Sudharsan College of Arts and Science

Perumanadu - Pudukkottai

ABSTRACT ALGEBRA

Class : III B.Sc Maths
Sub Code: 16SCCMM12
Total : 75 Marks
Time: 3 Hours

Section – A

Answer all the quetions:

 $(10 \times 2 = 20)$

- 1. Define Group.
- 2. Define Cyclic group and Given an example.
- 3. Define left and right cosets
- 4. Prove that any cyclic group is abelian
- 5. Define Normal subgroup and given an Example
- 6. If F is homomorphim and F is 1-1, then prove that $Ker F = \{e\}$.
- 7. Define quotient Rings.
- 8. Define a zero-divisor.
- 9. Define divisor.
- 10. Define Euclidean domain.

Section - B

Answer ALL the questions:

 $(5 \times 5 = 25)$

11. a) state and prove Euler's theorem.

Ω r

- b) prove that a subgroup of cyclic group is cyclic
- 12. a) Such that the Perumation n { 1,2,3 }.

\mathbf{Or}

- b) If R is a ring such that $a^2 = a$ for all $a \in R$, P.T (i) a+a=0 (ii) $a+b=o \rightarrow a=b$ (iii) ab=ba
- 13. a) Zn is an integral domainiffn is prime.

Or

- b)Such that every finite cyclic group of order n is isomorphism to (Zn, +)
- 14. a) Let $f:G \rightarrow G'$ be a homomorphism then the kernel Kof F is a normal subgroup of G

Or

b) Every subgroup of an abelian group is a normal subgroup

15.a) Let G be a group and a,b \in G then

 $1.O(a) = O(a^{-1})$

 $2.O(a) = O(b^{-1}ab)$

3.O(ab) = O(ba)

Or

b) If H is a subgroup of G and N is a normal subgroup of G then prove that HN is a subgroup of G.

Section -C

Answer Any THREE Questions

 $(3\times10=30)$

16.A and B are subgroup of a group G. Prove that AB is a subgroup of Giff AB=BA.

17. Prove that any permutation can be expressed as a product of disjoint cycles.

18.State and proveCayley's theorem.

- 19. Let R and R' be rings and $f:R \rightarrow R'$ be an isomorphism. Then
- (i) R is the commutative \rightarrow R' is the commutative.
- (ii) R is ring with identity \rightarrow R' is ring with identity.
- (iii) R is an indegral domain \rightarrow R'is an indegraldomain.
- (iv) R is a field \rightarrow R' is a field.
- 20.State and prove Fundamental theorem of homomorphism on groups

⊕ ⊕ ALL THE BEST ⊕ ⊕