Sudharsan College of Arts and Science Perumanadu – Pudukkottai LINEAR ALGEBRA

Class: I M.Sc Maths
Sub Code: P 16 MA22
Time: 3 Hours

Section – A

Answer all the quetions:

 $(10 \times 2 = 20)$

- 1. Define the product of two matrices.
- 2. Let F be a subfield of the complex numbers Prove that, in F^3 , the vectors (3, 0, -3), (-1, 1, 2), (4, 2, -2) and (2, 1, 1) are linearly dependent.
- 3. Define the rank and nullity of a linear transformation.
- 4. Let V be a vector space over the field F. let U,T and T_2 be linear operators on V, then prove that $U(T_1+T_2)=UT_1+UT_2$.
- 5. When we say that two algebras are isomorphic?
- 6. Define an ideal in F[x].
- 7. Define a characteristic vector of a linear operator on a vector space over a field.
- 8. Give an examble for the linear operator T may not have any characteristic values.
- 9. Let $A = \begin{bmatrix} 3 & 4 & 6 \\ 1 & 2 & 3 \\ 3 & 5 & 7 \end{bmatrix}$. Then find A^3 .
- 10. Give ann example for an invariant under transformation.

Section – B

Answer ALL the questions:

 $(5 \times 5 = 25)$

11. a) If A & B are row – equivalent m \times n matrices, then prove that the homogeneous systems of linear equations AX = 0 and BX = 0 have exactly the same solutions.

Or

- b) If W is a subspace of a finite dimensional vector space V, then prove that every linearly independent subset of W is finite and is part of a finite basis for W.
- 12. a) Let V and W be vector space over the field F and let T be a linear transformation from V into W. If T is invertible, then prove that the inverse function T^{-1} is a linear transformation from W and V.

Or

- b) Let V be a finite dimensional vector space over the field F, and let W be a subspace of V. Then prove that dim $W+\dim W^0=\dim V$.
- 13. a) Let f . and g be non zero polynomials over F. then prove that fg is a non zero polynomial.

Or

- b)Prove that every n dimensional vector space over the field F is isomorphic to the space F^n .
- 14. a) Suppose that $T\alpha = c\alpha$. If f is any polynomial, then prove that $f(T)\alpha = f(c)\alpha$.

Or

b) Let K be a commutative ring with identify, let A & B be $n \times n$ matrices over K. Then prove that det(AB) = (det A)(debB).

15. a) Let T be a linear operator on an n – dimensional vector space V. Prove that the characteristic and minimal polynomial for T have the same roots, except for multiplicities.

Or

b) Let V be a finite-dimensional vector apace over the filed F and let T be a linear operator on V. Then prove that T in triangulable if and only if the minimal polynomial for T is a product of inear polynomials over F.

Section -C

Answer Any THREE Questions

 $(3 \times 10 = 30)$

16. If W_1 , and W_2 are finite-dimensional subapaces of a vector space V, then prove that W_1 , $+W_2$, in finite-dimensional and dim W_1 , $+\dim W_2 = \dim (W_1 \land W_2) + \dim (W_1 + W_2)$.

.

- 17. Let V be a n-dimensional vector space over the field F, and let W be an m-dimensional vector space over F. Then prove that the space L(V, W) is finite-dimensional and had dimension mn.
- 18.If F is a field, then prove that a non-scalar mnonic polynomial in F(x), Can he factored as a product of monic primes in F(x) in one and, except for order, only one way.
- 19. State and Prove Cayley-Hamiltor theorem.
- 20. State and Prove Primary decomposition theorem.

⊕ ⊕ ALL THE BEST ⊕ ⊕