Sudharsan College of Arts and SciencePerumanadu - Pudukkottai LINEAR ALGEBRA

Class : II B.ScMaths	Total : 75 Marks
Sub Code: 16SCCMM8	Time: 3 Hours

Section – A

Answer all the quetions: **1.** Define Vector Space.

2. Define a Homomorphism.

3. Define a direct sum.

4. Define a kernel.

5. Define a Orthogonal Complement.

- **6.** Define Inner Product.
- 7. Define a transpose of matrix with example.
- **8.** Define a Hermitian matrix.
- **9.** Define a rank matrix.

10. Find the characteristic equation of the following matrice $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$.

Section – B

Answer ALL the questions:

 $(5 \times 5 = 25)$

 $(10 \times 2 = 20)$

11. a) Prove that the intersection of two sub- spaces of a vector spaces is a subspace.

(\mathbf{OR})

b) Let V be a vector space over a field F. Then (i) $\alpha 0 = 0$ for all $\alpha \in F$. (ii) 0v = 0 for all $v \in V$. (iii) $(-\alpha)v = \alpha(-v) = -$ (αv) for all $\alpha \in F$ and $v \in V$. (iv) $\alpha v = 0 \Rightarrow \alpha = 0$ or v = 0.

12. a) Let V be a finite – dimensional vector space over a field F. Let A and B be subspaces of V Then $\dim(A + B) = \dim A + \dim B - \dim(A \cap B)$. (\mathbf{OR}) b) Let T : V \rightarrow W be a linear transformation. Then $\dim \mathbf{V} = \operatorname{rank} \mathbf{T} + \operatorname{nullity} \mathbf{T}.$

13. a) Find an orthogonal basic containing the vector (1,3,4) for V₃(**R**) with the standard inner product.

(**OR**)

b) Let V be a vector space of polynomials with inner product given by $(f,g) = \int_{0}^{1} f(t) g(t) dt$. Let f(t) = t+2 and $g(t) = t^{2} - 2t - 3$. Find (i) (f,g)(ii) **∥**f**∥**. **14.** a) Compute the inverse of the matrix $A = \begin{bmatrix} 2 & 0 & -1 \\ 5 & -1 & -5 \\ 0 & -1 & -3 \end{bmatrix}$.

(OR)

b) A square matrix A is symmetric iff $A = A^T$.

Answer Any THREE Questions

15.a) Using Cayley Hamilton's theorem for the matrix $A = \begin{pmatrix} 1 & 0 & -2 \\ 2 & 2 & 4 \\ 0 & 0 & 2 \end{pmatrix}$.

b) show that the equations x + y + z = 6, x + 2y + 3z = 14, x + 4y + 7z = 30 are consistent and solve them.

Section –C

$(3 \times 10 = 30)$

16. let V be a vector space over F and W a subspace of V. Let V/W = $\{W+v/v \in V\}$. Then V/W is a vector space over F under the following operations. (i) $(W+v_1) + (W+v_2) = W + v_1 + v_2$. (ii) $\alpha(W + v_1) = W + \alpha v_2$

17. Let V be a finite dimensional inner product space. Let W be a subspace of V. Then V is the direct sum of W and W^{\perp} (i.e) $V = W \bigoplus W^{\perp}$. 18.State and prove Fundamental theorem of homomorphism.

19. Find the rank of the matrix
$$A = \begin{bmatrix} 4 & 2 & 1 & 3 \\ 6 & 3 & 4 & 7 \\ 2 & 1 & 0 & 7 \end{bmatrix}$$
.
20. Find the eigen values and eigen vectors of the matrix $A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{pmatrix}$.

© ⊙ ALL THE BEST ⊙ ⊙