Chapter 2

C++ Basics

What is an Identifier?

 An identifier is the name to denote labels,

types, variables, constants or functions, in a
C++ program.

* C++is a case-sensitive language.
— Work is not work

 |dentifiers should be descriptive

— Using meaningful identifiers is a good
programming practice

ldentifier

|dentifiers must be unique
|dentifiers cannot be reserved words (keywords)
— double main return

|dentifier must start with a letter or underscore, and be
followed by zero or more letters (A-Z, a-z), digits (0-9),
or underscores

VALID

age_of dog _taxRateY2K
PrintHeading ageOfHorse
NOT VALID

age# 2000TaxRate Age-Of-Dog main

C++ Data Types

PSRN

integ raI enum floating array struct union class

char short int long bool//
address

float double long double

pomter reference

C++ Primitive Data Types

Primitive types

T T

integral floating
char short mt long bool float double long double

unsigned

Premitive Data Types in C++

Integral Types
— represent whole numbers and their negatives
— declared as int, short, or long

Character Types
— represent single characters

— declared as char
— Stored by ASCII values

Boolean Type

e declared as bool

* hasonly 2 values true/false
* will not print out directly

Floating Types
— represent real numbers with a decimal point
— declared as float, or double
— Scientific notation where e (or E) stand for “times 10 to the ” (.55-e6)

Samples of C++ Data Values

int sample values

4578 -4578 0
bool values
true false

float sample values
95.274 95.0 .265

char sample values
‘B’ \d/ 4’ \D7s \ k7

What is a Variable?

* Avariable isa memory address where data
can be stored and changed.

* Declaring a variable means specifying both its
name and its data type.

What Does a
Variable Declaration Do?

A declaration tells the compiler to allocate
enough memory to hold a value of this data
type, and to associate the identifier with
this location.

int ageOfDog;=>

char middleInitial; =2

float taxRate;=>

Variable Declaration

e All variables must declared before use.
— At the top of the program
— Just before use.

* Commas are used to separate identifiers of
the same type.
int count, age;

e Variables can be initialized to a starting value
when they are declared

int count = 0;

int age, count = 0;

What is an Expression in C++?

An expression is a valid arrangement of variables,
constants, and operators.

In C++, each expression can be evaluated to
compute a value of a given type

In C++, an expression can be:

— A variable or a constant (count, 100)
— An operation (a+ b, a * 2)

— Function call (getRectangleArea(2, 4))

Assignment Operator

An operator to give (assign) a value to a
variable.

Denote as ‘=’
Only variable can be on the left side.
An expression is on the right side.

Variables keep their assigned values until
changed by another assignment statement or
by reading in a new value.

Assignment Operator Syntax

* Variable = Expression
— First, on right is evaluated.

— Then the resulting value is stored in the memory
location of Variable on left.

NOTE: An automatic type coercion occurs after
evaluation but before the value is stored if the
types differ for Expression and Variable

Assignment Operator Mechanism

* Example:

int count = 0;

int starting; 12345 (garbage)

starting = count + 5;

* Expression evaluation:
— Get value of count: 0

— Add 5 to it.
— Assign to starting

I

Input and Output

* C++ treats input and output as a of
characters.

: sequence of characters (printable or
nonprintable)

* The functions to allow standard I/O are in
iostream header file or iostream.h.

* Thus, we start every program with
#include <iostream>
using namespace std;

Include Directives and Namespaces

* include: directive copies that file into your
program

* namespace: a collection of names and their
definitions. Allows different namespaces to
use the same names without confusion

Keyboard and Screen I/0O

#include <iostream>

input data output data

executing
Keyboard > program > Screen

cin cout

(of type istream) (of type ostream)

Insertion Operator (<<)

* Variable cout is predefined to denote an
output stream that goes to the standard
output device (display screen).

* The insertion operator << called “put to”
takes 2 operands.

* The left operand is a stream expression, such
as cout. The right operand is an expression of

simple type or a string constant.

Output Statements

SYNTAX

cout << Expression | << Expression .. |;

cout statements can be linked together using << operator.
These examples yield the same output:

cout << “The answer is “;
cout << 3*4:

cout << “The answeris “ << 3 *¥4;

Output Statements (String constant)

String constants (in double quotes) are to be printed as
is, without the quotes.

cout<<“Enter the number of candy bars ”;
OUTPUT: Enter the number of candy bars

“Enter the number of candy bars ” is called a prompt.

All user inputs must be preceded by a prompt to tell
the user what is expected.

You must insert spaces inside the quotes if you want
them in the output.

Do not put a string in quotes on multiple lines.

Output Statements (Expression)

* All expressions are computed and then
outputted.

cout << “The answeris” << 3*4;
OUTPUT: The answeris 12

Escape Sequences

The backslash is called the escape character.

It tells the compiler that the next character is
“escaping” it’s typical definition and is using
its secondary definition.

Examples:
— new line: \n
— horizontal tab: \t

— backslash: \\
— double quote \”

Newline

e cout<<“\n” and cout<<endl both are used to
insert a blank line.

e Advances the cursor to the start of the next
line rather than to the next space.

* Always end the output of all programs with
this statement.

Formatting for Decimal Point Numbers

* Typed float, or double
e Use the three format statements (magic formula) to
format to fixed decimal notation.
cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout.precision(2);
setf “set flag” means that all real output will be

formatted according to the function, until changed by
either unsetting the flag or a new setf command.

ios:: means the functions from the iostream library

Extraction Operator (>>)

e Variable cin is predefined to denote an input stream
from the standard input device (the keyboard)

* The extraction operator >> called “get from” takes 2
operands. The left operand is a stream expression,
such as cin--the right operand is a variable of simple

type.
 Operator >> attempts to extract the next item from

the input stream and store its value in the right
operand variable.

Input Statements

SYNTAX

cin >> Variable >>Variable | ..;

cin statements can be linked together using >> operator.
These examples yield the same output:

cin >> Xx;
cin >> v;

cin >> x>> vy;

How Extraction Operator works?

Input is not entered until user presses
<ENTER> key.

Allows backspacing to correct.
Skips whitespaces (space, tabs, etc.)

Multiple inputs are stored in the order
entered:

cin>>numl>>numz2;
User inputs: 3 4
Assigns numl =3 and num2 =4

Numeric Input

Leading blanks for numbers are ignored.

If the type is double, it will convert integer to
double.

Keeps reading until blank or <ENTER>.
Remember to prompt for inputs

C++ Data Type String

* A string is a sequence of characters enclosed in
double quotes

. string sample values
“Hello” “Year 2000” “1234”

* The empty string (null string) contains no displayed
characters and is writtenas “'”

C++ Data Type String (cont.)

is not a built-in (standard) type
— itis a programmer-defined data type
— it is provided in the C++ standard library

* Need to include the following two lines:
#tinclude <string>
using namespace std;

* string operations include
— comparing 2 string values
— searching a string for a particular character
— joining one string to another (concatenation)
— etc...

Type compatibilities

Warning: If you store values of one type in variable
of another type the results can be inconsistent:

— Can store integers in floating point or in char (assumes
ASCII value)

— bool can be stored as int: (true = nonzero, false = 0)

Implicit promotion: integers are promoted to
doubles

double var = 2; // results in var = 2.0

On integer and doubles together:

— Mixed type expressions: Both must be int to return int,
otherwise float.

Type compatibilities (Implicit
Conversion)

The compiler tries to be value-preserving.

General rule: promote up to the first type that can contain
the value of the expression.

Note that representation doesn’t change but values can be
altered .

Promotes to the smallest type that can hold both values.
If assign float to int will truncate
int_variable = 2.99; // results in 2 being stored in int_variable

If assign int to float will promote to double:
double dvar = 2; // results in 2.0 being stored in dvar

Type compatibilities (Explicit
Conversion)

Casting - forcing conversion by putting (type) in front of variable or
expression. Used to insure that result is of desired type.

Example: If you want to divide two integers and get a real result you must
cast one to double so that a real divide occurs and store the result in a
double.

int x=5, y=2; double z; z = static_cast <double>(x)/y; //2.5

int x=5, y=2; double z; z = (double)x/y; // 2.5

int x=5, y=2; double z; z = static_cast <double>(x/y) ; // 2.0

converts x to double and then does mixed division, not integer divide
static_cast<int> (z) - will truncate z

static_cast <int> (x + 0.5) - will round positive x {use () to cast complete
expression)

Cast division of integers to give real result:
int x=5, y=2; double z; z = static_cast <double>(x/y) ; // 2.0

Arithmetic Operators

Operators: +, -, * /

For floating numbers, the result as same as Math
operations.

Note on integer division: the result is an integer. 7/2
is 3.

% (remainder or modulo) is the special operator just

for integer. It yields an integer as the result. 7%2 is
1.

Both / and % can only be used for positive integers.
Precedence rule is similar to Math.

Arithmetic Expressions

* Arithmetic operations can be used to express the
mathematic expression in C++:

b? —4ac b*b-4*a*c
(Y+D) xx(y+2)

2 ! L/(X* X+ Xx+3)
X*+X+3

a+b (@a+b)/(c+d)

c—d

Simple Flow of Control

* Three processes a computer can do:

— Sequential

expressions, insertion and extraction operations

— Selection (Branching)
if statement, switch statement

— Repetition/Iteration (Loop)
while loop, do-while loop, for loop

bool Data Type

Type bool is a built-in type consisting of just
2 values, the constants true and false

We can declare variables of type bool

bool hasFever; //trueif has high temperature
bool isSenior; //trueif ageis at least 55

The value O represents false
ANY non-zero value represents true

Boolean Expression

* Expression that yields bool result

* Include:
6 Relational Operators

< <= > >= -
3 Logical Operators

! && | |

Relational Operators

are used in boolean expressions of form:

ExpressionA Operator ExpressionB
temperature > humidity
B*B-40*A*C > 0.0

abs (number) == 35
initial 1= ‘Q’
* Notes:
o == (equivalency) is NOT = (assignment)

o characters are compared alphabetically. However, lowercase letters are higher
ASCII value.

o An integer variable can be assigned the result of a logical expression
o You cannot string inequalities together:
Bad Code: 4<x<6 Good Code: (x> 4) &&(x<6)

Relational Operators

int X,y

X =4,

y=6;
EXPRESSION VALUE
X<y true
X+2<y false
xl=y true
X+3>=y true
y==Xx false
y == X+2 true
y=x+3 7
y=x<3 0
y=x>3 1

Logical Operators

are used in boolean expressions of form:

ExpressionA Operator ExpressionB
A || B (true if either A or B or both are true. It is false otherwise)
A && B (true if both A and B are true. It is false otherwise)
or
Operator Expression
IA (true if Ais false. Itis false if A is true)

Notes:

Highest precedence for NOT, AND and OR are low precedence.

Associate left to right with low precedence. Use parenthesis to override priority or for
clarification
— x&&y || zwill evaluate “x &&y " first
— x&&(y || z) will evaluate “y || z” first

Logical Operators

int age;
bool isSenior, hasFever ;
float temperature ;

age = 20;

temperature = 102.0;

isSenior = (age >= 55) ; // isSenior is false

hasFever = (temperature > 98.6) ; // hasFever is true
EXPRESSION VALUE
isSenior && hasFever false
isSenior || hasFever true
lisSenior true

lhasFever false

Precedence Chart

Highest

Lowest

Boolean Expression (examples)

taxRate is over 25% and income is less than $20000

temperature is less than or equal to 75 or humidity is
less than 70%

age is between 21 and 60

ageis 21 or 22

Boolean Expression (examples)

(taxRate > .25) && (income < 20000)
(temperature <=75) || (humidity <.70)
(age >=21) && (age <= 60)

(age ==21) || (age == 22)

Simple if Statement

e |s a selection of whether or not to execute a
statement or a block of statement.

TRUE

expression

T

v

statement(s) FALSE

Simple /f Statement Syntax

if ()

Statement

if ()
{

Statement_1

Statement_n

}

These are NOT equivalent. Why?

These are equivalent. Why?

Each expression is only true when number has value 0.

Statement

* provides selection between executing one of
2 clauses (the if clause or the else clause)

v

expression

\/

if clause

v

else clause

Use of blocks

* Denotedby{..}
e Recommended in controlled structures (if and loop)
* Also called compound statement.

if (Bool-Expression)

{
>‘if clause”
)

else

{
>“else clause”
}

Loop

is a repetition control structure.

causes a single statement or block of
statements to be executed repeatedly until a

condition is met.
There are 3 kinds of loop in C++:

— While loop
— Do-While loop
— For loop

While Loop

SYNTAX
while (Expression)
{
... // loop body
}
* No semicolon after the boolean expression

« Loop body can be a single statement, a null statement,
or a block.

While Loop Mechanism

When the
expression is
tested and
found to be
false, the loop
is exited and
control passes
to the
statement
which follows
the loop
body.

FALSE

Expression

TRUE

body

statement

J

When the
expression is
tested and
found to be
true, the loop
body is
executed.
Then, the
expression is
tested again.

While Loop Example

int count;
count = O; // initialize LCV
while (count < 5) // test expression
{
cout << count <<“”; // repeated action
count = count + 1; // update LCV
}

cout << “Done” << endl;

Loop Tracing

count = 0O;
while (count < 5)

{

“n,

cout << count << 7;
count = count + 1;

}

cout << “Done” << endl ;

Increment and Decrement
Operators

Denoted as ++ or --
Mean increase or decrease by 1
Pre increment/decrement: ++a, --a

— Increase/decrease by 1 before use.

Post increment/decrement: a++, a--

— Increase/decrease by 1 after use.

Pre and Post increment/decrement yield
different results when combining with another
operation.

Pre and Post
Increment and Decrement

int count;

count = O;
while (count < 5)

{

cout << ++count << ““:

}

cout << “Done” << endl ;

Do-While Loop

SYNTAX
do

{

... // loop body
} while (Expression);
* Insured that the loop is executed at least once
 The LCV is initialized/updated before the end of the loop.
* Boolean expression is tested at the end of the loop.
* There is a semicolon after the boolean expression.

Do-While Loop Mechanism

When the
expression is
tested and
found to be
false, the loop
is exited and
control passes
to the
statement
which follows
the loop
body.

The loop body is executed first

FALSE

)

body

statement (

TRUE

Expression

J

When the
expression is
tested and
found to be
true, the loop
body is
executed.
Then, the
expression is
tested again.

Do-While Loop Example

int ans;
do
{
cout << “Choose a number from 1 to 4: “;// repeated action
cin >> ans; // LCV is initialized or updated
} while (ans >= 1 && ans <= 4); // test expression

cout << “Done”;

Loop-Controlled Types

Count-controlled: repeat a specified number of times.

Event-driven: some condition within the loop body
changes and this causes the repeating to stop.

Sentinel-controlled: using a specific value to end.

Sentinel: a value that cannot occur as valid data.

Ask-before-Continuing: ask users if they want to
continue.

Flag-Controlled Loops: use a variable whose value is
changed when an event occurs (usually from false to
true).

Count-Controlled Loop

* Has a loop control variable (LCV) as a counter.
 LCV must be

— Initialized before start of the loop
— Tested (boolean expression)
— Updated

Event-driven loop

double salary;

cout << "Enter you salary: ";

cin >> salary;

int years = 0;

while (salary < 50000) {
salary = salary * 1.02;
years++;

}

cout << “You need “ << years << “years to get to 50K";

Sentinel-Controlled

do

cout<< “Enter salary, type -1 to exit”; // no one earns negative salary
cin>>salary;
// process income

} while (salary > 0);

Ask-before-Continuing

char ans = 'y’; /I LCV is initialized
while (ans ==Y’ || ans == 'y’) // test expression
{

doSomething; // repeated action

cout << “Do you want to continue? 7;

cin >> ans; /[LCV Is updated

BREAK statement

allows to exit from any loop.

do
{
cin>>x;
if (x % 2 ==0)
break;

} while (x > 0); // exits when an even number is entered

CONTINUE Statement

allows you to skip the rest of the loop body and go
back to the beginning of the loop.

do
{
cin>>x;
if (x% 2 ==0)
continue;

cout<<x<<endl;
} while (x <100);
//prints out all odd numbers entered less than 100

Program Style

* Indenting:
— Separate processes with blank lines

— Blank lines are also ighored and are used to increase
readability.

— indent statements within statements (loop body)
* Comments:

— // tells the computer to ignore this line.

— for internal documentation. This is done for program
clarity and to facilitate program maintenance.

General rules for Comments

* Place a comment at the beginning of every file
with the file name, version number, a brief
program description, programmer’s name.

* Place a descriptive comment after each
variable declared.

— Use a blank line before and after variable
declarations

* Place a descriptive comment and a blank line
before each subtask.

Constants

e Syntax: const type identifier = value;
* Ex: const double TAX_RATE = 0.08;
* Convention: use upper case for constant ID.

Why use constants?

e Clarity: Tells the user the significance of the number.
There may be the number 0.08 elsewhere in the
program, but you know that it doesn’t stand for
TAXRATE.

 Maintainability. Allows the program to be modified
easily.

— Ex: Program tax compute has const double
TAXRATE=0.0725. If taxes rise to 8%, programmer only
has to change the one line to const double TAXRATE=0.08

e Safety: Cannot be altered during program execution

