SUDHARSAN COLLEGE OF ARTS AND SCIENCE Perumanadu, Pudukottai-622 104.

ADVANCED NUMERICAL ANALYSIS

Class: II M.Sc Mathematics Sub Code: P16MA43

Time: 3 Hours Marks: 75

Part - A (10x2=20)

Answer ALL questions.

- 1. Define the order of iterative method.
- 2. Define the multipoint iteration function.
- 3. Determine the Euclidean & the maximum absolute row sum norms of the matrix.
- 4. Define residual vector.
- 5. Describe the Piece wise cubic interpolation.
- 6. Define Spline function.
- 7. Find the error of non uniform nodal points.
- 8. Define linear interpolation.
- 9. Define increment function.
- 10. Define Discretization error (or) Local truncation error.

Part - B (5x5=25)

Answer ALL questions.

- 11. (a) Explain Newton Raphson method & Find its rate of convergence. (Or)
 - (b) Perform one iteration of the Bairstow method to extract a quadratic factor $x^2 + px + q$ the polynomial $x^4 + x^3 + 2x^2 + x + 1 = 0$.

12. (a) Determine the condition number of the matrix

$$\begin{bmatrix} 1 & 4 & 9 \\ 4 & 9 & 16 \\ 9 & 16 & 25 \end{bmatrix}.$$
 (or)

(b) Solve the System of equation

$$2x_1 - x_2 + 0x_3 = 7$$
$$-x_1 + 2x_2 - x_3 = 1$$
$$ox_1 - x_2 + 2x_3 = 1$$

Using the Gauss Seidal method & its error format. Take the initial approximation $x^{(0)} = 0$ & Perform 3 iterations.

13. (a) Obtain the Piecewise linear interpolating polynomials for the function f(x) defined by the data. Hence estimate the value of f(3) & f(7).

X	1	2	4	8	
F(x)	3	7	21	73	
(Or)					

(b) Obtain the Piecewise quardratic interpolating polynomials for the function f(x) defined by the data. Hence the approximate value of f(-2.5) & f(6.5).

X	-3	-2	-1	1	3	6	7
F(x)	369	222	171	165	207	990	1779

14. (a) Find the Jacobian matrix for the System of equation

$$f_1(x,y) = x^2 + y^2 - x = 0$$

$$f_2(x,y) = x^2 - y^2 - y = 0 \text{ at the point (1,1)}.$$

(Or)

- (b) Find the approximate value of $I = \int_0^1 \frac{\sin x}{x} dx$. Using (i) mid point rule & (ii) two point open type rule.
- 15. (a) Given the initial value problem $u' = t^2 + u^2$, u(0) = 0 determine the first 3 non zero terms the Taylor Series for u(t) & hence obtain the value for u(1). Also determined when the error in u(t) obtained from the first two non zero terms is to be less 10^{-6} after rounding.

(Or)

(b) Given the initial value problem $u' = -2tu^2$, u(0) = 1, estimate u(0.4) using (i) modified Euler – cauchey method & (ii) Hence methods h = 0.2. compare the results with the exact solution $u(t) = \frac{1}{(1+t^2)}$.

$$Part - C (3x10=30)$$

Answer Any THREE questions only.

- 16. Find all the roots of the polynomial $x^4 x^3 + 3x^2 + x 4 = 0$.
- 17. Using the following data

X	-3	-2	-1	1	3	6	7
F(x)	369	222	171	165	207	990	1779

Obtain the approximate value of f(-2.5) & f(6.5). Using the piecewise cubic interpolation.

18. Solve the System of equation

$$4x_1 + x_2 + x_3 = 2$$

$$x_1 + 5x_2 + 2x_3 = -6$$

$$x_1 + 2x_2 + 3x_3 = -4$$

- 19. Explain Newton Cote methods. Trapezoidar rule simpson's rule.
- 20. Solve the initial value problem $u' = -2tu^2$, u(0) = 1 with h = 0.2 on the interval [0, 0.4] use the 2^{nd} order implicit Rugnge Kutta method.

****** ALL THE BEST ******