

1

Unit-II Advanced ADO.NET

Introduction

ADO.NET provides consistent access to data sources such as Microsoft SQL Server and XML,

as well as to data sources exposed through OLE DB and ODBC. Data-sharing consumer

applications can use ADO.NET to connect to these data sources and retrieve, manipulate, and

update the data that they contain.

ADO.NET includes .NET Framework data providers for connecting to a database, executing

commands, and retrieving results.

ADO.NET is a data-access technology that enables applications to connect to data stores and

manipulate data contained in them in various ways. It is based on the .NET Framework and it is

highly integrated with the rest of the Framework class library. The ADO.NET API is designed so it

can be used from all programming languages that target the .NET Framework, such as Visual

Basic, C#, J# and Visual C++.

ADO uses a small set of Automation objects to provide a simple and efficient interface to OLE

DB. This interface makes ADO a good choice for developers in higher level languages, such as

Visual Basic and VBScript, who want to access data without having to learn the DETAILS of COM

and OLE DB.

ADO.NET provides functionality to developers writing managed code similar to the functionality

provided to native component object model (COM) developers by ActiveX Data Objects (ADO)

Disconnected Data access

ADO.NET Components

There are two components of ADO.NET that you can use to access and manipulate data:

 .NET Framework data providers

 The DataSet

http://msdn.microsoft.com/en-us/library/system.data.dataset%28v=vs.80%29.aspx

2

1. NET Framework Data Providers

The NET Framework Data Providers are components that have been explicitly designed for data

manipulation and fast, forward-only, read-only access to data.

The Connection object provides connectivity to a data source.

The Command object enables access to database commands to return data, modify data, run

stored procedures, and send or retrieve parameter information.

The DataReader provides a high-performance stream of data from the data source. Finally, the

DataAdapter provides the bridge between the DataSet object and the data source.

The DataAdapter uses Command objects to execute SQL commands at the data source to both

load the DataSet with data, and reconcile changes made to the data in the DataSet back to the

data source.

i) The Connection object

Listed below are the common connection object methods we could work with:

 Open - Opens the connection to our database

 Close - Closes the database connection

http://msdn.microsoft.com/en-us/library/a6cd7c08%28v=vs.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.data.common.dataadapter%28v=vs.80%29.aspx

3

 Dispose - Releases the resources on the connection object. Used to force garbage

collecting, ensuring no resources are being held after our connection is used.

Incidentally, by using the Dispose method you automatically call the Close method as

well.

 State - Tells you what type of connection state your object is in, often used to check

whether your connection is still using any resources. Ex. if (ConnectionObject.State ==

ConnectionState.Open)

ii) The Command Object

 ExecuteReader - Simply executes the SQL query against the database, using the

Read() method to traverse through data.

 ExecuteNonQuery – Used whenever you work with SQL stored procedures with

parameters.

 ExecuteScalar - Returns a lightning fast single value as an object from your database

Ex. object val = Command.ExecuteScalar(); Then check if != null.

 ExecuteXmlReader - Executes the SQL query against SQL Server only, while returning

an XmlReader object.

 Prepare – Equivalent to ADO’s Command.Prepared = True property. Useful in caching

the SQL command so it runs faster when called more than once. Ex.

Command.Prepare();

 Dispose – Releases the resources on the Command object. Used to force garbage

collecting, ensuring no resources are being held after our connection is used.

Incidentally, by using the Dispose method you automatically call the Connection object’s

Close method as well.

iii) The DataReader Object

 Read – Moves the record pointer to the first row, which allows the data to be read by

column name or index position.

 HasRows - HasRows checks if any data exists, and is used instead of the Read method.

Ex. if (DataReader.HasRows).

 IsClosed - A method that can determine if the DataReader is closed.

 Next Result - Equivalent to ADO’s NextRecordset Method, where a batch of SQL

statements are executed with this method before advancing to the next set of data

results.

 Close – Closes the DataReader

4

 iv) The DataAdapter

Using an adapter, you can read, add, update, and delete records in a data source. To allow you

to specify how each of these operations should occur, an adapter supports the following four

properties:

 SelectCommand – reference to a command (SQL statement or stored procedure name)

that retrieves rows from the data store.

 InsertCommand – reference to a command for inserting rows into the data store.

 UpdateCommand – reference to a command for modifying rows in the data store.

 DeleteCommand – reference to a command for deleting rows from the data store.

2. The DataSet

The ADO.NET DataSet is explicitly designed for data access independent of any data source. As

a result, it can be used with multiple and differing data sources, used with XML data, or used to

manage data local to the application.

The ADO.NET DataSet contains DataTableCollection and their DataRelationCollection . It

represents a collection of data retrieved from the Data Source.

The DataSet contains a collection of one or more DataTable objects made up of rows and

columns of data, as well as primary key, foreign key, constraint, and relation information about

the data in the DataTable objects.

We can use Dataset in combination with DataAdapter class. The DataSet object offers a

disconnected data source architecture. The Dataset can work with the data it contain, without

knowing the source of the data coming from. That is, the Dataset can work with a disconnected

mode from its Data Source . It gives a better advantage over DataReader , because the

DataReader is working only with the connection oriented Data Sources.

In any .NET data access page, before you connect to a database, you first have to import all the

necessary namespaces that will allow you to work with the objects required. As we’re going to

work with SQL Server, we’ll first import the namespaces we need. Namespaces in .NET are

simply a neat and orderly way of organizing objects, so that nothing becomes ambiguous.

http://msdn.microsoft.com/en-us/library/zb0sdh0b%28v=vs.80%29.aspx
http://vb.net-informations.com/ado.net/ado.net-architecture.htm
http://msdn.microsoft.com/en-us/library/system.data.datatable%28v=vs.80%29.aspx
http://vb.net-informations.com/ado.net-dataproviders/ado.net-dataadapter.htm
http://vb.net-informations.com/ado.net-dataproviders/ado.net-datareader.htm

5

Note

(Namespaces: All the classes are defined in single name called namespaces in ASP.NET.)

Example:

1. <%@ Import Namespace="System" %>

2. <%@ Import Namespace="System.Data" %>

3. <%@ Import Namespace="System.Data.SqlClient" %>)

The Dataset contains the copy of the data we requested. The Dataset contains more than one

Table at a time. We can set up Data Relations between these tables within the DataSet. The data

set may comprise data for one or more members, corresponding to the number of rows.

GridView Control

GridView control is a successor to the ASP.NET 1.X DataGrid control. It provides more flexibility

in displaying and working with data from your database in comparison with any other controls.

The GridView control enables you to connect to a datasource and display data is tabular format

Its properties like BackColor, ForeColor, BorderColor, BorderStyle, BorderWidth, Height etc.

http://vb.net-informations.com/dataset/dataset-relations.htm

6

GridViews support:

 Automatic sorting (click on a column heading to sort by that column)

 Automatic paging (sort of - true paging is only possible if you use more complicated data

sources)

 Editing and deleting of data

 Selection of rows

 Important properties

Behavior Properties of the GridView Control

AllowPaging true/false. Indicate whether the control should support paging.

AllowSorting true/false. Indicate whether the control should support sorting.

SortExpression
Gets the current sort expression (field name) that determines the

order of the row.

SortDirection
Gets the sorting direction of the column sorted currently

(Ascending/Descending).

DataSource
Gets or sets the data source object that contains the data to

populate the control.

DataSourceID

Indicate the bound data source control to use (Generally used

when we are using SqlDataSource or AccessDataSource to bind

the data, See 1st Grid example).

7

AutoGenerateEditButton
true/false. Indicates whether a separate column should be added

to edit the record.

AutoGenerateDeleteButton
true/false. Indicates whether a separate column should be added

to delete the record.

AutoGenerateSelectButton
true/false. Indicate whether a separate column should be added

to select a particular record.

AutoGenerateColumns
true/false. Indicate whether columns are automatically created for

each field of the data source. The default is true.

Style Properties of the GridView Control

AlternatingRowStyle
Defines the style properties for every alternate row in the

GridView.

EditRowStyle
Defines the style properties for the row in EditView (When you

click Edit button for a row, the row will appear in this style).

RowStyle Defines the style properties of the rows of the GridView.

PagerStyle
Defines the style properties of Pager of the GridView. (If

AllowPaging=true, the page number row appears in this style)

EmptyDataRowStyle
Defines the style properties of the empty row, which appears if

there is no records in the data source.

HeaderStyle
Defines the style properties of the header of the GridView. (The

column header appears in this style.)

FooterStyle Defines the style properties of the footer of GridView.

Appearance Properties of the GridView Control

CellPadding
Indicates the space in pixel between the cells and the border of

the GridView.

CellSpacing Indicates the space in pixel between cells.

GridLines
Both/Horizontal/Vertical/None. Indicates whether GrdiLines

should appear or not, if yes Horizontal, Vertical or Both.

HorizontalAlign Indicates the horizontal align of the GridView.

EmptyDataText
Indicates the text to appear when there is no record in the data

source.

8

ShowFooter Indicates whether the footer should appear or not.

ShowHeader
Indicates whether the header should appear or not. (The column

name of the GridView)

BackImageUrl
Indicates the location of the image that should display as a

background of the GridView.

Caption Gets or sets the caption of the GridView.

CaptionAlign
left/center/right. Gets or sets the horizontal position of the

GridView caption.

State Properties of GridView Control

Columns
Gets the collection of objects that represent the columns in the

GridView.

EditIndex
Gets or sets the 0-based index that identifies the row currently to

be edited.

FooterRow
Returns a GridViewRow object that represents the footer of the

GridView.

HeaderRow
Returns a GridViewRow object that represents the header of the

GridView.

PageCount
Gets the number of the pages required to display the reocrds of

the data source.

PageIndex Gets or sets the 0-based page index.

PageIndex
Gets or sets the number of records to display in one page of

GridView.

Rows
Gets a collection of GridViewRow objects that represents the

currently displayed rows in the GridView.

DataKeyNames
Gets an array that contains the names of the primary key field of

the currently displayed rows in the GridView.

DataKeys

Gets a collection of DataKey objects that represent the value of

the primary key fields set in DataKeyNames property of the

GridView.

9

Events associated with GridView Control

PageIndexChanging,

PageIndexChanged

Both events occur when the page link is clicked. They fire before

and after GridView handles the paging operation respectively.

RowCancelingEdit Fires when Cancel button is clicked in Edit mode of GridView.

RowCommand Fires when a button is clicked on any row of GridView.

RowCreated Fires when a new row is created in GridView.

RowDataBound Fires when row is bound to the data in GridView.

RowDeleting,RowDeleted

Both events fires when Delete button of a row is clicked. They

fire before and after GridView handles deleting operaton of the

row respectively.

RowEditing
Fires when a Edit button of a row is clicked but before the

GridView hanldes the Edit operation.

RowUpdating, RowUpdated

Both events fire when a update button of a row is clicked. They

fire before and after GridView control update operation

respectively.

Sorting, Sorted

Both events fire when column header link is clicked. They fire

before and after the GridView handler the Sort operation

respectively.

A DetailsView Control

In ASP.NET 2.0, DetailsView is a data-bound control that renders a single record at a time from

its associated data source. It can optionally provide paging buttons to navigate between records,

and a command bar to execute basic operations on the current record (Insert, Update, Delete).

DetailsView generates a user interface similar to the Form View of a Microsoft Access database,

and is typically used for updating/deleting any currently displayed record or for inserting new

records.

The key aspects of a DetailsView control:

 Be a composite control and act as a naming container.

 Be data-bindable to enumerable data sources.

 Support some style properties.

 Provide a navigation bar (pager).

 Support replaceable views of the record fields.

10

 Provide a command bar for common operations.

Its properties like BackColor, ForeColor, BorderColor, BorderStyle, BorderWidth, Height

etc.

Important properties

Behavior Properties of the DetailsView Control

AllowPaging true/false. Indicate whether the control should support navigation.

DataSource
Gets or sets the data source object that contains the data to

populate the control.

DataSourceID

Indicate the bound data source control to use (Generally used

when we are using SqlDataSource or AccessDataSource to bind

the data, See 1st Grid example).

AutoGenerateEditButton
true/false. Indicates whether a separate column with edit

link/button should be added to edit the record.

AutoGenerateDeleteButton
true/false. Indicates whether a separate column with delete

link/button should be added to delete the record.

AutoGenerateRows
true/false. Indicate whether rows are automatically created for

each field of the data source. The default is true.

DefaultMode read-only/insert/edit. Indicate the default display mode.

11

Style Properties of the DetailsView Control

AlternatingRowStyle
Defines the style properties for every alternate row in the

DetailsView.

EditRowStyle
Defines the style properties for the row in EditView (When you

click Edit button for a row, the row will appear in this style).

RowStyle Defines the style properties of the rows of the DetailsView.

PagerStyle
Defines the style properties of Pager of the DetailsView. (If

AllowPaging=true, the page number row appears in this style)

EmptyDataRowStyle
Defines the style properties of the empty row, which appears if

there is no records in the data source.

HeaderStyle
Defines the style properties of the header of the DetailsView.

(The column header appears in this style.)

FooterStyle Defines the style properties of the footer of DetailsView.

Appearance Properties of the DetailsView Control

CellPadding
Indicates the amount of space in pixel between the cells and the

border of the DetailsView.

CellSpacing Indicates the amount of space in pixel between cells.

GridLines
Both/Horizontal/Vertical/None. Indicates whether GrdiLines

should appear or not, if yes Horizontal, Vertical or Both.

HorizontalAlign Indicates the horizontal alignment of the DetailsView.

EmptyDataText
Indicates the text to appear when there is no record in the data

source.

BackImageUrl
Indicates the location of the image that should display as a

background of the DetailsView.

Caption Gets or sets the caption of the DetailsView.

CaptionAlign
left/center/right. Gets or sets the horizontal position of the

DetailsView caption.

State Properties of DetailsView Control

Rows
Gets the collection of objects that represent the rows in the

DetailsView.

12

FooterRow
Returns a DetailsViewRow object that represents the footer of

the DetailsView.

HeaderRow
Returns a DetailsViewRow object that represents the header of

the DetailsView.

PageCount
Gets the number of the pages required to display the records of

the data source.

PageIndex Gets or sets the 0-based page index.

DataKeyNames
Gets an array that contains the names of the primary key field of

the currently displayed rows in the DetailsViewRow.

DataKeys

Gets a collection of DataKey objects that represent the value of

the primary key fields set in DataKeyNames property of the

DetailsViewRow.

Events of the DetailsView Control

ItemCommand Fires when any clickable element on the control is clicked.

ItemCreated Fires after DetailsView fully creates all rows of the record.

ItemDeleting, ItemDeleted
Both event fires when current record is deleted. The first one

fires before and other fires after record is deleted.

ItemInserting, ItemInserted
Both event fires when an item is inserted. The first one fires

before and second after the item is created.

ItemUpdating, ItemUpdated
Both event fires when an item is updated. The first one fires

before and second fires after the record is updated.

ModeChanging,

ModeChanged

Both event fires when DetailsView change its display mode. The

first one fires before and second fires after display mode is

changed.

PageIndexChanging,

PageIndexChanged

Both event fires when the DetailsView move to another record.

The first one fires before and second fires after page is changed.

13

FormView Control

The FormView control is used to display a single record from database. It's greater flexiblity is, it

displays user-defined templates instead of row fields.

The difference between the FormView and the DetailsView controls is that the DetailsView control

uses a tabular layout where each field of the record is displayed as a row of its own. In contrast,

the FormView control does not specify a predefined layout for displaying the record. Instead, you

create a template containing controls to display individual fields from the record. The template

contains the formatting, controls, and binding expressions used to create the form.

The FormView control is typically used for updating and inserting new records, and is often used

in master/detail scenarios where the selected record of the master control determines the record

to display in the FormView control.

It has the following features:

 Binding to data source controls, such as SqlDataSource and ObjectDataSource.

 Built-in inserting capabilities.

 Built-in updating and deleting capabilities.

 Built-in paging capabilities.

 It's properties, handle events can be set dynamically with FormView object model.

 It can be customized through templates, themes and styles.

 Template are used to display/edit the FormView control.

14

Its properties like BackColor, ForeColor, BorderColor, BorderStyle, BorderWidth, Height

etc.

Important properties

HeaderTemplate

Displays the content at header row of the template. The header row

is displayed at the top of the FormView control when the

HeaderText or HeaderTemplate property is set

EmptyDataTemplate

This is used display the content when datasource control does not

contain any records. It alerts the ser that datasource has no

records.

ItemTemplate

It is used to display the content when Formview is in read-only

mode. The item template usually contains controls to display the

field values of a record, as well as command buttons to edit, insert,

and delete a record.

EditItemTemplate

Displays the content for the data row when the FormView control is

in edit mode. This template usually contains input controls and

command buttons with which the user can edit an existing record.

15

InsertItemTemplate

Displays the content for the data row when the FormView control is

in insert mode. This template usually contains input controls and

command buttons with which the user can add a new record.

PagerTemplate

Displays the content for the pager row displayed when the paging

feature is enabled (when the AllowPaging property is set to true).

This template usually contains controls with which the user can

navigate to another record.

FooterTemplate

The footer row is displayed at the bottom of the FormView control

when the FooterText or FooterTemplate property is set. If both the

FooterText and FooterTemplate properties are set, the

FooterTemplate property takes precedence.

Methods of the FormView Control

ChangeMode
ReadOnly/Insert/Edit. Change the working mode of the control from the current to

the defined FormViewMode type.

InsertItem
Used to insert the record into database. This method must be called when the

DetailsView control is in insert mode.

UpdateItem
Used to update the current record into database. This method must be called

when DetailsView control is in edit mode.

DeleteItem Used to delete the current record from database.

ItemCommand
Occurs when a button within a FormView control is clicked. This event is often

used to perform a task when a button is clicked in the control.

ItemCreated
Occurs after all FormViewRow objects are created in the FormView control. This

event is often used to modify the values of a record before it is displayed.

ItemDeleted

Occurs when a Delete button (a button with its CommandName property set to

"Delete") is clicked, but after the FormView control deletes the record from the

data source. This event is often used to check the results of the delete

operation.

ItemDeleting

Occurs when a Delete button is clicked, but before the FormView control deletes

the record from the data source. This event is often used to cancel the delete

operation.

16

ItemInserted

Occurs when an Insert button (a button with its CommandName property set to

"Insert") is clicked, but after the FormView control inserts the record. This event

is often used to check the results of the insert operation.

ItemInserting
Occurs when an Insert button is clicked, but before the FormView control inserts

the record. This event is often used to cancel the insert operation.

ItemUpdated

Occurs when an Update button (a button with its CommandName property set to

"Update") is clicked, but after the FormView control updates the row. This event

is often used to check the results of the update operation.

ItemUpdating
Occurs when an Update button is clicked, but before the FormView control

updates the record. This event is often used to cancel the update operation.

ModeChanged

Occurs after the FormView control changes modes (to edit, insert, or read-only

mode). This event is often used to perform a task when the FormView control

changes modes.

ModeChanging
Occurs before the FormView control changes modes (to edit, insert, or read-only

mode). This event is often used to cancel a mode change.

Crystal Reports in ASP.NET

Crystal Reports is the standard reporting tool for Visual Studio .NET used to display data of

presentation quality. You can display multiple-level totals, charts to analyze data, and much more

in Crystal Reports. Creating a Crystal Report requires minimal coding since it is created in

Designer interface. It is available as an integrated feature of Microsoft Visual Studio .NET,

Borland Delphi, and C#Builder.

Advantages of Crystal Reports

Some of the major advantages of using Crystal Reports are:

1. Rapid report development since the designer interface would ease the coding work for the

programmer.

2. Can extend it to complicated reports with interactive charts and enhance the understanding of

the business model

17

3. Exposes a report object model, can interact with other controls on the ASP.NET Web form

4. Can programmatically export the reports into widely used formats like .pdf, .doc, .xls, .html and

.rtf

Implementation Models

Crystal Reports need database drivers to connect to the data source for accessing data. Crystal

Reports in .net support two methods to access data from a data source:

The Pull Method

When this model is used to access data from the data source, the database driver directly

retrieves the data from the data source. This model does not require the developer to write code

for creating a connection and retrieving data from the data source. It is the Crystal report that

manages the SQL commands for connecting by using the specified driver.

The Push Method

When this model is used to access data from data source, the developer writes the code to

connect to the data source and retrieve data. The data from the data source is cached in dataset

and multiple crystal reports accesses data from the dataset. The performance can be optimized in

this manner by using connection sharing and manually limiting the number of records that are

passed on to the report.

Crystal Reports Types

Crystal Report Designer can load reports that are included into the project as well as those that

are independent of the project.

18

Strongly-typed Report

When you add a report file into the project, it becomes a "strongly-typed" report. In this case, you

will have the advantage of directly creating an instance of the report object, which could reduce a

few lines of code, and cache it to improve performance. The related .vb file, which is hidden, can

be viewed using the editor's "show all files" icon in the Solution Explorer.

Un-Typed Report

Those reports that are not included into the project are "un-typed" reports. In this case, you will

have to create an instance of the Crystal Report Engine's "ReportDocument" object and manually

load the report into it.

Creating Crystal Reports

You can create a Crystal Report by using three methods:

1. Manually i.e. from a blank document

2. Using Standard Report Expert

3. From an existing report

Using Pull Method

Creating Crystal Reports Manually.

We would use the following steps to implement Crystal Reports using the Pull Model:

1. Create the .rpt file (from scratch) and set the necessary database connections using the

Crystal Report Designer interface.

2. Place a CrystalReportViewer control from the toolbox on the .aspx page and set its

properties to point to the .rpt file that we created in the previous step.

3. Call the databind method from your code behind page.

Creating Crystal Reports

I. Steps to create the report i.e. the .rpt file

1) Add a new Crystal Report to the web form by right clicking on the

"Solution Explorer", selecting "Add" --> "Add New Item" --> "CrystalReport".

19

2) On the "Crystal Report Gallery" pop up, select the "As a Blank Report"radio button and click

"ok".

3) This should open up the Report File in the Crystal Report Designer.

20

4) Right click on the "Details Section" of the report, and select "Database" - "Add/Remove

Database".

5) In the "Database Expert" pop up window, expand the "OLE DB (ADO)"option by clicking the "+"

sign, which should bring up another "OLE DB (ADO)" pop up.

6) In the "OLE DB (ADO)" pop up, Select "Microsoft OLE DB Provider for SQL Server" and click

Next.

7) Specify the connection information.

8) Click "Next" and then click "Finish".

9) Now you should be able to see the Database Expert showing the table that have been

selected.

10) Expand the "Pubs" database, expand the "Tables", select the "Stores" table and click on ">"

to include it into the "Selected Tables" section.

21

Note: If you add more than one table in the database Expert and the added tables have matching

fields, when you click the OK button after adding the tables, the links between the added tables is

displayed under the Links tab. You can remove the link by clicking the Clear Links button.

11) Now the Field Explorer should show you the selected table and its fields under the "Database

Fields" section, in the left window.

12) Drag and drop the required fields into the "Details" section of the report. The field names

would automatically appear in the "Page Header" section of the report. If you want to modify the

header text then right click on the text of the "Page Header" section, select "Edit Text Object"

option and edit it.

13) Save it.

22

Role of ADO.NET in Distributed Applications

 The rapid development of web applications makes software development companies review the

existing methods of working with data sources and adapt them to the web application

specifications. The unpredicted growth of the number of clients makes web developers move

from client-server to three-tier architecture, which sometimes brings out problems. Databases are

unable to support the unlimited number of active connections limiting the availability of the site

and causing losses. The ADO.NET (ActiveX Data Objects) technology can solve these problems

and at the same time keep convenience and simplicity of programming.

Advantages and innovations in ADO.NET technology

 Using the disconnected model for accessing the data. ADO.NET application

development technology offers an alternative to a traditional data access model.

Normally, client-server applications use the technology of access to the data source

where the connection with the base is maintained all the time. However, after the wide

spread of the Internet based applications some vulnerabilities of this approach have been

http://oxagile.com/
http://www.oxagile.com/expertise/by-technology
http://www.oxagile.com/expertise/by-technology
http://www.oxagile.com/expertise/by-technology

23

discovered. The experience of web developers has shown that the applications with the

constant connection with the data source are difficult in scaling. All these problems are

produced by the constant connection with database and are solved in ADO.NET.

ADO.NET technology makes use of another data access model. ADO.NET access model

establishes the connection only for some limited time when it’s necessary to take some

actions with the database. Thus, ADO.NET allows sidestepping these limitations of web

application development process.

 Data string in the DataSet objects. In general, DataSet is a simplified relational

database and can perform the most typical for these bases operations. Owing to

ADO.NET application development technology, in contrast to Recordset, we can store

several tables in one DataSet as well as the relations between them, perform the

operations of selecting, deleting and updating the data. ADO.NET gives an opportunity

any minute to get the latest information from the database using the call function

FillDataSet. Thus, ADO.NET application development technology makes DataSet

extremely convenient for most web applications. ADO.NET application development

technology allows us to extract the data from the base and somehow handle it whenever

it is necessary.

 Deep integration with XML. XML, a widely spread language, plays an important role in

ADO.NET and brings some more benefits to ADO.NET application development

technology in comparison with the traditional approach. It isn’t necessary for a

programmer working with ADO.NET to have the experience of working with XML or the

knowledge about this language. ADO.NET makes all the operations transparent for web

developers. XML (eXtensible Markup Language) represents an industrial standard

supported by practically any modern platform, which allows transmitting data to any

component that can work with XML and can be executed under any operating system.

Thus, deep integration of ADO.NET with XML provides .NET application developers with

ample opportunities.

Many application developers have already noticed the simplicity and convenience of the

ADO.NET technology. ADO.NET application development technology provides an intuitive

interface and logical set of objects. All these features make ADO.NET more appealing to.NET

web developers.

http://www.oxagile.com/services/web-development
http://www.oxagile.com/services/web-development
http://www.oxagile.com/services/web-development
http://www.oxagile.com/services/dedicated-programming-team

