
Database Management Systems

Data:

It is a collection of information.

The facts that can be recorded and which have implicit meaning known as 'data'.

Example:
Customer ----- 1.cname.

2.cno.
3.ccity.

Database:

It is a collection of interrelated data
. These can be stored in the form of
tables.
A database can be of any size and varying complexity.
A database may be generated and manipulated manually or it may be

computerized. Example:
Customer database consists the fields as cname, cno, and ccity

Cname

Database System:

It is computerized system, whose overall purpose is to maintain the information and to make that
the information is available on demand.

Advantages:

1.Redundency can bereduced.

2.Inconsistency can
beavoided.

3.Data can beshared
4.Standards can be enforced.
5.Security restrictions can
6.Integrity can bemaintained.
7.Data gathering can be possible.
8.Requirements can be balanced.

Database Management System (DBMS):

It is a collection of programs that enables user to create and maintain a database. In other words
software that provides the users with the processes of defining, constructing and manipulating the database for
various applications.

Database Management Systems

UNIT-I

It is a collection of information.

The facts that can be recorded and which have implicit meaning known as 'data'.

It is a collection of interrelated data
. These can be stored in the form of

A database can be of any size and varying complexity.
A database may be generated and manipulated manually or it may be

Customer database consists the fields as cname, cno, and ccity

Cno Ccity

whose overall purpose is to maintain the information and to make that
the information is available on demand.

Redundency can bereduced.

Standards can be enforced.
5.Security restrictions can be applied.
6.Integrity can bemaintained.
7.Data gathering can be possible.
8.Requirements can be balanced.

Database Management System (DBMS):

It is a collection of programs that enables user to create and maintain a database. In other words
software that provides the users with the processes of defining, constructing and manipulating the database for

The facts that can be recorded and which have implicit meaning known as 'data'.

whose overall purpose is to maintain the information and to make that

It is a collection of programs that enables user to create and maintain a database. In other words it is general-purpose
software that provides the users with the processes of defining, constructing and manipulating the database for

Disadvantages in FileProcessing

Data redundancy and inconsistency.

Difficult in accessingdata.

Data isolation.

Data integrity.

Concurrent access is not possible.

Security Problems.

.

Advantages of DBMS:

1.Data Independence.
2.Efficient Data Access.
3.Data Integrity and security.
4.Data administration.
5.Concurrent access and Crash
6.Reduced Application Development Time.

Applications

Database Applications:
Banking: all transactions
Airlines: reservations, schedules
Universities: registration, grades
Sales: customers, products, purchases
Online retailers: order tracking, c
Manufacturing: production, inventory, orders, supply chain
Human resources: employee records, salaries, tax deductions

People who deal with databases

Many persons are involved in the design, use and maintenance of any database.
classified into 2 types as below.

Actors on the scene:
The people, whose jobs involve the day

listed as below.

1.Database Administrators(DBA):

The DBA is responsible for authorizing access to the database, for
Coordinating and monitoring its use and for acquiring software and hardware resources asneeded. These are the

people, who maintain and design the database daily. DBA is responsible for the following
Design of the conceptual and physicalschemas:

The DBA is responsible for interacting with the users of the system to understand what data is to
be stored in the DBMS and how it is likely to be used.
The DBA creates the original schema by writing a set of definition

Permanently stored in the 'Data Dictionary'.
a. Security andAuthorization:

The DBA is responsible for ensuring the unauthorized data access is not permitted.
The granting of different types of authorization allows the DBA to regulate which parts of
database various users can access.

b. Storage structure and Access methoddefinition:

Data redundancy and inconsistency.

Concurrent access is not possible.

2.Efficient Data Access.
3.Data Integrity and security.

5.Concurrent access and Crash recovery.
6.Reduced Application Development Time.

Airlines: reservations, schedules
Universities: registration, grades
Sales: customers, products, purchases
Online retailers: order tracking, customized recommendations
Manufacturing: production, inventory, orders, supply chain
Human resources: employee records, salaries, tax deductions

Many persons are involved in the design, use and maintenance of any database.

The people, whose jobs involve the day-to-day use of a database are called as 'Actors on the scene',

authorizing access to the database, for
Coordinating and monitoring its use and for acquiring software and hardware resources asneeded. These are the

people, who maintain and design the database daily. DBA is responsible for the following
the conceptual and physicalschemas:

The DBA is responsible for interacting with the users of the system to understand what data is to
be stored in the DBMS and how it is likely to be used.
The DBA creates the original schema by writing a set of definitions and is

Permanently stored in the 'Data Dictionary'.

The DBA is responsible for ensuring the unauthorized data access is not permitted.
The granting of different types of authorization allows the DBA to regulate which parts of
database various users can access.

Storage structure and Access methoddefinition:

These persons can be

day use of a database are called as 'Actors on the scene',

Coordinating and monitoring its use and for acquiring software and hardware resources asneeded. These are the
people, who maintain and design the database daily. DBA is responsible for the following issues.

The DBA is responsible for interacting with the users of the system to understand what data is to

s and is

The DBA is responsible for ensuring the unauthorized data access is not permitted.
The granting of different types of authorization allows the DBA to regulate which parts of the

The DBA creates appropriate storage structures and access methods
by writing a set of definitions, which are translated by the DDL compiler.

c. Data Availability and Recovery fromFailures:
The DBA must take steps to ensure that if the system fails, users can continue to access as
much of the uncorrupted data as possible.
The DBA also work to restore the data to consistent state.

d. DatabaseTuning:
The DBA is responsible for modifying the database to ensure adequate

Performance as requirements change.

e. Integrity ConstraintSpecification:
The integrity constraints are kept in a special system structure that is consulted by the
DBA whenever an update takes place in the system.

2.DatabaseDesigners:
Database designers are responsible for identifying the data to be stored in the database and for choosing appropriate
structures to represent and store this data.

3. EndUsers:
People who wish to store and use data in a database.
End users are the people whose jobs require access to the database for querying, updating and generating
reports, listed as below.

a. Casual Endusers:
These people occasionally access the database, but they may need different information each
time.

b. Naive or Parametric EndUsers:
Their job function revolves around constantly querying and updating the database
using standard types of queries and updates.

c. Sophisticated EndUsers:
These include Engineers, Scientists, Business analyst and others familiarize to implement their
applications to meet their complex requirements.

d. Stand alone Endusers:
These people maintain personal databases by using ready-made program packages that
provide easy to use menu based interfaces.

4.System Analyst:
These people determine the requirements of end users and develop specifications for transactions.

5.Application Programmers (SoftwareEngineers):
These people can test, debug, document and maintain the specified transactions.

b. Workers behind the scene:
Database Designers and Implementers:
These people who design and implement the DBMS modules and interfaces as a software package.

2.Tool Developers:
Include persons who design and implement tools consisting the packages for design, performance
monitoring, and prototyping and test data generation.

3.Operators and maintenancepersonnel:
These re the system administration personnel who are responsible for the actual running and maintenance of
the hardware and software environment for the database system.

3.LEVELS OF DATA ABSTRACTION
This is also called as 'The Three-Schema Architecture’, which can be used to separate the user applications

and the physical database.

1.Physical Level:
This is a lowest level, which describes how the data is actually
stores. Example:

Customer account database can be described.

2.Logical Level:
This is next higher level that describes what data and what relationships in the
database. Example:

Each record
type customer = record

cust_name: sting;
cust_city: string;
cust_street: string;

end;

3.Conceptual (view) Level:
This is a lowest level, which describes entire
database. Example:

All application programs.
4.DATAMODELS

The entire structure of a database can be described using a data
model. A data model is a collection of conceptual tools for describing
Data models can be classified into following types.

1.Object Based Logical Models.
2.Record Based Logical Models.
3.Physical Models.

Explanation is as below.

1.Object Based LogicalModels:
These models can be used in describing the data at the logical and view levels.
These models are having flexible structuring capabilities classified into following types.

a) The entity-relationshipmodel.
b) The object-orientedmodel.
c) The semantic datamodel.
d) The functional datamodel.

2.Record Based LogicalModels:
These models can also be used in describing the data at the logical and view levels.
These models can be used for both to specify the overall logical structure of the database and a higher-level
description.
These models can be classified into,

1. Relational model.
2. Networkmodel.
3. Hierarchal model.

3. PhysicalModels:
These models can be used in describing the data at the lowest level, i.e. physical
level. These models can be classified into

1. Unifyingmodel
2. Frame memorymodel

UNIT-2

Entity Relational Model (E-R Model)

The E-R model can be used to describe the data involved in a real world enterprise in terms of
objects and their relationships.
Uses:
These models can be used in database design.
It provides useful concepts that allow us to move from an informal
description to precise description.
This model was developed to facilitate database design by allowing the specification of overall logical structure
of a database.
It is extremely useful in mapping the meanings and interactions of real world enterprises onto a conceptual
schema.
These models can be used for the conceptual design of
database applications.

OVERVIEW OF DATABSE DESIGN

The problem of database design is stated as below.
'Design the logical and physical structure of 1 or more databases to accommodate the information needs of the users in an
organization for a defined set of applications'.

The goals database designs are as below.
1.Satisfy the information content requirements of the specifiedusers

andapplications.
2.Provide a natural and easy to understand structuring ofthe

information.
3.Support processing requirements and any performance objectives

such as 'response time, processing time, storage spaceetc..

ER model consists the following 3 steps.

a. Requirements Collection andAnalysis:
This is the first step in designing any database application.
This is an informal process that involves discussions and studies and analyzing the expectations of the users
& the intended uses of the database.
Under this, we have to understand the following.

1.What data is to be stored n a database?
2.What applications must be built?
3.What operations can be used?

Example:
For customer database, data is cust-name, cust-city, and cust-no.

b. Conceptual database design:
The information gathered in the requirements analysis step is used to develop a higher-level description of
the data.
The goal of conceptual database design is a complete understanding of the database structure, meaning
(semantics), inter-relationships and constraints.

Characteristics of this phase are as below.

1.Expressiveness:
The data model should be expressive to distinguish different types of data, relationships and

constraints.

2.Simplicity andUnderstandability:
The model should be simple to understand the concepts.

3.Minimality:
The model should have small number of basic

concepts. 4.Diagrammatic Representation:
The model should have a diagrammatic notation for displaying the conceptual schema.
5.Formality:

A conceptual schema expressed in the data model must represent a formal specification of the data.
Example:

Cust_name : string;
Cust_no : integer;
Cust_city : string;

c. Logical Database Design:

Under this, we must choose a DBMS to implement our database design and convert the conceptual database
design into a database schema.
The choice of DBMS is governed by number of factors as

below. 1.Economic Factors.
2.Organizational Factors.

Explanation is as below.

1.EconomicFactors:

These factors consist of the financial status of the
applications. a. Software Acquisition Cost:

This consists buying the software including language options such as forms, menu, recovery/backup
options, web based graphic user interface (GUI) tools and documentation.

b. MaintenanceCost:
This is the cost of receiving standard maintenance service from the vendor and for keeping the DBMS

version up to date.

c. Hardware AcquisitionCost:
This is the cost of additional memory, disk drives, controllers and a specialized DBMS storage.

d. Database Creation and ConversionCost:
This is the cost of creating the database system from scratch and converting an existing system to the new

DBMS software.
e. Personal Cost:

This is the cost of re-organization of the data processing
department. f. Training Cost:
` This is the cost of training for Programming, Application Development and DatabaseAdministration.

g. Operating Cost:
The cost of continued operation of the database system.

2.OrganizationalFactors:
These factors support the organization of the vendor, can be listed as
below. a. Data Complexity:

Need of a DBMS.
b. Sharing among applications:

The greater the sharing among applications, the more the redundancy among files and hence the greater the
need for a DBMS.
c. Dynamically evolving or growingdata:

If the data changes constantly, it is easier to cope with these changes using a DBMS than using a file
system.
d. Frequency of ad hoc requests fordata:

File systems are not suitable for ad hoc retrieval of
data. e. Data Volume and Need for Control:

These 2 factors needs for a DBMS.
Example:

Customer database can be represented in the form of tables or diagrams.

3. SchemaRefinement:
Under this, we have to analyze the collection of relations in our relational database schema to identify the

potential problems.

4.Physical Database Design:
Physical database design is the process of choosing specific storage structures and access paths for the
database files to achieve good performance for the various database applications.

This step involves building indexes on some tables and clustering some
tables. The physical database design can have the following options.
1.ResponseTime:

This is the elapsed time between submitting a database transaction for execution and receiving a
response.

2.SpaceUtilization:
This is the amount of storage space used by the

disk including indexes and other access paths.

3.TransactionThroughput:
This is the average number of transactions that can be processed per minute.

5. SecurityDesign:
In this step, we must identify different
For each role, and user group, we must identify the parts of the database that they must be able to access,
which are as below.

2.ENTITIES

1. It is a collection of objects.
2. An entity is an object that is distinguishable from other objects by a set ofattributes.
3. This is the basic object of E-R Model, which is a 'thing' in the real world with an independentexistence.
4. An entity may be an 'object' with a physicalexistence.
5. Entities can be represented by'Ellipses'.

Example:
i. Customer, account etc.

3. ATTRIBUTES
Characteristics of an entity are called as an attribute.

The properties of a particular entity are called as attributes of that specified entity.
Example:

Name, street_address, city ---
Acc-no, balance --- account database.

Types:
These can be classified into following types.

1.Simple Attributes.
2.Composite Attributes.
3.Single Valued Attributes.
4.MutivaluedAttributes.
5.Stored Attributes.
6.Derived Attributes.
Explanation is asbelow.

1.SimpleAttributes:
The attributes that are not divisible are called as 'simple or atomic attributes'.
Example:

cust_name, acc_noetc..

2.CompositeAttributes:

The attributes that can be divided into smaller subparts, which represent m
independent meaning.
These are useful to model situations in which a user sometimes refers to the composite attribute as unit but at
other times refers specifically to its components.
Example:

al database design is the process of choosing specific storage structures and access paths for the
database files to achieve good performance for the various database applications.

This step involves building indexes on some tables and clustering some
es. The physical database design can have the following options.

This is the elapsed time between submitting a database transaction for execution and receiving a

This is the amount of storage space used by the database files and their access path structures on
disk including indexes and other access paths.

This is the average number of transactions that can be processed per minute.

In this step, we must identify different user groups and different roles played by various users.
For each role, and user group, we must identify the parts of the database that they must be able to access,

2.ENTITIES

that is distinguishable from other objects by a set ofattributes.
R Model, which is a 'thing' in the real world with an independentexistence.

An entity may be an 'object' with a physicalexistence.
by'Ellipses'.

Customer, account etc.

3. ATTRIBUTES
Characteristics of an entity are called as an attribute.

The properties of a particular entity are called as attributes of that specified entity.

--- customer database.
account database.

These can be classified into following types.

The attributes that are not divisible are called as 'simple or atomic attributes'.

The attributes that can be divided into smaller subparts, which represent more basic attributes with

These are useful to model situations in which a user sometimes refers to the composite attribute as unit but at
other times refers specifically to its components.

al database design is the process of choosing specific storage structures and access paths for the
database files to achieve good performance for the various database applications.

This is the elapsed time between submitting a database transaction for execution and receiving a

database files and their access path structures on

This is the average number of transactions that can be processed per minute.

user groups and different roles played by various users.
For each role, and user group, we must identify the parts of the database that they must be able to access,

that is distinguishable from other objects by a set ofattributes.
R Model, which is a 'thing' in the real world with an independentexistence.

The properties of a particular entity are called as attributes of that specified entity.

ore basic attributes with

These are useful to model situations in which a user sometimes refers to the composite attribute as unit but at

Street_address can be divided into 3 simple attributes as Number, Street and Apartment_no.
Street_address

City State Zip

3.Single ValuedAttribute:
The attributes having a single value for a particular entity are called as 'Single Valued Attributes'.

Example:
'Age' is a single valued attribute of 'Person'.

9

4.Muti ValuedAttribute:
The attributes, which are having a set of values for the same entity, are called as 'Multi Valued Attributes'.
Example:

A 'College Degree' attribute for a person.i.e, one person may not have a college degree, another
person may have one and a third person may have 2 or more degrees.

A multi-valued attribute may have lower and upper bounds on the number of values allowed for each
individual entity.

5.DerivedAttributes:
An attribute which is derived from another attribute is called as a ‘derived attribute.
Example:

‘Age’ attribute is derived from another attribute ‘Date’.

6.StoredAttribute:
An attribute which is not derived from another attribute is called as a ‘stored attribute.
Example:

In the above example,’ Date’ is a stored attribute.

4. ENTITY SETS
Entity Type:

A collection entities that have the same attributes is called as an 'entity type'.
Each entity type is described by its name and attributes.

Entity Set:
Collection of all entities of a particular entity type in the database at any point of time is called as an entity
set.
The entity set is usually referred to using the same name as the entity type.
An entity type is represented in ER diagrams as a rectangular box enclosing the entity type name.
Example:

Collection of customers.

5. Relationships

It is an association among entities.

6. RelationshipSets

It is a collection of relationships.
Primary Key:

The attribute, which can be used to identify the specified information from the tables.

Weak Entity:
A weak entity can be identified uniquely by considering some of its attributes in conjunction with the primary key of

another entity.
The symbols that can be used in this model are as follows.

1.Rectangles ---- Entities.

2.Ellipses ----- ------ Attributes.

3.Lines ------ ------ Links.

4.Diamonds ----- Relationships.

5.Under Lined Ellipse -----

6.Doubled Lined Ellipse----

7.Dashed Ellipse----

8.Double Lined Rectangle ----

9.Double Lined Diamond ----

10. Entity Set having a Primary Key

11.Cylinder ----

12.Curved Inside Rectangle----

EXAMPLE:

Name Street
City

Customer

Descriptive Attributes:
A relationship can also have some attributes, which are called as ‘descriptive
attributes’. These are used to record information about the relationship.

Primarykey.
Key Attribute.

Multi Valued
Attribute.

Derived Attributes.

Entity Set.

Entity Relationship.
Identifying Relationship.

---- Strong Entity
Set.

Database.

End Users.

Acc_no

Cust_acc
Account

A relationship can also have some attributes, which are called as ‘descriptive
attributes’. These are used to record information about the relationship.

Identifying Relationship.

Balance

Account

11

Instance:
An instance of a relationship set is a set of relationships. It
is a snapshot of the relationship at some instant of time.

60
70
80

2.One to Many:

Example:
James of ‘Employees’ entity set works in a department since 1991.

Dno
Name Street

City
Since Dname

Budget

Customer Works_in Departments

EX: 1111 1/1/91

2222 2/2/94

3333 3/3/96

Ternary Relationship:

A relationship set, which is having 3 entity sets, is called as a ternary relationship.

7.Additional Features of the E-RModel

1.KeyConstraints:
These can be classified into 4 types as below.
1.Many toMany:
An employee is allowed to work in different departments and a department is allowed to have

several employees.

Dno
Name Street

City
Since Dname

Budget

Customer Works_in Departments

1 employee can be associated with many departments, where as each department can be associated with at
most 1 employee as its manager.

Dno
Name Street City Since Dname

Budget

Customer Works_in Departments

3.Many to One:

12

Dno
Dname

Budget

Customer

4.One to One:

Works_in Departments

Each employee works in at most 1 department.i.e, many employees can work in same department.

Name Street
City

Since

Each employee can manage at most 1 department.
Dno

Dname

Budget

2.ParticipationConstraints:

Departments

Name Street
City

Since

Customer Works_in

13

Partial Participation

Employees Manages Department

Total Participation

Works_in

3.Weak Entity Set:

The participation constraint specifies whether the existence of an entity depends on its being related to
another entity via the relationship type.
A department has at most one manager. This requirement is an example of participation
constraints. There are 2 types of participation constraints, which are as below.

1.Total.
2.Partial.

Explanation is as below.

1.Total:
An entity set dependent on a relationship set and having

one to many relationships is said to be ‘total’.
The participation of the entity set ‘departments’ in the

relationship set ‘manages’ is said to be total.

2.Partial:
A participation that is not total is said to be partial.

Example:
Participation of the entity set ‘employees’ in ‘manages’ is partial, since not every employee gets to
manage a department.

In E-R diagram, the total participation is displayed as a ‘double line’ connecting the participating entity type
to the relationship, where as partial participation is represented by a single line.
If the participation of an entity set in a relationship set is total, then a thick line connects the
two. The presence of an arrow indicates a key constraint.

Name No Dname Budget

1.Explain ‘weak Entities’? (3Marks)(Jan-2005)
(4 Marks)(Semptember-2005) (4 Marks)(Feb-2002)

Weak Entity Type:
Entity types that do not have key attributes of their own are called as weak entity types.
A weak entity type always has a ‘total participation constraint’.

A weak entity set can be identified uniquely only by considering some of its attributes in conjunction
with the primary key of another entity (Identifying owner).
For any weak entity set, following restrictions must hold.

a. The owner entity set and the weak entity set must participate in
a One-to-many relationship set, which is called as the
‘Identifying Relationship Set’ of the weak entityset.

b. The weak entity set must have total participation in the identifying relationshipset.

Example:

‘Dependents’ is an example of a weak entity set.

Partial key of the weak entity set:

The set of attributes of a weak entity set that uniquely identify a weak entity for a given owner entity
is called as ‘partial key of the weak entity set’.
Example:

‘Pname’ is a partial key for dependents.

The dependent weak entity set and its relationship to employees is shown in the following
diagram. Linking them with a dark line indicates the total participation of dependents i
To understand the fact that dependents is a weak entity and policy is its identifying relationship, we
draw both with dark lines.
To indicate that ‘pname’ is a partial key for dependents, we underline it using a broken line.

No
Name

Employees

4.Aggregation:

1.Explain ‘Aggregation’? (3 Marks,Jan
2.Explain how to use a ternary relationship instead of‘aggregation’?

(5 Marks,Jan-2005)
3.Explain ‘Aggregation in ER model? (4 Marks, July

2004) (5 Marks, March-2003) (4 Marks,July

Aggregation is an abstraction for building composite objects from their component objects.
Aggregation is used to represent a relationship between a whole object and its component parts.
Aggregation allows us to indicate that a relationship set (identified through a dashed box) participates
in another relationship set.
This is illustrated with a dashed box around sponsors.
If we need to express a relationship among relationships, then we should use aggrega

Aggregation versus Ternary Relationship:
We can use either aggregation or ternary relationship for 3 or more entity
sets. The choice is mainly determined by

a. The existence of a relationship that relates a relationship set to an
entity set or second relationshipset.

b. The choice may also guided by certain integrity constraints that
we want toexpress.

‘Dependents’ is an example of a weak entity set.

The set of attributes of a weak entity set that uniquely identify a weak entity for a given owner entity
of the weak entity set’.

‘Pname’ is a partial key for dependents.

The dependent weak entity set and its relationship to employees is shown in the following
diagram. Linking them with a dark line indicates the total participation of dependents i
To understand the fact that dependents is a weak entity and policy is its identifying relationship, we

To indicate that ‘pname’ is a partial key for dependents, we underline it using a broken line.

Cost Pname

Policy Dependents

4.Aggregation:

Explain ‘Aggregation’? (3 Marks,Jan-2005)
Explain how to use a ternary relationship instead of‘aggregation’?

Explain ‘Aggregation in ER model? (4 Marks, July-
2003) (4 Marks,July-2002)

Aggregation is an abstraction for building composite objects from their component objects.
Aggregation is used to represent a relationship between a whole object and its component parts.

s us to indicate that a relationship set (identified through a dashed box) participates

This is illustrated with a dashed box around sponsors.
If we need to express a relationship among relationships, then we should use aggrega

Aggregation versus Ternary Relationship:
We can use either aggregation or ternary relationship for 3 or more entity
sets. The choice is mainly determined by
The existence of a relationship that relates a relationship set to an

elationshipset.
The choice may also guided by certain integrity constraints that

14

The set of attributes of a weak entity set that uniquely identify a weak entity for a given owner entity

The dependent weak entity set and its relationship to employees is shown in the following
diagram. Linking them with a dark line indicates the total participation of dependents in policy.
To understand the fact that dependents is a weak entity and policy is its identifying relationship, we

To indicate that ‘pname’ is a partial key for dependents, we underline it using a broken line.

Age

Dependents

Aggregation is an abstraction for building composite objects from their component objects.
Aggregation is used to represent a relationship between a whole object and its component parts.

s us to indicate that a relationship set (identified through a dashed box) participates

If we need to express a relationship among relationships, then we should use aggregation.

Name Employees

Monitors

Pid Budget

Projects
Sponsors

--

According to the above diagram,

1.A project can be sponsored by any number of departments.
2.A department can sponsor 1 or more projec
3.1 or more employees monitor each

sponsorship. (Many to Many Relationship)

Consider the constraint that each relationship be monitored by at most 1 employee.
We cannot express this constraint in terms of the ternary relationship in the following di
we are using a ternary relationship instead of aggregation.
Aggregation groups a part of an E
entity set as a single unit without concern for the details of it’s intern
Thus, the presence of such a constraint serves as another reason for using aggregation rather than a
ternary relationship set.

8.Conceptual Database Design With The ER Model

The information gathered in the requirements analysis step is
the data.
The goal of conceptual database design is a complete understanding of the database structure, meaning
(semantics), inter-relationships and constraints.
Characteristics of this phase are as below.

1.Expressiveness:

The data model should be expressive to distinguish different
types of data, relationships and constraints.

2.Simplicity andUnderstandability:

The model should be simple to understand the concepts.

3.Minimality:

The model should have small

4.DiagrammaticRepresentation:

Employees No

Monitors Until

Since Dname Budget

Sponsors Departments

--

According to the above diagram,

1.A project can be sponsored by any number of departments.
2.A department can sponsor 1 or more projects.
3.1 or more employees monitor each

sponsorship. (Many to Many Relationship)

Consider the constraint that each relationship be monitored by at most 1 employee.
We cannot express this constraint in terms of the ternary relationship in the following di
we are using a ternary relationship instead of aggregation.
Aggregation groups a part of an E-Are diagram into a single entity set allowing us to treat the aggregate
entity set as a single unit without concern for the details of it’s internal structure.
Thus, the presence of such a constraint serves as another reason for using aggregation rather than a

8.Conceptual Database Design With The ER Model

The information gathered in the requirements analysis step is used to develop a higher

The goal of conceptual database design is a complete understanding of the database structure, meaning
relationships and constraints.

Characteristics of this phase are as below.

The data model should be expressive to distinguish different
types of data, relationships and constraints.

Simplicity andUnderstandability:

The model should be simple to understand the concepts.

The model should have small number of basic concepts.

DiagrammaticRepresentation:

15

Budget

--

Consider the constraint that each relationship be monitored by at most 1 employee.
We cannot express this constraint in terms of the ternary relationship in the following diagram. In that

Are diagram into a single entity set allowing us to treat the aggregate
al structure.

Thus, the presence of such a constraint serves as another reason for using aggregation rather than a

used to develop a higher-level description of

The goal of conceptual database design is a complete understanding of the database structure, meaning

The model should have a diagrammatic notation
for displaying the conceptual schema.

5.Formality:

A conceptual schema expressed in the data model
must represent a formal specification

Example:
Cust_name: string;
Cust_no: integer;
Cust_city:string;

a. Entity VersusRelationships:

Suppose that each department manager is given a ‘Dbudget’ as shown in the figure.

Name Street
City

Customer

There is at most 1 employee managing a department, but a given employee could manage
several departments (1 to many relationships).
We can store starting date and ‘Dbudget’ for each manager

This approach is natural, if we assume that a manager receives a single ‘Dbudget’ for each department
that he manages. But if the ‘Dbudget’ is the sum of all departments, then ‘manages’ relationship that
involves each employee will have the same value (total va
So this leads to redundancy.

This can be solved by the appointment of the employee as a manager of a group of departments.
We can model ‘mgr_appt’ as an entity set for manager appointment, use a ternary relationship and we
can have at most 1 manager for each department due to 1 to many relationship.

The model should have a diagrammatic notation
for displaying the conceptual schema.

A conceptual schema expressed in the data model
must represent a formal specification of the data.

Suppose that each department manager is given a ‘Dbudget’ as shown in the figure.

Dno

City
Since

Works_in Departments

There is at most 1 employee managing a department, but a given employee could manage
several departments (1 to many relationships).
We can store starting date and ‘Dbudget’ for each manager-department pair.

approach is natural, if we assume that a manager receives a single ‘Dbudget’ for each department
that he manages. But if the ‘Dbudget’ is the sum of all departments, then ‘manages’ relationship that
involves each employee will have the same value (total value).

This can be solved by the appointment of the employee as a manager of a group of departments.
We can model ‘mgr_appt’ as an entity set for manager appointment, use a ternary relationship and we

r for each department due to 1 to many relationship.

16

Suppose that each department manager is given a ‘Dbudget’ as shown in the figure.

Dname
Budget

Departments

There is at most 1 employee managing a department, but a given employee could manage

approach is natural, if we assume that a manager receives a single ‘Dbudget’ for each department
that he manages. But if the ‘Dbudget’ is the sum of all departments, then ‘manages’ relationship that

This can be solved by the appointment of the employee as a manager of a group of departments.
We can model ‘mgr_appt’ as an entity set for manager appointment, use a ternary relationship and we

Name Street
City

Customer

Since

Conceptual Database Design For Large Enterprises

The process of conceptual database design consists describing small fragments of the application in terms of
E-R diagrams.
For a large Enterprise, the design may

require, 1.More than 1 designer.
2.Span data and application by a number of user groups.

Using a high level semantic data model such as ER diagrams for conceptual design offers the additional
advantages that,
1.The high level design can be diagrammaticallyrepresented.
2.Many people, who provide the input to the design process, easily understandit.
An alternative approach is to develop separate conceptual schemas for different user groups and then
integrate all those.
To integrate, we must establish correspondences between entities, relationships and attributes, so that this
process is somewhat difficult.

The relations of degree 1 are called as ‘Unary Relations’.
The relations of degree 2 are called as ‘Binary Relations’.
The relations of degree 3 are called as ‘Ternary Relations’.
The relations of degree n are called as ‘nary Relations’.

Dno

City
Since

Works_in Departments

Mgr_appt
Dbudget

Conceptual Database Design For Large Enterprises

process of conceptual database design consists describing small fragments of the application in terms of

For a large Enterprise, the design may
require, 1.More than 1 designer.
2.Span data and application by a number of user groups.
high level semantic data model such as ER diagrams for conceptual design offers the additional

The high level design can be diagrammaticallyrepresented.
Many people, who provide the input to the design process, easily understandit.

alternative approach is to develop separate conceptual schemas for different user groups and then

To integrate, we must establish correspondences between entities, relationships and attributes, so that this

The relations of degree 1 are called as ‘Unary Relations’.
The relations of degree 2 are called as ‘Binary Relations’.
The relations of degree 3 are called as ‘Ternary Relations’.
The relations of degree n are called as ‘nary Relations’.

17

Dname
Budget

Departments

process of conceptual database design consists describing small fragments of the application in terms of

high level semantic data model such as ER diagrams for conceptual design offers the additional

Many people, who provide the input to the design process, easily understandit.
alternative approach is to develop separate conceptual schemas for different user groups and then

To integrate, we must establish correspondences between entities, relationships and attributes, so that this

UNIT-3

RELATIONAL MODEL

A database is a collection of 1 or more ‘relations’, where each relation is a table with rows and columns.

This is the primary data model for commercial data processing applications.
The major advantages of the relational model over the older data models are,

1.It is simple and elegant.
2.simple datarepresentation.
3.The ease with which even complex queries can be expressed.

Introduction:

The main construct for representing data in the relational model

A relation consists of
1.RelationSchema.
2.RelationInstance.

Explanation is as below.

1.RelationSchema:

The relation schema describes the column heads for the table.
The schema specifies the relation’s name, the name of each field (column, a
of each field.
A domain is referred to in a relation schema by the domain name and has a set of associated
values. Example:

Student information in a university database to illustrate the parts of a relation schema.

Students (Sid: string, name: string, login: string, age: integer, gross: real)

This says that the field named ‘sid’ has a domain named ‘string’.
The set of values associated with domain ‘string’ is the set of all character strings.

2.RelationInstance:

This is a table specifying the information.
An instance of a relation is a set of ‘tuples’, also called ‘records’, in which each tuple has the same
number of fields as the relation schemas.
A relation instance can be thought of as a table in which each tuple is a
number of fields.
The relation instance is also called as ‘relation’.
Each relation is defined to be a set of unique tuples or rows.

Example:
Fields (Attributes, Columns)

sid login
1111 Dave dave@cs
2222 Jones Jones@cs
333 Smith smith@ee
4444 Smith smith@math

This example is an instance of the students relation, which consists 4 tuples and 5 fields. No two rows are
identical.

RELATIONAL MODEL

A database is a collection of 1 or more ‘relations’, where each relation is a table with rows and columns.

This is the primary data model for commercial data processing applications.
of the relational model over the older data models are,

It is simple and elegant.
2.simple datarepresentation.
3.The ease with which even complex queries can be expressed.

The main construct for representing data in the relational model is a ‘relation’.

The relation schema describes the column heads for the table.
The schema specifies the relation’s name, the name of each field (column, attribute) and the ‘domain’

A domain is referred to in a relation schema by the domain name and has a set of associated

Student information in a university database to illustrate the parts of a relation schema.

(Sid: string, name: string, login: string, age: integer, gross: real)

This says that the field named ‘sid’ has a domain named ‘string’.
The set of values associated with domain ‘string’ is the set of all character strings.

ble specifying the information.
An instance of a relation is a set of ‘tuples’, also called ‘records’, in which each tuple has the same
number of fields as the relation schemas.
A relation instance can be thought of as a table in which each tuple is a row and all rows have the same

The relation instance is also called as ‘relation’.
Each relation is defined to be a set of unique tuples or rows.

Fields (Attributes, Columns)

age Field names
19 1.2
18 2.3 Tuples (Records,Rows)
18 3.4
19 4.5

This example is an instance of the students relation, which consists 4 tuples and 5 fields. No two rows are

18

A database is a collection of 1 or more ‘relations’, where each relation is a table with rows and columns.

ttribute) and the ‘domain’

A domain is referred to in a relation schema by the domain name and has a set of associated

Student information in a university database to illustrate the parts of a relation schema.

(Sid: string, name: string, login: string, age: integer, gross: real)

The set of values associated with domain ‘string’ is the set of all character strings.

An instance of a relation is a set of ‘tuples’, also called ‘records’, in which each tuple has the same

row and all rows have the same

Tuples (Records,Rows)

This example is an instance of the students relation, which consists 4 tuples and 5 fields. No two rows are

Degree:
The number of fields is called as ‘degree’.
This is also called as ‘arity’.

Cardinality:
The cardinality of a relation instance is the number of tuples in
it. Example:
In the above example, the degree of the relatio

Relational database:
It is a collection of relations with distinct relation

names. Relational database schema:
It is the collection of schemas for the relations in the

database. Instance:
An instance of a relational
database schema.
Each relation instance must satisfy the domain constraints in its schema.

2.Integrity constraints over relations

An integrity constraint (IC) is a condition
stored in an instance of the database.
Various restrictions on data that can be specified on a relational database schema in the form of ‘constraints’.

A DBMS enforces integrity constrai
Integrity constraints are specified and enforced at different times as below.

1.When the DBA or end user defines a database schema, he or she
specifies the ICs that must hold on any

2.When a data base application is run, the DBMS checks for violations
and disallows changes to the data that violate the specifiedICs.

Legal Instance:
If the database instance satisfies all the integrity constraints specified on

schema. The constraints can be classified into 4 types as below.
1.DomainConstraints.
2.KeyConstraints.
3.Entity Integrity Constraints.
4.Referential IntegrityConstraints.

Explanation is as below.

1.DomainConstraints

Domain constraints are the most elementary form of integrity constraints. They are tested easily by the system
whenever a new data item is entered into the database.
Domain constraints specify the set of possible values that may be associated with an attribute. Such
constraints may also prohibit the use of null values for particular attributes.
The data types associated with domains typically include standard numeric data types for integers
A relation schema specifies the domain of each field or column in the relation instance.
These domain constraints in the schema specify an important condition that each instance of the relation to
satisfy: The values that appear in a column must be drawn from the domain associated with that column.
Thus the domain of a field is essentially the

2.KeyConstraints
1.Explain the concept of Super Key, Candidate Key and Primary Key with examples?(6 Marks,Feb

A key constraint is a statement that a certain minimal subset of the fields of a relation is a unique identifier for
a tuple.
Example:

The ‘students’ relation and the constraint that no 2 students have tha same student id
(sid). These can be classified into 3 types as below.

The number of fields is called as ‘degree’.
This is also called as ‘arity’.

The cardinality of a relation instance is the number of tuples in

In the above example, the degree of the relation is 5 and the cardinality is 4.

It is a collection of relations with distinct relation
Relational database schema:
It is the collection of schemas for the relations in the

An instance of a relational database is a collection of relation instances, one per relation schema in the

Each relation instance must satisfy the domain constraints in its schema.

2.Integrity constraints over relations

An integrity constraint (IC) is a condition that is specified on a database schema and restricts the data can be
stored in an instance of the database.
Various restrictions on data that can be specified on a relational database schema in the form of ‘constraints’.

A DBMS enforces integrity constraints, in that it permits only legal instances to be stored in the database.
Integrity constraints are specified and enforced at different times as below.

When the DBA or end user defines a database schema, he or she
specifies the ICs that must hold on any instance of thisdatabase.

When a data base application is run, the DBMS checks for violations
and disallows changes to the data that violate the specifiedICs.

If the database instance satisfies all the integrity constraints specified on
schema. The constraints can be classified into 4 types as below.

DomainConstraints.
KeyConstraints.
Entity Integrity Constraints.

4.Referential IntegrityConstraints.
Explanation is as below.

DomainConstraints

st elementary form of integrity constraints. They are tested easily by the system
whenever a new data item is entered into the database.
Domain constraints specify the set of possible values that may be associated with an attribute. Such

lso prohibit the use of null values for particular attributes.
The data types associated with domains typically include standard numeric data types for integers
A relation schema specifies the domain of each field or column in the relation instance.
These domain constraints in the schema specify an important condition that each instance of the relation to
satisfy: The values that appear in a column must be drawn from the domain associated with that column.
Thus the domain of a field is essentially the type of that field.

Explain the concept of Super Key, Candidate Key and Primary Key with examples?(6 Marks,Feb
A key constraint is a statement that a certain minimal subset of the fields of a relation is a unique identifier for

The ‘students’ relation and the constraint that no 2 students have tha same student id
(sid). These can be classified into 3 types as below.

19

n is 5 and the cardinality is 4.

database is a collection of relation instances, one per relation schema in the

Each relation instance must satisfy the domain constraints in its schema.

that is specified on a database schema and restricts the data can be

Various restrictions on data that can be specified on a relational database schema in the form of ‘constraints’.

nts, in that it permits only legal instances to be stored in the database.

If the database instance satisfies all the integrity constraints specified on the database

st elementary form of integrity constraints. They are tested easily by the system

Domain constraints specify the set of possible values that may be associated with an attribute. Such

The data types associated with domains typically include standard numeric data types for integers
A relation schema specifies the domain of each field or column in the relation instance.
These domain constraints in the schema specify an important condition that each instance of the relation to
satisfy: The values that appear in a column must be drawn from the domain associated with that column.

Explain the concept of Super Key, Candidate Key and Primary Key with examples?(6 Marks,Feb-2004)
A key constraint is a statement that a certain minimal subset of the fields of a relation is a unique identifier for

The ‘students’ relation and the constraint that no 2 students have tha same student id

a. Candidate Key orKey.
b. SuperKey.
c. Primary Key.

Explanation is asbelow.
a. Candidate Key orKey:
1.Explain ‘Candidate Key’?(4 Marks,Semptember

A set of fields that uniquely identifies a tuple according to a key constraint is called as a ‘Candidate Key’ for
the relation.
This is also called as a ‘key’.
From the definition of candidate key, w

1.Two distinct tuples in a legal instance cannot have identicalvalues
in all the fields of a key.i.e, in any legal instance, the values in the key
fields uniquely identify a tuple in the instance.
i.e,the values in the key fields uniquely identify a tu

No subset of the set of fields in key is a unique identifier for a tuple,
i.e., the set of fields {sid, name} is not a key for

Students. A relation schema may have more than key.
Example: In the above Students relation, the ‘sid’

{sid}.
The value of a key attribute can be used to identify uniquely each tuple in the relation.

‘A set of attributes constituting a key’ is a property of the
A key is determined from the meaning of attributes.
Every relation is guaranteed to have a key. Since a relation is a set of tuples, the set of all fields is always a
super key.

b. SuperKey:
The set of fields that contains a key is called as a ‘super key’.
The set of 1 or more attributes that allows us to iden

A super key specifies a uniqueness constraint that no 2 distinct tuples can have the same
value. Every relation has at least 1 default super key as the set of all attributes.
Example:

Students
(Relation)

One of the super key = {Sid,Name,Login,

c. Primary Key:

This is also a candidate key, whose values are used to identify tuples in the relation. It is
common to designate one of the candidate keys as a primary key of the relation. The
attributes that form the primary key of a relation schema are

It is used to denote a candidate key that is chosen by the database designer as
the principal means of identifying entities with an entity set.

Example:
‘Sid’ of Students relation.

d. Specifying Key Constraints inSQL

In SQL, we are declaring the set of
‘UNIQUE’ constraint.
This ‘UNIQUE’ constraint specifies that 2 distinct tuples cannot have identical
Values.
Candidate keys can be declared as a ‘primary key’ using the constraint
‘PRIMARY KEY’.

Candidate Key orKey.

Explain ‘Candidate Key’?(4 Marks,Semptember-2003)
A set of fields that uniquely identifies a tuple according to a key constraint is called as a ‘Candidate Key’ for

From the definition of candidate key, we have,
Two distinct tuples in a legal instance cannot have identicalvalues

in all the fields of a key.i.e, in any legal instance, the values in the key
fields uniquely identify a tuple in the instance.

e,the values in the key fields uniquely identify a tuple in the instance.
No subset of the set of fields in key is a unique identifier for a tuple,

i.e., the set of fields {sid, name} is not a key for
Students. A relation schema may have more than key.

In the above Students relation, the ‘sid’ field is a candidate key.

The value of a key attribute can be used to identify uniquely each tuple in the relation.

‘A set of attributes constituting a key’ is a property of the relation schema.
A key is determined from the meaning of attributes.

very relation is guaranteed to have a key. Since a relation is a set of tuples, the set of all fields is always a

The set of fields that contains a key is called as a ‘super key’.
The set of 1 or more attributes that allows us to identify uniquely an entity in the entity set.

A super key specifies a uniqueness constraint that no 2 distinct tuples can have the same
value. Every relation has at least 1 default super key as the set of all attributes.

Name (Fields)
Login
Age
Gross

One of the super key = {Sid,Name,Login, Gross}

This is also a candidate key, whose values are used to identify tuples in the relation. It is
common to designate one of the candidate keys as a primary key of the relation. The
attributes that form the primary key of a relation schema are underlined.

is used to denote a candidate key that is chosen by the database designer as
the principal means of identifying entities with an entity set.

‘Sid’ of Students relation.

Specifying Key Constraints inSQL-92:

In SQL, we are declaring the set of fields of a table consisting a key by using

This ‘UNIQUE’ constraint specifies that 2 distinct tuples cannot have identical

Candidate keys can be declared as a ‘primary key’ using the constraint

20

A set of fields that uniquely identifies a tuple according to a key constraint is called as a ‘Candidate Key’ for

in all the fields of a key.i.e, in any legal instance, the values in the key

ple in the instance.2.

The value of a key attribute can be used to identify uniquely each tuple in the relation.

very relation is guaranteed to have a key. Since a relation is a set of tuples, the set of all fields is always a

tify uniquely an entity in the entity set.

A super key specifies a uniqueness constraint that no 2 distinct tuples can have the same

This is also a candidate key, whose values are used to identify tuples in the relation. It is
common to designate one of the candidate keys as a primary key of the relation. The

We can name a constraint by using the

CONSTRAINT constraint_name KEY_NOTATION (key_names);
If the constraint is violated, then the constraint_name is returned and it can
be used to identify the error.
Example:

Express ‘sid’ as a prim

CREATE TABLE Students (sid CHAR (20), name CHAR (30), login CHAR(20),

`

3.Entity IntegrityConstraints

This states that no primary key value can be null.
The primary key value is used to identify individual tuples in a relation.

Having null values for the primary key implies that we cannot identify some
tuples. NOTE: Key Constraints, Entity Integrity Constraints are specified on
individual relations. PRIMARY KEYS comes under this.

4.Referential IntegrityConstraints

The Referential Integrity Constraint is specified between 2 relations and is
used to maintain the consistency among tuples of the 2 relations.
Informally, the referential integrity constraint states that ‘a tuple in 1
relation that refers to another relation must refe
that relation.
We can diagrammatically display the referential integrity constraints by
drawing a directed arc from each foreign key to the relation it references.
The arrowhead may point to the primary key of the referenced relat

We can name a constraint by using the syntax as below.

CONSTRAINT constraint_name KEY_NOTATION (key_names);
If the constraint is violated, then the constraint_name is returned and it can
be used to identify the error.

Express ‘sid’ as a primary key and the combination {name, age} as a key.

CREATE TABLE Students (sid CHAR (20), name CHAR (30), login CHAR(20),
age INTEGER, gross REAL, UNIQUE (name, age),

CONSTRAINT sid1 PRIMARY KEY(sid));

Entity IntegrityConstraints

primary key value can be null.
The primary key value is used to identify individual tuples in a relation.

Having null values for the primary key implies that we cannot identify some
tuples. NOTE: Key Constraints, Entity Integrity Constraints are specified on
individual relations. PRIMARY KEYS comes under this.

Referential IntegrityConstraints

al Integrity Constraint is specified between 2 relations and is
used to maintain the consistency among tuples of the 2 relations.
Informally, the referential integrity constraint states that ‘a tuple in 1
relation that refers to another relation must refer to an existing tuple in

We can diagrammatically display the referential integrity constraints by
drawing a directed arc from each foreign key to the relation it references.
The arrowhead may point to the primary key of the referenced relation.

20

ary key and the combination {name, age} as a key.

CREATE TABLE Students (sid CHAR (20), name CHAR (30), login CHAR(20),
age INTEGER, gross REAL, UNIQUE (name, age),

CONSTRAINT sid1 PRIMARY KEY(sid));

Having null values for the primary key implies that we cannot identify some
tuples. NOTE: Key Constraints, Entity Integrity Constraints are specified on

pno descr color
P1 Widget Blue
P2 Widget Red
P3 Dongle Green

sno name city
S1 Pierre Paris
S2 John London
S3 Mario Rome

sno pno qty
S1 P1 NULL
S2 P1 200
S3 P1 1000

S3 P2 200

Mario

name

S3 Mario Rome

snoname city

SELECT Statement Basics

In the subsequent text, the following 3 example tables are used:

pTable(parts) sTable(suppliers) sp Table (suppliers &parts)

The SQL SELECT statement queries data from tables in the database. The statement begins with
the SELECT keyword. The basic SELECT statement has 3 clauses:

SELECT
FROM
WHERE

2
1

The SELECT clause specifies the table columns that are retrieved. The FROM clause specifies the
tables accessed. The WHERE clause specifies which table rows are used. The WHERE clause is
optional; if missing, all table rows are used.
For example,

SELECT name FROM s WHERE city='Rome'
This query accesses rows from the table - s. It then filters those rows where the city column
contains Rome. Finally, the query retrieves the name column from each filtered row. Using the
example s table, this queryproduces:

A detailed description of the query actions:

The FROM clause accesses the s table. Contents:

snoname city
S1 Pierre Paris

S2 JohnLondon

S3 Mario Rome

The WHERE clause filters the rows of the FROM table to use those whose city column
contains Rome. This chooses a single row from s:

Mario

name

The SELECT clause retrieves the
clause:

SELECT Clause
The SELECT clause is mandatory.
the FROM clause. It has the following general format:

SELECT [ALL|DISTINCT] select
select-list is a list of column names separated by commas. The ALL and DISTINCT specifiers are
optional. DISTINCT specifies that duplicate rows are discarded. A duplicate row is when each
corresponding select-list column has the
rows.
For example,

SELECT descr, color FROM p
The column names in the select list can be qualified by the appropriate table name:

SELECT p.descr, p.color FROM p
A column in the select list can be rena
example:

SELECT name supplier, city location FROM s
This produces:

supplier location

Pierre Paris

John London
Mario Rome

A special select list consisting of a single '*' requests all columns
For example,

SELECT * FROM sp

snopnoqty

S1 P1 NULL

S2 P1 200
S3 P1 1000

S3 P2 200

The * delimiter will retrieve just the columns of a single table when qualified by the table name.
Forexample:

SELECT sp.* FROM
This produces the same result as the previous example.
An unqualified * cannot be combined with other elements in the select list; it must be stand alone.
However, a qualified * can be combined with other elements. For example,

SELECT sp.*,
city FROM sp,
s WHERE
sp.sno=s.sno
sno pno qty city
S1 P1 NULL Paris

The SELECT clause retrieves the name column from the rows filtered by the WHERE

SELECT Clause
The SELECT clause is mandatory. It specifies a list of columns to be retrieved from the tables in
the FROM clause. It has the following general format:

[ALL|DISTINCT] select-list
is a list of column names separated by commas. The ALL and DISTINCT specifiers are

optional. DISTINCT specifies that duplicate rows are discarded. A duplicate row is when each
column has the same value. The default is ALL, which retains duplicate

SELECT descr, color FROM p
The column names in the select list can be qualified by the appropriate table name:

SELECT p.descr, p.color FROM p
A column in the select list can be renamed by following the column name with the new name. For

SELECT name supplier, city location FROM s

A special select list consisting of a single '*' requests all columns in all tables in the FROM clause.

SELECT * FROM sp

delimiter will retrieve just the columns of a single table when qualified by the table name.

SELECT sp.* FROM sp
This produces the same result as the previous example.

cannot be combined with other elements in the select list; it must be stand alone.
can be combined with other elements. For example,

city
Paris

column from the rows filtered by the WHERE

specifies a list of columns to be retrieved from the tables in

is a list of column names separated by commas. The ALL and DISTINCT specifiers are
optional. DISTINCT specifies that duplicate rows are discarded. A duplicate row is when each

same value. The default is ALL, which retains duplicate

The column names in the select list can be qualified by the appropriate table name:

med by following the column name with the new name. For

in all tables in the FROM clause.

delimiter will retrieve just the columns of a single table when qualified by the table name.

cannot be combined with other elements in the select list; it must be stand alone.
can be combined with other elements. For example,

S2 P1 200 London
S3 P1 1000 Rome
S3 P2 200 Rome

Note: this is an example of a query joining
2 tables. FROM Clause

The FROM clause always follows the SELECT clause. It lists the tables accessed by the query. For
example,

SELECT * FROM s
When the From List contains multiple tables, commas separate the table names. For example,

SELECT sp.*,
city FROM sp,
s WHERE
sp.sno=s.sno

When the From List has multiple tables, they must be joined together.
Correlation Names

Like columns in the select list, tables in the from list can be renamed by following the table name
with the new name. For example,

SELECT supplier.name FROM s supplier
The new name is known as the correlation (or range) name for the table. Self joins require
correlation names.

WHERE Clause
The WHERE clause is optional. When specified, it always follows the FROM clause. The WHERE
clause filters rows from the FROM clause tables. Omitting the WHERE clause specifies that all
rows are used. Following the WHERE keyword is a logical expression, also known as a predicate.
The predicate evaluates to a SQL logical value -- true, false or unknown. The most basic predicate
is a comparison:

color = 'Red'
This predicate returns:

true -- if the color column contains the string value -- 'Red',
false -- if the color column contains another string value (not
'Red'), or unknown -- if the color column contains null.

Generally, a comparison expression compares the contents of a table column to a literal, as above.
A comparison expression may also compare two columns to each other. Table joins use this type of
comparison.
The = (equals) comparison operator compares two values for equality. Additional comparison
operators are:

>--
greater
than <--
less than
>= -- greater than or
equal to <= -- less
than or equal to <>--
not equal to

For example,
SELECT * FROM sp WHERE qty >= 200

S2 P1200

S3 P11000

snopnoqty

S3 P2 200

Note: In the sptable, the qty column for one of the rows contains
evaluates to unknown for this row.
evaluating to unknown (or false) are eliminated (filteredout).
Both operands of a comparison should be the same data type, however automatic conversions are
performed between numeric, datetime and inter
type conversions.

Extended Comparisons
In addition to the basic comparisons described above, SQL supports extended comparison operators
-- BETWEEN, IN, LIKE and IS NULL.

BETWEEN Operator

The BETWEEN opera
between two other values. BETWEEN comparisons have the following format:

value-1 [NOT] BETWEEN value

This comparison tests if
value-3. It is equivalent to the following predicate:

value-1 >= value

Or, if NOT is included:

NOT (value-

For example,

SELECT *

FROM sp
WHERE qty

snopnoqty
S2 P1 200

S3 P2 200

IN Operator

The IN operator implements comparison to a list of values, that is, it tests whether a value
matches any value in a list of values. IN comparisons have the following general format:

value-1 [NOT] IN (value

This comparison tests if
equivalent to the following logical predicate:

value-1 = value

or if NOT is included:

NOT (value-

column for one of the rows contains null. The comparison
for this row. In the final result of a query, rows with a WHERE clause
(or false) are eliminated (filteredout).

Both operands of a comparison should be the same data type, however automatic conversions are
performed between numeric, datetime and interval types. The CAST expression provides explicit

Extended Comparisons
In addition to the basic comparisons described above, SQL supports extended comparison operators

BETWEEN, IN, LIKE and IS NULL.

BETWEEN Operator

The BETWEEN operator implements a range comparison, that is, it tests whether a value is
two other values. BETWEEN comparisons have the following format:

1 [NOT] BETWEEN value-2 AND value-3

This comparison tests if value-1 is greater than or equal to value-2
. It is equivalent to the following predicate:

1 >= value-2 AND value-1 <= value-3

Or, if NOT is included:

-1 >= value-2 AND value-1 <= value-3)

WHERE qty BETWEEN 50 and 500

The IN operator implements comparison to a list of values, that is, it tests whether a value
matches any value in a list of values. IN comparisons have the following general format:

1 [NOT] IN (value-2 [, value-3] ...)

This comparison tests if value-1 matches value-2 or matches value
equivalent to the following logical predicate:

1 = value-2 [OR value-1 = value-3] ...

or if NOT is included:

-1 = value-2 [OR value-1 = value-3] ...)

. The comparison - qty >= 200,
the final result of a query, rows with a WHERE clause

Both operands of a comparison should be the same data type, however automatic conversions are
val types. The CAST expression provides explicit

In addition to the basic comparisons described above, SQL supports extended comparison operators

tor implements a range comparison, that is, it tests whether a value is
two other values. BETWEEN comparisons have the following format:

2 and less than or equal to

2
4

The IN operator implements comparison to a list of values, that is, it tests whether a value
matches any value in a list of values. IN comparisons have the following general format:

value-3, and so on. It is

For example,

SELECT name FROM s WHERE city IN
e','Paris') name

LIKE Operator

The LIKE operator implements a pattern match comparison, that is, it matches a
value against a pattern string containing wild

The wild-card characters for LIKE are percent
matches any single character. Percent matches zero or more characters.

Examples,

Match Value Pattern R

'abc' '_b_'
'ab' '_b_'
'abc' '%b%'

'ab' '%b%'
'abc' 'a_'
'ab' 'a_'
'abc' 'a%_'

'ab' 'a%_'

LIKE comparison has the following general format:

value-1 [NOT] LIKE value

All values must be string (character). This comparison uses
value-1. The optional ESCAPE sub
allowing the pattern to use '%' and '_' (and the escape character) for matching
value must be a single character string. In the pattern, the ESCAPE character precedes any
character to be escaped.

For example, to match a string ending with '%', use:

x LIKE '%/%' ESCAPE '/'

A more contrived example that escapes the

y LIKE '/%//%' ESCAPE '/'

... matches any string beginning with '%/'.

The optional NOT reverses the result so that:

z NOT LIKE 'abc%'

('Rom
Pierre

Mario

SELECT name FROM s WHERE city IN
e','Paris') name

The LIKE operator implements a pattern match comparison, that is, it matches a
value against a pattern string containing wild-card characters.

card characters for LIKE are percent -- '%' and underscore
character. Percent matches zero or more characters.

attern Result

True
False

'%b%' True

'%b%' True
False
True
True

True

LIKE comparison has the following general format:

1 [NOT] LIKE value-2 [ESCAPE value-3]

All values must be string (character). This comparison uses value
. The optional ESCAPE sub-clause specifies an escape character for the pattern,

allowing the pattern to use '%' and '_' (and the escape character) for matching
value must be a single character string. In the pattern, the ESCAPE character precedes any
character to be escaped.

For example, to match a string ending with '%', use:

x LIKE '%/%' ESCAPE '/'

A more contrived example that escapes the escape character:

y LIKE '/%//%' ESCAPE '/'

... matches any string beginning with '%/'.

The optional NOT reverses the result so that:

z NOT LIKE 'abc%'

The LIKE operator implements a pattern match comparison, that is, it matches a string

'%' and underscore -- '_'. Underscore
character. Percent matches zero or more characters.

25

value-2 as a pattern to match
clause specifies an escape character for the pattern,

allowing the pattern to use '%' and '_' (and the escape character) for matching. The ESCAPE
value must be a single character string. In the pattern, the ESCAPE character precedes any

is equivalent to:

NOT z LIKE 'abc%'

IS NULL Operator

A database null in a table column has a special meaning -- the value of the column is not
currently known (missing), however its value may be known at a later time. A database null
may represent any value in the future, but the value is not available at this time. Since two
null columns may eventually be assigned different values, one null can't be compared to
another in the conventional way. The following syntax is illegal in SQL:

WHERE qty = NULL

A special comparison operator -- IS NULL, tests a column for null. It has the following
general format:

value-1 IS [NOT] NULL

This comparison returns true if value-1 contains a null and false otherwise. The optional
NOT reverses the result:

value-1 IS NOT NULL

is equivalent to:

NOT value-1 IS NULL

For example,

6
SELECT * FROM sp WHERE qty IS NULL

Logical Operators
The logical operators are AND, OR, NOT. They take logical expressions as operands and produce a
logical result (True, False, Unknown). In logical expressions, parentheses are used for grouping.

AND Operator

The AND operator combines two logical operands. The operands are comparisons or logical
expressions. It has the following general format:

predicate-1 AND predicate-2

AND returns:

o True -- if both operands evaluate totrue
o False -- if either operand evaluates tofalse
o Unknown -- otherwise (one operand is true and the other is unknown or both are
unknown)

The truth table for AND:

S1 P1NULL

snopnoqty

AND T F U

T T F U

F F F F

U U F U

For example,

SELECT *
FROM sp
WHERE sno='S3' AND qty < 500

OR Operator

The OR operator combines two logical operands. The operands are comparisons or logical
expressions. It has the following general format:

predicate-1 OR predicate

OR returns:

o True -- if either operand
to true oFalse -- if both operands
evaluate tofalse
o Unknown -- otherwise (one operand is false and the other is unknown or both are
unknown)

The truth table for OR:

OR T F U

T T T T
F T F U

U T U U

For example,

SELECT *
FROM s
WHERE sno='S3' OR city = 'London'

snoname city
S2 JohnLondon

S3 Mario Rome

AND has a higher precedence than OR, so the following expression:

a OR b AND c

is equivalent to:

a OR (b AND c)

S3 P2200

snopnoqty

WHERE sno='S3' AND qty < 500

The OR operator combines two logical operands. The operands are comparisons or logical
expressions. It has the following general format:

1 OR predicate-2

if either operand evaluates
if both operands

otherwise (one operand is false and the other is unknown or both are

The truth table for OR:

WHERE sno='S3' OR city = 'London'

AND has a higher precedence than OR, so the following expression:

The OR operator combines two logical operands. The operands are comparisons or logical

otherwise (one operand is false and the other is unknown or both are

27

NOT Operator

The NOT operator inverts the result of a comparison expression or a logical expression.
following generalformat:

NOTpredicate-1

The truth table for NOT:

NOT
T F
F T

U U

Example query:

SELECT *
FROM sp
WHERE NOT sno = 'S3'

snopnoqty
S1 P1 NULL

S2 P1 200

The NOT operator inverts the result of a comparison expression or a logical expression.

WHERE NOT sno = 'S3'

The NOT operator inverts the result of a comparison expression or a logical expression. It has the

ORDER BY Clause
The ORDER BY clause is optional. If used, it must be the last clause in the SELECT statement. The
ORDER BY clause requests sorting for the results of a query.
When the ORDER BY clause is missing, the result rows from a query have no defined order (they are
unordered). The ORDER BY clause defines the ordering of rows based on columns from the SELECT
clause. The ORDER BY clause has the following general format:

ORDER BY column-1 [ASC|DESC] [column
column-1, column-2, ... are column names specified (or implied) in the select list. If a select column is
renamed (given a new name in the select entry), the new name is used in the ORDER BY list. ASC
DESC request ascending or descending sort for a column. ASC is the default.
ORDER BY sorts rows using the ordering columns in left
sorted first on the first column name in the list. If there are any duplicat
duplicates are sorted on the second column (within the first column sort) in the Order By list, and so on.
There is no defined inner ordering for rows that have duplicate values for all Order By columns.
Database nulls require special processing in ORDER BY. A
values; this is reversed for DESC.
In sorting, nulls are considered duplicates of each other for ORDER BY. Sorting on
makes no sense in utilizing the resul
ORDER BY.
For convenience when using expressions in the select list, select items can be specified by number (starting
with 1). Names and numbers can be intermixed.
Example queries:

SELECT * FROM sp ORDER BY 3 DESC

snopnoqty

S1 P1 NULL

S3 P1 1000

S3 P2 200

S2 P1 200
SELECT name, city FROM s ORDER BY name

name city
John London

Mario Rome

Pierre Paris
SELECT * FROM sp ORDER BY qty DESC, sno

snopnoqty
S1 P1 NULL
S3 P1 1000
S2 P1 200

S3 P2 200
Expressions

In the previous subsection on basic Select statements, column values are used in the select list and where
predicate. SQL allows a scalar value expression

Literal -- quoted string, numeric value, datetime value
Function Call -- reference to builtin SQL function
System Value -- current date, current user, ...
Special Construct -- CAST, COALESCE, CASE
Numeric or String Operator --

The ORDER BY clause is optional. If used, it must be the last clause in the SELECT statement. The
ORDER BY clause requests sorting for the results of a query.
When the ORDER BY clause is missing, the result rows from a query have no defined order (they are

). The ORDER BY clause defines the ordering of rows based on columns from the SELECT
clause. The ORDER BY clause has the following general format:

1 [ASC|DESC] [column-2 [ASC|DESC]] ...
, ... are column names specified (or implied) in the select list. If a select column is

renamed (given a new name in the select entry), the new name is used in the ORDER BY list. ASC
DESC request ascending or descending sort for a column. ASC is the default.
ORDER BY sorts rows using the ordering columns in left-to-right, major-to-minor order. The rows are
sorted first on the first column name in the list. If there are any duplicate values for the first column, the
duplicates are sorted on the second column (within the first column sort) in the Order By list, and so on.
There is no defined inner ordering for rows that have duplicate values for all Order By columns.

quire special processing in ORDER BY. A null column sorts higher than all regular

are considered duplicates of each other for ORDER BY. Sorting on
makes no sense in utilizing the results of a query. This is also why SQL only allows select list columns in

For convenience when using expressions in the select list, select items can be specified by number (starting
with 1). Names and numbers can be intermixed.

SELECT * FROM sp ORDER BY 3 DESC

SELECT name, city FROM s ORDER BY name

SELECT * FROM sp ORDER BY qty DESC, sno

In the previous subsection on basic Select statements, column values are used in the select list and where
scalar value expression to be used instead. A SQL value expression can be a:

quoted string, numeric value, datetime value
reference to builtin SQL function
current date, current user, ...

CAST, COALESCE, CASE
-- combiningsub-expressions

The ORDER BY clause is optional. If used, it must be the last clause in the SELECT statement. The

When the ORDER BY clause is missing, the result rows from a query have no defined order (they are
). The ORDER BY clause defines the ordering of rows based on columns from the SELECT

, ... are column names specified (or implied) in the select list. If a select column is
renamed (given a new name in the select entry), the new name is used in the ORDER BY list. ASC and

minor order. The rows are
e values for the first column, the

duplicates are sorted on the second column (within the first column sort) in the Order By list, and so on.
There is no defined inner ordering for rows that have duplicate values for all Order By columns.

column sorts higher than all regular

are considered duplicates of each other for ORDER BY. Sorting on hidden information
ts of a query. This is also why SQL only allows select list columns in

For convenience when using expressions in the select list, select items can be specified by number (starting

In the previous subsection on basic Select statements, column values are used in the select list and where
to be used instead. A SQL value expression can be a:

29
Literals

A literal is a typed value that is self-defining. SQL supports 3 types of literals:

String -- ASCII text framed by single quotes ('). Within a literal, a single quote is represented by 2
single quotes ('').
Numeric -- numeric digits (at least 1) with an optional decimal point and exponent. The format is

[ddd][[.]ddd][E[+|-]ddd]

Numeric literals with no exponent or decimal point are typed as Integer. Those with a decimal point
but no exponent are typed as Decimal. Those with an exponent are typed as Float.

Datetime -- datetime literals begin with a keyword identifying the type, followed by a string literal:
o Date -- DATE 'yyyy-mm-dd'
o Time -- TIME'hh:mm:ss[.fff]'
o Timestamp -- TIMESTAMP 'yyyy-mm-ddhh:mm:ss[.fff]'
o Interval -- INTERVAL[+|-]string interval-qualifier

The format of the string in the Interval literal depends on the interval qualifier. For year-month
intervals, the format is: 'dd[-dd]'. For day-time intervals, the format is '[dd]dd[:dd[:dd]][.fff]'.

SQL Functions
SQL has the following builtin functions:

SUBSTRING(exp-1 FROM exp-2 [FOR exp-3])

Extracts a substring from a string - exp-1, beginning at the integer value - exp-2, for the length of
the integer value - exp-3. exp-2 is 1 relative. If FOR exp-3 is omitted, the length of the remaining
string is used. Returns thesubstring.

UPPER(exp-1)

Converts any lowercase characters in a string - exp-1 to uppercase. Returns the converted string.

LOWER(exp-1)

Converts any uppercase characters in a string - exp-1 to lowercase. Returns the converted string.

TRIM([LEADING|TRAILING|BOTH] [FROM] exp-1)
TRIM([LEADING|TRAILING|BOTH] exp-2 FROM exp-1)

Trims leading, trailing or both characters from a string - exp-1. The trim character is a space, or if
exp-2 is specified, it supplies the trim character. If LEADING, TRAILING, BOTH are missing, the
default is BOTH. Returns the trimmed string.

POSITION(exp-1 IN exp-2)

Searches a string - exp-2, for a match on a substring - exp-2. Returns an integer, the 1 relative
position of the match or 0 for no match.

CHAR_LENGTH(exp-1)
CHARACTER_LENGTH(exp-1)

30
Returns the integer number of characters in the string - exp-1.

OCTET_LENGTH(exp-1)

Returns the integer number of octets (8-bit bytes) needed to represent the string - exp-1.

EXTRACT(sub-field FROM exp-1)

Returns the numeric sub-field extracted from a datetime value - exp-1. sub-field is YEAR,
QUARTER, MONTH, DAY, HOUR, MINUTE, SECOND, TIMEZONE_HOUR or
TIMEZONE_MINUTE. TIMEZONE_HOUR and TIMEZONE_MINUTE extract sub-fields from
the Timezone portion of exp-1. QUARTER is (MONTH-1)/4+1.

System Values
SQL System Values are reserved names used to access builtin values:

USER -- returns a string with the current SQL authorization
identifier. CURRENT_USER -- same as USER.
SESSION_USER -- returns a string with the current SQL session authorization identifier.
SYSTEM_USER -- returns a string with the current operating system user.
CURRENT_DATE -- returns a Date value for the current system date.
CURRENT_TIME -- returns a Time value for the current system time.
CURRENT_TIMESTAMP -- returns a Timestamp value for the current system timestamp.

SQL Special Constructs
SQL supports a set of special expression constructs:

CAST(exp-1 AS data-type)

Converts the value - exp-1, into the specified date-type. Returns the converted value.

COALESCE(exp-1, exp-2 [, exp-3] ...)

Returns exp-1 if it is not null, otherwise returns exp-2 if it is not null, otherwise returns exp-3, and
so on. Returns null if all values are null.

CASE exp-1 { WHEN exp-2 THEN exp-3 } ... [ELSE exp-4] END CASE { WHEN predicate-1
THEN exp-3 } ... [ELSE exp-4] END

The first form of the CASE construct compares exp-1 to exp-2 in each WHEN clause. If a match is
found, CASE returns exp-3 from the corresponding THEN clause. If no matches are found, it
returns exp-4 from the ELSE clause or null if the ELSE clause is omitted.

The second form of the CASE construct evaluates predicate-1 in each WHEN clause. If the
predicate is true, CASE returns exp-3 from the corresponding THEN clause. If no predicates
evaluate to true, it returns exp-4 from the ELSE clause or null if the ELSE clause is omitted.

Expression Operators
Expression operators combine 2 subexpressions to calculate a value. There are 2 basic types -- numeric and
string.

String Operators

31
There is just one string operator - ||, for string concatenation. Both operands of || must be strings.
The operator concatenates the second string to the end of the first. For example,

'ab' || 'cd' ==> 'abcd'

Numeric operators

The numeric operators are common to most languages:

o + --addition
o - --subtraction
o * --multiplication
o / --division

All numeric operators can be used on the standard numeric data types:

o Integer -- TINYINT, SMALLINT, INT,BIGINT
o Exact -- NUMERIC, DECIMAL
o Approximate -- FLOAT, DOUBLE,REAL

Automatic conversion is provided for numeric operators. If an integer type is combined with an
exact type, the integer is converted to exact before the operation. If an exact (or integer) type is
combined with an approximate type, it is converted to approximate before the operation.

The + and - operators can also be used as unary operators.

The numeric operators can be applied to datetime values, with some restrictions. The basic rules for
datetime expressions are:

o A date, time, timestamp value can be added to an interval; result is a date, time, timestamp
value.

o An interval value can be subtracted from a date, time, timestamp value; result is adate,
time, timestampvalue.

o An interval value can be added to or subtracted from another interval; result is an interval
value.

o An interval can be multiplied by or divided by a standard numeric value; result is an interval
value.

A special form can be used to subtract a date, time, timestamp value from another date, time,
timestamp value to yield an interval value:

(datetime-1 - datetime-2) interval-qualifier

The interval-qualifier specifies the specific interval type for the result.

A second special form allows a ? parameter to be typed as an interval:

? interval-qualifier
In expressions, parentheses are used for grouping.

Joining Tables
The FROM clause allows more than 1 table in its list, however simply listing more than one table will very
rarely produce the expected results. The rows from one table must be correlated with the rows of the
others. This correlation is known asjoining.

32
An example can best illustrate the rationale behind joins. The following query:

SELECT * FROM sp, p
Produces:

sno pno qty pno descr color

S1 P1 NULL P1 Widget Blue
S1 P1 NULL P2 Widget Red
S1 P1 NULL P3 Dongle Green
S2 P1 200 P1 Widget Blue
S2 P1 200 P2 Widget Red
S2 P1 200 P3 Dongle Green

S3 P1 1000 P1 Widget Blue
S3 P1 1000 P2 Widget Red
S3 P1 1000 P3 Dongle Green
S3 P2 200 P1 Widget Blue
S3 P2 200 P2 Widget Red
S3 P2 200 P3 Dongle Green

Each row in spis arbitrarily combined with each row in p, giving 12 result rows (4 rows in spX 3 rows in
p.) This is known as a cartesian product.
A more usable query would correlate the rows from spwith rows from p, for instance matching on the
common column -- pno:

SELECT *
FROM sp, p
WHERE sp.pno = p.pno

This produces:

sno pno qty pno descr color
S1 P1 NULL P1 Widget Blue
S2 P1 200 P1 Widget Blue
S3 P1 1000 P1 Widget Blue
S3 P2 200 P2 Widget Red

Rows for each part in p are combined with rows in spfor the same part by matching on part number (pno).
In this query, the WHERE Clause provides the join predicate, matching pnofrom p with pnofrom sp.
The join in this example is known as an inner equi-join. equimeaning that the join predicate uses = (equals)
to match the join columns. Other types of joins use different comparison operators. For example, a query
might use a greater-thanjoin.
The term inner means only rows that match are included. Rows in the first table that have no matching
rows in the second table are excluded and vice versa (in the above join, the row in p with pnoP3 is not
included in the result.) An outer join includes unmatched rows in theresult.
More than 2 tables can participate in a join. This is basically just an extension of a 2 table join. 3 tables --
a, b, c, might be joined in various ways:

a joins b which joins c
a joins b and the join of a and b joins c
a joins b and a joins c

Plus several other variations. With inner joins, this structure is not explicit. It is implicit in the nature of the
join predicates. With outer joins, it is explicit;
This query performs a 3 table

33

P1

pno

SELECT name, qty, descr, color
FROM s, sp, p
WHERE s.sno = sp.sno
AND sp.pno = p.pno

It joins s to spand spto p,producing:

name qty descr color
Pierre NULL Widget Blue
John 200 Widget Blue
Mario 1000 Widget Blue
Mario 200 Widget Red

Note that the order of tables listed in the FROM clause should have no significance, nor does the order of
join predicates in the WHEREclause.

Outer Joins
An inner join excludes rows from either table that don't have a matching row in the other table. An outer
join provides the ability to include unmatched rows in the query results. The outer join combines the
unmatched row in one of the tables with an artificial row for the other table. This artificial row has all
columns set to null.
The outer join is specified in the FROM clause and has the following generalformat:

table-1 { LEFT | RIGHT | FULL } OUTER JOIN table-2 ONpredicate-1
predicate-1 is a join predicate for the outer join. It can only reference columns from the joined tables. The
LEFT, RIGHT or FULL specifiers give the type of join:

LEFT -- only unmatched rows from the left side table (table-1) are retained
RIGHT -- only unmatched rows from the right side table (table-2) are retained
FULL -- unmatched rows from both tables (table-1 and table-2) are retained

Outer join example:
SELECT pno, descr, color, sno, qty
FROM p LEFT OUTER JOIN sp ON p.pno = sp.pno

pno descr color sno qty
P1 Widget Blue S1 NULL
P1 Widget Blue S2 200
P1 Widget Blue S3 1000

P2 Widget Red S3 200
P3 Dongle Green NULL NULL

Self Joins
A query can join a table to itself. Self joins have a number of real world uses. For example, a self join can
determine which parts have more than one supplier:

SELECT DISTINCT a.pno
FROM sp a, sp b
WHERE a.pno = b.pno
AND a.sno<>b.sno

As illustrated in the above example, self joins use correlation names to distinguish columns in the select
list and where predicate. In this case, the references to the same table are renamed - a and b.
Self joins are often used in subqueries.

P1

pno

Subqueries
Subqueries are an identifying feature of SQL. It is called
nest inside another query.
There are 3 basic types of subqueries in SQL:

Predicate Subqueries -- extended logical
Scalar Subqueries -- standalone queries that return a single value; they can be used anywhere a
scalar value is used.
Table Subqueries -- queries nested in the FROM clause.

All subqueries must be enclosed in parentheses.
Predicate Subqueries

Predicate subqueries are used in the WHERE (and HAVING) clause. Each is a special logical construct.
Except for EXISTS, predicate subqueries must retrieve one column (in their select list.)

IN Subquery

The IN Subquery tests whether a scalar value matches the single query column value in any
subquery result row. It has the following general format:

value-1 [NOT] IN (query

Using NOT is equivalent to:

NOT value-1 IN (query

For example, to list parts that have supp

SELECT *
FROM p
WHERE pno IN (SELECT pno FROM sp)

pnodescr color

P1 Widget Blue

P2 Widget Red

The Self Join example in the previous subsection can be expressed with an IN Subquery:

SELECT DISTINCT pno
FROM sp a
WHERE pno IN (SELECT pno FROM sp b WHERE a.sno<>b.sno)

Note that the subquery where clause references a column in the outer query (
as an outer reference. Subqueries with outer references are sometimes known as
subqueries.

Quantified Subqueries

A quantified subquery allows several types of tests and can use the full set of comparison operators.
It has the following general format:

Subqueries are an identifying feature of SQL. It is called Structured Query Language

There are 3 basic types of subqueries in SQL:

extended logical constructs in the WHERE (and HAVING) clause.
standalone queries that return a single value; they can be used anywhere a

queries nested in the FROM clause.

parentheses.

Predicate subqueries are used in the WHERE (and HAVING) clause. Each is a special logical construct.
Except for EXISTS, predicate subqueries must retrieve one column (in their select list.)

ests whether a scalar value matches the single query column value in any
subquery result row. It has the following general format:

1 [NOT] IN (query-1)

1 IN (query-1)

For example, to list parts that have suppliers:

WHERE pno IN (SELECT pno FROM sp)

The Self Join example in the previous subsection can be expressed with an IN Subquery:

SELECT DISTINCT pno

WHERE pno IN (SELECT pno FROM sp b WHERE a.sno<>b.sno)

Note that the subquery where clause references a column in the outer query (
. Subqueries with outer references are sometimes known as

A quantified subquery allows several types of tests and can use the full set of comparison operators.
It has the following general format:

34

Structured Query Language because a query can

constructs in the WHERE (and HAVING) clause.
standalone queries that return a single value; they can be used anywhere a

Predicate subqueries are used in the WHERE (and HAVING) clause. Each is a special logical construct.
Except for EXISTS, predicate subqueries must retrieve one column (in their select list.)

ests whether a scalar value matches the single query column value in any

The Self Join example in the previous subsection can be expressed with an IN Subquery:

WHERE pno IN (SELECT pno FROM sp b WHERE a.sno<>b.sno)

Note that the subquery where clause references a column in the outer query (a.sno). This is known
. Subqueries with outer references are sometimes known as correlated

A quantified subquery allows several types of tests and can use the full set of comparison operators.

value-1 {=|>|<|>=|<=|<>} {ANY|ALL|SOME} (query

The comparison operator specifies how to compare
each subquery result row. The ANY, ALL, SOME specifiers give the type of match expected. ANY
and SOME must match at least one row in the subquery. ALL must match

For example, to list all parts that have suppliers:

SELECT *
FROM p
WHERE pno =ANY (SELECT pno FROM sp)

pnodescr color

P1 Widget Blue

P2 Widget Red

A self join is used to list the supplier with the highest quantity of each part (ignoring
quantities):

SELECT *
FROM sp a
WHERE qty >ALL (SELECT qty FROM sp b

WHERE a.pno = b.pno
AND a.sno<>b.sno AND
qty IS NOT

snopnoqty

S3 P1 1000

S3 P2 200

EXISTS Subqueries

The EXISTS Subquery tests whether a subquery retrieves at least one row, that is, whether a
qualifying row exists. It has the following general format

EXISTS(query-1)

Any valid EXISTS subquery must contain an

Note: the select list in the EXISTS subquery is not actually used in evaluating the EXISTS, so it
can contain any valid select list (though

To list parts that have suppliers:

SELECT *
FROM p
WHERE EXISTS(SELECT * FROM sp WHERE p.pno = sp.pno)

pnodescr color
P1 Widget Blue
P2 Widget Red

1 {=|>|<|>=|<=|<>} {ANY|ALL|SOME} (query-1)

The comparison operator specifies how to compare value-1 to the single query column value from
each subquery result row. The ANY, ALL, SOME specifiers give the type of match expected. ANY
and SOME must match at least one row in the subquery. ALL must match

For example, to list all parts that have suppliers:

WHERE pno =ANY (SELECT pno FROM sp)

is used to list the supplier with the highest quantity of each part (ignoring

WHERE qty >ALL (SELECT qty FROM sp b
WHERE a.pno = b.pno
AND a.sno<>b.sno AND
qty IS NOTNULL)

The EXISTS Subquery tests whether a subquery retrieves at least one row, that is, whether a
. It has the following general format

Any valid EXISTS subquery must contain an outer reference. It must be a

Note: the select list in the EXISTS subquery is not actually used in evaluating the EXISTS, so it
can contain any valid select list (though * is normallyused).

To list parts that have suppliers:

E EXISTS(SELECT * FROM sp WHERE p.pno = sp.pno)

35

to the single query column value from
each subquery result row. The ANY, ALL, SOME specifiers give the type of match expected. ANY
and SOME must match at least one row in the subquery. ALL must match all rows in the subquery.

is used to list the supplier with the highest quantity of each part (ignoring null

The EXISTS Subquery tests whether a subquery retrieves at least one row, that is, whether a

. It must be a correlated subquery.

Note: the select list in the EXISTS subquery is not actually used in evaluating the EXISTS, so it

E EXISTS(SELECT * FROM sp WHERE p.pno = sp.pno)

Scalar Subqueries
The Scalar Subquery can be used anywhere a value can be used. The subquery must reference just one
column in the select list. It must also retrieve no more than one row.
When the subquery returns a single row, the value of the single select list column becomes the value of the
Scalar Subquery. When the subquery returns no rows, a database
Should the subquery retreive more than one row, it is a
A Scalar Subquery can appear as a scalar value in the select list and where predicate of an another query.
The following query on the sptable uses a
associated with the supplier number (

SELECT pno, qty, (SELECT city FROM s WHERE s.sno =
sp.sno) FROM sp

pnoqty city
P1 NULL Paris

P1 200 London

P1 1000 Rome

P2 200 Rome

The next query on the sptable uses a Scalar Subquery in the where clause to match parts on the color
associated with the part number (pno

SELECT *
FROM sp
WHERE 'Blue' = (SELECT color FROM p WHERE p.pno = sp.pno)

snopnoqty

S1 P1 NULL

S2 P1 200
S3 P1 1000

Note that both example queries use outer references. This is normal in Scalar Subqueries. Often, Scalar
Subqueries are Aggregate Queries.

Table Subqueries
Table Subqueries are queries used in the FROM clause, replacing a table
the Table Subquery acts like a base table in the from list. Table Subqueries can have a correlation name in
the from list. They can also be in outer joins.
The following two queries produce the same result:

SELECT p.*, qty
FROM p, sp
WHERE p.pno = sp.pno
AND sno = 'S3'

pnodescr color qty
P1 Widget Blue 1000

P2 Widget Red 200
SELECT p.*, qty
FROM p, (SELECT pno, qty FROM sp WHERE sno = 'S3')
WHERE p.pno = sp.pno

pnodescr color qty

P1 Widget Blue 1000
P2 Widget Red 200

The Scalar Subquery can be used anywhere a value can be used. The subquery must reference just one
It must also retrieve no more than one row.

When the subquery returns a single row, the value of the single select list column becomes the value of the
Scalar Subquery. When the subquery returns no rows, a database null is used as the result of the subque
Should the subquery retreive more than one row, it is a run-time error and aborts query execution.
A Scalar Subquery can appear as a scalar value in the select list and where predicate of an another query.

table uses a Scalar Subquery in the select list to retrieve the supplier city
associated with the supplier number (snocolumn in sp):

SELECT pno, qty, (SELECT city FROM s WHERE s.sno =

table uses a Scalar Subquery in the where clause to match parts on the color
pnocolumn in sp):

WHERE 'Blue' = (SELECT color FROM p WHERE p.pno = sp.pno)

Note that both example queries use outer references. This is normal in Scalar Subqueries. Often, Scalar

Table Subqueries are queries used in the FROM clause, replacing a table name. Basically, the result set of
the Table Subquery acts like a base table in the from list. Table Subqueries can have a correlation name in
the from list. They can also be in outer joins.
The following two queries produce the same result:

FROM p, (SELECT pno, qty FROM sp WHERE sno = 'S3')

36

The Scalar Subquery can be used anywhere a value can be used. The subquery must reference just one

When the subquery returns a single row, the value of the single select list column becomes the value of the
is used as the result of the subquery.

error and aborts query execution.
A Scalar Subquery can appear as a scalar value in the select list and where predicate of an another query.

Scalar Subquery in the select list to retrieve the supplier city

table uses a Scalar Subquery in the where clause to match parts on the color

WHERE 'Blue' = (SELECT color FROM p WHERE p.pno = sp.pno)

Note that both example queries use outer references. This is normal in Scalar Subqueries. Often, Scalar

name. Basically, the result set of
the Table Subquery acts like a base table in the from list. Table Subqueries can have a correlation name in

Grouping Queries
A Grouping Query is a special type of query that groups and summarizes rows. It uses the GROUP BY
Clause.
A Grouping Query groups rows based on common values in a set of grouping columns. Rows with the
same values for the grouping columns are placed in distinct groups. Each
in the queryresult.
Even though a group is treated as a single row, the underlying rows can be subject to summary operations
known as Set Functions whose results can be included in the query. The optional HAVING Clause
supports filtering for group rows in the same manner as the WHERE clause filters FROMrows.
For example, grouping the sptable on the

snopnoqty

S1 P1 NULL

'P1' GroupS2 P1 200
S3 P1 1000

S3 P2 200 'P2' Group

The P1 group contains 3 sprows with
The P2 group contains a single

Nulls get special treatment by GROUP BY. GROUP BY considers a
Each row that has a null in one of its grouping columns forms a separate group.
Grouping the sptable on the qty column produces 3 groups:

snopnoqty
S1 P1 NULL NULL Group
S2 P1 200

200 Group
S3 P2 200
S3 P1 1000 1000 Group

The row where qty is null forms a separate group.
GROUP BY Clause

GROUP BY is an optional clause in a query. It follows the WHERE clause or the FROM clause if the
WHERE clause is missing. A query containing a GROUP BY clause is a
BY clause has the following generalformat:

GROUP BY column-1 [, column
column-1 and column-2 are the grouping columns. They must be names of columns from tables in the
FROM clause; they can't be expressions.
GROUP BY operates on the rows from the FROM clause as f
rows into groups based on common values in the grouping columns. Except
of values for the grouping columns are placed in the same group. If any grouping column for a row
contains a null, the row is given its owngroup.
For example,

SELECT pno
FROM sp
GROUP BY pno
pno
P1

P2

In Grouping Queries, the select list can only contain grouping columns, plus literals, outer references and
expression involving these elements. Non

A Grouping Query is a special type of query that groups and summarizes rows. It uses the GROUP BY

A Grouping Query groups rows based on common values in a set of grouping columns. Rows with the
values for the grouping columns are placed in distinct groups. Each group

is treated as a single row, the underlying rows can be subject to summary operations
results can be included in the query. The optional HAVING Clause

supports filtering for group rows in the same manner as the WHERE clause filters FROMrows.
table on the pnocolumn produces 2 groups:

rows with pno='P1'
group contains a single sprow with pno='P2'

get special treatment by GROUP BY. GROUP BY considers a null as distinct from every other
in one of its grouping columns forms a separate group.

column produces 3 groups:

NULL Group

1000 Group
forms a separate group.

GROUP BY is an optional clause in a query. It follows the WHERE clause or the FROM clause if the
WHERE clause is missing. A query containing a GROUP BY clause is a Grouping Query

the following generalformat:
1 [, column-2] ...

are the grouping columns. They must be names of columns from tables in the
FROM clause; they can't be expressions.
GROUP BY operates on the rows from the FROM clause as filtered by the WHERE clause.
rows into groups based on common values in the grouping columns. Except nulls
of values for the grouping columns are placed in the same group. If any grouping column for a row

, the row is given its owngroup.

In Grouping Queries, the select list can only contain grouping columns, plus literals, outer references and
expression involving these elements. Non-grouping columns from the underlying FROM tables cannot be

37

A Grouping Query is a special type of query that groups and summarizes rows. It uses the GROUP BY

A Grouping Query groups rows based on common values in a set of grouping columns. Rows with the
group is treated as a single row

is treated as a single row, the underlying rows can be subject to summary operations
results can be included in the query. The optional HAVING Clause

supports filtering for group rows in the same manner as the WHERE clause filters FROMrows.

as distinct from every other null.

GROUP BY is an optional clause in a query. It follows the WHERE clause or the FROM clause if the
Grouping Query. The GROUP

are the grouping columns. They must be names of columns from tables in the

iltered by the WHERE clause. It collects the
nulls, rows with the same set

of values for the grouping columns are placed in the same group. If any grouping column for a row

In Grouping Queries, the select list can only contain grouping columns, plus literals, outer references and
columns from the underlying FROM tables cannot be

referenced directly. However, non-grouping columns can be used in the select list as arguments to Set
Functions. Set Functions summarize columns from the underlying rows of a group.

Set Functions
Set Functions are special summarizing functions used with Grouping Queries and Aggregate Queries. They
summarize columns from the underlying rows of a group or aggregate.
Using the Group By example from above, grouping the

snopnoqty

S1 P1 NULL

'P1' GroupS2 P1 200
S3 P1 1000
S3 P2 200 'P2' Group

A Set Function can compute the total quantities for each group:

sno pno qty
S1 P1 NULL

'P1' GroupS2 P1 200
S3 P1 1000
S3 P2 200 'P2' Group

Null columns are ignored in computing the summary. The Set Function
sum of a numeric column in a set of grouped/aggregate rows. For example,

SELECT pno,
SUM(qty) FROM sp
GROUP BY pno
pno
P1 1200
P2 200

Set Functions have the following general format:
function ([DISTINCT|ALL] column

set-function is:

COUNT -- count of rows
SUM -- arithmetic sum of numeric column
AVG -- arithmetic average of numeric column; should be SUM()/COUNT().
MIN -- minimum value found in column
MAX -- maximum value found in column

The result of the COUNT function is always integer. The result of all other Set Functions is the same data
type as the argument.
The Set Functions skip columns with
null values, AVG averages non-null values, and so on. COUNT returns 0 when no non
are found; the other functions return
A Set Function argument can be a column or a scalar expression.
The DISTINCT and ALL specifiers are optional. ALL specifies that
is the default. DISTINCT specifies that
skipped. Note: DISTINCT has no effect on MIN and MAX results.
COUNT also has an alternate format:

COUNT(*)
... which counts the underlying rows regardless of column

grouping columns can be used in the select list as arguments to Set
Functions. Set Functions summarize columns from the underlying rows of a group.

Set Functions are special summarizing functions used with Grouping Queries and Aggregate Queries. They
summarize columns from the underlying rows of a group or aggregate.
Using the Group By example from above, grouping the sptable on the pnocolumn:

A Set Function can compute the total quantities for each group:

qty total

1200

200

columns are ignored in computing the summary. The Set Function -- SUM, computes the arithmetic
sum of a numeric column in a set of grouped/aggregate rows. For example,

Set Functions have the following general format: set-
function ([DISTINCT|ALL] column-1)

arithmetic sum of numeric column
arithmetic average of numeric column; should be SUM()/COUNT().
minimum value found in column
maximum value found in column

The result of the COUNT function is always integer. The result of all other Set Functions is the same data

The Set Functions skip columns with nulls, summarizing non-null values. COUNT counts rows with non
null values, and so on. COUNT returns 0 when no non

are found; the other functions return null when there are no values to summarize.
A Set Function argument can be a column or a scalar expression.
The DISTINCT and ALL specifiers are optional. ALL specifies that all non-null values are summarized; it
is the default. DISTINCT specifies that distinct column values are summarized; duplicate values are
skipped. Note: DISTINCT has no effect on MIN and MAX results.
COUNT also has an alternate format:

... which counts the underlying rows regardless of column

38
grouping columns can be used in the select list as arguments to Set

Functions. Set Functions summarize columns from the underlying rows of a group.

Set Functions are special summarizing functions used with Grouping Queries and Aggregate Queries. They

umn:

SUM, computes the arithmetic

arithmetic average of numeric column; should be SUM()/COUNT().

The result of the COUNT function is always integer. The result of all other Set Functions is the same data

values. COUNT counts rows with non-
null values, and so on. COUNT returns 0 when no non-null column values

hen there are no values to summarize.

null values are summarized; it
olumn values are summarized; duplicate values are

Set Function examples:
SELECT pno, MIN(sno), MAX(qty), AVG(qty), COUNT(DISTINCT
sno) FROM sp
GROUP BY pno

pno

P1 S1 1000 600 3 P2

S3 200 200 1

SELECT sno, COUNT(*) parts
FROM sp
GROUP BY sno

sno parts

S1 1

S2 1

S3 2

HAVING Clause
The HAVING Clause is associated with Grouping Queries and Aggregate Queries. It is optional in both
cases. In Grouping Queries, it follows the GROUP BY clause. In
the WHERE clause or the FROM clause if the WHERE clause ism
The HAVING Clause has the following general format:

HAVING predicate
Like the WHERE Clause, HAVING filters the query result rows. WHERE filters the rows from the FROM
clause. HAVING filters the grouped
Aggregate Queries).
predicate is a logical expression referencing grouped columns and set functions. It has the same
restrictions as the select list for Grouping Queries and AggregateQueries.
If the Having predicate evaluates to true for a grou
result, otherwise, the row is skipped (not included in the query result).
For example,

SELECT sno, COUNT(*) parts
FROM sp
GROUP BY sno
HAVING COUNT(*) >1

AggregateQueries
An Aggregate Query can use Set Functions and a HAVING Clause. It is similar to a Grouping Query
except there are no grouping columns. The underlying rows from the FROM and WHE
grouped into a single aggregate row. An Aggregate Query always returns a single row, except when
Having clause isused.
An Aggregate Query is a query containing Set Functions in the select list but no GROUP BY clause. The
Set Functions operate on the columns of the underlying rows of the single aggregate row. Except for outer
references, any columns used in the select list must be arguments to Set Functions.
An aggregate query may also have a Having clause. The Having clause filters the si
the Having predicate evaluates to true, the query result contains the aggregate row. Otherwise, the query
result contains no rows.
For example,

SELECT COUNT(DISTINCT pno) number_parts, SUM(qty)
total_parts FROMsp

number_partstotal_parts

S3 2

sno parts

SELECT pno, MIN(sno), MAX(qty), AVG(qty), COUNT(DISTINCT

SELECT sno, COUNT(*) parts

The HAVING Clause is associated with Grouping Queries and Aggregate Queries. It is optional in both
, it follows the GROUP BY clause. In Aggregate Queries

the WHERE clause or the FROM clause if the WHERE clause ismissing.
The HAVING Clause has the following general format:

Like the WHERE Clause, HAVING filters the query result rows. WHERE filters the rows from the FROM
grouped rows (from the GROUP BY clause) or the aggrega

is a logical expression referencing grouped columns and set functions. It has the same
restrictions as the select list for Grouping Queries and AggregateQueries.
If the Having predicate evaluates to true for a grouped or aggregate row, the row is included in the query
result, otherwise, the row is skipped (not included in the query result).

SELECT sno, COUNT(*) parts

An Aggregate Query can use Set Functions and a HAVING Clause. It is similar to a Grouping Query
grouping columns. The underlying rows from the FROM and WHE

into a single aggregate row. An Aggregate Query always returns a single row, except when

An Aggregate Query is a query containing Set Functions in the select list but no GROUP BY clause. The
erate on the columns of the underlying rows of the single aggregate row. Except for outer

references, any columns used in the select list must be arguments to Set Functions.
An aggregate query may also have a Having clause. The Having clause filters the si
the Having predicate evaluates to true, the query result contains the aggregate row. Otherwise, the query

SELECT COUNT(DISTINCT pno) number_parts, SUM(qty)

39

SELECT pno, MIN(sno), MAX(qty), AVG(qty), COUNT(DISTINCT

The HAVING Clause is associated with Grouping Queries and Aggregate Queries. It is optional in both
Aggregate Queries, HAVING follows

Like the WHERE Clause, HAVING filters the query result rows. WHERE filters the rows from the FROM
rows (from the GROUP BY clause) or the aggregate row (for

is a logical expression referencing grouped columns and set functions. It has the same

ped or aggregate row, the row is included in the query

An Aggregate Query can use Set Functions and a HAVING Clause. It is similar to a Grouping Query
grouping columns. The underlying rows from the FROM and WHERE clauses are

into a single aggregate row. An Aggregate Query always returns a single row, except when the

An Aggregate Query is a query containing Set Functions in the select list but no GROUP BY clause. The
erate on the columns of the underlying rows of the single aggregate row. Except for outer

references, any columns used in the select list must be arguments to Set Functions.
An aggregate query may also have a Having clause. The Having clause filters the single aggregate row. If
the Having predicate evaluates to true, the query result contains the aggregate row. Otherwise, the query

2 1400
Subqueries are often Aggregate Queries. For example, parts with suppliers:

SELECT
* FROM p
WHERE (SELECT COUNT(*) FROM sp WHERE sp.pno=p.pno) > 0

pnodescr color

P1 Widget Blue

P2 Widget Red
Parts with multiple suppliers:

SELECT
* FROM p
WHERE (SELECT COUNT(DISTINCT sno) FROM sp WHERE sp.pno=p.pno) > 1

Union Queries
The SQL UNION operator combines the results of two queries into a
queries can be SELECT/FROM queries with optional WHERE/GROUP BY/HAVING clauses. The
UNION operator has the following general format:

query-1 UNION [ALL] query
query-1 and query-2 are full query specifications. The UNION operator creates a new query result that
includes rows from each component query.
By default, UNION eliminates duplicate rows in its composite
that duplicates be retained in the UNION result.
The component queries of a Union Query can also be Union Queries themselves. Parentheses are used for
grouping queries.
The select lists from the component queri
(number of columns). For Entry Level SQL92, the column descriptor (data type and precision, scale) for
each corresponding column must match. The rules for Intermediate Level SQL92 are lessrestrictive.

Union-Compatible Queries
For Entry Level SQL92, each corresponding column of both queries must have the same column descriptor
in order for two queries to be union
SQL92. It supports automatic conversion within type categories. In general, the resulting data type will be
the broader type. The corresponding columns need only be in the same data type category:

Character (String) -- fixed/variable length
Bit String -- fixed/variable length
Exact Numeric (fixed point)
Approximate Numeric (floating point)
Datetime -- sub-category must be the same,

o Date
o Time
o Timestamp

Interval -- sub-category must be the same,
o Year-month
o Day-time

UNION Examples
SELECT * FROM sp
UNION
SELECT CAST(' ' AS VARCHAR(5)), pno, CAST(0 AS INT)

P1 Widget Blue

pnodescr color

Subqueries are often Aggregate Queries. For example, parts with suppliers:

WHERE (SELECT COUNT(*) FROM sp WHERE sp.pno=p.pno) > 0

WHERE (SELECT COUNT(DISTINCT sno) FROM sp WHERE sp.pno=p.pno) > 1

The SQL UNION operator combines the results of two queries into a composite
queries can be SELECT/FROM queries with optional WHERE/GROUP BY/HAVING clauses. The

ollowing general format:
1 UNION [ALL] query-2

are full query specifications. The UNION operator creates a new query result that
includes rows from each component query.
By default, UNION eliminates duplicate rows in its composite results. The optional ALL specifier requests
that duplicates be retained in the UNION result.
The component queries of a Union Query can also be Union Queries themselves. Parentheses are used for

The select lists from the component queries must be union-compatible. They must match in degree
(number of columns). For Entry Level SQL92, the column descriptor (data type and precision, scale) for
each corresponding column must match. The rules for Intermediate Level SQL92 are lessrestrictive.

Compatible Queries
For Entry Level SQL92, each corresponding column of both queries must have the same column descriptor

union-compatible. The rules are less restrictive for Intermediate Level
ic conversion within type categories. In general, the resulting data type will be

type. The corresponding columns need only be in the same data type category:

fixed/variable length
fixed/variable length

Exact Numeric (fixed point) -- integer/decimal
Approximate Numeric (floating point) -- float/double

category must be the same,

category must be the same,

SELECT CAST(' ' AS VARCHAR(5)), pno, CAST(0 AS INT)

40

WHERE (SELECT COUNT(*) FROM sp WHERE sp.pno=p.pno) > 0

WHERE (SELECT COUNT(DISTINCT sno) FROM sp WHERE sp.pno=p.pno) > 1

composite result. The component
queries can be SELECT/FROM queries with optional WHERE/GROUP BY/HAVING clauses. The

are full query specifications. The UNION operator creates a new query result that

results. The optional ALL specifier requests

The component queries of a Union Query can also be Union Queries themselves. Parentheses are used for

. They must match in degree
(number of columns). For Entry Level SQL92, the column descriptor (data type and precision, scale) for
each corresponding column must match. The rules for Intermediate Level SQL92 are lessrestrictive.

For Entry Level SQL92, each corresponding column of both queries must have the same column descriptor
. The rules are less restrictive for Intermediate Level

ic conversion within type categories. In general, the resulting data type will be
type. The corresponding columns need only be in the same data type category:

41
FROM p
WHERE pno NOT IN (SELECT pno FROM sp)

snopnoqty

S1 P1 NULL

S2 P1 200

S3 P1 1000

S3 P2 200
P3 0

SQL Modification Statements
The SQL Modification Statements make changes to database data in tables and columns. There are 3
modification statements:

INSERT Statement -- add rows to tables
UPDATE Statement -- modify columns in table rows
DELETE Statement -- remove rows from tables

INSERT Statement
The INSERT Statement adds one or more rows to a table. It has two formats:

INSERT INTO table-1 [(column-list)] VALUES (value-list)
and,

INSERT INTO table-1 [(column-list)] (query-specification)
The first form inserts a single row into table-1 and explicitly specifies the column values for the row. The
second form uses the result of query-specification to insert one or more rows into table-1. The result rows
from the query are the rows added to the insert table. Note: the query cannot reference table-1.
Both forms have an optional column-list specification. Only the columns listed will be assigned values.
Unlisted columns are set to null, so unlisted columns must allow nulls. The values from the VALUES
Clause (first form) or the columns from the query-specification rows (second form) are assigned to the
corresponding column in column-list in order.
If the optional column-list is missing, the default column list is substituted. The default column list
contains all columns in table-1 in the order they were declared in CREATE TABLE, or CREATEVIEW.

VALUES Clause
The VALUES Clause in the INSERT Statement provides a set of values to place in the columns of a new
row. It has the following general format:

VALUES (value-1 [, value-2] ...)
value-1 and value-2 are Literal Values or Scalar Expressions involving literals. They can also specify
NULL.
The values list in the VALUES clause must match the explicit or implicit column list for INSERT in
degree (number of items). They must also match the data type of corresponding column or be convertible
to that datatype.

INSERT Examples
INSERT INTO p (pno, color) VALUES ('P4', 'Brown')
Before After

=>

pno descr color
P1 Widget Blue

P2 Widget Red
P3 Dongle Green

pno descr color
P1 Widget Blue

P2 Widget Red
P3 Dongle Green

42

INSERT INTO sp
SELECT s.sno, p.pno, 500
FROM s, p
WHERE p.color='Green' AND s.city='London'
Before After

=

>

UPDATE Statement
The UPDATE statement modifies columns in selected table rows. It has the following general format:

UPDATE table-1 SET set-list [WHERE predicate]
The optional WHERE Clause has the same format as in the SELECT Statement. See WHERE Clause. The
WHERE clause chooses which table rows to update. If it is missing, all rows are in table-1 are updated.
The set-list contains assignments of new values for selected columns.
The SET Clause expressions and WHERE Clause predicate can contain subqueries, but the subqueries
cannot reference table-1. This prevents situations where results are dependent on the order of processing.

SET Clause
The SET Clause in the UPDATE Statement updates (assigns new value to) columns in the selected table
rows. It has the following general format:

SET column-1 = value-1 [, column-2 = value-2] ...
column-1 and column-2 are columns in the Update table. value-1 and value-2 are expressions that can
reference columns from the update table. They also can be the keyword -- NULL, to set the column to null.
Since the assignment expressions can reference columns from the current row, the expressions are
evaluated first. After the values of all Set expressions have been computed, they are then assigned to the
referenced columns. This avoids results dependent on the order of processing.

UPDATE Examples
UPDATE sp SET qty = qty + 20
Before After

=
>

UPDATE s
SET name = 'Tony', city = 'Milan'
WHERE sno = 'S3'
Before After

=>

P4 NULLBrown

sno pno qty
S1 P1 NULL
S2 P1 200
S3 P1 1000

S3 P2 200

sno pno qty
S1 P1 NULL
S2 P1 200
S3 P1 1000

S3 P2 200

S2 P3 500

sno pno qty
S1 P1 NULL

S2 P1 200

S3 P1 1000

S3 P2 200

sno pno qty
S1 P1 NULL
S2 P1 220

S3 P1 1020

S3 P2 220

sno name city
S1 Pierre Paris

S2 John London

S3 Mario Rome

sno name city
S1 Pierre Paris

S2 John London

S3 Tony Milan

43
DELETE Statement

The DELETE Statement removes selected rows from a table. It has the following general format:
DELETE FROM table-1 [WHERE predicate]

The optional WHERE Clause has the same format as in the SELECT Statement. See WHERE Clause. The
WHERE clause chooses which table rows to delete. If it is missing, all rows are in table-1 are removed.
The WHERE Clause predicate can contain subqueries, but the subqueries cannot reference table-1. This
prevents situations where results are dependent on the order of processing.

DELETE Examples
DELETE FROM sp WHERE pno = 'P1'
Before After

sno pno qty

S3 P2 200
=

>

DELETE FROM p WHERE pno NOT IN (SELECT pno FROM sp)
Before After

=>

SQL-Transaction Statements
SQL-Transaction Statements control transactions in database access. This subset of SQL is also called the
Data Control Language for SQL (SQL DCL).
There are 2 SQL-Transaction Statements:

COMMIT Statement -- commit (make persistent) all changes for the current transaction
ROLLBACK Statement -- roll back (rescind) all changes for the current transaction

Transaction Overview
A database transaction is a larger unit that frames multiple SQL statements. A transaction ensures that the
action of the framed statements is atomic with respect to recovery.
A SQL Modification Statement has limited effect. A given statement can only directly modify the contents
of a single table (Referential Integrity effects may cause indirect modification of other tables.) The upshot
is that operations which require modification of several tables must involve multiple modification
statements. A classic example is a bank operation that transfers funds from one type of account to another,
requiring updates to 2 tables. Transactions provide a way to group these multiple statements in one atomic
unit.
In SQL92, there is no BEGIN TRANSACTION statement. A transaction begins with the execution of a
SQL-Data statement when there is no current transaction. All subsequent SQL-Data statements until
COMMIT or ROLLBACK become part of the transaction. Execution of a COMMIT Statement or
ROLLBACK Statement completes the current transaction. A subsequent SQL-Data statement starts a new
transaction.
In terms of direct effect on the database, it is the SQL Modification Statements that are the main
consideration since they change data. The total set of changes to the database by the modification
statements in a transaction are treated as an atomic unit through the actions of the transaction. The set of
changes either:

sno pno qty

S1 P1 NULL
S2 P1 200

S3 P1 1000

S3 P2 200

pno descr color
P1 Widget Blue

P2 Widget Red

P3 Dongle Green

pno descr color
P1 Widget Blue

P2 Widget Red

44
Is made fully persistent in the database through the action of the COMMIT Statement, or
Has no persistent effect whatever on the database, through:

o the action of the ROLLBACKStatement,
o abnormal termination of the client requesting the transaction,or
o abnormal termination of the transaction by the DBMS. This may be an action by the system

(deadlock resolution) or by an administrative agent, or it may be an abnormal termination of
the DBMS itself. In the latter case, the DBMS must roll back any active transactions during
recovery.

The DBMS must ensure that the effect of a transaction is not partial. All changes in a transaction must be
made persistent, or no changes from the transaction must be made persistent.

Transaction Isolation
In most cases, transactions are executed under a client connection to the DBMS. Multiple client
connections can initiate transactions at the same time. This is known as concurrenttransactions.
In the relational model, each transaction is completely isolated from other active transactions. After
initiation, a transaction can only see changes to the database made by transactions committed prior to
starting the new transaction. Changes made by concurrent transactions are not seen by SQL DML query
and modification statements. This is known as full isolation or Serializabletransactions.
SQL92 defines Serializable for transactions. However, full serialized transactions can impact performance.
For this reason, SQL92 allows additional isolation modes that reduce the isolation between concurrent
transactions. SQL92 defines 3 other isolation modes, but support by existing DBMSs is often incomplete
and doesn't always match the SQL92 modes. Check the documentation of your DBMS for more details.

SQL-Schema Statements in Transactions
The 3rd type of SQL Statements - SQL-Schema Statements, may participate in the transaction mechanism.
SQL-Schema statements can either be:

included in a transaction along with SQL-Data statements,
required to be in separate transactions, or
ignored by the transaction mechanism (can't be rolled back).

SQL92 leaves the choice up to the individual DBMS. It is implementation defined behavior.
COMMIT Statement

The COMMIT Statement terminates the current transaction and makes all changes under the transaction
persistent. It commits the changes to the database. The COMMIT statement has the following general
format:

COMMIT [WORK]
WORK is an optional keyword that does not change the semantics of COMMIT.

ROLLBACK Statement
The ROLLBACK Statement terminates the current transaction and rescinds all changes made under the
transaction. It rolls back the changes to the database. The ROLLBACK statement has the following
generalformat:

ROLLBACK [WORK]
WORK is an optional keyword that does not change the semantics of ROLLBACK.

SQL-Schema Statements
SQL-Schema Statements provide maintenance of catalog objects for a schema -- tables, views and
privileges. This subset of SQL is also called the Data Definition Language for SQL (SQL DDL).
There are 6 SQL-Schema Statements:

CREATE TABLE Statement -- create a new base table in the current schema
CREATE VIEW Statement -- create a new view table in the current schema
DROP TABLE Statement -- remove a base table from the current schema

45
DROP VIEW Statement -- remove a view table from the current schema
GRANT Statement -- grant access privileges for objects in the current schema to other users
REVOKE Statement -- revoke previously granted access privileges for objects in thecurrent
schema from otherusers

Schema Overview
A relational database contains a catalog that describes the various elements in the system. The catalog
divides the database into sub-databases known as schemas. Within each schema are database objects --
tables, views and privileges.
The catalog itself is a set of tables with its own schema name - definition_schema. Tables in the catalog
cannot be modified directly. They are modified indirectly with SQL-Schema statements.

Tables
The database table is the root structure in the relational model and in SQL. A table (called a relation in
relational) consists of rows and columns. In relational, rows are called tuples and columns are called
attributes. Tables are often displayed in a flat format, with columns arrayed horizontally and rows
vertically:

C o l u m n s

R

o
w

s

Database tables are a logical structure with no implied physical characteristics. Primary among the various
logical tables is the base table. A base table is persistent and self contained, that is, all data is part of the
table itself with no information dynamically derived from other tables.
A table has a fixed set of columns. The columns in a base table are not accessed positionally but by name,
which must be unique among the columns of the table. Each column has a defined data type, and the value
for the column in each row must be from the defined data type or null. The columns of a table are accessed
and identified by name.
A table has 0 or more rows. A row in a base table has a value or null for each column in the table. The
rows in a table have no defined ordering and are not accessed positionally. A table row is accessed and
identified by the values in itscolumns.
In SQL92, base tables can have duplicate rows (rows where each column has the same value or null).
However, the relational model does not recognize tables with duplicate rows as valid base tables
(relations). The relational model requires that each base table have a unique identifier, known as the
Primary Key. The primary key for a table is a designated set of columns which have a unique value for
each table row. For a discussion of Primary Keys, see Entity Integrity under CREATE TABLEbelow.
A base table is defined using the CREATE TABLE Statement. This statement places the table description
in the catalog and initializes an internal entity for the actual representation of the base table.
Example base table - s:

snoname city
S1 Pierre Paris
S2 JohnLondon
S3 Mario Rome

The s table records suppliers. It has 3 defined columns:

sno -- supplier number, an unique identifier that is the primary key
name -- the name of the supplier

city -- the city where the supplier is located

46
At the current time, there are 3 rows.
Other types of tables in the system are derived tables. SQL-Data statements use internally derived tables in
computing results. A query is in fact a derived table. For instance, the query operator - Union, combines
two derived tables to produce a third one. Much of the power of SQL comes from the fact that its higher
level operations are performed on tables and produce a table as their result.
Derived tables are less constrained than base tables. Column names are not required and need not be
unique. Derived tables may have duplicate rows. Views are a type of derived table that are cataloged in the
database.

Views
A view is a derived table registered in the catalog. A view is defined using a SQL query. The view is
dynamically derived, that is, its contents are materialized for each use. Views are added to the catalog with
the CREATE VIEW Statement.
Once defined in the catalog, a view can substitute for a table in SQL-Data statements. A view name can be
used instead of a base table name in the FROM clause of a SELECT statement. Views can also be the
subject of a modification statement with some restrictions.
A SQL Modification Statement can operate on a view if it is an updatable view. An updatable view has the
following restrictions on its defining query:

The query FROM clause can reference a single table (or view)
The single table in the FROM clause must be:

o a basetable,
o a view that is also an updatable view,or
o a nested query that is updatable, that is, it follows the rules for an updatable viewquery.

The query must be a basic query, nota:
o GroupingQuery,
o Aggregate Query,or
o UnionQuery.

The select list cannot contain:
o the DISTINCTspecifier,
o an Expression,or
o duplicate columnreferences

Subqueries are acceptable in updatable views but cannot reference the underlying base table for the view's
FROM clause.

Privileges
SQL92 defines a SQL-agent as an implementation-dependent entity that causes the execution of SQL
statements. Prior to execution of SQL statements, the SQL-agent must establish an authorization identifier
for database access. An authorization identifier is commonly called a user name.
A DBMS user may access database objects (tables, columns, views) as allowed by the privileges assigned
to that specific authorization identifier. Access privileges may be granted by the system (automatic) or by
other users.
System granted privileges include:

All privileges on a table to the user that created the table. This includes the privilege to grant
privileges on the table to other users.
SELECT (readonly) privilege on the catalog (the tables in the schema - definition_schema). This is
granted to all users.

User granted privileges cover privileges to access and modify tables and their columns. Privileges can be
granted for specific SQL-Data Statements -- SELECT, INSERT, UPDATE, DELETE.

CREATE TABLE Statement
The CREATE TABLE Statement creates a new base table. It adds the table description to the catalog. A
base table is a logical entity with persistence. The logical description of a base table consists of:

47
Schema -- the logical database schema the table resides in
Table Name -- a name unique among tables and views in the Schema
Column List -- an ordered list of column declarations (name, data
type) Constraints -- a list of constraints on the contents of the table

The CREATE TABLE Statement has the following general format:

CREATE TABLE table-name ({column-descr|constraint} [,{column-descr|constraint}]...)
table-name is the new name for the table. column-descris a column declaration. constraint is a table
constraint.
The column declaration can include optional column constraints. The declaration has the following general
format:

column-name data-type [column-constraints]
column-name is the name of the column and must be unique among the columns of the table. data-type
declares the type of the column. Data types are described below. column-constraints is an optional list of
column constraints with no separators.

Constraints
Constraint specifications add additional restrictions on the contents of the table. They are automatically
enforced by the DBMS. The column constraints are:

NOT NULL -- specifies that the column can't be set to null. If this constraint is not specified, the
column is nullable, that is, it can be set to null. Normally, primary key columns are declared as
NOT NULL.
PRIMARY KEY -- specifies that this column is the only column in the primary key. There can be
only one primary key declaration in a CREATE TABLE. For primary keys with multiple columns,
use the PRIMARY KEY table constraint. See Entity Integrity below for a detailed description of
primary keys.
UNIQUE -- specifies that this column has a unique value or null for all rows of the table.
REFERENCES -- specifies that this column is the only column in a foreign key. For foreign keys
with multiple columns, use the FOREIGN KEY table constraint. See Referential Integrity below
for a detailed description of primary keys.
CHECK -- specifies a user defined constraint on the table. See the table constraint - CHECK,
below.

The table constraints are:

PRIMARY KEY -- specifies the set of columns that comprise the primary key. There can be only
one primary key declaration in a CREATE TABLE Statement. See Entity Integrity below for a
detailed description of primary keys.
UNIQUE -- specifies that a set of columns have unique values (or nulls) for all rows in the table.
The UNIQUE specifier is followed by a parenthesized list of column names, separated by commas.
FOREIGN KEY -- specifies the set of columns in a foreign key. See Referential Integrity below for
a detailed description of foreign keys.
CHECK -- specifies a user defined constraint, known as a check condition. The CHECK specifier is
followed by a predicate enclosed in parentheses. For Intermediate Level SQL92, the CHECK
predicate can only reference columns from the current table row, with no subqueries. Many
DBMSs support subqueries in the checkpredicate.

The check predicate must evaluate to true before a modification or addition of a row takes place.
The check is effectively made on the contents of the table after the modification. For INSERT
Statements, the predicate is evaluated as if the INSERT row were added to the table. For UPDATE
Statements, the predicate is evaluated as if the row were updated. For DELETE Statements, the
predicate is evaluated as if the row were deleted (Note: A check predicate is only useful for
DELETE if a subquery is used.)

48
Data Type

This subsection describes data type specifications. The data type categories are:

Character (String) -- fixed or variable length character strings. The character set is implementation
defined but often defaults to ASCII.
Numeric -- values representing numeric quantities. Numeric values are divided into these two broad
categories:

o Exact (also known as fixed-point) -- Exact numeric values have a fixed number of digits to
the left of the decimal point and a fixed number of digits to the right (the scale). The total
number of digits on both sides of the decimal are the precision. A special subset of exact
numeric types with a scale of 0 is calledinteger.

o Approximate (also known as floating-point) -- Approximate numeric values that have a
fixed precision (number of digits) but a floating decimalpoint.

All numeric types are signed.

Datetime -- Datetime values include calendar and clock values (Date, Time, Timestamp) and
intervals. The datetime types are:

o Date -- calendar date with year, month andday
o Time -- clock time with hour, minute, second and fraction of second, plus a timezone

component (adjustment in hours,minutes)
o Timestamp -- combination calendar date and clock time with year, month, day, hour,

minute, second and fraction of second, plus a timezone component (adjustment in hours,
minutes)

o Interval -- intervals represent time and date intervals. They are signed. An interval value can
contain a subset of the interval fields, for example - hour to minute, year, day to second.
Interval types are subdividedinto:


year-month intervals -- may contain years, months or combination years/monthsvalue.
day-time intervals -- days, hours, minutes, seconds, fractions ofsecond.

Data type declarations have the following general format:
Character (String)

CHAR [(length)]
CHARACTER [(length)]
VARCHAR (length)
CHARACTER VARYING (length)
length specifies the number of characters for fixed size strings (CHAR, CHARACTER);
spaces are supplied for shorter strings. If length is missing for fixed size strings, the default
length is 1. For variable size strings (VARCHAR, CHARACTER VARYING), length is the
maximum size of the string. Strings exceeding length are truncated on the right.

Numeric
SMALLINT
INT
INTEGER
The integer types have default binary precision -- 15 for SMALLINT and 31 for INT,
INTEGER.
NUMERIC (precision [, scale])
DECIMAL (precision [, scale])
Fixed point types have a decimal precision (total number of digits) and scale (which cannot
exceed the precision). The default scale is 0. NUMERIC scales must be represented exactly.
DECIMAL values can be stored internally with a larger scale (implementation defined).

49
FLOAT [(precision)]
REAL
DOUBLE
The floating point types have a binary precision (maximum significant binary digits).
Precision values are implementation dependent for REAL and DOUBLE, although the
standard states that the default precision for DOUBLE must be larger than for REAL.
FLOAT also uses an implementation defined default for precision (commonly this is the
same as for REAL), but the binary precision for FLOAT can be explicit.

Datetime
DATE

TIME [(scale)] [WITH TIME ZONE]
TIMESTAMP [(scale)] [WITH TIMEZONE]
TIME and TIMESTAMP allow an optional seconds fraction (scale). The default scale for
TIME is 0, for TIMESTAMP 6. The optional WITH TIME ZONE specifier indicates that
the timezone adjustment is stored with the value; if omitted, the current system timezone is
assumed.
INTERVAL interval-qualifier

Interval Qualifier
An interval qualifier defines the specific type of an interval value. The qualifier for an interval type
declares the sub-fields that comprise the interval, the precision of the highest (left-most) sub-field and the
scale of the SECOND sub-field (ifany).
Intervals are divided into sub-types -- year-month intervals and day-time intervals. Year-month intervals
can only contain the sub-fields - year and month. Day-time intervals can contain day, hour, minute, second.
The interval qualifier has the following formats:

YEAR [(precision)] [TO MONTH]

MONTH [(precision)]

{DAY|HOUR|MINUTE} [(precision)] [TO SECOND [(scale)]]

DAY [(precision)] [TO {HOUR|MINUTE}]

HOUR [(precision)] [TO MINUTE]

SECOND [(precision [, scale])]
The default precision is 2. The default scale is 6.

Entity Integrity
As mentioned earlier, the relational model requires that each base table have a Primary Key. SQL92, on the
other hand, allows a table to created without a primary key. The advice here is to create all tables with
primary keys.
A primary key is a constraint on the contents of a table. In relational terms, theprimary key maintains
Entity Integrity for the table. It constrains the table as follows,

For a given row, the set of values for the primary key columns must be unique from all other rows
in the table,
No primary key column can contain a null, and
A table can have only one primary key (set of primary key columns).

Note: SQL92 does not require the second restriction on nulls in the primary key. However, it is required
for a relational system.

50
Entity Integrity (Primary Keys) is enforced by the DBMS and ensures that every row has a proper unique
identifier. The contents of any column in the table with Entity Integrity can be uniquely accessed with 3
pieces of information:

table identifier
primary key value
column name

This capability is crucial to a relational system. Having a clear, consistent identifier for table rows (and
their columns) distinguishes relational systems from all others. It allows the establishment of relationships
between tables, also crucial to relational systems. This is discussed below under Referential Integrity.
The primary key constraint in the CREATE STATEMENT has two forms. When the primary key consists
of a single column, it can be declared as a column constraint, simply - PRIMARY KEY, attached to the
column descriptor. For example:

snoVARCHAR(5) NOT NULL PRIMARY KEY
As a table constraint, it has the following format:

PRIMARY KEY (column-1 [, column-2] ...)
column-1 and column-2 are the names of the columns of the primary key. For example,

PRIMARY KEY (sno, pno)
The order of columns in the primary key is not significant, except as the default order for the FOREIGN
KEY table constraint.

Referential Integrity
Foreign keys provide relationships between tables in the database. In relational, a foreign key in a table is a
set of columns that reference the primary key of another table. For each row in the referencing table, the
foreign key must match an existing primary key in the referenced table. The enforcement of this constraint
is known as Referential Integrity.
Referential Integrity requires that:

The columns of a foreign key must match in number and type the columns of the primary key in the
referenced table.
The values of the foreign key columns in each row of the referencing table must match the values
of the corresponding primary key columns for a row in the referenced table.

The one exception to the second restriction is when the foreign key columns for a row contain nulls. Since
primary keys should not contain nulls, a foreign key with nulls cannot match any row in the referenced
table. However, a row with a foreign key of all nulls (all foreign key columns contain null) is allowed in
the referencing table. It is a nullreference.

Like other constraints, the referential integrity constraint restricts the contents of the referencing table, but
it also may in effect restrict the contents of the referenced table. When a row in a table is referenced
(through its primary key) by a foreign key in a row in another table, operations that affect its primary key
columns have side-effects and may restrict the operation. Changing the primary key of or deleting a row
which has referencing foreign keys would violate the referential integrity constraints on the referencing
table if allowec to proceed. This is handled in two ways,

The referenced table is restricted from making the change (and violating referential integrity in the
referencing table), or
Rows in the referencing table are modified so the referential integrity constraint is maintained.

These actions are controlled by the referential integrity effects declarations, called referential triggers by
SQL92. The referential integrity effect actions defined for SQL are:

NO ACTION -- the change to the referenced (primary key) table is not performed. This is the
default.

51
CASCADE -- the change to the referenced table is propagated to the referencing (foreign key)
table.
SET NULL -- the foreign key columns in the referencing table are set to null.

Update and delete have separate action declarations. For CASCADE, update and delete also operate
differently:

For update (the primary key column values have been modified), the corresponding foreign key
columns for referencing rows are set to the new values.
For delete (the primary key row is deleted), the referencing rows are deleted.

A referential integrity constraint in the CREATE STATEMENT has two forms. When the foreign key
consists of a single column, it can be declared as a column constraint, like:

column-descr REFERENCES references-specification
As a table constraint, it has the following format:

FOREIGN KEY (column-list) REFERENCES references-specification
column-list is the referencing table columns that comprise the foreign key. Commas separate column
names in the list. Their order must match the explicit or implicit column list in the references-specification.
The references-specification has the followingformat:

table-2 [(referenced-columns)]
[ON UPDATE { CASCADE | SET NULL | NO ACTION }]
[ON DELETE { CASCADE | SET NULL | NO ACTION }]

The order of the ON UPDATE and ON DELETE clauses may be reversed. These clauses declare the effect
action when the referenced primary key is updated or deleted. The default for ON UPDATE and ON
DELETE is NO ACTION.
table-2 is the referenced table name (primary key table). The optional referenced-columns list the columns
of the referenced primary key. Commas separate column names in the list. The default is the primary key
list in declaration order.
Contrary to the relational model, SQL92 allows foreign keys to reference any set of columns declared with
the UNIQUE constraint in the referenced table (even when the table has a primary key). In this case, the
referenced-columns list is required.
Example table constraint for referential integrity (for the sptable):

FOREIGN KEY (sno)
REFERENCES s(sno)
ON DELETE NO ACTION
ON UPDATE CASCADE
CREATE TABLE Examples

Creating the exampletables:
CREATE TABLEs
(snoVARCHAR(5) NOT NULL PRIMARY KEY,
name VARCHAR(16),
city VARCHAR(16)

)

CREATE TABLE p
(pnoVARCHAR(5) NOT NULL PRIMARY KEY,
descr VARCHAR(16),
colorVARCHAR(8)

)

CREATE TABLEsp
(snoVARCHAR(5) NOT NULL REFERENCES s,
pno VARCHAR(5) NOT NULL REFERENCES p,

qty INT,
PRIMARY KEY (sno, pno)

)
Create for spwith a constraint that the qty column can't be negative:

CREATE TABLE sp
(snoVARCHAR(5) NOT NULL REFERENCES
pno VARCHAR(5) NOT NULL REFERENCES p,
qty INT CHECK (qty IS NULL OR qty >= 0),
PRIMARY KEY (sno, pno)

)
CREATE VIEW Statement

The CREATE VIEW statement creates a new database view. A view is effectively a SQL query stored in
the catalog. The CREATE VIEW has the following general format:

CREATE VIEW view-name [(column
[WITH [CASCADED|LOCAL] CHECK OPTION]

view-name is the name for the new view.
view, comma separated. query-1 is any SELECT statement without an ORDER BY clause. The optional
WITH CHECK OPTION clause is a constraint on
column-list must have the same number of columns as the select list in
all items in the select list of query
allowed for aview.
The optional WITH CHECK OPTION clause only applies to
UPDATE statements. If WITH CHECK OPTION is specifi
evaluate to true for the added row or the changed row.
The CASCADED and LOCAL specifiers apply when the underlying table for
CASCADED requests that WITH CHECK OPTION apply to
requests that the current WITH CHECK OPTION apply only to this view. LOCAL is the default.

CREATE VIEW Examples
Parts with suppliers:

CREATE VIEW supplied_parts AS
SELECT *
FROM p
WHERE pno IN (SELECT pno FROM

sp) WITH CHECK OPTION
Access example:

SELECT * FROM supplied_parts

pnodescr color
P1 Widget Red
P2 Widget Blue

Joined view:
CREATE VIEW part_locations (part, quantity, location) AS

SELECT pno, qty, city
FROM sp, s
WHERE sp.sno = s.sno

Access examples:
SELECT * FROM part_locations

part quantity location

P1 NULL Paris
P1 200 London

PRIMARY KEY (sno, pno)

with a constraint that the qty column can't be negative:

(snoVARCHAR(5) NOT NULL REFERENCES s,
pno VARCHAR(5) NOT NULL REFERENCES p,
qty INT CHECK (qty IS NULL OR qty >= 0),
PRIMARY KEY (sno, pno)

CREATE VIEW Statement
The CREATE VIEW statement creates a new database view. A view is effectively a SQL query stored in

VIEW has the following general format:

name [(column-list)] AS query-1
[WITH [CASCADED|LOCAL] CHECK OPTION]

is the name for the new view. column-list is an optional list of names for the columns of the
is any SELECT statement without an ORDER BY clause. The optional

WITH CHECK OPTION clause is a constraint on updatable views.
must have the same number of columns as the select list in query-1

query-1 must be named. In either case, duplicate column names are not

The optional WITH CHECK OPTION clause only applies to updatable views. It affects SQL INSERT and
UPDATE statements. If WITH CHECK OPTION is specified, the WHERE predicate for
evaluate to true for the added row or the changed row.
The CASCADED and LOCAL specifiers apply when the underlying table for
CASCADED requests that WITH CHECK OPTION apply to all underlying views (to any level.) LOCAL
requests that the current WITH CHECK OPTION apply only to this view. LOCAL is the default.

CREATE VIEW Examples

CREATE VIEW supplied_parts AS

WHERE pno IN (SELECT pno FROM
OPTION

SELECT * FROM supplied_parts

CREATE VIEW part_locations (part, quantity, location) AS
SELECT pno, qty, city

WHERE sp.sno = s.sno

SELECT * FROM part_locations

52

The CREATE VIEW statement creates a new database view. A view is effectively a SQL query stored in

is an optional list of names for the columns of the
is any SELECT statement without an ORDER BY clause. The optional

1. If column-list is omitted,
must be named. In either case, duplicate column names are not

views. It affects SQL INSERT and
ed, the WHERE predicate for query-1 must

The CASCADED and LOCAL specifiers apply when the underlying table for query-1 is another view.
views (to any level.) LOCAL

requests that the current WITH CHECK OPTION apply only to this view. LOCAL is the default.

P1 1000 Rome
P2 200 Rome

SELECT part, quantity
FROM part_locations
WHERE location = 'Rome'

part quantity

P1 1000
P2 200

DROP TABLE Statement
The DROP TABLE Statement removes a previously created table and its description from the catalog. It
has the following general format:

DROP TABLE table-name {CASCADE|RESTRICT}
table-name is the name of an existing base table in the current schema. The CASCADE
specifiers define the disposition of other objects dependent on the table. A base table may have two types
ofdependencies:

A view whose query specification references the
Another base table that references the
REFERENCES constraint.

RESTRICT specifies that the table not be dropped if any dependencies exist. If dependencies are found, an
error is returned and the table isn't dropped.
CASCADE specifies that any dependencies are

Views that reference the base table are dropped, and the sequence is repeated fortheir
dependencies.
Constraints in other tables that reference this table are dropped; the constraint is dropped butthe
tableretained.

DROP VIEW Statement
The DROP VIEW Statement removes a previously created view and its description from the catalog. It has
the following general format:

DROP VIEW view-name {CASCADE|RESTRICT}
view-name is the name of an existing view in the current
specifiers define the disposition of other objects dependent on the view. A view may have two types of
dependencies:

A view whose query specification references the
A base table that references the

RESTRICT specifies that the view not be dropped if any dependencies exist. If dependencies are found, an
error is returned and the view isn't dropped.
CASCADE specifies that any dependencies are removed before the drop

Views that reference the drop
dependencies.
Constraints in base tables that reference this view are dropped; the constraint is dropped butthe
tableretained.

WHERE location = 'Rome'

DROP TABLE Statement
DROP TABLE Statement removes a previously created table and its description from the catalog. It

name {CASCADE|RESTRICT}
is the name of an existing base table in the current schema. The CASCADE

specifiers define the disposition of other objects dependent on the table. A base table may have two types

A view whose query specification references the drop table.
Another base table that references the drop table in a constraint - a CHECK constraint or

RESTRICT specifies that the table not be dropped if any dependencies exist. If dependencies are found, an
error is returned and the table isn't dropped.
CASCADE specifies that any dependencies are removed before the drop is performed:

Views that reference the base table are dropped, and the sequence is repeated fortheir

Constraints in other tables that reference this table are dropped; the constraint is dropped butthe

DROP VIEW Statement
The DROP VIEW Statement removes a previously created view and its description from the catalog. It has

name {CASCADE|RESTRICT}
is the name of an existing view in the current schema. The CASCADE and RESTRICT

specifiers define the disposition of other objects dependent on the view. A view may have two types of

A view whose query specification references the drop view.
A base table that references the drop view in a constraint - a CHECK constraint.

RESTRICT specifies that the view not be dropped if any dependencies exist. If dependencies are found, an
error is returned and the view isn't dropped.
CASCADE specifies that any dependencies are removed before the drop is performed:

drop view are dropped, and the sequence is repeated for their

Constraints in base tables that reference this view are dropped; the constraint is dropped butthe

53

DROP TABLE Statement removes a previously created table and its description from the catalog. It

is the name of an existing base table in the current schema. The CASCADE and RESTRICT
specifiers define the disposition of other objects dependent on the table. A base table may have two types

a CHECK constraint or

RESTRICT specifies that the table not be dropped if any dependencies exist. If dependencies are found, an

removed before the drop is performed:

Views that reference the base table are dropped, and the sequence is repeated fortheir

Constraints in other tables that reference this table are dropped; the constraint is dropped butthe

The DROP VIEW Statement removes a previously created view and its description from the catalog. It has

schema. The CASCADE and RESTRICT
specifiers define the disposition of other objects dependent on the view. A view may have two types of

a CHECK constraint.

RESTRICT specifies that the view not be dropped if any dependencies exist. If dependencies are found, an

is performed:

view are dropped, and the sequence is repeated for their

Constraints in base tables that reference this view are dropped; the constraint is dropped butthe

5
4

GRANT
Statement

The GRANT Statement
grants access privileges for
database objects to other
users. It has the following
general format:

GRANT privilege-
list ON [TABLE]
object-list TO
user-list

privilege-list is either ALL
PRIVILEGES or a
comma-separated list of
properties: SELECT,
INSERT, UPDATE,
DELETE. object-list is a
comma-separated list of
table and view names.user-
list is either PUBLIC or a
comma-separated listof
user names.
The GRANT statement
grants each privilege in
privilege-list for each
object (table) in object-list
to each user in user-list. In
general, the access
privileges apply to all
columns in the table or
view, but it is possible to
specify a column list with
the UPDATE privilege
specifier:

UPDATE [(
column-1 [,
column-2] ...)]

If the optional column list
is specified, UPDATE
privileges are granted for
those columns only.
The user-list may specify
PUBLIC. This is a general
grant, applying to all users
(and future users) in the
catalog.
Privileges granted are
revoked with the
REVOKE Statement.
The optional specificier
WITH GRANTOPTION
may follow user-list in the
GRANT statement. WITH
GRANT OPTION
specifies that, in addition
to access privileges, the
privilege to grant those

privileges to other users is
granted.

GRANT
Statement
Examples
GRANT SELECT
ON s,sp TO
PUBLIC

GRANT
SELECT,INSERT
,UPDATE(color)
ON p TO art,nan

GRANT SELECT
ON
supplied_parts
TO sam WITH
GRANTOPTION

REVOKE
Statement

The REVOKE Statement
revokes access privileges
for database objects
previously granted to other
users. It has the following
general format:

REVOKE
privilege-list ON
[TABLE] object-
list FROM user-
list

The REVOKE Statement
revokes each privilege in
privilege-list for each
object (table) in object-list
from each user in user-list.
All privileges must have
been previouslygranted.
The user-list may specify
PUBLIC. This must apply
to a previous GRANT TO
PUBLIC.

REVOKE
Statement
Examples
REVOKE
SELECT ON s,sp
FROM PUBLIC

REVOKE
SELECT,INSERT
,UPDATE(color)
ON p FROM
art,nan

REVOKE SELECT ON
supplied_parts FROM sam

UNIT – 4

RECOERY SYSTEM

• FailureClassification

• StorageStructure

• Recovery andAtomicity

• Log-BasedRecovery

• ShadowPaging

• Recovery With ConcurrentTransactions

• BufferManagement

• Failure with Loss of NonvolatileStorage

• Advanced RecoveryTechniques

• Transaction failure:

– Logical errors: transaction cannot complete due to some internal errorcondition

– System errors: the database system must terminate an active transaction due to an error condition
(e.g.,deadlock)

• System crash: a power failure or other hardware or software failure causes the system to crash. It is assumedthat

non-volatile storage contents are not corrupted.

• Disk failure: a head crash or similar failure destroys all or part of diskstorage

• Volatilestorage:

– does not survive systemcrashes

– examples: main memory, cachememory

• Nonvolatilestorage:

– survives system crashes

– examples: disk,tape

• Stablestorage:

– a mythical form of storage that survives allfailures

– approximated by maintaining multiple copies on distinct nonvolatilemedia

Maintain multiple copies of each block on separate disks; copies can be at remote sites to protect against disasters such
as fire or flooding.

• Failure during data transfer can result in inconsistentcopies

Protecting storage media from failure during data transfer (one solution):

•

•

– Execute output operation as follows (assuming two copies of each block):

1. Write the information onto the first physicalblock.

2. When the first write successfully completes, write the same information onto the second
physicalblock.

3. The output is completed only after the secondwrite

Protecting storage media from failure during data transfer (cont.):

– Copies of a block may differ due to failure during output operation. To recover fromfailure:

1. First find inconsistentblocks:

(a) Expensive solution: Compare the two copies of every disk block.

(b) Better solution: Record in-progress disk writes on non-volatile storage. Use this information during
recovery to find blocks that may be inconsistent, and only compare copies ofthese.

2. If either copy of an inconsistent block is detected to have an error (bad checksum), overwrite it by the other
copy. If both have no error, but are different, overwrite the second block by the firstblock.

Physical blocks are those blocks residing on the disk. Buffer blocks are the blocks residing temporarily in main
memory.

Block movements between disk and main memory are initiated through the following two operations:

– input(B) transfers the physical block B to mainmemory.

– output(B) transfers the buffer block B to the disk, and replaces the appropriate physical blockthere.

Each transaction Tihas its private work-area in which local copies of all data items accessed and updated by it are
kept. Ti’s local copy of a data item X is called xi.

• We assume, for simplicity, that each data item fits in, and is stored inside, a singleblock.

•

•

•

•

Transaction transfers data items between system buffer blocks and its private work-area using the following operations
:

– read(X) assigns the value of data item X to thelocal

variable xi.

– write(X) assigns the value of local variable xito data itemX

in the buffer block.

– both these commands may necessitate the issue of an input(BX) instruction before the assignment, if the block
BXin which X resides is not already inmemory.

Transactions perform read(X) while accessing X for the first time; all subsequent accesses are to the local copy. After
last access, transaction executes write(X).

• output(BX) need not immediately follow write(X). Systemcan

•

•

global buffer

A

B

read(A)

A
actual

write(B) B

read(A)
write(B)

localbuffer localbuffer
T1 T2

Consider transaction Tithat transfers $50 from account A to account B; goal is either to perform all database
modifications made by Tior none atall.

Several output operations may be required for Ti(to output A and B). A failure may occur after one of these
modifications have been made but before all of them are made.

To ensure atomicity despite failures, we first output information describing the modifications to stable storage without
modifying the databaseitself.

We study two approaches:

– log-based recovery,and

– shadow-paging

• We assume (initially) that transactions run serially, that is,oneaftertheother.

A log is kept on stable storage. The log is a sequence of log records, and maintains a record of update activities on the
database.

• When transaction Tistarts, it registers itself by writinga
<Tistart >log record

AA

B

•

•

•

•

•

• Before Tiexecutes write(X), a log record <Ti , X, V1, V2>is written, where V1 is the value of X before the write, and V2

is the value to be written to X.

• When Tifinishes it last statement, the logrecord
<Ticommit >is written.

We assume for now that log records are written directly to stable storage (that is, they are not buffered)

• This scheme ensures atomicity despite failures by recording all modifications to log, but deferring all the writes to
after partial commit.

• Assume that transactions executeserially

• Transaction starts by writing <Tistart >record tolog.

A write(X) operation results in a log record <Ti , X, V >being written, where V is the new value for X . The write is not
performed on X at this time, but isdeferred.

• When Tipartially commits, <Ticommit >is written to thelog

• Finally, log records are used to actually execute the previously deferredwrites.

• During recovery after a crash, a transaction needs to be redone if and only if both <Tistart >and <Ticommit >are
there in thelog.

Redoing a transaction Ti(redo(Ti)) sets the value of all data items updated by the transaction to the new values.

Crashes can occur while the transaction is executing the original updates, or while recovery action is being taken

• example transactions T0 and T1 (T0executes beforeT1):

•

•

•
•

T0: read(A)

A := A −50

write(A) read(B)

B := B + 50

write(B)T1: read(C)

C := C –100write(C)

• Below we show the log as it appears at three instances oftime.

<T0start> <T0start> <T0start>

<T0, A, 950> <T0, A, 950> <T0, A, 950>

<T0, B, 2050> <T0, B, 2050> <T0, B, 2050>

<T0commit> <T0commit>

<T1start> <T1start>

<T1, C, 600> <T1, C, 600>

(a) (b)
<T1commit>

(c)

• If log on stable storage at time of crash is as incase:

(a) No redo actions need to be taken

(b) redo(T0) must be performed since <T0commit>ispresent

(c) redo(T0) must be performed followed by redo(T1)since

<T0commit>and <T1commit>are present

• This scheme allows database updates of an uncommitted transaction to be made as the writes are issued; since undoing
may be needed, update logs must have both old value and newvalue

• Update log record must be written before database item is written

• Output of updated blocks can take place at any time before or after transactioncommit

• Order in which blocks are output can be different from the order in which they arewritten

Immediate Database Modification Example

Log Write Output
<T0start>
<T0, A, 1000, 950>
<T0, B, 2000, 2050>

<T0commit>
<T1start>
<T1, C, 700,600>

<T1commit>

A = 950

B =2050

C =600
BB, BC B

Note:BXdenotesblockcontainingX.

%

Immediate Database Modification (Cont.)

• Recovery procedure has two operations instead of one:

– undo(Ti) restores the value of all data items updated by Tito their old values, going backwards from the last log
record forTi

– redo(Ti) sets the value of all data items updated by Titothe

new values, going forward from the first log record for Ti

• When recovering afterfailure:

– Transaction Tineeds to be undone if the log contains the record <Tistart>, but does not contain the record
<Ticommit>.

– Transaction Tineeds to be redone if the log containsboth

the record <Tistart>and the record <Ticommit>.

• Undo operations are performed first, then redooperations.

Immediate DB Modification RecoveryExample

Below we show the log as it appears at three instances oftime.

<T0start> <T0start> <T0start>

<T0, A, 1000, 950> <T0, A,1000, 950> <T0, A, 1000,950>

<T0, B, 2000, 2050> <T0, B,2000, 2050> <T0, B, 2000, 2050>

<T0commit> <T0commit>

<T1start> <T1start>

<T1, C, 700, 600> <T1, C, 700, 600>

<T1commit>

(a) (b) (c)

Recovery actions in each case above are:

(a) undo(T0): B is restored to 2000 and A to1000.

(b) undo(T1) and redo(T0): C is restored to 700, and then Aand
B are set to 950 and 2050 respectively.

(c) redo(T0) and redo(T1): A and B are set to 950 and2050

&

respectively.ThenCissetto600.

%

%

Tc Tf

T1

T2

T3

T4

time

checkpoint system failure

T1 can be ignored (updates already output to disk due to checkpoint)

• T2 and T3redone

&

• T4undone

Schedule

A series of operation from one transaction to another transaction is known as schedule. It is used to preserve the
order of the operation in each of the individual transaction.

1. Serial Schedule

The serial schedule is a type of schedule where one transaction is executed completely before starting another
transaction. In the serial schedule, when the first transaction completes its cycle, then the next transaction is
executed.

For example: Suppose there are two transactions T1 and T2 which have some operations. If it has no interleaving of
operations, then there are the following two possible outcomes:

1. Execute all the operations of T1 which was followed by all the operations of T2.

2. Execute all the operations of T1 which was followed by all the operations of T2.

o In the given (a) figure, Schedule A shows the serial schedule where T1 followed by T2.

o In the given (b) figure, Schedule B shows the serial schedule where T2 followed by T1.

2. Non-serial Schedule

o If interleaving of operations is allowed, then there will be non-serial schedule.

o It contains many possible orders in which the system can execute the individual operations of the
transactions.

o In the given figure (c) and (d), Schedule C and Schedule D are the non-serial schedules. It has interleaving of
operations.

3. Serializable schedule

•

o The serializability of schedules is used to find non-serial schedules that allow the transaction to execute
concurrently without interfering with one another.

o It identifies which schedules are correct when executions of the transaction have interleaving of their
operations.

o A non-serial schedule will be serializable if its result is equal to the result of its transactions executed serially.

Testing of Serializability

Serialization Graph is used to test the Serializability of a schedule.

Assume a schedule S. For S, we construct a graph known as precedence graph. This graph has a pair G = (V, E),
where V consists a set of vertices, and E consists a set of edges. The set of vertices is used to contain all the
transactions participating in the schedule. The set of edges is used to contain all edges Ti ->Tj for which one of the
three conditions holds:

1. Create a node Ti → Tj if Ti executes write (Q) before Tj executes read (Q).

2. Create a node Ti → Tj if Ti executes read (Q) before Tj executes write (Q).

3. Create a node Ti → Tj if Ti executes write (Q) before Tj executes write (Q).

o If a precedence graph contains a single edge Ti → Tj, then all the instructions of Ti are executed before the
first instruction of Tj is executed.

o If a precedence graph for schedule S contains a cycle, then S is non-serializable. If the precedence graph has
no cycle, then S is known as serializable.

For example:

Explanation:

Read(A): In T1, no subsequent writes to A, so no new edges
Read(B): In T2, no subsequent writes to B, so no new edges
Read(C): In T3, no subsequent writes to C, so no new edges
Write(B): B is subsequently read by T3, so add edge T2 → T3
Write(C): C is subsequently read by T1, so add edge T3 → T1
Write(A): A is subsequently read by T2, so add edge T1 → T2
Write(A): In T2, no subsequent reads to A, so no new edges
Write(C): In T1, no subsequent reads to C, so no new edges
Write(B): In T3, no subsequent reads to B, so no new edges

Precedence graph for schedule S1:

The precedence graph for schedule S1 contains a cycle that's why Schedule S1 is non-serializable.

Explanation:

Read(A): In T4,no subsequent writes to A, so no new edges
Read(C): In T4, no subsequent writes to C, so no new edges
Write(A): A is subsequently read by T5, so add edge T4 → T5
Read(B): In T5,no subsequent writes to B, so no new edges
Write(C): C is subsequently read by T6, so add edge T4 → T6
Write(B): A is subsequently read by T6, so add edge T5 → T6
Write(C): In T6, no subsequent reads to C, so no new edges
Write(A): In T5, no subsequent reads to A, so no new edges
Write(B): In T6, no subsequent reads to B, so no new edges

Precedence graph for schedule S2:

The precedence graph for schedule S2 contains no cycle that's why ScheduleS2 is serializable.

Lock-Based Protocol

In this type of protocol, any transaction cannot read or write data until it acquires an appropriate lock on it. There are
two types of lock:

1. Shared lock:

o It is also known as a Read-only lock. In a shared lock, the data item can only read by the transaction.

o It can be shared between the transactions because when the transaction holds a lock, then it can't update the
data on the data item.

2. Exclusive lock:

o In the exclusive lock, the data item can be both reads as well as written by the transaction.

o This lock is exclusive, and in this lock, multiple transactions do not modify the same data simultaneously.

There are four types of lock protocols available:
1. Simplistic lock protocol

It is the simplest way of locking the data while transaction. Simplistic lock-based protocols allow all the transactions
to get the lock on the data before insert or delete or update on it. It will unlock the data item after completing the
transaction.

2. Pre-claiming Lock Protocol

o Pre-claiming Lock Protocols evaluate the transaction to list all the data items on which they need locks.

o Before initiating an execution of the transaction, it requests DBMS for all the lock on all those data items.

o If all the locks are granted then this protocol allows the transaction to begin. When the transaction is
completed then it releases all the lock.

o If all the locks are not granted then this protocol allows the transaction to rolls back and waits until all the
locks are granted.

3. Two-phase locking (2PL)

o The two-phase locking protocol divides the execution phase of the transaction into three parts.

o In the first part, when the execution of the transaction starts, it seeks permission for the lock it requires.

o In the second part, the transaction acquires all the locks. The third phase is started as soon as the transaction
releases its first lock.

o In the third phase, the transaction cannot demand any new locks. It only releases the acquired locks.

There are two phases of 2PL:

Growing phase: In the growing phase, a new lock on the data item may be acquired by the transaction, but none can
be released.

Shrinking phase: In the shrinking phase, existing lock held by the transaction may be released, but no new locks
can be acquired.

In the below example, if lock conversion is allowed then the following phase can happen:

1. Upgrading of lock (from S(a) to X (a)) is allowed in growing phase.

2. Downgrading of lock (from X(a) to S(a)) must be done in shrinking phase.

Example:

The following way shows how unlocking and locking work with 2-PL.

Transaction T1:

o Growing phase: from step 1-3

o Shrinking phase: from step 5-7

o Lock point: at 3

Transaction T2:

o Growing phase: from step 2-6

o Shrinking phase: from step 8-9

o Lock point: at 6

4. Strict Two-phase locking (Strict-2PL)

o The first phase of Strict-2PL is similar to 2PL. In the first phase, after acquiring all the locks, the transaction
continues to execute normally.

o The only difference between 2PL and strict 2PL is that Strict-2PL does not release a lock after using it.

o Strict-2PL waits until the whole transaction to commit, and then it releases all the locks at a time.

o Strict-2PL protocol does not have shrinking phase of lock release.

It does not have cascading abort as 2PL does.

Timestamp Ordering Protocol

o The Timestamp Ordering Protocol is used to order the transactions based on their Timestamps. The order of
transaction is nothing but the ascending order of the transaction creation.

o The priority of the older transaction is higher that's why it executes first. To determine the timestamp of the
transaction, this protocol uses system time or logical counter.

o The lock-based protocol is used to manage the order between conflicting pairs among transactions at the
execution time. But Timestamp based protocols start working as soon as a transaction is created.

o Let's assume there are two transactions T1 and T2. Suppose the transaction T1 has entered the system at 007
times and transaction T2 has entered the system at 009 times. T1 has the higher priority, so it executes first as
it is entered the system first.

o The timestamp ordering protocol also maintains the timestamp of last 'read' and 'write' operation on a data.

Basic Timestamp ordering protocol works as follows:

1. Check the following condition whenever a transaction Ti issues a Read (X) operation:

o If W_TS(X) >TS(Ti) then the operation is rejected.

o If W_TS(X) <= TS(Ti) then the operation is executed.

o Timestamps of all the data items are updated.

2. Check the following condition whenever a transaction Ti issues a Write(X) operation:

o If TS(Ti) < R_TS(X) then the operation is rejected.

o If TS(Ti) < W_TS(X) then the operation is rejected and Ti is rolled back otherwise the operation is executed.

Where,

TS(TI) denotes the timestamp of the transaction Ti.

R_TS(X) denotes the Read time-stamp of data-item X.

W_TS(X) denotes the Write time-stamp of data-item X.

Advantages and Disadvantages of TO protocol:

o TO protocol ensures serializability since the precedence graph is as follows:

o TS protocol ensures freedom from deadlock that means no transaction ever waits.

o But the schedule may not be recoverable and may not even be cascade- free.

Validation Based Protocol

Validation phase is also known as optimistic concurrency control technique. In the validation based protocol, the
transaction is executed in the following three phases:

1. Read phase: In this phase, the transaction T is read and executed. It is used to read the value of various data
items and stores them in temporary local variables. It can perform all the write operations on temporary
variables without an update to the actual database.

2. Validation phase: In this phase, the temporary variable value will be validated against the actual data to see
if it violates the serializability.

3. Write phase: If the validation of the transaction is validated, then the temporary results are written to the
database or system otherwise the transaction is rolled back.

Here each phase has the following different timestamps:

Start(Ti): It contains the time when Ti started its execution.

Validation (Ti): It contains the time when Ti finishes its read phase and starts its validation phase.

Finish(Ti): It contains the time when Ti finishes its write phase.

o This protocol is used to determine the time stamp for the transaction for serialization using the time stamp of
the validation phase, as it is the actual phase which determines if the transaction will commit or rollback.

o Hence TS(T) = validation(T).

o The serializability is determined during the validation process. It can't be decided in advance.

o While executing the transaction, it ensures a greater degree of concurrency and also less number of conflicts.

o Thus it contains transactions which have less number of rollbacks.

Multiple Granularity

Let's start by understanding the meaning of granularity.

Granularity: It is the size of data item allowed to lock.

Multiple Granularity:

o It can be defined as hierarchically breaking up the database into blocks which can be locked.

o The Multiple Granularity protocol enhances concurrency and reduces lock overhead.

o It maintains the track of what to lock and how to lock.

o It makes easy to decide either to lock a data item or to unlock a data item. This type of hierarchy can be
graphically represented as a tree.

For example: Consider a tree which has four levels of nodes.

o The first level or higher level shows the entire database.

o The second level represents a node of type area. The higher level database consists of exactly these areas.

o The area consists of children nodes which are known as files. No file can be present in more than one area.

o Finally, each file contains child nodes known as records. The file has exactly those records that are its
child nodes. No records represent in more than one file.

o Hence, the levels of the tree starting from the top level are as follows:

1. Database

2. Area

3. File

4. Record

In this example, the highest level shows the entire database. The levels below are file, record, and fields.

There are three additional lock modes with multiple granularity:

Intention Mode Lock

Intention-shared (IS): It contains explicit locking at a lower level of the tree but only with shared locks.

Intention-Exclusive (IX): It contains explicit locking at a lower level with exclusive or shared locks.

Shared & Intention-Exclusive (SIX): In this lock, the node is locked in shared mode, and some node is locked

in exclusive mode by the same transaction.

Compatibility Matrix with Intention Lock Modes: The below table describes the compatibility matrix for these

lock modes:

It uses the intention lock modes to ensure serializability. It requires that if a transaction attempts to lock a node,

then that node must follow these protocols:

o Transaction T1 should follow the lock-compatibility matrix.

o Transaction T1 firstly locks the root of the tree. It can lock it in any mode.

o If T1 currently has the parent of the node locked in either IX or IS mode, then the transaction T1 will lock
a node in S or IS mode only.

o If T1 currently has the parent of the node locked in either IX or SIX modes, then the transaction T1 will
lock a node in X, SIX, or IX mode only.

o If T1 has not previously unlocked any node only, then the Transaction T1 can lock a node.

o If T1 currently has none of the children of the node-locked only, then Transaction T1 will unlock a node.

Observe that in multiple-granularity, the locks are acquired in top-down order, and locks must be released in

bottom-up order.

o If transaction T1 reads record Ra9 in file Fa, then transaction T1 needs to lock the database, area A1 and file
Fa in IX mode. Finally, it needs to lock Ra2 in S mode.

o If transaction T2 modifies record Ra9 in file Fa, then it can do so after locking the database, area A1 and
file Fa in IX mode. Finally, it needs to lock the Ra9 in X mode.

o If transaction T3 reads all the records in file Fa, then transaction T3 needs to lock the database, and area A
in IS mode. At last, it needs to lock Fa in S mode.

o If transaction T4 reads the entire database, then T4 needs to lock the database in S mode.

UNIT - 5

Distributed Database Management System

A distributed database management system (DDBMS) is a centralized software system that manages a distributed
database in a manner as if it were all stored in a single location.

Features

 It is used to create, retrieve, update and delete distributed databases.

 It synchronizes the database periodically and provides access mechanisms by the virtue of which the
distribution becomes transparent to the users.

 It ensures that the data modified at any site is universally updated.

 It is used in application areas where large volumes of data are processed and accessed by numerous users
simultaneously.

 It is designed for heterogeneous database platforms.

 It maintains confidentiality and data integrity of the databases.

Factors Encouraging DDBMS

The following factors encourage moving over to DDBMS −

 Distributed Nature of Organizational Units − Most organizations in the current times are subdivided into
multiple units that are physically distributed over the globe. Each unit requires its own set of local data.
Thus, the overall database of the organization becomes distributed.

 Need for Sharing of Data − The multiple organizational units often need to communicate with each other
and share their data and resources. This demands common databases or replicated databases that should be
used in a synchronized manner.

 Support for Both OLTP and OLAP − Online Transaction Processing (OLTP) and Online Analytical
Processing (OLAP) work upon diversified systems which may have common data. Distributed database
systems aid both these processing by providing synchronized data.

 Database Recovery − One of the common techniques used in DDBMS is replication of data across different
sites. Replication of data automatically helps in data recovery if database in any site is damaged. Users can
access data from other sites while the damaged site is being reconstructed. Thus, database failure may
become almost inconspicuous to users.

 Support for Multiple Application Software − Most organizations use a variety of application software
each with its specific database support. DDBMS provides a uniform functionality for using the same data
among different platforms.

Advantages of Distributed Databases

Following are the advantages of distributed databases over centralized databases.

Modular Development − If the system needs to be expanded to new locations or new units, in centralized database
systems, the action requires substantial efforts and disruption in the existing functioning. However, in distributed
databases, the work simply requires adding new computers and local data to the new site and finally connecting
them to the distributed system, with no interruption in current functions.

More Reliable − In case of database failures, the total system of centralized databases comes to a halt. However, in
distributed systems, when a component fails, the functioning of the system continues may be at a reduced
performance. Hence DDBMS is more reliable.

Better Response − If data is distributed in an efficient manner, then user requests can be met from local data itself,
thus providing faster response. On the other hand, in centralized systems, all queries have to pass through the
central computer for processing, which increases the response time.

Lower Communication Cost − In distributed database systems, if data is located locally where it is mostly used,
then the communication costs for data manipulation can be minimized. This is not feasible in centralized systems.

Adversities of Distributed Databases

Following are some of the adversities associated with distributed databases.

 Need for complex and expensive software − DDBMS demands complex and often expensive software to
provide data transparency and co-ordination across the several sites.

 Processing overhead − Even simple operations may require a large number of communications and
additional calculations to provide uniformity in data across the sites.

 Data integrity − The need for updating data in multiple sites pose problems of data integrity.

 Overheads for improper data distribution − Responsiveness of queries is largely dependent upon proper
data distribution. Improper data distribution often leads to very slow response to user requests.

Distribution transparency is the property of distributed databases by the virtue of which the internal details of the
distribution are hidden from the users. The DDBMS designer may choose to fragment tables, replicate the
fragments and store them at different sites. However, since users are oblivious of these details, they find the
distributed database easy to use like any centralized database.

The three dimensions of distribution transparency are −

 Location transparency

 Fragmentation transparency

 Replication transparency

Location Transparency

Location transparency ensures that the user can query on any table(s) or fragment(s) of a table as if they were stored
locally in the user’s site. The fact that the table or its fragments are stored at remote site in the distributed database
system, should be completely oblivious to the end user. The address of the remote site(s) and the access
mechanisms are completely hidden.

In order to incorporate location transparency, DDBMS should have access to updated and accurate data dictionary
and DDBMS directory which contains the details of locations of data.

Fragmentation Transparency

Fragmentation transparency enables users to query upon any table as if it were unfragmented. Thus, it hides the fact
that the table the user is querying on is actually a fragment or union of some fragments. It also conceals the fact that
the fragments are located at diverse sites.

This is somewhat similar to users of SQL views, where the user may not know that they are using a view of a table
instead of the table itself.

Replication Transparency

Replication transparency ensures that replication of databases are hidden from the users. It enables users to query
upon a table as if only a single copy of the table exists.

Replication transparency is associated with concurrency transparency and failure transparency. Whenever a user
updates a data item, the update is reflected in all the copies of the table. However, this operation should not be
known to the user. This is concurrency transparency. Also, in case of failure of a site, the user can still proceed with
his queries using replicated copies without any knowledge of failure. This is failure transparency.

Combination of Transparencies

In any distributed database system, the designer should ensure that all the stated transparencies are maintained to a
considerable extent. The designer may choose to fragment tables, replicate them and store them at different sites; all
oblivious to the end user. However, complete distribution transparency is a tough task and requires considerable
design efforts.

In a local database system, for committing a transaction, the transaction manager has to only convey the decision to
commit to the recovery manager. However, in a distributed system, the transaction manager should convey the
decision to commit to all the servers in the various sites where the transaction is being executed and uniformly
enforce the decision. When processing is complete at each site, it reaches the partially committed transaction state
and waits for all other transactions to reach their partially committed states. When it receives the message that all
the sites are ready to commit, it starts to commit. In a distributed system, either all sites commit or none of them
does.

The different distributed commit protocols are −

 One-phase commit

 Two-phase commit

 Three-phase commit

Distributed One-phase Commit

Distributed one-phase commit is the simplest commit protocol. Let us consider that there is a controlling site and a
number of slave sites where the transaction is being executed. The steps in distributed commit are −

 After each slave has locally completed its transaction, it sends a “DONE” message to the controlling site.

 The slaves wait for “Commit” or “Abort” message from the controlling site. This waiting time is
called window of vulnerability.

 When the controlling site receives “DONE” message from each slave, it makes a decision to commit or
abort. This is called the commit point. Then, it sends this message to all the slaves.

 On receiving this message, a slave either commits or aborts and then sends an acknowledgement message to
the controlling site.

Distributed Two-phase Commit

Distributed two-phase commit reduces the vulnerability of one-phase commit protocols. The steps performed in the
two phases are as follows −

Phase 1: Prepare Phase

 After each slave has locally completed its transaction, it sends a “DONE” message to the controlling site.
When the controlling site has received “DONE” message from all slaves, it sends a “Prepare” message to the
slaves.

 The slaves vote on whether they still want to commit or not. If a slave wants to commit, it sends a “Ready”
message.

 A slave that does not want to commit sends a “Not Ready” message. This may happen when the slave has
conflicting concurrent transactions or there is a timeout.

Phase 2: Commit/Abort Phase

 After the controlling site has received “Ready” message from all the slaves −

o The controlling site sends a “Global Commit” message to the slaves.

o The slaves apply the transaction and send a “Commit ACK” message to the controlling site.

o When the controlling site receives “Commit ACK” message from all the slaves, it considers the
transaction as committed.

 After the controlling site has received the first “Not Ready” message from any slave −

o The controlling site sends a “Global Abort” message to the slaves.

o The slaves abort the transaction and send a “Abort ACK” message to the controlling site.

o When the controlling site receives “Abort ACK” message from all the slaves, it considers the
transaction as aborted.

Distributed Three-phase Commit

The steps in distributed three-phase commit are as follows −

Phase 1: Prepare Phase

The steps are same as in distributed two-phase commit.

Phase 2: Prepare to Commit Phase

 The controlling site issues an “Enter Prepared State” broadcast message.

 The slave sites vote “OK” in response.

Phase 3: Commit / Abort Phase

The steps are same as two-phase commit except that “Commit ACK”/”Abort ACK” message is not required.

