
Unit-1: Crystal Structure and Crystal Engineering of Organic Solids 
Close-Packing of Identical Spheres 

Crystals are of course three-dimensional objects, exploring the properties of arrays in 
two-dimensional space. This will make it easier to develop the basic ideas without 
complication and to visualize in 3-D. 

 

 
 

The interior of the square-packed array is in contact with four other marbles, while 
this number rises to six in the hexagonal-packed arrangement. It should also be apparent that 
the latter scheme covers a smaller area (contains less empty space) and is therefore a more 
efficient packing arrangement. If you are good at geometry, you can show that square 
packing covers 78 percent of the area, while hexagonal packing yields 91 percent coverage. 
 

 
 
If the atoms are identical and are bound together mainly by dispersion forces which 

are completely non-directional, they will favor a structure in which as many atoms can be in 
direct contact as possible. This will, of course, be the hexagonal arrangement. 
 

Directed chemical bonds between atoms have a major effect on the packing. The 
version of hexagonal packing shown at the right occurs in the form of carbon known 
as graphite which forms 2-dimensional sheets. Each carbon atom within a sheet is bonded to 
three other carbon atoms. The result is just the basic hexagonal structure with some atoms 
missing. 

 
 

The coordination number of 3 reflects the sp2-hybridization of carbon in graphite, 
resulting in plane-trigonal bonding and thus the sheet structure. Adjacent sheets are bound by 
weak dispersion forces, allowing the sheets to slip over one another and giving rise to the 
lubricating and flaking properties of graphite. 
 
Lattices 

The underlying order of a crystalline solid can be represented by an array of regularly 
spaced points that indicate the locations of the crystal's basic structural units. This array is 
called a crystal lattice. Crystal lattices can be thought of as being built up from repeating 
units containing just a few atoms. These repeating units act much as a rubber stamp: press it 
on the paper, move ("translate") it by an amount equal to the lattice spacing, and stamp the 
paper again. 



 

 
The gray circles represent a square array of lattice points. 

 
 

 
The orange square is the simplest unit cell that can be used to define the 2-

dimensional lattice. 
 

 
Building out the lattice by moving ("translating") the unit cell in a series of steps, 

 
 
Although real crystals do not actually grow in this manner, this process is 

conceptually important because it allows us to classify a lattice type in terms of the simple 
repeating unit that is used to "build" it. We call this shape the unit cell. Any number of 
primitive shapes can be used to define the unit cell of a given crystal lattice. The one that is 
actually used is largely a matter of convenience, and it may contain a lattice point in its 
centre, as you see in two of the unit cells shown here. In general, the best unit cell is the 
simplest one that is capable of building out the lattice. 

 

 
 

 
 

Shown above are unit cells for the close-packed square and hexagonal lattices. 
Although we could use a hexagon for the second of these lattices, the rhombus is preferred 
because it is simpler. 



 
 
Notice that in both of these lattices, the corners of the unit cells are centred on a lattice 

point. This means that an atom or molecule located on this point in a real crystal lattice is 
shared with its neighbouring cells. As is shown more clearly here for a two-dimensional 
square-packed lattice, a single unit cell can claim "ownership" of only one-quarter of each 
molecule, and thus "contains" 4 × ¼ = 1 molecule. 

 

 
 

The unit cell of the graphite form of carbon is also a rhombus, in keeping with the 
hexagonal symmetry of this arrangement. Notice that to generate this structure from the unit 
cell, we need to shift the cell in both the x- and y- directions in order to leave empty spaces at 
the correct spots. We could alternatively use regular hexagons as the unit cells, but 
the x+y shifts would still be required, so the simpler rhombus is usually preferred. As you 
will see in the next section, the empty spaces within these unit cells play an important role 
when we move from two- to three-dimensional lattices. 
 
Cubic Crystals 

In order to keep this lesson within reasonable bounds, we are limiting it mostly to 
crystals belonging to the so-called cubic system. In doing so, we can develop the major 
concepts that are useful for understanding more complicated structures (as if there are not 
enough complications in cubics alone!) But in addition, it happens that cubic crystals are very 
commonly encountered; most metallic elements have cubic structures, and so does ordinary 
salt, sodium chloride. 

 
 
We usually think of a cubic shape in terms of the equality of its edge lengths and the 

90° angles between its sides. For example, you can rotate a cube 90° around an axis 
perpendicular to any pair of its six faces without making any apparent change to it. We say 
that the cube possesses three mutually perpendicular four-fold rotational axes, abbreviated 
C4 axes. But if you think about it, a cube can also be rotated around the axes that extend 



between opposite corners; in this case, it takes three 120° rotations to go through a complete 
circle, so these axes (also four in number) are three-fold or C3 axes. 
 

Cubic crystals belong to one of the seven crystal systems whose lattice points can be 
extended indefinitely to fill three-dimensional space and which can be constructed by 
successive translations (movements) of a primitive unit cell in three dimensions. As we will 
see below, the cubic system, as well as some of the others, can have variants in which 
additional lattice points can be placed at the center of the unit or at the center of each face. 
 
The three types of cubic lattices 
 

 
 

Structural examples of all three are known, with body- and face-centered (BCC and 
FCC) being much more common; most metallic elements crystallize in one of these latter 
forms. But although the simple cubic structure is uncommon by itself, it turns out that many 
BCC and FCC structures composed of ions can be regarded as interpenetrating combinations 
of two simple cubic lattices, one made up of positive ions and the other of negative 
ions. Notice that only the FCC structure, which we will describe below, is a close-packed 
lattice within the cubic system. 
 
Close-packed lattices in three dimensions 

Close-packed lattices allow the maximum amount of interaction between atoms. If 
these interactions are mainly attractive, then close-packing usually leads to more 
energetically stable structures. These lattice geometries are widely seen in metallic, atomic, 
and simple ionic crystals. 
 

As we pointed out above, hexagonal packing of a single layer is more efficient than 
square-packing, so this is where we begin. Imagine that we start with the single layer of green 
atoms shown below. We will call this the A layer. If we place a second layer of atoms 
(orange) on top of the A-layer, we would expect the atoms of the new layer to nestle in the 
hollows in the first layer. But if all the atoms are identical, only some of these void spaces 
will be accessible. 

 
 

In the diagram on the left, notice that there are two classes of void spaces between the 
A atoms; one set has a vertex pointing up, while the other set has down-pointing vertices. 
Each void space constitutes a depression in which atoms of a second layer (the B-layer) can 
nest. The two sets of void spaces are completely equivalent, but only one of these sets can be 



occupied by a second layer of atoms whose size is similar to those in the bottom layer. In the 
illustration on the right above we have arbitrarily placed the B-layer atoms in the blue voids, 
but could just as well have selected the white ones. 
 
Two choices for the third layer lead to two different close-packed lattice types 

Now consider what happens when we lay down a third layer of atoms. These will fit 
into the void spaces within the B-layer. As before, there are two sets of these positions, but 
unlike the case described above, they are not equivalent. 

 

 
 
The atoms in the third layer are represented by open blue circles in order to avoid 

obscuring the layers underneath. In the illustration on the left, this third layer is placed on the 
B-layer at locations that are directly above the atoms of the A-layer, so our third layer is just 
another A layer. If we add still more layers, the vertical sequence A-B-A-B-A-B-A... repeats 
indefinitely. 
 

In the diagram on the right above, the blue atoms have been placed above the white 
(unoccupied) void spaces in layer A. Because this third layer is displaced horizontally (in our 
view) from layer A, we will call it layer C. As we add more layers of atoms, the sequence of 
layers is A-B-C-A-B-C-A-B-C..., so we call it ABC packing. 

 
For the purposes of clarity, only three atoms of the A and C layers are shown in these 

diagrams. But in reality, each layer consists of an extended hexagonal array; the two layers 
are simply displaced from one another. 

 

  
 

These two diagrams that show exploded views of the vertical stacking further 
illustrate the rather small fundamental difference between these two arrangements— but, as 
you will see below, they have widely divergent structural consequences. Note the opposite 
orientations of the A and C layers 
 
The Hexagonal closed-packed structure 

The HCP stacking shown on the left just above takes us out of the cubic crystal 
system into the hexagonal system, so we will not say much more about it here except to point 
out each atom has 12 nearest neighbors: six in its own layer, and three in each layer above 
and below it. 



 
 
The cubic close-packed structure 
Below we reproduce the FCC structure that was shown above. 
 

 
 

The B-layer atoms form a hexagon, but this is a cubic structure. The FCC stack is 
inclined with respect to the faces of the cube, and is in fact coincident with one of the three-
fold axes that passes through opposite corners. It requires a bit of study to see the 
relationship, and we have provided two views to help you. The one on the left shows the cube 
in the normal isometric projection; the one on the right looks down upon the top of the cube 
at a slightly inclined angle. 

 
 

Both the CCP and HCP structures fill 74 percent of the available space when the 
atoms have the same size. You should see that the two shaded planes cutting along diagonals 
within the interior of the cube contain atoms of different colors, meaning that they belong to 
different layers of the CCP stack. Each plane contains three atoms from the B layer and three 
from the C layer, thus reducing the symmetry to C3, which a cubic lattice must have. 
 
 
 
 



The FCC unit cell 
The figure below shows the the face-centered cubic unit cell of a cubic-close packed 

lattice. 

 
 

Each corner atom is shared with eight adjacent unit cells and so a single unit cell can 
claim only 1/8 of each of the eight corner atoms. Similarly, each of the six atoms centered on 
a face is only half-owned by the cell. The grand total is then (8 × 1/8) + (6 × ½) = 4 atoms per 
unit cell. 
Interstitial Void Spaces 
The atoms in each layer in these close-packing stacks sit in a depression in the layer below it. 
As we explained above, these void spaces are not completely filled. (It is geometrically 
impossible for more than two identical spheres to be in contact at a single point.) We will see 
later that these interstitial void spaces can sometimes accommodate additional (but generally 
smaller) atoms or ions. 

 
 

If we look down on top of two layers of close-packed spheres, we can pick out two 
classes of void spaces which we call tetrahedral and octahedral holes. 
 
Common cubic close-packed structures 

It can be shown from elementary trigonometry that an atom will fit exactly into an 
octahedral site if its radius is 0.414 as great as that of the host atoms. The corresponding 
figure for the smaller tetrahedral holes is 0.225. 
 

Many pure metals and compounds form face-centered cubic (cubic close- packed) 
structures. The existence of tetrahedral and octahedral holes in these lattices presents an 
opportunity for "foreign" atoms to occupy some or all of these interstitial sites. In order to 
retain close-packing, the interstitial atoms must be small enough to fit into these holes 
without disrupting the host CCP lattice. When these atoms are too large, which is commonly 
the case in ionic compounds, the atoms in the interstitial sites will push the host atoms apart 
so that the face-centered cubic lattice is somewhat opened up and loses its close-packing 
character. 
 
The rock-salt structure 

Alkali halides that crystallize with the "rock-salt" structure exemplified by sodium 
chloride can be regarded either as a FCC structure of one kind of ion in which the octahedral 
holes are occupied by ions of opposite charge, or as two interpenetrating FCC lattices made 
up of the two kinds of ions. The two shaded octahedra illustrate the identical coordination of 
the two kinds of ions; each atom or ion of a given kind is surrounded by six of the opposite 
kind, resulting in a coordination expressed as (6:6). 

 



 
 

How many NaCl units are contained in the unit cell? If we ignore the atoms that were 
placed outside the cell in order to construct the octahedra, you should be able to count 
fourteen "orange" atoms and thirteen "blue" ones. But many of these are shared with adjacent 
unit cells. 

An atom at the corner of the cube is shared by eight adjacent cubes, and thus makes a 
1/8 contribution to any one cell. Similarly, the center of an edge is common to four other 
cells, and an atom centered in a face is shared with two cells. Taking all this into 
consideration, you should be able to confirm the following tally showing that there are four 
AB units in a unit cell of this kind. 

 
Orange Blue 

8 at corners: 8 x 1/8 = 1 12 at edge centers: 12 x ¼ = 3 
6 at face centers: 6 x ½ = 3 1 at body center = 1 
total: 4 total: 4 

 
If we take into consideration the actual sizes of the ions (Na+ = 116 pm, Cl– = 

167 pm), it is apparent that neither ion will fit into the octahedral holes with a CCP lattice 
composed of the other ion, so the actual structure of NaCl is somewhat expanded beyond the 
close-packed model. 

 
 

The space-filling model on the right depicts a face-centered cubic unit cell of chloride 
ions (purple), with the sodium ions (green) occupying the octahedral sites. 
 
The zinc-blende structure: using some tetrahedral holes 

Since there are two tetrahedral sites for every atom in a close-packed lattice, we can 
have binary compounds of 1:1 or 1:2 stoichiometry depending on whether half or all of the 
tetrahedral holes are occupied. Zinc-blende is the mineralogical name for zinc sulfide, ZnS. 
An impure form known as sphalerite is the major ore from which zinc is obtained. 

 



 
 

This structure consists essentially of a FCC (CCP) lattice of sulfur atoms (orange) 
(equivalent to the lattice of chloride ions in NaCl) in which zinc ions (green) occupy half of 
the tetrahedral sites. As with any FCC lattice, there are four atoms of sulfur per unit cell, and 
the the four zinc atoms are totally contained in the unit cell. Each atom in this structure 
has fournearest neighbors, and is thus tetrahedrally coordinated. It is interesting to note that if 
all the atoms are replaced with carbon, this would correspond to the diamond structure. 
 
The fluorite structure: all tetrahedral sites occupied 

Fluorite, CaF2, having twice as many ions of fluoride as of calcium, makes use of all 
eight tetrahedral holes in the CPP lattice of calcium ions (orange) depicted here. To help you 
understand this structure, we have shown some of the octahedral sites in the next cell on the 
right; you can see that the calcium ion at A is surrounded by eight fluoride ions, and this is of 
course the case for all of the calcium sites. Since each fluoride ion has four nearest-neighbor 
calcium ions, the coordination in this structure is described as (8:4). 

 

 
 

Although the radii of the two ions (F–= 117 pm, Ca2+ = 126 pm does not allow true 
close packing, they are similar enough that one could just as well describe the structure as a 
FCC lattice of fluoride ions with calcium ions in the octahedral holes. 
 
Simple- and body-centered cubic structures 

In Section 4 we saw that the only cubic lattice that can allow close packing is the 
face-centered cubic structure. The simplest of the three cubic lattice types, the simple cubic 
lattice, lacks the hexagonally-arranged layers that are required for close packing. But as 
shown in this exploded view, the void space between the two square-packed layers of this cell 
constitutes an octahedral hole that can accommodate another atom, yielding a packing 



arrangement that in favorable cases can approximate true close-packing. Each second-layer B 
atom (blue) resides within the unit cell defined the A layers above and below it. 

 

 
 

The A and B atoms can be of the same kind or they can be different. If they are the 
same, we have a body-centered cubic lattice. If they are different, and especially if they are 
oppositely-charged ions (as in the CsCl structure), there are size restrictions: if the B atom is 
too large to fit into the interstitial space, or if it is so small that the A layers (which all carry 
the same electric charge) come into contact without sufficient A-B coulombic attractions, this 
structural arrangement may not be stable. 
 
The cesium chloride structure 

CsCl is the common model for the BCC structure. As with so many other structures 
involving two different atoms or ions, we can regard the same basic structure in different 
ways. Thus if we look beyond a single unit cell, we see that CsCl can be represented as two 
interpenetrating simple cubic lattices in which each atom occupies an octahedral hole within 
the cubes of the other lattice. 

 

 
 
Hexagonal Close Packed Crystal Structure (HCP) 

If you look at the figure below, you might think that hexagon close-packed crystal 
structure is more complicated than face-centered cubic crystal structure. In fact, it is a simpler 
structure. Think back to the last section where we constructed first one layer of atoms and 
then a second layer of atoms for face-centered cubic structure. Now, for hexagonal close-
packed crystal structure, we do not construct a third layer. Instead, the third layer is simply 
the first layer repeated, the fourth layer is the second layer repeated, and so on and so on as 
shown in the figure below. 



 
Hexagonal close-packed structure 

 
It turns out that face-centered cubic and hexagonal close-packed crystal structures 

pack atoms equally tightly. Some metals with hexagonal close-packed crystal structures 
include cobalt, cadmium, zinc, and the α phase of titanium. A more typical representation of 
the hexagonal close-packed structure is shown in the figure below. In this representation a 
hexagon on the top and on the bottom sandwich a triangle in between the two hexagons. 

 

 
Hexagonal close-packed structure unit cell 

Close packing 

 
The hcp lattice (left) and the fcc lattice (right) 

 
The principles involved can be understood by considering the most efficient way of 

packing together equal-sized spheres and stacking close-packed atomic planes in three 
dimensions. For example, if plane A lies beneath plane B, there are two possible ways of 
placing an additional atom on top of layer B. If an additional layer was placed directly over 
plane A, this would give rise to the following series: ...ABABABAB... 

 
This arrangement of atoms in a crystal structure is known as hexagonal close 

packing (hcp). If, however, all three planes are staggered relative to each other and it is not 
until the fourth layer is positioned directly over plane A that the sequence is repeated, then 
the following sequence arises: ...ABCABCABC... 



 
This type of structural arrangement is known as cubic close packing (ccp). The unit 

cell of a ccp arrangement of atoms is the face-centered cubic (fcc) unit cell. This is not 
immediately obvious as the closely packed layers are parallel to the {111} planes of the fcc 
unit cell. There are four different orientations of the close-packed layers. The packing 
efficiency can be worked out by calculating the total volume of the spheres and dividing by 
the volume of the cell as follows: The 74% packing efficiency is the maximum density 
possible in unit cells constructed of spheres of only one size. Most crystalline forms of 
metallic elements are hcp, fcc, or bcc (body-centered cubic). The coordination number of 
atoms in hcp and fcc structures is 12 and its atomic packing factor (APF) is the number 
mentioned above, 0.74. This can be compared to the APF of a bcc structure, which is 0.68. 
 
Crystal Structures 
Fundamental Concepts 

Atoms self-organize in crystals, most of the time. The crystalline lattice, is a periodic 
array of the atoms. When the solid is not crystalline, it is called amorphous. Examples of 
crystalline solids are metals, diamond and other precious stones, ice, graphite. Examples of 
amorphous solids are glass, amorphous carbon (a-C), amorphous Si, most plastics To discuss 
crystalline structures it is useful to consider atoms as being hard spheres, with well-defined 
radii. In this scheme, the shortest distance between two like atoms is one diameter. 
 
Unit Cells 

The unit cell is the smallest structure that repeats itself by translation through the 
crystal. We construct these symmetrical units with the hard spheres. The most common types 
of unit cells are the faced-centered cubic (FCC), the body-centered cubic (FCC) and the 
hexagonal close-packed (HCP). Other types exist, particularly among minerals. The simple 
cube (SC) is often used for didactical purpose, no material has this structure. The closest 
packed direction in a BCC cell is along the diagonal of the cube; in a FCC cell is along the 
diagonal of a face of the cube. 
 
Polymorphism and Allotropy 

Some materials may exist in more than one crystal structure, this is called 
polymorphism. If the material is an elemental solid, it is called allotropy. An example of 
allotropy is carbon, which can exist as diamond, graphite, and amorphous carbon. 
 
Close-Packed Crystal Structures 

The FCC and HCP are related, and have the same APF. They are built by packing 
spheres on top of each other, in the hollow sites). The packing is alternate between two types 
of sites, ABABAB in the HCP structure, and alternates between three types of 
positions, ABCABC in the FCC crystals. 
 
Crystalline and Non-Crystalline Materials 
Single Crystals 

Crystals can be single crystals where the whole solid is one crystal. Then it has a 
regular geometric structure with flat faces. 



Polycrystalline Materials 
A solid can be composed of many crystalline grains, not aligned with each other. It is 

called polycrystalline. The grains can be more or less aligned with respect to each other. 
Where they meet is called a grain boundary. 
 
Anisotropy 

Different directions in the crystal have a different packing. For instance, atoms along 
the edge FCC crystals are more separated than along the face diagonal. This 
causes anisotropy in the properties of crystals; for instance, the deformation depends on the 
direction in which a stress is applied. 
 
X-Ray Diffraction Determination of Crystalline Structure – not covered 
Non-Crystalline Solids 

In amorphous solids, there is no long-range order. But amorphous does not mean 
random, since the distance between atoms cannot be smaller than the size of the hard spheres. 
Also, in many cases there is some form of short-range order. For instance, the tetragonal 
order of crystalline SiO2 (quartz) is still apparent in amorphous SiO2 (silica glass.) 
 
Body Centred Cubic Structure 

At room temperatures, elements Li, Na, K, Rb, Ba, V, Cr and Fe have structures that 
can be described as body centre cubic (bcc) packing of spheres. The other two common ones 
are face centred cubic (fcc) and hexagonal closest (hcp) packing. This type of structure is 
shown by the diagram below. In a crystal structure, the arrangement extends over millions 
and millions of atoms, and the above diagram shows the unit cell, the smallest unit that, when 
repeatedly stacked together, will generate the entire structure. 

 
 
 
Actually, the unit we draw is more than a unit 

cell. We use the centre of the atoms (or spheres) to 
represent the corners of the unit cell, and each of these 
atoms are shared by 8 unit cells. There is a whole atom located in the centre of the unit cell. 
Usually, the length of the cell edge is represented by a. The direction from a corner of a cube 
to the farthest corner is called body diagonal (bd). The face diagonal (fd) is a line drawn from 
one vertex to the opposite corner of the same face. If the edge is a, then we have: 
fd2 = a2 + a2 = 2 a2 
bd2 = fd2 + a2 
      = a2 + a2 + a2 
      = 3 a2 

Atoms along the body diagonal (bd) touch each other. Thus, the body diagonal has a 
length that is four times the radius of the atom, R. 
bd = 4 R 

The relationship between a and R can be worked out by the Pythagorean theorem: 
(4 R)2 = 3 a2 
Thus, 



4 R = sqrt(3) a 
or 
a = 4R/sqrt(3) 

Recognizing these relationships enable you to calculate parameters for this type of 
crystal. For example, one of the parameter is the packing fraction, the fraction of volume 
occupied by the spheres in the structure. 
 
Face Centered Cubic Structure (FCC) 

If, instead of starting with a square, we start with a triangle and continue to add atoms, 
packing as tightly as we can, we will end up with a layer of atoms as shown in the figure 
below. 

 
First layer of hexagonal structure 

 
Now let me put an atom on top of that first layer over one of the 'B' positions and let it 

rest down into one of the valleys. I can now place two more atoms in nearby 'B' positions so 
that each will rest in their own valley in such a way that all three atoms will touch and form a 
triangle. Now let me add more atoms to the second layer, packing them in as tightly as 
possible. These two layers are shown in the figure below. If you look closely, you should be 
able to see that the second layer only covers half of the valleys produced by the first layer. 
The 'C' valleys are left uncovered. In fact, half of the valleys of the second layer line up with 
the unoccupied 'C' valleys of the first layer. 

 
First and second layer of hexagonal structure 

 
Now let’s put a third layer where the atoms are placed where the unoccupied valleys 

of the first two layers lineup, the 'C' valleys. It is a little difficult to visualize, but if one of the 
top layer atoms is one corner of our cube and that corner is pointing out then we obtain the 
cube shown in the figure below. 



 
Complete three layer hexagonal structure 

 
This crystal structure is known as face-centered cubic and has atoms at each corner of 

the cube and six atoms at each face of the cube. It is shown in the figure below. This 
structure, as well as the next structure we are going to discuss, has the atoms packed as 
tightly as theoretically possible. Metals that possess face-centered cubic structure include 
copper, aluminum, silver, and gold. 

 

 
Face centred cubic (fcc) structure 

Cation-anion radius ratio 
 

 

Critical Radius Ratio. This diagram is for coordination number six: 4 anions in the plane 
shown, 1 above the plane and 1 below. The stability limit is at rC/rA = 0.414 

In condensed matter physics and inorganic chemistry the cation-anion radius ratio is 
the ratio of the ionic radius of the cation to the ionic radius of the anion in a cation-
anion compound. According to Pauling's rules for crystal structures, the allowed size of the 



cation for a given structure is determined by the critical radius ratio. If the cation is too small, 
then it will attract the anions into each other and they will collide hence the compound will be 
unstable due to anion-anion repulsion; this occurs when the radius ratio drops below 0.155. 
At the stability limit the cation is touching all the anions and the anions are just touching at 
their edges (radius ratio = 0.155). For radius ratios greater than 0.155, the compound may 
be stable. The table below gives the relation between radius ratio and coordination number, 
which may be obtained from a simple geometrical proof.  
 

Radius Ratio Coordination number Type of void Example 
< 0.155 2 Linear  

0.155 - 0.225 3 Triangular Planar B2O3  

0.225 - 0.414 4 Tetrahedral ZnS, CuCl 
0.414 - 0.732 6 Octahedral NaCl, MgO 
0.732 - 1.000 8 Cubic CsCl, NH4Br 

 
 
Polyhedron 

"Polyhedra" redirects here. For the relational database system, see Polyhedra DBMS. 
For the game magazine, see Polyhedron (magazine). For the scientific journal, 
see Polyhedron (journal). For the occlusion bodies in Baculovirus infection, see Polyhedrin. 

Examples of polyhedra 

 
Regular tetrahedron 

 
Small stellated dodecahedron 

 
Icosidodecahedron 

 
Great cubicuboctahedron 

 
Rhombic triacontahedron 

 
A toroidal polyhedron 

 



In geometry, a polyhedron is a solid in three dimensions with flat polygonal faces, 
straight edges and sharp corners or vertices. The word polyhedron comes from the classical 
greek, as polyhedron. A convex polyhedron is the convex hull of finitely many points, not all 
on the same plane. Cubes and pyramids are examples of convex polyhedra. A polyhedron is a 
3-dimensional example of the more general polytope in any number of dimensions. 
 
Sodium Oxide 

Sodium oxide is a chemical compound with the formula Na2O. It is used 
in ceramics and glasses, though not in a raw form. It is the base anhydride of sodium 
hydroxide, so when water is added to sodium oxide NaOH is produced. 
 

 
Na2O + H2O → 2 NaOH 

The alkali metal oxides M2O (M = Li, Na, K, Rb) crystallise in the antifluorite 
structure. In this motif the positions of the anions and cations are reversed relative to their 
positions in CaF2, with sodium ions tetrahedrally coordinated to 4 oxide ions and oxide 
cubically coordinated to 8 sodium ions.  
 

Sodium oxide is produced by the reaction of sodium with sodium hydroxide, sodium 
peroxide, or sodium nitrite:  

2 NaOH + 2 Na → 2 Na2O + H2 
Na2O2 + 2 Na → 2 Na2O 
2 NaNO2 + 6 Na → 4 Na2O + N2 
Most of these reactions rely on the reduction of something by sodium, whether it is 

hydroxide, peroxide, or nitrite. 
Burning sodium in air will produce Na2O and about 20% sodium peroxide Na2O2. 

6 Na + 2 O2 → 2 Na2O + Na2O2 
Alternatively, sodium carbonate can be heated to 851 °C, producing carbon dioxide and 
sodium oxide. 

Na2CO3 → Na2O + CO2 
At 208 °C, sodium ascorbate will decompose to furan derivatives and sodium oxide.  
 
Applications 
Glass making 

Sodium oxide is a significant component of glasses and windows although it is added 
in the form of "soda" (sodium carbonate). Sodium oxide does not explicitly exist in glasses, 
since glasses are complex cross-linked polymers. Typically, manufactured glass contains 
around 15% sodium oxide, 70% silica (silicon dioxide) and 9% lime (calcium oxide). The 
sodium carbonate "soda" serves as a flux to lower the temperature at which the silica melts. 
Soda glass has a much lower melting temperature than pure silica, and has slightly higher 
elasticity. These changes arise because the silicon dioxide and soda react to form sodium 
silicates of the general formula Na2[SiO2]x[SiO3]. 



Na2CO3 → Na2O + CO2 
Na2O + SiO2 → Na2SiO3 
 
A. Simple Cubic Cell 

As you rotate the spacefill model around you will notice that all the spheres (ions or 
atoms) are in contact with each other. Observe that in the simple cubic cell the edge equals 
two atomic radii. The volume of the unit cell then is the edge cubed (edge3). But the unit cell 
only contains, on the lattice points, an eighth of the volume of the sphere (ion or atoms). 
Because there are a total of eight one eighth volume spheres in the cell the simple cubic unit 
contains one net particle. One important question should be asked: what is the efficiency of 
packing same size atoms in simple cubes?  

 

 
 
B. Body-centered Cubic Cell 

Rotate the body-centered cubic (bcc) unit cell. As the name suggests it contains an ion 
or atom in the center of the cube. If all the spheres have the same radius, like in metals, then 
the spheres centered on the lattice points do not make contact with each other. Another way 
of looking at the layout is using 2-dimensional layer diagrams. The bcc has 3 layers (along 
the z-axis), which would look like this: 

 
So in this case the edge is greater than two atomic radii of the lattice corners. To determine 
the edge value we must rely on the diagonal of the two opposite corners of the unit cell. This 
cube diagonal is 4 atom radius. The number of particles in a bcc unit cell is 2, determined as 
follows: 8 spheres on the lattice corners each with an eighth of their volume within the cell 
and one sphere completely embedded in the lattice.  

 
 
 
 
 
 
 
 
 
 

We might expect to have a greater packaging efficiency because there are more 
particles within the lattice compared to a simple cubic cell. But we should realize that the 
lattice volume has increased accordingly. The ratio of the volumes where all particles are 



equal gives us a 68.0%. Potassium (alkali metal) and iron are examples of metals that arrange 
themselves in bcc.  

The virus that causes foot and mouth disease in animals also exhibits bcc crystal 
arrangements.  
 
C. Face-centered Cubic Cell 

 
 
 
 
 
 
 
 

 
 

Illustrated left is the face-centered cubic (fcc) unit cell. It has a particle in the middle 
of each of the six faces of the cube. The two-dimensional layer representation shows that 
there are six particles which have half of their volumes within the lattice. The total number of 
particles within the lattice can be calculated as follows: 8 particles on the lattice corners, 6 
particles with half of their volumes within the lattice. This gives us a total of 4. alculation of 
the edge value is quite straightforward. 

 
Face-centered cubic cells have a 74.0% packaging efficiency for spheres or ions of 

equal diameter. Some examples of fcc arrangements are: aluminum, copper and 
buckminsterfullerenes C60. It is crucial that we consider that there are holes within these 
lattices which can be filled with smaller ions or particles - we will see this later - thus 
increasing packaging efficiency. Compounds like salts fulfill this requirement. Ions of 
opposite charge can occupy these spaces. The result is an organized three-dimensional 
arrangement of ions and counter-ions. 
 
 
D. Ionic Compounds 

Ionic compounds are made up of anions and cations. Usually the larger anions make 
up the framework of the crystal lattice and the smaller cations then occupy the spaces or holes 
left between the framework of anions. Packing arrangements like simple cubic (sc), cubic 
close-packed (ccp), hexagonal close-packed (hcp) are examples of structures which minimize 
same charge interactions. 
 
The Simple Cubic Hole 

Let's start with anions packing in simple cubic cells. As you can see in Figure 6 the 
cation can sit in the hole where 8 anions pack. An example of this packing is CsCl (See the 
CsCl file left; Cl- yellow, Cs+ green). This lattice framework is arrange by the chloride ions 
forming a cubic structure. The smaller cesium cation sits in the hole surrounded by 8 chloride 
ions. Alternatively, it can be viewed as a chloride anion surrounded by 8 cesium cations. Both 
have coordination number 8. Each unit cell has one cesium ion and one chloride ion. 

The cubic hole is quite large. Compare the sizes of Cs+ (1.69 Å) to Cl- (1.81 Å). It is 
convenient at this point to clarify the misconception concerning CsCl arrangement. Cesium 
chloride does not pack in a body-centered cubic structure. In a body-centered cubic structure 
all the atoms in the unit cell are identical (See section on Body- centered Cubic Cell). As you 



may have noticed the cation occupying the center of the cube is smaller than the anions on 
the corners of the cube. 

 
 
 
 
 
 
 
 
 
 
 
Cesium oxide 

Cesium oxide describes inorganic compounds composed of cesium and oxygen. The 
following binary oxides of cesium are known: Cs11O3, Cs4O, Cs7O, and Cs2O. Both the oxide 
and suboxides are brightly coloured. The species Cs2O forms yellow-
orange hexagonal crystals. 
  

 
Cesium oxide is used in photo cathodes to detect infrared signals in devices such 

as image intensifiers, vacuum photodiodes, photomultipliers, and TV camera tubes L. R. 
Koller described the first modern photo emissive surface in 1929–30 as a layer of cesium on a 
layer of cesium oxide on a layer of silver. It is a good electron emitter; however, its 
high vapor pressure limits its usefulness. Elemental magnesium reduces cesium oxide to 
elemental cesium, forming magnesium oxide as a side-product. 

Cs2O + Mg → 2Cs + MgO 
Cs2O is hygroscopic, forming the corrosive CsOH on contact with water. 
 
Rutile 

Rutile is a mineral composed primarily of titanium dioxide, TiO2. Rutile is the most 
common natural form of TiO2. Many rarer polymorphs of TiO2 are known: 

 anatase (sometimes known by the name "octahedrite"), a 
metastable tetragonal mineral of pseudo-octahedral habit; 

 brookite, an orthorhombic mineral; 
 TiO2 (B), a monoclinic form.[5] (akaogiite and riesite are the very current monoclinic 

new adds) 



Rutile has one of the highest refractive indices at visible wavelengths of any known 
crystal and also exhibits a particularly large birefringence and high dispersion. Owing to 
these properties, it is useful for the manufacture of certain optical elements, 
especially polarization optics, for longer visible and infrared wavelengths up to about 4.5 µm. 
Natural rutile may contain up to 10% iron and significant amounts of niobium and tantalum. 
Rutile derives its name from the Latin rutilus, red, in reference to the deep red color observed 
in some specimens when viewed by transmitted light. 
 

 
Rutile has a tetragonal unit cell, with unit cell parameters a = b = 4.584 Å, and c = 

2.953 Å. The titanium cations have a coordination number of 6, meaning they are surrounded 
by an octahedron of 6 oxygen atoms. The oxygen anions have a coordination number of 3, 
resulting in a trigonal planar coordination. Rutile also shows a screw axis when its octahedra 
are viewed sequentially.  

 
Rutile crystals are most commonly observed to exhibit a prismatic or acicular growth 

habitwith preferential orientation along their c axis, the [001] direction. This growth habit is 
favored as the {110} facets of rutile exhibit the lowest surface free energy and are therefore 
thermodynamically most stable. The c-axis oriented growth of rutile appears clearly 
in nanorods, nanowires and abnormal grain growth phenomena of this phase. 
 
Perovskite 

A perovskite is any material with the same type of crystal structure as calcium 
titanium oxide (CaTiO3), known as the perovskite structure, or XIIA2+VIB4+X2−

3 with the 
oxygen in the face centers. Perovskites take their name from the mineral, which was first 
discovered in the Ural mountains of Russia by Gustav Rose in 1839 and is named after 
Russian mineralogist L. A. Perovski (1792–1856). The general chemical formula for 
perovskite compounds is ABX3, where 'A' and 'B' are two cations of very different sizes, and 
X is an anion that bonds to both. The 'A' atoms are larger than the 'B' atoms. The ideal cubic-
symmetry structure has the B cation in 6-fold coordination, surrounded by 
an octahedron of anions, and the A cation in 12-fold cuboctahedral coordination. The relative 
ion size requirements for stability of the cubic structure are quite stringent, so slight buckling 
and distortion can produce several lower-symmetry distorted versions, in which the 
coordination numbers of A cations, B cations or both are reduced. 

Natural compounds with this structure are perovskite, loparite, and the silicate 
perovskite bridgmanite.  
 



 
 

The perovskite structure is adopted by many oxides that have the chemical formula 
ABO3. In the idealized cubic unit cell of such a compound, type 'B' atom sits at cube corner 
positions (0, 0, 0), type 'A' atom sits at body centre position (1/2, 1/2, 1/2) and oxygen atoms 
sit at face centred positions (1/2, 1/2, 0). (The diagram shows edges for an equivalent unit cell 
with A in body centre, B at the corners, and O in mid-edge). 

 
The relative ion size requirements for stability of the cubic structure are quite 

stringent, so slight buckling and distortion can produce several lower-symmetry distorted 
versions, in which the coordination numbers of A cations, B cations or both are reduced. 
Tilting of the BO6 octahedra reduces the coordination of an undersized A cation from 12 to as 
low as 8. Conversely, off-centering of an undersized B cation within its octahedron allows it 
to attain a stable bonding pattern. The resulting electric dipole is responsible for the property 
of ferroelectricity and shown by perovskites such as BaTiO3 that distort in this fashion.  

 
The orthorhombic and tetragonal phases are most common non-cubic variants. 

Complex perovskite structures contain two different B-site cations. This results in the 
possibility of ordered and disordered variants. 
 
Rhenium trioxide 

Rhenium trioxide or rhenium (VI) oxide is an inorganic compound with the formula 
ReO3. It is a red solid with a metallic cluster, which resembles copper in appearance. It is the 
only stable trioxide of the Group 7 elements (Mn, Tc, Re). 
 

 
 
Rhenium trioxide can be formed by reducing rhenium (VII) oxide with carbon monoxide.  

Re2O7 + CO → 2 ReO3 + CO2 
Re2O7 can also be reduced with dioxane.  



Rhenium oxide crystallizes with a primitive cubic unit cell, with a lattice parameter of 
3.742 Å (374.2 pm). The structure of ReO3 is similar to that of perovskite (ABO3), without 
the large A cation at the centre of the unit cell. Each rhenium center is surrounded by 
an octahedron defined by six oxygen centers. These octahedra share corners to form the 3-
dimensional structure. The coordination number of O is 2 because each oxygen atom has 2 
neighbouring Re atoms. Upon heating to 400 °C under vacuum, it 
undergoes disproportionation:  

 
3 ReO3 → Re2O7 + ReO2 

 
ReO3 is unusual for an oxide because it exhibits very low resistivity. It behaves like 

a metal in that its resistivity decreases as its temperature decreases. At 300 K, its resistivity is 
100.0 nΩ·m, whereas at 100 K, this decreases to 6.0 nΩ·m, 17 times less than at 300 K. 
Rhenium trioxide finds some use in organic synthesis as a catalyst for amide reduction.  
 
Potassium Tetrafluoridenickelate (II) - K2NiF4 

Potassium Tetrafluoridenickelate (II) is structurally related to perovskite. It can be 
thought of as containing single slices from the perovskite structure sharing four F- atoms from 
the octahedra within the layer and having terminal F atoms above and below the layer. These 
layers are separated by K+ ions and are displaced relative to one another. 

 
The spinel structure 

The spinels have the general formula AB2X4.  
    Where: 
    AII = a divalent cation like Mg, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, Sn  
    BIII = a trivalent cation like Al, Ga, In, Ti, V, Cr, Mn, Fe, Fe, Co, Ni  
    X = O, S, Se etc. 
  

Structure of Normal Spinels (AB2O4): The divalent AII ions occupy the tetrahedral voids, 
whereas the trivalent BIII ions occupy the octahedral voids in the close packed arrangement of 
oxide ions.  



A normal spinel can be represented as: (AII)tet(BIII)2
octO4  

E.g. MgAl2O4 (known as spinel), Mn3O4, ZnFe2O4, FeCr2O4 (chromite) etc. 
 

 
 
Antispinel Structure 

An inverse spinel is an alternative arrangement where the divalent ions swap with half of 
the trivalent ions so that the M(II) now occupy octahedral sites i.e. B(AB)O4. 
 

In this case Ni(II) is octahedral and half of the Fe(III) are tetrahedral. Complexes that 
share this structure include. A number of 1st row TM oxides and sulfides. 
 
Structures of Inverse spinels (B(AB)O4): The AII ions occupy the octahedral voids, whereas 
half of BIII ions occupy the tetrahedral voids. It can be represented as: (BIII)tet(AIIBIII)octO4  

E.g. Fe3O4 (ferrite), CoFe2O4, NiFe2O4 etc. 
The above inverse spinels can also be written as:  
Fe3O4 = FeIII(FeIIFeIII)O4  
CoFe2O4 = FeIII(CoIIFeIII)O4  
NiFe2O4 = FeIII(NiIIFeIII)O4  

 
The number of octahedral sites occupied may be ordered or random. The random 

occupation leads to defected spinels. E.g. NiAl2O4 for which the formula can be written as 
(Al0.75Ni0.25)tet [Ni0.75Al1.25]octaO4. Another defected spinel is γ-Al2O3 
 

Hydrogen-Bonded Supramolecular Motifs  
In the crystal structures of two organic salts, namely, trimethoprim sorbate dihydrate 

and trimethoprim o-nitrobenzoate, the trimethoprim [2,4-diamino-5-(3‘,4‘,5‘-
trimethoxybenzyl)pyrimidine] moieties are protonated at one of the ring nitrogens. In both 
the compounds, the carboxylate oxygens are hydrogen-bonded to the protonated pyrimidine 
rings to form the hydrogen-bonded cyclic bimolecular motif. These motifs further self-
organize in two different ways to give different types of hydrogen-bonded supramolecular 
architectures. 



 
In the crystal structures of two organic salts, namely, trimethoprim sorbate dihydrate 

and trimethoprim o-nitrobenzoate, the pyrimidine moieties of trimethoprim are protonated at 
one of the ring nitrogens. In both the compounds, the carboxylate oxygens are hydrogen-
bonded to the protonated pyrimidine rings to form the hydrogen-bonded cyclic bimolecular 
motif. These motifs further self-organize in two different ways to give different types of 
hydrogen-bonded networks in the two crystal structures. In compound 1, the two inversion 
related motifs pair through a pair of N−H···N hydrogen bonds involving an unprotonated ring 
nitrogen and 4-amino group. In addition to this pairing, one of the water oxygens bridges the 
2- and 4-amino groups on both sides of pairing to form a complementary DADA (D refers to 
the hydrogen-bond donor and A refers to the hydrogen-bond acceptor) array of quadruple 
hydrogen bonds. In compound 2, there is no base-pairing, and the cyclic hydrogen-bonded 
bimolecular motifs self-assemble into a hydrogen-bonded supramolecular ladder through 
N−H···O and C−H···O hydrogen bonds. The o-nitrobenzoate ions form a supramolecular 
chain, the ions being linked by aromatic C−H···O (of the nitro group) hydrogen bonds. 

 
 
 


