac{dz}{dz}$	

x2-y2 (x+y)z 12 -x. . . P "1. etx - dy (x+y) (x-y) -t---Coolz : -(x+y) Z

 $dx - dy = \frac{dz}{z}$ (11) (a-y) jing on b.s log (x-y) = log z + log c log (x-y) - log z = log c $\log\left(\frac{x-y}{z}\right) = \log c$ $\frac{\chi - y}{z} = c_2$ The soln is $\phi(c_1, c_2) = 0$ $\phi\left(\frac{1}{y}-\frac{1}{x},\frac{x-y}{z}\right)=0$ Find The g.s of $Z(xp-yq) = y^2 - x^2$ 3. (en equ is z (xp-yq) = y²-x² is lagrange's equ Lagrange's equ, $x = y = y^2 - x^2$. PP + QQ = R $P = \chi z$, Q = -yz, $R = y^2 - \chi^2$. where The subsidiary equation is $\frac{dx}{R} = \frac{dy}{R} = \frac{dz}{R}$ $\frac{dx}{xz} = \frac{dy}{-yz} = \frac{dz}{y^2 - xz}$ (¹ () () Lonsider 1st 4 and natio, $\frac{dx}{\pi z} = \frac{dy}{-yz}$

$$\frac{dx}{x} = \frac{dy}{-y}$$

$$\int_{1}^{1} \int_{1}^{1} \int$$

.

and the second second

-

4. Find The q.S. of
$$(y+zx) P - (x+yz)q = x^2 - y^2$$
.
Gen equ $(y+zx) P - (x+yz)q = x^2 - y^2$.
Lagrangels general equ is $PP + Q_2 = R$
The auxillory equ, $\frac{dx}{dx} = \frac{dy}{Q} = \frac{dz}{R}$
 $P = y + zx$, $Q = -(x+yz)$, $R = x^2 - y^2$.
 $\frac{dx}{y+zx} = \frac{dy}{-(x+yz)} = \frac{dz}{x^2 - y^2}$.
Choose The $(x, y, -z)$ as Lagrangels multipliers
 $\frac{dx}{y+zx} = \frac{dy}{-(x+yz)} = \frac{dz}{z^2 - y^2} \Rightarrow \frac{x dx + y dy - z dz}{x(y+zz) - y(x+yz) - z(x^2 - y^2)}$
 $= \frac{x dx + y dy - z dz}{xy + zx^2 - xy - y^2 - z - zx^2 + zy^2}$
 $= \frac{x dx + y dy - z dz}{0}$
 $x dx + y dy - z dz = 0$
 $\int inq$ on b.s.
 $\int x dx + \int g dy - \int z dz = 0$
 $x^2/y + y^2/z - z^2 = 2c$
 $x^2 + y^2 - z^2 = c$,
Choose (y, x, x) as Lagrangels multipliers,
 $\frac{dx}{y+zx} = -\frac{dy}{-(x+yz)} = \frac{dz}{x^2 + y^2} \Rightarrow \frac{ydx + xdy + dz}{xy^2 + zx^2 - xy - x^2 - xyz + x^2y^2}$
 $\Rightarrow \frac{y dx + x dy + dz}{-(x+yz)} = \frac{dz}{x^2 + y^2} \Rightarrow \frac{ydx + xdy + dz}{y^2 + zx^2 - x^2 - xyz + x^2y^2}$

-

$$y dx + x dy + dz = 0$$

$$\int inq \quad on \quad b \cdot s \quad we \quad get ,$$

$$\int J(xy) + \int dz = 0$$

$$xy + z = C_2$$
The Solution is $\varphi(C_1, c_2) = 0$

$$\varphi\left(x^2 + y^2 - z^2, xy + z\right) = 0$$
5. Find The $g \cdot s \quad Of \quad x \quad (y^2 + z)p - y(x^2 + z)q = z \quad (x^2 - y^2)$

$$Ing \quad equ \quad is \quad x \quad (y^2 + z)p - y(x^2 + z)q = z \quad (x^2 - y^2)$$

$$Iagnonge's \quad g \cdot equation \quad is \quad pp + \delta q = R$$

$$P = x \quad (y^2 + z) \quad ; \quad 0 = -y \quad (x^2 + z) \quad ; \quad R = 2(x^2 - y^2)$$
The Subsidary oqu is
$$\frac{dx}{p} = \frac{dy}{R} = \frac{dz}{R}$$

$$\frac{dx}{x(y^2 + z)} = \frac{dy}{-y(x^2 + z)} = \frac{dz}{x^2(y^2 + z)}$$

$$(hoose \quad (x, y, -1) \quad as \quad lagrange's \quad multiplients ,$$

$$\frac{dx}{x(y^2 + z)} = \frac{dz}{-y(x^2 + y^2)} = \frac{x \quad dx + y \quad dy + dz}{x^2(y^2 + z^2 - x^2 + y^2 - zx^3 + zy^2)}$$

$$\Rightarrow \quad \frac{x \quad dz + y \quad dy + dz}{x^2y^2 + zx^2 - x^2y^2 + yx^2 - yx^3 + zy^2}$$

ging on b-S₁

$$\int x \, dx + \int y \, dy + \int dz = 0$$

$$x^{2}/_{2} + y^{2}/_{2} + z = 0 + c$$

$$\frac{x^{2} + y^{2} - az}{2} = c_{1}$$
choose $(\sqrt{x} + \sqrt{y} + \sqrt{y})$ as lagnange's multipliers,

$$\frac{dx}{(y^{2} + z)} = \frac{dy}{-y(x^{2} + z)} - \frac{dz}{z(x^{2} - y)} =) \frac{\sqrt{x} \, dx + \frac{1}{y} \, dy + \frac{1}{z} \, dz}{y^{2} + z - x^{2} - z + x^{2} - y^{2}}$$

$$\Rightarrow \frac{1/x \, dx + \frac{1}{y} \, dy + \frac{1}{z} \, dz}{0}$$

$$\int dx/x + \frac{dy}{y} + \frac{dz}{z} = 0$$

$$\int \ln \eta \quad \text{on } b \cdot s,$$

$$\int dx/x + \frac{dy}{y} + \frac{dz}{z} = 0$$

$$\int \log x + \log y + \log z = \log c$$

$$-\log (xyz) = \log c$$

$$xyz = c_{2}$$
The solution is $\varphi(c_{1}, c_{2}) = 0$

b. Find The g.s of
$$p_X(z-2y^2) = (z-2y)(z-y^2-2x)$$

 $q_P' \quad p_X(z-2y^2) = (z-2y)(z-y^2-2x)$
 $p_X(z-2y^2) = z(z-y^2-2x) - 2y(z-y^2-2x)$
 $p_X(z-2y^2) + q_Y(z-y^2-2x) = z(z-y^2-2x)$
The auxillary equ is, $\frac{d_X}{p} = \frac{dy}{q} = \frac{dz}{R}$
 $\frac{d_X}{x(z^2-2y^2)} = \frac{dy}{y(z-y^2-2x)} = \frac{dz}{z(z-y^2-2x)}$
lonsider, 2nd q 3nd ratio we get
 $\frac{dy}{y} = \frac{dz}{z}$
 $\int ing$ on b.s we get
 $\int dy/y = \int dz/z = c$
 $\log y - \log z = \log c$
 $\log (y/z) = \log c$
 $\frac{dx}{y(z-2y^2)} = \frac{dy}{y(z-y^2-2x)} = \frac{dz}{z(z-y^2-2x)}$

-

$$= \frac{dy - dz}{y(z - y^2 - 2x^3) - z(z - y^2 - 2x^3)}$$

$$= \frac{dy - dz}{(y - z)(z - y^2 - 2x^3)}$$
Consider and $x \in A^{Th}$ ratio
$$\frac{dy}{y(z - y^2 - 2x^3)} = -\frac{dy - dz}{(y - z)(z - y^2 - 2x^3)}$$

$$\frac{dy}{y} = \frac{dy - dz}{(y - z)}$$

$$\int ing \quad on \quad b \cdot S$$

$$\int dy/y = \int \frac{dy - dz}{y - z}$$

$$\int log \quad y = log \quad (y - z) + log \quad c$$

$$\log y - \log \quad (y - z) + log \quad c$$

$$\log y - \log \quad (y - z) = log \quad c$$

$$-\log \quad (y/y - z) = log \quad c$$

$$\frac{y}{y - z} = c_2$$
The Solution is $i \quad i \quad (c_1, c_2) = 0$

Integral Surfaces passing through a given worke. The general solution may be used to determ. The general solution may be used to determ. The integral surface which passes through The gn The integral surface which passes through The gn two solutions two. Suppose that we have found two solutions two solutions two solutions two solutions to entitle the form F(u,v) = 0. to encorpording equ is of the form F(u,v) = 0. which from a relation $F(c_1, c_2) = 0$. Solve the two starts and ca

Suppose we wish to find the integral surface which passes through the (wive c. whose parametric equations are x = x(t), y = y(t), z = z(t) where t is a equations are x = x(t), y = y(t), z = z(t) where t is a parameter. Then the particular solution must be such that $u \{x(t), y(t), z(t)\} = c_1 \qquad \longrightarrow \qquad (4)$ $v \{x(t), y(t), z(t)\} = c_2 \qquad \longrightarrow \qquad (4)$ Next we eliminate the single parameter t from (4) and relation $c_1 \leq c_2$. Finally we supplace c_1 and c_2 with the help

of equation (1) obtain the sequired integral surface.

1. Find the integral surface of the linear partial diff. eff
we
$$\chi(y^2+z)P - Y(x^2+z)q = (x^2-y^2)z$$
 which contains the
Schaught line $2+y=0$, $z=1$
(2)
(or equ is $\chi(y^2+z) - Y(x^2+z)q = z(x^2-y^2)$
Lagrange's equ is $PP + aq = R$.
 $P = \chi(y^2+z)$; $a = -y(x^2+z)$; $R = z(x^2-y^2)$
The subsidary equ is
 $\frac{dx}{p} = \frac{dy}{q} = \frac{dz}{R}$
 $\frac{dx}{\chi(y^2+z)} = \frac{dy}{-y(x^2+z)} = \frac{dz}{z(x^2-y^2)}$
Choose $(x, y, -1)$ as Lagrange's multiplients,
 $\frac{dy}{\chi(y^2+z)} = \frac{dy}{-y(x^2+z)} \rightarrow \frac{\pi dx + y dy - dz}{\pi^2 (y^2+z) - y^2 (x^2+z) + (-z)(x^2-y)}$
 $\Rightarrow \frac{\pi dx + y dy - dz}{\pi^2 y^2 + zx^2 - x^2 y^2 - zx^2 + zy^2}$
 $\Rightarrow \frac{\pi dx + y dy - dz}{0}$
 $\pi dx + y dy - dz = 0$
 $\int Ing$ on b-s,
 $\int x dx + \int y dy - \int dz = 0 + c$
 $\frac{\chi^2 + y^2 + zz}{2} = \alpha$
 $\chi^2 + y^2 + zz = 2c \rightarrow \chi^2 + y^2 + zz = c_1$ (1)

choose
$$(-4x + 4y + 4z) = -\frac{dz}{z(x^2 + y^2)} = -\frac{4y}{y^2 + z - x^2 - z + x^2}$$

$$\frac{dz}{z(y^2 + z)} = \frac{4y}{-y(x^2 + y)} \frac{dy + \frac{1}{2}}{z(x^2 - y^2)} = \frac{4y}{y^2 + z - x^2 - z + x^2} \frac{dy}{y^2}$$

$$= \frac{4y}{y^2 + z - x^2 - z + x^2} \frac{dy}{y^2}$$

$$= \frac{4y}{y^2 + y^2} \frac{dy + \frac{1}{2}}{z(x^2 - y)^2} \frac{dz}{z(x^2 - y^2)} = 0$$

$$\int irq \quad \text{on } b \leq x$$

$$\int dx / x + \int dy / y + \int dz / z = 0$$

$$\int irq \quad \text{on } b \leq x$$

$$\int dx / x + \int dy / y + \int dz / z = 0 + z \delta$$

$$\log x + \log y + \log z = \log c$$

$$\log x + \log y + \log z = \log c$$

$$x + y^2 + 2z = c_1 - 2$$

$$x + y^2 + 2z = c_1 - 2$$

$$x + y = 0, \quad z = 1 - 2 + 2\delta \delta$$

$$\int sum that \quad x = t$$

$$Subx = t \quad in \quad equ \quad (a) \quad w \quad get ,$$

$$t^2 + t^2 + zt = c_1, \quad z = 1 \quad in \quad (a),$$

$$t^2 + t^2 + zt = c_1, \quad z = 1 \quad in \quad (a),$$

$$t^2 + t^2 + zt = c_1, \quad z = 1 \quad in \quad (a),$$

$$t^2 + t^2 + zt = c_1, \quad z = 1 \quad in \quad (a),$$

$$t^2 + t^2 + zt = c_1, \quad z = 1 \quad in \quad (a),$$

$$t^2 + t^2 - zt = c_1, \quad z = 1 \quad in \quad (a),$$

$$t^2 - t = c_1 + is = 1 \quad in \quad (a),$$

$$t^2 - t = c_1 + is = 1 \quad in \quad (a),$$

$$t^2 - t = c_1 + is = 1 \quad in \quad (a),$$

$$t^2 - t = c_1 + is = 1 \quad in \quad (a),$$

$$t^2 - t = c_1 + is = 1 \quad in \quad (a),$$

$$t^2 - t = c_1 + is = 1 \quad in \quad (a),$$

$$t^2 - t = c_1 + is = 1 \quad in \quad (a),$$

$$t^2 - t = c_1 + is = 1 \quad in \quad (a),$$

Solve equ (5) and (6) => (5) => 212 - 2 = C $(b) \times 2 = -2t^2 = 2C_2$ -20 = C1+2C2 $C_1 + 2C_2 + 2 = 0$ Sub equ (3) in (7) $\chi^2 + y^2 - 2z + 2(xyz) + 2 = 0$ $x^2 + y^2 + 2xyz - 2z + 2 = 0$ which is the required integral surface. 2. Find The influation of the integral surface of the T.E = 2y(z-3)P + (2x-z)q = y(2x-3) which passes Through The wicle Z=0, x2+y2=2x (en equ is 2y(2-3)P+ (2x-z)q = y(2x-3) Lagrange's general equ is PP+Qq=R P = 2y(z-3); Q = (2x-z); R = y(2x-3)The subsidiary age is $\frac{dx}{p} = \frac{dy}{q} = \frac{dz}{R}$ $\frac{dx}{2y(z-3)} = \frac{dy}{(2x-2)} = \frac{dz}{y(2x-3)}$ Consider 1st and 3rd ratio, SES - REFE dz y(2x-3) dx 180 B 3 24 (z-3) $\frac{dx}{2(z-3)} = \frac{dz}{(2x-3)}$

$$(3x-3) dx = 2(2x-3) dx$$

$$y(2x-3) dx = 2z dz - 6 dz$$

$$\int ing \quad \text{on} \quad b \cdot s,$$

$$\int 2x dx - 3 \int dx = 2 \int z dz - 6 \int dz$$

$$\frac{2x^2}{2} - 3x = 2 \frac{z^2}{2} - 6z + c$$

$$x^2 - 3x = \frac{2^2 - 6z + c}{2}$$

$$\frac{x^2 - 3x = 2^2 - 6z + c}{2x^2 - 2^2 + 6z - 3x \mp c_1} \implies \frac{x dx + 3y dy - z dz}{2xy(z-3)} = \frac{dy}{2xy(z-3)} \implies \frac{x dx + 3y dy - z dz}{2xy(z-3) + 3y(2x-2)}$$

$$\frac{dx}{2xyz - 6xy + 6xy - 3yz - 2xyz + 3zy}$$

$$\implies \frac{x dx + 3y dy - z dz}{2}$$

$$\implies \frac{x dx + 3y dy - z dz}{2}$$

$$\implies \frac{x dx + 3y dy - z dz}{2}$$

$$\implies \frac{x dx + 3y dy - z dz}{2} = 0$$

$$\int ing \quad \text{on} \quad b \cdot s,$$

$$\int x dx + s \int y dy - \int z dz = 0 + c$$

$$\frac{x^2 + 3y^2 - z^2}{2} = c$$

1

.....

x2+3y2-z2=2c $\chi^2 + 3y^2 - z^2 = (2 \longrightarrow (2))$ with they a $x^2 - z^2 - 3x + 6z = c_1 2$ $x^2 + 3y - z^2 = c_2$ -> (3) $Z = 0 \ ; \ \chi^2 + y^2 = 2\chi \longrightarrow (A)$ Assume That x=t, 17 15 Sub x=t in equ (4) we get, $E^2 + y^2 = g_{XI} \quad z = 0$ $-\frac{1}{2} = y^2$, $z = x^2$, $t^2 + y^2 = 2t$, z = 0 $y^2 = 2t - t^2 + z = 0$ sub x = t, $y^2 = 2t - t^2$, z = 0 into the get $x^2 - z^2 - 3x + bz = c_1$ $x^{2} + 3y^{2} - z^{2} = C_{2}$ $(4)^2 - (0)^2 - 3(4) + b(0) = C_1$ $(t)^2 + 3(2t - t^2) - (0) = (2)$ $t^2 + bt - 3t^2 = c_2$ $t^2 - 3t = c_1 - (6)$ 16t-2t2 = (2 - (7) Solving equation (6) 54 (7). $(b) \times 2 = 2t^2 - bt = 2c_1$ $(7) =) - 2t^2 + bt = c_2$ $=>2c_1+c_2=0$ --- (8) Sub (B) in (B) => 2 (1+(, =0 $2(x^{2}-z^{2}-3x+bz)+(x^{2}+3y^{2}-z^{2})=0$ $2x^{2} - az^{2} - bx + 1az + x^{2} + 3y^{2} - z^{2} = 0$ $3x^2 + 3y^2 - 3z^2 - 6x + 1az = 0$

3. Find the integral surface of the equation

$$(x-y) y^{2} p + (y-x) x^{2} q = (x^{2}+y^{2})z \quad \text{through}$$

$$x_{2} = a^{3}, y=0$$

$$(n equ ii (x-y)y^{2} p + (y-x)x^{2}q = (x^{2}+y^{2})z$$

$$(n equ ii (x-y)y^{2} p + (y-x)x^{2}q = (x^{2}+y^{2})z$$

$$\int aqxange's g.equ ii pp + Qq = R$$

$$p = (x-y)y^{2} + Q = (y-x)x^{2} \quad iR = (x^{2}+y^{2})z$$

$$\int fx subsidenty equ ii \frac{dx}{p} = \frac{dy}{Q} = \frac{dz}{R}$$

$$\frac{dx}{(x-y)y^{2}} = \frac{dy}{(y-x)x^{2}} = \frac{dz}{(x^{2}+y^{2})z}$$

$$(a considen 1s^{2} and 2nd 2nd 2nd to),$$

$$\frac{dx}{(x-y)y^{2}} = \frac{dy}{(y-x)x^{2}} \Rightarrow \frac{dx}{(x-y)y^{2}} = \frac{dy}{-(x-y)x^{2}}$$

$$x^{2}(y/x) \frac{dx}{dx} = -\frac{y^{2}}{(y-x)x^{2}} \Rightarrow \frac{dx}{(x-y)y^{2}} = -\frac{dy}{-x^{2}}$$

$$-x^{2} dx = y^{2} dy$$

$$an \int ing on b \cdot S,$$

$$-\int x^{3} dx = \int y^{2} dy + c$$

$$a -x^{3}y - y^{3}y = c$$

$$-x^{3}y - y^{3}y = c$$

$$x^{3} + y^{3} = -3c$$

$$x^{3} + y^{3} = -3c$$

-

(hoose
$$(1, -1, 0)$$
 as lagrage's multipliers,

$$\frac{dx}{(x-y)y^2} = \frac{dy}{(y-x)x^2} - \frac{dz}{(x^2+y^2)z} = 3 \frac{dx - dy + 0}{(x-y)y^2 - x^2(y-x)}$$

$$\frac{dx - dy}{(x-y)y^2 - x^2y - x^3} \frac{dx - dy}{(x-y)y^2 + x^2(x-y)}$$

$$\Rightarrow \frac{dx - dy}{(x-y)(x^2+y^2)}$$
(consider 2^{3rd} and 4^{3h} statio,

$$\frac{dz}{(x^2+y^2)z} = \frac{dx - dy}{(x-y)(x^2+y^2)}$$

$$\frac{dz}{(x^2+y^2)z} = \frac{dx - dy}{(x-y)(x^2+y^2)}$$

$$\frac{dz}{z} = \frac{dx - dy}{x-y}$$
Sing on $b \cdot s$,

$$\int \frac{dz}{z} = \int \frac{dx - dy}{x-y}$$

$$\log z = \log (x-y) + \log c$$

$$\log z = \log (x-y) = \log c$$

$$\frac{\log (z/x-y)}{z/x-y} = \log c$$

$$\frac{z/x-y}{z/x-y} = c_2 \longrightarrow (z)$$

$$a z = a^{s} \cdot y = c \rightarrow t^{s}$$
Assume That $x = t$

$$(t) z = a^{s}$$

$$tz = a^{3}$$

$$z = a^{3}/t$$
put $x = t, \quad y = c_{1}, \quad z = a^{s}/t$ in (s) we get
$$x^{3} + y^{3} = c_{1}$$

$$(t)^{3} + te^{1/s} = c_{1}$$

$$t^{3} = c_{1}$$

$$t^{2} = c_{1}/t \rightarrow |b|$$

$$a^{3}/t^{2} = c_{2}$$

$$a^{3}/t^{2} = c_{2} \rightarrow (3)$$

$$b^{2}/t^{2}/t^{2} = c_{2} \rightarrow (3)$$

$$a^{3}/t^{2} = c_{2} \rightarrow (3)$$

$$b^{2}/t^{2$$

~

5.,

¢

Compatible system of four Order PDE's -Definition If $f(x_1, y_1, z_1, R, q) = 0$ and $g(x_1, y_1, z_1, r, q) = 0$ aux lemptable on a domain Dig. $T = \frac{\partial (f,g)}{\partial (f,g)} = \frac{\partial f}{\partial g} \frac{\partial f}{\partial g}$ $= \frac{\partial f}{\partial g} \frac{\partial f}{\partial g}$ $= \frac{\partial g}{\partial g}$ p= p(x,y,z) and q = y (x,y,z) obtained by solving equ (1) and (2) gives , d== (x,y,z) + y (x,y,z) is integrable. Theorem . The necessary and sufficient condition for The gn two PDE's f(x,y, z,p,2)=0 and g(x,y,z,p,2)=0 to be compatible is That, $[f:g] = \frac{\partial(f;g)}{\partial(x,p)} + \frac{\partial(f;g)}{\partial(x,p)} + p \frac{\partial(f;g)}{\partial(x,p)} + q \frac{\partial(f;g)}{\partial(z,p)} = 0$ brach : Gn two PDE's ave, f (rigiz, Pig) =0 -u) 91 7, 4, 7, 1,9) =0 - (2) Let equations (1) Si (2) be compatible then $J = \frac{\partial(f,g)}{\partial(f,g)}$ to and we can give

$$\begin{split} r &= \phi \left(\frac{\pi}{3}, \frac{\pi}{2}, 2 \right) \text{ and } q = \psi \left(\frac{\pi}{3}, \frac{\pi}{3}, \frac{\pi}{2} \right) \\ dz &= \phi d\pi + \psi dy \quad \dot{u} \quad \text{integrable} \\ \phi dx + \psi dy - dz &= 0 \quad \dot{u} \quad \text{integrable} \\ \overline{x} - (u_1) \overline{x} &= 0 \\ \text{where } \overline{x} &= \overline{\phi}; + \overline{\psi}; - \overline{k}; \\ (u_2 \overline{x} = -\nabla x \overline{x}) \\ \nabla &= \overline{1}; \quad \frac{3}{3\pi} + \overline{1}; \quad \frac{3}{3y} + \overline{k}; \quad \frac{3}{3z} \\ (u_2 \overline{x} = -\nabla x \overline{x}) \\ \nabla &= \overline{1}; \quad \frac{3}{3\pi} + \overline{1}; \quad \frac{3y}{3y} + \overline{k}; \quad \frac{3}{3z} \\ (u_2 \overline{x} = -\nabla x \overline{x}) \\ \overline{x} &= \left[\overline{1}; \quad \overline{1}; \quad \overline{1}; \quad \overline{1}; \\ \frac{3}{3\pi} - \frac{3}{3y}; \quad \frac{3}{3y} - \frac{3}{3y}; \\ \frac{1}{2} \left[\frac{1}{2} \left[\frac{3}{2} (y - 1) - \frac{3}{2} \left[\frac{3}{2} (y - 1) \right] - \frac{1}{3} \left[\frac{3}{2} \left[\frac{3}{2} (y - 1) - \frac{3}{2} \left[\frac{3}{2} (y - 1) \right] \right] \\ + \overline{k}; \quad \left[\frac{3}{2} \left[\frac{3}{2} (y - 1) - \frac{3}{2} \left[\frac{3}{2} (y - 1) \right] + \overline{k}; \right] \left[\frac{3y}{3\pi} - \frac{3y}{3y} \right] \\ = \overline{1}; \quad \left[0 - \frac{3}{2} \left[\frac{3}{2} (y - 1) - \frac{3}{2} \left[\frac{3}{2} (y - 1) \right] + \overline{k}; \right] \frac{3y}{3\pi} \\ = \frac{-\frac{3}{2} \left[\frac{3}{2} (y - 1) + \frac{3}{2} \left[\frac{3}{2} + \overline{k}; \right] \left[\frac{3}{2} (y - 1) + \frac{3}{2} \left[\frac{3}{2} (y - 1) + \frac{3}{2} \left[\frac{3}{2} (y - 1) \right] \right] \\ = \overline{1}; \quad (u_3) \overline{x} = \left[\left(\frac{3}{2} (y - 1) + \frac{3}{2} (y - 1) + \frac{3}{2} \left[\frac{3}{2} (y - 1) + \frac{3}{2} (y - 1) \right] \right] \\ = \frac{2}{3} \left[\frac{3}{2} \left[\frac{3}{2} (y - 1) + \frac{3}{2} \left[\frac{3}{2} (y - 1) + \frac{3}{2} (y - 1) \right] \right] \\ = \frac{3}{2} \left[\frac{3}{2} (y - 1) + \frac{3}{2}$$
$= -p\left(\frac{\partial \varphi}{\partial z}\right) + \psi\left(\frac{\partial z}{\partial z}\right)$ Эx ðΥ $\phi \cdot \frac{\partial \Psi}{\partial z} + \frac{\partial \Psi}{\partial x} = \Psi \frac{\partial \phi}{\partial z} + \frac{\partial \phi}{\partial y} - (3)$ Equ (1) gives f(x,y,z,p,2)=0 Sub $P = \phi$, $q = \phi$ values in above equinary get $f(x,y,z,\phi,\psi)=0$ -(4) Dipp an equ (A) w.r. to x we get $\frac{\partial f}{\partial x} + \frac{\partial f}{\partial \psi} \cdot \frac{\partial \phi}{\partial x} + \frac{\partial f}{\partial \psi} \cdot \frac{\partial \psi}{\partial x} = 0$ $fx + fp \cdot \phi x + fy \cdot \psi x = 0$ (5) Dipp equila, w.n. to z we get $\frac{\partial f}{\partial z} + \frac{\partial f}{\partial 0}, \frac{\partial q}{\partial z} + \frac{\partial f}{\partial y}, \frac{\partial \psi}{\partial z} = 0$ fz+fp dz + fy 4z=0 - (6) Multiply & on b.s on equ (b) $\phi fz + \phi f \phi \cdot \psi z - t \phi f \phi \cdot \psi z = 0 - (7)$ Adding LS) & (T) we get $fx + f\phi \phi x + f\phi \psi x + \phi fz + \phi f\phi \phi z + \phi f\psi \psi z = 0$ $fx + \phi fz + F\phi (\phi_x \cdot \phi, \phi_z) + F\psi (\psi_x + \phi \psi_z) = 0^{-18}$ From equ(2) => g(x, y, Z, P, 2) = 0 Sub $p = \phi$ and $q = \psi$ in the above equ

g(x,y,z, q, y)=0-(a) Digg equ (9) partially w. r. to x $\frac{\partial q}{\partial x} + \frac{\partial q}{\partial \phi} + \frac{\partial q}{\partial x} + \frac{\partial q}{\partial x} + \frac{\partial q}{\partial x}$ = 0 9x+9p. 4x+94 4x=0-(10) Dipp (a) partially w.n. to z $\frac{\partial g}{\partial z} + \frac{\partial q}{\partial \varphi} \cdot \frac{\partial \phi}{\partial z} + \frac{\partial g}{\partial \varphi} \cdot \frac{\partial \phi}{\partial z} = 0$ 9z+9p. \$z+9y. ¥z=0 - (11) Multiply & in equ (11) we get $pgz + qg \cdot qz = pg \cdot yz = 0$ -(12) Adding equ (10) 54 (12) 9x + 9p · \$x + 9 \$ · \$x + \$ 9 z + \$ 90 · \$z + \$ 99 . \$z = 0 9x+\$9z+9\$ (\$x+\$\$\$z)+9\$ (\$x+\$\$\$yz)=0-(13) Equ (8) X gp - Equ (13) X fp $-9xf\phi - \phi 9zf\phi - 9\phi f\phi (\phi x + \phi, \phi z) - f\phi 9y(\phi x + \phi)$ $\Psi z = c$ $\Rightarrow 9\phi fx + 9\phi \cdot \phi fz + 9\phi f\psi (\psi x + \phi \cdot \psi z) - f\phi gx -$ - Fp. t9z - fp. 9ψ (ψx + φψz) =0 $9\psi fx - f\phi gx + \phi (9\phi fz - f\phi gz) + (\psi x + \phi \cdot \psi z)$, $(9\varphi f\psi - f\varphi 9\psi) = 0$

$$\frac{2(f,3)}{2(r,4)} + \frac{4}{2(r,3)} + \frac{4}{2(r,3)} + (\psi_{x} + \psi_{x} + \psi_{z}) \left[-\frac{2(f,3)}{2(\phi,\phi)} \right] = \frac{1}{2(\phi,\phi)}$$

$$\frac{2(f,3)}{2(r,0)} + \frac{2(f,3)}{2(\phi,z)} + (\psi_{x} + \psi_{y})(-1) = 0$$

$$\frac{2(f,3)}{2(r,0)} + \frac{2(f,3)}{2(\phi,z)} = \int (\psi_{x} + \psi_{y})(-1) = 0$$

$$\frac{2(f,3)}{2(r,0)} + \frac{2(f,3)}{2(\phi,z)} = \int (\psi_{x} + \psi_{y}) = 0$$

$$\frac{1}{7} \left[\frac{2(f,3)}{2(r,\phi)} + \frac{2(f,3)}{2(\phi,z)} \right] = \psi_{x} + \psi_{y}$$

$$\frac{1}{7} \left[\frac{2(f,3)}{2(r,\phi)} + \frac{2(f,3)}{2(r,\phi)} \right] = \psi_{y} + \psi_{\phi} = 0$$

$$\frac{1}{7} \left[\frac{2(f,3)}{2(r,\phi)} + \frac{2(f,3)}{2(r,\phi)} \right] = \frac{-1}{7} \left[\frac{2(f,3)}{2(g,\phi)} + \frac{2(f,3)}{2(r,\phi)} \right]$$

$$\frac{1}{7} \left[\frac{2(f,3)}{2(r,\phi)} + \frac{2(f,3)}{2(r,\phi)} \right] = \frac{-1}{7} \left[\frac{2(f,3)}{2(g,\phi)} + \frac{2(f,3)}{2(r,\phi)} \right]$$

$$\frac{2(f,3)}{2(r,\phi)} + \frac{2(f,3)}{2(r,\phi)} + \frac{2(f,3)}{2(r,\phi)} + \frac{2(f,3)}{2(r,\phi)} = 0$$

$$\frac{2(f,3)}{2(r,\phi)} + \frac{2(f,3)}{2(r,\phi)} + \frac{2(f,3)}{2(r,\phi)} + \frac{2(f,3)}{2(r,\phi)} = 0$$

$$\frac{2(f,3)}{2(r,\phi)} + \frac{2(f,3)}{2(r,\phi)} + \frac{2(f,3)}{2(r,\phi)} + \frac{2(f,3)}{2(r,\phi)} = 0$$

1. Show That the equation
$$xp = yq$$
 and $z(xp+yq) = zxy$
are Lompatible and solve it .
 $f(x_1y, z_1p, q) = xp - yq - (1)$
 $g(x_1y, z_1p, q) = xzp + yzp - 2xy - (2)$
 $\frac{\partial(f_1q)}{\partial(x_1p)} + p \cdot \frac{\partial(f_1q)}{\partial(z_1p)} + \frac{\partial(f_1q)}{\partial(y_1q)} + q \frac{\partial(f_1q)}{\partial(z_1q)} = 0 - (1)$
 $\frac{\partial(f_1q)}{\partial(x_1p)} = q = q = 2q$
 $\frac{\partial f}{\partial y} = xq - 2x$
 $\frac{\partial f}{\partial y} = fz = 0$
 $\frac{\partial f}{\partial y} = xq - 2x$
 $\frac{\partial f}{\partial y} = fz = 0$
 $\frac{\partial f}{\partial y} = xq - 2x$
 $\frac{\partial f}{\partial y} = fz = 0$
 $\frac{\partial f}{\partial y} = xq - 2x$
 $\frac{\partial f}{\partial y} = fz = 0$
 $\frac{\partial f}{\partial y} = yz$
 $\frac{\partial f}{\partial y} = \frac{fz}{\partial (f_1q)} = \frac{fz}{\partial (f_1q)} = \frac{fz}{\partial (f_2 f_1)} = \frac{fz}{\partial (f_1 f_2)} = \frac{fz}{\partial (f_2 f_1)} = \frac{fz}{\partial (f_1 f_2)} = \frac{fz}{\partial (f_2 f_1)} = \frac{fz}{$

= 0-2 (xP+42)

$$\frac{\partial (f_{1}g)}{\partial (z_{1}p)} = -x^{2}p - xyq$$

$$\frac{\partial (f_{1}g)}{\partial (z_{1}p)} = \begin{vmatrix} \frac{\partial f}{\partial y} & \frac{\partial f}{\partial q} \\ \frac{\partial g}{\partial y} & \frac{\partial g}{\partial q} \end{vmatrix} = \begin{vmatrix} f_{y} & f_{q} \\ \frac{\partial g}{\partial y} & \frac{\partial g}{\partial q} \end{vmatrix}$$

al c

$$= \begin{vmatrix} -q & -y \\ zq - 2x & yz \end{vmatrix} = - \frac{-qyz + y(zq - 2x)}{zq - 2x + yq'z - 2xy}$$

$$\frac{\partial (f_{1}q)}{\partial (y_{1}q)} = -2xy_{-}$$

$$\frac{\partial (f_{1}q)}{\partial (z_{1}q)} = \begin{vmatrix} \frac{\partial f}{\partial z} & \frac{\partial f}{\partial q} \\ \frac{\partial (f_{1}q)}{\partial z} & \frac{\partial q}{\partial q} \end{vmatrix} = \begin{vmatrix} \frac{\partial f}{\partial z} & \frac{\partial f}{\partial q} \\ \frac{\partial q}{\partial z} & \frac{\partial q}{\partial q} \end{vmatrix} = \begin{vmatrix} \frac{\partial q}{\partial z} & \frac{\partial q}{\partial q} \\ \frac{\partial q}{\partial z} & \frac{\partial q}{\partial q} \end{vmatrix}$$

$$= \begin{vmatrix} 0 & -y \\ xp+y2 & yz \end{vmatrix} \Rightarrow 0 + y(xp+y2) = xpy+y^22$$

$$\frac{\partial (f_{1}g)}{\partial (z_{1}q)} = \chi py + y^{2}q.$$

$$Iqu(g) = \int \frac{\partial (f_{1}g)}{\partial (x_{1}p)} + p \cdot \frac{\partial (f_{1}g)}{\partial (z_{1}p)} + \frac{\partial (f_{1}g)}{\partial (z_{1}p)} + q \cdot \frac{\partial (f_{1}g)}{\partial (z_{1}q)} = 0$$

$$= /\chi zp - = g\chi y + p \cdot (-\chi^{2}p - \chi yq) - g\chi y + q \cdot (\chi py + y^{2})^{2} = 0$$

$$= -\chi^{2}p^{2} - \chi ypq + \chi ypq + y^{2}q^{2} = 0$$

$-x^{2}p^{2}+y^{2}q^{2}=0$	shid and in prot
$-x^{2}p^{2}+x^{2}p^{2}=0$ $0=0$	Griven that xP=y2
. The two given phe is	Lompatible.
(1) = 3 - 2p - 42 = 0 (2) = 3 - 2zp + 4zq - 2zy = 0	the second s
$(y) = \frac{1}{2} \frac{1}{2$	
2xzp = 2xy	pt and the second
Sub $P = \frac{y_1}{z}$ in (1)	en an
$\chi p - y_2 = 0$ $\chi (y_{1z}) - y_2 = 0$	bue s'adoption des per-
$\frac{xy}{z} = yq$ $\frac{x_{1z}}{z} = q$	is when is a strain of the second sec
the solution is $dz = pd$	x + 2 dy
$dz = \frac{y_z}{z} dx + \frac{x_z}{z} dy$	Et alterapted to a
$dz = \frac{ydn + xdy}{z}$	
z dz = y dx + x dy z dz = d(xy)	

fing on both sides, $Z^2/_2 = \chi y + c$ $z^2 = 2xy + 2C$ $z^2 - 2 \propto y = c$ Which is the required Lommon solution. Note:-(1) If the gn two P. D. E's are compatible Then They will posses a common Solution. (2) The system of equations p = p(x,y)q = Q(x,y)are compatible if $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$. (3) If $\frac{\partial P}{\partial y} \neq \frac{\partial Q}{\partial x}$. Then the gn two PDE are not compatible and the gn PDE's posses not Solutions 1. Show That the PDE's p=5x-7y; 9=6x+8y are not 2 · 611. lompatible. Given, P= 5x, 5 Ty + cbt sets is mitules 2 = 6x + 8yNot compatible => $\frac{3P}{3y} \neq \frac{39}{3x}$

 $\frac{\partial P}{\partial y} = -7 ; \frac{\partial Q}{\partial x} = 6$ $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} = \frac{\partial Q$

(1:x)):

a. s. T The PDE's
$$P = x^2 - ay + q = y^2 - ax$$
 are compatible
find their common solution.
 $f(x_1y_1, z_1P_1q_1) = P - x^2 + ay$
 $f(x_1y_1, z_1P_1q_1) = f(x_1 + ay)$
 $f(x_1y_1, z_1P_1q_1) = f(x_1 + ay) + c$
 $f(x_1y_1, z_1P_1q_1) = f(x_1y_1) + xc$
 $f(x_1y_1, z_1q_1) = f(x_1y_1) + xc$

2. Show that the equations
$$xp - gq = x$$
; $x - p + q = x_z$
longatible \cdot and find the solution.
 $f(x_1y_1z_1, p, q) = xp - yq_1 - x - (1)$
 $g(x_1y_1z_1, p, q) = x^2 p + q - xz - (z)$
 $\frac{\partial(f_1q)}{\partial(x_1p)} + 1p_1 \frac{\partial(f_1q)}{\partial(z_1p)} + \frac{\partial(f_1q)}{\partial(y_1q)} + q_2 \cdot \frac{\partial(f_1q)}{\partial(z_1q)} = 0$ (1)
 $fx = p - 1$ $gx = 2xp - z$
 $fy = -q$ $gy = 0$
 $fz = 0$ $gz = -x$
 $fp = x$ $gp = x^2$
 $fq = -y$ $gq = 1$
 $\frac{\partial(f_1q)}{\partial(x_1p)} = \begin{cases} \frac{\partial f_{\partial x}}{\partial y_{\partial x}} \frac{\partial f_{\partial p}}{\partial y_{\partial p}} \\ \frac{\partial g}{\partial x} & \frac{\partial g}{\partial p} \\ \frac{\partial g}{\partial p} \end{cases} = \frac{\int x^2(p-1) - x(2xp-2)}{\int x^2(p-x^2-x^2p+xz)} = -x^2p - x^2$
 $\frac{\partial(f_1q)}{\partial(x_1p)} = \sqrt{2z - x^2p - x^2}$

$$\frac{\partial (f_{1}q)}{\partial (z_{1}p)} = \begin{vmatrix} fz & fp \\ gz & gp \end{vmatrix} = \begin{vmatrix} 0 & x \\ -x & q^{2} \end{vmatrix}$$

$$= 0 + x^{2}$$

$$\frac{\partial (f_{1}q)}{\partial (z_{1}p)} = x^{2}$$

$$\frac{\partial (f_{1}q)}{\partial (y_{1}q)} = -\begin{vmatrix} fy & fq \\ qy & gq \end{vmatrix} = 2\begin{vmatrix} -q & -y \\ 0 & 1 \end{vmatrix}$$

$$= -q + 0$$

$$\frac{\partial (f_{1}g)}{\partial (y_{1}q)} = -q$$

$$\frac{\partial (f_{1}g)}{\partial (y_{1}q)} = -q$$

$$\frac{\partial (f_{1}g)}{\partial (z_{1}q)} = -q$$

$$\frac{\partial (f_{1}g)}{\partial (z_{1}q)} = -q$$

$$\frac{\partial (f_{1}g)}{\partial (z_{1}q)} = -xy$$

$$Fqu (t_{3}) \Rightarrow (xz - x^{2}p - x^{2}) + p(x^{2}) - q + q(-xy) = 0$$

$$\Rightarrow xz - x^{2}/p - x^{2} + px^{2} - q - qxy = 0$$

$$\Rightarrow xz - x^{2}/p - x^{2} - q - qxy = 0$$

The given The

lc

2

$$p=x$$
; $p=-y$; $R=x$

xp-yq = x

The subsidiary equations,

$$\frac{dx}{p} = \frac{dy}{R} = \frac{dz}{R}$$

$$\frac{dx}{R} = \frac{dy}{-y} = \frac{dz}{R}$$

consider 1st and 2nd natio,

$$\frac{dx}{x} = \frac{dy}{-y}$$

fing on b.s

$$\int \frac{dx}{x} = \int \frac{dy}{-y}$$

$$\log x = -\log y + \log c$$

$$\log (xy) = \log c$$

 $\chi y = c$ Which is The lo

common required solution.

Special types of first order Equations: - Figure 1 i] Equations involving only pand q: 14 $F(p_1q)=0$ let z = ax + by + c - (1) be the solution of F(P, 2) = 0 Diff equ (1) partially w. x. to 'x' 2'y' $P = \frac{\partial z}{\partial x} \Rightarrow a$ $q = \frac{\partial z}{\partial y} \Rightarrow b$ Replace p=a = 2 = b in equ (1) we get (1)Z = ax + by + cTo find complete integral :-Solving for b from F(a,b)=0 weget, $b = \psi(a)$ · Z = ax + \$ (a) y+ c Depine complete Integral: LON) Complete solution:-A solution in which the number of arbitary equal to the number of independence Constant Ìs Variable is called complete integral (02) complete solution particular integral :-A complete integral if we give particular to the arbitrary constants we get particular integral Values Singular integral: Let F(x, y, z, P, q) = 0 be a pontial diff. equ complete integral is \$(x,y,z,P,2)=0-(1) whose

Diff equ (1) partially w.r. to a and b we get

$$\frac{\partial p}{\partial a} = 0$$
 and $\frac{\partial p}{\partial b}$
Fliminate equ (a) $(a) (a)$ and b by using (1), (2) 4(3)
The elimination a and b is called singular integral.
1. Find the tomplete integral of The equation
Pq = 1
Edu:
an equ Pq = 1 --- (*)
Let uses assume that $z = ax + by + c$ --- (1)
Diff equ (1) partially w. x. to $x \le y^{1+s}$
 $p = \frac{\partial z}{\partial x} = a$
 $q = \frac{\partial z}{\partial y} = b$
Sub p_1q in (4) we get
 $ab = 1$
 $\begin{bmatrix} b = \frac{1}{a} \\ \\ \\ z = ax + \frac{1}{a}y + c$
 $z = \frac{a^{1}x + y + ac}{a}$
 $za = a^{2}x + y + ac$

.

u x + y - + u + ac = 0

The required complete integral. which is a. Find The complete integral of the equ VP+ vE=1 solu? lon equ VP + 19 = 1 - (*) us assume that z = ax + by + c - (1)Let Dipp equ (1) partially w. 2. to X & y $P = \frac{\partial z}{\partial x} = a$ $q = \frac{\partial z}{\partial y} = b$ Sub Piq in (*) we get TROTAL Vat Vb =1 $\sqrt{b} = 1 - \sqrt{a}$ $b = (1 - \sqrt{a})^2$ Sub $b = (1 - \sqrt{a})^2$ in equ (1) z = ax + by + c $z = ax + (1 - \sqrt{a})^2 y + c$ $ax + (1 - \sqrt{a})^2 y + c - z = 0$ which is the required complete integral. 3. Find The complete integral of the equ pt2=p2 Solu ? Cen equ P+q = Pq - (*)us assume that z = ax+by+c --- u) Let Digg (1) partially w.r. to x & y

$$P = \frac{2\pi}{2\pi} = a$$

$$q = \frac{2\pi}{2y} = b$$
Sub $P_{1}q$ in $(x) = 3$ $Qb = a+b = db$

$$a = ab+b$$

$$qado: b = ab-a$$

$$b = a(b-b)$$

$$a = b(a-1)$$

$$\frac{a}{a-1} = b$$
Sub b value in $(1) = 3 = a = ax+by+c$

$$Z = ax + (a/a+)y + c$$

$$Z = ax + (a/a+)y + c$$

$$Z = ax + (a/a+)y + c$$

$$Z = a^{2}x - ax + ay + ac - c$$

$$a^{2}x - ax + ay + ac - c$$

$$a^{2}x - ax + ay + ac - c$$

$$a^{2}x - ax + ay + ac - c$$

$$a^{2}x - ax + ay + ac - c$$
which is the sequired complete integral.
$$A: Find the complete integral of the equilibrium $P^{2} + q^{2} = 4$

$$Sub = a^{2}x - ax + by + c$$

$$A: Find the complete integral of the equilibrium $P^{2} + q^{2} = 4$

$$Sub = a^{2}x - ax + by + c$$

$$A: Find the complete integral of the equilibrium $P^{2} + q^{2} = 4$

$$Sub = a^{2}x - ax + by + c$$

$$A: Find the complete integral of the equilibrium $P^{2} + q^{2} = 4$

$$Sub = a^{2}x - ax + by + c$$

$$A: Find the complete integral of the equilibrium $P^{2} + q^{2} = 4$

$$Sub = a^{2}x - ax + by + c$$

$$A: Find the complete integral of the equilibrium $P^{2} + q^{2} = 4$

$$Sub = a^{2}x - ax + by + c$$

$$A: Find the complete integral of the equilibrium $P^{2} + q^{2} = 4$

$$Sub = a^{2}x - ax + by + c$$

$$A: Find the complete integral of the equilibrium $P^{2} + q^{2} = 4$

$$Sub = a^{2}x - ax + by + c$$

$$A: Find the complete integral of the equilibrium $P^{2} + q^{2} = 4$

$$A: Find the complete integral of the equilibrium $P^{2} + q^{2} = 4$

$$A: Find the complete integral of the equilibrium $P^{2} + q^{2} = 4$

$$A: Find the equilibrium $P^{2} + q^{2} = 4$

$$A: Find the equilibrium $P^{2} + q^{2} = 4$

$$A: Find the equilibrium $P^{2} + q^{2} = 4$

$$A: P^{2} + q^{2} = 4$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

Mildian.

,

$$1 = \frac{\partial z}{\partial y} \Rightarrow b$$

$$Q = \frac{\partial z}{\partial y} \Rightarrow b$$
Sub $P_{1}q$ in $(x) \Rightarrow a^{2}+b^{2} = A$

$$b^{2} = A - a^{2}$$

$$b = a + \sqrt{4 - a^{2}}$$
Sub b value in $(1) \Rightarrow z = ax + \sqrt{4 - a^{2}} y + c$

$$ax + \sqrt{4 - a^{2}} y - z + c = 0$$
which is the required complete integral.
$$Type - 2$$
To solve this type a equation.
$$(f_{1}(x_{1}P) = F_{2}(y_{1}q) = a (say constant))$$
Fi $(x_{1}P) = a - (1)$

$$(f_{2}(x_{1}P) = a - (1))$$
Finom aqu (1) we get
$$p = F_{1}(x_{1}a) - (2)$$
Me know that, $dz = pdx + q dy - (3)$
Sub (3) in (5) we get
$$dz = F_{1}(x_{1}a) dx + F_{2}(y_{1}a) dy$$

$$J = \int F_{1}(x_{1}a) dx + \int F_{2}(y_{1}a) dy$$

$$z = \int F_{1}(x_{1}a) dx + \int F_{2}(y_{1}a) dy$$

which gives the required complete introgram
and the equation.
1.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1} (x/a)$$
2.
$$\int \frac{dx}{\sqrt{a^2 + x^2}} = \sin^{-1} (x/a)$$
3.
$$\int \frac{dx}{\sqrt{x^2 - a^2}} = \cos^{-1} (x/a)$$
3.
$$\int \frac{dx}{\sqrt{x^2 - a^2}} = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} (x/a)$$
3.
$$\int \sqrt{x^2 - a^2} dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \cosh^{-1} (x/a)$$
3.
$$\int \sqrt{x^2 - a^2} dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \cosh^{-1} (x/a)$$
3.
$$\int \sqrt{x^2 - a^2} dx = \frac{x}{2} \sqrt{a^2 + x^2} + \frac{a^2}{2} \cosh^{-1} (x/a)$$
3.
$$\int \sqrt{x^2 - a^2} dx = \frac{x}{2} \sqrt{a^2 + x^2} + \frac{a^2}{2} \cosh^{-1} (x/a)$$
3.
$$\int \sqrt{x^2 - a^2} dx = \frac{x}{2} \sqrt{a^2 + x^2} + \frac{a^2}{2} \cosh^{-1} (x/a)$$
3.
$$\int \sqrt{x^2 - a^2} dx = \frac{x}{2} \sqrt{a^2 + x^2} + \frac{a^2}{2} \cosh^{-1} (x/a)$$
3.
$$\int \sqrt{x^2 - a^2} dx = \frac{x}{2} \sqrt{a^2 + x^2} + \frac{a^2}{2} \cosh^{-1} (x/a)$$
3.
$$\int \sqrt{x^2 - a^2} dx = \frac{x}{2} \sqrt{a^2 + x^2} + \frac{a^2}{2} \cosh^{-1} (x/a)$$
3.
$$\int \sqrt{x^2 - a^2} dx = \frac{x}{2} \sqrt{a^2 + x^2} + \frac{a^2}{2} \cosh^{-1} (x/a)$$
3.
$$\int \sqrt{x^2 - a^2} dx = \frac{x}{2} \sqrt{a^2 + x^2} + \frac{a^2}{2} \cosh^{-1} (x/a)$$
3.
$$\int \sqrt{x^2 - a^2} dx = \frac{x}{2} \sqrt{a^2 + x^2} + \frac{a^2}{2} \cosh^{-1} (x/a)$$
3.
$$\int \sqrt{x^2 - a^2} dx = \frac{x}{2} \sqrt{a^2 + x^2} + \frac{a^2}{2} \cosh^{-1} (x/a)$$
3.
$$\int \sqrt{x^2 - a^2} dx = \frac{x}{2} \sqrt{a^2 + x^2} + \frac{a^2}{2} \cosh^{-1} (x/a)$$
4.
$$\int \sqrt{x^2 - a^2} dx = \frac{x}{2} \sqrt{a^2 + x^2} + \frac{a^2}{2} \cosh^{-1} (x/a)$$
4.
$$\int \sqrt{x^2 - a^2} dx = \frac{x}{2} \sqrt{a^2 + x^2} + \frac{a^2}{2} \cosh^{-1} (x/a)$$
4.
$$\int \sqrt{x^2 - a^2} dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \cosh^{-1} (x/a)$$
4.
$$\int \sqrt{x^2 - a^2} dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \cosh^{-1} (x/a)$$
4.
$$\int \sqrt{x^2 - a^2} + \frac{a^2}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \cosh^{-1} (x/a)$$
4.
$$\int \sqrt{x^2 - a^2} + \frac{a^2}{2} (x - a^2 - a^2) + \frac{a^2}{2} \cosh^{-1} (x/a)$$
4.
$$\int \sqrt{x^2 - a^2} + \frac{a^2}{2} (x - a^2) +$$

D.

We now have five equal involving The four arbitrary quantities f', f", g', g" If we eliminate These four quantite from The five equal, we obtain the relation.

which involves only the derivatives pia, n, s, t and known quantions of x & y

1. If z = f(x+ay) + g(x-ay) where $fs_{i}g$ are arbitrary quections and a^{-is} constant then $p \cdot T = a^{2} \pi$

(i.e)
$$\frac{\partial^2 z}{\partial y^2} = a^2 \cdot \frac{\partial^2 z}{\partial x^2}$$

Solu:
 $Gn^1 \quad z = f(x + ay) + g(x - ay) - (t)$
Digg equ (t) w. x. to x'
 $\frac{\partial z}{\partial x} = f'(x + ay) + g'(x - ay)$
 $\frac{\partial^2 z}{\partial x^2} = f''(x + ay) + g''(x - ay) - (t)$
Digg $\cdot equ(t) \cdot w \cdot x \cdot to y$

$$\frac{\partial z}{\partial y} = f'(x + ay) a + g'(x - ay) (-a)$$

Again diff. w. n. b y

$$\frac{\partial^{2} z}{\partial y^{2}} = \int_{1}^{\infty} (x + ay)a^{2} + g^{n} (x - ay)(-a)^{2}$$

$$= a^{2} \left[\int_{1}^{\infty} (x + ay) + g^{n} (x - ay) \right]$$

$$\frac{\partial^{2} z}{\partial y^{2}} = a^{2} \frac{\partial^{2} z}{\partial x^{2}} \left(by = qu (s) \right)$$

$$\frac{d}{dt} = a^{2} n$$
A. Verify The PDE $\frac{\partial^{2} z}{\partial x^{2}} = \frac{\partial^{2} z}{\partial y^{2}} - \frac{2z}{\partial x^{2}}$ is satisfied by
 $z = \frac{1}{x} \phi (y - x) + \phi^{1} (y - x)$

$$\frac{d}{dt} = \frac{1}{x} \phi (y - x) + \phi^{1} (y - x) - (x)$$
Diff w. n. b 'x'

$$\frac{\partial z}{\partial x^{2}} = \frac{1}{x} \phi^{1} (y - x) (-1) + \phi (y - x) \left(\frac{-1}{x^{2}}\right) + \phi^{n} (y - x) (-1)$$

$$= \frac{-1}{x} \phi^{1} (y - x) (-1) + \phi (y - x) \left(\frac{-1}{x^{2}}\right) + \phi^{n} (y - x) (-1)$$

$$= \frac{-1}{x} \phi^{1} (y - x) (-1) + \phi (y - x) \left(\frac{-1}{x^{2}}\right) - \left[\frac{1}{x^{2}} \phi^{1} (y - x) (-1) + \phi^{1} (y - x) (-1) x^{2}\right] - \left[\frac{1}{x^{2}} \phi^{1} (y - x) (-1) + \phi (y - x) \left(\frac{-1}{x^{2}}\right)\right] - \left[\frac{1}{x^{2}} \phi^{1} (y - x) (-1) + \phi (y - x) \left(\frac{-1}{x^{2}}\right)\right] - \left[\frac{1}{x^{2}} \phi^{1} (y - x) (-1) + \phi (y - x) \left(\frac{-1}{x^{2}}\right)\right] - \left[\frac{1}{x^{2}} \phi^{1} (y - x) (-1) + \phi (y - x) \left(\frac{-1}{x^{2}}\right)\right] - \left[\frac{1}{x^{2}} \phi^{1} (y - x) (-1) + \phi (y - x) \left(\frac{-1}{x^{2}}\right)\right] - \left[\frac{1}{x^{2}} \phi^{1} (y - x) (-1) + \phi (y - x) \left(\frac{-1}{x^{2}}\right)\right] - \left[\frac{1}{x^{2}} \phi^{1} (y - x) (-1) + \phi (y - x) \left(\frac{-1}{x^{2}}\right)\right] - \left[\frac{1}{x^{2}} \phi^{1} (y - x) (-1) + \phi (y - x) \left(\frac{-1}{x^{2}}\right)\right] - \frac{1}{x^{3}} \phi (y - x) + \frac{1}{x^{2}} \phi (y - x) + \frac{1}{x^{3}} \phi (y - x) +$$

$$\frac{2z}{2y} = \frac{1}{x} \cdot \phi^{1}(y-x) + \phi^{11}(y-x)$$

$$\frac{2^{3}z}{2y^{2}} = \frac{1}{x} \phi^{11}(y-x) + \phi^{11}(y-x) - (3)$$

$$(3) - (3) = 3$$

$$\frac{2^{2}z}{2x^{2}} - \frac{2^{2}z}{2y^{2}} = \frac{1}{x} \phi^{11}(y-x) + \frac{2}{xx} \phi^{11}(y-x) + \frac{2}{x^{3}} \phi^{11}(y-x) - \frac{1}{x} \phi^{11}(x-x) - \frac{$$

$$u = f(x - vt + iwy) + g(x - vt - iwy) is a soln of equ
u = f(x - vt + iwy) + g(x - vt - iwy) is a soln of equ
$$\frac{3^{2}u}{3x^{2}} + \frac{3^{2}u}{3y^{2}} = \frac{1}{c^{2}} \cdot \frac{3^{2}u}{3t^{2}} \cdot provided \quad \text{That } x^{2} = 1 - v^{2}/c^{2}$$

$$\frac{3^{2}u}{3x^{2}} + \frac{3^{2}u}{3y^{2}} = \frac{1}{c^{2}} \cdot \frac{3^{2}u}{3t^{2}} \cdot provided \quad \text{That } x^{2} = 1 - v^{2}/c^{2}$$

$$\frac{3^{2}u}{3x^{2}} = f''(x - vt + iwy) + g'(x - vt - iwy) - (1)$$

$$\frac{3^{2}u}{3x^{2}} = f''(x - vt + iwy) + g'(x - vt - iwy) - (2)$$

$$\frac{3^{2}u}{3x^{2}} = f''(x - vt + iwy) (iw)^{2} + g''(x - vt - iwy) (-iw)^{2}.$$

$$\frac{3^{2}u}{3y^{2}} = -w^{2} f''(x - vt + iwy) (iw)^{2} + g''(x - vt - iwy) (-iw)^{2}.$$

$$\frac{3^{2}u}{3y^{2}} = -w^{2} f''(x - vt + iwy) - w^{2} g''(x - vt - iwy) - (3)$$

$$\frac{3^{2}u}{3y^{2}} = -w^{2} \left[f'''(x - vt + iwy) - g''(x - vt - iwy) \right] - (3)$$

$$\frac{3^{2}u}{3y^{2}} = -w^{2} \left[f'''(x - vt + iwy) (-v) + g'(x - vt - iwy) \right] - (3)$$

$$\frac{3^{2}u}{3t^{2}} = f''(x - vt + iwy) (-v) + g'(x - vt - iwy) - w^{2} \left[f''(x - vt + iwy) + g''(x - vt - iwy) \right] - (3)$$

$$\frac{3^{2}u}{3t^{2}} = f''(x - vt + iwy) (-v) + g''(x - vt - iwy) - w^{2} \left[f''(x - vt + iwy) + g''(x - vt - iwy) \right] - (2)$$

$$\frac{3^{2}u}{3t^{2}} = f''(x - vt + iwy) + g''(x - vt - iwy) - w^{2} \left[f''(x - vt + iwy) + g''(x - vt - iwy) \right] - (2)$$

$$\frac{3^{2}u}{3x^{2}} = f''(x - vt + iwy) + g''(x - vt - iwy) - w^{2} \left[f''(x - vt + iwy) + g''(x - vt - iwy) \right] - (2)$$

$$\frac{3^{2}u}{3x^{2}} = f''(x - vt + iwy) + g''(x - vt - iwy) - w^{2} \left[f''(x - vt + iwy) + g''(x - vt - iwy) \right] - (2)$$

$$\frac{3^{2}u}{3x^{2}} = f''(x - vt + iwy) + g''(x - vt - iwy) - (1 - v^{2}/c^{2}) \left[f'''(x - vt + iwy) + g''(x - vt - iwy) \right]$$$$

$\frac{\partial^2 u}{\partial t} = f''(x+iy)(i)^2 + g''(x-iy)(-i)^2.$	1.0
$\partial^2 $	
$\frac{1}{2u^2} = -4^{-1} (x+iy) - 9^{-1} (x-iy) - (3/4)$	
Equ (2)+(3) =>	
$f''(x+iy) + g''(x-iy) - f''(x+iy) - g''(x-iy) = \frac{\partial x}{\partial x^2} + \frac{\partial x}{\partial x^2}$	- Jue
$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$	
4. If $z = f(x^2 - y) + g(x^2 + y)$ where the gn fi	g are
Cabitany P.T $\frac{\partial^2 z}{\partial x^2} = \frac{1}{\chi} \cdot \frac{\partial z}{\partial \chi} = 4\chi^2 \cdot \frac{\partial^2 z}{\partial y^2}$	
$(e^{1} z = F(x^{2} - y) + g(x^{2} + y) - (1)$	
Diff (1) W.n.to x.	2 - 2
$\frac{\partial z}{\partial x} = f'(x^2 - y) \cdot 2x + g'(x^2 + y) 2x$	
$= 2x^{1}[f^{1}(x^{2}-y)+g^{1}(x^{2}+y)]$	3 ¹⁴
$\frac{\partial^2 z}{\partial x^2} = \left[f''(x^2 - y) + g''(x^2 + y) \right] 2x + 2 \left[f'(y) \right] 2x + 2 \left[f'(y) \right] - \frac{\partial^2 z}{\partial x^2} = \left[f''(y) + g''(y) + g''(y) \right] - \frac{\partial^2 z}{\partial x^2} = \left[f''(y) + g''(y) + g''(y) \right] - \frac{\partial^2 z}{\partial x^2} = \left[f''(y) + g''(y) + g''(y) \right] - \frac{\partial^2 z}{\partial x^2} = \left[f''(y) + g''(y) + g''(y) \right] - \frac{\partial^2 z}{\partial x^2} = \left[f''(y) + g''(y) + g''(y) \right] - \frac{\partial^2 z}{\partial x^2} = \left[f''(y) + g''(y) + g''(y) \right] - \frac{\partial^2 z}{\partial x^2} = \left[f''(y) + g''(y) + g''(y) \right] - \frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x^2} = \left[f''(y) + g''(y) + g''(y) \right] - \frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x^2$	x ² -y) +g ¹
$\frac{\partial^2 z}{\partial x^2} = 4x^2 \left[f''(x^2 - y) + g''(x^2 + y) \right] = (2)$	
Diff. (nw. n.to "y".	130
$\frac{\partial z}{\partial y} = f'(x^2 - y)(-1) + g'(x^2 + y)$. J. C.
$\frac{\partial^2 z}{\partial u_0} = f^{\prime\prime} u_0^{\prime\prime}$	
$Sub (x^2-y) + 9!! (x^2+y) - (3)$	** .
$\frac{\partial^2 z}{\partial z}$	$C^{(n)}$
$\partial x^2 = A x^2$. $\partial^2 z$ ∂y^2	
J J J J J J J J J J J J J J J J J J J	1.4

5. S. T if is a aue arbitrary of a single vanishes. Then

$$u = f(x - vt + i \neq y) + g(x - vt - i \neq y) is a soln of equ
\frac{3^{2}u}{3x^{2}} + \frac{3^{2}u}{3y^{2}} = \frac{1}{(2} \cdot \frac{3^{2}u}{3t^{2}} \cdot provided That $\pi^{2} = 1 - \frac{v^{2}}{c^{2}}$
Subi
 $\frac{3^{2}u}{3x^{2}} + \frac{3^{2}u}{3y^{2}} = \frac{1}{(2} \cdot \frac{3^{2}u}{3t^{2}} \cdot provided That \pi^{2} = 1 - \frac{v^{2}}{c^{2}}$
Subi
 $\frac{3^{2}u}{3x^{2}} + \frac{3^{2}u}{3y^{2}} = \frac{1}{(2} \cdot \frac{3^{2}u}{3t^{2}} \cdot provided That \pi^{2} = 1 - \frac{v^{2}}{c^{2}}$
Diff (1) $uv \cdot x \cdot b \cdot x'$
 $\frac{3^{2}u}{3x^{2}} = f''(x - vt + i \neq y) + g''(x - vt - i \neq y) - \frac{(x)}{(x^{2})}$
Diff (1) $uv \cdot x \cdot b \cdot y''$
 $\frac{3^{2}u}{3x^{2}} = f''(x - vt + i \neq y) + g''(x - vt - i \neq y) (-i \neq x)^{2}$
 $\frac{3^{2}u}{3y^{2}} = -\pi^{2} f''(x - vt + i \neq y) - \pi^{2} g''(x - vt - i \neq y) (-i \neq x)^{2}$
 $\frac{3^{2}u}{3y^{2}} = -\pi^{2} f''(x - vt + i \neq y) - g''(x - vt - i \neq y) - \frac{(x)}{2}$
 $\frac{3^{2}u}{3y^{2}} = -\pi^{2} f''(x - vt + i \neq y) - g''(x - vt - i \neq y) - \frac{(x)}{2}$
 $\frac{3^{2}u}{3t^{2}} = f'(x - vt + i \neq y) (-v) + g'(x - vt - i \neq y) - \frac{(x)}{2}$
 $\frac{3^{2}u}{3t^{2}} = f''(x - vt + i \neq y) + g''(x - vt - i \neq y) - \frac{(x)}{2}$
 $\frac{3^{2}u}{3t^{2}} = f''(x - vt + i \neq y) + g''(x - vt - i \neq y) - \frac{x^{2}}{2} [f''(x - vt + i \neq y) + \frac{y'}{2} - \frac{y'}{2} - \frac{y'}{2} [f''(x - vt + i \neq y) + \frac{y'}{2} - \frac{y'}{2}$$$

) show min
=
$$(4 RT - s^2) (5 \times Hy - 5y Hx)^{2/4} - (i)$$

The problem how is to choose s_1 and H so that
equation $\Lambda (5 \times i s_y) U_{52} + 2B(5 \times 5y ; H \times Hy) U_{5}H + A (H \times Hy) U_{1}H = G (S, H U, U_{5}, y = H) - (*) takes a
Simple form.
rolutions
Case (i): - $S^2 - 4FT > 0$.
Then we shall show that s_1 and H can be so choosen
that The to-opprivents of Use and UHK in equ(i) Vanish,
Lowider $R \times ^2 + S \times + T = 0$
This equ has two real distinct roots $\lambda_1 (\times i \times j)$ and
 $\lambda_2 (X, y)$ due to the bondition
 $S^2 - 4RT > 0$
we choose f and H such that
 $\frac{\partial S_1}{\partial x} = \lambda_2 \frac{\partial H}{\partial y}$.
These one first order partial diff. equation for s_1 and
 $f_2 (x, y) = (z and H - Solut of the ordinony
 $diff.$ equation is $dy/d_x + \lambda_1 (x, y) = 0$
 $dy/d_x + \lambda_2 (x, y) = 0$ respectivel.$$

That
$$A(2x, 2y)A(4x, 4y) - B^{-}(2x, 2y, 1x, 4y)$$

= $(4RT-S^{2})(5xHy-SyHx)^{2/4}$ -(1)
The problem now is to choose s_{1} and H so that
equation $A(5x, 5y)Uss + 2B(5x5y; HxHy)UsH + A(HxHy)UsH + 2B(5x5y; HxHy)UsH + A(HxHy)UnH = G(5, Hu, u_{2}, u_{1}) - C+) takes a
simple form.
Shui
Case (i):- $g^{2}-4RT > 0$.
Then we shall show that s_{1} and H can be so choosen
that The W-officients of Uss and UHH in equ(1) Vanish,
lowiden $Rx^{2} + 5x + T = 0$
This equ has two real cluitingt roots $\lambda_{1}(x, y)$ and
 $\lambda_{2}(x, y)$ due to the londition
 $S^{2}-ART > 0$
we choose s_{1} and H such that
 $\frac{\partial S_{1}}{\partial x} = \lambda_{1} \frac{\partial S_{1}}{\partial y}$
These are first order partial diff equation for s_{1} and
 $A(x, y) = c_{1}$ and
 $A(x, y) = c_{2}$ and
 $A(x, y) = c_{3}$ and
 $A(x, y) = c_{4}$ and
 $A(x, y) = c_{5}$ and
 $A(x, y) = c_{5$$

i) Show that
$$A(5x, 5y)A(4x, 4y) - B^{*}(5x, 5y) \pi_{x} h_{y})$$

= $(ART-S^{2})(5xHy - 5yHx)^{2/4} - -(1)$
The problem now is to choose s_{1} and H so that
equation $A(5x, 5y)U_{5,2} + 2B(5, 5y; HxHy)U_{5,14}$
 $A(4xHy)U_{5,2} + 2B(5, 5y; HxHy)U_{5,14}$
 $Gase(i)^{1} - S^{2} - 4PT > 0$.
Then we shall show that s_{1} and H (an be so choosen
that The Uo-officients of U cs and U hin in equal) Vanish.
Lonsiden $Rx^{2} + 5x + T = 0$
This equa has two real duitinct roots $\lambda_{1}(x,y)$ and
 $\lambda_{2}(5x,y)$ due to the londition
 $S^{2} - 4PT > 0$
we choose g and H such that
 $\frac{2S_{1}}{2x} = \lambda_{1} \frac{2S_{1}}{2y}$
These are first order partial diff, equation for 5 and $F_{2}(4x,y) = C_{1}$ and
 $F_{2}(4x,y) = C_{1}$ and
 $F_{3}(4x,y) = C_{1}$ and
 $F_{3}(4x,y) = C_{1}$ and
 $F_{3}(4x,y) = C_{2}$ are the solu of the codirory
 $diff$. equation $dy/dx + \lambda_{2}(x,y) = 0$ respectively.

A (2x, 2y) A (hx, ny) - B* (2x, 2y; nx ny) show That = (ART-s2) (Exny-synx) 214 - (1) The problem now is to choose s, and n so that quation A (Sx, Sy) Use + 2B (Ex Sy; Nx Ky) Usn + A (Mx My) unn = G (S, Mu, us, un) - (*) takesa imple form. solu: Case (i): - 52-487 >0. Then we shall show that so and M can be so choosen that The w-officients of use and unn in equal) vanish. Lonsider Rx2 + Sx+T=0 This equ has two real distinct roots hi(x,y) and 22 (x,y) due to The Londition 52- ART >0 choose & and M such That we $\frac{\partial S_1}{\partial x} = \lambda_1 \frac{\partial S_1}{\partial y}$ $\frac{\partial n}{\partial x} = \lambda_2 \frac{\partial n}{\partial y}$ These are first order partial diff. equation for sandy 29 filary) = ci and f2 (x,y) = (2 are the solu of the ordinary diff. Equation. dy/dx + x, (xiy) =0 dy/dx + hz (x,y) =0 respectively

$$= (ART - s^{2}) (\Sigma \times Ny - Sy N \times)^{2/4} - (i)$$

The problem now is to choose S_{i} and N so that
equation $\Lambda(S \times i Sy) \cup_{SS} + 2B (S \times Sy ; N \times Ny) \cup_{SN+1}$
 $= A (N \times Ny) \cup_{SS} + 2B (S \times Sy ; N \times Ny) \cup_{SN+1}$
 $= A (N \times Ny) \cup_{SS} + 2B (S \times Sy ; N \times Ny) \cup_{SN+1}$
 $= A (N \times Ny) \cup_{SS} + 2B (S \times Sy ; N \times Ny) \cup_{SN+1}$
 $= A (N \times Ny) \cup_{SS} + 2B (S \times Sy ; N \times Ny) \cup_{SN+1}$
 $= A (N \times Ny) \cup_{SS} + 2B (S \times Sy ; N \times Ny) \cup_{SN+1}$
 $= A (N \times Ny) \cup_{SS} + 2B (S \times Sy ; N \times Ny) \cup_{SN+1}$
 $= A (N \times Ny) \cup_{SS} + 2B (S \times Sy ; N \times Ny) \cup_{SN+1}$
 $= A (N \times Ny) \cup_{SS} + 2B (S \times Sy ; N \times Ny) \cup_{SN+1}$
 $= A (N \times Ny) \cup_{SS} + 2B (S \times Sy ; N \times Ny) \cup_{SN+1}$
 $= A (N \times Ny) \cup_{SS} + 2B (S \times Sy ; N \times Ny) \cup_{SN+1}$
 $= A (N \times Ny) \cup_{SN+1} + 2B (S \times Sy ; N \times Ny) \cup_{SN+1}$
 $= A (N \times Ny) \cup_{SN+1} + 2B (S \times Sy ; N \times Ny) \cup_{SN+1} + 2B (S \times Ny) = 0$
 $= A (N \times Ny) = C_{1} \quad \text{and}$
 $= A (N \times Ny) = C_{1} \quad \text{and}$
 $= A (N \times Ny) = C_{1} \quad \text{and}$
 $= A (N \times Ny) = C_{1} \quad \text{and}$
 $= A (N \times Ny) = C_{1} \quad \text{and}$
 $= A (N \times Ny) = C_{1} \quad \text{and}$
 $= A (N \times Ny) = C_{2} \quad \text{and}$
 $= A (N \times Ny) = C_{2} \quad \text{and}$
 $= A (N \times Ny) = C_{2} \quad \text{and}$
 $= A (N \times Ny) = C_{2} \quad \text{and}$
 $= A (N \times Ny) = C_{2} \quad \text{and}$
 $= A (N \times Ny) = C_{2} \quad \text{and}$
 $= A (N \times Ny) = C_{2} \quad \text{and}$
 $= A (N \times Ny) = C_{2} \quad \text{and}$
 $= A (N \times Ny) = C_{3} \quad \text{and}$
 $= A (N \times Ny) = C_{3} \quad \text{and}$
 $= A (N \times Ny) = C_{3} \quad \text{and}$
 $= A (N \times Ny) = C_{3} \quad \text{and}$
 $= A (N \times Ny) = C_{3} \quad \text{and}$
 $= A (N \times Ny) = C_{3} \quad \text{and}$
 $= A (N \times Ny) = C_{3} \quad \text{and}$
 $= A (N \times Ny) = C_{3} \quad \text{and}$
 $= A (N \times Ny) = C_{3} \quad \text{and}$
 $= A (N \times Ny) = C_{3} \quad \text{and}$
 $= A (N \times Ny) = C_{3} \quad \text{and}$
 $= A (N \times Ny) = C_{3} \quad \text{and}$
 $= A (N \times Ny) = C_{3} \quad \text{and}$
 $= A (N \times Ny) = C_{3} \quad \text{and}$
 $= A (N \times Ny) = C_{3} \quad \text{and}$
 $= A (N \times Ny) = C_{3} \quad \text{and}$
 $= A (N \times Ny) = C_{3} \quad \text{and}$
 $= A (N \times Ny) = C_{3} \quad \text{and}$
 $=$

Y

-

$$= \left[f''(x-vt+ixy)+g''(x-vt-ixy)\right](-1-(+v^2/c^2)$$

$$= V^2 \left[f''(x-vt+ixy)+g''(x-vt-ixy)\right] \cdot \frac{1}{c^2}$$

$$= \frac{3^2y}{3t^2} \cdot \frac{1}{c^2}$$

$$\frac{3^3u}{3y^2} + \frac{3^3u}{3y^2} = -\frac{1}{c^2} \cdot \frac{3^2u}{3t^2} \prod$$
Equations with kniable to efficients:-
(ansider the equations of the type:
 $R_{y} + S_{y} + Tt + f(x_{1}y, z; p, t) = 0$ (1)
which may be written in the form.
 $L(z) + f(x_{2}y, z; p, t) = 0$ (2)
where L is The differential operator defined by The
equation.
 $L = R \cdot \frac{3^2z}{3x^2} + S \frac{3^2z}{3x^2y} + T \cdot \frac{3^2z}{3y^2}$ (3)
The which $R, \neq S, T$ are continuous functions of x and y
possessing continuous partial derivatives of as high an order
as recessary By a suitable change of the Independent
vanables we Shall show that any equation of The type is
(an be heduced to one of the independent nanical forms.
Suppose we change The independent nanicables
qform x_1y to c_1h where $S = S_1(x_1y)$ $N = N(x, y)$

- -----

1) show That A (Ex, Ey) A (Mx, My) - B* (Ex, Ey; MxMy) = (ART-s2) (Exny-synx) 214 - (1) The problem now is to choose & and h so that equation A (Sxisy) Use + 2B (Ex Sy; Nx Ky) Us N + A (Mx My) unn = G (S, Mu, US, un) - (*) takesa Simple form. Solu: Case (i)! - 52-487 >0. we shall show that & and & Lan be so choosen Then That The w-efficients of use and unn in equal) Vanish. Lonsider Rx2 + Sx+T=0 equ has two real diffinct roots hi(x,y) and This λ_2 (x,y) due to the Londition 52- ART >0

we choose & and M such That

$$\frac{\partial s_1}{\partial x} = \lambda_1 \frac{\partial s_1}{\partial y}$$

 $\frac{\partial n}{\partial x} = \lambda_2 \frac{\partial n}{\partial y}$.

These are first under partial diff. equation for sandy If filmy) = c, and fraction of the orderiony diff. equation. dy/dx + $\lambda_1(x_1y) = 0$ dy/dx + $\lambda_2(x_1y) = 0$ respectively Then & = fi (xiy)

M = F2 (x,y) will be The suitables choice This choice op & and h makes D) A (&x, zy) = A (Nx , Ny) = 0 From equ (x) in This case we have B² >0 . Hence equir) reduces to. $\frac{\partial^2 u}{\partial s_i \partial n} = \phi \left(s_i n, u, u_{s_i}, u_{n} \right) - (s)$ The wives SIXIY) = constant and N(XIY) = constant are called the characteristic curves of equation. La +9 (xiy/u/ux/uy)=0. (ase (ii) !- $S^2 - ART = D$. In This case The roots of The equation. Ra2+Sa+T= 0 canonical (say () (x (x 14)). Define & = f(x,y) where f(x,y) = c, is the solu of $dy/dx + \lambda(x,y) = 0$ Take I as any orbitary function of x and y Independent of 54 and form equ (*) observe That B=0 Since A (Six, Siy) = 0 -Since n is Independent of Sy.

A (Mx (My) = D .

: Equations equal) reduces to $\frac{\partial^2 u}{\partial n^2} = \phi \left(\mathcal{G}_1, \mathcal{N}_1, \mathcal{U}_2, \mathcal{U}_3, \mathcal{U}_1, \mathcal{U}_3 \right) - (3)$ (ase ciii): -(70 52-4RT 20. This is The same as case (i). Haveven here the roots are complex. proceeding as in Case (i) we find that equ (1) reduces to The form equ (2) But The Variables & and n are not real and infact complex conjugates. Therefore There are no seal characteristic curves In this case. We make the purther transformation. $d = \frac{1}{2} \left(2i + n \right)$ B = 1/2 (n-51) Equ (1) becomes, $\frac{\partial^2 u}{\partial a^2} + \frac{\partial^2 u}{\partial \beta^2} = \phi \left(\alpha, \beta, u, u, u, u \beta \right) \longrightarrow (4).$ Poroblem :-1. Reduce The equ $\frac{\partial^2 z}{\partial x^2} = x^2 \frac{\partial^2 z}{\partial y^2}$ (or) J.a uxx - x2 uyy =0 to a cononical form

$$\begin{aligned} y &= \frac{1}{2} + \frac{1}{2} \\ z_{2} &= y - \frac{\pi^{2}}{2} \\ R_{1} &= y - \frac{\pi^{2}}{2} \\ R_{2} &= -\pi \\ R_{3} &= -\pi \\ \frac{3^{12}}{2\pi^{2}} &= \frac{3^{12}}{3\epsilon^{2}} \leq \pi^{2} + \frac{3^{12}}{3\epsilon^{2}} \leq \pi R_{3} + \frac{3z}{3\epsilon_{1}} \cdot S_{3} + \frac{3^{12}}{3\epsilon_{2}} + \frac{3^{12}}{2\epsilon_{2}} \\ \frac{3^{12}}{2\pi^{2}} &= \frac{3^{12}}{3\epsilon_{2}} \leq \pi^{2} + \frac{3^{12}}{3\epsilon_{2}} \leq \pi R_{3} + \frac{3z}{3\epsilon_{1}} \cdot S_{3} + \frac{3^{12}}{3\epsilon_{1}} \cdot R_{3} \\ &= \frac{3^{12}}{2\epsilon_{1}} \pi^{2} + \frac{3^{12}}{3\epsilon_{2}} \leq \pi^{2} + \frac{3^{12}}{3\epsilon_{2}} + \frac{3\pi}{3\epsilon_{1}} \cdot R_{3} \\ &= \frac{3^{12}}{2\epsilon_{1}} \pi^{2} + \frac{3^{12}}{3\epsilon_{2}} = 2\pi^{2} \frac{3^{12}}{3\epsilon_{2}} + (\pi)(\pi) + \frac{3\pi}{3\epsilon_{1}} (-\pi) \\ &= \frac{3^{12}}{2\epsilon_{1}} (-\pi)(\pi) + \frac{3\pi}{3\epsilon_{1}} (-\pi) \\ &= \frac{3^{12}}{2\epsilon_{1}} \leq \pi^{2} \frac{3^{12}}{3\epsilon_{1}} - 2\pi^{2} \frac{3^{12}}{3\epsilon_{1}} + \pi^{2} \frac{3^{12}}{3\epsilon_{1}} + \frac{3\pi}{3\epsilon_{1}} - \frac{3\pi}{3\epsilon_{1}} - (2) \\ &= \frac{3^{12}}{3\epsilon_{1}} = 2\pi^{2} \frac{3^{12}}{3\epsilon_{2}} - 2\pi^{2} \frac{3^{12}}{3\epsilon_{1}} + \pi^{2} \frac{3^{12}}{3\epsilon_{1}} + \frac{3\pi}{3\epsilon_{1}} - \frac{3\pi}{3\epsilon_{1}} - (2) \\ &= \frac{3^{12}}{3\epsilon_{1}} = 2\pi^{2} \frac{2^{2}}{3\epsilon_{2}} \leq \pi^{2} y^{2} + \frac{3^{12}}{3\epsilon_{1}} + \pi^{2} \frac{3^{12}}{3\epsilon_{1}} + \frac{3\pi}{3\epsilon_{1}} - \frac{3\pi}{3\epsilon_{1}} - (2) \\ &= \frac{3^{12}}{3\epsilon_{1}} = 2\epsilon_{1} R_{1} R_{2} S_{3} + \frac{3\pi}{3\epsilon_{1}} + \pi^{2} \frac{3\pi}{3\epsilon_{1}} + \frac{3\pi}{3\epsilon_{1}} + \frac{3\pi}{3\epsilon_{1}} - \frac{3\pi}{3\epsilon_{1}} + \frac{3\pi$$

Soluring on the end order
$$P P.E$$
 of the form
 $R = 1, S = 0, T = -x^{2}$ $R = \frac{3^{2}z}{3\pi^{2}} + S = \frac{3^{2}z}{3\pi^{2}} + \frac{3^{2}z}{2\pi^{2}} + \frac{$

$$y = \frac{x}{2} + cz$$

$$c_{2} = y - \frac{x^{2}}{2}$$

$$h_{1} = y - \frac{x^{2}}{2}$$

$$h_{2} = -(z)$$

$$h_{1}x = -x$$

$$hy = 1$$

$$h_{1}xx = -1$$

$$h_{1}yy = 0$$

$$\frac{\lambda^{2}z}{\lambda^{2}} = \frac{\lambda^{2}z}{2s^{2}} \le x^{2} + \frac{\lambda^{2}z}{2t^{2}} = (-x)(x) + \frac{\lambda^{2}z}{2t} = (-1)$$

$$\frac{\lambda^{2}z}{2t^{2}} = x^{2} + \frac{\lambda^{2}z}{2t^{2}} = \frac{$$

R.
$$\frac{\partial^2 z}{\partial \pi^2} + S$$
 $\frac{\partial^2 y}{\partial \eta}$
Compare population $\frac{1}{4}^{(2)}$
R = 1, S = 0, $T = x^2$
S² - 4RT = $(0)^2 - 4U(1)(\pi^2)$
 $= -4\pi^2 L^0$

$$R\alpha^{2} + S\alpha + T = 0$$

$$\alpha^{2} + x^{2} = 0$$

$$\alpha^{2} = -x^{1}$$

$$\alpha = 2ix$$

$$dy = -ixdx$$

$$dy = -ixdx$$

$$ix dx + dy = 0 \quad (Hi)$$

$$xdx + \frac{1}{12} \quad dy = 0$$

$$xdx + \frac{1}{12} \quad dy = 0$$

$$xdx - idy = 0$$

$$Jing \quad on \quad b = 5$$

$$\frac{x^{2}}{2} - iy = c_{1}$$
$$R = \frac{3^{2} 2}{3\pi^{2}} + S = \frac{3^{2} 2}{3\pi^{2}} + 1 = \frac{3^{2} 2}{3\pi^{2}} = 0 - 13$$

(compare equ (1) $S(2)$ (14

$$R = 1 + S = 0 + T = \pi^{2}$$

$$S^{2} - 4RT = (0)^{2} - 4(t)(\pi^{2})$$

$$= -4\pi^{2} - 40$$

$$Ra^{2} + Sa + T = 0$$

$$a^{2} + n^{2} = 0$$

$$a^{2} = -n^{2}$$

$$a = \pm in$$

$$\frac{dy}{dx} = 1 x = 0$$

$$\frac{dy}{dx} = -ix = 0 \Rightarrow \frac{dy}{dx} = -ix$$

$$\frac{dy}{dx} = -ix dx$$

$$ix dx + dy = 0 \quad (\exists i)$$

$$x dx + \frac{1}{i} \quad dy = 0$$

$$x dx + \frac{1}{i^2} \quad dy = 0 \quad (\exists x \text{ ing Lonjugate})$$

$$x dx - i dy = 0$$

$$\int_{ing} \text{ on } b \cdot s$$

$$\frac{y^2}{2} - iy = c_1$$

٠

٩,

$$\frac{\partial^{2} \Xi}{\partial q^{2}} = \frac{\partial^{2} z}{\partial s_{1}^{2}} + 2 \frac{\partial^{2} z}{\partial s_{1} \partial u} + \frac{\partial^{2} z}{\partial y_{2}} - (3)$$

$$\frac{\partial^{2} z}{\partial x^{2}} - x^{2} \frac{\partial^{2} z}{\partial y_{2}} = 0$$

$$= \int x^{2} \frac{\partial^{2} z}{\partial s_{1}^{2}} - 2x^{2} \frac{\partial^{2} z}{\partial s_{1} \partial u} + x^{2} \frac{\partial^{2} z}{\partial y_{2}} + \frac{\partial z}{\partial s_{1}} - \frac{\partial z}{\partial s_{1}} - \frac{\partial z}{\partial y_{2}} = 0$$

$$-x^{2} \frac{\partial^{2} z}{\partial s_{1}^{2}} - 2x^{2} \frac{\partial^{2} z}{\partial s_{1} \partial u} - x^{2} \frac{\partial^{2} z}{\partial y_{2}} = 0$$

$$-x^{2} \frac{\partial^{2} z}{\partial s_{1}^{2}} - 2x^{2} \frac{\partial^{2} z}{\partial s_{1} \partial u} - \frac{x^{2}}{\partial y_{1}} - \frac{\partial^{2} z}{\partial y_{1}} = 0$$

$$-x^{2} \frac{\partial^{2} z}{\partial s_{1} \partial u} + \frac{\partial z}{\partial s_{1} \partial u} - \frac{\partial z}{\partial s_{1} \partial u} = 0$$

$$-x^{2} \frac{\partial^{2} z}{\partial s_{1} \partial u} = -\frac{\partial z}{\partial s_{1} \partial u} + \frac{\partial z}{\partial s_{1} \partial u} = 0$$

$$-x^{2} \frac{\partial^{2} z}{\partial s_{1} \partial u} = -\frac{1}{4x^{2}} \cdot \left(-\frac{\partial z}{\partial s_{1}} + \frac{\partial z}{\partial u}\right) - (4)$$

$$= \frac{1}{4x^{2}} \cdot \left(-\frac{\partial^{2} z}{\partial s_{1}} - \frac{\partial^{2} z}{\partial u}\right) - (4)$$

$$= \frac{1}{4x^{2}} \cdot -y + \frac{x^{2}}{2} = \frac{\partial^{2} z}{\partial u} = x^{2}$$

$$S_{1} - u = y + \frac{x^{2}}{2} - y + \frac{x^{2}}{2} = \frac{\partial^{2} z}{\partial u} = 0$$

$$= \frac{1}{4(s^{2} - u)} \cdot \left(\frac{\partial^{2} z}{\partial s_{1}} - \frac{\partial z}{\partial u}\right)$$

$$Sub = \frac{1}{4(s^{2} - u)} \cdot \left(\frac{\partial^{2} z}{\partial s^{2}} - \frac{\partial z}{\partial y^{2}} = 0$$

$$= \frac{2^{2} z}{2} - 2u + \frac{x^{2}}{2} - \frac{2^{2} z}{\partial y^{2}} = 0$$

$$= \frac{1}{2} \cdot z^{2} - 2u + \frac{x^{2}}{2} - \frac{2^{2} z}{\partial y^{2}} = 0$$

$$= \frac{1}{2} \cdot z^{2} - 2u + \frac{x^{2}}{2} - \frac{2^{2} z}{\partial y^{2}} = 0$$

$$= \frac{1}{2} \cdot z^{2} - 2u + \frac{x^{2}}{2} - \frac{2^{2} z}{\partial y^{2}} = 0$$

$$= \frac{1}{2} \cdot z^{2} - 2u + \frac{x^{2}}{2} - \frac{2^{2} z}{\partial y^{2}} = 0$$

$$= \frac{1}{2} \cdot z^{2} - 2u + \frac{x^{2}}{2} - \frac{2^{2} z}{\partial y^{2}} = 0$$

$$= \frac{1}{2} \cdot z^{2} - 2u + \frac{2}{2} \cdot 2u + \frac{2}{2} \cdot 2u + \frac{2}{2} \cdot 2u + \frac{2}{2} \cdot 2$$

きまたい しんでいたい 大きたいには

The general equ
The general equ
R:
$$\frac{\partial^2 z}{\partial x^2} + S \cdot \frac{\partial^2 z}{\partial x \partial y} + T \cdot \frac{\partial^2 z}{\partial y^2} = 0$$
 (2)
(compare equ (1) § (2)
R = 1, S = 0, T = x².
S² - 4RT = (0)² - 4(1)(2x²)
= -4x² < 0
Rd² + Sd + T = 0
d² + x² = 0
d² + x² = -x²
(a = 2ix)
dy
dy = -ixdx
ix dx + dy = 0 (F)i
 $x dx + \frac{1}{1^2} dy = 0$
 $x dx - idy = 0$
 $\int ing$ on b-S
 $\frac{y^2}{2} - iy = C_1$

$$\sum_{j=1}^{N} \sum_{j=1}^{N} \sum_{$$

$$\frac{\chi^2}{2} - iy = H$$

$$\frac{dy}{dx} - ix = 0 \Rightarrow \frac{dy}{dx} = ix$$

$$\frac{dy}{dx} - ix = 0 \Rightarrow \frac{dy}{dx} = ix$$

$$\frac{dy}{dx} - ix = 0 \Rightarrow ix dx - dy = 0$$

$$x dx - \frac{1}{2} dy = 0$$

$$x dx + idy = 0$$

$$L [7a king (onjugate))$$

$$\int ing on b \cdot s$$

$$x^{1}/_{2} + iy = c_{2}$$

$$x^{2}/_{2} + iy + \frac{\chi^{2}}{2} - iy$$

$$x = -\frac{1}{2} \left(\frac{\chi^{1}}{2} + iy + \frac{\chi^{2}}{2} - iy \right)$$

$$x = -\frac{1}{2} \left(\frac{\chi^{1}}{2} + iy + \frac{\chi^{2}}{2} - iy \right)$$

$$x = -\frac{1}{2} \left(2\pi^{1}/_{2} \right)$$

$$x = \pi^{2}/_{2} \qquad \left[\frac{1}{2} \frac{\lambda}{2\pi} - \frac{\lambda}{2\pi} - \frac{\lambda}{2\pi} - \frac{\lambda}{2\pi} - \frac{\lambda}{2\pi} - \frac{\lambda}{2\pi} \right]$$

$$x = \frac{2\pi}{2\alpha} + \frac{\lambda}{2\alpha} + \frac{\lambda}{2\beta} + \frac{\lambda}{2\beta} + \frac{\lambda}{2\beta}$$

- in the

174

$$\begin{aligned} &= \frac{\partial z}{\partial x} (x) + \frac{\partial z}{\partial \beta} (o) \\ &= \frac{\partial z}{\partial x} \left(x + \frac{\partial z}{\partial \beta} \right) \\ &= \frac{\partial z}{\partial x} \left[x + \frac{\partial z}{\partial x} \right] \\ &= \frac{\partial z}{\partial x} \left[x + \frac{\partial z}{\partial x} \right] \\ &= \frac{\partial z}{\partial x} \left(\frac{\partial z}{\partial x} \right) + \frac{\partial z}{\partial x} (i) \\ &= x + \frac{\partial z}{\partial x} \left(\frac{\partial z}{\partial x} \right) + \frac{\partial z}{\partial x} \\ &= x \left[\frac{\partial z}{\partial x} \left(\frac{\partial z}{\partial x} \right) + \frac{\partial z}{\partial x} + \frac{\partial z}{\partial \beta} \left(\frac{\partial z}{\partial x} \right) \frac{\partial \beta}{\partial x} \right] + \frac{\partial z}{\partial x} \\ &= x \left[\frac{\partial z}{\partial x} \left(\frac{\partial z}{\partial x} \right) + \frac{\partial z}{\partial x} + \frac{\partial z}{\partial \beta} \left(\frac{\partial z}{\partial x} \right) \frac{\partial \beta}{\partial x} \right] + \frac{\partial z}{\partial x} \\ &= x \left[\frac{\partial^2 z}{\partial x^2} (x) + \frac{\partial^2 z}{\partial x^2} - (x) \right] \\ \\ &= \frac{\partial z}{\partial y} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial y} + \frac{\partial z}{\partial \beta} - \frac{\partial \beta}{\partial y} \\ &= \frac{\partial z}{\partial y} = \frac{\partial z}{\partial \beta} \\ \\ &= \frac{\partial z}{\partial y} = \frac{\partial z}{\partial \beta} \\ \\ &= \frac{\partial z}{\partial y} \left(\frac{\partial z}{\partial \beta} \right) \\ &= \frac{\partial z}{\partial y} \left(\frac{\partial z}{\partial \beta} \right) \\ &= \frac{\partial z}{\partial y} \left(\frac{\partial z}{\partial \beta} \right) \\ &= \frac{\partial z}{\partial y} \left(\frac{\partial z}{\partial \beta} \right) \\ &= \frac{\partial z}{\partial y} \left(\frac{\partial z}{\partial \beta} \right) \\ &= \frac{\partial z}{\partial y} \left(\frac{\partial z}{\partial \beta} \right) \\ &= \frac{\partial z}{\partial y} \left(\frac{\partial z}{\partial \beta} \right) \\ &= \frac{\partial z}{\partial y} \left(\frac{\partial z}{\partial \beta} \right) \\ &= \frac{\partial z}{\partial y} \left(\frac{\partial z}{\partial \beta} \right) \\ &= \frac{\partial z}{\partial y} \left(\frac{\partial z}{\partial \beta} \right) \\ &= \frac{\partial z}{\partial y} \left(\frac{\partial z}{\partial \beta} \right) \\ &= \frac{\partial z}{\partial y} \left(\frac{\partial z}{\partial \beta} \right) \\ &= \frac{\partial z}{\partial y} \left(\frac{\partial z}{\partial \beta} \right) \\ &= \frac{\partial z}{\partial y} \left(\frac{\partial z}{\partial \beta} \right) \\ &= \frac{\partial z}{\partial y} \left(\frac{\partial z}{\partial \beta} \right) \\ &= \frac{\partial z}{\partial y} \left(\frac{\partial z}{\partial \beta} \right) \\ &= \frac{\partial z}{\partial y} \left(\frac{\partial z}{\partial \beta} \right) \\ &= \frac{\partial z}{\partial y} \left(\frac{\partial z}{\partial \beta} \right) \\ &= \frac{\partial z}{\partial y} \left(\frac{\partial z}{\partial \beta} \right) \\ &= \frac{\partial z}{\partial y} \left(\frac{\partial z}{\partial \beta} \right) \\ &= \frac{\partial z}{\partial y} \left(\frac{\partial z}{\partial \beta} \right) \\ &= \frac{\partial z}{\partial y} \left(\frac{\partial z}{\partial \beta} \right) \\ &= \frac{\partial z}{\partial y} \left(\frac{\partial z}{\partial \beta} \right) \\ &= \frac{\partial z}{\partial y} \left(\frac{\partial z}{\partial \beta} \right) \\ &= \frac{\partial z}{\partial y} \left(\frac{\partial z}{\partial \beta} \right) \\ &= \frac{\partial z}{\partial y} \left(\frac{\partial z}{\partial \beta} \right) \\ &= \frac{\partial z}{\partial y} \left(\frac{\partial z}{\partial \beta} \right) \\ &= \frac{\partial z}{\partial y} \left(\frac{\partial z}{\partial \beta} \right) \\ &= \frac{\partial z}{\partial y} \left(\frac{\partial z}{\partial \beta} \right) \\ &= \frac{\partial z}{\partial y} \left(\frac{\partial z}{\partial \beta} \right) \\ &= \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial \beta} \right) \\ &= \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial \beta} \right) \\ &= \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial \beta} \right) \\ &= \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial \beta} \right) \\ &= \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial \beta} \right) \\ &= \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial \beta} \right) \\ &= \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial \beta} \right) \\ &= \frac{\partial z}{\partial z} \left(\frac{\partial z}{\partial \beta} \right) \\ &= \frac{\partial z}{\partial z} \left(\frac{\partial$$

1 - 1

t

.

$$= 0 + \frac{\partial^{2} z}{\partial p^{2}} (t)$$

$$\frac{\partial^{2} z}{\partial y^{2}} = \frac{\partial^{2} z}{\partial p^{2}} - (t)$$

$$(t) = \lambda \frac{\partial^{2} z}{\partial x^{2}} + x^{2} \frac{\partial^{2} z}{\partial y^{1}} = 0$$

$$x^{2} \frac{\partial^{2} z}{\partial x^{2}} + \frac{\partial z}{\partial x} + x^{2} \cdot \frac{\partial^{2} z}{\partial p^{2}} = 0$$

$$x^{2} \left[\frac{\partial^{2} z}{\partial x^{2}} + \frac{\partial^{2} z}{\partial x} - \frac{\partial^{2} z}{\partial p^{2}} \right] = -\frac{\partial z}{\partial x}$$

$$\frac{\partial^{2} z}{\partial x^{2}} + \frac{\partial^{2} z}{\partial p^{2}} = -\frac{1}{x^{2}} \cdot \frac{\partial z}{\partial x}$$

$$\frac{\partial^{2} z}{\partial x^{2}} + \frac{\partial^{2} z}{\partial p^{2}} = -\frac{1}{x^{2}} \cdot \frac{\partial z}{\partial x}$$

$$\frac{\partial^{2} z}{\partial x^{2}} + \frac{\partial^{2} z}{\partial p^{2}} = -\frac{1}{x^{2}} \cdot \frac{\partial z}{\partial x}$$

$$\frac{\partial^{2} z}{\partial x^{2}} + \frac{\partial^{2} z}{\partial p^{2}} = -\frac{1}{x^{2}} \cdot \frac{\partial z}{\partial x}$$

$$\frac{\partial^{2} z}{\partial x^{2}} + \frac{\partial^{2} z}{\partial p^{2}} = -\frac{1}{x^{2}} \cdot \frac{\partial z}{\partial x}$$

$$\frac{\partial^{2} z}{\partial x^{2}} + \frac{\partial^{2} z}{\partial p^{2}} = -\frac{1}{x^{2}} \cdot \frac{\partial z}{\partial x}$$

$$\frac{\partial^{2} z}{\partial x^{2}} + \frac{\partial^{2} z}{\partial p^{2}} = -\frac{1}{x^{2}} \cdot \frac{\partial z}{\partial x}$$

$$\frac{\partial^{2} z}{\partial x^{2}} + \frac{\partial^{2} z}{\partial p^{2}} = -\frac{1}{x^{2}} \cdot \frac{\partial z}{\partial x}$$

$$\frac{\partial^{2} z}{\partial x^{2}} + \frac{\partial^{2} z}{\partial p^{2}} = 0$$

$$\frac{\partial^{2} z}{\partial x^{2}} + 2 \frac{\partial^{2} z}{\partial x^{2}} + \frac{\partial^{2} z}{\partial y^{2}} = 0$$

$$(t)$$

$$R \cdot \frac{\partial^{2} z}{\partial x^{2}} + S \cdot \frac{\partial^{2} z}{\partial x \partial y} + \frac{\partial^{2} z}{\partial y^{2}} = 0$$

$$(t)$$

$$Return (1) St (2)$$

$$R = 1 + S = 2 + T = 1$$

$$S^{2} - ART = (2)^{2} - A(1)(1) = 4 - 4 = 0$$

$$The Droots are Equal$$

$$p_{x}^{2} + Sx + T = 0$$

$$a^{2} + 2x + 1 = 0$$

$$(x + 1) (x + 1) = 0$$

$$x = -1, -1$$

$$\frac{dy}{dx} - 1 = 0$$

$$\frac{dy}{dx} = 1$$

$$dy = dx$$

$$dx - dy = 0$$

$$x - y = z_{1}$$

$$\frac{\partial x}{\partial x} = 1 \quad j \quad \frac{\partial x}{\partial y} = 1$$

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = \frac{\partial z}{\partial x}$$

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial z_{1}} + \frac{\partial z}{\partial x}$$

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial z_{1}} + \frac{\partial z}{\partial x}$$

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial z_{1}} + \frac{\partial z}{\partial x}$$

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial z_{1}} + \frac{\partial z}{\partial x}$$

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial z_{1}} + \frac{\partial z}{\partial x}$$

ł

 $= \frac{1}{2\varsigma_{4}^{2}} - \frac{1}{2\varsigma_{4}^{2}} + \frac{1}{2\eta_{2}} + \frac{1}{2\eta_{$ $\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial x_1^2} + \frac{\partial^2 z}{\partial x_2^2} + \frac{\partial^2 z}{\partial x_1^2}$ $\frac{\partial^2 z}{\partial x^2} + 2 \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = 0$ $\frac{\partial^2 z}{\partial \xi^2 u} + \frac{\partial^2 z}{\partial \xi^2 u} + \frac{\partial^2 z}{\partial \eta^2} + 2 \left[\frac{-\partial^2 z}{\partial \xi^2} + \frac{\partial^2 z}{\partial \eta^2} \right] + \frac{\partial^2 z}{\partial \xi^2} - \frac{\partial^2 z}{\partial \xi^2} = \frac{\partial^2 z}{\partial \xi^2} + \frac{\partial^2 z}{\partial \xi^2} = \frac{\partial^2 z}{\partial \xi^2} = \frac{\partial^2 z}{\partial \xi^2} + \frac{\partial^2 z}{\partial \xi^2} = \frac{\partial^2 z}{\partial \xi^2} = \frac{\partial^2 z}{\partial \xi^2} = \frac{\partial^2 z}{\partial \xi^2} + \frac{\partial^2 z}{\partial \xi^2} = \frac{\partial^2 z}{\partial \xi^2}$ $\frac{2\delta^2 z}{\delta z \partial n} + \frac{\partial^2 z}{\partial \eta^2} = 0$ $\frac{\partial^2 z}{\partial z^2} + 2 \frac{\partial^2 z}{\partial z \partial n} + \frac{\partial^2 z}{\partial n^2} - 2 \frac{\partial^2 z}{\partial z^2} + 2 \frac{\partial^2 z}{\partial n^2} + \frac{\partial^2 z}{\partial z^2}$ $\frac{\partial^2 z}{\partial s} = \frac{\partial^2 z}{\partial t} + \frac{\partial^2 z}{\partial t} = 0$ $2 \frac{\partial z}{\partial q^2} + 4 \frac{\partial^2 z}{\partial \eta^2} - 2 \frac{\partial^2 z}{\partial q^2} = 0$ $4 \frac{\partial^2 z}{\partial \eta^2} = 0, \qquad \text{and} \qquad \text{a$ It wit $\frac{\partial^2 z}{\partial n^2} = 0 //$

Linear partial sufferential equation with constant co-efficientiz Consider the solution of linear $p \cdot p \cdot E$ that with Constant co-eff. such an equ can be weithen in the form $F(p, p_1)z = F(x_1y) - c_1$ where F(p, p') denotes a diff. operator of the type $F(D, p') = \frac{2}{x} \frac{2}{s} Crs D^r D^{1s} - c_2$

$$= \frac{2}{24} \left[\frac{2z}{24} + \frac{3z}{34} \right] * \frac{2}{24} \left[\frac{2z}{244} + \frac{3z}{24} \right]$$

$$= \frac{2^{12}}{24^{2}} + \frac{3^{12}}{24^{2}} + \frac$$

$$\begin{split} \vec{u} = F(T_1, T_2) \\ \frac{\partial u}{\partial n} = c_1(T_1, T_2) \\ \vec{\partial} \cdot \vec{u} \\ \frac{\partial u}{\partial x_1} + \frac{\partial u}{\partial x_2} \\ \frac{\partial u}{\partial x_1} + \frac{\partial u}{\partial x_2} \\ \frac{\partial u}{\partial x_1} \\ \vec{u} \\ \frac{\partial u}{\partial x_1} \\ \vec{u} \\ \frac{\partial u}{\partial x_1} \\ \vec{u} \\ \frac{\partial u}{\partial x_2} \\ \vec{u} \\ \vec$$

$$ie) \stackrel{3}{\underset{i=1}{\longrightarrow}} \frac{\partial f}{\partial x_{i}} \left[\frac{\partial x_{i}}{\partial T_{1}} dT_{1} + \frac{\partial x_{i}}{\partial T_{2}} dT_{2} \right]_{3}^{3}$$
Equating to xe_{30} the coess dT_{1}, dT_{3} .
IsO
Equating to xe_{30} the coess dT_{1}, dT_{3} .
 $ue have,$
 $\frac{3}{1=1}$ $\delta i P_{1}^{i} = 0$, $j=1>2$.
 $1=1$
where $\delta i = \frac{\partial f}{\partial x_{1}}$, $P_{1j} = \frac{\partial x_{1}}{\partial T_{j}}$
epolving these eqn we find that,
 $\frac{\delta_{1}}{\Delta_{1}} = \frac{\delta_{2}}{\Delta_{2}} = \frac{\delta_{3}}{\Delta_{3}} = P(say)$
 $U = \frac{\partial(x_{2}, x_{3})}{\partial(T_{1}, T_{2})} = \Delta_{1}$, $\frac{\partial(x_{1}, x_{3})}{\partial(T_{1}, T_{2})} = \Delta_{2}$
 $\frac{\partial(x_{1}, x_{2})}{\partial(T_{1}, T_{2})} = \Delta_{3}$
From \bigotimes taking the total derivatives
 $G_{j} T$.
 $\partial u = \frac{\partial u}{\partial x_{1}} dx_{1} + \frac{\partial u}{\partial x_{2}} dx_{2} + \frac{\partial u}{\partial x_{3}} dx_{3}$

$$d\overline{u} = \frac{3}{1+1} \sum_{j=1}^{2} P_{i} P_{j} d\tau_{j}$$

$$uhave P_{i} = \frac{\partial u}{\partial x_{1}} , \quad \overline{u} = P(T_{1}, T_{2})$$

$$d\overline{u} = \frac{\partial F}{\partial T_{1}} dT_{1} + \frac{\partial F}{\partial T_{2}} dT_{2} \rightarrow (\overline{a})$$

$$d\overline{u} = \frac{\partial F}{\partial T_{1}} dT_{1} + \frac{\partial F}{\partial T_{2}} dT_{2} \rightarrow (\overline{a})$$

$$\frac{\partial F}{\partial T_{1}} = \frac{\partial u}{\partial x_{1}} \cdot \frac{\partial x_{1}}{\partial T_{1}} + \frac{\partial u}{\partial T_{2}} \cdot \frac{\partial x_{2}}{\partial T_{1}} + \frac{\partial u}{\partial T_{3}} \cdot \frac{\partial x_{1}}{\partial T_{3}} + \frac{\partial u}{\partial T_{3}} \cdot \frac{\partial x_{1}}{\partial T_{3}} + \frac{\partial u}{\partial T_{3}} \cdot \frac{\partial x_{1}}{\partial T_{3}} + \frac{\partial u}{\partial T_{3}}$$

where
$$P_{i} = \frac{\partial u}{\partial x_{1}}$$
, $S_{i} = \frac{\partial F}{\partial x_{i}}$

$$q = \nabla \cdot u \cdot n^{2} = \frac{\partial}{|z_{1}|} \frac{P_{i} S_{i}}{\sqrt{S_{i}^{2} + S_{2}^{2} + S_{2}^{2}}}$$

$$q = \nabla \cdot u \cdot n^{2} = \frac{\partial}{|z_{1}|} \frac{P_{i} S_{i}}{\sqrt{S_{i}^{2} + S_{2}^{2} + S_{2}^{2}}}$$

$$q = \frac{\nabla \cdot u \cdot n^{2}}{|z_{1}|} = \frac{\partial}{|z_{1}|} \left(\frac{\partial^{2} + \partial^{2} + \partial^{2} + \partial^{2} \right)^{2} \Rightarrow 0$$

$$P_{i} S_{i} = u_{i} \left(\frac{\partial^{2} + \partial^{2} +$$

This pair of eqn is not suggicient of the soln of Pil, Piz, Piz so that add edu . $\frac{3}{2} q_r P_{ir} = \lambda_i \rightarrow (i)$ where hi is a parameter interms of all the Pix are expressed linearly and the d's are numerial constants chosen in such a way as to ensure that the · Superinger determinant. $\Delta = \begin{vmatrix} R_1 & P_{21} & P_{31} \\ P_{12} & P_{22} & P_{32} \end{vmatrix} \stackrel{ij}{i} non - \chi_{ero}$ Suppose now that the guantities Pir Constitute a set of solution of the eqn O, then $\frac{3}{r=1} P_{\tau_j} \left(P_{i\tau} - P_{i\tau} \right) = 0, j = 1, 2.$ for each j=1, i=1 $P_{11}(P_{11}-P_{11}')+P_{21}(P_{12}-P_{12}')+P_{031}$ $(P_{13} - P_{13}) = 0$

which ie),

$$\frac{P_{ij} - P_{ij}'}{\Delta_{j}} = \delta_{j} = \frac{P_{i1} - P_{i1}'}{\Delta_{1}} = \frac{P_{i2} - P_{i2}'}{\Delta_{2}} \cdot \delta_{2}$$

$$P_{ij} - P_{ij}' = \delta_{j} \Delta_{j} \Rightarrow P_{ij} + P_{i} \Delta_{j}$$

$$P_{ij}' = P_{ij}' + P_{i} \Delta_{j}'$$

$$(\cdot P_{i} = \delta_{j} \text{ (or) } P_{j} = d_{i})$$

$$(\cdot P_{i} = \delta_{j} \text{ (or) } P_{j} = d_{i})$$

$$(\cdot P_{i} = \delta_{j} \text{ (or) } P_{j} = d_{i})$$

$$(\cdot P_{i} = P_{ij}' + P_{i} \Delta_{j}' \rightarrow (B)$$

$$(P_{ij}' = P_{ji}') \text{ and } P_{ij}' = P_{ij}' \rightarrow (B)$$

$$(P_{ij}' = P_{ji}') \text{ and } P_{ij}' = P_{ij}' \rightarrow (S)$$

$$(P_{ij} = P_{ij} + P_{i} \Delta_{j}') \rightarrow (B)$$

$$(P_{ij} = P_{ij}') \text{ and } P_{ij}' = P_{ij}' \rightarrow (S)$$

$$(P_{ij} = P_{ij} + P_{i} \Delta_{j}') \rightarrow (S)$$

$$(P_{ij} = P_{ij} + P_{i} \Delta_{j}') \rightarrow (S)$$

$$(P_{ij} = P_{ij} + P_{ij} + P_{ij}') \rightarrow (S)$$

$$(P_{ij} = P_{ij} + P_{ij}') \rightarrow (S)$$

$$(P_{ij} = \Delta_{ij}') = \frac{\delta_{ij}}{\delta_{j}} = \frac{\delta_{ij}}{\delta_{j}} = \frac{\omega_{ij}}{\delta_{j}} \text{ so that } P_{i} = \frac{\omega_{ij}}{\delta_{i}}$$

$$(P_{ij} = \Delta_{ij}') = \frac{\delta_{ij}}{\delta_{i}} = \frac{\omega_{ij}}{\delta_{i}} = \frac{\omega_{ij}}{\delta_{i}} = \frac{\omega_{ij}}{\delta_{i}}$$

$$(P_{i} = P_{ij} + \lambda \delta_{i} \delta_{ij}') \rightarrow (S)$$

$$(P_{ij} = P_{ij} + \lambda \delta_{i} \delta_{ij}' \rightarrow (S)$$

$$(P_{ij} = P_{ij}' + \lambda \delta_{i} \delta_{ij}' \rightarrow (S)$$

$$(P_{ij} = P_{ij}' + \lambda \delta_{i} \delta_{ij}' \rightarrow (S)$$

$$(P_{ij} = P_{ij}' + \lambda \delta_{i} \delta_{ij}' \rightarrow (S)$$

 $\lambda \stackrel{3}{\leq} arj SrSj + \stackrel{3}{\leq} arj Prj + \stackrel{3}{\geq} br P_i + cu$ LO This equ has a solu for A unless the characteristic Junction $\phi = \underbrace{\overset{\mathfrak{s}}{\underset{\mathfrak{f},\mathfrak{j}}{\overset{\mathfrak{a}\mathfrak{f}}{\underset{\mathfrak{f},\mathfrak{j}}{\overset{\mathfrak{a}\mathfrak{f}}{\underset{\mathfrak{f},\mathfrak{j}}{\overset{\mathfrak{a}\mathfrak{f}}{\underset{\mathfrak{f},\mathfrak{j}}{\overset{\mathfrak{a}\mathfrak{f}}{\underset{\mathfrak{f},\mathfrak{j}}{\overset{\mathfrak{a}\mathfrak{f}}{\underset{\mathfrak{f},\mathfrak{j}}{\overset{\mathfrak{a}\mathfrak{f}}{\underset{\mathfrak{f},\mathfrak{j}}{\overset{\mathfrak{a}\mathfrak{f}}{\underset{\mathfrak{f},\mathfrak{j}}{\overset{\mathfrak{a}\mathfrak{f}}{\underset{\mathfrak{f},\mathfrak{j}}{\overset{\mathfrak{a}\mathfrak{f}}{\underset{\mathfrak{f},\mathfrak{j}}{\overset{\mathfrak{a}\mathfrak{f}}{\underset{\mathfrak{f},\mathfrak{j}}{\overset{\mathfrak{a}\mathfrak{f}}{\underset{\mathfrak{f},\mathfrak{j}}{\overset{\mathfrak{a}\mathfrak{f}}{\underset{\mathfrak{f},\mathfrak{j}}{\overset{\mathfrak{a}\mathfrak{f}}{\underset{\mathfrak{f},\mathfrak{j}}{\overset{\mathfrak{a}\mathfrak{f}}{\underset{\mathfrak{f},\mathfrak{j}}{\overset{\mathfrak{a}\mathfrak{f}}{\underset{\mathfrak{f},\mathfrak{j}}{\overset{\mathfrak{a}\mathfrak{f}}{\underset{\mathfrak{f},\mathfrak{j}}{\overset{\mathfrak{a}\mathfrak{f}}{\underset{\mathfrak{f},\mathfrak{j}}{\overset{\mathfrak{a}\mathfrak{f}}{\underset{\mathfrak{f},\mathfrak{j}}{\overset{\mathfrak{a}\mathfrak{f}}{\underset{\mathfrak{f},\mathfrak{j}}{\overset{\mathfrak{a}\mathfrak{f}}{\underset{\mathfrak{f},\mathfrak{j}}{\overset{\mathfrak{a}\mathfrak{f}}{\underset{\mathfrak{f},\mathfrak{j}}{\overset{\mathfrak{a}\mathfrak{f}}{\underset{\mathfrak{f},\mathfrak{j}}{\overset{\mathfrak{a}\mathfrak{f}}{\underset{\mathfrak{f},\mathfrak{j}}}{\underset{\mathfrak{j}}}{\underset{\mathfrak{f},\mathfrak{j}}{\underset{\mathfrak{f},\mathfrak{j}}{\underset{\mathfrak{f},\mathfrak{j}}{\underset{\mathfrak{f},\mathfrak{j}}{\underset{\mathfrak{f},\mathfrak{j}}{\underset{\mathfrak{f},\mathfrak{j}}}{\underset{\mathfrak{f},\mathfrak{j}}}{\underset{\mathfrak{j}}}{\underset{\mathfrak{f},\mathfrak{j}}{\underset{\mathfrak{j}}}{\underset{\mathfrak{f},\mathfrak{j}}{\underset{\mathfrak{f},\mathfrak{j}}{\underset{\mathfrak{f},\mathfrak{j}}}{\underset{\mathfrak{f},\mathfrak{j}}}{\underset{\mathfrak{j}}}}{\underset{\mathfrak{f},\mathfrak{j}}{\underset{\mathfrak{f},\mathfrak{j}}}{\underset{\mathfrak{j}}}}{}}}}}}}}}}}}}}}}}}}$ Vanishes (e) Unless fis such that that there all the second derivatives can be found and the procedure repeated for higher derivatives of u on s. The complete solution can then be found by a Taylor expansion. The equ 18) ie) $\phi = 0$ defines the charac - teratic surfaces. If f(x1, x2, x3) is q soin of (18) then the direction raties (Si, Sa, di of the normal at any point of the Surface Satisfy

 $\sum_{\substack{i \neq j \\ i \neq j}} \alpha_{ij} S_i S_j = 0 \longrightarrow (9)$

Which is the equ of a cone

Therefore at any point in space the

normals to all possible characteristic 9 Surgaces through the point lie on a cone The planes perpendicular to these normals therefore also envelop a cone . The cone is called a the characteristic cone through the called a the characteristic cone at a point therefore touches all the characteristic surgaces, at a the point

now according to equs (8) the cauchy characteristics of the first Order equation (3) are defined by the equs

 $\frac{dx_i}{\partial \phi/\partial S_i} = -\frac{dS_i}{\partial \phi/\partial x_i}$ i=1, 2, 3

The integrats of these equis satisfying the correct initial conditions at a given paint represent lines which are called the bicharacteristic of the equil of These lines in turn generate a surface called a conord, which reduces, in the case of constant and is to the characteristic, tone

we may use the quadratic form (7) to classify second Order equs in three independent Variables.

a) If ϕ is positive definite in the S's at the point $p(x_1^\circ, x_2^\circ, x_3^\circ)$, The charateristic

10 cones is conoid are imaginary and we say that the eqn is elliptic at p. b) IS & indefinite, The characteristic cone are real, and we say that the eqn is Hyperbolic at the point Hyperbolic u_1 u_2 , c) If the determinant $\begin{vmatrix} q_{11} & q_{21} & q_{31} \\ q_{12} & q_{22} & q_{32} \\ q_{13} & q_{23} & q_{33} \end{vmatrix}$ of the form of vanishes, we say that the equés parabolic. Example: classify the eqn, of 4xx + 4yy = 4zHere all = 1, a22 = 1, a33 = 0. $\begin{vmatrix} q_{11} & q_{21} & q_{31} \\ q_{12} & q_{22} & q_{32} \\ q_{13} & q_{23} & q_{33} \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$ This equ is parabolic $\begin{bmatrix} . & | u_{x,z} & u_{x,y} & u_{x,z} \\ & | u_{y,x} & u_{y,y} & u_{y,z} \\ & | u_{z,x} & u_{z,y} & u_{z,z} \end{bmatrix}$ b) 4xx + uyy = 4xx. Here $Q_{11} = 1$, $Q_{22} = 1$, $Q_{33} = -1$ $\begin{vmatrix} q_{11} & q_{21} & q_{31} \\ q_{12} & q_{22} & q_{32} \\ q_{13} & q_{23} & q_{33} \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{vmatrix} = -1 < 0$ The equ is hyperbolic.

Here
$$a_{11} = 0$$
, $a_{22} = 0$, $a_{33} = 0$, $a_{33} = 0$
 $a_{10} = 0$, $a_{22} = 0$, $a_{33} = 0$
 $a_{10} = 0$, $a_{10} = 1 > 0$
 $a_{10} = 0$, $a_{11} = 0$ if $a_{10} = 1 > 0$
 $a_{11} = 0$, $a_{11} = 2uy_{12}$
 $u_{11} = 1$, $a_{12} = 2uy_{12} = 0$
 $a_{11} = 0$, $a_{12} = 3$, $a_{23} = 1$, $a_{12} = -2$, $a_{23} = 0$
 $a_{11} = 0$, $a_{12} = 3$, $a_{23} = 1$, $a_{12} = -2$, $a_{23} = 0$
 $a_{11} = 0$, $a_{12} = 3$, $a_{23} = 1$, $a_{12} = -2$, $a_{23} = 0$
 $a_{11} = 0$, $a_{12} = 3$, $a_{23} = 1$, $a_{12} = -2$, $a_{23} = 0$
 $a_{11} = 0$, $a_{12} = 3$, $a_{23} = 1$, $a_{12} = -2$, $a_{23} = 0$
 $a_{11} = -2$, $a_{23} = 1$, $a_{12} = -2$, $a_{23} = 0$
 $a_{11} = -2$, $a_{23} = 1$
 $a_{11} = -2$, $a_{23} = 1$, $a_{12} = -2$, $a_{23} = 0$
 $a_{11} = -2$, $a_{23} = 1$
 $a_{11} = -2$, $a_{23} = 0$
 $a_{11} = -2$, $a_{23} = 0$
 $a_{11} = -2$, $a_{23} = 0$
 $a_{12} = -2$, $a_{23} = 0$
 $a_{11} = -2$, $a_{23} = 0$
 $a_{11} = -2$, $a_{23} = 0$
 $a_{11} = -2$, $a_{23} = 0$
 $a_{12} = -2$, $a_{23} = 0$
 $a_{11} = -2$, $a_{23} = 0$
 $a_{11} = -2$, $a_{23} = 0$
 $a_{12} = -2$, $a_{23} = 0$
 $a_{11} = -2$, $a_{23} = 0$
 $a_{11} = -2$, $a_{23} = 0$
 $a_{23} = 0$
 $a_{23} = -2$, $a_{23} = -2$, $a_{23} = 0$
 $a_{23} = -2$, $a_{23} = -2$, $a_{23} = 0$
 $a_{23} = -2$, $a_{23} = -2$, $a_{23} = 0$
 $a_{23} = -2$, $a_{23} = -2$, $a_{23} = 0$
 $a_{23} = -2$, $a_{23} = -2$, $a_{23} = -2$, $a_{23} = 0$
 $a_{23} = -2$, $a_{23} = -2$, $a_{23} = 0$
 $a_{23} = -2$, $a_{23} = -2$, $a_{23} = -2$, $a_{23} = 0$
 $a_{23} = -2$, $a_{23} = 0$
 $a_{23} = -2$, $a_{23} = -2$,

2

ື?

 $| f(x,y, z_2, P_3, q_2) - f(x_3y, z_1, P_1, q_1) |$

$$\leq M \left\{ |z_{2}-z_{1}| + |B_{2}-P_{1}| + |q_{2}-q_{1}| \right\}$$

in all bounded Subsectangles a of R. naw State (without proof) two existence theorem. Theorem 1:

Initial Conditions of the first kind. If F(x)+UI(x) are defined in the Open intervals (a,B), (8,S) respectively & have Continuous first derivatives & if (E, n) is a Point inside R Such that FCE) = U(1) Then the gn' diff equ has atleast one integral $Z = \phi(x,y)$ in R such that

 $\phi(x,y) = \begin{cases} F(x) & \text{when } y = p \\ \sigma(x) & \text{when } x = e \end{cases}$

Theorem 2:

Initial Conditions of the Second Kind:. let c be a space curve degreed by x=x(x), g=g(x), z=z(x) interms of a single parameter & & also let co be the peojection of ci on the sy plane - If we are given (x,y,z, P,q) along a Strip G then the gn' equ has a integral which takes on the given values of 2, p, q glong the curve co. This integral exists at every point of the region P, which is defined as the Smallest

bectangle completely enclosing the curve
$$\int_{0}^{12}$$
.
Riemann method of sholn of general litroas
hyperbolic equ of the second order.
Assume that the equ shas already been
reduced to canonical form,
 $L(z) = f(z,y) \rightarrow 0$
where L denotes the litron Operator.
 $L = \frac{\partial^{2}}{\partial x \partial y} + \alpha \frac{\partial}{\partial x} + b \frac{\partial}{\partial y} + c \rightarrow 0$
where α ship c as functions of $x \notin y$ Only.
let w be another function with Continuous
derivatives of the first Order.
Again, Let M be another Operators defined by
the selation.
 $Mw = \frac{\partial w}{\partial x} - \frac{\partial(aw)}{\partial x} - \frac{\partial(bw)}{\partial y} + cw \rightarrow 0$
The Operators M defined by (μ) is called the
adjaint Operators to the Operators L .
 $www = w(\frac{\partial^{2} z}{\partial x dy} + \alpha \frac{\partial z}{\partial x} + b \frac{\partial z}{\partial y} + c) - Z(\frac{\partial^{2} w}{\partial x dy} - \frac{\partial(aw)}{\partial x} - \frac{\partial(bw)}{\partial y} + cw)$

$$= \left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \frac{\partial^{2}z}{\partial x \partial y} - z \end{array}\right) \frac{\partial^{2}w}{\partial x \partial y} \right) + \left(\begin{array}{c} \left(\begin{array}{c} wa}{\partial x} \frac{\partial z}{\partial x} + z \end{array}\right) \frac{\partial (uw)}{\partial x} \right) \\ \left(\begin{array}{c} wb}{\partial x} \frac{\partial z}{\partial x} + z \end{array}\right) \frac{\partial (bw)}{\partial y} \right) \\ = \frac{\partial}{\partial y} \left(\begin{array}{c} w \frac{\partial z}{\partial x} \right) - \frac{\partial}{\partial x} \left(z \end{array}\right) \frac{\partial w}{\partial y} + \frac{\partial (awz)}{\partial x} + \frac{\partial (bw)}{\partial y} \\ = \frac{\partial}{\partial x} \left(awz - z \end{array}\right) \frac{\partial w}{\partial y} + \frac{\partial}{\partial y} \left(bwz + w \end{array}\right) \\ = \frac{\partial U}{\partial x} + \frac{\partial U}{\partial y} \longrightarrow \left(\begin{array}{c} w \\ \end{array}\right) \\ where \quad U = awz - z \end{array}\right) \frac{\partial w}{\partial x} \\ = \frac{\partial U}{\partial x} + \frac{\partial U}{\partial y} \longrightarrow \left(\begin{array}{c} w \\ \end{array}\right) \\ = \frac{\partial U}{\partial x} + \frac{\partial U}{\partial y} \longrightarrow \left(\begin{array}{c} w \\ \end{array}\right) \\ = \frac{\partial U}{\partial x} + \frac{\partial U}{\partial y} \longrightarrow \left(\begin{array}{c} w \\ \end{array}\right) \\ = \frac{\partial U}{\partial x} + \frac{\partial U}{\partial y} \longrightarrow \left(\begin{array}{c} w \\ \end{array}\right) \\ = \frac{\partial U}{\partial x} + \frac{\partial U}{\partial y} \longrightarrow \left(\begin{array}{c} w \\ \end{array}\right) \\ = \frac{\partial U}{\partial x} + \frac{\partial U}{\partial y} \longrightarrow \left(\begin{array}{c} w \\ \end{array}\right) \\ = \frac{\partial U}{\partial x} + \frac{\partial U}{\partial y} \longrightarrow \left(\begin{array}{c} w \\ \end{array}\right) \\ = \frac{\partial U}{\partial x} + \frac{\partial U}{\partial y} \longrightarrow \left(\begin{array}{c} w \\ \end{array}\right) \\ = \frac{\partial U}{\partial x} + \frac{\partial U}{\partial y} \longrightarrow \left(\begin{array}{c} w \\ \end{array}\right) \\ = \frac{\partial U}{\partial x} + \frac{\partial U}{\partial y} \longrightarrow \left(\begin{array}{c} w \\ \end{array}\right) \\ = \frac{\partial U}{\partial x} + \frac{\partial U}{\partial y} \longrightarrow \left(\begin{array}{c} w \\ \end{array}\right) \\ = \frac{\partial U}{\partial x} + \frac{\partial U}{\partial y} \longrightarrow \left(\begin{array}{c} w \\ \end{array}\right) \\ = \frac{\partial U}{\partial x} + \frac{\partial U}{\partial y} \longrightarrow \left(\begin{array}{c} w \\ \end{array}\right) \\ = \frac{\partial U}{\partial x} + \frac{\partial U}{\partial y} \longrightarrow \left(\begin{array}{c} w \\ \end{array}\right) \\ = \frac{\partial U}{\partial x} + \frac{\partial U}{\partial y} \longrightarrow \left(\begin{array}{c} w \\ \end{array}\right) \\ = \frac{\partial U}{\partial x} + \frac{\partial U}{\partial y} \longrightarrow \left(\begin{array}{c} w \\ \end{array}\right) \\ = \frac{\partial U}{\partial x} + \frac{\partial U}{\partial y} \longrightarrow \left(\begin{array}{c} w \\ \end{array}\right) \\ = \frac{\partial U}{\partial x} + \frac{\partial U}{\partial y} \longrightarrow \left(\begin{array}{c} w \\ \end{array}\right) \\ = \frac{\partial U}{\partial x} + \frac{\partial U}{\partial y} \longrightarrow \left(\begin{array}{c} w \\ \end{array}\right) \\ = \frac{\partial U}{\partial x} + \frac{\partial U}{\partial y} \longrightarrow \left(\begin{array}{c} w \\ \end{array}\right) \\ = \frac{\partial U}{\partial x} + \frac{\partial U}{\partial y} \longrightarrow \left(\begin{array}{c} w \\ \end{array}\right) \\ = \frac{\partial U}{\partial x} + \frac{\partial U}{\partial y} \longrightarrow \left(\begin{array}{c} w \\ \end{array}\right) \\ = \frac{\partial U}{\partial x} \longrightarrow \left(\begin{array}{c} w \\ \end{array}\right) \\ = \frac{\partial U}{\partial x} + \frac{\partial U}{\partial y} \longrightarrow \left(\begin{array}{c} w \\ \end{array}\right) \\ = \frac{\partial U}{\partial x} \longrightarrow \left(\begin{array}{c} w \\ \end{array}\right) \\ = \frac{\partial U}{\partial x} \longrightarrow \left(\begin{array}{c} w \\ \end{array}\right) \\ = \frac{\partial U}{\partial x} \longrightarrow \left(\begin{array}{c} w \\ \end{array}\right) \\ = \frac{\partial U}{\partial x} \longrightarrow \left(\begin{array}{c} w \\ \end{array}\right) \\ = \frac{\partial U}{\partial x} \longrightarrow \left(\begin{array}{c} w \\ \end{array}\right) \\ = \frac{\partial U}{\partial x} \longrightarrow \left(\begin{array}{c} w \\ \end{array}\right) \\ = \frac{\partial U}{\partial x} \longrightarrow \left(\begin{array}{c} w \\ \end{array}\right) \\ = \frac{\partial U}{\partial x} \longrightarrow \left(\begin{array}{c} w \\ \end{array}\right) \\ = \frac{\partial U}{\partial x} \longrightarrow \left(\begin{array}{c} w \\ \end{array}\right) \\ = \frac{\partial U}{\partial x} \end{array}$$
 \\ = \frac{\partial U}{\partial x} \longrightarrow \left(\begin{array}{c} w \\ \end{array}\right) \\ = \frac{\partial U}{\partial y} \end{array} \\ = \frac{\partial U}{\partial U} \end{array} \\ = \frac{\partial U}{\partial y} \end{array} \\ = \frac{\partial U}{\partial U} \end{array} \\ = \frac{\partial U}{\partial

$$J_{PQ} = J_{Q} = f_{QQ}J_{P} + \int x (bw - \frac{\partial w}{\partial x}) dx = 0$$

$$= [w_{2}J_{R} - f_{QQ}J_{P} + \int x (bw - \frac{\partial w}{\partial x}) dx = 0$$

$$J_{R} = [w_{2}J_{R} - f_{QQ}J_{P} + \int x (bw - \frac{\partial w}{\partial x}) dx = 0$$

$$J_{R} = [w_{2}J_{R} + \int x (bw - \frac{\partial w}{\partial x}) dx - \int x (bw - \frac{\partial w}{\partial y}) dx - \int x (bw - \frac{\partial w}{\partial y}) dx - \int x (bw - \frac{\partial w}{\partial y}) dx - \int x (aw -$$

Such a function is called a crossen's function for the problem or sometimes a Riemann - Crocen function · Since also Lz -f, we find that. [z]p=[wz]A- [(udy-vdx)+ [] whited x dy. AB $= \left[\frac{\omega z}{A} - \int \int \left[\frac{\partial \omega z}{\partial x} - z \frac{\partial \omega}{\partial y} \right] dy + \int \left[\frac{\partial \omega z}{\partial x} \right] dx$ AB + IJ (wf)dxdy [using (1) G(5)] $= \left[\omega z \right]_{A} - \int \omega z \left(a dy - b dz \right) + \int \left(z \frac{\partial \omega}{\partial y} dy + \omega \frac{\partial u}{\partial t} \right)$ $+ \iint_{S} \omega_{F} dx dy \rightarrow \textcircled{0}.$ Equilion may be used to determined the value of zat the point p when $\frac{\partial z}{\partial r}$ is prescribed 7 along the curve C. suppose in plane of prescribed value of Or we are now gives a prescribed value of. 92 1 94 Then we make use of the following · nottolar

Scanned with CamScanner

 $\int d(wz) = \int \left(\frac{\partial(wz)}{\partial x} dx + \frac{\partial(wz)}{\partial y} dy\right)^{0}$ AB =) $O = [wz]_B - [wz]_A - \int \left(\frac{\partial (wz)}{\partial x} dx + \frac{\partial (wz)}{\partial y} dy\right)$ $\rightarrow \bigcirc$ Adding the corresponding sides of (10) G(11) we get, $[z]_{p} = [wz]_{B} - \int wz (ady - bdx) + \int (z \frac{\partial w}{\partial y} dy + w)$ $-\int \left(\frac{\partial(wz)}{\partial x} dx + \frac{\partial(wz)}{\partial y} dy\right) + \int \int (wF) dx dy$ = $[wz]_B - \int wz (ady-bdx) - \int \int [z \frac{\partial w}{\partial x} dx + w \frac{\partial z}{\partial y}]$ BA $+ \int \int (w f) dx dy \rightarrow (a)$ Eqn (12) may be used to determine by z at the Point p when $\frac{\partial z}{\partial y}$ is prescribed along the curve c Finally by adding (10) & (12) we get the following symmetrical result which can be used . To find Value of z at the point p when both az and dz are prescribed along the curve c. $[z]_{p} = \frac{1}{2} \int [wz]_{A} + [wz]_{B} G - \int wz (ady-bdz)$ 1. 11 W 44 44 18

$$\int_{S} (wf) dxdy - \frac{1}{2} \int_{AB} w \left(\frac{\partial x}{\partial y} dy - \frac{\partial x}{\partial x} dx \right)$$

$$= \frac{1}{2} \int_{AB} z \left(\frac{\partial w}{\partial x} dx - \frac{\partial w}{\partial y} dy \right)$$
Eg means of whichever of the fermulas (0), (w),
g(B) is suitable we may determine the sch
of (1) at any point in terms of the prescribed
values of z, $\frac{\partial z}{\partial x}$ ox 1 and $\frac{\partial x}{\partial y}$ along a given
zinve c.
Note:-

$$x \left(\frac{1}{x+\eta} - \frac{\partial x}{1+x^2} + \frac{1}{x} \right) = \frac{x}{x+\eta} - \frac{\partial x^2}{1+x^2} + 1$$

$$= \frac{-p}{x+\eta} + \frac{2}{1+x^2}$$
Find the sol valid when $x,y>0$, $xy>1$ of
the equ $\frac{\partial^2 x}{\partial x} = \frac{1}{x+y}$ such that $z=0$,
 $p = \frac{\partial y}{\partial x \partial y}$ on the hyperbola $xy=1$.
Soln::
Comparing the gn' equ with $L(x) = f(x,y)$
we have, $\alpha = b = c = 0$ & $f(x,y) = \sqrt{x+y}$.

along the curve c, which is hyperbold $Iy=1 \rightarrow 3$

Then we use to finish the soln of 9°' equations at the point p(c, p) agreeing with those boundaring carditions. Through p we draw pA 11th to the x-axis & cutting xy=1 in the point A & PB 11th to the y-axis & cutting xy=1 in B. Then region enclosed by xy=1, xc=e, y=p is denoted by S. now, we know that crefer equ(D) $(z)_{p} = [wz]_{A} - \int w_{z}(ady-bdx) + (M_{B})$ $\int (z = \frac{\partial w}{\partial y} + w = \frac{\partial w}{\partial z} dx) + \iint wf dxdy$ AB

$$\int_{1}^{2} \int_{1}^{2} \int_{1}^{2} dx = \int_{1}^{2} \int_{1}^{2} \int_{1}^{2} dx$$

$$= 2 \int_{1}^{2} \int_{1}^{2}$$

$$-\int_{y_{p}}^{e} x\left(\frac{1}{x_{1p}}-\frac{\partial x}{\partial x_{2}}+\frac{1}{x}\right)dx \quad 2^{2}$$

$$=e\left\{\log\left(e+p\right)-\log\left(1+e^{2}\right)+\log\left(e^{2}\right)-\frac{1}{\partial x_{2}}+\frac{1}{x}\right)dx \quad 2^{2}$$

$$=e\left(\log\left(e+p\right)\right)+\log\left(y_{p}\right)^{2}-\int_{e}^{e}\left(\frac{\partial}{\partial x_{2}}-\frac{p}{x_{2}}\right)dx \quad y_{p}\right)$$

$$=e\left(\log\left(e+p\right)\right)-2\left[\tan^{2}x-p\left(\log\left(x+p\right)\right)\right]^{2}$$

$$=e\left(\log\left(e+p\right)\right)-2\left[\tan^{2}x-p\left(\log\left(x+p\right)\right)\right]^{2}$$

$$=e\left(\log\left(e+p\right)\right)-2\left[\tan^{2}x-p\left(\log\left(x+p\right)\right)\right]^{2}$$

$$Using (e) \in (1), (u) \text{ seduces bo}$$

$$\left[z\right]p=e\left(\log\left(e+p\right)\right)+\frac{1}{1+e^{2}}+p\left(\log\left(\frac{p(e+p)}{1+p^{2}}\right)\right) \leq s\right)$$
Replacing $e \in p$ by $x \in y$ sespectively in (b) The value of z , solve of the gn equ at any paint (x,y)
$$z=x\log\left(\frac{x(x+y)}{1+x^{2}}+y\log\left(\frac{g(x+y)}{1+y^{2}}\right)\right)$$

$$\frac{z}{1+x^{2}}+y\log\left(\frac{g(x+y)}{1+y^{2}}\right)$$

$$\frac{z}{1+y^{2}}$$
Pr for the equ $\left(\frac{\partial z}{\partial x}\right)+\left(\frac{z}{2}\right)=0$ The given's function is $w(x,y) \in p$ = $J_{0}\sqrt{(x-e)(y-p)}$
whose $J_{0}(z)$ denotes Bessels functions of the fun

Solut:
Here
$$L(Z) = \left(\frac{\partial^2 Z}{\partial x \partial y}\right) + (Z|y_1) = 0 \rightarrow 0$$

 $L = \frac{\partial^2}{\partial x \partial y} + 0 \frac{\partial}{\partial x} + 0 \frac{\partial}{\partial y} + c$
 $= \frac{\partial^2}{\partial x \partial y} + \frac{Z}{4}$
 $\Rightarrow \alpha = 0, b = 0, c = Z|_{4} \rightarrow 0$
So the adjacent Operator M to the Operator L
is gn' by,
 $M = \frac{\partial^2}{\partial x \partial y} + \frac{1}{4} \rightarrow 0$
 gn'
 $W = J_0 \sqrt{(x-e)(y-p)} \rightarrow 0$
 $(4) \Rightarrow \frac{\partial W}{\partial x} = \sqrt{(y-p)} - 30$
 $(4) \Rightarrow \frac{\partial W}{\partial x} = \sqrt{(y-p)} - 30 + \sqrt{(y-p)} \sqrt{(x-e)} J_0^{(x-e)} J_0^{(x-e)} J_0^{(x-e)}$
 $\frac{\partial^2 W}{\partial y \partial x} = \frac{1}{4} \sqrt{(x-e)(y-p)} - 30 + \sqrt{(y-p)} \sqrt{(x-e)} J_0^{(x-e)} J_0^{(x-e)}$
 $= \frac{1}{4} \left\{ J_0^{(x)} + \frac{1}{\sqrt{(x-e)(y-p)}} - J_0^{(x)} \right\} \rightarrow 0$
So (3) $\xi(b)$
 $\Rightarrow M_{1W} = \frac{1}{4} \left\{ J_0^{(x)} + \frac{1}{\sqrt{(x-e)(y-p)}} - J_0^{(x)} \right\} \rightarrow 0$
now, Bessel equ of Order zero is gn' by
 $r^2y'' + ry' + r^2y = 0 \quad (or) \quad y'' + (yx)y' + y = 0 \rightarrow 0$

Since,
$$y = T_{0} \left\{ \sqrt{(x-e)(y-p)} \right\}$$
 is a sch of is,
we get,
 $T_{0}^{m} + \frac{1}{\sqrt{(x-e)(y-p)}}$ $T_{0}^{m} + T_{0} = 0$ (cos) $Y(w) = 0$
(eq(7))
Again (5) $\Rightarrow \left(\frac{\partial w}{\partial x}\right) = 0 = bw$ when $y = p$ (... $b = 0$)
 $y = \frac{1}{\sqrt{0}}$
Again (5) $\Rightarrow \left(\frac{\partial w}{\partial x}\right) = 0 = bw$ when $y = p$ (... $b = 0$)
 $y = \frac{1}{\sqrt{0}}$
 $\left(\frac{\partial w}{\partial y}\right) = 0 = aw$ when $x = e$ (... $a = 0$) $\Rightarrow (0)$
finally, when $x = e$, $y = p$, $w = J_{0}(w) = 1 \rightarrow (0)$
Since w satisfies fous properties $e^{-1}(w) = 1$
 $finally, when $x = e$, $y = p$, $w = J_{0}(w) = 1 \rightarrow (0)$
 $finally, when $x = e$, $y = p$, $w = J_{0}(w) = 1 \rightarrow (0)$
 $finally, when $x = e$, $y = p$, $w = J_{0}(w) = 1 \rightarrow (0)$
 $finally, when $x = e$, $y = p$, $w = J_{0}(w) = 1 \rightarrow (0)$
 $finally, when $x = e$, $y = p$, $w = J_{0}(w) = 1 \rightarrow (0)$
 $finally, when $x = e$, $y = p$, $w = J_{0}(w) = 1 \rightarrow (0)$
 $finally, when $x = e$, $y = p$, $w = J_{0}(w) = 1 \rightarrow (0)$
 $finally, when $x = e$, $y = p$, $w = J_{0}(w) = 1 \rightarrow (0)$
 $finally, when $x = e$, $y = p$, $w = J_{0}(w) = 1 \rightarrow (0)$
 $finally, when $x = e$, $\frac{\partial^{2}}{\partial x} + \frac{\partial}{\partial x} + \frac{\partial}{\partial x} + \frac{\partial}{\partial y} + c$
 $w (x,y); e, p) = (x,y) \begin{cases} \partial x + \partial$$$$$$$$$$$

50 the adjacent Operator m to the Operator L
(5 9n' by,

$$f'(w) = \frac{\partial^2 w}{\partial x \partial y} - \frac{\partial}{\partial x} \left(\frac{\partial}{x+y}w\right) - \frac{\partial}{\partial y} \left(\frac{\partial}{x+y}w\right)$$
(b)
9n'

$$w(x,y;\varepsilon,p) = (x+y) \left\{ \partial xy + (e-p)(x-y) + \partial \epsilon p \right\},$$
(c)
(e+p)³
(e+p)³
(e+p)³
(e+p)³
(b) $\Rightarrow \frac{\partial w}{\partial x} = \frac{\partial xy + (e-p)(x-y) + \partial \epsilon p + (x+y)(\partial y + \epsilon p)}{(e+p)^3}$
(c)
(c) $\Rightarrow \frac{\partial w}{\partial y} = \frac{\partial xy + (e-p)(x-y) + \partial \epsilon p + (x+y)(\partial y - \epsilon p)}{(e+p)^3}$
(c)
(c) $\Rightarrow \frac{\partial w}{\partial x} = \frac{\partial y + e-p + dx - e+p + 2(x+y)}{(e+p)^3}$
(c)
(c) $\Rightarrow \frac{\partial^2 w}{\partial x \partial y} = \frac{\partial y + e-p + dx - e+p + 2(x+y)}{(e+p)^3}$
(c)
(c) $\Rightarrow \frac{\partial^2 w}{\partial x \partial y} = \frac{\partial y + e-p + dx - e+p + 2(x+y)}{(e+p)^3}$
(c)
(c) $\Rightarrow \frac{\partial^2 w}{\partial x \partial y} = \frac{\partial y + (e-p)(x-y) + 2ep}{(e+p)^3}$
(c)
(c) $\Rightarrow \frac{\partial^2 w}{\partial x \partial y} = \frac{\partial^2 xy + (e-p)(x-y) + 2ep}{(e+p)^3}$
(c)
(c) $\Rightarrow \frac{\partial^2 w}{\partial y} = \frac{\partial^2 xy + (e-p)(x-y) + 2ep}{(e+p)^3}$
(c)
(c) $\Rightarrow \frac{\partial^2 w}{\partial y} = \frac{\partial^2 xy + (e-p)(x-y) + 2ep}{(e+p)^3}$

$$= \frac{H(1+1)}{((c+p))^{3}} \xrightarrow{-2} (2y+(c-p)+2x(2x-c+p)) = 0$$

$$= \frac{1}{((c+p))^{3}} \xrightarrow{(c+p)^{3}} \xrightarrow{(c+p)^{3}} \xrightarrow{(b+p)^{3}} \xrightarrow{(c+p)^{3}} \xrightarrow{$$

In the present problem the values of z $\xi \frac{\partial z}{\partial x} = p$ are gn' by

$$\frac{2}{2} = \frac{3}{2x} + \frac{3}{2} + \frac{3$$
$$= \frac{12}{(e+p)^3} \left[\frac{e^6 - p^6}{6} + \frac{e^9}{2} (e^{1} - p^4) \right]^{28}$$

$$= (e+p)^{-3} \left\{ 2(e^3 + p^3)(e^3 - p^3) + 3e^9(e^4 - p^3)(e^3 + p^3) \right\}^{16}$$

$$= (e+p)^{-3} \left\{ 2(e^3 + p^3)(e^2 - p^3) + 3e^9(e^3 + p^3) + 3e^9(e^3 + p^3) \right\}^{16}$$

$$= (e+p)^{-3} (e-p) \left\{ 2(e^3 + p^3)(e^2 + p^3) + 1e^9(e^3 + p^3) \right\}^{26}$$

$$= (e+p)^{-3} (e-p) \left\{ 2(e^3 + p^3)(e^2 + p^3) + 1e^9(e^3 + p^3) \right\}^{26}$$

$$= (e+p)^{-3} (e-p) \left\{ 2(e^3 + p^3)(e^2 + p^3) + 1e^9(e^3 + p^3) \right\}^{26}$$

$$= (e+p)^{-3} (e-p) \left\{ 2(e^2 + p^2) + 1e^9(e^3 + p^3) \right\}^{26}$$

$$= (e+p)^{-3} (e-p) \left\{ 2(e^2 + p^2) + 1e^9(e^3 + p^3) \right\}^{26}$$

$$= (e+p)^{-3} (e-p) \left\{ 2(e^2 + p^2) + 1e^9(e^3 + p^3) \right\}^{26}$$

$$= (e+p)^{-3} (e-p) \left\{ 2(e^2 + p^2) + 1e^9(e^3 + p^3) \right\}^{26}$$

$$= (e+p)^{-3} (e-p) \left\{ 2(e^2 + p^2) + 1e^9(e^3 + p^3) \right\}^{26}$$

$$= (e+p)^{-3} (e-p) \left\{ 2(e^2 + 1p^2 - e^9) \right\}^{26}$$

$$Replacting e \in p by x respectively in (16) + he$$

$$rais doin of the go' equ at any point (x,y) i'$$

$$Z = 2x^3 + 3xy^2 - 3x^2y - 2y^3$$

29 Vibrations of a string of finite length (Method of Seperation of Variables):. let us consider the following Problem $y_{tt} - c^2 y_{xx=0}$, $o \leq x \leq L$, $t \geq 0 \rightarrow 0$ $\mathcal{Y}(x,0) = f(x)$, $0 \leq x \leq L \rightarrow \textcircled{2}$) $\mathcal{Y}_{\mathcal{F}}(x,0) = g(x)$, $0 \leq x \leq L \rightarrow 3$ $Y(0,t) = Y(L,t) = 0, t>0 \rightarrow (f)$ so, F & g are the initial displacement & velocity respectively · let us assume the soln. of equ () in the form. $\mathcal{G}(x_{2}t) = \chi(x_{1})T(t)$ Then, $\frac{\chi''}{\chi} = \frac{T''}{c^2 T}$ Observe that the right hand side is q function of t alone while the left hand Side is fac of x above, Hence each of them must be constant & equal to say λ . ? Therefore, $\chi'' - \lambda \chi = 0$ $T'' - c^2 \lambda T = 0$ From (4) we have, $Y(0,t) = X(0) T(t) = 0 \quad \forall \quad t \ge 0$ Since, T(+) to we get X(0)=0

Therefore we have, x = xx

which is an eigen value problem.

X>0 the soln of the above eigen value Roblem is

X(x) = Ae TAx + Be TAx

where A &B are arbitrary constants To satisfy the boundary conditions.

AtB = AQUAL +BQ =0.

The only possibility is A=8=0 . Hence there is no eigen value 2>0 Case ii):-

 $\lambda = 0 \cdot In$ this case the soln of the eigen value problem is of the form $\chi(x) = A + Bx$

The boundary conditions imply that A=0 &

(ase iii):.

 $\lambda < 0$, The soln in this case is of the form $\lambda (x) = A \cos \sqrt{1 + 1}$

The condition $\chi_{(0)=0}$ implies that $A=0 \in \chi(L)=0$ implies that $B \sin \sqrt{-\lambda} = 0$.

As B=0 gives only a typical solo, must have sin V-21 =0 for a non-trivial we sdr ie) V-N=nT, n=1,2,3-... $-\gamma u = \left(\frac{u\mu}{b}\right)_{T}$

These in are called eigen values and the , for sin(nTIX) are the corresponding eigen fnc .

:
$$Xn = Bn Sin(n\pi x | 2)$$

For each, In we have,

$$T_n(t) = c_n \cos\left(\frac{n\pi ct}{2}\right) + D_n \sin\left(\frac{n\pi ct}{2}\right)$$

where cn & Dn are arbitary constants Hence,

 $Sin\left(\frac{n\pi t}{\rho}\right)$

is a soln of equ OG satisfies the boundary conditions (4).

If y, Gy2 are two som of a linear homogeneous equ satisfying linear homogeneous boundary conditions, Then y1+y2 is also a solu of that equ & satisfies the same boundary conditions.

This is called the principle of Super position observe that eqn (D, and the boundary conditions (4) are linear & homogeneous.

31

.: Thes The principle of superposition

31

the series $y(x_0,t) = \sum_{n=1}^{\infty} y_n(x_0,t) \rightarrow G$

If it converges is also a solu of equ() Satisfying the boundary condition (4). In fact we assume that term by term diffin Possible. and that the derived series is also convergent \cdot now, anthen must be choosen such that y as go' equ(5) satisfies the initial conditions (2) $\xi_{1}(3)$.

The initial conditions y(x,0) = f(x). gives, $f(x) = \sum_{n=1}^{\infty} q_n \sin\left(\frac{n\pi x}{k}\right), \quad 0 \le x \le k \rightarrow 0$ In The initial conditions $y_t(x_{20}) = g_{00}(x_{10}) gives$ $g(x) = \sum_{n=1}^{\infty} p(\frac{n\pi c}{2}) \sin\left(\frac{n\pi x}{2}\right), ocx < l \rightarrow (=)$ Hence, an Elbn are gn' by the fourier coneff of the half range sine series of fix & gir) respectively, $\frac{\partial Q}{\partial x} = \frac{2}{2} \int f(x) \sin\left(\frac{n\pi x}{2}\right) dx \rightarrow \text{S}$ and, $bn = \frac{2}{n\pi c} \int_{0}^{X} g(x) \sin\left(\frac{n\pi x}{2}\right) dx - 0$

we have derived the same result earlier in d' Alembert's soln.

The method of integral transforms:
Suppose we have to determine a factor
which depends on the independent Variables

$$x_1, x_2, \dots, x_n$$
 and whase behaviour is determined
by the linear PDE.
 $a(x_1) \frac{\partial u}{\partial x_1^2} + b(x_1) \frac{\partial u}{\partial x_1} + c(x_1)u + Lu = x$
 $\partial x_1^2 - \partial x_1$
in which L is a Lineas differential $\Rightarrow 0$
Operator in the Variables $x_2 \dots x_n$ and the
range of Vasiation of x_1 is $a \leq x_1 \leq \beta$.
 $\overline{u}(\epsilon_1, x_2, \dots, x_n) = \int_{a}^{\beta} u(x_1, x_2, \dots, x_n)$
Then an integration by parts shows that
 $\beta = \{a(x_1) \frac{\partial^2 u}{\partial x_1^2} + b(x_1) \frac{\partial u}{\partial x_1} + c(x_1)u \} \ltimes (\epsilon_1, x_1)$
 $a = 9(\epsilon_1, x_2, \dots, x_n) + \int_{a}^{\beta} u \{\frac{\partial^2}{\partial x_1^2} - (\alpha k_1) - \frac{\partial}{\partial x_1} - (\alpha k_1) - (\alpha k_1$

Unit -
$$\overline{y}$$

Elementary solution of haplace Equation:
Let y be the functions given by,
 $y = 9 \mid (\overline{x} - \overline{x}')^{2} + (y - y)^{2} + (z - z')^{2} - y'^{2} - y'^$

$$= -\frac{q}{|\overline{v}-\overline{v}|^{3}} + \frac{2q((\overline{v}-\overline{v}))^{2}}{1(|\overline{v}-\overline{v}|)^{2} + (\overline{y}-\overline{y}|)^{2} + (\overline{v}-\overline{v})^{2}|^{2}}$$

$$= -\frac{q}{|\overline{v}-\overline{v}|^{3}} + \frac{3q((\overline{v}-\overline{v}))^{2}}{|\overline{v}-\overline{v}|^{1}5} \longrightarrow (5)$$

$$(5+(5+6)+)$$

$$= \frac{3q}{|\overline{v}-\overline{v}|^{3}} + \frac{3q}{|\overline{v}-\overline{v}|^{5}} + \frac{3q}{|\overline{v}-\overline{v}|^{5}} |(\overline{v}-\overline{v})^{4} + (\overline{y}-\overline{y})^{4} + (\overline{v}-\overline{v})^{4} + (\overline{y}-\overline{y})^{4} + (\overline{v}-\overline{v})^{4} + ($$

2

$$\begin{split} \varphi = \sum_{i=1}^{n} 9i / |\overline{y} - \overline{y}_i| \text{ is a setue of taplace equation} \\ \text{Assume that two electric changes + q and - q \\ are totated enoug closely to each other at point \overline{y}' and $\overline{y}' + s\overline{y}'$ where $s\overline{y}' = (l, m, n) = \int ext tas \\ \text{distribution, taplace equation have a set of two form.} \\ \varphi = -\frac{q}{|\overline{y} - \overline{y}'|} + \frac{q}{|\overline{y} - \overline{y}' + s\overline{y}'|} \\ \text{tensider.} \\ \frac{1}{|\overline{y} - \overline{y}'|} = \frac{1}{|\overline{y} - \overline{y}'|} + \frac{1}{|\overline{y} - \overline{y}' + s\overline{y}'|} \\ \text{tensider.} \\ \frac{1}{|\overline{y} - \overline{y}'|} = \frac{1}{|\overline{y} - \overline{y}'|} + \frac{q}{|\overline{y} - \overline{y}'|^3} = \frac{1}{a + da^3} + \frac{1}{|\overline{y} - \overline{y}'|^3} \\ \text{the OinOus get.} \\ \psi = -\frac{q}{|\overline{y}'|} + \frac{q}{|\overline{y}' - \overline{y}'|} + q \left[\frac{l(x - x') + m(y - y') + n(z - z')}{|\overline{y} - \overline{y}'|^3} \right] \\ \varphi = q \left[\frac{l(x - x') + m(y - y') + n(z - z')}{|\overline{y} - \overline{y}'|^3} - \frac{1}{|\overline{y} - \overline{y}'|^3} \right] \\ \varphi = q \left[\frac{l(x - x') + m(y - y') + n(z - z')}{|\overline{y} - \overline{y}'|^3} - \frac{1}{|\overline{y} - \overline{y}'|^3} \right] \\ \varphi = q \left[\frac{l(x - x') + m(y - y') + n(z - z')}{|\overline{y} - \overline{y}'|^3} - \frac{1}{|\overline{y} - \overline{y}'|^3} \right] \\ \varphi = \frac{\mu}{q} \left[\frac{l(x - x') + m(y - y') + n(z - z')}{|\overline{y} - \overline{y}'|^3} - \frac{1}{|\overline{y} - \overline{y}'|^3} \right] \\ \mu = \frac{\mu}{q} \left[\frac{l(x - x') + m(y - y') + n(z - z')}{|\overline{x} - \overline{y}'|^3} \right] \\ \mu = \frac{\mu}{q} \left[\frac{l(x - x') + m(y - y') + n(z - z')}{|\overline{x} - \overline{y}'|^3} \right] \\ \mu = \frac{\mu}{q} \left[\frac{l(x - x') + m(y - y') + n(z - z')}{|\overline{x} - \overline{y}'|^3} \right] \\ \mu = \frac{\mu}{q} \left[\frac{l(x - x') + m(y - y') + n(z - z')}{|\overline{x} - \overline{y}'|^3} \right] \\ \mu = \frac{\mu}{q} \left[\frac{l(x - x') + m(y - y') + n(z - z')}{|\overline{x} - \overline{y}'|^3} \right] \\ \mu = \frac{\mu}{q} \left[\frac{l(x - x') + m(y - y') + n(z - z')}{|\overline{x} - \overline{y}'|^3} \right] \\ \mu = \frac{\mu}{q} \left[\frac{l(x - x') + m(y - y') + n(z - z')}{|\overline{x} - \overline{y}'|^3} \right] \\ \mu = \frac{\mu}{q} \left[\frac{l(x - x') + m(y - y') + n(z - z')}{|\overline{x} - \overline{y}'|^3} \right] \\ \mu = \frac{\mu}{q} \left[\frac{l(x - x') + m(y - y') + n(z - z')}{|\overline{x} - \overline{y}'|^3} \right] \\ \mu = \frac{\mu}{q} \left[\frac{l(x - x') + m(y - y') + n(z - z')}{|\overline{x} - \overline{y}'|^3} \right] \\ \mu = \frac{\mu}{q} \left[\frac{l(x - x') + m(y - y') + n(z - z')}{|\overline{x} - \overline{y}'|^3} \right]$$$

ing

$$= \left[(x - x')i^{2} + (y - y')j^{2} + (z - z')i^{2} \right]$$

$$= \mu \left[f(x - x') + m(y - y') + n(z - z')j^{2} \right]$$

$$= i^{2} (\textcircled{o} + akes we form, y = \frac{m(r - r')}{|r - r'|^{3}} \longrightarrow (\textcircled{o})$$

$$\begin{aligned} \text{Censider} \\ \frac{\partial}{\partial x'} \frac{1}{|\overline{x}-\overline{x'}|} &= \frac{\partial}{\partial x'} \left[\frac{1}{((x-x')^2 + (y-y')^2 + (z-z)^2)^2} \right]^{1/2} \\ &= \frac{\partial}{\partial x'} \left[(x-x')^2 + (y-y')^2 + (z-z')^2 \right]^{1/2} \\ &= -1/2 \left[(x-x')^2 + (y-y')^2 + (z-z')^2 \right]^{1/2} \\ &= -1/2 \left[(x-x')^2 + (y-y')^2 + (z-z)^2 \right]^{1/2} \\ &= (x-x') \right] \left\{ \left[(x-x')^2 + (y-y')^2 + (z-z)^2 \right]^{1/2} \right\}^3 \\ &= (x-x') \right] \left\{ \left[(x-x')^2 + (y-y')^2 + (z-z)^2 \right]^{1/2} \right\}^3 \\ &= (x-x') \left[\frac{1}{|\overline{x}-\overline{x'}|^3} \right] \\ &= \frac{\partial}{\partial x'} \frac{1}{|\overline{x}-\overline{x'}|} \\ &= \frac{(y-x')}{|\overline{x}-\overline{x'}|^3} \\ &= \frac{\partial}{\partial x'} \frac{1}{|\overline{x}-\overline{x'}|^3} \\ &= \frac{\partial}{\partial x'} \frac{1}{|\overline{x}-\overline{x'}|^3} \\ &= \frac{\partial}{\partial x'} \frac{1}{|\overline{x}-\overline{x'}|^3} \\ &= \frac{\partial}{|\overline{x}-\overline{x'}|^3} + \frac{m(y-y')}{|\overline{x}-\overline{x'}|^3} \\ &= \frac{\partial}{|\overline{x}-\overline{x'}|^3} \\ &= \frac{1}{|\overline{x}-\overline{x'}|^3} + \frac{m(y-y')}{|\overline{x}-\overline{x'}|^3} \\ &= \frac{1}{|\overline{x}-\overline{x'}|^3} \\ &= \frac{1}{|\overline{x}-\overline{x'}|^3} \\ &= \frac{1}{|\overline{x}-\overline{x'}|^3} + \frac{1}{|\overline{x}-\overline{x'}|^3} \\ &= \frac{1}{|\overline{x}-\overline{x'}|^3} \\ &= \frac{1}{|\overline{x}-\overline{x'}|^3} + \frac{1}{|\overline{x}-\overline{x'}|^3} \\ &= \frac{1}{|\overline{x}-\overline{$$

Buppeso we have if curtiness distribution
of changes fills a segion Vol & pace then of takes
the form.
$$\Psi = \int \frac{dq}{|\nabla - \overline{Y}|^{2}}, \quad \text{where } q \text{ is the "Stellges measure".}$$

$$\Psi = \int \frac{dq}{|\nabla - \overline{Y}|^{2}}, \quad \text{where } q \text{ is the "Stellges measure".}$$

$$\Psi = \int \frac{e(\overline{Y})d\overline{z}^{2}}{|\nabla - \overline{Y}|^{2}}$$

$$\exists p \text{ is the change dousity.}$$

$$\Psi(\overline{Y}) = \int \frac{e(\overline{Y})d\overline{z}^{2}}{|\nabla - \overline{Y}|^{2}}$$

$$\exists p \text{ so the change dousity.}$$

$$\Psi(\overline{Y}) = \int \frac{\sigma(\overline{Y}')d\overline{s}^{2}}{|\nabla - \overline{Y}'|}$$

$$\exists p \text{ so the change that cause a obectricchange of dousity of them
$$\Psi(\overline{Y}) = \int \frac{\sigma(\overline{Y}')d\overline{s}^{2}}{|\nabla - \overline{Y}'|} \longrightarrow \mathbb{O}$$

$$\forall (\overline{Y}) = \int \frac{e(\overline{Y}')d\overline{Y}}{|\overline{Y} - \overline{Y}'|} \longrightarrow \mathbb{O}$$

where the volume N is bounded. Prove that
$$\lim_{T \to \infty} \Psi(\overline{Y})M, \quad \text{where } N = \int e(\overline{Y}')d\overline{Y}$$

$$\lim_{T \to \infty} \Psi(\overline{Y})M, \quad \text{where } N = \int e(\overline{Y}')d\overline{Y}$$

$$\lim_{T \to \infty} \Psi(\overline{Y})M, \quad \text{where } N = \int e(\overline{Y}')d\overline{Y}$$

$$\lim_{T \to \infty} \Psi(\overline{Y})M, \quad \text{where } N = \int e(\overline{Y}')d\overline{Y}$$

$$\lim_{T \to \infty} \Psi(\overline{Y})M, \quad \text{where } N = \int e(\overline{Y}')d\overline{Y}$$

$$\lim_{T \to \infty} \Psi(\overline{Y})M, \quad \text{where } N = \int e(\overline{Y}')d\overline{Y}$$

$$\lim_{T \to \infty} \Psi(\overline{Y})M, \quad \text{where } \nabla = \int e(\overline{Y}')d\overline{Y}$$

$$\lim_{T \to \infty} \Psi(\overline{Y})M, \quad \text{where } \nabla = \int e(\overline{Y}')d\overline{Y}$$

$$\lim_{T \to \infty} \Psi(\overline{Y})M, \quad \text{where } \nabla = \int e(\overline{Y}')d\overline{Y}$$

$$\lim_{T \to \infty} \Psi(\overline{Y})M, \quad \text{where } \nabla = \int e(\overline{Y}')d\overline{Y}$$

$$\lim_{T \to \infty} \Psi(\overline{Y})M, \quad \text{where } \nabla = \int e(\overline{Y}')d\overline{Y}$$

$$\lim_{T \to \infty} \Psi(\overline{Y})M, \quad \text{where } \nabla = \int e(\overline{Y}')d\overline{Y}$$

$$\lim_{T \to \infty} \Psi(\overline{Y})M, \quad \text{where } \nabla = \int e(\overline{Y}')d\overline{Y}$$$$

$$\begin{aligned}
\frac{\mu}{\nu_1} &< \psi(x) < \mu}{\nu_2} \\
\text{Multiply the above inequality by x, we have } \\
\frac{\mu}{\nu_1} &< x < x, \psi(x) < \mu}{\nu_2} < \mu/\nu_2, x \rightarrow 0 \\
\text{As } & r \rightarrow \infty, x/\nu_1 + y/\nu_2 \rightarrow 1 \\
\hline
\quad \vdots \lim_{x \rightarrow \infty} \mu/\nu_1, & \lim_{x \rightarrow \infty} x \cdot \psi(x) < \lim_{x \rightarrow \infty} \mu/\nu_2, \\
\mu \lim_{x \rightarrow \infty} x/\nu_1, & \lim_{x \rightarrow \infty} x \cdot \psi(x) < \mu \lim_{x \rightarrow \infty} \frac{\mu}{\nu_2}, \\
\hline
\text{Frem (*)} \\
=) & \mu/\nu_1 & \lim_{x \rightarrow \infty} x \cdot \psi(x) < \mu \lim_{x \rightarrow \infty} \frac{\pi}{\nu_2}, \\
\text{Frem (*)} \\
=) & \mu/\nu_1 & \mu = \psi(x) < \mu. \\
\hline
\text{Frem (*)} \\
=) & \mu/\nu_1 & \mu = \psi(x) < \mu. \\
\hline
\text{Frem (*)} \\
=) & \mu/\nu_1 & \mu = \psi(x) < \mu. \\
\hline
\text{Frem (*)} \\
=) & \mu/\nu_1 & \mu = \psi(x) < \mu. \\
\hline
\text{Frem (*)} \\
=) & \mu/\nu_1 & \mu = (\mu = \mu) \\
\hline
\text{Frem (*)} \\
=) & \mu/\nu_1 & \mu = \mu = \mu, \\
\hline
\text{Frem (*)} \\
=) & \mu/\nu_1 & \mu = \mu, \\
\hline
\text{Frem (*)} \\
=) & \mu/\nu_1 & \mu = \mu, \\
\hline
\text{Frem (*)} \\
=) & \mu/\nu_1 & \mu = \mu, \\
\hline
\text{Frem (*)} \\
=) & \mu/\nu_1 & \mu, \\
\hline
\text{Frem (*)} \\
=) & \mu/\nu_1 & \mu, \\
\hline
\text{Frem (*)} \\
=) & \mu/\nu_1 & \mu, \\
\hline
\text{Frem (*)} \\
=) & \mu/\nu_1 & \mu, \\
\hline
\text{Frem (*)} \\
=) & \mu/\nu_1 & \mu, \\
\hline
\text{Frem (*)} \\
=) & \mu/\nu_1 & \mu, \\
\hline
\text{Frem (*)} \\
=) & \mu/\nu_1 & \mu, \\
\hline
\text{Frem (*)} \\
=) & \mu/\nu_1 & \mu, \\
\hline
\text{Frem (*)} \\
=) & \mu/\nu_1 & \mu, \\
\hline
\text{Frem (*)} \\
=) & \mu/\nu_1 & \mu, \\
\hline
\text{Frem (*)} \\
=) & \mu/\nu_1 & \mu, \\
\hline
\text{Frem (*)} \\
=) & \mu/\nu_1 & \mu, \\
\hline
\text{Frem (*)} \\
=) & \mu/\nu_1 & \mu, \\
\hline
\text{Frem (*)} \\
=) & \mu/\nu_1 & \mu, \\
\hline
\text{Frem (*)} \\
=) & \mu/\nu_1 & \mu, \\
\hline
\text{Frem (*)} \\
=) & \mu/\nu_1 & \mu, \\
\hline
\text{Frem (*)} \\
=) & \mu/\nu_1 & \mu, \\
\hline
\text{Frem (*)} \\
=) & \mu/\nu_1 & \mu, \\
\hline
\text{Frem (*)} \\
=) & \mu/\nu_1 & \mu, \\
\hline
\text{Frem (*)} \\
=) & \mu/\nu_1 & \mu, \\
\hline
\text{Frem (*)} \\
=) & \mu/\nu_1 & \mu, \\
\hline
\text{Frem (*)} \\
=) & \mu/\nu_1 & \mu, \\
\hline
\text{Frem (*)} \\
=) & \mu/\nu_1 & \mu, \\
\hline
\text{Frem (*)} \\
=) & \mu/\nu_1 & \mu, \\
\hline
\text{Frem (*)} \\
=) & \mu/\nu_1 & \mu, \\
\hline
\text{Frem (*)} \\
=) & \mu/\nu_1 & \mu, \\
\hline
\text{Frem (*)} \\
=) & \mu/\nu_1 & \mu, \\
\hline
\text{Frem (*)} \\
=) & \mu/\nu_1 & \mu, \\
\hline
\text{Frem (*)} \\
=) & \mu/\nu_1 & \mu, \\
\hline
\text{Frem (*)} \\
=) & \mu/\nu_1 & \mu, \\
\hline
\text{Frem (*)} \\
=) & \mu/\nu_1 & \mu, \\
\hline
\text{Frem (*)} \\
=) & \mu/\nu_1 & \mu, \\
\hline
\text{Frem (*)} \\
=) & \mu/\nu_1 & \mu, \\
\hline
\text{Frem (*)} \\
=) & \mu/\nu_1 & \mu/\nu_1 & \mu, \\
\hline
\text{Frem (*)} \\
=) & \mu/\nu_1 & \mu, \\
\hline
\text{Frem (*)} \\
=) & \mu/\nu_1 & \mu, \\
\hline
\text{Frem ($$

10

$$\begin{aligned} \frac{\partial \Psi}{\partial x} + \frac{\partial f}{\partial y} + \frac{\partial f}{\partial x} & \rightarrow 0 \end{aligned}$$

$$\begin{aligned} \frac{\partial \Psi}{\partial x} + \frac{\partial f}{\partial y} &= \frac{\partial f}{\partial x} \left(\frac{\partial f}{\partial x} \right)^2 + \frac{\partial f}{\partial y} + \frac{\partial f}{\partial x} + \frac{\partial f}{\partial x} \end{aligned}$$

$$\begin{aligned} \frac{\partial^2 \Psi}{\partial x^2} &= \frac{\partial f}{\partial y^2} \left(\frac{\partial f}{\partial x} \right)^2 + \frac{\partial f}{\partial y} + \frac{\partial f}{\partial x} + \frac{\partial^2 f}{\partial x^2} \end{aligned}$$

$$\begin{aligned} \frac{\partial^2 \Psi}{\partial x^2} &= \frac{\partial f}{\partial y^2} \left(\frac{\partial f}{\partial x} \right)^2 + \frac{\partial f}{\partial y} + \frac{\partial f}{\partial y} + \frac{\partial^2 f}{\partial y^2} \end{aligned}$$

$$\begin{aligned} \frac{\partial^2 \Psi}{\partial y^2} &= \frac{\partial f}{\partial y^2} \left(\frac{\partial f}{\partial x} \right)^2 + \frac{\partial f}{\partial y} + \frac{\partial f}{\partial y} + \frac{\partial f}{\partial y^2} \end{aligned}$$

$$\begin{aligned} \frac{\partial^2 \Psi}{\partial y^2} &= \frac{\partial f}{\partial y^2} \left(\frac{\partial f}{\partial x} \right)^2 + \frac{\partial f}{\partial y} + \frac{\partial f}{\partial y^2} + \frac{\partial f}{\partial y^2} \end{aligned}$$

$$\begin{aligned} \frac{\partial^2 \Psi}{\partial y^2} &= \frac{\partial f}{\partial y^2} \left(\frac{\partial f}{\partial x} \right)^2 + \frac{\partial f}{\partial y} \left(\frac{\partial f}{\partial x^2} \right)^2 + \frac{\partial f}{\partial y} \left(\frac{\partial f}{\partial y^2} \right)^2 + \frac{\partial f}{\partial y} \left(\frac{\partial f}{\partial y^2} \right)^2 + \frac{\partial f}{\partial y} \left(\frac{\partial f}{\partial y^2} \right)^2 + \frac{\partial f}{\partial y} \left(\frac{\partial f}{\partial y^2} \right)^2 + \frac{\partial f}{\partial y} \left(\frac{\partial f}{\partial y^2} \right)^2 + \frac{\partial f}{\partial y} \left(\frac{\partial f}{\partial y^2} \right)^2 + \frac{\partial f}{\partial y} \left(\frac{\partial f}{\partial y^2} \right)^2 + \frac{\partial f}{\partial y} \left(\frac{\partial f}{\partial y^2} \right)^2 + \frac{\partial f}{\partial y} \left(\frac{\partial f}{\partial y^2} \right)^2 + \frac{\partial f}{\partial y} \left(\frac{\partial f}{\partial y^2} \right)^2 + \frac{\partial f}{\partial y} \left(\frac{\partial f}{\partial y^2} \right)^2 + \frac{\partial f}{\partial y} \left(\frac{\partial f}{\partial y^2} \right)^2 + \frac{\partial f}{\partial y} \left(\frac{\partial f}{\partial y^2} \right)^2 + \frac{\partial f}{\partial y} \left(\frac{\partial f}{\partial y^2} \right)^2 + \frac{\partial f}{\partial y} \left(\frac{\partial f}{\partial y^2} \right)^2 + \frac{\partial f}{\partial y} \left(\frac{\partial f}{\partial y^2} \right)^2 + \frac{\partial f}{\partial y} \left(\frac{\partial f}{\partial y^2} \right)^2 + \frac{\partial f}{\partial y} \left(\frac{\partial f}{\partial y^2} \right)^2 + \frac{\partial f}{\partial y} \left(\frac{\partial f}{\partial y^2} \right)^2 + \frac{\partial f}{\partial y} \left(\frac{\partial f}{\partial y^2} \right)^2 + \frac{\partial f}{\partial y} \left(\frac{\partial f}{\partial y^2} \right)^2 + \frac{\partial f}{\partial y} \left(\frac{\partial f}{\partial y^2} \right)^2 + \frac{\partial f}{\partial y} \left(\frac{\partial f}{\partial y^2} \right)^2 + \frac{\partial f}{\partial y} \left(\frac{\partial f}{\partial y^2} \right)^2 + \frac{\partial f}{\partial y} \left(\frac{\partial f}{\partial y^2} \right)^2 + \frac{\partial f}{\partial y} \left(\frac{\partial f}{\partial y^2} \right)^2 + \frac{\partial f}{\partial y} \left(\frac{\partial f}{\partial y} \right)^2 + \frac{\partial f}{\partial y} \left(\frac{\partial f}{\partial y} \right)^2 + \frac{\partial f}{\partial y} \left(\frac{\partial f}{\partial y} \right)^2 + \frac{\partial f}{\partial y} \left(\frac{\partial f}{\partial y} \right)^2 + \frac{\partial f}{\partial y} \left(\frac{\partial f}{\partial y} \right)^2 + \frac{\partial f}{\partial y} \left(\frac{\partial f}{\partial y} \right)^2 + \frac{\partial f}{\partial y} \left(\frac{\partial f}{\partial y} \right)^2 + \frac{\partial f}{\partial y} \left(\frac{\partial f}{\partial y} \right)^2 + \frac{\partial f}{\partial y} \left(\frac{\partial f}{\partial y} \right)^2 + \frac{\partial f}{\partial y} \left(\frac{\partial f}{\partial y} \right)^2 + \frac{\partial f}{\partial y} \left(\frac{\partial f}{\partial y} \right)^2 + \frac{\partial f}{\partial y} \left(\frac{\partial f}{\partial y} \right)^2 + \frac{\partial f}{\partial y} \left(\frac{\partial f}{\partial y} \right$$

$$= \int -F''(f) + x(f) F'(f) = 0$$
(ii), $\frac{dF}{df} + x(f) \cdot \frac{dF}{df} = 0$

$$= \int \frac{dF}{df} = A e^{\int x(f) df} \text{ (share } A \text{ is Constant}$$
(we have, $X = F\{f(x, y, z)\}$
 $x = A \int e^{\int x(f) df} \cdot df + g$
(share B is Constant.

$$= \int e^{\int x(f) df} \cdot df + g$$
(share B is Constant.

$$= \int e^{\int x(f) df} \cdot df + g$$
(share B is Constant.

$$= \int e^{\int x(f) df} \cdot df + g$$
(share B is Constant.

$$= \int e^{\int x(f) df} \cdot df + g$$
(share B is Constant.

$$= \int e^{\int x(f) df} \cdot df + g$$
(share f is Constant.

$$= \int e^{\int x(f) df} \cdot df + g$$
(share f if f is Constant.

$$= \int e^{\int x(f) df} \cdot df + g$$
(share f is Constant.

$$= \int e^{\int x(f) df} + g + g^{2} + g^{2} = C x^{2/3}$$
(f is f if f is f is f is f if f if f is f if f if f is f if f if

az

2

 $grad f = \left[\frac{4}{3} x^{\frac{1}{3}} - \frac{2}{3} x^{\frac{-5}{3}} (g^{2} + 2) \right] i^{2} + 2x \frac{2}{3} x^{\frac{-2}{3}} + 2x \frac{2}{2} i^{2}$ -: $grad f = \frac{2}{3} x^{\frac{-5}{3}} \left\{ \left[2x^{2} - (g^{2} + 2) \right] i^{2} + 3x g \frac{-2}{3} + 3x 2 \frac{2}{3} \frac{2}{3} \right\}$ Scanned with CamScanner

$$\begin{aligned} \left| g^{rad} \frac{1}{5} \right|^{2} = \sqrt{\left(\frac{9}{3}\right)^{2} \left(x^{-5/3}\right)^{2} \sum \left(\frac{2x^{2}}{9^{2}-y^{2}}\right)^{2} + \left(\frac{3xy}{9}\right)^{2} + \left(\frac{$$

.. The given set of divergess forms a family
of spuipotential surfaces.
$$\varphi = A \int e^{-\int x(t) ds} + B$$
$$= A \int e^{-\int x(t)} + B = -2/3A \int e^{-3/2} + B$$
$$= -9/3A \left[x^{-3/2} + B = -2/3A \int e^{-3/2} + B \right]$$
The required potential function is.
$$\varphi = \int 2/3A \times (x^2 + y^2 + z^2) \int e^{-3/2} + B$$
$$= -9/3A \left[x^{-3/2} + y^2 + z^2 \right] \int e^{-3/2} + B$$
$$= -9/3A \left[x^{-3/2} + y^2 + z^2 \right] \int e^{-3/2} + B$$
$$= -9/3A \times (x^2 + y^2 + z^2) \int e^{-3/2} + B$$
$$= -9/3A \times (x^2 + y^2 + z^2) \int e^{-3/2} + B$$
$$= -9/3A \times (x^2 + y^2 + z^2) \int e^{-3/2} + B$$
$$= -9/3A \times (x^2 + y^2 + z^2) \int e^{-3/2} + B$$
$$= -9/3A \times (x^2 + y^2 + z^2) \int e^{-3/2} + B$$
$$= -9/3A \times (x^2 + y^2 + z^2) \int e^{-3/2} + B$$
$$= -9/3A \times (x^2 + y^2 + z^2) \int e^{-3/2} + B$$
$$= -9/3A \times (x^2 + y^2 + z^2) \int e^{-3/2} + B$$
$$= -9/3A \times (x^2 + y^2 + z^2) \int e^{-3/2} + B$$
$$= -9/3A \times (x^2 + y^2 + z^2) \int e^{-3/2} + B$$
$$= -9/3A \times (x^2 + y^2 + z^2) \int e^{-3/2} + B$$
$$= -9/3A \times (x^2 + y^2 + z^2) \int e^{-3/2} + B$$
$$= -9/3A \times (x^2 + y^2 + z^2) \int e^{-3/2} + B$$
$$= -9/3A \times (x^2 + y^2 + z^2) \int e^{-3/2} + B$$
$$= -9/3A \times (x^2 + y^2 + z^2) \int e^{-3/2} + B$$
$$= -9/3A \times (x^2 + y^2 + z^2) \int e^{-3/2} + B$$
$$= -9/3A \times (x^2 + y^2 + z^2) \int e^{-3/2} + B$$
$$= -9/3A \times (x^2 + y^2 + z^2) \int e^{-3/2} + B$$
$$= -9/3A \times (x^2 + y^2 + z^2) \int e^{-3/2} + B$$
$$= -9/3A \times (x^2 + y^2 + z^2) \int e^{-3/2} + B$$
$$= -9/3A \times (x^2 + y^2 + z^2) \int e^{-3/2} + B$$
$$= -9/3A \times (x^2 + y^2 + z^2) \int e^{-3/2} + B$$
$$= -9/3A \times (x^2 + y^2 + z^2) \int e^{-3/2} + B$$
$$= -9/3A \times (x^2 + y^2 + z^2) \int e^{-3/2} + B$$
$$= -9/3A \times (x^2 + y^2 + z^2) \int e^{-3/2} + B$$
$$= -9/3A \times (x^2 + y^2 + z^2) \int e^{-3/2} + B$$
$$= -9/3A \times (x^2 + y^2 + z^2) \int e^{-3/2} + B$$
$$= -9/3A \times (x^2 + y^2 + z^2) \int e^{-3/2} + B$$
$$= -9/3A \times (x^2 + y^2 + z^2) \int e^{-3/2} + B$$
$$= -9/3A \times (x^2 + y^2 + z^2) \int e^{-3/2} + B$$
$$= -9/3A \times (x^2 + y^2 + z^2) \int e^{-3/2} + B$$
$$= -9/3A \times (x^2 + y^2 + z^2) \int e^{-3/2} + B$$
$$= -9/3A \times (x^2 + y^2 + z^2) \int e^{-3/2} + B$$
$$= -9/3A \times (x^2 + y^2 + z^2) \int e^{-3/2} + B$$
$$= -9/3A \times (x^2 + y^2 + z^2) \int e^{-3/2} + B$$
$$= -9/3A \times (x^2 + y^2 + z^2) \int e^{-3/2} + B$$

If f is a continuous function defined on the boundary S of some finite region V, determine a function $\varphi(x, y, z)$ such that $\nabla^2 \psi = 0$ within $\nabla d \psi = F_1 \text{ on } S$.

ii) Extensiv Dirichlet boundary Value problem: If f is a continuous function defined on the boundary S of a finite simply connected region V, determine a function $\varphi(x, y, z)$ such that $\Delta^2 \psi = 0$ outside V + is such that $\psi = f \text{ on } s$.

for instance, the problem of finding the distribution of temperature within a body in the steady state when each point of its sweface is kept at a prescribed steady temperature in a interior dirichlet problem while that of determining the distribution of potential outside a body whose sweface potential is prescribed in an exterior dirichlet problem.

The exterior of the solutions of a divichlet problem Under nery general Condition be established.

To prove that the existence of the solu. of an extremor direichlet problem is Unique.

)

Prof: Assume that ψ , ψ^2 are solv. of the Interior divichlet problem. Let $\psi = \psi_1 - \psi_2$ we have $\nabla^2 \psi = 0$ within V Cannot exceed its maximum ou S (or) less than its minimum ous.

- = y = 0 within V (\dot{o}), $\psi_1 \psi_2 = 0$ within V = $y_1 = \psi_2'$ within V.
- 2) The solo of the extension dividulet problem is not Unique unless some restriction is placed on the behaviour of $\psi(x,y,z)$ as $y \to \infty$.

Eq: In these dimensional cases, the solu, of the extension dirichlet problem is unique provided $\varphi(x,g,z) \leq C/r$ as $r \to \infty$ where c is a constant In the two dimensional case, we require the function, φ to be bounded at infinity.

Deduction of exterior dirichlet problem from interior problem.

Thrm:

Prof: Within the region V, Choose a Spherical Sweface c with centre o d'radius a.

Invert the space outside the regious with respect to the sphere $C \cdot (i)$, map a point outside V into a point π inside the sphere C such that $O po \pi = (t^2) \rightarrow \mathbb{O}$

The region exterior to the Swefece Smapped into a region Vx bying entirely within the Sphere C.

If $f^*(\pi) = \frac{q}{2\pi} f(R) + \frac{1}{2} \psi^*(\pi)$ is the solur of the interview Divichlet problem.

$$\nabla^{2} \psi^{*} = 0 \quad \text{within } \forall^{*} \longrightarrow \textcircled{O}$$

$$\psi^{*} = \int^{*} (\pi) \quad \text{for } \pi \in S^{*}$$

$$\text{let } \psi(P) = a \mid_{OP} \psi^{*}(\pi)$$

$$= a \mid_{OP} \nabla^{2} \psi^{*}(\pi)$$

$$= a \mid_{OP} \nabla^{2} \psi^{*}(\pi)$$

$$= a \mid_{OP} \nabla^{2} \psi^{*}(\pi)$$

$$= a \mid_{OP} \cdot o \quad (by \textcircled{O})$$
To prove that:

$$\psi(P) = f(P) \quad \text{for } P \in S$$

$$\text{fourthere}$$

$$\psi(P) = a \mid_{OP} \quad f^{*}(\pi) = a \mid_{OP} \cdot a \mid_{O\pi} \cdot f(P)$$

$$= a^{*} \mid_{A^{2}} \cdot f(P) = f(P) \quad \text{for } P \in S.$$
Also, $\nabla^{2} \psi = 0$ outside v.

$$\therefore \psi(P) = a \mid_{OP} \quad \psi^{*}(\pi) \text{ is the } Sclu. \quad cf. \text{ the extension divicities problem } \nabla^{2} \psi = 0$$
 outside v.4.

$$\psi = f(P) \quad for \quad p \in S.$$
Neumann problem:
) Intension Neumann problem:

$$if \quad f is a continuous function which is a diffued vary at each point of the boundary S of a finite region v determine a function which is a finite region v determine a function of the normal devivative $\frac{\partial \psi}{\partial n} = f \text{ at every point}$
of S.
i) Extension Neumann Problem:

$$if \quad Schonic Neumann Problem:$$

$$The f is a continuous function v and the normal devivative $\frac{\partial \psi}{\partial n} = f \text{ at every point}$
of S.$$$$

prescribed at each point of the (Smooth) boundary S of boundary simple connected region V, find a function x (x, y, z) statisfying Vip=0 outside d <u>Dy</u>= jous

Thrm:-

Statement: The necessary condition for the existence of the function of the interior neumann problem is $\int f(p) ds = 0$ that the integrale of forer the toundary S show Namish.

Prof: het à = grad quis Grauss theorem. =) f ands = f div à di s s

 $\begin{array}{c} (\dot{e}), \quad \int \nabla^2 \psi \, dz = \int \frac{\partial \psi}{\partial z} \, ds \longrightarrow (f) \\ s & an \end{array}$

But $\underline{ay} = f(p)$, $(pes) \longrightarrow \textcircled{O}$ an $bet \textcircled{O} in \textcircled{O} : \int v \overset{\circ}{y} dz = \int f(p) ds$. $but \forall \overset{\circ}{y} = 0 = j \circ = \int f(p) ds$ (iv), $\int f(p) ds = 0$.

Thrm: Statement :-Reduce the recemany problem to the Divichlet equation.

Scanned with CamScanner

Proof: Assume that p'is a solu. of Meamana Problem, $\nabla^2 \psi = 0$ within $S \neq \Delta \psi = f(p) for ripe c$ Dn Assume that \$P, 24, 24 are Coutinuous exists. ou c, of s choose of within S & ou c. Auch that, $\frac{\partial \psi}{\partial x} = \frac{\partial \phi}{\partial y}$; $\frac{\partial \psi}{\partial y} = \frac{\partial \phi}{\partial x}$ =) y+ip & au analytic function. $abo, \frac{ab}{ac} = \frac{ab}{an}$ Let p, Q be two pointe ou C. they, $\phi(\alpha) - \phi(p) = \int \frac{2\phi}{\partial s} ds = \int f(s) ds$ But, $\int f(s)ds = 0 = \Rightarrow (a) = \Rightarrow (p)$ =) & is a single valued function and & is continuous, Also il q'is havemonie, then of is also hacemonic. we lan determine the function of within S interior churcill problem. If fis a continuous function prescribed on the boundary S of finite segion V, defermine y (x,y,z) > Vy=0 within V d <u>ap</u> + (K+) p = & at every point 015. Exterior clustchill problem : If f is a continuous function proscribed.

Scanned with CamScanner

ou the boundary $S = \int \alpha finite region V,$ determined $\psi(x, y, z)$ such that $\nabla^2 \psi = 0$ outside $V \neq \frac{\partial \psi}{\partial n} + (k+1)\psi = f$ at every point of S.

Separation of Variables:

In this solu, we have dealing with laplace eque by finding Solur to it by assigning method of separation of variables.

In spherical polar conordinates r, o, p. haplace equi takes the form.

 $\frac{\partial^2 \psi}{\partial r^2} + \frac{2}{r} \frac{\partial \psi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \psi}{\partial \sigma^2} + \frac{\omega t \sigma}{r^2} \cdot \frac{\partial \psi}{\partial \sigma} + \frac{1}{r^2} \sin \sigma$ $\frac{\partial^2 \psi}{\partial \sigma^2} = 0 \rightarrow 0$ Fhis equi hows solv of the form $\frac{\partial^2 \psi}{\partial \sigma^2} = 0 \rightarrow 0$ $\frac{\partial^2 \psi}{\partial \sigma^2} = 0 \rightarrow 0$

To prove that equ (is the solut of equ () let the solut be, $\psi(r, 0, p) = R (p)$. Where R is a junction of r along.

(1) is a function of o alone. \$\overline\$ is a function of \$\overline\$ alone.

$$\begin{split} & \Im \varphi / \partial x = \mathbb{R} \stackrel{()}{\textcircled{}} \stackrel{()}{\cancel{}} \stackrel{()}{\cancel{} \stackrel{()}{\cancel{}} \stackrel{()}{\cancel{}} \stackrel{()}{\cancel{}} \stackrel{()}{\cancel{} \stackrel{()}{\cancel{}} \stackrel$$

$$R^{H} \bigoplus \overline{\Phi} + \frac{2}{7} R^{H} \overline{\Phi} \frac{1}{7} (1/r^{2} \cdot R^{H} \bigoplus \overline{\Phi} + \frac{1}{r^{3}} R \bigoplus \overline{P} + \frac{1}{r^{3}} R \bigoplus \overline{P}$$

 $W \cdot \underline{k} \cdot \overline{f}, \quad \overline{\phi}'' - m^2 \cdot \overline{\phi} = 0$ The solu. of $\overline{\Phi} = \overline{Ae}^{\pm im\overline{\mu}}$ Nous $\frac{1}{m} \left[\begin{array}{c} \textcircled{} \\ \hline \end{array} \right] + \cot \left[\begin{array}{c} \textcircled{} \\ \hline \end{array} \right] - \frac{m^2}{\sin^2 \theta} = -n(n+i)$ =) (i) + cot o (i) - $m^2/sin^2 + n(n+1)$ (i) = o. $=) \textcircled{} + \cot () \textcircled{} - m^2 / \sin^2 () \textcircled{} + n(n+1) () = 0$ $=) (1)' + \cot 0 (1)' - [n(n+1) - m^2/sin^2 0] (1) = 0 - 35$ $\int \sin^2 \phi = 1 - \cos^2 \phi \int = 1 - \mu$ $\sin \varphi = \sqrt{1-\mu^2}$ put, $\cos \phi = \mu =) \sin \phi = \sqrt{1 - \mu^2}$ $\frac{\partial (\mu)}{\partial \mu} = \frac{\partial |\partial \theta|}{\partial \theta}$ $\frac{\partial (i)}{\partial e} = \frac{\partial \phi}{\partial \phi} = \frac{\partial (i)}{\partial \phi} = \frac{\partial (i)}{\partial \phi} = \frac{\partial (i)}{\partial \phi}$ we have $\frac{\partial \mu}{\partial \theta} = -\sin \theta = \int \frac{\partial \theta}{\partial \mu} = -\sin \theta = \frac{\partial \theta}{\partial \mu} = \frac{\partial \theta}{-\sin \theta}$ = $\int (1)^{\prime} = -Sin \otimes \partial (1) / \partial \mu$. $\frac{\partial \psi}{\partial \mu} = \frac{\partial}{\partial \mu} \left(\frac{\partial \psi}{\partial \mu} \right) = \frac{\partial}{\partial \theta} \left(\frac{\partial \psi}{\partial \mu} \right) \frac{\partial \psi}{\partial \theta} = \frac{\partial \psi}{\partial \theta}$ $= \frac{\partial}{\partial \theta} \left[-\frac{\partial}{\partial \theta} \right] = \frac{\partial}{\partial \theta} \left[-\frac{\partial}{\partial \theta} \right] = \frac{\partial}{\partial \theta} \left[-\frac{\partial}{\partial \theta} \right] \frac{\partial}{\partial \theta} \left[$ $= -\underbrace{(i)}^{"} \operatorname{Sino} - \underbrace{(i)}^{"} \operatorname{Coso} = -\underbrace{(i)}^{"} \operatorname{JSino} + \underbrace{(i)}^{"} \operatorname{Coseco} \operatorname{Get}_{\operatorname{Get}}$ $\frac{\partial^2 \omega}{\partial \mu^2} = \frac{1}{\sin \beta} \left[\frac{\omega}{\omega} - \cot \omega \right]$ -Sin 0 $\sin^2 \theta = \frac{2}{2} = 0$ - cot $\theta = \cos \theta = \frac{1}{2}$

Scanned with CamScanner

$$\begin{split} (n)^{n} - \sin^{n} e \quad \frac{\partial^{n}}{\partial \mu^{2}} - (et e \quad \sin e \quad \frac{\partial}{\partial \mu}) \\ =) (n)^{n} = \sin^{n} e \quad \left\{ \frac{\partial^{n}}{\partial \mu^{2}} - \frac{eet e}{\sin \theta} \quad \frac{\partial}{\partial \mu} \right\} \\ \therefore (e) beternes. \\ =) \sin^{n} e \quad \frac{\partial^{n}}{\partial \mu^{2}} - ((et e \sin e + \sin e \cdot et e) \frac{\partial}{\partial \mu}) + \\ (n(e+1) - \frac{m^{2}}{\sin^{2}} - \frac{\partial}{\partial \mu}) = 0. \\ =) (1 - \mu^{2}) \left\{ (\frac{\partial^{2}}{\partial \mu^{2}}) - \partial e \cdot e \cdot e \quad \frac{\partial}{\partial \mu} + m(n+1) - \frac{m^{2}}{\sin \theta} \right\} \\ (f) (ese = Em, n + p_{n}^{m} (cse) + fm, n \cdot Q_{n}^{m} (cse)) \\ \therefore The Selu \cdot eq + the equ & u, \\ (f) (ese = Em, n + p_{n}^{m} (cse) + fm, n \cdot Q_{n}^{m} (cse)) \\ \therefore The Selu \cdot eq + the equ & 0, is qinen by , \\ H = \left\{ An \cdot Y^{n} + B^{n} \right\} \\ (so e + An, Bm, m \quad ace \ constawt \quad d \cdot (Dh \ eartisfies \\ log evalue & associated \ equation . \\ (1 - \mu^{2}) \frac{\partial^{2}}{\partial \mu} - 2\mu \quad \frac{\partial}{\partial \mu} \quad \begin{cases} n(n+1) - \frac{m^{2}}{1 - \mu^{2}} \\ -1 - \mu^{2} \end{cases} \\ = 0 - (ete^{-1}); \\ (chen \ m = 0 + he \ log evalue \ associated \ equation \\ he (const \ log colored \ equa. \\ (1 - \mu^{2}) \frac{\partial^{2}}{\partial \mu^{2}} - 2\mu \quad \frac{\partial}{\partial \mu} + n(n+1) = 0 - (e^{-1}) \\ \end{cases} \\ The is positive \ indegene tai \ by indext \ solutione \ det is given by . \\ (f) (h) = \frac{1}{\partial p} (h) \quad log \ \mu^{H+1} - \frac{e^{-2}}{\partial e} \quad \frac{2^{n}}{(\partial e^{+1})(n-s)} \\ Rn(\mu) = \frac{1}{\partial p} (n-1) \quad log \ \mu^{H+1} - \frac{e^{-2}}{\partial e} \quad \frac{2^{n}}{(\partial e^{+1})(n-s)} \\ Pn - 2 \ S(\mu). \\ \end{cases}$$

According as in is odd (or) even, then general soly. of @ is, $() = Cn pn(\mu) + Dn Qn(\mu)$ where Cn & Dn are constanty Noue, when 0=0, µ=1, an (µ) is infinite So, for is to remain finite on the polar asis take constant Dn to the identically zero. . The sole. of laplace eque @ becomes $\varphi = \sum_{n} (Anr^n + Bn/rn+1) Pn (oso) \rightarrow ()$ Case - ii) :when m to d of m in the solu. of D $i_{\mu} - Pn^{(m)}(\mu) = (-\mu^2 - i)^{\frac{1}{2}m} dm (Pn(\mu))$ dum $Qn^{(m)}(\mu) = (\mu^2 - 1)^{1/2} dm^{(Qn(\mu))}$ dum. Noue, when $\mu = \pm 1$, $Qn^{m}(\mu)$ is Infinite. So taking Dn to be identically Zeeo. ... The solu is given by (1) Los o = pn (coso) The solu. of laplace's equation. $\psi = \sum_{n=0}^{\infty} \sum_{m \leq n} (A_{mn} r^{n} + B_{mn} r^{(n+1)}) p_{n}^{(m)} (coso)$ etime. which may be written as. $\psi = \sum_{n=0}^{\infty} (\pi a)^n [Anpn(coso) + \sum_{m=1}^{n} (Amn cos m d + m)]$ Brn Sin m (q) pr (coste)].

Scanned with CamScanner

Example-3:-

A sigid sphere of radius a is placed in a Stream of fluid whose velocity in the undistructed State is V. determine the velocity of the fluid at any point of the disturbed stream,

Soly :- good the trade the sol of the date

Let us take the polar axis oz to be in the direction of the given relocity of let the polar (o-ordinates be (r, o, ϕ) with origin as centre of the fixed sphere.

The velocity of the fluid is given by the vector $q = -grad \varphi$ where, $D \nabla^2 \varphi = 0$ a) $D \psi / \partial r = 0$. 3) $\psi \sim -vr \cos z = -vr p , \cos 0$

The auxillary symmetrical function $\Psi = \sum_{n=0}^{\infty} (An \chi^n + Bn / \chi^n + I) Pn \cos \Theta$

In spherical polare co. ordinates (r.o. \$) laplace eque. takes the form.

 $\frac{\partial^2 y}{\partial r^2} + \frac{z}{r} \frac{\partial y}{\partial r} + \frac{1}{r^2} \frac{\partial^2 y}{\partial \sigma^2} + \frac{coto}{r^2} \cdot \frac{\partial y}{\partial \sigma} + \frac{1}{r^2} \frac{\partial^2 y}{\partial \sigma} = \frac{\partial^2 y}{\partial r^2} = \frac{\partial^2 y}{\partial \sigma} =$

where An, Bn, mare constant

Here O satisfies legendres associated en g (1-m2)d2 (dm2-2md)/dm+2 n(m+1)-.m2/1-m2/0-0

Scanned with CamScanner