
Page 1

PROGRAMMING IN JAVA

UNIT 1:

Fundamentals of Object Oriented Programming – java Evolution – Overview of Java
Language – Data Types, Variables , Arrays – Operators – Control Statements.

Fundamentals of Object Oriented Programming:

Many programming models have evolved in the domain of software solutions.
The main models are

1. Procedural Programming Model : Each problem is divided into smaller problems
and solved using specified modules that act on data.

2. Object oriented programming model: It perceived the entire software system as a
collections of objects which contain attributes and behaviors.

Object:
An object is a tangible entity that may exhibit some well-defined behavior.
(Or) Object is an instance of Class (or) Everything is an object.

Class:
A class is a se of attributes and behaviors shared by similar objects.
(or) in simple way Collection of objects is called Class.

Abstraction:

Abstraction focuses on the essential characteristics of an objects.

Encapsulation :

Encapsulation hides the implementation details of an object and thereby , hides
its complexity.

Inheritance :

Inheritance creates a hierarchy of classes and helps in the reuse of the attributes
and methods of a class.

Page 2

Polymorphism:

Polymorphism triggers different reactions in objects in response to the same
message.(or) More than one function in same name.
Ex:

Public void abc (int a , int b)
{

}
public void abc (int x, int y, int z)

{
}

Super class : A super class shares its attributes and behavior with its child classes.

Sub class: A subclass inherits attributes and behaviors from its super class.

Abstract class: An abstract class is a conceptual class. The objects of an abstract class
do not exist in the real world.

HISTORY OF JAVA:

IN 1991, SUN Microsystems began a project called “Green “ to develop software for
use in consumer electronics. The leader of the project James Gosling and include Patrick
Naughton, Mike Sheridan. The team wanted a fundamentally new way of computing,
based on the power of networks , and wanted the same software to run on different kinds
of computers and different operating system. They create new language and give the name
OAK.

In this time the WWW (World Wide Web) was in a period of dramatic growth , Sun
realized that Oak was perfectly suited for Internet process. In 1994 , they completed work
on a product known as a Webrunner. Later renamed as HotJava. Hotjava demonstrated the
power of Oak as Internet development tools.

In 1995 , OAK was renamed as Java (Marketing purpose).

Page 3

FEATURES OF JAVA :

Java is a simple language that can be learned easily, even if you have just started
programming.

A java programmer need not know the internals of java. The syntax of Java is similar
to C++. Unlike C++ in which the programmer handles memory manipulation, Java
handles the required memory manipulation and thus prevents errors that arise due to
improper memory usage.

Java is purely object-oriented and provides abstraction, encapsulation, inheritance
, and polymorphism. Even the most basic program ha a class. Any code that you write
in Java is inside a class.

Java is tuned to the Web. Java programs can access data across the Web as easily as they
access data from a local system. You can build Distributed applications in Java that use
resources from any other networked computer.

Java is both Interpreted and Compiled. The code is compiled to a bytecode that is
binary and platform-independent.

When you compile a piece of code, all the errors are listed together. You can execute a
program only when all the errors have been rectified. Only when the execution reaches the
statement with an error is the error reported. This makes it easy for a programmer to debug
the code.

A programmer cannot write Java code that interacts with the memory of the system.
Instead of assuming that programmers know what they are doing, java ensures the same.
For instance , Java forces you to handle unexpected errors. This ensures that Java
programs are robust(reliable), and bug free and do not crash.

A program traveling across the Internet to your machine could possibly be carrying a
virus. Due to strong type-checking done by Java on the user’s machine, any changes to the
program are tagged as errors and the program will not execute. Java is, therefore, secure.

Java programs are comparable in speed to the programs written in other compiler-based
languages like C and C++. Java is faster than other interpreter-based languages like
BASIC since it is compiled and interpreted.

Page 4

Multithreading is the ability of an application to perform multiple tasks at the same time.
For example, when you play a game on your computer, one task of the program is to
handle sound effects and another to handle screen display. A single program accomplishes
many tasks simultaneously. Microsoft Word is another multithreaded program in which
the data automatically saved as you key it in. You can create multithreaded programs
using Java. The core of Java is also multithreaded.

A Java program can consist of many modules that are written by many programmers.
These modules may undergo many changes. Java makes interconnections between
modules at run-time, which easily avoids the problems caused by the change of the code
used by your program. Java is thus dynamic.

The following definition of Java by Sun Microsystems lists all the features of Java.

“ java is a simple, object-oriented, distributed, interpreted, robust, secure,
architecture neutral ,portable, high-performance, mulththreaded, and
dynamic language”.

Data Types:

The data that is stored in memory can be of many types. For example, a person’s age is
stored as a numeric value and an address is stored as alphanumeric characters. Data types
are used to define the operations possible on them and the storage method.

The data types in Java are classified as
* Primitive or Standard data types * Abstract or derived data types.

Standard Data Types

Integer:
Integers are used for storing integer values. There are four kinds of integer

types in Java. Each of these can hold a different range of values. The values can either be
positive or negative.

Type Size/format Range
byte 8 bit -128 to +127
short 16 bit -32,768 to + 32,767 (-215 to 215-1)
int 32 bit -2,147,483,648 to +2,147,483,647
long 64 bit -9223372036854775808 to

+9223372036854775807 (-263 to 263-1)

Page 5

Float:
Float is used to store numbers with decimal part. There are two floating point

data types in Java .

Type Size/format Range
float 32 bit +/- about 1039

double 64 bit +/- about 10317

Character:
It is used for storing individual characters.

char 16 bits of precision and it is unsigned.

Boolean:
Boolean data types hold either a true or a false value.

boolean 1 bit (true or false)

Derived Data Types:

Abstract data types are base on primitive data types and have more
functionality than primitive data types. For example, String is an abstract data type that
can store letters, digits and other characters like /,() : ; $ and #.

String provides methods for concatenating two strings , searching for one
string within another, and extracting a portion of a string. The standard data types do not
have these features.

VARIABLES:
Variables are locations in the memory that can hold values. Before assigning

any value to a variable, it must be declared. To use the variable number storing an integer
value , the variable number must be declared and it should be of the type int.

Page 6

Rules for Naming Variable:
The name of a variable needs to be meaningful, short, and without any embedded

space or symbol like - ? @ # % ^&*() [] . , ; ; “ ‘ / and \ . However , underscores can be
used wherever a space is required; for example basic salary.

Variable names must be unique. For example, to store four different numbers,
four unique variable names need to be used.

A variable name must begin with a letter , a dollar symbol($) or an underscore(
_) , which may be followed by a sequence of letters or digits (0 – 9) ,’&’ or ‘_’.

Keywords cannot be used for variable names. For example , you cannot
declare a variable called switch.

LITERALS:
The variables in Java can be assigned constant values. The values assigned

must match the data type of the variables. Literals are the values that may be assigned to
primitive or string type variables and constants.

The Boolean literals are true and false.

The integer literals are numeric data. Ex(45)

The floating-point literals are numbers that have decimal fraction. Ex(34.5)

Character literals are enclosed in single quotes ex(‘a’).

String literals are enclosed in double quotes ex (“soft”).

Escape sequence character:

\n new lie. \t tab. \b backspace.

OPERATORS:
Operators are used to compute and compare values, and test multiple

conditions. They classified are Arithmetic Operator, Assignment Operator , Unary
Operators, Comparison Operators, Shift Operators, Bit-Wise Operators , Logical Operators,
Conditional Operators, new Operator.

Page 7

Arithmetic Operators:

Operator Description Example Explanation
+ Adds the operands X=y + z Adds the value of y and z and

stores the result in x.
- Subtracts the right operand

form the left operand
X = y – z Subtracts z from y and stores

the result in x.
* Multiplies the operands X = y * z Multiples the values y and z

and store the result in x.
/ Divides the left operand by the

right operand.
X = y / z Divides y by z and stores the

result in x.
% Calculates the remainder of an

integer division.
X = y % z Divides y by z and stores the

remainder in x.

The + operator with Numeric data types:
When you add two operands of the primitive numeric data type, the result is a

primitive numeric data type.
byte soft = 100;
byte arun= 20;
byte simi=soft+arun;

Then print the simi value is 120.

The + operator with String Data types:
When you use the + operator with numeric operands, the result is numeric. When both

the operands are strings, the + operator concatenates(joins) them. When one of the operands is
a String object, the second operand is converted to String before concatenation. For ex.

Operand1 Operand2 Result
5 6 11
5 “soft” “5soft”
“soft” “arun” “softarun”

Page 8

ASSIGNMENT OPERATOR:

Operator Description Example Explanation
= Assigns the value of the right

operand to the left
X=40 Assigns the value of 40 to x

-= Subtracts the right operand form
the left operand and stores the
result in the left operand.

x-=y Subtracts y from x. x= x – y

+= Adds the operands and assigns
the result to the left operand.

X+= y Adds the value of y to x.
X= x + y

*= Multiplies the left operand by
the right operand and stores the
result in left operand

X*=y Multiplies the values x and y
and stores the result in x.
x = x * y.

/= Divides the left operand by the
right operand and stores the
result

X/=y Divides x by y and stores the
result in x. x = x / y

%= Divides the left operand by the
right operand and stores the
remainder in the left operand

X%=y Divides x by y and stores the
remainder in x. x = x % y.

UNARY OPERATORS

++ Increases the value of the
operand by one

X++ Equivalent to x = x + 1

-- Decrease the value of the
operand by one

X-- Equivalent to x = x – 1.

 Ex : Pre-increment Post-increment
 a=1; b=++a; c=1; d=c++;
 After executing b=2. After executing d=1.
COMPARISON (RELATIONAL) OPERATORS

= = Evaluates whether the operands
are equal

X = = y Returns true if the values are
equal otherwise false.

!= Evaluates whether the operands
are not equal

X != y Returns true if the values are
not equal otherwise false.

> Evaluates whether the left operand
is greater than the right operand

X > y Returns true if x is greater
than y otherwise false..

< Evaluates whether the left operand
is less than the right operand.

X < y Returns true if x is less than y
otherwise false.

>= Evaluates whether the left operand
is greater than or equal to the right
operand

X >= y Returns true if x is greater
than or equal to y otherwise
false.

<= Evaluates whether the left operand
is less than or equal to the right
operand

X <= y Returns true if x is less than
or equal to y otherwise false.

Page 9

BIT-WISE OPERATORS

Operator Description Example Explanation.
&
(AND)

Evaluates to a binary value after
a bit wise AND on the operand

X & Y AND results in a 1 if both the
bits are 1. any other
combination results in a 0.

|
(OR)

Evaluates to a binary value after
a bit wise OR on the two
operand

X | Y OR results in a 0 if the both
the bits are 0. any other
combination results in a 1.

^
(XOR)

Evaluates to a binary value after
a bit wise XOR on the two
operand.

X ^ Y XOR results in a 0 if both the
bits are of the same value and
1if the bits have diff. values.

~ Converts all 1 bits to 0s and all
0s bits to 1s

Example given bellow

 Example: a=1010001 a~ = 0101110

LOGICAL OPERATORS
&& Evaluates to true if both the

condition evaluate to true other
wise false.

X>5 &&
Y <5

The result is true if
condition1(x>5) and
condition2 (y<5) are both
true. If one of them false , the
result is false.

|| Evaluates to true if at least one
of the conditions evaluates to
true, and false if none of the
conditions evaluates to true.

X > 5 ||
y <10

The result is true if either
condition1(x>5) or condition2
(y<10) or both evaluate to
true. If both the conditions are
false, the result is false

CONDITIONAL OPERATOR

(Condition) ?
val1 : val2

Evaluates to val1 if the
condition returns true and
val2 if the condition returns
false

X = (y>z)
? y :z

X is assigned the value of y
if y is greater than z , else x
is assigned the value of z.

SHIFT OPERATORS

>> Shifts bits to the right, filling sign
bits at the left and it is also called
the signed right shift operator

X=10 >>3 The result of this is 10
divided by 23. an
explanation is given bellow.

<< Shifts bits to the left filling zeros at
the right.

X=10<<3 Result of this is 10
multiplied by 23.

>>> Also called the unsigned shift
operator works like the >> operator,
but fills in zeroes for the left.

X= -10
>>> 3

An explanation is given
bellow.

Page 10

The int data type occupies four bytes in the memory. The rightmost eight bits of the number
10 are represented in binary as
0 0 0 0 1 0 1 0

When you do a right shift by 3 (10 >>3), the result is 10/23

0 0 0 0 0 0 0 1

When you do a left shift by 3 (10 <<3) , the result is 10 * 23 which is equivalent to 80.

0 1 0 1 0 0 0 0

The new Operator:
When you create an instance of a class, you need to allocate memory for it. When you

declare an object, you merely state its data type.
Pen blcakPen; This tells the compiler that the variable blackPen is an object of the Pen class.
It does not allocate the memory for the object.
To allocate the memory, you need to use the new operator.
Syntax: <class_name> = new<class_name>();

Example:
Pen blockPen= new Pen();

ORDER OF PRECEDENCE OF OPERATORS:

[] , () , + , - , ~ , !, ++ , -- , *,/,%,+,-,<<,>>,>>>,<,<=,>=,>,= =,!=,&,^,|,&&,||,?:,=,+=,-
=,*=,/=,%=

JDK TOOLS:

Java Development ToolKit(JDK) is a software package form Sun Microsystems.
Version 1.1 was released with major revisions to the original version(1.0). The latest version
of JDK is JDK 1.3.

The javac Compiler:
You can create Java programs using any text editor. The file you create should have

the extension .java. Every file that you create (source code) can have a maximum of one
public definition. The source code is converted to byte code by the javac compiler converts
the .java file that you create to a .class file, which contains byte code.

Syntax for compiling java code using javac:
Javac<filename.java>

Page 11

The java Interpreter
The java interpreter is used to execute compiled java applications. The byte code that

is the result of compilation is interpreted so that it can be executed.

Syntax for executing a java application using java:
Java<filename.class>

 open a new file in the editor and type the following script

class first
{
public static void main(String args[])
{
System.out.println(“This is a simple java program”);
}
}

 save file as first.java
 compile by typing javac first.java on the command line.
 On successful compilation execute the program by typing java first on the command

line
 The program display This is a simple java program on the screen.

In this program class to declare that a new class is being defined. First is an identifier that
is the name of the class. The entire class definition, including all of its members, will be
between the opening curly brace({) and the closing curly brace (})

 Next line begins the main() method. As the comment preceding it suggests, this the line
at which the program will begin executing. All java applications begin execution by calling
main().

 The public keyword is an access specifier, which allows the programmer to control the
visibility of class member. When a class member is preceded by public, then that member
may be accessed by code outside the class in which it is declared.

 The static allows main() to be called without having to instantiate a particular instance of
objects are made.

 The keyword void simply tells the compiler that main() does not return a value.

String args[] declares a parameter named args, which is an array of instances of the class
String. (Arrays are collections of similar objects.). objects of type String store character

Page 12

strings. In this case, args receives any command-line arguments present when the program is
executed.

 Next System.out.println(); Output is actually accomplished by the built-in println()
method. In this case, println() displays the string which is passed to it. System is a
predefined class that provides access to the system, and out is the output stream that is
connected to the console.

CONTROL STATEMENTS:

if .. else statements.
The if decision construct is followed by a logical expression in which data is compared and a
decision is made based on the result of comparison. The condition is true then true part
statement is to be executed and exit the loop otherwise else part statement is to be executed
and exit the loop.

Syntax:
if (boolean_expr)
{

statements;
}
else
{

statements;
}

example:
class ifodd
{

 public static void main(String args[])
{
int n=Integer.parseInt(args [0]);
if(n%2 ==0)
System.out.println("Given number " + n +"is even");
else
System.out.println("Given number " + n + "is odd ");
}
}

while Loop statements.
The while loop is a looping construct available in java. The while loop continues until

the evaluating condition becomes false. The evaluating condition has to be a logical
expression and must return a true or false value. The variable that is checked in the Boolean
expression is called the loop control variable.

Page 13

Syntax:
While(Boolean_expr)
{

statements
}

example:

class facwhile
{
public static void main(String args[])
{
int n=Integer.parseInt(args [0]);
int i=1, f=1;
while(i<=n)
{
f=f*i;
i=i+1;
}
System.out.println(+f);
}}

do .. while Loop:
In a while loop, the condition is evaluated at the beginning of the loop. If the

condition is false, the body of the loop is not executed. If the body of the loop must be
executed at least once, than the do..while construct should be used. The do .. while construct
places the test expression at the end of the loop.

The keyword do marks the beginning of the loop. The braces delimit the body
of the loop. Finally, a while statement provides the condition and ends the body of the loop.

Syntax:
do
{

statements;
}while(boolean_expr);

Page 14

example:
class arms
{
public static void main(String args[])
{
int n=Integer.parseInt(args[0]);
int s=0,t=n,r;
do
{
r=n%10;
s=s+r*r*r;
n=n/10;
}while(n!=0);
if(t==n)
System.out.println("Given number is arms"+t);
else
System.out.println("Given number is not arms"+t);
}}

for Loop:
The while and the do..while loops are used when the number of iterations(the number

of the times the loop body is executed) is not known. The for loop is used in situations when
the number of iterations is known in advance. For example, it can be used to determine the
square of each of the first ten numbers.

The for statement consists of the keyword for, followed by parentheses containing
three expressions each separated by a semicolon. These are the initialization expression, the
test expression and the increment/decrement expression.

Syntax:
for(initialization_expr;test_expr;increment/decrement_expr)
{

statements;
}

Initialization expression:
The initialization expression is executed only once, when the control is passed

to the loop for the first time. It gives the loop variable an initial value.
Test expression:

The condition is executed each time the control passes to the beginning of the
loop. The body of the loop is executed only after the condition has been checked. If the
condition evaluated to true, the loop is executed otherwise, the control passes to the statement
following the body of the loop.
Increment / Decrement expression:

Page 15

The increment / decrement expression is always executed when the
control returns to the beginning of the loop.

example:
class fib
{
public static void main (String args[])
{
int n=Integer.parseInt(args[0]);
int n1=-1, n2=1,int n3;
System.out.println("FIBONACCI SERIES ");
for(int i=1;i<n;i++)
{
n3=n1+n2;

 System.out.println(n3);
 n1=n2;
 n2=n3;

}}}

switch statement:

The switch statement is Java’s multi way branch statement. It provides an easy way to
dispatch execution to different parts of your code based on the value of an expression. As
such, it often provides a better alternative than a large series of if-else-if statements .

Syntax:
Switch(expression)
{
case value1:

stt.
break;

case value2:
Stt.
break;

case value n:
Stt.
break;

default: stt.
}

The expression must be of type byte, short, int, or char; each of the values specified in the
case statements must be of a type compatible with the expression. Each case value must be a
unique literal(that is, it must be a constant, not a variable). Duplicate case values are not
allowed.

Page 16

The switch statement works like this: The value of the expression is compared with
each of the literal values in the case statements. If a match is found, the code sequence
following that case statement is executed. If none of the constants matches the value of the
expression, then the default statement is executed. However, the default statement is
optional. If no case matches and no default is present, then no further action is taken.

The break statement is used inside the switch to terminate a statement sequence.
When a break statement is encountered, execution branches to the first line of code that
follows the entire switch statement. This has effect of “jumping out” of the switch.

Arrays:

An array is a group of like-typed variables that are referred to by a common name.
Arrays of any type can be created and may have one or more dimensions.

One-Dimensional Arrays:
An one-dimensional array is , essentially, a list of like-typed variables. To create a

array, you first must create an array variable of the desired type. The general form of a one-
dimensional array declaration is

Type var-name[];
The general form of new as it applies to one-dimensional arrays appears as follows

Array-var = new type [size];
Here type declares the base type of the array. The base type determines the data type
determines the data type of each element that comprises the array.

Example

class sort
{
public static void main(String args[])
{
int a[]=new int[10];
int j,i,n;
n=Integer.parseInt(args[0]);
for(i=1;i<=n;i++)
{
a[i]=Integer.parseInt(args[i]);
}

Page 17

for(i=1;i<=n;i++)
{
for(j=i+1;j<=n;j++)
{
if(a[i]>a[j])
{
int temp=a[i];
a[i]=a[j];
a[j]=temp;
}
}}
for(i=1;i<=n;i++)
{
System.out.println(a[i]);
}
}}

Multidimensional Arrays:
In java, multidimensional arrays are actually arrays of arrays. These, as you

might expect, look and act like regular multidimensional arrays. However, as you will see,
there are a couple of subtle differences. To declare a multidimensional array variable, specify
each additional index using another set of square brackets.

A two-dimensional array can be thought of as a table of rows and columns.

Syntax:
Data type array-name[][];

(Or)
data type array-name[][]=new data type [row size] [column size];

Example:
class mattra
{
public static void main (String args[])
{
int a[][]=new int[10][10];
int b[][]=new int[10][10];
int j,i,k=0;
for(i=1;i<=2;i++){
for(j=1;j<=2;j++)
{
a[i][j]=Integer.parseInt(args[k]);
k=k+1;

 }}

Page 18

for(i=1;i<=2;i++)
{
for(j=1;j<=2;j++)
{
b[i][j]=a[j][i];
k=k+1;
}}
for(i=1;i<=2;i++)
{
for(j=1;j<=2;j++)
{
System.out.print(" "+ b[i][j]);
}
System.out.println(" ");
}
}
}

END OF FIRST UNIT

Page 19

UNIT II:

Introduction to classes – class fundamentals – Declaring objects – constructors – methods –
overloading methods – inner classes – inheritance – method overriding – packages –
interfaces.

 INTRODUCTION:

Java is a true object-oriented language and therefore the underlying structure of all java
programs is classes. Anything we wish to represent in a java program must be encapsulated in
a class that defines the stateand behavior of the basic program components known as objects.
Classes create objects and objects use methods to communicate between them. That is all
about object-oriented programming.

Classes provide a convenient method for packing together a group of logically related data
items and functions that work on them. In java, the data items are called fields and the
functions are called methods. Calling a specific method in an object is described as sending
the object a message

A class is essentially a description of how to make an object that contains fields and methods.
It provides a sort of templatefor an object and behaves like a basic data type such as int. it is
therefore important to understand how the fields and methods are defined in a classes and how
they are used to build a java program that incorporates the basic OOP concepts such as
encapsulation, inheritance and polymorphism.

Class :
Class is collection of objects.

Object:
Object is a instance of a particular class.

General form of class:

class class name
{
type instance variable 1;
type instance variable 2;
….
type instance variable n;

class name1(parameter-list)
{
body of constructor;
}

Page 20

class name2(parameter-list)
{
body of constructor;
}
class name n(parameter-list)
{
body of constructor;
}

type methodname1(parameter-list)
{
body of method;
}

type methodname2(parameter-list)
{
body of method;
}

…..
type method name n(parameter-list)
{
body of method;
}
}

Instance variable:
Data or Variable declare within the class is called instance variable.

Method:
The source code within the class is called method.

Member:
The methods and variables defined within a class are called members of the class.

Creating a class:

class sample
{
int a;
int b;
int c;
}
This declaration defines a class called sample that consists of three integer members: a , b
and c. It is important to understand that this declaration does not actually create any objects.

Page 21

Creating objects:

An object in java is essentially a block of memory that contains space to store all the
instance variables. Creating an object is also referred to as instantiating an object.

Objects in java are created using the new operator. The new operator dynamically
allocates(that is , allocates run time)memory for an object and returns a reference to that
object.

To create objects of type sample, use statements such as the following:
sample one = new sample();
sample two = new sample();

After these statements execute, there are two objects that have the form described by
sample. The variable one holds a reference to one of these objects. The variable two holds a
reference to the other. Each object has its own copies of variables a, b, and c.

Dot Operator:
The dot notation is used to obtain the value of the instance variables. It has two parts

namely the object on the left side of the dot and the variable on the right side of the dot. Dot
expressions are evaluated from left to right. The general form for accessing instance variables
using the dot operator is given below:

Objectreference.variable name
We can store values into instance variables using the dot operator as shown below:

one.a=10; one.b=20; one.c=30;
two.a=15; two.b=10; two.c=35;

We can refer to values of instance variables using the dot operator as given below:
System.out.println(“a=”+one.a +”b=” +one.b +”c=”+one.c);
System.out.println(“a=”+two.a +”b=” +two.b +”c=”+two.c);

example for class and object:
this program save filename is excla this is the main class name.

class add
{
double a,b,c;
}
class excla
{
public static void main(String args[])
{
add one=new add();
double val;
one.a=10;
one.b=20;
one.c=30;
val=one.a+one.b+one.c;
System.out.println(val);
}}

Page 22

METHODS:
Methods are functions that operate on instances of classes in which they are defined.

Objects can communicate with each other using methods and can call methods in other
classes.

Defining Methods:
 Method definition has four parts. They are, name of the method,

type of object or primitive type the method returns, a list of parameters and body of the
method. A method’s signature is a combination of the first three parts mentioned above. Java
permits different methods to have the same name as long as the argument list is different. This
is called method overloading. This is the general form of a method

type name(parameter-list)
{

body of method;
}

here, type specifies the type of data returned by the method. This can be any valid type,
including class types that you create. If the method does not return a value, its return type
must be void. The name of the method is specified be name. The parameter-list is a sequence
of type and identifier pairs separated by commas, the method when it is called. If the method
has no parameters, then the parameter list will be empty.

Methods that have a return type other than void return a value to the calling routine
using the following form of the return statement: return value;
Here , value is the value returned.

Calling Methods:

Calling a method is similar to calling or referring to an instance variable. The methods
are accessed using the dot notation. The object whose method is called is on the left of the dot
while the name of the method and its arguments are on the right.

obj. method name(parameter1, parameter2);

example for method:

class exmet
{
int a,b,c;
void cal()
{
System.out.println("example of method ");
System.out.println(a*b*c);
}

public static void main(String args[])

Page 23

{
exmet mymul=new exmet();
mymul.a=Integer.parseInt(args[0]);
mymul.b=20;
mymul.c=15;
mymul.cal();
}}

passing Argument to methods:

The objects that are passed to the body of the method are passed by reference and the
basic types are passed by value. This results in a change in original value of the object if the
valued is modified in the method.

Example the passing of arguments to methods.

class mul
{
int a;
int sqr(int a)
{
System.out.println("squre value is ");
return a*a;
}}
class exmet3
{
public static void main(String args[])
{
mul mymul=new mul();
int vol;
vol=mymul.sqr(5);
System.out.println(vol);
}}

The this keyword:

A special reference value called this is included in java. The this keyword is used
inside any instance method to refer to the current object. The value this refers to the object
which the current method has been called on. The this keyword can be used where a
references to an object of the current class type is required.

Page 24

Example of this keyword:

class this1
{
int x,y;
void show(int x,int y)
{
this.x=x; this.y=y;
}
void disp()
{
System.out.println(“x=”+x);
System.out.println(“y=”+y);
}}
class exthis
{
public static void maim (String args[])
{
this1 th=new this1();
th.show(4,6);
th.disp();
}}

output of the program is : x=4 y=6.

Overloading Methods:

In java it is possible to define two or more methods within the same class that share
the same name, as long as their parameter declarations are different. When this is the case, the
methods are said to be overloaded, and the process is referred to as method overloading.
When we call a method in an object, java matches up the method name first and then the
number and type of parameters to decide which one of the definitions to execute. This process
is known as polymorphism.

Example of overloading method:

class exover
{
void test()
{
System.out.println("No parameters");
}
void test(int a)
{
System.out.println("a :"+a);

Page 25

}
void test(int a, int b)
{
System.out.println("a and b "+a+ " "+b);
}
double test(double a)
{
System.out.println("double value is "+a);
return a*a;
}
public static void main(String args[])
{
exover ex=new exover();
double d;
ex.test();
ex.test(10);
ex.test(10,20);
d=ex.test(120.5);
System.out.println("double result is "+d);
}}

Constructors:
Often an object will require some form of initialization when it is created. To

accommodate this, java allows you to define constructors for your classes. A constructor is a
special method that creates and initializes an object of a particular class. It has the same name
as its class and may accept arguments. In this respect, it is similar to any other method.

However, a constructor does not have a return type. Instead, a constructor returns a
reference to the object that it creates. If you do not explicitly declare a constructor for a class,
the java compiler automatically generates a default constructor that has no arguments.

A constructor is never called directly. Instead, it is invoked via the new operator.
And allocate the memory space.

example for constructor :

class mul
{
double a,b,c;
mul()
{
System.out.println("Constructor example");
a=10;
b=5;
c=10;
}

Page 26

double cal()
{
System.out.println("calculated value is ");
return a*b*c;
}
}
class excon
{
public static void main(String args[])
{
mul mymul=new mul();
double vol;
vol=mymul.cal();
System.out.println(vol);
}}

constructor overloading:

A class may have several constructors. This feature is called constructor overloading.
When constructors are overloaded, each still called by the name of its class. However, it must
have different parameter list. In more precise terms, the signature of each constructor must
differ.

example for constructor overloading:

class exover1
{
int a,b,c;
exover1(int x,int y,int z)
{
a=x;b=y;c=z;
}
exover1()
{
a=1;b=1;c=1;
}
exover1(int d)
{
a=d;b=d;c=d;
}
int cal()
{
return a*b*c;
}
public static void main(String args[])

Page 27

{
exover1 ex=new exover1(5,5,5);
exover1 ex1=new exover1();
exover1 ex2=new exover1(2);
int k;
System.out.println("first resutl");
k=ex.cal();
System.out.println(k);
System.out.println("second result");
k=ex1.cal();
System.out.println(k);
System.out.println("third result");
k=ex2.cal();
System.out.println(k);
}}

Recursion:
Java supports recursion. The method call by itself is called recursive method.

Example for recusion:
class fact
{
int fact(int n)
{
int result;
if(n==1) return 1;
result=fact(n-1)*n;
return result;
}
public static void main(String args[])
{
fact f=new fact();
System.out.println("factorial value is "+f.fact(4));
System.out.println("factorial value is "+f.fact(5));
System.out.println("factorial value is "+f.fact(6));
}}

Inner Classes:

It is possible to nest a class definition within another class and treat the nested class
like any other method of that class. Such a class is called nested class. As a member of its
enclosing class , a nested class has privileges to access all the members of the class enclosing
it. A nested class can either be static or not-static. While static nested classes are just called as
static nested classes, non-static classes are called as inner classes.

Example for inner classes:

Page 28

class inner
{
void test()
{
inn in=new inn();
in.disp();
}
class inn
{
int x=10,y=5;
void disp()
{
int z=x+y;
System.out.println("example for inner class ");
System.out.println("x + y value is : "+z);
}}

public static void main(String args[])
{
inner o=new inner();
o.test();
}}

Inheritance:

Inheritance is new class derived from old class. Some modification about particular
class. It should invoke super class(base class) & sub class(derived class).

Types of inheritance:
1. Single Inheritance (only one super class).
2. multiple inheritance (several super class).
3. Multilevel inheritance (derived from a derived class).
4. Hybrid Inheritance (combination of multiple and multilevel inheritance).
5. Hierarchical inheritance (one super class, many subclasses).

Java does not directly implement multiple inheritance. However, this concept is implemented
using a secondary inheritance path in the for of interfaces.

Defining a subclass:
class subclass name extends super class name
{

variable declaration;
methods declaration;

}

Page 29

The keyword extends signifies that the properties of the super class name are extended to
the subclass name. The subclass will now contain its own variables and methods as well
those of the super class. This kind of situation occurs when we want to add some more
properties to an existing class without actually modifying it.

Example for single inheritance:
class a
{
int i;
private int j;
void setval(int x,int y)
{
i=x;j=y;
System.out.println("i value is "+i +" j value is "+j);

}}
class b extends a
{
int total,j=15;
void sum()
{
total =i+j;
System.out.println("total is :"+total);
}}
class inher1
{
public static void main(String args[])
{
b bb=new b();
bb.setval(4,6);
bb.sum();
}}

example multilevel inheritance

class a
{
int i;
private int j;
void setval(int x,int y)
{
i=x;j=y;
System.out.println("i and j value is "+i +" "+j);
}}
class b extends a

Page 30

{
int total,k=10;
void sum()
{
total =i+k;
System.out.println("first subclass value is "+total);
}}
class c extends b
{
int a,b,c;
void cal(int a)
{
c=a+i+k;
System.out.println("multilevel inheritance is "+c);
}
void setval(int x)
{
b=x;
System.out.println("b value is "+b);
}
}
class inher2
{
public static void main(String args[])
{
c bb=new c();
bb.setval(10,6);
bb.setval(5);
bb.sum();
bb.cal(100);
}}

super keyword:

A subclass constructor is used to construct the instance variable of both the subclass and the
superclass. The subclass constructor uses the keyword super to invoke the constructor method
of the super class. The keyword super is used subject to the following conditions

Super may only be used within a subclass constructor method.
The call to super class constructor must appear as the first statement within the sup
class constructor.
The parameters in the super call must match the order and type of the instance
variable declared in the super class.

Example for super keyword:

Page 31

class a
{
int i;
}
class b extends a
{
int i;
b(int a,int b)
{
super.i=a;
i=b;
}
void show()
{
System.out.println("base class variable i value is " +super.i);
System.out.println("sub class variable i value is " +i);
}}
class exsuper
{
public static void main(String args[])
{
b ob=new b(4,6);
ob.show();
}}

Method Overriding:

In a class hierarchy, when a method in a subclass has the same name and type
signature as a method in its superclass, then the method in the subclass is said to override the
method in the superclass. When an overridden method is called from within a subclass, it will
always refer to the version of that method defined by the subclass.

Example for overriding:

class a
{
void hello()
{
System.out.println(“hello from a”);
}}

class b extends a
{

Page 32

void hello()
{
System.out.println(“hello from b”);
}}
class c extends b
{
void hello()
{
System.out.println(“hello from c”);
}}
class exover
{
public static void main(String args[])
{
c ob=new c();
ob.hello();
}}

output from this application is shown here:
hello from c

another example for overriding:

class a
{
int i,j;
a(int a,int b)
{
i=a;j=b;
}
void show()
{
System.out.println("i value is "+i);
System.out.println("j value is "+j);
}}
class b extends a
{
int k;
b(int a,int b,int c)
{
super(a,b);
k=c;
}

void show()
{

Page 33

super.i=10;
System.out.println("k value is "+k);
super.show();
}
}
class supers
{
public static void main(String args[])
{
b ob=new b(1,2,3);
ob.show();
}}

Page 34

Hierarchical inheritance:

It is one base class many sub class.
Example of Hierarchical inheritance:

class a
{
int i;
int j;
void setval(int x,int y)
{
i=x;
j=y;
System.out.println("i and j value is "+i +" "+j);
}
}
class b extends a
{
int total;
void sum()
{
total =i+j;
System.out.println("first subclass add value is "+total);
}
}
class c extends a
{
int c;
void cal()
{

System.out.println(" i value is "+i);
System.out.println(" j value is "+j);
c=i-j;
System.out.println("Second subclass sub vlaue is "+c);
}
}

Page 35

class inher3
{
public static void main(String args[])
{
b bb=new b();
bb.setval(10,6);
bb.sum();
c cc=new c();
cc.setval(15,6);
cc.cal();
}
}

In this program save as file name is inher3. This program base class is “a” . Then “b” and “c “
class are the subclass of “a” class. These two class are different operation this program to
satisfy the one base class more than one sub class so it’s hierarchical inheritance program.

Interfaces:

Using the keyword interfaceyou can fully abstract a class interface from its
implementation. That is, using interface you can specify what a class must do, but not how it
does it.

Like classes, interfaces contain methods and variables but with a major difference. The
difference is that interfaces define only abstract methods and final fields. This means that
interfaces do not specify and code to implement these methods and data fields contain only
constants.

Therefore, it is the responsibility of the class that implements an interface to define the
code for implementation of these methods.

The syntax for defining an interface is very similar to that for defining a class. The
general form of an interface definition is:

interface Interfacename
{

variable declaration;
methods declaration;

}

Here, interface is the key word and Interface name is any valid java variable(just like class
names). Variables are declared as follows:

Type final-variable-name1=value;
Type final-variable-name2=value;

Page 36

Note that all variables are declared as constants. Methods declaration will contain only a list
of methods without any body statements. Example

return-type methodname1(parameter-list);
return-type methodname2(parameter-list);

Here is an example of an interface definition that contains two variables and one method

interface area
{

final float pi=3.142f;
float compute (float x, float y);
void show();

}
here pi is the float type variable it will be declare as final suppose you declare simply float
pi=3.142f that will be consider as final type.

Extending interfaces:
Like classes, interfaces can also be extended. That is , an interface can be sub

interfaced from other interfaces. The new sub interface will inhert all the members of the
super interface in the manner similar to subclasses. This is achieved using the keyword
extends as shown below:

Interface name2 extends name1
{

body of name2;
}

Example:
interface itemconstant
{

int code= 1001;
String name=”fan”;

}
interface item extends itemconstant
{

void display();
}

while interfaces are allowed to extend to other interfaces, sub interfaces cannot define
the methods declared in the super interfaces. After all, sub interfaces are still interfaces, not
classes. Note that when an interface extends two or more interfaces, they are separated by
commas.

It is important to remember that an interface cannot extend classes. This would violate
the rule that an interface can have only abstract methods and constants.

Page 37

Implementing interface:
Interfaces are used as “super classes” whose properties are inherited by classes. It is

therefore necessary to create a class that inherits the given interface. This is done as follows:
Class classname implements interfacename
{

body of classname;
}

Here the class classname “implements” the interface interfacename. A more general form of
implementation may look like this:

Class classname extends superclass implements interface1,interface2,…
{

body of classname;
}

This is shows that a class can extend another class while implementing interfaces.

When a class implements more than one interface, they are separated by a comma.

Example of Interface with implements (Multiple inheritance)

class onee
{
int a,b,c;
void setval(int x,int y)
{
a=x;
b=y;
}

void cal()
{
c=a+b;
System.out.println("base class 1 " + c);
}
}

interface two
{
int x = 10;
}

class three extends onee implements two
{

Page 38

int y= 20;
void cal1()
{
c=a+x+y;
System.out.println("multiple inheritance c value is"+c);
}
}

class mulpinh
{
public static void main(String args[])
{
three t=new three();
t.setval(4,6);
t.cal();
t.cal1();
}
}

Hybrid inheritance:

Combination of multiple and multiple inheritance is called hybrid inheritance.
Example of hybrid inheritance is:

class student
{
int rollno;
void getnumber(int n)
{
rollno=n;
}
void putnumber()
{
System.out.println("Roll Number :"+rollno);
}
}
class mark extends student
{
int ma1,ma2;
void getmarks(int m1,int m2)
{
ma1=m1;
ma2=m2;
}
void putmarks()
{

Page 39

System.out.println("marks obtained");
System.out.println("mark1 :"+ma1);
System.out.println("mark2 :"+ma2);
}
}

interface clas
{
String cla="iii cs b";
void putclas();
int ma3=100;
}

class result extends mark implements clas
{
int total;
public void putclas()
{
System.out.println("class :"+cla);
}
void display()
{
total=ma1+ma2+ma3;
putnumber();
putmarks();
System.out.println(“mark3: “+ma3);
putclas();
System.out.println("total mark:"+total);
}}

class inter1
{
public static void main (String args[])
{
result ob=new result();
ob.getnumber(100);
ob.getmarks(45,66);
ob.display();
}
}

Page 40

Packages: Putting classes together

We have repeatedly stated that one of the main features of OOP is its ability to reuse
the code already created. One way achieving this is by extending the classes and
implementing the interfaces we had created as discussed. This limited to reusing the classes
within a program. What if we need to use classes from other programs without physically
copying them into the program under development?. This can be accomplished in java by
using what is known as package, a concept similar to “ class libraries” in other languages.
Another way of achieving the reusability in java, therefore, is to use package.

Packages are java’s way of grouping a variety of class and/or interfaces together. The
grouping is usually done according to functionality. In fact, packages act as “containers” for
classes. By organizing our classes into packages we achieve the following benefits:

1. The classes contained in the packages of other programs can be easily reused.

2. In packages, classes can be unique compared with classes in other packages. That
is, two classes in two different packages can have the same name. They may be
referred by their fully qualified name, comprising the package name and the class
name.

3. Packages provide a way to “hide” classes thus preventing other programs or
packages from accessing classes that are meant for internal use only.

4. Packages also provide a way for separating “design” from “coding”. First we can
design classes and decide their relationships, and then we can implement the java
code needed for the methods. It is possible to change the implementation of any
method without affecting the rest of the design.

Java packages are therefore classified into two types. The first category is known as Java API
packages and the second is known as user defined packages.

JAVA API PACKAGES:
Java API provides a large number of classes grouped into different packages according

to functionality. Most of the time we use the packages available with the java API. Java has a
six packages.

Java.lang :
Language support classes. These are classes that java compiler itself uses and therefore

they are automatically imported. They include classes for primitive types, strings, math
function, threads and exception.

Java.util :
Language utility classes such as vectors, hash tables, random numbers, date, etc.

Java.io :

Page 41

Input/output support classes. They provide facilities for the input and output of data.

Java.awt :
Set of classes for implementing graphical user interface. They include classes for

windows, buttons, lists, menus and so on.

Java.net :
Classes for networking. They include classes for communicating with local computers

as well as with internet servers.

Java.applet :
Classes for creating and implementing applets.

USER DEFINED PACKAGES:
User create a packages and process is called user defined packages. Let us see how to

create our own packages. We must first declare the name of the package using the package
keyword followed by a package name. This must be the first statement in a java source file (
except for comment and white spaces). Then we define a class, just as we normally define a
class. Here is an example

package firstpackage;
public class firstclass
{

---------------- (body of class)

}

Here the package name is firstpackage. The class firstclass is now considered a part
of this package. This listing would be saved as a file called firstclass.java , and located in a
directory named firstpackage. When the source file is compiled, java will create a .class file
and store it in the same directory.

Remember that the .class files must be located in a directory that has the same name
as the package, and this directory should be a subdirectory of the directory where classes that
will import the package are located.

To recap, creating our own package involves the following steps:

1. Declare the package at the beginning of a file using the form package packagename;
2. Define the class that is to be put in the package and declare it public.
3. Create a subdirectory under the directory where the main source files are stored.
4. Store the listing as the classname.java file in the subdirectory created.
5. Compile the file. This creates .class file in the subdirectory.

Arun
Remember that case is significant and therefore the subdirectory name must match the
package name exactly. As pointed out earlier, java also supports the concept of package

Page 42

hierarchy. This is done by specifying multiple names in a package statement, separated by
dots.
Example: package firstpackage.secondpackage;

ACCESSING A PACKAGE:

It will recalled that we have discussed earlier that a java system package can be
accessed either using a fully qualified class name or using a shortcut approach through the
import statement. We use the import statement when there are many references to a
particular package or the package name is too long and unwieldy.

The same approaches can be used to access the user-defined packages as well. The
import statement can be used to search a list of packages for a particular class. The general
form of import statement for searching a class is as follows:

Import package1 [.package2] [.package3].classname;

Here package1 is the name of the top level package, package2 is the name of the package
that is inside the package1, and so on. We can have any number of packages in a package
hierarchy. Finally, the explicit classname is specified. Note that the statement must end with a
semicolon(;). The import statement should appear before any class definitions in a source file.

USING A PACKAGE :

Let us now consider some simple programs that will use classes from other packages.
The listing below shows a package named visa containing a single class gisa.

package visa;

public class gisa
{
public void show()
{
System.out.println("welcome to all by arun saran");
System.out.println("welcome to package program");
}
}

This source file should be named gisa.java and stored in the subdirectory visa as started
earlier. Now compile this java file. The resultant gisa.class will be stored in the same
subdirectory.

Page 43

Now consider the listing shown below:

import visa.gisa;

public class simi
{
public static void main(String args[])
{
gisa ob=new gisa();
ob.show();
}}

This listing shows a simple program that imports the class gisa from the package visa.
The source file should be saved as simi.java and then compiled. The source file and the
compiled file would be saved in the directory of which visa was a subdirectory. Now we can
run the program and obtain the results.

During the compilation of simi.java the compiler checks for the file gisa.class in the
visa directory for information it needs, but it does not actually include the code from
gisa.class in the file simi.class. when the simi program is run, java looks for the file
simi.class and loads it using something called class loader. Now the interpreter knows that it
also needs the code in the file gisa.class and loads it as well.

This program compiled and run to obtain the results. The output will be as under
Welcome all by arun saran
Welcome to package program

MULTIPLE PACKAGES:

More than one package is to be created and imported and process is known as multiple
packages.

Example:
(program 1)

package a1;
public class one
{
int a=10,b=5;
public void show()
{
int c=a+b;
System.out.println("Add value is"+c);
}

Page 44

public void show1()
{
int c=a*b;
System.out.println("Mul value is"+c);
}
}

first create one folder in c: that is (c:\arun) and save this file as one.java.

(program 2)

package a1;

public class two
{
int a=10,b=2;
public void cal()
{
int c=a-b;
System.out.println("Sub value is "+c);
}
public void cal1()
{
int c=a/b;
System.out.println("Divide value is "+c);
System.out.println(“End of package program”);
}}

this program save as this directory and name is (two.java).

(program 3)

import a1.one;
import a1.two;
public class three
{
public static void main(String args[])
{
one ob=new one();
two ob1=new two();
ob.show();
ob.show1();
ob1.cal();
ob1.cal1();
}}

Page 45

This program save as the same directory and save as file name as(three.java).

Save these three program and then compile the first two programs before set path as
below. Suppose your java software as place in your system on c: then follow the procedure as
follow.

C:\arun> path = c:\jdk1.3\bin> then press enter
C:\arun> javac one.java ,, ,,
C:\arun> javac two.java ,, ,,

This time java to create automatically two files that is one.class , two.class .
Then to create subdirectory on package name (that is a1)
C:\arun> md a1 then press enter then copy this two class file on the subdirectory area.
C:\arun>copy one.class c:\arun\a1 then press enter
C:\arun>copy two.class c:\arun\a1 then press enter
Then set class path as follows

C:\arun> set classpath = c:\arun;%classpath%;

Then compile the third program
C:\arun> javac three.java then press enter
C:\arun> java three ,, ,, ,,

Then output as follows

Add value is 15
Mull value is 50
Sub value is 8
Divide value is 5
End of package program

********** END OF II UNIT ***********

Page 46

UNIT III :
Exception handling – types of Exception – try and catch – nested try – throw

and throws – multithreading – main thread – Stream I/O and Files.

Exception handling:

Introduction:
Rarely does a program run successfully at its very first attempt. It is common to make

mistakes while developing as well as typing a program. A mistake might lead to an error
causing the program to produce unexpected results. Errors are the wrongs that can make a
program go wrong.

An error may produce an incorrect output or may terminate the execution of the
program abruptly or even may cause the system to crash. It is therefore important to detect
and manage properly all the possible error conditions in the program so that the program will
not terminate or crash during execution.

Types of errors:
Errors may broadly be classified into two categories:
Compile-time errors , run-time errors.

Compile-time errors:
All syntax errors will be detected and displayed by the java compiler and therefore

these errors are known as compile-time errors. Whenever the compiler displays an error, it
will not create the .class file. It is therefore necessary that we fix all the errors before we can
successfully compile and run the program.

Example: /* this program contains an error */
Class a
{

public static void main(String args[])
{

System.out.pritnln(“hello soft”) //missing
}

}

The java compiler does a nice job of telling us where the errors are in the program. For
example, if we have missed the semicolon at the end of the print statement in this program.
The following message will be displayed in the screen.

a.java :7: ‘;’ expected
System.out.println(“hello soft”)
^ 1 error

we can now go to the appropriate line, correct the error, and recompile the program. Most of
the compile-time error are due to typing mistakes. Typographical errors are hard to find. We
may have to check the code word by word, or even character by character.

Page 47

The most common problems are:
* Missing semicololns
* Missing (or mismatch of) brackets in classes and methods.
* Misspelling of identifiers and keywords
* Missing double quotes in strings
* Use of undeclared variables
 Use of = in place of = = operator
Other errors we may encounter are related to directory paths. An error such as

Javac : command not found
Means that we have not set the path correctly. We must ensure that the path includes
the directory where the java executables are stored.

Run – time errors:

Sometimes, a program may compile successfully creating the .class file but may not
run properly. Such programs may produce wrong results due to wrong logic or may terminate
due to errors such as stack overflow. Most common run-time errors are

 Dividing an integer by zero
 Accessing an element that is out of the bounds of an array
 Trying to store a value into an array of an incompatible class or type
 Trying to cast an instance of a class to one of its subclass
 Attempting to use a negative size for an array
 Converting invalid string to a number
 Accessing a character that is out of bounds of a string

When such errors are encountered, java typically generates an error message and aborts the
program.

Exception:
An exception is a condition that is caused by a run-time error in the program. When

the java interpreter encounters an error such as dividing an integer by zero, it creates an
exception object and throws it (i.e., informs us that an error has occurred).

If the exception object is not caught and handled properly, the interpreter will display
an error message and will terminate the program. If we want the program to continue with the
execution of the remaining code, then we should try to catch the exception object thrown by
the error condition and then display an appropriate message for taking corrective actions. This
task is known as exception handling.

Page 48

The purpose of exception handling mechanism is to provide a means to detect and
report an “ exceptional circumstance” so that appropriate action can be taken. The mechanism
suggests incorporation of a separate error handling code that performs the following tasks:

1. Find the problem (Hit the exception)
2. Inform that an error has occurred (throw the exception)
3. Receive the error information (catch the exception)
4. Take corrective actions (Handle the exception)

The error handling code basically consists of two segments, one to detect errors and to
throw exceptions and the other to catch exceptions and to take appropriate actions.

When writing programs, we must always be on the lookout for places in the program
where an exception could be generated. Some common exception that we must watch out for
catching are listed in the table

Common java exception

Exception type cause of exception

ArithmeticExceptin Arithmetic errors such as division by zero

ArrayIndexOutOfBoundsException Array index out of bounds

ArrayStoreException Assignment to an array element of an incompatible type
ClassCastException Invalid cast

NegativeArraySizeException Array created with a negative size.

FileNotFoundException Caused by an attempt to access a nonexistent file

IOException Caused by general I/O failures, such as inability to read
from a file

NullPointerException Invalid use of null reference

NumberFormatExceptoin Invalid conversion of a string to a numeric format

InterruptedException One thread has been interrupted by another thread

ClassNotFoundException class not found

Java exception handling is managed via five keywords :

Page 49

try, catch, throw, throws , finally

Program statements that you want to monitor for exceptions are contained within a try
block. If an exception occurs within the try block, it is thrown. Your code can catch this
exception (using catch) and handle it in some rational manner. System-generated exception
are automatically thrown by the java run-time system. To manually throw an exception, use
the keyword throw. Any exception that is thrown out of a method must be specified as such
by a throws clause. Any code that absolutely must be executed before a method returns is put
in a finally block.

Syntax of try – catch

 try
 {
statement;
 }
catch (Exception-type e)
 {
 statement;
 }

Example :
 class exe
 {
 public static void main (String args[])
 {
 try
 {

int a = 10,b=0;
 int c = a /b;

System.out.println(“divide value is “+c);
}
catch(ArithmeticException e)
{
System.out.println(“Divide by zero”);
}
}}

This program to run then the output as follows
Divide by zero

Note that the program did not stop at the point of exceptional condition. It catches the
error condition, prints the error message, and then continues the execution.

Multiple catch statements:

Page 50

In some cases, more than one exception could be raised by a single piece of code. To
handle this type of situation, you can specify two or more catch clauses, each catching a
different type of exception. When an exception is thrown, each catch statements is inspected in
order, and the first one whose type matches that of the exception is executed. After one catch
statement executes, the others are bypassed, and execution continues after the try/catch block.
The following example traps two different exception types

class exe1
{
public static void main(String args[])
{

try
{
int a=2;

System.out.println(" a value is "+a);

int b=40/a;

int c[]={ 1};
c[40]=90;

}

catch(ArithmeticException e)
{

System.out.println("divide by 0 :"+e);

}

catch(ArrayIndexOutOfBoundsException e)
{
System.out.println("array index obj: ");
}

System.out.println("after try / catch blocks");

}
}

Nested try statements:

Page 51

The try statement can be nested. That is, a try statement can be inside the block of
another try. Each time a try statement is entered, the context of that exception is pushed on the
stack. In an inner statement is entered, the context of that exception is pushed on the stack. In
an inner try statement does not have a catch handler for a particular exception, the stack is
unwound and the next try statement’s catch handlers are inspected for a match. This continues
until one of the catch statements succeeds, or until all of the nested try statements are
exhausted. If no catch statement matches, then the java run-time system will handle the
exception. Here is an example that uses nested try statements.

class exe2
{
public static void main(String args[])
{
try
{

int a=10;
int c,b;
b=Integer.parseInt(args[0]);
c=a/b;
System.out.println(c);
try
{
int d,e,f;
d=Integer.parseInt(args[1]);
e=Integer.parseInt(args[2]);
f=d*e;
System.out.println("mul value is "+f);
}
catch(NumberFormatException e)
{
System.out.println("give only integer value");
}
}
catch(ArithmeticException e)
{
System.out.println("divide by zero ");
}
}
}

Page 52

finally

java supports another statement known as finally statement that can be used to
handle an exception that is not caught by any of the previous catch statements. finally block can
be used to handle any exception generated within a try block. It may be added immediately after
the try block or after the last catch block shown as follows

try
{

statement;
}
finally
{

statement;
}

example:
class exe3
{
public static void main(String args[])
{

int a,b,c;
try
{

a=Integer.parseInt(args[0]);
b=Integer.parseInt(args[1]);
c=a/b;
System.out.println("division value is"+c);
}

finally
{
System.out.println("final block");
a=10;b=20;

c=a+b;
System.out.println("adition value is"+c);
}
System.out.println("simi");
}}

Page 53

throw
so far you have only been catching exceptions that are thrown by the java run-

time system. However, it is possible for your program to throw an exception explicitly, using
the throw statement. The general form of throw is shown here

throw throwableinstance;

here, throwableinstance must be an object of type throwable or a subclass of
throwable. Simple types , such as int or char, as well as non-throwable classes, such as
string and object, cannot be used as exceptions. There are two ways you can objatin a
thrwoable objact: using a parameter into a catch clause, or creating one with the new operator.

The flow of execution stops immediately after the throw statement: any subsequent
statements are not executed. The nearest enclosing try block is inspected to see if it has a catch
statement that matches the type of the exception. If it does find a match, control is transferred to
that statement. If not, then the next enclosing try statements is inspected, and so on. If no
matching catch is found, then the default exception handler halts the program and prints the
stack trace.

Here is a sample program that creates and throws an exception. The handler that
catches the exception rethrows it to the outer handler.

class exe112
{
public static void main(String args[])
{
try
{
int a,b,c;
a=Integer.parseInt(args[0]);
b=Integer.parseInt(args[1]);
c=a/b;
System.out.println("divide value is"+c);
}
catch(ArithmeticException e)
{
System.out.println("main block the error is ");
throw e;
}
catch(NumberFormatException e)
{
System.out.println("second type of error");
throw e;
}
}}

Page 54

throws
If a method is capable of causing an exception that it does not handle, it must

specify this behavior so that callers of the method can guard themselves against that exception.
You do this by including a throws clause in the method’s declaration. A throws clause lists the
types of exceptions that a method might throw. This is necessary for all exceptions, except those
of type error or RuntimeException , or any of their subclasses. All other exceptions that a
method can throw must be declared in the throws clause. If they are not, a compile-time error
will result.

This is the general form of a method declaration that includes a throws clause:

Type method-name(parameter-list) throws exception-list
{
body of method;
}

Example:

class my extends Exception
{
int x;
my(int a)
{
x = a;
}
public String toString()
{
return "My exception ("+ x +") ";
}
}
class exe12
{
public static void compute(int a) throws my
{
System.out.println("given value(" + a +")");
if(a >10)

throw new my(a);

System.out.println("Normal exit");
}

Page 55

public static void main(String args[])
{
try
{
compute(1);
compute(20);
}
catch(my e)
{
System.out.println("Exception exit "+e);
}
}
}

The Exception class does not define any methods of its own. It does, of course, inherit
those methods provided by throwable. Thus, all exceptions, including those that your create,
have the methods defined by throwable available to them. They are shown in table you may
also wish to override one or more of these methods in exception classes that you create.

Method Description
String getMessage Returns a description of the exception

String toString() Returns a String object containing a description of the
exception. This method is called by println() when
outputting a throwable object.

void printStackTrace
(PrintStream stream) Sends the stack trace to the specified stream.

void printStackTrace
(PrintWriter stream) Sends the stack trace to the specified stream.

Page 56

MULTITHREADING:

Those who are familiar with the modern operating systems such as Windows 95 may
recognize that they can execute several programs simultaneously. This ability is known as
multitasking. In system’s terminology, it is called multithreading.

Multithreading is a conceptual programming paradigm where a program(process) is divided
into two or more subprograms (process), which can be implemented at the same time in
parallel. Each part of subprograms is called thread. For example, one subprogram can display
an animation on the screen while another may build the next animation to be displayed.

The Main Thread:

When a java program starts up, one thread begins running immediately. This is usually called
the main thread of your program, because it is the one that is executed when your program
begins. The main thread is important for two reasons

 It is the thread from which other “ child” threads will be spawned.
 Often it must be the last thread to finish execution because it performs various

shutdown actions.

Although the main thread is created automatically when your program is started, it can be
controlled through a Thread object. To do so, you must obtain a reference to it by calling the
method currentThread(), which is a public static member of Thread. Its general form is
shown here,

static Thread currentThread()

Example:

class th1
{
public static void main(String args[])
{
Thread t1=Thread.currentThread();
System.out.println("current thread :"+t1);

t1.setName("My Thread ");
System.out.println("After name change" +t1);

Page 57

try
{
for(int i=1;i<=5;i++)
{
System.out.println(i);
Thread.sleep(1000);
}}

catch(InterruptedException e)
{
System.out.println("main thread interrupted");
}}
}

In this program, a reference to the current thread (the main thread, in this case) is obtained by
calling currentThread(), and this reference is stored in the local variable t1. Next, the
program displays information about the thread. The program then calls setName() to change
the internal name of the thread. Information about the thread is then redisplayed. Next, a loop
counts 1 to 5 pausing one second between each line. The pause is accomplished by the sleep(
) method. The argument to sleep() specifies the delay period in milliseconds.

Notice the try / catch block around this loop. The sleep() method in Thread might
throw an InterruptedException. This would happen if some other thread wanted in
interrupted this sleeping one. This example just prints a message if it gets interrupted. Here is
the output generated by this program:

Current thread: Thread[main, 5, main]
After name change: Thread[My Thread,5,main]
1
2
3
4
5

The Thread class and the Runnable Interface:

Java’s multithreading system is built upon the Thread class, its methods, and its
companion interface, Runnable. The Thread class defines several methods that help manage
threads.

getName:
It obtain a thread’s Name.

getPriority:
It obtain a thread’s priority.

Page 58

isAlive:
Determine if a thread is still running.

join:
Wait for a thread to terminate.

run:
Entry point for the thread.

sleep:
suspend a thread for a period of time.

start:
start a thread by calling its run method.

Life cycle of Thread:

Running:
Running state used for thread hold on particular CPU.

Ready to run:
At any time CPU free then that time get ready into thread for CPU.

Suspended:
Running thread suspended into CPU

Blocked:
A thread can be blocked when waiting for the other resources in a CPU. This happens

when the thread is suspended, sleeping, or waiting in order to satisfy certain requirements. A
blocked thread is considered “not runnable” but not dead and therefore fully qualified to run
again.

Terminated:
At any time any thread can be terminated, thread can not be resources or re start.

Resumed:

Resumed used for continues thread in a particular CPU.

Page 59

Creating a Thread:

In the most general sense, you create a thread by instantiating an object of type
Thread. Java defines two ways in which this can be accomplished.

Implement the Runnable interface.

Extend the Thread class, itself.

Implementing Runnable:
The easiest way to create a thread is to create a class that implements the Runnable

interface. Runnable abstracts a unit of executable code. You can construct a thread on any
object that implements Runnable. To implement Runnable, a class need only implement a
single method called run() , which is declared like this:

Public void run()
Inside run() , you will define the code that constitutes the new thread. It is important

to understand the run() can call other methods, use other classes, and declare variables, just
like the main thread .

Syntax:
Class x implements Runnable
{

………….
………….

}

After the new thread is created, it will not start running until you call its start()
method, which is declared within Thread. In essence, start() executes a call to run(). The
start() method is shown here:

void start()

Example :

class exthread implements Runnable
{
exthread()
{
Thread t=new Thread(this,"demo thread");
System.out.println("Child thread"+t);
t.start();

}

Page 60

public void run()
{
try
{
for(int i=1;i<5;i++)
{
System.out.println("child thread i value is "+i);
Thread.sleep(500);
}}

catch(InterruptedException e)
{
System.out.println("child interrupted");
}
System.out.println("exiting the child thread");
}}

class th4
{
public static void main(String args[])
{
new exthread();
try
{
for(int i=10;i<15;i++)
{
System.out.println("main thread "+i);
Thread.sleep(1000);
}}

catch(InterruptedException e)
{
System.out.println("Main thread interrupted");
}
System.out.println("exiting the main thread");
}
}

Page 61

Extending the thread class:

The second way to create a thread is to create a new class the extends Thread, and
then to create an instance of that class. It includes the following steps:

Declare the class as extending the Thread class.
Implement the run() method that is responsible for executing the sequence of code

that the thread will execute.
Create a thread object and call the start() method to initiate the thread execution.

Declaring the Class:

The Thread class can be extended as follows:

Class MyThread extends Thread
{

………….
………….

}
Now we have a new type of thread MyThread.

Implementing the run() Method:

The run() method has been inherited by the class MyThread. We have to override
this method in order to implement the code to be executed by our thread. The basic
implementation of run() will look like this:

Public void run()
{

…………….
……………..

}
When we start the new thread, java calls the thread’s run() method, so it is the run()

where all the action takes place.

Starting New Thread:

To actually create and run an instance of our thread class, we must write the following:
MyThread aThread = new MyThread();
AThread.start();

Page 62

The first line instantiates a new object of class MyThread. Note that this statement
just creates the object. The thread that will run this object is not yet running. The thread is in a
newborn state. Arun

The second line calls the start() method causing the thread to move into the runnable
state. Then, the java runtime will schedule the thread to run by invoking its run() method.
Now, the thread is said to be in the running state.

Example:

class a extends Thread
{
public void run()
{
for(int i=1;i<=5;i++)
{
System.out.println("\t from thread a :i = "+i);
}
System.out.println("exit form a");
}}

class b extends Thread
{
public void run()
{
for(int j=10;j<=15;j++)
{
System.out.println("\t from thread b :j = "+j);
}
System.out.println("exit from b");
}}

class c extends Thread
{
public void run()
{
for(int k=15;k<=20;k++)
{
System.out.println("\t from thread c :k = "+k);
}
System.out.println("Exit from c");
}}

Page 63

class th3
{
public static void main(String args[])
{
new a().start();
new b().start();
new c().start();
}}

THREAD PRIORITY:

In java, each thread is assigned apriority, which affects the order in which it is
scheduled for running. The threads that we have discussed so far are of the same priority. The
threads of the same priority are given equal treatment by the java scheduler and, therefore,
they share the processor on first-serve basis.

Syntax of thread priority
ThreadName.setPriority(intNumber);

The intNumber is an integer value to which the thread’s priority is set. The Thread class
defines several priority constants:

MIN_PRIORITY = 1
NORM_PRIORITY= 5
MAX_PRIORITY = 10

The intNumber may assume one of these constants or any value between 1 and 10.
Note that the default setting is NORM_PRIORITY.

Most user-level processes should use NORM_PRIORITY, plus or minus. Back-
ground tasks such as network I/O and screen repainting should use a value very near to the
lower limit. We should be very cautious when trying to use very high priority values.

Example:

class a extends Thread
{
public void run()
{
System.out.println("thread a started");

for(int i=1;i<=4;i++)

Page 64

{
System.out.println("\t from thread a : i="+i);
}
System.out.println("exit from a");
}}

class b extends Thread
{
public void run()
{
System.out.println("thread b started");
for(int j=10;j<=14;j++)
{
System.out.println("\t from thread b : j="+j);
}
System.out.println("exit from b");
}}

class c extends Thread
{
public void run()
{
System.out.println("thread c started");
for(int k=20;k<25;k++)
{
System.out.println("\t from thread c : k= "+k);
}
System.out.println("exit from c");
}}

class th13
{
public static void main(String args[])
{
a ob = new a();
b ob1 = new b();
c ob2 = new c();

ob.setPriority(Thread.MIN_PRIORITY);
System.out.println("start thread a");
ob.start();
System.out.println("start thread b");
ob1.start();
System.out.println("start thread c");
ob2.start();

Page 65

System.out.println("end of main thread");
}}

In this program class b and class c will be work on same time but the class a will be work on
after working on b & c class. That is class a will be work on last because it will be set on
lower priority.

Synchronization

When two or more threads need access to a shared resource, they need some way to
ensure that the resource will be used by only one thread at a time. The process by which this is
achieved is called synchronization.

Example:
class a extends Thread
{
public void run()
{
try
{
sync.display();
Thread.sleep(250);
}
catch(InterruptedException e)
{
System.out.println("Interrupted");
}
System.out.println("exit form a");
}}

class sync
{
public static synchronized void display()
{
for(int x=200;x<203;x++)
{
System.out.println("a thread x value is"+x);
}}}
class b extends Thread
{
public void run()
{

Page 66

try
{
for(int j=1;j<5;j++)
{
System.out.println("b thread j value is "+j);
Thread.sleep(500);
}}

catch(InterruptedException e)
{
System.out.println("interrupted");
}
}}

class th12
{
public static void main(String args[])
{
new a().start();
new b().start();
}}

In this program first class a process completed then the class b process will be started.

Deadlock

A special type of error that you need to avoid that relates specifically to multitasking is
deadlock , which occurs when two threads have circular dependency on a pair of
synchronized objects.

For example, suppose one thread enters the monitor on object x and another thread enters
the monitor on object y. if the thread in x tries to call any synchronized method on y, it
will block as expected. However, if the thread in y, in turn, tries to call any synchronized
method on x, the thread waits forever, because to complete.

Deadlock is a difficult error to debug for two reasons.

In general, it occurs only rarely, when the two threads time-slice in just the right way.
It may involve more than two threads and two synchronized objects.(that is , deadlock

can occur through a more convoluted sequence of events than just described).

class firstt
{
synchronized void display(second s)
{
System.out.println("arun");
try

Page 67

{
Thread.sleep(1000);
}
catch(Exception e)
{
System.out.println("one interrupted");
}
System.out.println("kumar");
s.display1();
//here deadlock occur
}
synchronized void display1()
{
System.out.println("anbu");
}}

class second
{
synchronized void show(firstt f)
{
System.out.println("simi");
try
{
Thread.sleep(1000);
}
catch(Exception e)
{
System.out.println("first interrupted");
}
System.out.println("ammu");
f.display1();
// here dead lock occur
}
synchronized void display1()
{
System.out.println("arasan");
}}

class deadlo2 extends Thread
{
firstt f=new firstt();
second s=new second();

deadlo2()
{
start();

Page 68

f.display(s);
System.out.println("back in main thread");
}
public void run()
{
s.show(f);
System.out.println("back in other thread");
}

public static void main(String args[])
{
new deadlo();
}
}

output of this program is arun
 simi
 kumar
 ammu

then deadlock entered then we have to press ctrl + c then control come back dos
prompt.

SUSPEND, RESUME A THREAD:

//example program for suspend, resuming thread

class ones extends Thread
{
boolean suspendFlag;
String name;
ones(String tname)
{
name=tname;
suspendFlag=false;
start();
}

public void run()
{
try
{
for(int i=15;i>0;i--)
{

Page 69

System.out.println(name +" : "+ i);
Thread.sleep(200);

synchronized(this)
{
while(suspendFlag)
{
wait();
}}

}
}
catch(Exception e)
{
System.out.println("exit");
}
}

void mysuspend()
{
suspendFlag=true;
}

synchronized void myresume()
{
suspendFlag=false;
notify(); // it is used to wake up the thread
}
}

class th161
{
public static void main(String args[])
{
ones o=new ones("arun");
ones o1=new ones("kumar");

try
{
Thread.sleep(1000);

o.mysuspend();
System.out.println("suspending thread one");
Thread.sleep(1000);

o.myresume();

Page 70

System.out.println("resuming thread one");

o1.mysuspend();
System.out.println("suspendint thread two");
Thread.sleep(1000);
o1.myresume();
System.out.println("resuming thread two");
}
catch(Exception e)
{
System.out.println("interrupted");
}
}
}

Page 71

Stream I/O and Files

Java programs perform I/O through streams. A stream is an abstraction that either
produces or consumes information. A stream is linked to a physical device by the java I/O
system. All streams behave in the same manner, even if the actual physical devices to which
they are linked differ.

Thus, the same I/O classes and methods can be applied to any type of device. This
means that an input stream can abstract many different kinds of input: from a disk file, a
keyboard, or a network socket.

Likewise, an output stream may refer to the console, a disk file, or a network
connection.

Types of Stream:
Java defines two types of Streams:

1. Byte Streams 2. Character Streams.

Byte Stream:
Byte streams provide a convenient means fro handling input and output of bytes. Byte

streams are used, for example, when reading or writing binary data. Byte streams are defined
by using two classes hierarchies.

At the top are two abstract classes : InputStream and OutputStream. Each of these
abstract classes has several concrete subclasses, that handle the differences between various
devices, such as disk files, network connections and even memory buffers.

The byte stream classes are as bellow:

Stream Classes Meaning

BufferedInputStream Buffered input stream
BufferedOutputStream Buffered output stream
ByteArrayInputStream Input stream that reads from a byte array
ByteArrayOutputStream Output stream that writes to a byte array
DataInputStream An input stream that contains methods for reading

the java standard data types
DataOutputStream An output stream that contains methods for writing

The java standard data types
FileInputStream Input stream that reads from a file.
FileOutputStream Output stream that writes to a file
InputStream Abstract class that describes stream input
OutputStream Abstract class that describes stream output
PrintStream Output stream that contains print() &println()
RandomAccessFile supports random access File I/O

The abstract classes InputStream and OutputStream define several key methods that
the other stream classes implement. Two of the most implement are read() and write(),

Page 72

which respectively, read and write bytes of data. Both methods are declared as abstract inside
InputStream & OutputStream.

Character Stream:

Character streams are defined by using two class hierarchies. At the top are two
abstract classes, Reader & Writer. These abstract classes handle Unicode character streams.
Java has several concrete subclasses of each of these. The character stream classes are below:

Stream Classes Meaning

BufferedReader Buffered input character stream
BufferedWriter Buffered output character stream
CharArrayReader Input stream that reads from a character array
CharArrayWriter Output stream that writes to a character array
FileReader Input stream that reads from a file
FileWriter Output stream that writes to a file
InputStreamReader Input stream that translates bytes to characters
PrintWriter Output stream that contains print() & println()
StringReader Input stream that reads from a string
StringWriter Output stream that writes to a string
Writer Abstract class that describes character stream

Output.

Reading console Input:

In java, console input is accomplished by reading from System.in. to obtain a
character-based stream that is attached to the console, you wrap System.in in a
BufferedReader object, to create character stream. BufferedReader supports a buffered
input stream. It is most commonly used constructor is shown here:

BufferedReader(Reader inputReader)
Here, inputReader is the stream that is linked to the instance of BufferedReader that

is being created. Reader is abstract class. One of its concrete subclasses is
InputStreamReader, which converts bytes to charcters. To obtain an InputStreamReader
object that is linked to System.in, use the following constructor

InputStreamReader(InputStream inputStream)
Because System.in refers to an object of type InputStream, it can be used for

inputStream. Putting it all together, the following line of code creates BufferedReader that is
connected to the keyword:

BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
After this statement executes, br is a character based stream that is linked to the console
through System.in.

Page 73

Example: (String Functions)

import java.io.*;
class str
{
public static void main (String args[])throws IOException
{
InputStreamReader br=new InputStreamReader(System.in);
BufferedReader r=new BufferedReader(br);
String name,a,b,c;
System.out.println("Enter the first string");
name=r.readLine();

System.out.println("Enter the string");
a=r.readLine();

System.out.println("given name is "+ name);
System.out.println("given name is "+ a);

System.out.println("comp"+name.compareTo(a));

int l;
l=name.length();
System.out.println("given name length is "+l);
System.out.println(" ");
System.out.println("given name length is "+ a.length());
System.out.println(" ");

System.out.println("concat string is "+ name.concat(a));
System.out.println(" ");

System.out.println("Equal string " +name.equals(a));
System.out.println(" ");

System.out.println("Upper case letter of the given name"+name.toUpperCase());
System.out.println(" ");

System.out.println("Upper case letter of the given name"+a.toLowerCase());
System.out.println(" ");

StringBuffer x=new StringBuffer(a);
x.reverse();

String y=new String(x);
System.out.println("Reverse of the string is: "+y);

Page 74

 if(a.compareTo(y)==0)
 System.out.println("Given String is polyndrome");
 else
 System.out.println("not polyndrome strig is ");

}}

PrintWriter Class:

Although using System.out. to write to the console is still permissible under java its
use is recommended mostly for debugging purposes. For real-world programs, the
recommended method of writing to the console when using java is through a PrintWriter
stream. PrintWriter is one of the character-based classes. Using a character based class for
console output makes it easier to internationalize your program.
PrintWriter defines several constructors. The one we will use is shown here:

PrintWriter(OutputStream outputStream, Boolean flushOnNewline)

Here , outputStream is an Object of type OutputStream, and flushOnNewline controls
whether java flushes the output stream ever time a println() method is called. If
flushOnNewline is true, flushing automatically takes place. If false , flushing in not
automatic.

PrintWriter pw=new PrintWriter(System.out, true);

Example:

import java.io.*;
class pwriter
{
public static void main(String args[])
{
PrintWriter pw=new PrintWriter(System.out,true);
pw.println("this is a string");
int i=9;
pw.println(i);
}}

FILES:

Page 75

We have used variables and arrays for storing data inside the programs. This approach
poses the following problems.

The data is lost either when a variable goes out of scope or when the program is
terminated. That is , the storage is temporary.

It is difficult to handle large volumes of data using variables and arrays.
We can overcome these problems by storing data on secondary storage devices such as floppy
disks or hard disks. The data is stored in these devices using the concept of files.

A file is a collection of related records placed in particular area on the disk. Storing
and managing data using files is known as file processing which includes tasks such as
creating files, updating files and manipulation of data.

USING THE FILE CLASS:
The java.io, package includes a class known as the file class that provides support for

creating files and directories. The class includes several constructors for instantiating the File
objects. This class also contains several methods for supporting the operations such as

Creating a File , Opening a File, Closing a File, Deleting a File, Getting the name of
the File, Renaming a File, checking whether the file is readable, checking whether the file is
writable.

INPUT / OUTPUT EXCEPTIONS:

When creating files and performing i/o operations on them, the system may generate
i/o related exceptions. The basic i/o exception classes and their functions are given below

I/O Exception class Function

EOFException Signals that an end of the file or end of stream has been
reached unexpectedly during input

FileNotFoundException Informs that a file could not found
InterruptedIOException Warns that an I/O operations has be interrupted
IOException signals that an I/O exception of some sort has occurred.

CREATION OF FILES:

 If we want to create and use a disk file, we need to decide the following about the
Intended purpose.
 Suitable name of the file
 Data type to be stored
 Purpose (reading, writing, or updating)
 Method of creating the file.

READING / WRITING CHARACTES:

Page 76

As pointed out earlier, subclasses of Reader & Writer implement streams that can
handle characters. The two subclasses used for handlingcharacters in files are FileReader
(for reading characters) and FileWriter(for writing characters).

In this program , two file stream classes to copy the contents of a file amed input.dat”
into a file called “output.dat”.

//coping charcters from one file into another
import java.io.*;
class file1
{
public static void main(String args[])
{
File infile=new File("input.dat");
File outfile=new File("output.dat");
FileReader ins=null;
FileWriter outs=null;
try
{
ins=new FileReader(infile);
outs=new FileWriter(outfile);
int ch;
while((ch=ins.read()) !=-1)
{
outs.write(ch);
}
}
catch(IOException e)
{
System.out.println(e);
}
finally
{
try
{
ins.close();
outs.close();
}
catch(IOException e)
{
System.out.println("interupted");
}}}}

Page 77

this program is very simple. It creates two file objects inFile & outFile and initializes them
with “input.dat”, and “output.dat” respectively using the following code.

File infile= new File(“input.dat”);
File outfile=new File(“output.dat”);

The program then creates two file stream objects ins & outs and initializes them with “null”
as follows.

FileReader ins=null;
FileWriter outs=null;

These Streams are then connected to the named files using the following codes
ins=new FileReader(infile);
outs=new FileWriter(outfile);
This connects infile to the FileReader stream ins and outfile to the FileWriter stream

outs. This essentially means that the files “input.dat” and “output.dat” are opened. The
statements ch=ins.read()

Reads a character from the infile through the input stream ins and assigns it to the
variable ch similarly, the statement

outs.write(ch);
writes the character stored in the variable ch to the outfile through the output stream

outs. The character-1 indicates the end of the file and therefore the code
while((ch=ins.read()) != -1)

causes the termination of the while loop when the end of the file is reached. The
statements

ins.close(); outs.close();
enclosed in the finally() clause close the files created for reading and writing. When

the program catches an I/O exception, it prints a message and then exits from execution.

Example:
FileInputStream, FileOutputStream:

import java.io.*;
class file3
{
public static void main(String args[])
{
try
{
FileOutputStream fos=new FileOutputStream("arun.txt");
for(int i=1;i<10;i++)
{
fos.write(i);
}
fos.close();
}
catch(IOException e)

Page 78

{
System.out.println(e);
}}}

In this program create a new file that is “arun.txt” and write the numbers between 1
and 10 and close that file.

import java.io.*;
class file31
{
public static void main(String args[])
{
try
{
FileInputStream fis=new FileInputStream("arun.txt");
int i;
while((i=fis.read())!=-1)
{
System.out.println(i);
}
fis.close();
}
catch(IOException e)
{
System.out.println(e);
}}}

In this program to open a new file that is “arun.txt” and read the message and print the
message to your console normal screen.

SequenceInputStream:

The SequenceInputStream class allows you to concatenate multiple InputStream.
The construction of SequenceInputStream is different from any other InputStream. A
SequenceInputStream constructor use either a pair of InputStream or an Enumeration of
InputStream as its argument.

SequenceInputStream(InputStream first, InputStream second)
SequenceInputStream(Enumeration stream Enum)

import java.io.*;
class file5
{
public static void main(String args[])throws IOException
{

Page 79

FileInputStream file1=null;
FileInputStream file2=null;

SequenceInputStream file3=null;

file1=new FileInputStream("one.txt");
file2=new FileInputStream("two.txt");
file3=new SequenceInputStream(file1,file2);

BufferedInputStream inb=new BufferedInputStream(file3);
BufferedOutputStream ob=new BufferedOutputStream(System.out);

int ch;
while((ch=inb.read())!=-1)
{
ob.write((char)ch);
}
inb.close();
ob.close();
file1.close();
file2.close();
}}

In this program to create two file that is “one.txt” and “two.txt” and write some
message. Then to store file3 that is SequenceInputStream it includes one.txt , two.txt (that is
file1,file2). Then file3 to be stored on BufferedInputStream. Then use of
BufferedOutputStream to read the character from file3 and print the message on to the screen.

DataInpurStream , DataOutputStream:

The DataInputStream class extends FilterInputStream and implements
DataInputStream. This class provides this constructor:

DataInputStream(InputSteam is)
Here, is the input stream.

The DataInput interface defines methods that can be used to read the simple java
types from a byte input stream.
Example:

import java.io.*;
class file7
{
public static void main(String args[])
{
try

Page 80

{
FileOutputStream fos=new FileOutputStream("kumar.txt");

DataOutputStream dos=new DataOutputStream(fos);

dos.writeBoolean(false);
dos.writeByte(Byte.MAX_VALUE);
dos.writeChar('A');
dos.writeDouble(Double.MAX_VALUE);
dos.writeFloat(Float.MAX_VALUE);
dos.writeInt(Integer.MAX_VALUE);
dos.writeLong(Long.MAX_VALUE);
dos.writeShort(Short.MAX_VALUE);

fos.close();
}
catch(Exception e)
{
System.out.println("Exception :"+e);
}
}}

In this program to create “kumar.txt” and write the message the max value of
int,float,long,short data type values.

import java.io.*;
class file71
{
public static void main(String args[])
{
try
{
FileInputStream fis=new FileInputStream("kumar.txt");

DataInputStream dis=new DataInputStream(fis);

System.out.println(dis.readBoolean());
System.out.println(dis.readByte());
System.out.println(dis.readChar());
System.out.println(dis.readDouble());
System.out.println(dis.readFloat());
System.out.println(dis.readInt());
System.out.println(dis.readLong());
System.out.println(dis.readShort());
dis.close();
}

Page 81

catch(Exception e)
{
System.out.println("Exception :"+e);
}
}}

In this program to open the file “kumar.txt” and read the message and print the message on
the screen.

RANDOM ACCESS FILES:

The stream classes examined in the previous sections can only use sequential access to
read and write data in File. The RandomAccessFile class allows you to write programs that
can seek to any location in a file and read or write data at the point. It also supports
positioning requests- that is, you can position the file pointer within the file. It has two
constructors:

RandomAccessFile(File fileobj, String access) throws FileNotFoundException
 RandomAccessFile(String filename, String access) throws FileNotFoundException

In the first form, fileobj specifies the name of the file to open as a File object. In the
second form, the name of the file is passed in filename. In both cases, access determines what
type of file access is permitted. If it is “r” , then the file can be read, but not written. If it is
“rw” , then the file is opened in read-write mode.

The method seek() shown here, is used to set the current position of the file pointer
within the file:

Void seek(ling newpos) throws IOException
Here , newpos specifies the new position, in bytes, of the file pointer from the

beginning of the file. After call to seek(), the next read or write operation will occur at the
new file position.

Example:

import java.io.*;

class file8
{
public static void main(String args[])
{
RandomAccessFile file=null;

try
{
file=new RandomAccessFile("rand.dat","rw");

file.writeChar('x');
file.writeInt(888);

Page 82

file.writeDouble(89.456);

file.seek(0);//go to the begining

System.out.println(file.readChar());
System.out.println(file.readInt());
System.out.println(file.readDouble());

file.seek(2);//go to the second item

System.out.println(file.readInt());

file.seek(file.length());//go to the end and append false to the file
file.writeBoolean(false);

file.seek(3);
System.out.println(file.readBoolean());
file.close();
}
catch(IOException e)
{
System.out.println(e);
}
}}

In this program first to create a new file that is “rand.dat” that file is read and write
file. Then to write three message on that file. Then read on that file and print the message on
the screen one by one.

Then use of the seek() method and print the second message. Then use of length class
to add another message on that file.

Then use of the seek method to print the new (that is fourth) message on the screen.
This process is only available on RandomAccessFile method only.

The output as follows:

x
888
89.456
888
true

End of III unit

Page 83

UNIT IV :
AWT classes – Window fundamentals – AWT controls – Handling

Events by Extending AWT Components.

AWT Classes:

The AWT contains numerous classes and methods that allow you to create and
manage windows. The AWT when creating your own applets or stand-alone programs. The
main purpose of the AWT is to support applet windows, it can also be used to create stand-
alone windows that run in a GUI environment, such as windows. Most of the examples are
contained in applets, so to run them, you need to use an applet viewer or a java-compatible
web browser.

The AWT classes are contained in the java.awt package. It is one of java’s largest
packages. Fortunately, because it is logically organized in a top-down, hierarchical fashion, it
is easier to understand and use than you might at first believe. Some AWT classes below:

Class Description

AWTEvent Encapsulates AWT events.
BorderLayout The border layout manager. It use five components: North,

South, East, West and Center.
Button Creates a push button control.
Canvas A blank, semantics-free window.
Checkbox Creates a check box control
CheckboxGroup Creates a group of check box controls.
Choice creates a pop-up list.
Component An abstract super class for various AWT components.
Container A subclass of Component that can hold other components.
Dialog Creates a dialog window.
FlowLayout the flow layout manager. Flow layout positions components left

to right, top to bottom.
Font Encapsulates a type font.
FontMetrics Encapsulates various information related to a font. This

information helps you display text in a window
Frame Creates a standard window that has a title bar, resize corners,

and a menu bar.
Graphics encapsulates the graphics context. It is used by the various

output methods to display output in a window.
GridLayout the grid layout manager. To displays components in a two-

dimensional grid.
Image Encapsulates graphical images.
Label Creates a label that displays a string.

Page 84

Class Description

List Creates a list from which the user can choose.
Menu Creates a pull-down menu.
Panel the simplest concrete subclass of Container.
Rectangle Encapsulates a rectangle.
Scrollbar Creates a scroll bar control
Textarea Creates a multi line edit control.
TextField Creates a single-line edit control.
Window Creates a window with no frame, no menu bar, and no title.

WINDOW FUNDAMENTALS:
The AWT defines windows according to a class hierarchy that adds functionality and

specificity with each level. The two most common windows are those derived from Panel,
which is used by applets, and those derived from Frame, which creates a standard window.

Component:
At the top of the AWT hierarchy is the Component class. Component is an abstract

class that encapsulates all of the attributes of a visual component. All user interface elements
that are displayed on the screen and that interact with the user are subclasses of Component.

It responsible for managing events, such as mouse and keyboard input, positioning and
sizing the window, and repainting. A Component object is responsible for remembering the
current foreground and background colors and the currently selected text font.

Container:
The Container class is a subclass of Component. It has additional methods that allow

other Component objects to be nested within it. A container is responsible for laying out (
that is, positioning) any components that it contains. It does this through the use of various
layout managers.

Panel:
The Panel class is concrete subclass of Container. It doesn’t add any new methods; it

simply implements Container. A Panel may be thought of as a recursively nestable,
concrete screen component. Panel is the super class for Applet. When screen output is
directed to an applet, it is drawn on the surface of a Panel object. In essence, a Panel is a
window that does not contain a title bar, menu bar, or border. When you run an applet using
an applet viewer, the applet viewer provides the title and border.

Other components can be added to a Panel object by its add() method. Once these
components have been added, you can position and resize them manually using the
setLocation(), setSize(), or setBounds() methods defined by Component.

Window:

Page 85

The Window class creates a top-level window. A top-level window is not contained
within any other object; it sits directly on the desktop. Generally , you won’t create Window
objects directly. Instead, you will use a subclass of Window called Frame, described next.

Frame:
Frame encapsulates what is commonly thought of as a “window”. It is subclass of

window and has a title bar, menu bar, borders, and resizing corners.

Canvas:
Although it is not part of the hierarchy for applet or frame windows, there is one other

type of window that you will find valuable: Canvas. Canvas encapsulates a blank window
upon which you can draw.

Working with Frame Windows:
After the applet, the type of window you will most often create is derived from

Frame. You will use it to create child windows with applets, and top-level or child windows
for applications. Here are two of Frame’s constructors:

Frame()
Frame(String title)

The first form creates a standard window that does not contain a title. The second form creates
a window with the title specified by title.

Hiding and Showing a Window:
After a frame window has been created, it will not be visible until you call setVisible(

). Its signature is shown here:
void setVisible(Boolean visible flag)

The component is visible if the argument to this method is true. Otherwise, it is hidden.

Setting a Window’s Title:
You can change the title in a frame window using setTitle(), which has this general

form:
void setTitle(String newTitle)

here, newTitle is the new title for the window.

Creating a Frame Window in an Applet:
While it is possible to simply create a window by creating an instance of Frame, you

will seldom do so, because you will not be able to do much with it. Creating a new frame
window from within an applet is actually quite easy. First, create a subclass of Frame. Next,
override any of the standard window methods, such as init(), start(), stop(), and paint().
Finally, implement the windowClosing() method of the WindowListener interface, calling
setVisible(false) when the window closed.

Example:

Page 86

import java.awt.*;
import java.applet.*;
import java.awt.event.*;

/*
<applet code= "app811" width = 300 height = 50>
</applet>
*/

class o extends Frame
{
public void paint(Graphics g)
{
g.drawString("this is a frame window",50,59);
}}

public class app811 extends Applet
{
Frame f;
public void init()
{
f=new o();
f.setSize(250,250);
f.setVisible(true);
}
public void paint(Graphics g)
{
g.drawString("this is an applet window",10,20);
showStatus("this is applet window status bar");
}
}

Working with Graphics:
The AWT supports a rich assortment of graphics methods. All graphics are drawn

relative to a window. This can be the main window of an applet, a child window of an applet,
or a stand-alone application window. The origin of each window is at the top-left corner and is
0,0. coordinates are specified in pixels. All output to a window takes place through a graphics
context. A graphics context is encapsulated by the Graphics class and is obtained in two
ways:

It is passes to an applet when one of its various methods, such as paint() or update()
is called.

It is returned by the getGraphics() method of Component.
The Graphics class defines a number of drawing functions. Each shape can be drawn

edge-only or filled. Objects are drawn and filled in the currently selected graphics color,
which is black by default.

Page 87

Drawing Lines:
Lines are drawn by means of the drawLine()method, shown here:

void drawLine(int startx, int starty, int endx, int endy)
drawLine() displays a line in the current drawing color that begins at startx,starty and ends at
endx, endy.

Drawing Rectangle:

The drawRect() & fillRect() methods display an outlined and filled rectangle,
respectively. They are shown here:

void drawRect(int top, int left, int width, int height)
void fillRect(int top, int left, int width, int height)

The upper-left corner of the rectangle is at top,left. The dimensions of the rectangle are
specified by width and height.

To draw a rounded rectangle, use drawRoundRect() or fillRoundRect(),both shown
here

void drawRoundRect(int top, int left, int width, int height, int xDiam, int yDiam)
void fillRoundRect(int top, int left, int width, int height, int xDiam, int yDiam)

A rounded rectangle has rounded corners. The upper-left corner of the rectangle is at top,left.
The dimensions of the rectangle are specified by width and height. The diameter of the
rounding arc along the x axis is specified by xDiam. The diameter of the rounding arc along
the y axis is specified by yDiam.

Drawing Ellipses and Circles:

To draw an ellipse, use drawOval(). To fill an ellipse, use fillObval(). These
methods as shown here:

void drawOval(int top, int left, int width, int height)
void fillOval(int top, int left, int width, int height)

The ellipse is drawn within a bounding rectangle whose upper-left corner is specified by
top,left and whose width and height are specified by width and height.

Drawing Arcs:

Arcs can be drawn with drawArc() & fillArc(), shown here:
void drawArc(int top, int left, int width, int height, int startAngle,int sweep Angle)
void fillArc(int top, int left, int width, int height, int start Angle, int sweep Angle)

The arc is bounded by the rectangle whose upper-left corner is specified by top, left
and whose width and height are specified by width and height. The arc is drawn from start
angle through the angular distance specified by sweep angle. Angles are specified in degrees.
Zero degree is on the horizontal, at the three o’clock position. The arc is drawn
counterclockwise if sweep angle is positive, and clockwise if sweep angle is negative.

Page 88

Therefore, to draw an arc from twelve o’clock to six o’clock , the start angle would be 90 and
the sweep angle 180.

Example:

import java.awt.*;
import java.applet.*;
/*
<applet code="app6" width=300 height = 200>
</applet>
*/
public class app6 extends Applet
{
public void paint(Graphics g)
{
g.drawLine(10,10,50,50);
g.drawRect(10,60,40,30);
g.setColor(Color.red);
g.fillRect(60,10,30,80);
g.drawRoundRect(10,100,80,50,10,10);
g.fillRoundRect(20,110,60,30,5,5);
g.drawOval(60,190,200,120);
g.fillOval(110,200,100,100);
g.drawArc(30,170,80,80,10,95);
}}

Drawing Polygons:

It is possible to draw arbitrarily shaped figures using drawPolygon() & fillPolygon(
), show here:

void drawPolygon(int x[],int y[],int numpoints)
void fillPolygon(int x[],int y[], int numpoints)

The polygon’s endpoints are specified by the coordinate pairs contained within the x and y
arrays. The number of points defined by x and y is specified by numpoints. Ther are
alternative forms of these methods in which the polygon is specified by a polygon object.

Example:
import java.awt.*;
import java.applet.*;
/*
<applet code = "app21" width = 300 height = 200>
</applet>
*/

public class app21 extends Applet

Page 89

{
public void paint(Graphics g)
{
int xpoints[]={30,200,30,200,30};
int ypoints[]={30,30,200,200,30};
int num= 5;
g.drawPolygon(xpoints,ypoints,num);
}}

AWT Controls:

Controls are components that allow a user to interact with your application in various
ways – for example, a commonly used control is the push button. A layout manager
automatically positions components within a container.

Control Fundamentals:
The AWT supports the following types of controls:
Labels, Push buttons, Check boxes, Choice lists, Lists, Scroll bars, Text editing.

These controls are subclasses of Component.

Labels:
The easiest control to use is a label. A label is an object of type Label, and it contains

a string, which it displays. Labels are passive controls that do not support any interaction with
the user. Label defines the following constructors:

Label() , Label (String str) , Label(String str, int how)

The first version creates a blank label. The second version creates a label that contains
the string specified by str. This string is left-justified. The third version creates a label that
contains the string specified by str using the alignment specified by how. The value of how
must be one of these three constants: Label.LEFT, Label.RIGHT, Label.CENTER.

You can set or change the text in a label by using the setText()method. You can
obtain the current label by calling getText(). These methods are shown here:

void setText(String str)
void getText()

For setText(), str specifies the new label. For getText(), the current label is returned.

TextField
The TextField class implements a single-line text-entry area, usually called an edit

control. Text fields allow the user to enter strings and to edit the text using the arrow keys, cut
and paste keys, and mouse selections. TextFields is a subclass of TextComponent.
TextField defines the following constructors:

TextField()
TextField(int numchars)

Page 90

TextField(String str)
TextField(String str, int numchars)

The first version creates a default text field. The second form creates a text field that is
numchars characters eide. The third form initializes the text field with the string contained in
str. The fourth form initializes text field and sets it width.

TextField (and its superclass TextComponint) provides several methods that allow
you to utilize a text field. To obtain the string currently contained in the text field, call
getText(). To set the text, call setText(). These methods are as follows:

String getText()
void setText(String str)

Here, str is the new String.

Example:

import java.awt.*;
import java.applet.*;
//EXAMPLE OF LABLE AND TEXT
/*
<applet code="app9" width = 300 height = 200>
</applet>
*/
public class app9 extends Applet
{
TextField text1,text2;
Font f= new Font("TimesRoman",Font.ITALIC,20);

public void init()
{

Label one=new Label("a value");
text1=new TextField(8);
Label two=new Label("b value");
text2=new TextField(8);
add(one);
add(text1);
add(two);
add(text2);
text1.setText("0");
text2.setText("0");
}

public void paint(Graphics g)
{

Page 91

g.setFont(f);
int x,y,z=0;
String s1,s2;
g.drawString("Input a number in each box",50,100);
s1=text1.getText();
x=Integer.parseInt(s1);
s2=text2.getText();
y=Integer.parseInt(s2);
z=x+y;
g.drawString("sum value is = "+z,50,175);
}}

Using Buttons

The most widely used control is the push button. A push button is a component that
contains a label and the generates an event when it is pressed. Push buttons are objects of type
Button. Button defines these two constructors:

Button()
Button(String str)
The first version creates an empty button. The second creates a button that contains str

as a label.

Handling Buttons:

Each time a button is pressed, an action event is generated. Each listener implements
the ActionListener interface. That interface defines the actionPerformed() method, which is
called when an event occurs. An ActionEvent objects is supplied as the argument to this
method.

Example:

import java.awt.*;
import java.applet.*;
import java.awt.event.*;

// EXAMPLE OF BUTTON
/*
<applet code="app10" width =300 height = 200>
</applet>
*/

public class app10 extends Applet implements ActionListener
{
Label result;
public void init()
{

Page 92

Button b1=new Button("apple");
b1.addActionListener(this);
add(b1);
Button b2= new Button("orange");
b2.addActionListener(this);
add(b2);
Button b3= new Button("banana");
b3.addActionListener(this);
add(b3);
result=new Label(" ");
add(result);
}
public void actionPerformed(ActionEvent ae)
{
result.setText(ae.getActionCommand());
}}

Another one example:

import java.awt.*;
import java.applet.*;
import java.awt.event.*;

// EXAMPLE OF BUTTON
/*
<applet code="app101" width =300 height = 200>
<param name=m1 value=80>
<param name=m2 value=90>
</applet>
*/
public class app101 extends Applet implements ActionListener
{
String ma1,ma2,a;
int m1,m2;
int a1,b,c1;
TextField text1=new TextField(8);
public void init()
{
ma1=getParameter("m1");
m1=Integer.parseInt(ma1);

Page 93

ma2=getParameter("m2");
m2=Integer.parseInt(ma2);

Button b1=new Button("+");
b1.addActionListener(this);
add(b1);
Button b2= new Button("-");
b2.addActionListener(this);
add(b2);
Button b3= new Button("*");
b3.addActionListener(this);
add(b3);
}
public void actionPerformed(ActionEvent ae)
{
a=ae.getActionCommand();
if(a.equals("+"))
{
b=m1+m2;
}
else if(a.equals("-"))
{
b=m1-m2;
}
else
{
b=m1*m2;
}
repaint();
}
public void paint(Graphics g)
{
g.drawString("result: "+b,200,200);
}
}

Page 94

Applying Check Boxes:

A check box is a control that is used to turn an option on or off. It consists of a small
box that can either contain a check mark or not. There is a label associated with each check
box that describes what option the box represents. You change the state of check box by
clicking on it. Check boxes can be used individually or as part of a group. Check boxes are
objects of the checkbox class.

Checkbox supports these constructors:
Checkbox()
Checkbox(String str)
Checkbox(String str, Boolean on)
Checkbox(String str, Boolean on, CheckboxGroup cbgroup)
Checkbox(String str,CheckboxGroup cbgroup, Boolean on)
The first form creates a checkbox whose label is initially blank. The state of the check

box in unchecked.
The second form creates a check box whose label is specified by str. The state of the

check box is unchecked.
The third form allows you to set the initial state of the check box. If on is true , the

check box in initially checked; otherwise it si cleared.
The fourth and fifth forms create a check box whose label is specified by str and

whose group is specified by cbgroup. If this check box is not part of a group, then cbgroup
must be null.

Handling Check Boxes:

Each time a check box is selected or deselected, an item event is generated. This is
sent to any listeners that previously registered an interest in receiving item event notifications
from that component. Each listener implements the ItemListener interface. The interface
defines the itemStateChanged() method.an ItemEvent objects is supplied as the argument to
this method.

CheckboxGroup:

It is possible to create a set of mutually exclusive check boxes in which one and only
one check box in the group can be checked at any one time. These check boxes are often
called radio buttons, because they act like the station selector on a car radio-only one station
can be selected at any one time. Checkbox groups are objects of type CheckboxGroup. Only
the default constructor is defined, which creates an empty group.

Choice Controls:

The Choice class is used to create a pop-up lists of items from which the user may
choose. Thus a Choice control is a form of menu. When inactive, a choise component takes

Page 95

up only enough space to show the currently selected item. When the user clicks on it, the
whole list of choices pops up, and a new selection can be made.

Choice only defines the default constructor, which creates an empty list. To add a
selection to the list, call addItem() or add(). They have these general forms:

void addItem(String name)
void add(String name)

Here, name is the name of the item being added. Items are added to the list in the order in
which calls to add() or addItem() occur.

Handling choice list:

Each time a choice is selected, an item event is generated. This is set to any listeners
that previously registered an interest in receiving item event notifications from that
component. Each listener implements the ItemListener interface. That interface defines the
itemStateChanged()bmethod. An ItemEvent object is supplied as the argument to this
method.

Example:

import java.awt.*;
import java.applet.*;
import java.awt.event.*;

//example of checkbox and choice
/*
<applet code="app11" width=300 height =200>
</applet>
*/

public class app11 extends Applet
{
Label o1=new Label(" ");
Label o2=new Label(" ");

public void init()
{

CheckboxGroup c= new CheckboxGroup();
Checkbox c1=new Checkbox("black and white",c,true);
Checkbox c2=new Checkbox("Color",c,false);
c1.addMouseListener(new check1());
c2.addMouseListener(new check2());
add(c1);
add(c2);
Choice abc=new Choice();
abc.add("onida");

Page 96

abc.add("bpl");
abc.add("sumsung");
abc.add("philps");
abc.addItemListener(new ch());
add(abc);
add(o1);
add(o2);
}
class check1 extends MouseAdapter
{
public void mouseClicked(MouseEvent e)
{
o1.setText("you have selected : black and whit tv");
}
}
class check2 extends MouseAdapter
{
public void mouseClicked(MouseEvent e)
{
o1.setText("you have selected : color tv");
}
}

class ch implements ItemListener
{
public void itemStateChanged(ItemEvent e)
{
String s= (String)e.getItem();
o2.setText("you have selected " + s + " brand");
}
}
}
Using Lists:

The List class provides a compact, multiple-choice, scrolling selection list. Unlike the
Choice object, which shows only the single selected item in the menu, a List object can be
constructed to show any number of choices in the visible window. It can also created allow
multiple selections.

To add a selection to the list, call add(). it has the following two forms:
void add(String name)
void add(String name, int index)
Here, name is the name of the item added to the list. The first form adds items to the

end of the list. The second form adds the item at the index specified by index. Indexing begins
at zero. You can specify –1 to add he item to the end of the list.

Given an index, you can obtain the name associated with the item at that index by
calling getItem() which has this general form

String getItem(int index)

Page 97

Example:

import java.awt.*;
import java.applet.*;
import java.awt.event.*;
/*
<applet code="app12" height = 200 width = 300>
</applet>
*/
public class app12 extends Applet
{
List ob=new List();
TextField tx=new TextField(10);
Button b1=new Button("add");
String count[]={"one","two","three"};
public void start()
{
Label one=new Label("text");
add(one);
add(tx);
for(int i=0;i<count.length;++i)
ob.addItem(count[i]);
add(ob);
b1.addActionListener(new Add());
add(b1);
}
class Add implements ActionListener
{
public void actionPerformed(ActionEvent e)
{
ob.addItem(tx.getText());
}}}

Managing Scroll Bars:
Scroll bars are used to select continuous values between a specified minimum and

maximum. Scroll bars may be oriented horizontally or vertically. A scroll bar is actually a
composite of several individual parts. Each end has an arrow that you can click to move the
current value of the scroll bar one unit in the direction of the arrow. The current value of the
scroll bar relative to its minimum and maximum values is indicated by the slider box for the
scroll bar.

Scrollbar defines the following constructors:
Scrollbar()
Scrollbar(int style)
Scrollbar(int style,int initial value, int thumbsize, int min, int max)

The first form creates a vertical scroll bar.

Page 98

The second and third forms allow you to specify the orientation of the scrollbar. If
style is Scrollbar.VERTICAL, a vertical scroll bar is created. If style is
Scrollbar.HORIZONTAL, the scroll bar is horizontal.

In the third form of the constructor, the initial value of the scroll bar is passed in initial
value. The number of units represented by the height of the thumb is passed int thumb size.
The minimum and maximum values for the scroll bar are specified by min and max.

Handling Scroll Bars:
To process scroll bar events, you need to implement the AdjustmentListerner

interface. Each time a user interacts with a scroll bar, an Adjustmentevent object is
generated. Its getAdjustmentType() method can be used to determinet the type of the
adjustment.

Using TextArea:
Sometimes a single line of text input is not enough for a given task. To handle these

situations, the AWT includes a simple multilane editor called TextArea.
TextArea is a subclass of TextComponent. Therefore , it supports the getText(),

setText() methods described in the preceding section. TextArea adds the following methods:
void append(String str)
void insert(String str, int index)

The Append() method appends the string specified by str to the end of the current
text. Insert () inserts the string passed in str at the specified index.

Example:
import java.applet.*;
import java.awt.*;
import java.awt.event.*;
/*
<applet code = "app13" width = 300 height = 200>
</applet>
*/
public class app13 extends Applet implements AdjustmentListener
{
TextArea ta;
public void init()
{
Scrollbar sb=new Scrollbar(Scrollbar.VERTICAL,0,0,0,100);
sb.addAdjustmentListener(this);
add(sb);
ta=new TextArea(10,20);
add(ta);
}
public void adjustmentValueChanged(AdjustmentEvent ae)
{
Scrollbar sb=(Scrollbar)ae.getAdjustable();
ta.append("AdjustmentEvent :"+sb.getValue()+"\n");

Page 99

}}

Layout Managers:
Each Container object has a layout manager associated with it. A layout manager is

an instance of any class that implements the LayoutManager interface. The layout manager
is set by the setLayout() method. If no call to setLayout() is made, then the default layout
manager is used.

The setLayout() method has the following general form
void setLayout(LayoutManager layout obj)

FlowLayout:
FlowLayout is the default layout manager. This it the layout manager that the

preceding examples have used. FlowLayout implements a simple layout style, which is
similar to how words flow in a text editor. Components are laid out from the upper-left corner,
left to right and top to bottom. When no more components fit on a line, the next one appears
on the next line. A small space is left between each component, above and below, as well as
left and right.

Constructor of flow layout is
FlowLayout(int how)

This form lets you specify how each line is aligned. Valid values for how are as follws
FlowLayout.LEFT, FlowLayout.CENTER , FlowLayout.RIGHT.

Example:

import java.applet.*;
import java.awt.*;
/*
<applet code = "app14" width = 300 height = 200>
</applet>
*/
public class app14 extends Applet
{
String str[]={"one","two","three","four","five","six","seven"};
public void init()
{
setLayout(new FlowLayout(FlowLayout.LEFT));
for(int i=0;i<str.length;++i)
add(new Button(str[i]));
}}

BorderLayout:
The BorderLayout class implements a common layout style for top-level windows. It

has four narrow, fixed-width components at the edges and one large area in the center. The

Page 100

four sides are feferred to as north, south, east, and west. The middle area is called the center.
BorderLayout defines the following constants that specify the regions:

BorderLayout.CENTER BorderLayout.SOUTH
BorderLayout.EAST BorderLayout.WEST
BorderLayout.NORTH

When adding components, you will use these constants with the following form of add() ,
which is defined by container.

Example
import java.awt.*;
import java.applet.*;

/*
<applet code="app16" width = 300 height = 20>
</applet>
*/
public class app16 extends Applet
{
public void init()
{
setLayout(new BorderLayout(5,5));
Button b1=new Button("north");
Button b2=new Button("south");
Button b3=new Button("east");
Button b4=new Button ("west");
Button b5 = new Button("center");
add(b1,"North");
add(b2,"South");
add(b3,"East");
add(b4,"West");
add(b5,"Center");
}}
GridLayout:

GridLayout lays out components in a two-dimensional grid. When you instantiate a
GidLayout, you define the number of rows and columns. The constructors supported by
gridlayout ar shown here

GridLayout(int numRows, int numColumns)
Here, this form creates a grid layout with the specified number of rows and columns.

Example:
import java.applet.*;
import java.awt.*;
//example of gridlayout
/*
<applet code = "app15" width = 300 height = 200>
</applet>

Page 101

*/
public class app15 extends Applet
{
public void init()
{
setLayout(new GridLayout(3,4,10,10));
for(int i=1;i<=12;++i)
add(new Button(" "+i));
}}

Handling Events by Extending AWT Components:
To extend an AWT component, you must call the enableEvents() method of

Component. Its general form is shown here:
Protected final void enableEvents(ling eventMask)

The eventMask argument is a bit mask that defines the events to be delivered to this
component. The AWTEvent class defines int constants for making the mask. Several are
shown her:
ACTION_EVENT_MASK ITEM_EVENT_MASK
ADJUSTMENT_EVENT_MASK KEY_EVENT_MASK
COMPONENT_EVENT_MASK MOUSE_EVENT_MASK
CONTAINER_EVENT_MASK TEXT_EVENT_MASK
INPUT_METHOD_EVENT_MASK WINDOW_EVENT_MASK

You must also override the appropriate method from one of your superclasses in order
to process the event. Given lists the methods most commonly used and the classes that
provide them.

Class processing methods:

Button processActionEvent()
Checkbox processItemEvent()
CheckboxMenuItem processItemEvent()
Choice processItemEvent()
Component processComponentEvent(), processKeyEvent(),

ProcessMouseEvent()
List processActionEvent(), processItemEvent()
Scrollbar processAdjustmentEvent()
TextComponent processTextEvent()

Extending Button:
The following program creates an applet that displays a button labeled” test Button”.

When the button is pressed, the string “action event:”, is displayed on the status line of the
applet viewer or browser, followed by a count of the number of button presses.

Page 102

The program has one top-level class named app18 that extends Applet. A integer
variable I is defined and initialized to zero. The records the number of button pushes. The init(
) method instantiates MyButton and adds it to the applet.

MyButton is an inner class that extends Button. Its constructor uses super to pass the
label of the buton to the surperclass constructor. It calls enableEvents() so that action events
may be received by this object. When an action event is generated, processActionEvent() is
called.
Example:

import java.awt.*;
import java.applet.*;
import java.awt.event.*; arun

/*
<applet code="app18" width = 300 height = 200>
</applet>
*/

public class app18 extends Applet
{
MyButton one;

int i=0;
public void init()
{
one=new MyButton("test button");
add(one);
}
class MyButton extends Button
{
MyButton(String label)
{
super(label);
enableEvents(AWTEvent.ACTION_EVENT_MASK);
}
public void processActionEvent(ActionEvent ae)
{
showStatus("action Event " + i ++);

}}}

Extending Checkbox:

The following program creates an applet that displays three check boxes labeled
“apple”, “orange”,”mango”. When a check box is selected or deselected, a string containing

Page 103

the name and state of the check box is displayed on the status line of the applet viewer or
browser.

The program has one top-level class named app19 that extends Applet. Its init()
method creates three instances of Mycheckbox and adds these to the applet. Mycheckbox is an
inner class that extends checkbox.

import java.awt.*;
import java.applet.*;
import java.awt.event.*;

/*
<applet code="app19" width = 300 height = 200>
</applet>
*/

public class app19 extends Applet
{
MyCheckbox cb1,cb2,cb3;
public void init()
{
cb1=new MyCheckbox("apple ");
add(cb1);
cb2=new MyCheckbox("orange");
add(cb2);
cb3=new MyCheckbox("mango");
add(cb3);
}
class MyCheckbox extends Checkbox
{
MyCheckbox(String label)
{
super(label);
enableEvents(AWTEvent.ITEM_EVENT_MASK);
}
public void processItemEvent(ItemEvent e)
{
showStatus("Checkbox name/state: "+getLabel()+"/"+getState());
}}}

Extending Check Box Group:

This program reworks the preceding check box example so that the check boxes form
a check box group. Thus, only one of the check boxes may be selected at any time.

Page 104

import java.awt.*;
import java.applet.*;
import java.awt.event.*;
/*
<applet code="app20" width = 300 height = 200>
</applet>
*/

public class app20 extends Applet
{
CheckboxGroup cbg;
MyCheckbox cb1,cb2,cb3;
public void init()
{
cbg=new CheckboxGroup();
cb1=new MyCheckbox("item1 ",cbg,true);

add(cb1);
cb2=new MyCheckbox("item2",cbg,false);
add(cb2);
cb3=new MyCheckbox("item3",cbg,false);
add(cb3);
}
class MyCheckbox extends Checkbox
{
public MyCheckbox(String label,CheckboxGroup cbg, boolean flag)
{
super(label,cbg,flag);
enableEvents(AWTEvent.ITEM_EVENT_MASK);
}
protected void processItemEvent(ItemEvent e)
{
showStatus("Checkbox name/state: "+getLabel()+"/"+getState());
super.processItemEvent(e);
}}}

Extending Choice :

The following program creates an applet that displays a choice list with items labeled
“red”, ”green”, and “blue”. When entry is selected, a string that contains the name of the color
is displayed on the status line of the applet viewer or browser.

The top class name is app22 that extends applet. Its init() method creates a choice
element and adds it to the applet. Mychoice is an inner class that extends choice. It calls
enableEvents() so that item events may be received by this object. When an item event is

Page 105

generated, processItemEvent() is called. That method displays a string on the status line and
calls processItemEvent() for the superclass.

import java.awt.*;
import java.applet.*;
import java.awt.event.*;
//extending choice
/*
<applet code="app22" width = 300 height = 200>
</applet>
*/
public class app22 extends Applet
{
MyChoice one;
public void init()
{
one = new MyChoice();
one.add("red");
one.add("green");
one.add("yellow");
add(one);
}

class MyChoice extends Choice
{
MyChoice()
{
enableEvents(AWTEvent.ITEM_EVENT_MASK);
}

public void processItemEvent(ItemEvent ie)
{
showStatus("Choice selection :"+getSelectedItem());
}
}}

Extending List:

import java.awt.*;
import java.applet.*;
import java.awt.event.*;
//extending list
/*
<applet code="app23" width = 300 height = 200>
</applet>
*/

Page 106

public class app23 extends Applet
{
MyList one;
public void init()
{
one = new MyList();
one.add("red");
one.add("green");
one.add("yellow");
add(one);
}
class MyList extends List
{
MyList()
{
enableEvents(AWTEvent.ITEM_EVENT_MASK);
}
public void processItemEvent(ItemEvent ie)
{
showStatus("Item Event :"+getSelectedItem());
}}}

Extending Scrollbar:

import java.awt.*;
import java.applet.*;
import java.awt.event.*;
//extending scrollbar
/*
<applet code="app24" width = 300 height = 200>
</applet>
*/

public class app24 extends Applet
{
MyScrollbar one;
public void init()
{
one = new MyScrollbar(Scrollbar.VERTICAL,0,0,0,100);
add(one);
}
class MyScrollbar extends Scrollbar
{

Page 107

MyScrollbar(int style,int initial, int thumb, int min,int max)
{
enableEvents(AWTEvent.ADJUSTMENT_EVENT_MASK);
}
public void processAdjustmentEvent(AdjustmentEvent ae)
{
showStatus("Adjustment Event :"+ae.getValue());
}}}

END OF UNIT IV

Page 108

UNIT V : Applet Class – Applet Architecture – The HTML Applet Tag –
 Passing parameters in Applet.

Introduction:
Applets are small java programs that are primarily used in Internet computing. They

can be transported over the Internet from one computer to another and run using the Applet
Viewer or any web browser that supports java. An applet, like any application program, can
do many things for us. It can perform arithmetic operations, display graphics, play sounds,
accept user input, create animation and play interactive games.

We can embed applets into web pages in two ways.
One, we can write our own applets and embed them into web pages.
Second, we can download an applet from a remote computer system and then embed it

into a web page.

An applet developed locally and stored in a local system in known as local applet.

An remote applet is that which is developed by someone else and stored on a remote
computer connected to the internet. If our system is connected to the internet, we can
download the remote applet onto our system via the Internet and run it.

In order to locate and load a remote applet, we must know the applet’s address on the
web. This address is known as Uniform Resource Locator(URL) and must be specified in the
applet’s HTML document as the value of CODEBASEattribute.

All Applets are subclasses of Applet. Thus all applets must import java.applet.
Applets must also import java.awt. Recall the AWT Abstract Window Toolkit. Since all
applets run in a window, it is necessary to include support for the window. Applets are not
executed by the console-based java run-time interpreter. Rather, they are executed by either a
web browser or an applet viewer.

Output to your applet’s window is not performed by System.out.println(). Rather, it
is handled with various AWT methods, such as drawstring(), which outputs a string to a
specified x,y location. Once an applet has been compiled, it is included in an HTML file using
the APPLET TAG.

The applet will be executed by a java-enabled web browser when it encounters the
APPLET TAG within the HTML file. To view and test an applet more conveniently, simply
include a comment at the head of your java source code file that contains the APPLET tag.
This way, your code is documented with the necessary HTML statements needed by your
applet, and you can test the compiled applet by starting the applet viewer with your java
source code file specified as the target.

Page 109

HOW APPLETS DIFFER FROM APPLICATIONS:

Although both the applets and stand-alone applications are java programs, there are
significant differences between. Applets are not full-featured application program. They are
usually written to accomplish a small task or a component of a task. Since they are usually
designed for use on the internet, they impose certain limitations and restrictions in their
design.

Applets do not use the main() method for initiating the execution of the code.
Applets, when loaded, automatically call certain methods of Applet class to start and execute
the applet code.

Unlike stand-alone applications, applets cannot be run independently. They are run
from inside a web page using a special feature known as HTML tag.

Applets cannot read from or write to the files in the local computer.
Applets cannot communicate with other servers on the network.
Applets cannot run any program form the local computer.
Applets are restricted from using libraries from other languages such as c or c++.

The Applet Class:

The Applet provides all necessary support for applet execution, such as starting and
stopping. It also provides methods that load and display images, and methods that load and
play audio clips. Applet extends the AWT class Panel. In turn, Panel extends Container,
which extends Component. These classes provide support for java’s window-based, graphical
interface.

LIFE CYCLE OF APPLET:

Init() ------- Initialize a variable. Called when an applet begins execution. It is
the first method called for any applet.

Start() ----- After the init() method the program should be started. Called by
 By browser when an applet should start(or resume) execution. It
 Is automatically called after init() when an applet first begins.

Paint() ----drawing, writing and color creation. The paint() method is called
Each time your applet’s output must be redrawn. Paint() is also
Called when the applet begins execution. This method has one

 Parameter of type Graphics. It contain the Graphics context,
 which describes the graphics environment. This context is used

whenever output to the applet.

Stop() ----Halt of the running applet. Called by browser to suspend
 Execution of the applet. Once stopped , an applet is restarted
 When the browser calls start().

Page 110

Destroy() -> terminated. Called by browser just before an applet is terminated.

Repaint() call update method.

APPLET ARCHITECTURE:

An applet is a window-based program. As such, its architecture is different from the
so-called normal, console-based programs. If you are familiar with windows programming,
you will be right at home writing applets.

Applets are event driven. It is important to understand in a general way how the event-
driven architecture impacts the design of an applet. An applet resembles a set of interrupt
service routines.

Here is how the process works. An applet waits until an event occurs. The AWT
notifies the applet about an event by calling an event handler that has been provided by the
applet.

The user initiates interaction with an applet – not the other way around. As you know,
in a non windowed program, when the program needs input, it will prompt the user and then
call some input method, such as readLine(). This is not the way it works in an applet.
Instead, the user interacts with the applet as he or she wants, when he or she wants.

These interactions are sent to the applet as events to which the applet a mouse-clicked
event is generated. If the user presses a key while the applet’s window has input focus, a key
press event is generated. Applets can contain various controls, such as push buttons and check
boxes. When the user interacts with one of these controls, an event is generated.

While the architecture of an applet is not as easy to understand as that of a console-
based program, java’s AWT makes it as simple as possible.

THE HTML APPLET TAG:

The APPLET tag is used to start an applet from both an HTML(Hyper Text Markup
Language) document and from an applet viewer. (The newer OBJECT tag also works, but it
will use APPLET).

An applet viewer will execute each APPLET tag that if finds in a separate window,
while web browsers like Netscape Navigator, Internet Explorer, and HotJava will allow many
applets on a single page. So far, we have been using only a simplified form of the APPLET
tag.

The syntax for the standard APPLET tag is shown here. Bracketed items are optional.

Page 111

<APPLET
[CODEBASE = codebase URL]
CODE = applet file
WIDTH = pixels HEIGHT = pixels
[ALIGN = alignment] >
[<PARAM NAME = Attribute Name VALUE = Attribute value>]
[<PARAM NAME = Attribute Name2 VALUE = attribute value>]

</APPLET>

CODEBASE:
It is an optional attribute that specifies the base URL of the applet code, which

is the directory that will be searched for the applet’s executable class file. The HTML
document’s URL directory is used as the CODEBASE if this attribute is not specified.

CODE:
It is a required attribute that gives the name of the file containing your applet’s

compiled .class file. This file is relative to the code base URL of the applet, which is the
directory that the HTML file was in or the directory indicated by CODEBASE if set.

WIDTH AND HEIGHT:
WIDTH and HEIGHT are required attributes that give the size (in pixels) of the

applet display area.

ALIGN:
It is an optional attribute that specifies the alignment of the applet. This attributes is

treated the same as the HTML IMG tag with these possible values: LEFT, RIGHT, TOP,
BOTTOM, MIDDLE, BASELINE, TEXTTOP, ABSMIDDLE, and ABSBOTTOM.

PARAM NAME AND VALUE:
The PARAM tag allows you to specify applet specific arguments in an HTML page.

Applets access their attributes with the getParameter() method.

HANDLING BROWSERS:

The best way to design your HTML page to deal with such browsers is to include HTML text
and markup within your <applet></applet> tags. If the applet tags are not recognized by your
browser, you will see the alternate markup. If java is available, it will consume all of the
markup between the <applet></applet> tags and disregard the alternate markup.

Page 112

Example of Applet program:

import java.applet.*;
import java.awt.*;
/*
<applet code="app1.java" height = 400 width = 200 >
</applet>
*/
public class app1 extends Applet
{
public void paint(Graphics g)
{
g.drawString("hello applet program",30,30);
}}

In this program save app1.java. and compile javac app1.java. Then run this program
by this command : appletviewer app1.java. The it will create a applet window and print the
message “hello applet program” .

Example two:

import java.awt.*;
import java.applet.*;
/*
<applet code="app2" width =400 height = 50>
</applet>
*/
public class app2 extends Applet
{
String msg;
public void init()
{
setBackground(Color.cyan);
setForeground(Color.red);
}
public void start()
{
msg="arun";
}
public void paint(Graphics g)
{
msg+="kumar ";
g.drawString(msg,130,150);
}}

Page 113

PASSING PARAMETERS IN APPLET:

The APPLET tag in HTML allows you to pass parameters to your applet. To retrieve
a parameter, use the getParameter() method. It returns the value of the specified parameter
in the form of String object. Thus, for numeric and Boolean values, you will need to convert
their string representations into their internal formats. Here the example of passing parameters

import java.awt.*;
import java.applet.*;
/*
<applet code="app3" width =400 height = 500>
<param name=name value="name :saran">
<param name=no value = 100>
<param name=m1 value=80>
<param name=m2 value=90>
</applet>
*/
public class app3 extends Applet
{
Font f=new Font("TimesRoman",Font.ITALIC,20);
String name;
int no,m1,m2,tot;
public void init()
{
name=getParameter("name");
String na,ma1,ma2;
na=getParameter("no");
no=Integer.parseInt(na);
ma1=getParameter("m1");
m1=Integer.parseInt(ma1);
ma2=getParameter("m2");
m2=Integer.parseInt(ma2);
tot=m1+m2;
}
public void paint(Graphics g)
{
g.setFont(f);
g.setColor(Color.red);
g.drawString(name,50,50);
g.drawString("number :"+no,50,80);
g.drawString("mark1 :"+m1,50,110);
g.drawString("mark2 :"+m2,50,140);
g.drawString("total :"+tot,50,170);
}}

END OF UNIT V

Page 114

DeadLock:

class firstt
{
synchronized void display(second s)
{
System.out.println("arun");
System.out.println("kumar");
s.display1();
//here deadlock occur
}
synchronized void display1()
{
System.out.println("anbu");
}}

class second
{
synchronized void show(firstt f)
{
System.out.println("simi");
System.out.println("ammu");
f.display1();
// here dead lock occur
}
synchronized void display1()
{
System.out.println("arasan");
}}

class deadlo21 extends Thread
{
firstt f=new firstt();
second s=new second();

deadlo21()
{
start();
f.display(s);
System.out.println("back in main thread");
}
public void run()
{
s.show(f);
System.out.println("back in other thread");

Page 115

}

public static void main(String args[])
{
new deadlo21();
}
}

Page 116

MATHEMATICAL METHODS:

s.no Method Purpose of method

1 Double sin(double x) Returns the sine value of angle x in radians

2 Double cos(double x) Returns the cosine value of angle x in radians

3 Double tan(double x) Returns the tan value of angle x in radians

4 Double asin(double x) Returns angle value in radians for arcsin x

5 Double acos(double x) Returns angle value in radians for arcos x

6 Double atan(double x) Returns angle value in radians for arctangent x

7 Double exp(double x) Returns exponential (ex) value of x

8 Double log(double x) Returns the natural logarithm of x

9 Double pow(double x, double y) Returns x to the power of y

10 Double sqrt(double x) Returns the square root of x

11 Double ceil (double x) Returns the smallest whole number greater than
or equal to x

12 Double floor(double x) Returns the largest whole number less than or
equal to x

13 Int max(int n, int m) Returns the maximum of n and m

14 Int min(int n,int m) Returns the minimum of n and m

class math
{
public static void main(String args[])
{
System.out.println("sin 30 value is"+Math.sin(30));
System.out.println("cos 30 value is"+Math.cos(30));
System.out.println("tan 30 value is:"+Math.tan(30));
System.out.println("asin 30 value is:"+Math.asin(380));
System.out.println("acos 30 value is:"+Math.acos(380));
System.out.println("atan 30 value is:"+Math.atan(30));
System.out.println("power 2 ^4 is"+Math.pow(2,4));
System.out.println("sqrt value of 25 is"+Math.sqrt(25));
System.out.println("floor value of 34.67 is"+Math.floor(34.67));
System.out.println("ceil value of 34.67 is"+Math.ceil(34.67));
System.out.println("max of 45,68 is"+Math.max(45,68));

Page 117

System.out.println("min of 45,68 is"+Math.min(45,68));
System.out.println("log 10 value is"+Math.log(10));
System.out.println("exponenitial of 4 is:"+Math.exp(4));
}}

Page 118

STRING FUNCTION IS:

class str1
{
public static void main (String args[])
{
String one,two,b,c;
one=args[0];
two=args[1];
System.out.println("given first string is :"+ one);
System.out.println("given second string is: "+ two);
System.out.println("compare function value is:"+one.compareTo(two));
int l;
l=one.length();
System.out.println("first string length is :"+l);
System.out.println("second string length is :"+ two.length());
System.out.println("concat string is: "+ one.concat(two));
System.out.println("Equal string is:" +one.equals(two));
System.out.println("Upper case letter of the first string is :"+one.toUpperCase());
System.out.println("Upper case letter of the second string is:"+two.toLowerCase());
StringBuffer x=new StringBuffer(two);
x.reverse();
String three=new String(x);
System.out.println("Reverse of the second string is: "+three);
 if(two.compareTo(three)==0)
 System.out.println("Given second String is polyndrome");
 else
 System.out.println("given second string is not polyndrome");
}}

Page 119

Vectors

Vectors (the java.util.Vector class) are commonly used instead of arrays, because they
expand automatically when new data is added to them. The Java 2 Collections API introduced
the similar ArrayList data structure.

To Create a Vector

You must import either import java.util.Vector; or import java.util.*;. Vectors are
implemented with an array, and when that array is full and an additional element is added, a
new array must be allocated. Because it takes time to create a bigger array and copy the
elements from the old array to the new array, it is a little faster to create a Vector with a size
that it will commonly be when full.

Create a Vector with default initial size
Vector v = new Vector();

 Create a Vector with an initial size
Vector v = new Vector(300);

To Add elements to the end of a Vector
v.add(s); // adds s to the end of the Vector v

To get the elements from a Vector (ListIterator)

You can use a for loop to get all the elements from a Vector, but another very common way
to go over all elements in a Vector is to use a ListIterator.

Common Vector Methods

Page 120

Apart from the methods inherited from its parent classes, Vector defines following methods:

SN Methods with Description

1
void add(int index, Object element)
Inserts the specified element at the specified position in this Vector.

2
boolean add(Object o)
Appends the specified element to the end of this Vector.

3
boolean addAll(Collection c)
Appends all of the elements in the specified Collection to the end of this Vector, in the
order that they are returned by the specified Collection's Iterator.

4
boolean addAll(int index, Collection c)
Inserts all of the elements in in the specified Collection into this Vector at the specified
position.

5
void addElement(Object obj)
Adds the specified component to the end of this vector, increasing its size by one.

6
void clear()
Removes all of the elements from this Vector.

7
boolean containsAll(Collection c)
Returns true if this Vector contains all of the elements in the specified Collection.

8 void copyInto(Object[] anArray)
Copies the components of this vector into the specified array.

9 Object elementAt(int index)
Returns the component at the specified index.

10 Object firstElement()
Returns the first component (the item at index 0) of this vector.

11 Object get(int index)
Returns the element at the specified position in this Vector.

12
void insertElementAt(Object obj, int index)
Inserts the specified object as a component in this vector at the specified index.

13
boolean isEmpty()
Tests if this vector has no components.

14
Object lastElement()
Returns the last component of the vector.

Page 121

15
Object remove(int index)
Removes the element at the specified position in this Vector.

16
boolean remove(Object o)
Removes the first occurrence of the specified element in this Vector If the Vector does
not contain the element, it is unchanged.

17
boolean removeAll(Collection c)
Removes from this Vector all of its elements that are contained in the specified
Collection.

18 void removeAllElements()
Removes all components from this vector and sets its size to zero.

19 Object set(int index, Object element)
Replaces the element at the specified position in this Vector with the specified element.

20 void setElementAt(Object obj, int index)
Sets the component at the specified index of this vector to be the specified object.

21
void setSize(int newSize)
Sets the size of this vector.

22
int size()
Returns the number of components in this vector.

import java.io.*;

import java.util.*;

class shop

{

public static void main (String arg[])throws IOException

{

int i,n,ch,x=0;

String item;

Vector V = new Vector();

String a[]=new String[5];

DataInputStream ds=new DataInputStream(System.in);

System.out.println("\t\t\t\t shopping list");

Page 122

System.out.println("enter the five eleements to be added in vector");

for (i=0;i<5;i++)

{

a[i]=ds.readLine();

V.addElement(a[i]);

}

for(i=0;i<=5;i++)

{

do

{

System.out.println("\n\n\t menu \n\t");

System.out.println("\n\n\t 1.delete\n\t");

System.out.println("\n\t 2.add at specified location\n\t");

System.out.println("\n\t 3.add at the end of the list\n\t");

System.out.println("\n\n\t 4.display\n\t");

System.out.println("\n\n\t 5.end\n\t");

System.out.println("\n\n\t enter your choice \n\t");

ch = Integer.parseInt(ds.readLine());

switch(ch)

{

case 1:

System.out.println("\n\n\t enter the element to be deleted");

item=ds.readLine();

if(V.contains(item.toLowerCase()))

{

V.removeElement(item);

System.out.println("\n\t element is deleted");

}

else

System.out.println("\n\t sorry no such number ..");

break;

Page 123

case 2:

System.out.println("\n\n\t enter the element : ");

String element = ds.readLine();

System.out.println("\n\n\t enter the location:");

int loc = Integer.parseInt(ds.readLine());

V.insertElementAt(element,loc-1);

System.out.println("\n\n\t element is inserted at the specified location...");

break;

case 3:

System.out.println("\n\n\t enter the element");

String element1=ds.readLine();

V.addElement(element1);

System.out.println("\n\n\t element is inserted at the end...");

break;

case 4:

System.out.println("\n\n\t list of the element:");

for (i=0;i<V.size();i++)

System.out.println("\n\n\t "+V.elementAt(i));

break;

case 5:

System.out.println("\n\n\t visit again");

System.exit(0);

default:

System.out.println("\n\n\t enter your choice with in 1 to 5");

break;}}while(ch<5);}}}

Page 124

DATE:

The Date class encapsulates the current date and time.
The abstract calendar class provides a set of methods that allows you to convert a time in

milliseconds to a number of useful components. Some examples of the type of information
that can be provided are year, month, day, hour, minute and second.

Table 1. Calendar field access

Field Explanation

Calendar.YEAR Identifies the year

Calendar.MONTH Identifies the month

Calendar.DAY_OF_MONTH Identifies the day

Calendar.HOUR Identifies the hour

Calendar.MINUTE Identifies the minute

Calendar.SECOND Identifies the second

import java.util.Date;
import java.util.Calendar;
class dated
{
public static void main(String args[])
{
Calendar calendar=Calendar.getInstance();
Date date=new Date();
System.out.println("TODAY DATE IS: "+date);
System.out.println("time :");
System.out.print(calendar.get(Calendar.HOUR)+":");
System.out.print(calendar.get(Calendar.MINUTE)+":");
System.out.print(calendar.get(Calendar.SECOND)+":");
System.out.println("THIS MONTH IS:"+calendar.get(Calendar.MONTH));
System.out.println("THIS YEAR IS:"+calendar.get(Calendar.YEAR));
System.out.println("THIS day of MONTH
IS:"+calendar.get(Calendar.DAY_OF_MONTH));
}

}

Page 125

Random numbers:

the Random class generates random integers, doubles, longs and so on, in various ranges.

Generally, Random is used as follows:

 we create an instance of Random() at an appropriate point;
 we make successive calls to the object's methods, such as nextInt(), nextLong() etc,

depending on the type of random number that we want to generate.

import java.util.Random;
public class ArrayRandom{

public static void main(String args[]){
Random r = new Random();
int arr[] = new int[20];

for(int i = 0; i < 10; i++){
 //random numbers from 1 to 10:
 arr[i] = r.nextInt(10) + 1;
}

for(int i = 0; i < 10; i++){
 System.out.print(arr[i] + " ");
}

} //main
} //class

/*
import java.util.Random;
public class ArrayRandom2{

public static void main(String args[]){
Random r = new Random();
int arr[] = new int[25];

for(int i = 0; i < 1000; i++){
 //random numbers from 1 to 10:
 arr[r.nextInt(25)] ++;
}

Page 126

for(int i = 0; i < 25; i++){
 System.out.println(i + " was generated " +

 arr[i] + " times.");
}

} //main
} //class

boolean headsOrTails;
int headsCount = 0;
int tailsCount = 0;
Random rand = new Random();
for (int j=0;j < 50;j++)
{
 headsOrTails = rand.nextBoolean();
 if (headsOrTails == true)
 {
 headsCount++;
 }
 else
 {
 tailsCount++;
 }
}
System.out.println("The virtual coin landed on heads " + headsCount + " times

and on tails " + tailsCount + " times.");

*/

Page 127

Calculator program

import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*
<applet code="cal.java" width = 300 height=300>
</applet>
*/
public class cal extends Applet implements ActionListener
{
int v1,v2,result;
TextField t1;
Button b[]=new Button[10];
Button add,sub,mul,div,clear,mod,eq;
char op;
public void init()
{
t1=new TextField(10);
GridLayout g1=new GridLayout(4,5);
setLayout(g1);
for(int i=0;i<10;i++)
{
b[i]=new Button(""+i);
}
add=new Button("add");
sub=new Button("sub");
div=new Button("div");
mul=new Button("mul");
mod=new Button("mod");
clear=new Button("clear");
eq=new Button("eq");
t1.addActionListener(this);
add(t1);
for(int i=0;i<10;i++)
{
add(b[i]);
}
add(add);

Page 128

add(sub);
add(mul);
add(div);
add(mod);
add(clear);
add(eq);
for(int i=0;i<10;i++)
{
b[i].addActionListener(this);
}
add.addActionListener(this);
sub.addActionListener(this);
mul.addActionListener(this);
div.addActionListener(this);
mod.addActionListener(this);
clear.addActionListener(this);
eq.addActionListener(this);
}
public void actionPerformed(ActionEvent ae)
{
String str=ae.getActionCommand();
char ch=str.charAt(0);
if(Character.isDigit(ch))
t1.setText(t1.getText()+str);
else if(str.equals("add"))
{
v1=Integer.parseInt(t1.getText());
op='+';
t1.setText("");
}

else if(str.equals("sub"))
{
v1=Integer.parseInt(t1.getText());
op='-';
t1.setText("");
}

else if(str.equals("mul"))

Page 129

{
v1=Integer.parseInt(t1.getText());
op='*';
t1.setText("");
}

else if(str.equals("div"))
{
v1=Integer.parseInt(t1.getText());
op='/';
t1.setText("");
}

else if(str.equals("mod"))
{
v1=Integer.parseInt(t1.getText());
op='%';
t1.setText("");
}

else if(str.equals("eq"))
{
v2=Integer.parseInt(t1.getText());
if(op=='+')
result=v1+v2;
else if(op=='-')
result=v1-v2;
if(op=='*')
result=v1*v2;
else if(op=='/')
result=v1/v2;
if(op=='%')
result=v1%v2;
t1.setText(" "+result);
}
if(str.equals("clear"))
{
t1.setText("");
}

Page 130

}}

Color change:

import java.awt.*;
import java.applet.*;
import java.awt.event.*;

//example of checkbox and choice
/*
<applet code="app2" width=300 height =200>
</applet>
*/

public class app2 extends Applet implements ActionListener
{

Button one= new Button("changeColor");

CheckboxGroup c= new CheckboxGroup();
Checkbox c1=new Checkbox("Red",c,true);
Checkbox c2=new Checkbox("Green",c,false);
Checkbox c3=new Checkbox("Blue",c,false);
Color RED= new Color(255,0,0);
Color GREEN = new Color(0,255,0);
Color BLUE = new Color(0,0,255);
public void init()
{
add(one);
add(c1);
add(c2);
add(c3);
one.addActionListener(this);
}
public void paint(Graphics g)
{
if(c1.getState())
setBackground(RED);

Page 131

if(c2.getState())
setBackground(GREEN);
if(c3.getState())
setBackground(BLUE);
}
public void actionPerformed(ActionEvent ae)
{
Object obj=ae.getSource();
if(obj==one)
{
repaint();
}
}}

