

PROTOCOLS
AND ARCHITECTURES
FOR WIRELESS SENSOR
NETWORKS

Protocols and Architectures for Wireless Sensor Networks. Holger Karl and Andreas Willig
Copyright 2005 John Wiley & Sons, Ltd. ISBN: 0-470-09510-5

PROTOCOLS
AND ARCHITECTURES
FOR WIRELESS SENSOR
NETWORKS

Holger Karl
University of Paderborn, GERMANY

Andreas Willig
Hasso-Plattner-Institute at the University of Potsdam, GERMANY

Copyright 2005 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or
otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a
licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK,
without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the
Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19
8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

This publication is designed to provide accurate and authoritative information in regard to the subject matter
covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If
professional advice or other expert assistance is required, the services of a competent professional should be
sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data

Karl, Holger, 1970-
Protocols and architectures for wireless sensor networks / Holger Karl,

Andreas Willig.
p. cm.

Includes bibliographical references and index.
ISBN-13 978-0-470-09510-2 (cloth : alk. paper)
ISBN-10 0-470-09510-5 (cloth : alk. paper)

1. Sensor networks. 2. Wireless LANs. I. Willig, Andreas, 1968- II.
Title.

TK7872.D48K37 2005
681′.2 – dc22

2005005800

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN-13 978-0-470-09510-2 (HB)
ISBN-10 0-470-09510-5 (HB)

Typeset in 10/12 Times by Laserwords Private Limited, Chennai, India
Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire
This book is printed on acid-free paper responsibly manufactured from sustainable forestry
in which at least two trees are planted for each one used for paper production.

Contents

Preface xiii

List of abbreviations xv

A guide to the book xxiii

1 Introduction 1

1.1 The vision of Ambient Intelligence 1
1.2 Application examples 3
1.3 Types of applications 6
1.4 Challenges for WSNs 7

1.4.1 Characteristic requirements 7
1.4.2 Required mechanisms 9

1.5 Why are sensor networks different? 10
1.5.1 Mobile ad hoc networks and wireless sensor networks 10
1.5.2 Fieldbuses and wireless sensor networks 12

1.6 Enabling technologies for wireless sensor networks 13

PART I ARCHITECTURES 15

2 Single-node architecture 17

2.1 Hardware components 18
2.1.1 Sensor node hardware overview 18
2.1.2 Controller 19
2.1.3 Memory 21
2.1.4 Communication device 21
2.1.5 Sensors and actuators 31
2.1.6 Power supply of sensor nodes 32

2.2 Energy consumption of sensor nodes 36
2.2.1 Operation states with different power consumption 36
2.2.2 Microcontroller energy consumption 38
2.2.3 Memory 39
2.2.4 Radio transceivers 40

vi Contents

2.2.5 Relationship between computation and communication 44
2.2.6 Power consumption of sensor and actuators 44

2.3 Operating systems and execution environments 45
2.3.1 Embedded operating systems 45
2.3.2 Programming paradigms and application programming interfaces 45
2.3.3 Structure of operating system and protocol stack 47
2.3.4 Dynamic energy and power management 48
2.3.5 Case Study: TinyOS and nesC 50
2.3.6 Other examples 53

2.4 Some examples of sensor nodes 54
2.4.1 The “Mica Mote” family 54
2.4.2 EYES nodes 54
2.4.3 BTnodes 54
2.4.4 Scatterweb 54
2.4.5 Commercial solutions 55

2.5 Conclusion 56

3 Network architecture 59

3.1 Sensor network scenarios 60
3.1.1 Types of sources and sinks 60
3.1.2 Single-hop versus multihop networks 60
3.1.3 Multiple sinks and sources 62
3.1.4 Three types of mobility 62

3.2 Optimization goals and figures of merit 63
3.2.1 Quality of service 64
3.2.2 Energy efficiency 65
3.2.3 Scalability 66
3.2.4 Robustness 67

3.3 Design principles for WSNs 67
3.3.1 Distributed organization 67
3.3.2 In-network processing 67
3.3.3 Adaptive fidelity and accuracy 70
3.3.4 Data centricity 70
3.3.5 Exploit location information 73
3.3.6 Exploit activity patterns 73
3.3.7 Exploit heterogeneity 73
3.3.8 Component-based protocol stacks and cross-layer optimization 74

3.4 Service interfaces of WSNs 74
3.4.1 Structuring application/protocol stack interfaces 74
3.4.2 Expressibility requirements for WSN service interfaces 76
3.4.3 Discussion 77

3.5 Gateway concepts 78
3.5.1 The need for gateways 78
3.5.2 WSN to Internet communication 79
3.5.3 Internet to WSN communication 80
3.5.4 WSN tunneling 81

3.6 Conclusion 81

Contents vii

PART II COMMUNICATION PROTOCOLS 83

4 Physical layer 85

4.1 Introduction 85
4.2 Wireless channel and communication fundamentals 86

4.2.1 Frequency allocation 86
4.2.2 Modulation and demodulation 88
4.2.3 Wave propagation effects and noise 90
4.2.4 Channel models 96
4.2.5 Spread-spectrum communications 98
4.2.6 Packet transmission and synchronization 100
4.2.7 Quality of wireless channels and measures for improvement 102

4.3 Physical layer and transceiver design considerations in WSNs 103
4.3.1 Energy usage profile 103
4.3.2 Choice of modulation scheme 104
4.3.3 Dynamic modulation scaling 108
4.3.4 Antenna considerations 108

4.4 Further reading 109

5 MAC protocols 111

5.1 Fundamentals of (wireless) MAC protocols 112
5.1.1 Requirements and design constraints for wireless MAC protocols 112
5.1.2 Important classes of MAC protocols 114
5.1.3 MAC protocols for wireless sensor networks 119

5.2 Low duty cycle protocols and wakeup concepts 120
5.2.1 Sparse topology and energy management (STEM) 121
5.2.2 S-MAC 123
5.2.3 The mediation device protocol 126
5.2.4 Wakeup radio concepts 127
5.2.5 Further reading 128

5.3 Contention-based protocols 129
5.3.1 CSMA protocols 129
5.3.2 PAMAS 131
5.3.3 Further solutions 132

5.4 Schedule-based protocols 133
5.4.1 LEACH 133
5.4.2 SMACS 135
5.4.3 Traffic-adaptive medium access protocol (TRAMA) 137
5.4.4 Further solutions 139

5.5 The IEEE 802.15.4 MAC protocol 139
5.5.1 Network architecture and types/roles of nodes 140
5.5.2 Superframe structure 141
5.5.3 GTS management 141
5.5.4 Data transfer procedures 142
5.5.5 Slotted CSMA-CA protocol 142
5.5.6 Nonbeaconed mode 144
5.5.7 Further reading 145

5.6 How about IEEE 802.11 and bluetooth? 145
5.7 Further reading 146
5.8 Conclusion 148

viii Contents

6 Link-layer protocols 149

6.1 Fundamentals: tasks and requirements 150
6.2 Error control 151

6.2.1 Causes and characteristics of transmission errors 151
6.2.2 ARQ techniques 152
6.2.3 FEC techniques 158
6.2.4 Hybrid schemes 163
6.2.5 Power control 165
6.2.6 Further mechanisms to combat errors 166
6.2.7 Error control: summary 167

6.3 Framing 167
6.3.1 Adaptive schemes 170
6.3.2 Intermediate checksum schemes 172
6.3.3 Combining packet-size optimization and FEC 173
6.3.4 Treatment of frame headers 174
6.3.5 Framing: summary 174

6.4 Link management 174
6.4.1 Link-quality characteristics 175
6.4.2 Link-quality estimation 177

6.5 Summary 179

7 Naming and addressing 181

7.1 Fundamentals 182
7.1.1 Use of addresses and names in (sensor) networks 182
7.1.2 Address management tasks 183
7.1.3 Uniqueness of addresses 184
7.1.4 Address allocation and assignment 184
7.1.5 Addressing overhead 185

7.2 Address and name management in wireless sensor networks 186
7.3 Assignment of MAC addresses 186

7.3.1 Distributed assignment of networkwide addresses 187
7.4 Distributed assignment of locally unique addresses 189

7.4.1 Address assignment algorithm 189
7.4.2 Address selection and representation 191
7.4.3 Further schemes 194

7.5 Content-based and geographic addressing 194
7.5.1 Content-based addressing 194
7.5.2 Geographic addressing 198

7.6 Summary 198

8 Time synchronization 201

8.1 Introduction to the time synchronization problem 201
8.1.1 The need for time synchronization in wireless sensor networks 202
8.1.2 Node clocks and the problem of accuracy 203
8.1.3 Properties and structure of time synchronization algorithms 204
8.1.4 Time synchronization in wireless sensor networks 206

8.2 Protocols based on sender/receiver synchronization 207
8.2.1 Lightweight time synchronization protocol (LTS) 207

Contents ix

8.2.2 How to increase accuracy and estimate drift 212
8.2.3 Timing-sync protocol for sensor networks (TPSN) 214

8.3 Protocols based on receiver/receiver synchronization 217
8.3.1 Reference broadcast synchronization (RBS) 217
8.3.2 Hierarchy referencing time synchronization (HRTS) 223

8.4 Further reading 226

9 Localization and positioning 231

9.1 Properties of localization and positioning procedures 232
9.2 Possible approaches 233

9.2.1 Proximity 233
9.2.2 Trilateration and triangulation 234
9.2.3 Scene analysis 237

9.3 Mathematical basics for the lateration problem 237
9.3.1 Solution with three anchors and correct distance values 238
9.3.2 Solving with distance errors 238

9.4 Single-hop localization 240
9.4.1 Active Badge 240
9.4.2 Active office 240
9.4.3 RADAR 240
9.4.4 Cricket 241
9.4.5 Overlapping connectivity 241
9.4.6 Approximate point in triangle 242
9.4.7 Using angle of arrival information 243

9.5 Positioning in multihop environments 243
9.5.1 Connectivity in a multihop network 244
9.5.2 Multihop range estimation 244
9.5.3 Iterative and collaborative multilateration 245
9.5.4 Probabilistic positioning description and propagation 247

9.6 Impact of anchor placement 247
9.7 Further reading 248
9.8 Conclusion 249

10 Topology control 251

10.1 Motivation and basic ideas 251
10.1.1 Options for topology control 252
10.1.2 Aspects of topology-control algorithms 254

10.2 Controlling topology in flat networks – Power control 256
10.2.1 Some complexity results 256
10.2.2 Are there magic numbers? – bounds on critical parameters 257
10.2.3 Some example constructions and protocols 259
10.2.4 Further reading on flat topology control 265

10.3 Hierarchical networks by dominating sets 266
10.3.1 Motivation and definition 266
10.3.2 A hardness result 266
10.3.3 Some ideas from centralized algorithms 267
10.3.4 Some distributed approximations 270
10.3.5 Further reading 273

10.4 Hierarchical networks by clustering 274

x Contents

10.4.1 Definition of clusters 274
10.4.2 A basic idea to construct independent sets 277
10.4.3 A generalization and some performance insights 278
10.4.4 Connecting clusters 278
10.4.5 Rotating clusterheads 279
10.4.6 Some more algorithm examples 280
10.4.7 Multihop clusters 281
10.4.8 Multiple layers of clustering 283
10.4.9 Passive clustering 284
10.4.10 Further reading 284

10.5 Combining hierarchical topologies and power control 285
10.5.1 Pilot-based power control 285
10.5.2 Ad hoc Network Design Algorithm (ANDA) 285
10.5.3 CLUSTERPOW 286

10.6 Adaptive node activity 286
10.6.1 Geographic Adaptive Fidelity (GAF) 286
10.6.2 Adaptive Self-Configuring sEnsor Networks’ Topologies (ASCENT) 287
10.6.3 Turning off nodes on the basis of sensing coverage 288

10.7 Conclusions 288

11 Routing protocols 289

11.1 The many faces of forwarding and routing 289
11.2 Gossiping and agent-based unicast forwarding 292

11.2.1 Basic idea 292
11.2.2 Randomized forwarding 292
11.2.3 Random walks 293
11.2.4 Further reading 294

11.3 Energy-efficient unicast 295
11.3.1 Overview 295
11.3.2 Some example unicast protocols 297
11.3.3 Further reading 301
11.3.4 Multipath unicast routing 301
11.3.5 Further reading 304

11.4 Broadcast and multicast 305
11.4.1 Overview 305
11.4.2 Source-based tree protocols 308
11.4.3 Shared, core-based tree protocols 314
11.4.4 Mesh-based protocols 314
11.4.5 Further reading on broadcast and multicast 315

11.5 Geographic routing 316
11.5.1 Basics of position-based routing 316
11.5.2 Geocasting 323
11.5.3 Further reading on geographic routing 326

11.6 Mobile nodes 328
11.6.1 Mobile sinks 328
11.6.2 Mobile data collectors 328
11.6.3 Mobile regions 329

11.7 Conclusions 329

Contents xi

12 Data-centric and content-based networking 331

12.1 Introduction 331
12.1.1 The publish/subscribe interaction paradigm 331
12.1.2 Addressing data 332
12.1.3 Implementation options 333
12.1.4 Distribution versus gathering of data – In-network processing 334

12.2 Data-centric routing 335
12.2.1 One-shot interactions 335
12.2.2 Repeated interactions 337
12.2.3 Further reading 340

12.3 Data aggregation 341
12.3.1 Overview 341
12.3.2 A database interface to describe aggregation operations 342
12.3.3 Categories of aggregation operations 343
12.3.4 Placement of aggregation points 345
12.3.5 When to stop waiting for more data 345
12.3.6 Aggregation as an optimization problem 347
12.3.7 Broadcasting an aggregated value 347
12.3.8 Information-directed routing and aggregation 350
12.3.9 Some further examples 352
12.3.10 Further reading on data aggregation 355

12.4 Data-centric storage 355
12.5 Conclusions 357

13 Transport layer and quality of service 359

13.1 The transport layer and QoS in wireless sensor networks 359
13.1.1 Quality of service/reliability 360
13.1.2 Transport protocols 361

13.2 Coverage and deployment 362
13.2.1 Sensing models 362
13.2.2 Coverage measures 364
13.2.3 Uniform random deployments: Poisson point processes 365
13.2.4 Coverage of random deployments: Boolean sensing model 366
13.2.5 Coverage of random deployments: general sensing model 368
13.2.6 Coverage determination 369
13.2.7 Coverage of grid deployments 374
13.2.8 Further reading 375

13.3 Reliable data transport 376
13.3.1 Reliability requirements in sensor networks 377

13.4 Single packet delivery 378
13.4.1 Using a single path 379
13.4.2 Using multiple paths 384
13.4.3 Multiple receivers 388
13.4.4 Summary 389

13.5 Block delivery 389
13.5.1 PSFQ: block delivery in the sink-to-sensors case 389
13.5.2 RMST: block delivery in the sensors-to-sink case 395
13.5.3 What about TCP? 397
13.5.4 Further reading 399

xii Contents

13.6 Congestion control and rate control 400
13.6.1 Congestion situations in sensor networks 400
13.6.2 Mechanisms for congestion detection and handling 402
13.6.3 Protocols with rate control 403
13.6.4 The CODA congestion-control framework 408
13.6.5 Further reading 411

14 Advanced application support 413

14.1 Advanced in-network processing 413
14.1.1 Going beyond mere aggregation of data 413
14.1.2 Distributed signal processing 414
14.1.3 Distributed source coding 416
14.1.4 Network coding 420
14.1.5 Further issues 421

14.2 Security 422
14.2.1 Fundamentals 422
14.2.2 Security considerations in wireless sensor networks 423
14.2.3 Denial-of-service attacks 423
14.2.4 Further reading 425

14.3 Application-specific support 425
14.3.1 Target detection and tracking 426
14.3.2 Contour/edge detection 429
14.3.3 Field sampling 432

Bibliography 437

Index 481

Preface

Integrating simple processing, storage, sensing, and communication capabilities into small-scale,
low-cost devices and joining them into so-called wireless sensor networks opens the door to a
plethora of new applications – or so it is commonly believed. It is a struggle to find a business
model that can turn the bright visions into a prosperous and actually useful undertaking. But this
struggle can be won by applying creative ideas to the underlying technology, assuming that this
technology and its abilities as well as shortcomings and limitations are properly understood. We
have written this book in the hope of fostering this understanding.

Understanding (and presenting) this new type of networks is a formidable challenge. A key
characteristic is the need to understand issues from many diverse areas, ranging from low-level
aspects of hardware and radio communication to high-level concepts like databases or middleware
and to the very applications themselves. Then, a joint optimization can be attempted, carefully tun-
ing all system components, drawing upon knowledge from disciplines like electrical engineering,
computer science and computer engineering, and mathematics. Such a complex optimization is nec-
essary owing to the stringent resource restrictions – in particular, energy – by which these networks
are constrained. As a consequence, a simple explanation along the lines of the ISO/OSI model or
a similar layering model for communication networks fails. Nonetheless, we have attempted to
guide the reader along the lines of such a model and tried to point out the points of interaction and
interdependence between such different “layers”.

In structuring the material and in the writing process, our goal was to explain the main problems
at hand and principles and essential ideas for their solution. We usually did not go into the details of
each of (usually many) several solution options; however, we did provide the required references
for the readers to embark on a journey to the sources on their own. Nor did we attempt to go
into any detail regarding performance characteristics of any described solution. The difficulty here
lies in presenting such results in a comparable way – it is next to impossible to find generally
comparable performance results in scientific publications on the topic of wireless sensor networks.
What is perhaps missing is a suite of benchmarking applications, with clearly delimited rules and
assumptions (the use of a prevalent simulator is no substitute here). Tracking might be one such
application, but it clearly is not the only important application class to which wireless sensor
networks can be applied.

Often, a choice had to be made whether to include a given idea, paper, or concept. Given the
limited space in such a textbook, we preferred originality or an unusual but promising approach
over papers that present solid but more technical work, albeit this type of work can make the
difference whether a particular scheme is practicable at all.

We also tried to avoid, and explicitly argue against, ossification but rather tried to keep and
promote an open mind-set about what wireless sensor networks are and what their crucial research
topics entail. We feel that this still relatively young and immature field is sometimes inappropriately
narrowed down to a few catchwords – energy efficiency being the most prominent example – which,

xiv Preface

although indubitably important, might prevent interesting ideas from forming and becoming pub-
licly known. Here, we tried to give the benefit of the doubt and at least tried to include pointers
and references to some “unusual” or odd approaches.

Nonetheless, we had to omit a considerable amount of material; areas like middleware, security,
management, deployment, or modeling suffered heavily or were, in the end, entirely excluded. We
also had to stop including new material at some point in time – at the rate of new publications
appearing on this topic, this book would otherwise never be completed (if you feel that we have
overlooked important work or misrepresented some aspects, we encourage you to contact us). We
still hope that it can serve the reader as a first orientation in this young, vigorous, and fascinat-
ing research area. Visit the website accompanying this book, www.wiley.com/go/wsn, for a
growing repository of lecture slides on ad hoc and sensor networks.

Audience and Prerequisites

The book is mainly targeted at senior undergraduate or graduate-level students, at academic and
industrial researchers working in the field, and also at engineers developing actual solutions for
wireless sensor networks. We consider this book as a good basis to teach a class on wireless sensor
networks (e.g. for a lecture corresponding to three European Credit Transfer System points).

This book is not intended as a first textbook on wireless networking. While we do try to introduce
most of the required background, it will certainly be helpful for the reader to have some prior
knowledge of wireless communication already; some first contact with mobile ad hoc networking
can be beneficial to understand the differences but is not essential. We do, however, assume general
networking knowledge as a given.

Moreover, in several parts of the book, some concepts and results from discrete mathematics
are used. It will certainly be useful for the reader to have some prior idea regarding optimization
problems, NP completeness, and similar topics.

Acknowledgments

We are indebted to numerous people who have helped us in understanding this research field
and in writing this book. A prominent place and heartfelt thanks are owed to our colleagues
at the Telecommunication Networks Group at the Technische Universität Berlin, especially Prof.
Adam Wolisz, Vlado Handziski, Jan-Hinrich Hauer, Andreas Köpke, Martin Kubisch, and Günther
Schäfer. Also, we are grateful to many colleagues with whom we had the pleasure and the privilege
to discuss WSN research issues – colleagues from different research projects like the EU IST project
EYES and the German federal funded project AVM deserve a special mention here. Robert Mitschke
from the Hasso Plattner Institute did an excellent job in proofreading and criticizing an intermediate
version of this book. The anonymous reviewers provided us with many useful comments. The help
of our editors and the support team at Wiley – in particular, Birgit Gruber, Julie Ward and Joanna
Tootill – was very valuable.

We also want to express our deep gratitude to all the researchers in the field who have made their
results and publications easily available over the World Wide Web. Without this help, collecting the
material discussed in the present book alone would have been too big a challenge to embark on.

And last, but most importantly, both of us are very deeply indebted to our families for bearing
with us during the year of writing, grumbling, hoping, and working.

Berlin & Paderborn
April 2005

List of abbreviations

ABR Associativity-Based Routing

ACPI Advanced Configuration and Power Interface

ACQUIRE ACtive QUery forwarding In sensoR nEtworks

ADC Analog/Digital Converter

AIDA Application-Independent Data Aggregation

ANDA Ad hoc Network Design Algorithm

AODV Ad hoc On-demand Distance Vector

APIT Approximate Point in Triangle

API Application Programming Interface

ARQ Automatic Repeat Request

ASCENT Adaptive Self-Configuring sEnsor Networks Topologies

ASIC Application-Specific Integrated Circuit

ASK Amplitude Shift Keying

AVO Attribute Value Operation

AWGN Additive White Gaussian Noise

BCH Bose–Chaudhuri–Hocquenghem

BER Bit-Error Rate

BIP Broadcast Incremental Power

BPSK Binary Phase Shift Keying

BSC Binary Symmetric Channel

CADR Constrained Anisotropic Diffusion Routing

xvi List of abbreviations

CAMP Core-Assisted Mesh Protocol

CAP Contention Access Period

CCA Clear Channel Assessment

CCK Complementary Code Keying

CDMA Code Division Multiple Access

CDS Connected Dominating Set

CGSR Clusterhead Gateway Switch Routing

CIR Carrier to Interference Ratio

CMMBCR Conditional Max–Min Battery Capacity Routing

CODA COngestion Detection and Avoidance

CPU Central Processing Unit

CRC Cyclic Redundancy Check

CSD Cumulative Sensing Degree

CSIP Collaborative Signal and Information Processing

CSMA Carrier Sense Multiple Access

CTS Clear To Send

DAC Digital/Analog Converter

DAD Duplicate Address Detection

DAG Directed Acyclic Graph

DAML DARPA Agent Markup Language

DBPSK Differential Binary Phase Shift Keying

DCF Distributed Coordination Function

DCS Data-Centric Storage

DCS Dynamic Code Scaling

DHT Distributed Hash Table

DISCUS Distributed Source Coding Using Syndromes

DLL Data Link Layer

DMCS Dynamic Modulation-Code Scaling

DMS Dynamic Modulation Scaling

DPM Dynamic Power Management

List of abbreviations xvii

DQPSK Differential Quaternary Phase Shift Keying

DREAM Distance Routing Effect Algorithm for Mobility

DSDV Destination-Sequenced Distance Vector

DSP Digital Signal Processor

DSR Dynamic Source Routing

DSSS Direct Sequence Spread Spectrum

DVS Dynamic Voltage Scaling

EEPROM Electrically Erasable Programmable Read-Only Memory

EHF Extremely High Frequency

ESRT Event-to-Sink Reliable Transport

FDMA Frequency Division Multiple Access

FEC Forward Error Correction

FFD Full Function Device

FFT Fast Fourier Transform

FHSS Frequency Hopping Spread Spectrum

FIFO First In First Out

FPGA Field-Programmable Gate Array

FSK Frequency Shift Keying

GAF Geographic Adaptive Fidelity

GAMER Geocast Adaptive Mesh Environment for Routing

GEAR Geographic and Energy Aware Routing

GEM Graph EMbedding

GHT Geographic Hash Table

GOAFR Greedy and (Other Adaptive) Face Routing

GPSR Greedy Perimeter Stateless Routing

GPS Global Positioning System

GRAB GRAdient Broadcast

GTS Guaranteed Time Slot

HHBA Hop-by-Hop Broadcast with Acknowledgments

HHB Hop-by-Hop Broadcast

xviii List of abbreviations

HHRA Hop-by-Hop Reliability with Acknowledgments

HHR Hop-by-Hop Reliability

HMM Hidden Markov Model

HVAC Humidity, Ventilation, Air Conditioning

IDSQ Information-Driven Sensor Querying

IEEE Institute of Electrical and Electronics Engineers

IFS InterFrame Space

IF Intermediate Frequency

ISI InterSymbol Interference

ISM Industrial, Scientific, and Medical

LAR Location-Aided Routing

LBM Location-Based Multicast

LEACH Low-Energy Adaptive Clustering Hierarchy

LED Light-Emitting Diode

LNA Low Noise Amplifier

LOS Line Of Sight

MAC Medium Access Control

MANET Mobile Ad Hoc Network

MBCR Minimum Battery Cost Routing

MCDS Minimum Connected Dominating Set

MDS Minimum Dominating Set

MDS MultiDimensional Scaling

MEMS MicroElectroMechanical System

MIP Multicast Incremental Power

MLE Maximum Likelihood Estimation

MMBCR Min–Max Battery Cost Routing

MPDU MAC-layer Protocol Data Unit

MSE Mean Squared Error

MST Minimum Spanning Tree

MTPR Minimum Total Transmission Power Routing

List of abbreviations xix

MULE Mobile Ubiquitous LAN extension

MWIS Maximum Weight Independent Set

NAT Network Address Translation

NAV Network Allocation Vector

NLOS Non Line Of Sight

OOK On-Off-Keying

PAN Personal Area Network

PA Power Amplifier

PCF Point Coordination Function

PDA Personal Digital Assistant

PEGASIS Power-Efficient GAthering in Sensor Information Systems

PHY Physical Layer

PPDU Physical-layer Protocol Data Unit

PPM Pulse Position Modulation

PSD Power Spectral Density

PSFQ Pump Slowly Fetch Quickly

PSK Phase Shift Keying

PTAS Polynomial Time Approximation Scheme

QAM Quadrature Amplitude Modulation

QPSK Quaternary Phase Shift Keying

QoS Quality of Service

RAM Random Access Memory

RFD Reduced Function Device

RF ID Radio Frequency Identifier

RF Radio Frequency

RISC Reduced Instruction Set Computer

RMST Reliable Multisegment Transport

RNG Relative Neighborhood Graph

ROHC RObust Header Compression

ROM Read-Only Memory

xx List of abbreviations

RSSI Received Signal Strength Indicator

RS Reed–Solomon

RTS Request To Send

SAR Sequential Assignment Routing

SDMA Space Division Multiple Access

SFD Start Frame Delimiter

SINR Signal to Interference and Noise Ratio

SMACS Self-Organizing Medium Access Control for Sensor Networks

SNR Signal-to-Noise Ratio

SPIN Sensor Protocol for Information via Negotiation

SPT Shortest Path Tree

SQL Standard Query Language

SRM Scalable Reliable Multicast

SSR Signal Stability Routing

STEM Sparse Topology and Energy Management

TAG Tiny Aggregation

TBF Trajectory-Based Forwarding

TCP Transmission Control Protocol

TDMA Time Division Multiple Access

TDoA Time Difference of Arrival

TORA Temporally Ordered Routing Algorithm

TRAMA Traffic-Adaptive Medium Access

TTDD Two-Tier Data Dissemination

TTL Time To Live

ToA Time of Arrival

UML Unified Modeling Language

UTM Universal Transverse Mercator

UWB UltraWideBand

VCO Voltage-Controlled Oscillator

VLF Very Low Frequency

List of abbreviations xxi

VOR VHF Omnidirectional Ranging

VPCR Virtual Polar Coordinate Routing

VPCS Virtual Polar Coordinate Space

WLAN Wireless Local Area Network

WPAN Wireless Personal Area Network

WRP Wireless Routing Protocol

WSDL Web Service Description Language

WSN Wireless Sensor Network

A guide to the book

The design and optimization of a wireless sensor network draws on knowledge and understanding
of many different areas: properties of the radio front end determine what type of MAC protocols can
be used, the type of application limits the options for routing protocols, and battery self-recharge
characteristics influence sleeping patterns of a node. A book, on the other hand, is a linear entity.
We are therefore forced to find a consecutive form of presenting an inherently nonconsecutive, but
densely interwoven, topic.

To overcome this problem, we structured the book in two parts (Figure 1). The three chapters of
the first part give a high-level overview of applications and problems, of hardware properties, and
of the essential networking architecture. These first three chapters build a foundation upon which
we build a detailed treatment of individual communication protocols in the second part of the book.

This second part is loosely oriented along the lines of the standard ISO/OSI layering model
but, of course, focuses on algorithms and protocols relevant to wireless sensor networks. We start
out by looking at the protocols needed between two neighboring nodes in the physical, link, and
medium access layers. Then, a discussion about names and addresses in a wireless sensor network
follows. The next three chapters – time synchronization, localization and positioning, and topology
control – describe functionality that is important for the correct or efficient operation of a sensor
network but that is not directly involved in the exchange of packets between neighboring nodes.
In a sense, these are “helper protocols”.

On the basis of this understanding of communication between neighbors and on essential helper
functionality, the following three chapters treat networking functionality regarding routing protocols
in various forms, transport layer functionality, and an appropriate notion of quality of service. The
book is complemented by a final chapter on advanced application support. For extra learning
materials in the form of lecture slides, go to the accompanying website, www.wiley.com/go/
wsn, which is gradually being populated.

A Full Course

Selecting the material for a full course from this book should be relatively easy. Essentially, all
topics should be covered, more or less in depth, using a variable number of the example protocols
discussed in the book.

A Reduced Course

If time does not permit covering of all the topics, a selection has to be made. We consider the
following material rather important and recommend to cover it, if at all possible.

xxiv A guide to the book

A
rc

hi
te

ct
ur

e
P

oi
nt

-t
o-

po
in

t
N

et
w

or
ki

ng

H
elper

protocols

8: Time
synchronization

9: Localization
& positioning

10: Topology
control

1: Introduction

2: Single node architecture

3: Network architecture

4: Physical layer

5: MAC protocols

6:Link-layer protocols

11: Routing protocols

12: Data-centric and
content-based networking

13: Transport layer
and Quality of Service

14: Advanced
application support

7: Naming & addressing

Figure 1 Structure of the book

Chapter 1: Introduction Completely.

Chapter 2: Single node architecture Treat at least Sections 2.1 and 2.2 to some level of detail.
Section 2.3 on operating systems can be covered relatively briefly (depending on the focus
of the course, this might not be very important material).

Chapter 3: Network architecture Cover Sections 3.1 to 3.3. The sections on service interface
and gateways can be omitted for a first reading.

Chapter 4: Physical layer Depending on previous knowledge, this chapter can be skipped entirely.
If possible, Section 4.3 should, however, be covered.

Chapter 5: MAC protocols An important chapter that should be covered, if possible, in its entirety.
If time is short, some examples for each of different protocol classes can be curtailed.

Chapter 6: Link layer protocols Any of the three Sections 6.2, 6.3, or 6.4 can be selected for a
more detailed treatment.

Chapter 7: Naming and addressing This chapter should be treated fairly extensively. Sections 7.3
and 7.4 can be omitted.

Chapter 8: Time synchronization This chapter can be skipped.

Chapter 9: Localization and positioning This chapter can be skipped.

Chapter 10: Topology control While this chapter can, in principle, be skipped as well, some of
the basic ideas should be covered even in a condensed course. We would suggest to cover
Section 10.1 and a single example from Sections 10.2 to 10.6 each.

A guide to the book xxv

Chapter 11: Routing protocols An important chapter. Sections 11.2 and 11.6 may be omitted.1

Chapter 12: Data-centric and content-based networking Quite important and characteristic for
wireless sensor networks. Should receive extensive treatment in a lecture.

Chapter 13: Transport layer and Quality of Service This chapter also should be treated exten-
sively.

Chapter 14: Advanced application support Much of this chapter can be skipped, but a few
examples from Section 14.3 should make a nice conclusion for a lecture.

Evidently, the amount of detail and the focus of a lecture can be controlled by the number of
examples discussed in class. It is probably infeasible to discuss the entire book in a lecture.

1 We would like to make the reader aware of the Steiner tree problem described in Section 11.4.2. It did surprise us in
preparing this book how often this problem has been “rediscovered” in the sensor network literature, often without recognizing
it for what it is.

1
Introduction

Objectives of this Chapter
Applications should shape and form the technology for which they are intended. This holds true
in particular for wireless sensor networks, which have, to some degree, been a technology-driven
development. This chapter starts out by putting the idea of wireless sensor networks into a broader
perspective and gives a number of application scenarios, which will later be used to motivate partic-
ular technical needs. It also generalizes from specific examples to types or classes of applications.
Then, the specific challenges for these application types are discussed and why current technology
is not up to meeting these challenges.

At the end of this chapter, the reader should have an appreciation for the types of applications
for which wireless sensor networks are intended and a first intuition about the types of technical
solutions that are required, both in hardware and in networking technologies.

Chapter Outline
1.1 The vision of Ambient Intelligence 1
1.2 Application examples 3
1.3 Types of applications 6
1.4 Challenges for WSNs 7
1.5 Why are sensor networks different? 10
1.6 Enabling technologies for wireless sensor networks 13

1.1 The vision of Ambient Intelligence
The most common form of information processing has happened on large, general-purpose compu-
tational devices, ranging from old-fashioned mainframes to modern laptops or palmtops. In many
applications, like office applications, these computational devices are mostly used to process infor-
mation that is at its core centered around a human user of a system, but is at best indirectly related
to the physical environment.

Protocols and Architectures for Wireless Sensor Networks. Holger Karl and Andreas Willig
Copyright 2005 John Wiley & Sons, Ltd. ISBN: 0-470-09510-5

2 Introduction

In another class of applications, the physical environment is at the focus of attention. Computation
is used to exert control over physical processes, for example, when controlling chemical processes
in a factory for correct temperature and pressure. Here, the computation is integrated with the
control; it is embedded into a physical system. Unlike the former class of systems, such embedded
systems are usually not based on human interaction but are rather required to work without it; they
are intimately tied to their control task in the context of a larger system.

Such embedded systems are a well-known and long-used concept in the engineering sciences (in
fact, estimates say that up to 98 % of all computing devices are used in an embedded context [91]).
Their impact on everyday life is also continuing to grow at a quick pace. Rare is the household
where embedded computation is not present to control a washing machine, a video player, or a cell
phone. In such applications, embedded systems meet human-interaction-based systems.

Technological progress is about to take this spreading of embedded control in our daily lives a step
further. There is a tendency not only to equip larger objects like a washing machine with embedded
computation and control, but also smaller, even dispensable goods like groceries; in addition, living
and working spaces themselves can be endowed with such capabilities. Eventually, computation
will surround us in our daily lives, realizing a vision of “Ambient Intelligence” where many
different devices will gather and process information from many different sources to both control
physical processes and to interact with human users. These technologies should be unobtrusive and
be taken for granted – Marc Weiser, rightfully called the father of ubiquitous computing, called
them disappearing technologies [867, 868]. By integrating computation and control in our physical
environment, the well-known interaction paradigms of person-to-person, person-to-machine and
machine-to-machine can be supplemented, in the end, by a notion of person-to-physical world
[783]; the interaction with the physical world becomes more important than mere symbolic data
manipulation [126].

To realize this vision, a crucial aspect is needed in addition to computation and control: commu-
nication. All these sources of information have to be able to transfer the information to the place
where it is needed – an actuator or a user – and they should collaborate in providing as precise
a picture of the real world as is required. For some application scenarios, such networks of sen-
sors and actuators are easily built using existing, wired networking technologies. For many other
application types, however, the need to wire together all these entities constitutes a considerable
obstacle to success: Wiring is expensive (figures of up to US$200 per sensor can be found in the
literature [667]), in particular, given the large number of devices that is imaginable in our envi-
ronment; wires constitute a maintenance problem; wires prevent entities from being mobile; and
wires can prevent sensors or actuators from being close to the phenomenon that they are supposed
to control. Hence, wireless communication between such devices is, in many application scenarios,
an inevitable requirement.

Therefore, a new class of networks has appeared in the last few years: the so-called Wireless
Sensor Network (WSN) (see e.g. [17, 648]). These networks consist of individual nodes that are
able to interact with their environment by sensing or controlling physical parameters; these nodes
have to collaborate to fulfill their tasks as, usually, a single node is incapable of doing so; and
they use wireless communication to enable this collaboration. In essence, the nodes without such
a network contain at least some computation, wireless communication, and sensing or control
functionalities. Despite the fact that these networks also often include actuators, the term wireless
sensor network has become the commonly accepted name. Sometimes, other names like “wireless
sensor and actuator networks” are also found.

These WSNs are powerful in that they are amenable to support a lot of very different real-world
applications; they are also a challenging research and engineering problem because of this very
flexibility. Accordingly, there is no single set of requirements that clearly classifies all WSNs, and
there is also not a single technical solution that encompasses the entire design space. For example,
in many WSN applications, individual nodes in the network cannot easily be connected to a wired
power supply but rather have to rely on onboard batteries. In such an application, the energy

Application examples 3

efficiency of any proposed solution is hence a very important figure of merit as a long operation
time is usually desirable. In other applications, power supply might not be an issue and hence other
metrics, for example, the accuracy of the delivered results, can become more important. Also, the
acceptable size and costs of an individual node can be relevant in many applications. Closely tied
to the size is often the capacity of an onboard battery; the price often has a direct bearing on
the quality of the node’s sensors, influencing the accuracy of the result that can be obtained from
a single node. Moreover, the number, price, and potentially low accuracy of individual nodes is
relevant when comparing a distributed system of many sensor nodes to a more centralized version
with fewer, more expensive nodes of higher accuracy. Simpler but numerous sensors that are close
to the phenomenon under study can make the architecture of a system both simpler and more
energy efficient as they facilitate distributed sampling – detecting objects, for example, requires a
distributed system [17, 648].

Realizing such wireless sensor networks is a crucial step toward a deeply penetrating Ambient
Intelligence concept as they provide, figuratively, the “last 100 meters” of pervasive control. To
realize them, a better understanding of their potential applications and the ensuing requirements
is necessary, as is an idea of the enabling technologies. These questions are answered in the
following sections; a juxtaposition of wireless sensor networks and related networking concepts
such as fieldbuses or mobile ad hoc network is provided as well.

1.2 Application examples
The claim of wireless sensor network proponents is that this technological vision will facilitate
many existing application areas and bring into existence entirely new ones. This claim depends on
many factors, but a couple of the envisioned application scenarios shall be highlighted.

Apart from the need to build cheap, simple to program and network, potentially long-lasting
sensor nodes, a crucial and primary ingredient for developing actual applications is the actual
sensing and actuating faculties with which a sensor node can be endowed. For many physical
parameters, appropriate sensor technology exists that can be integrated in a node of a WSN. Some
of the few popular ones are temperature, humidity, visual and infrared light (from simple luminance
to cameras), acoustic, vibration (e.g. for detecting seismic disturbances), pressure, chemical sensors
(for gases of different types or to judge soil composition), mechanical stress, magnetic sensors (to
detect passing vehicles), potentially even radar (see references [245, 246] for examples). But even
more sophisticated sensing capabilities are conceivable, for example, toys in a kindergarten might
have tactile or motion sensors or be able to determine their own speed or location [783].

Actuators controlled by a node of a wireless sensor network are perhaps not quite as multifaceted.
Typically, they control a mechanical device like a servo drive, or they might switch some electrical
appliance by means of an electrical relay, like a lamp, a bullhorn, or a similar device.

On the basis of nodes that have such sensing and/or actuation faculties, in combination with
computation and communication abilities, many different kinds of applications can be constructed,
with very different types of nodes, even of different kinds within one application. A brief list
of scenarios should make the vast design space and the very different requirements of various
applications evident. Overviews of these and other applications are included in references [17, 26,
88, 91, 110, 126, 134, 245, 246, 351, 367, 392, 534, 648, 667, 783, 788, 803, 923].

Disaster relief applications One of the most often mentioned application types for WSN are dis-
aster relief operations. A typical scenario is wildfire detection: Sensor nodes are equipped
with thermometers and can determine their own location (relative to each other or in abso-
lute coordinates). These sensors are deployed over a wildfire, for example, a forest, from an
airplane. They collectively produce a “temperature map” of the area or determine the perime-
ter of areas with high temperature that can be accessed from the outside, for example, by

4 Introduction

firefighters equipped with Personal Digital Assistants (PDAs). Similar scenarios are possible
for the control of accidents in chemical factories, for example.

Some of these disaster relief applications have commonalities with military applications,
where sensors should detect, for example, enemy troops rather than wildfires. In such an
application, sensors should be cheap enough to be considered disposable since a large number
is necessary; lifetime requirements are not particularly high.

Environment control and biodiversity mapping WSNs can be used to control the environment,
for example, with respect to chemical pollutants – a possible application is garbage dump
sites. Another example is the surveillance of the marine ground floor; an understanding of its
erosion processes is important for the construction of offshore wind farms. Closely related to
environmental control is the use of WSNs to gain an understanding of the number of plant
and animal species that live in a given habitat (biodiversity mapping).

The main advantages of WSNs here are the long-term, unattended, wirefree operation of
sensors close to the objects that have to be observed; since sensors can be made small enough
to be unobtrusive, they only negligibly disturb the observed animals and plants. Often, a large
number of sensors is required with rather high requirements regarding lifetime.

Intelligent buildings Buildings waste vast amounts of energy by inefficient Humidity, Ventilation,
Air Conditioning (HVAC) usage. A better, real-time, high-resolution monitoring of temper-
ature, airflow, humidity, and other physical parameters in a building by means of a WSN
can considerably increase the comfort level of inhabitants and reduce the energy consump-
tion (potential savings of two quadrillion British Thermal Units in the US alone have been
speculated about [667]). Improved energy efficiency as well as improved convenience are
some goals of “intelligent buildings” [415], for which currently wired systems like BACnet,
LonWorks, or KNX are under development or are already deployed [776]; these standards
also include the development of wireless components or have already incorporated them in
the standard.

In addition, such sensor nodes can be used to monitor mechanical stress levels of buildings
in seismically active zones. By measuring mechanical parameters like the bending load of
girders, it is possible to quickly ascertain via a WSN whether it is still safe to enter a
given building after an earthquake or whether the building is on the brink of collapse – a
considerable advantage for rescue personnel. Similar systems can be applied to bridges. Other
types of sensors might be geared toward detecting people enclosed in a collapsed building
and communicating such information to a rescue team.

The main advantage here is the collaborative mapping of physical parameters. Depending
on the particular application, sensors can be retrofitted into existing buildings (for HVAC-
type applications) or have to be incorporated into the building already under construction. If
power supply is not available, lifetime requirements can be very high – up to several dozens
of years – but the number of required nodes, and hence the cost, is relatively modest, given
the costs of an entire building.

Facility management In the management of facilities larger than a single building, WSNs also
have a wide range of possible applications. Simple examples include keyless entry appli-
cations where people wear badges that allow a WSN to check which person is allowed to
enter which areas of a larger company site. This example can be extended to the detection of
intruders, for example of vehicles that pass a street outside of normal business hours. A wide-
area WSN could track such a vehicle’s position and alert security personnel – this application
shares many commonalities with corresponding military applications. Along another line, a
WSN could be used in a chemical plant to scan for leaking chemicals.

Application examples 5

These applications combine challenging requirements as the required number of sensors can
be large, they have to collaborate (e.g. in the tracking example), and they should be able to
operate a long time on batteries.

Machine surveillance and preventive maintenance One idea is to fix sensor nodes to difficult-
to-reach areas of machinery where they can detect vibration patterns that indicate the need
for maintenance. Examples for such machinery could be robotics or the axles of trains. Other
applications in manufacturing are easily conceivable.

The main advantage of WSNs here is the cablefree operation, avoiding a maintenance prob-
lem in itself and allowing a cheap, often retrofitted installation of such sensors. Wired power
supply may or may not be available depending on the scenario; if it is not available, sensors
should last a long time on a finite supply of energy since exchanging batteries is usually
impractical and costly. On the other hand, the size of nodes is often not a crucial issue, nor
is the price very heavily constrained.

Precision agriculture Applying WSN to agriculture allows precise irrigation and fertilizing by
placing humidity/soil composition sensors into the fields. A relatively small number is
claimed to be sufficient, about one sensor per 100 m × 100 m area. Similarly, pest con-
trol can profit from a high-resolution surveillance of farm land. Also, livestock breeding can
benefit from attaching a sensor to each pig or cow, which controls the health status of the
animal (by checking body temperature, step counting, or similar means) and raises alarms if
given thresholds are exceeded.

Medicine and health care Along somewhat similar lines, the use of WSN in health care appli-
cations is a potentially very beneficial, but also ethically controversial, application. Possi-
bilities range from postoperative and intensive care, where sensors are directly attached to
patients – the advantage of doing away with cables is considerable here – to the long-term
surveillance of (typically elderly) patients and to automatic drug administration (embedding
sensors into drug packaging, raising alarms when applied to the wrong patient, is con-
ceivable). Also, patient and doctor tracking systems within hospitals can be literally life
saving.

Logistics In several different logistics applications, it is conceivable to equip goods (individual
parcels, for example) with simple sensors that allow a simple tracking of these objects
during transportation or facilitate inventory tracking in stores or warehouses.

In these applications, there is often no need for a sensor node to actively communicate;
passive readout of data is often sufficient, for example, when a suitcase is moved around on
conveyor belts in an airport and passes certain checkpoints. Such passive readout is much
simpler and cheaper than the active communication and information processing concept
discussed in the other examples; it is realized by so-called Radio Frequency Identifier (RF
ID) tags.

On the other hand, a simple RFID tag cannot support more advanced applications. It is very
difficult to imagine how a passive system can be used to locate an item in a warehouse; it
can also not easily store information about the history of its attached object – questions like
“where has this parcel been?” are interesting in many applications but require some active
participation of the sensor node [246, 392].

Telematics Partially related to logistics applications are applications for the telematics context,
where sensors embedded in the streets or roadsides can gather information about traffic
conditions at a much finer grained resolution than what is possible today [296]. Such a so-
called “intelligent roadside” could also interact with the cars to exchange danger warnings
about road conditions or traffic jams ahead.

6 Introduction

In addition to these, other application types for WSNs that have been mentioned in the literature
include airplane wings and support for smart spaces [245], applications in waste water treatment
plants [367], instrumentation of semiconductor processing chambers and wind tunnels [392], in
“smart kindergartens” where toys interact with children [783], the detection of floods [88], inter-
active museums [667], monitoring a bird habitat on a remote island [534], and implanting sensors
into the human body (for glucose monitoring or as retina prosthesis) [745]

While most of these applications are, in some form or another, possible even with today’s tech-
nologies and without wireless sensor networks, all current solutions are “sensor starved” [667].
Most applications would work much better with information at higher spatial and temporal resolu-
tion about their object of concern than can be provided with traditional sensor technology. wireless
sensor networks are to a large extent about providing the required information at the required
accuracy in time with as little resource consumption as possible.

1.3 Types of applications
Many of these applications share some basic characteristics. In most of them, there is a clear
difference between sources of data – the actual nodes that sense data – and sinks – nodes where the
data should be delivered to. These sinks sometimes are part of the sensor network itself; sometimes
they are clearly systems “outside” the network (e.g. the firefighter’s PDA communicating with a
WSN). Also, there are usually, but not always, more sources than sinks and the sink is oblivious
or not interested in the identity of the sources; the data itself is much more important.

The interaction patterns between sources and sinks show some typical patterns. The most
relevant ones are:

Event detection Sensor nodes should report to the sink(s) once they have detected the occurrence
of a specified event. The simplest events can be detected locally by a single sensor node in
isolation (e.g. a temperature threshold is exceeded); more complicated types of events require
the collaboration of nearby or even remote sensors to decide whether a (composite) event
has occurred (e.g. a temperature gradient becomes too steep). If several different events can
occur, event classification might be an additional issue.

Periodic measurements Sensors can be tasked with periodically reporting measured values. Often,
these reports can be triggered by a detected event; the reporting period is application depen-
dent.

Function approximation and edge detection The way a physical value like temperature changes
from one place to another can be regarded as a function of location. A WSN can be used
to approximate this unknown function (to extract its spatial characteristics), using a limited
number of samples taken at each individual sensor node. This approximate mapping should
be made available at the sink. How and when to update this mapping depends on the
application’s needs, as do the approximation accuracy and the inherent trade-off against
energy consumption.

Similarly, a relevant problem can be to find areas or points of the same given value. An
example is to find the isothermal points in a forest fire application to detect the border of
the actual fire. This can be generalized to finding “edges” in such functions or to sending
messages along the boundaries of patterns in both space and/or time [274].

Tracking The source of an event can be mobile (e.g. an intruder in surveillance scenarios). The
WSN can be used to report updates on the event source’s position to the sink(s), potentially
with estimates about speed and direction as well. To do so, typically sensor nodes have to
cooperate before updates can be reported to the sink.

Challenges for WSNs 7

These interactions can be scoped both in time and in space (reporting events only within a given
time span, only from certain areas, and so on). These requirements can also change dynamically
overtime; sinks have to have a means to inform the sensors of their requirements at runtime.
Moreover, these interactions can take place only for one specific request of a sink (so-called
“one-shot queries”), or they could be long-lasting relationships between many sensors and many
sinks.

The examples also have shown a wide diversity in deployment options. They range from well-
planned, fixed deployment of sensor nodes (e.g. in machinery maintenance applications) to random
deployment by dropping a large number of nodes from an aircraft over a forest fire. In addition,
sensor nodes can be mobile themselves and compensate for shortcomings in the deployment process
by moving, in a postdeployment phase, to positions such that their sensing tasks can be better
fulfilled [17]. They could also be mobile because they are attached to other objects (in the logistics
applications, for example) and the network has to adapt itself to the location of nodes.

The applications also influence the available maintenance options: Is it feasible and practical
to perform maintenance on such sensors – perhaps even required in the course of maintenance
on associated machinery? Is maintenance irrelevant because these networks are only deployed in
a strictly ad hoc, short-term manner with a clear delimitation of maximum mission time (like in
disaster recovery operations)? Or do these sensors have to function unattended, for a long time,
with no possibility for maintenance?

Closely related to the maintenance options are the options for energy supply. In some appli-
cations, wired power supply is possible and the question is mute. For self-sustained sensor nodes,
depending on the required mission time, energy supply can be trivial (applications with a few days
of usage only) or a challenging research problem, especially when no maintenance is possible but
nodes have to work for years. Obviously, acceptable price and size per node play a crucial role in
designing energy supply.

1.4 Challenges for WSNs
Handling such a wide range of application types will hardly be possible with any single realization
of a WSN. Nonetheless, certain common traits appear, especially with respect to the characteristics
and the required mechanisms of such systems. Realizing these characteristics with new mechanisms
is the major challenge of the vision of wireless sensor networks.

1.4.1 Characteristic requirements
The following characteristics are shared among most of the application examples discussed above:

Type of service The service type rendered by a conventional communication network is evi-
dent – it moves bits from one place to another. For a WSN, moving bits is only a means
to an end, but not the actual purpose. Rather, a WSN is expected to provide meaningful
information and/or actions about a given task: “People want answers, not numbers” (Steven
Glaser, UC Berkeley, in [367]). Additionally, concepts like scoping of interactions to spe-
cific geographic regions or to time intervals will become important. Hence, new paradigms
of using such a network are required, along with new interfaces and new ways of thinking
about the service of a network.

Quality of Service Closely related to the type of a network’s service is the quality of that service.
Traditional quality of service requirements – usually coming from multimedia-type appli-
cations – like bounded delay or minimum bandwidth are irrelevant when applications are
tolerant to latency [26] or the bandwidth of the transmitted data is very small in the first

8 Introduction

place. In some cases, only occasional delivery of a packet can be more than enough; in other
cases, very high reliability requirements exist. In yet other cases, delay is important when
actuators are to be controlled in a real-time fashion by the sensor network. The packet deliv-
ery ratio is an insufficient metric; what is relevant is the amount and quality of information
that can be extracted at given sinks about the observed objects or area.

Therefore, adapted quality concepts like reliable detection of events or the approximation
quality of a, say, temperature map is important.

Fault tolerance Since nodes may run out of energy or might be damaged, or since the wireless
communication between two nodes can be permanently interrupted, it is important that the
WSN as a whole is able to tolerate such faults. To tolerate node failure, redundant deployment
is necessary, using more nodes than would be strictly necessary if all nodes functioned
correctly.

Lifetime In many scenarios, nodes will have to rely on a limited supply of energy (using batteries).
Replacing these energy sources in the field is usually not practicable, and simultaneously,
a WSN must operate at least for a given mission time or as long as possible. Hence, the
lifetime of a WSN becomes a very important figure of merit. Evidently, an energy-efficient
way of operation of the WSN is necessary.

As an alternative or supplement to energy supplies, a limited power source (via power
sources like solar cells, for example) might also be available on a sensor node. Typically,
these sources are not powerful enough to ensure continuous operation but can provide some
recharging of batteries. Under such conditions, the lifetime of the network should ideally be
infinite.

The lifetime of a network also has direct trade-offs against quality of service: investing more
energy can increase quality but decrease lifetime. Concepts to harmonize these trade-offs are
required.

The precise definition of lifetime depends on the application at hand. A simple option is to
use the time until the first node fails (or runs out of energy) as the network lifetime. Other
options include the time until the network is disconnected in two or more partitions, the time
until 50 % (or some other fixed ratio) of nodes have failed, or the time when for the first
time a point in the observed region is no longer covered by at least a single sensor node
(when using redundant deployment, it is possible and beneficial to have each point in space
covered by several sensor nodes initially).

Scalability Since a WSN might include a large number of nodes, the employed architectures and
protocols must be able scale to these numbers.

Wide range of densities In a WSN, the number of nodes per unit area – the density of the net-
work – can vary considerably. Different applications will have very different node densities.
Even within a given application, density can vary over time and space because nodes fail
or move; the density also does not have to homogeneous in the entire network (because of
imperfect deployment, for example) and the network should adapt to such variations.

Programmability Not only will it be necessary for the nodes to process information, but also they
will have to react flexibly on changes in their tasks. These nodes should be programmable, and
their programming must be changeable during operation when new tasks become important.
A fixed way of information processing is insufficient.

Maintainability As both the environment of a WSN and the WSN itself change (depleted batteries,
failing nodes, new tasks), the system has to adapt. It has to monitor its own health and status

Challenges for WSNs 9

to change operational parameters or to choose different trade-offs (e.g. to provide lower
quality when energy resource become scarce). In this sense, the network has to maintain
itself; it could also be able to interact with external maintenance mechanisms to ensure its
extended operation at a required quality [534].

1.4.2 Required mechanisms
To realize these requirements, innovative mechanisms for a communication network have to be
found, as well as new architectures, and protocol concepts. A particular challenge here is the
need to find mechanisms that are sufficiently specific to the idiosyncrasies of a given application to
support the specific quality of service, lifetime, and maintainability requirements [246]. On the other
hand, these mechanisms also have to generalize to a wider range of applications lest a complete
from-scratch development and implementation of a WSN becomes necessary for every individual
application – this would likely render WSNs as a technological concept economically infeasible.

Some of the mechanisms that will form typical parts of WSNs are:

Multihop wireless communication While wireless communication will be a core technique, a
direct communication between a sender and a receiver is faced with limitations. In particular,
communication over long distances is only possible using prohibitively high transmission
power. The use of intermediate nodes as relays can reduce the total required power. Hence,
for many forms of WSNs, so-called multihop communication will be a necessary ingredient.

Energy-efficient operation To support long lifetimes, energy-efficient operation is a key technique.
Options to look into include energy-efficient data transport between two nodes (measured in
J/bit) or, more importantly, the energy-efficient determination of a requested information.
Also, nonhomogeneous energy consumption – the forming of “hotspots” – is an issue.

Auto-configuration A WSN will have to configure most of its operational parameters autono-
mously, independent of external configuration – the sheer number of nodes and simplified
deployment will require that capability in most applications. As an example, nodes should be
able to determine their geographical positions only using other nodes of the network – so-
called “self-location”. Also, the network should be able to tolerate failing nodes (because of a
depleted battery, for example) or to integrate new nodes (because of incremental deployment
after failure, for example).

Collaboration and in-network processing In some applications, a single sensor is not able to
decide whether an event has happened but several sensors have to collaborate to detect an
event and only the joint data of many sensors provides enough information. Information is
processed in the network itself in various forms to achieve this collaboration, as opposed to
having every node transmit all data to an external network and process it “at the edge” of
the network.

An example is to determine the highest or the average temperature within an area and to
report that value to a sink. To solve such tasks efficiently, readings from individual sensors
can be aggregated as they propagate through the network, reducing the amount of data to
be transmitted and hence improving the energy efficiency. How to perform such aggregation
is an open question.

Data centric Traditional communication networks are typically centered around the transfer of
data between two specific devices, each equipped with (at least) one network address – the
operation of such networks is thus address-centric. In a WSN, where nodes are typically
deployed redundantly to protect against node failures or to compensate for the low quality of

10 Introduction

a single node’s actual sensing equipment, the identity of the particular node supplying data
becomes irrelevant. What is important are the answers and values themselves, not which node
has provided them. Hence, switching from an address-centric paradigm to a data-centric
paradigm in designing architecture and communication protocols is promising.

An example for such a data-centric interaction would be to request the average temperature
in a given location area, as opposed to requiring temperature readings from individual nodes.
Such a data-centric paradigm can also be used to set conditions for alerts or events (“raise an
alarm if temperature exceeds a threshold”). In this sense, the data-centric approach is closely
related to query concepts known from databases; it also combines well with collaboration,
in-network processing, and aggregation.

Locality Rather a design guideline than a proper mechanism, the principle of locality will have to
be embraced extensively to ensure, in particular, scalability. Nodes, which are very limited in
resources like memory, should attempt to limit the state that they accumulate during protocol
processing to only information about their direct neighbors. The hope is that this will allow
the network to scale to large numbers of nodes without having to rely on powerful processing
at each single node. How to combine the locality principle with efficient protocol designs is
still an open research topic, however.

Exploit trade-offs Similar to the locality principle, WSNs will have to rely to a large degree
on exploiting various inherent trade-offs between mutually contradictory goals, both during
system/protocol design and at runtime. Examples for such trade-offs have been mentioned
already: higher energy expenditure allows higher result accuracy, or a longer lifetime of the
entire network trades off against lifetime of individual nodes. Another important trade-off
is node density: depending on application, deployment, and node failures at runtime, the
density of the network can change considerably – the protocols will have to handle very
different situations, possibly present at different places of a single network. Again, not all
the research questions are solved here.

Harnessing these mechanisms such that they are easy to use, yet sufficiently general, for an
application programmer is a major challenge. Departing from an address-centric view of the network
requires new programming interfaces that go beyond the simple semantics of the conventional socket
interface and allow concepts like required accuracy, energy/accuracy trade-offs, or scoping.

1.5 Why are sensor networks different?
On the basis of these application examples and main challenges, two close relatives of WSNs
become apparent: Mobile Ad Hoc Networks (MANETs) on the one hand and fieldbuses on the
other hand.

1.5.1 Mobile ad hoc networks and wireless sensor networks
An ad hoc network is a network that is setup, literally, for a specific purpose, to meet a quickly
appearing communication need. The simplest example of an ad hoc network is perhaps a set of
computers connected together via cables to form a small network, like a few laptops in a meeting
room. In this example, the aspect of self-configuration is crucial – the network is expected to work
without manual management or configuration.

Usually, however, the notion of a MANET is associated with wireless communication and specif-
ically wireless multihop communication; also, the name indicates the mobility of participating nodes
as a typical ingredient. Examples for such networks are disaster relief operations – firefighters com-
municate with each other – or networks in difficult locations like large construction sites, where

Why are sensor networks different? 11

the deployment of wireless infrastructure (access points etc.), let alone cables, is not a feasible
option. In such networks, the individual nodes together form a network that relays packets between
nodes to extend the reach of a single node, allowing the network to span larger geographical areas
than would be possible with direct sender – receiver communication. The two basic challenges in a
MANET are the reorganization of the network as nodes move about and handling the problems of
the limited reach of wireless communication. Literature on MANETs that summarize these prob-
lems and their solutions abound, as these networks are still a very active field of research; popular
books include [635, 793, 827].

These general problems are shared between MANETs and WSNs. Nonetheless, there are some
principal differences between the two concepts, warranting a distinction between them and regarding
separate research efforts for each one.

Applications and equipment MANETs are associated with somewhat different applications as
well as different user equipment than WSNs: in a MANET, the terminal can be fairly
powerful (a laptop or a PDA) with a comparably large battery. This equipment is needed
because in the typical MANET applications, there is usually a human in the loop: the
MANET is used for voice communication between two distant peers, or it is used for access
to a remote infrastructure like a Web server. Therefore, the equipment has to be powerful
enough to support these applications.

Application specific Owing to the large number of conceivable combinations of sensing, comput-
ing, and communication technology, many different application scenarios for WSNs become
possible. It is unlikely that there will be a “one-size-fits-all” solution for all these potentially
very different possibilities. As one example, WSNs are conceivable with very different net-
work densities, from very sparse to very dense deployments, which will require different or
at least adaptive protocols. This diversity, although present, is not quite as large in MANETs.

Environment interaction Since WSNs have to interact with the environment, their traffic charac-
teristics can be expected to be very different from other, human-driven forms of networks.
A typical consequence is that WSNs are likely to exhibit very low data rates over a large
timescale, but can have very bursty traffic when something happens (a phenomenon known
from real-time systems as event showers or alarm storms). Long periods (months) of inactiv-
ity can alternate with short periods (seconds or minutes) of very high activity in the network,
pushing its capacity to the limits. MANETs, on the other hand, are used to support more
conventional applications (Web, voice, and so on) with their comparably well understood
traffic characteristics.

Scale Potentially, WSNs have to scale to much larger numbers (thousands or perhaps hundreds
of thousands) of entities than current ad hoc networks, requiring different, more scalable
solutions. As a concrete case in point, endowing sensor nodes with a unique identifier is costly
(either at production or at runtime) and might be an overhead that could be avoided – hence,
protocols that work without such identifiers might become important in WSNs, whereas it
is fair to assume such identifiers to exist in MANET nodes.

Energy In both WSNs and MANETs, energy is a scare resource. But WSNs have tighter require-
ments on network lifetime, and recharging or replacing WSN node batteries is much less an
option than in MANETs. Owing to this, the impact of energy considerations on the entire
system architecture is much deeper in WSNs than in MANETs.

Self configurability Similar to ad hoc networks, WSNs will most likely be required to self-
configure into connected networks, but the difference in traffic, energy trade-offs, and so
forth, could require new solutions. Nevertheless, it is in this respect that MANETs and
WSNs are probably most similar.

12 Introduction

Dependability and QoS The requirements regarding dependability and QoS are quite different. In
a MANET, each individual node should be fairly reliable; in a WSN, an individual node
is next to irrelevant. The quality of service issues in a MANET are dictated by traditional
applications (low jitter for voice applications, for example); for WSNs, entirely new QoS
concepts are required, which also take energy explicitly into account.

Data centric Redundant deployment will make data-centric protocols attractive in WSNs. This
concept is alien to MANETs. Unless applications like file sharing are used in MANETs, which
do bear some resemblance to data centric approaches, data-centric protocols are irrelevant
to MANETs – but these applications do not represent the typically envisioned use case.

Simplicity and resource scarceness Since sensor nodes are simple and energy supply is scarce,
the operating and networking software must be kept orders of magnitude simpler compared
to today’s desktop computers. This simplicity may also require breaking with conventional
layering rules for networking software, since layering abstractions typically cost time and
space. Also, resources like memory, which is relevant for comparably heavy-weight routing
protocols as those used in MANETs, is not available in arbitrary quantities, requiring new,
scalable, resource-efficient solutions.

Mobility The mobility problem in MANETs is caused by nodes moving around, changing multihop
routes in the network that have to be handled. In a WSN, this problem can also exist if the
sensor nodes are mobile in the given application. There are two additional aspects of mobility
to be considered in WSNs.

First, the sensor network can be used to detect and observe a physical phenomenon (in the
intrusion detection applications, for example). This phenomenon is the cause of events that
happen in the network (like raising of alarms) and can also cause some local processing, for
example, determining whether there really is an intruder. What happens if this phenomenon
moves about? Ideally, data that has been gathered at one place should be available at the
next one. Also, in tracking applications, it is the explicit task of the network to ensure that
some form of activity happens in nodes that surround the phenomenon under observation.

Second, the sinks of information in the network (nodes where information should be delivered
to) can be mobile as well. In principle, this is no different than node mobility in the general
MANET sense, but can cause some difficulties for protocols that operate efficiently in fully
static scenarios. Here, carefully observing trade-offs is necessary.

Furthermore, in both MANET and WSNs, mobility can be correlated – a group of nodes
moving in a related, similar fashion. This correlation can be caused in a MANET by, for
example, belonging to a group of people traveling together. In a WSN, the movement of nodes
can be correlated because nodes are jointly carried by a storm, a river, or some other fluid.

In summary, there are commonalities, but the fact that WSNs have to support very different
applications, that they have to interact with the physical environment, and that they have to carefully
adjudicate various trade-offs justifies considering WSNs as a system concept distinct from MANETs.

1.5.2 Fieldbuses and wireless sensor networks
Fieldbuses are networks that are specifically designed for operation under hard real-time constraints
and usually with inbuilt fault tolerance, to be used predominantly in control applications, that is, as
part of a control loop. Examples include the Profibus and IEEE 802.4 Token Bus networks [372]
for factory floor automation or the CAN bus for onboard networks in cars; some example sum-
maries on the topic include [532, 644, 881]. Because of the stringent hard real-time requirements,

Enabling technologies for wireless sensor networks 13

these networks are usually wired and only the layers one (physical), two (link layer), and seven
(application) of the OSI reference model are used, avoiding communication over multiple hops and
associated queuing delays in intermediate nodes. Nevertheless, a number of research efforts deal
with realizing fieldbus semantics on top of wireless communication, despite its inherently limited
error rates that jeopardize real-time guarantees [200, 687, 878].

Since fieldbuses also have to deal with the physical environment for which they report sensing
data and which they control, they are in this sense very similar to WSNs. With some justification,
WSNs can be considered examples of wireless fieldbuses. Some differences do exist, however:
WSNs do mostly not attempt to provide real-time guarantees in the range of (tens of) millisec-
onds but are rather focused on applications that can tolerate longer delays and some jitter (delay
variability). Also, the adaptive trade-offs that WSNs are willing to make (accuracy against energy
efficiency, for example) is a concept that is not commonly present in the fieldbus literature; specifi-
cally, fieldbuses make no attempt to conserve energy, and their protocols are not prepared to do so.

But these distinctions can only serve as a rough guideline; the borderline between these two
research areas is certainly a blurry one.

1.6 Enabling technologies for wireless sensor networks
Building such wireless sensor networks has only become possible with some fundamental advances
in enabling technologies. First and foremost among these technologies is the miniaturization of
hardware. Smaller feature sizes in chips have driven down the power consumption of the basic
components of a sensor node to a level that the constructions of WSNs can be contemplated. This
is particularly relevant to microcontrollers and memory chips as such, but also, the radio modems,
responsible for wireless communication, have become much more energy efficient. Reduced chip
size and improved energy efficiency is accompanied by reduced cost, which is necessary to make
redundant deployment of nodes affordable.

Next to processing and communication, the actual sensing equipment is the third relevant
technology. Here, however, it is difficult to generalize because of the vast range of possible sen-
sors – Chapter 2 will go more into details here.

These three basic parts of a sensor node have to accompanied by power supply. This requires,
depending on application, high capacity batteries that last for long times, that is, have only a
negligible self-discharge rate, and that can efficiently provide small amounts of current. Ideally, a
sensor node also has a device for energy scavenging, recharging the battery with energy gathered
from the environment – solar cells or vibration-based power generation are conceivable options.
Such a concept requires the battery to be efficiently chargeable with small amounts of current, which
is not a standard ability. Both batteries and energy scavenging are still objects of ongoing research.

The counterpart to the basic hardware technologies is software. The first question to answer
here is the principal division of tasks and functionalities in a single node – the architecture of
the operating system or runtime environment. This environment has to support simple retasking,
cross-layer information exchange, and modularity to allow for simple maintenance. This software
architecture on a single node has to be extended to a network architecture, where the division of
tasks between nodes, not only on a single node, becomes the relevant question – for example, how
to structure interfaces for application programmers. The third part to solve then is the question of
how to design appropriate communication protocols.

This book only touches briefly on the hardware aspects of WSNs. It is also not much concerned
with the questions of appropriate runtime environments. It focuses, rather, on the WSNs architecture
and protocols to solve the communication questions as such.

Part I
Architectures

Protocols and Architectures for Wireless Sensor Networks. Holger Karl and Andreas Willig
Copyright 2005 John Wiley & Sons, Ltd. ISBN: 0-470-09510-5

2
Single-node architecture

Objectives of this Chapter
This fairly long chapter explains the basic part of a wireless sensor network: the nodes as such.
It discusses the principal tasks of a node – computation, storage, communication, and sensing/
actuation – and which components are required to perform these tasks. Then, the energy consump-
tion of these components is described: how energy can be stored, gathered from the environment,
and saved by intelligently controlling the mode of operation of node components. This control has
to be exerted by an operating system like execution environment, which is described in the last
major section of this chapter. Finally, some examples of sensor nodes are given.

At the end of this chapter, the reader should have an understanding of the capabilities and limitations
of the nodes in a sensor network. It lays the foundation for the following chapter, which discusses the
principal options on how individual sensor nodes can be connected into a wireless sensor network.

Chapter Outline

2.1 Hardware components 18
2.2 Energy consumption of sensor nodes 36
2.3 Operating systems and execution environments 45
2.4 Some examples of sensor nodes 54
2.5 Conclusion 56

Building a wireless sensor network first of all requires the constituting nodes to be developed and
available. These nodes have to meet the requirements that come from the specific requirements of a
given application: they might have to be small, cheap, or energy efficient, they have to be equipped
with the right sensors, the necessary computation and memory resources, and they need adequate
communication facilities. These hardware components and their composition into a functioning
node are described in Section 2.1; the power consumption of these components and the ensuing
trade-offs are discussed in Section 2.2. As this chapter only focuses onto an individual node, the
consequences of choosing a particular communication technology for the architecture of a wireless
sensor network as a whole are described in Chapter 3.

Protocols and Architectures for Wireless Sensor Networks. Holger Karl and Andreas Willig
Copyright 2005 John Wiley & Sons, Ltd. ISBN: 0-470-09510-5

18 Single-node architecture

In addition to the hardware of sensor nodes, the operating system and programming model is
an important consideration. Section 2.3 describes the tasks of such an operating system along with
some examples as well as suitable programming interfaces.

2.1 Hardware components
2.1.1 Sensor node hardware overview
When choosing the hardware components for a wireless sensor node, evidently the application’s
requirements play a decisive factor with regard mostly to size, costs, and energy consumption of the
nodes – communication and computation facilities as such are often considered to be of acceptable
quality, but the trade-offs between features and costs is crucial. In some extreme cases, an entire
sensor node should be smaller than 1 cc, weigh (considerably) less than 100 g, be substantially
cheaper than US$1, and dissipate less than 100 µW [667]. In even more extreme visions, the
nodes are sometimes claimed to have to be reduced to the size of grains of dust. In more realistic
applications, the mere size of a node is not so important; rather, convenience, simple power supply,
and cost are more important [126].

These diversities notwithstanding, a certain common trend is observable in the literature when
looking at typical hardware platforms for wireless sensor nodes. While there is certainly not a single
standard available, nor would such a standard necessarily be able to support all application types,
this section will survey these typical sensor node architectures. In addition, there are a number of
research projects that focus on shrinking any of the components in size, energy consumption, or
costs, based on the fact that custom off-the-shelf components do currently not live up to some of
the more stringent application requirements. But as this book focuses on the networking aspects of
WSNs, these efforts are not discussed here.

A basic sensor node comprises five main components (Figure 2.1):

Controller A controller to process all the relevant data, capable of executing arbitrary code.

Memory Some memory to store programs and intermediate data; usually, different types of memory
are used for programs and data.

Sensors and actuators The actual interface to the physical world: devices that can observe or
control physical parameters of the environment.

Communication Turning nodes into a network requires a device for sending and receiving infor-
mation over a wireless channel.

Memory

Power supply

Controller
Sensors/
actuators

Communication
device

Figure 2.1 Overview of main sensor node hardware components

Hardware components 19

Power supply As usually no tethered power supply is available, some form of batteries are neces-
sary to provide energy. Sometimes, some form of recharging by obtaining energy from the
environment is available as well (e.g. solar cells).

Each of these components has to operate balancing the trade-off between as small an energy
consumption as possible on the one hand and the need to fulfill their tasks on the other hand.
For example, both the communication device and the controller should be turned off as long as
possible. To wake up again, the controller could, for example, use a preprogrammed timer to be
reactivated after some time. Alternatively, the sensors could be programmed to raise an interrupt if
a given event occurs – say, a temperature value exceeds a given threshold or the communication
device detects an incoming transmission.

Supporting such alert functions requires appropriate interconnection between individual compo-
nents. Moreover, both control and data information have to be exchanged along these interconnec-
tions. This interconnection can be very simple – for example, a sensor could simply report an analog
value to the controller – or it could be endowed with some intelligence of its own, preprocessing
sensor data and only waking up the main controller if an actual event has been detected – for
example, detecting a threshold crossing for a simple temperature sensor. Such preprocessing can be
highly customized to the specific sensor yet remain simple enough to run continuously, resulting
in improved energy efficiency [26].

2.1.2 Controller
Microcontrollers versus microprocessors, FPGAs, and ASICs

The controller is the core of a wireless sensor node. It collects data from the sensors, processes this
data, decides when and where to send it, receives data from other sensor nodes, and decides on the
actuator’s behavior. It has to execute various programs, ranging from time-critical signal processing
and communication protocols to application programs; it is the Central Processing Unit (CPU)
of the node.

Such a variety of processing tasks can be performed on various controller architectures, repre-
senting trade-offs between flexibility, performance, energy efficiency, and costs.

One solution is to use general-purpose processors, like those known from desktop computers.
These processors are highly overpowered, and their energy consumption is excessive. But simpler
processors do exist, specifically geared toward usage in embedded systems. These processors are
commonly referred as microcontrollers. Some of the key characteristics why these microcontrollers
are particularly suited to embedded systems are their flexibility in connecting with other devices
(like sensors), their instruction set amenable to time-critical signal processing, and their typically
low power consumption; they are also convenient in that they often have memory built in. In
addition, they are freely programmable and hence very flexible. Microcontrollers are also suitable
for WSNs since they commonly have the possibility to reduce their power consumption by going
into sleep states where only parts of the controller are active; details vary considerably between
different controllers. Details regarding power consumption and energy efficiency are discussed in
Section 2.2. One of the main differences to general-purpose systems is that microcontroller-based
systems usually do not feature a memory management unit, somewhat limiting the functionality of
memory – for example, protected or virtual memory is difficult, if not impossible, to achieve.

A specialized case of programmable processors are Digital Signal Processors (DSPs). They are
specifically geared, with respect to their architecture and their instruction set, for processing large
amounts of vectorial data, as is typically the case in signal processing applications. In a wireless
sensor node, such a DSP could be used to process data coming from a simple analog, wireless
communication device to extract a digital data stream. In broadband wireless communication,
DSPs are an appropriate and successfully used platform. But in wireless sensor networks, the

20 Single-node architecture

requirements on wireless communication are usually much more modest (e.g. simpler, easier to
process modulations are used that can be efficiently handled in hardware by the communication
device itself) and the signal processing tasks related to the actual sensing of data is also not overly
complicated. Hence, these advantages of a DSP are typically not required in a WSN node and they
are usually not used.

Another option for the controller is to depart from the high flexibility offered by a (fairly general-
purpose) microcontroller and to use Field-Programmable Gate Arrays (FPGAs) or Application-
Specific Integrated Circuits (ASICs) instead. An FPGA can be reprogrammed (or rather recon-
figured) “in the field” to adapt to a changing set of requirements; however, this can take time
and energy – it is not practical to reprogram an FPGA at the same frequency as a microcontroller
could change between different programs. An ASIC is a specialized processor, custom designed
for a given application such as, for example, high-speed routers and switches. The typical trade-off
here is loss of flexibility in return for a considerably better energy efficiency and performance. On
the other hand, where a microcontroller requires software development, ASICs provide the same
functionality in hardware, resulting in potentially more costly hardware development.

For a dedicated WSN application, where the duties of a the sensor nodes do not change over
lifetime and where the number of nodes is big enough to warrant the investment in ASIC devel-
opment, they can be a superior solution. At the current stage of WSN technology, however, the
bigger flexibility and simpler usage of microcontrollers makes them the generally preferred solu-
tion. However, this is not necessarily the final solution as “convenient programmability over several
orders of energy consumption and data processing requirements is a worthy research goal” [648].
In addition, splitting processing tasks between some low-level, fixed functionality put into a very
energy-efficient ASIC and high-level, flexible, relatively rarely invoked processing on a microcon-
troller is an attractive design and research option [26, 648].

For the remainder of this book, a microcontroller-based architecture is assumed.

Some examples for microcontrollers

Microcontrollers that are used in several wireless sensor node prototypes include the Atmel proces-
sor or Texas Instrument’s MSP 430. In older prototypes, the Intel StrongArm processors have also
been used, but this is no longer considered as a practical option; it is included here for the sake of
completeness. Nonetheless, as the principal properties of these processors and controllers are quite
similar, conclusions from these earlier research results still hold to a large degree.

Intel StrongARM
The Intel StrongARM [379] is, in WSN terms, a fairly high-end processor as it is mostly geared
toward handheld devices like PDAs. The SA-1100 model has a 32-bit Reduced Instruction Set
Computer (RISC) core, running at up to 206 MHz.

Texas Instruments MSP 430
Texas Instrument provides an entire family of microcontrollers under the family designation MSP
430 [814]. Unlike the StrongARM, it is explicitly intended for embedded applications. Accordingly,
it runs a 16-bit RISC core at considerably lower clock frequencies (up to 4 MHz) but comes with
a wide range of interconnection possibilities and an instruction set amenable to easy handling of
peripherals of different kinds. It features a varying amount of on-chip RAM (sizes are 2–10 kB),
several 12-bit analog/digital converters, and a real-time clock. It is certainly powerful enough to
handle the typical computational tasks of a typical wireless sensor node (possibly with the exception
of driving the radio front end, depending on how it is connected – bit or byte interface – to the
controller).

Hardware components 21

Atmel ATmega
The Atmel ATmega 128L [28] is an 8-bit microcontroller, also intended for usage in embedded
applications and equipped with relevant external interfaces for common peripherals.

2.1.3 Memory
The memory component is fairly straightforward. Evidently, there is a need for Random Access
Memory (RAM) to store intermediate sensor readings, packets from other nodes, and so on. While
RAM is fast, its main disadvantage is that it loses its content if power supply is interrupted. Program
code can be stored in Read-Only Memory (ROM) or, more typically, in Electrically Erasable Pro-
grammable Read-Only Memory (EEPROM) or flash memory (the later being similar to EEPROM
but allowing data to be erased or written in blocks instead of only a byte at a time). Flash memory
can also serve as intermediate storage of data in case RAM is insufficient or when the power
supply of RAM should be shut down for some time. The long read and write access delays of flash
memory should be taken into account, as well as the high required energy.

Correctly dimensioning memory sizes, especially RAM, can be crucial with respect to manufac-
turing costs and power consumption. However, even general rules of thumbs are difficult to give
as the memory requirements are very much application dependent.

2.1.4 Communication device

Choice of transmission medium

The communication device is used to exchange data between individual nodes. In some cases, wired
communication can actually be the method of choice and is frequently applied in many sensor
networklike settings (using field buses like Profibus, LON, CAN, or others). The communication
devices for these networks are custom off-the-shelf components.

The case of wireless communication is considerably more interesting. The first choice to make
is that of the transmission medium – the usual choices include radio frequencies, optical communi-
cation, and ultrasound; other media like magnetic inductance are only used in very specific cases.
Of these choices, Radio Frequency (RF)-based communication is by far the most relevant one as
it best fits the requirements of most WSN applications: It provides relatively long range and high
data rates, acceptable error rates at reasonable energy expenditure, and does not require line of
sight between sender and receiver. Thus, RF-based communication and transceiver will receive the
lion share of attention here; other media are only treated briefly at the end of this section.

For a practical wireless, RF-based system, the carrier frequency has to be carefully chosen.
Chapter 4 contains a detailed discussion; for the moment, suffice it to say that wireless sensor
networks typically use communication frequencies between about 433 MHz and 2.4 GHz.

The reader is expected to be familiar with the basics of wireless communication; a survey is
included in Chapter 4.

Transceivers

For actual communication, both a transmitter and a receiver are required in a sensor node. The
essential task is to convert a bit stream coming from a microcontroller (or a sequence of bytes or
frames) and convert them to and from radio waves. For practical purposes, it is usually convenient
to use a device that combines these two tasks in a single entity. Such combined devices are called
transceivers. Usually, half-duplex operation is realized since transmitting and receiving at the
same time on a wireless medium is impractical in most cases (the receiver would only hear the
own transmitter anyway).

22 Single-node architecture

A range of low-cost transceivers is commercially available that incorporate all the circuitry
required for transmitting and receiving – modulation, demodulation, amplifiers, filters, mixers,
and so on. For a judicious choice, the transceiver’s tasks and its main characteristics have to
be understood.

Transceiver tasks and characteristics

To select appropriate transceivers, a number of characteristics should be taken into account. The
most important ones are:

Service to upper layer A receiver has to offer certain services to the upper layers, most notably
to the Medium Access Control (MAC) layer. Sometimes, this service is packet oriented;
sometimes, a transceiver only provides a byte interface or even only a bit interface to the
microcontroller.

In any case, the transceiver must provide an interface that somehow allows the MAC layer
to initiate frame transmissions and to hand over the packet from, say, the main memory of
the sensor node into the transceiver (or a byte or a bit stream, with additional processing
required on the microcontroller). In the other direction, incoming packets must be streamed
into buffers accessible by the MAC protocol.

Power consumption and energy efficiency The simplest interpretation of energy efficiency is the
energy required to transmit and receive a single bit. Also, to be suitable for use in WSNs,
transceivers should be switchable between different states, for example, active and sleeping.
The idle power consumption in each of these states and during switching between them is
very important – details are discussed in Section 2.2.

Carrier frequency and multiple channels Transceivers are available for different carrier frequen-
cies; evidently, it must match application requirements and regulatory restrictions. It is often
useful if the transceiver provides several carrier frequencies (“channels”) to choose from,
helping to alleviate some congestion problems in dense networks. Such channels or “sub-
bands” are relevant, for example, for certain MAC protocols (FDMA or multichannel CSMA/
ALOHA techniques, see Chapter 5).

State change times and energy A transceiver can operate in different modes: sending or receiv-
ing, use different channels, or be in different power-safe states. In any case, the time and
the energy required to change between two such states are important figures of merit. The
turnaround time between sending and receiving, for example, is important for various medium
access protocols (see Chapter 5).

Data rates Carrier frequency and used bandwidth together with modulation and coding determine
the gross data rate. Typical values are a few tens of kilobits per second – considerably less than
in broadband wireless communication, but usually sufficient for WSNs. Different data rates
can be achieved, for example, by using different modulations or changing the symbol rate.

Modulations The transceivers typically support one or several of on/off-keying, ASK, FSK, or
similar modulations. If several modulations are available, it is convenient for experiments if
they are selectable at runtime even though, for real deployment, dynamic switching between
modulations is not one of the most discussed options.

Coding Some transceivers allow various coding schemes to be selected.

Transmission power control Some transceivers can directly provide control over the transmission
power to be used; some require some external circuitry for that purpose. Usually, only a

Hardware components 23

discrete number of power levels are available from which the actual transmission power can
be chosen. Maximum output power is usually determined by regulations.

Noise figure The noise figure NF of an element is defined as the ratio of the Signal-to-Noise
Ratio (SNR) ratio SNRI at the input of the element to the SNR ratio SNRO at the element’s
output:

NF = SNRI

SNRO

It describes the degradation of SNR due to the element’s operation and is typically given in
dB:

NF dB = SNRI dB − SNRO dB

Gain The gain is the ratio of the output signal power to the input signal power and is typically
given in dB. Amplifiers with high gain are desirable to achieve good energy efficiency.

Power efficiency The efficiency of the radio front end is given as the ratio of the radiated power to
the overall power consumed by the front end; for a power amplifier, the efficiency describes
the ratio of the output signal’s power to the power consumed by the overall power amplifier.

Receiver sensitivity The receiver sensitivity (given in dBm) specifies the minimum signal power
at the receiver needed to achieve a prescribed Eb/N0 or a prescribed bit/packet error rate.
Better sensitivity levels extend the possible range of a system.

Range While intuitively the range of a transmitter is clear, a formal definition requires some care.
The range is considered in absence of interference; it evidently depends on the maximum
transmission power, on the antenna characteristics, on the attenuation caused by the environ-
ment, which in turn depends on the used carrier frequency, on the modulation/coding scheme
that is used, and on the bit error rate that one is willing to accept at the receiver. It also
depends on the quality of the receiver, essentially captured by its sensitivity. Typical values
are difficult to give here, but prototypes or products with ranges between a few meters and
several hundreds of meters are available.

Blocking performance The blocking performance of a receiver is its achieved bit error rate in
the presence of an interferer. More precisely, at what power level can an interferer (at a
fixed distance) send at a given offset from the carrier frequency such that target BER can
still be met? An interferer at higher frequency offsets can be tolerated at large power levels.
Evidently, blocking performance can be improved by interposing a filter between antenna
and transceiver.

An important special case is an adjacent channel interferer that transmits on neighboring
frequencies. The adjacent channel suppression describes a transceiver’s capability to filter
out signals from adjacent frequency bands (and thus to reduce adjacent channel interference)
has a direct impact on the observed Signal to Interference and Noise Ratio (SINR).

Out of band emission The inverse to adjacent channel suppression is the out of band emission of
a transmitter. To limit disturbance of other systems, or of the WSN itself in a multichannel
setup, the transmitter should produce as little as possible of transmission power outside of
its prescribed bandwidth, centered around the carrier frequency.

Carrier sense and RSSI In many medium access control protocols, sensing whether the wireless
channel, the carrier, is busy (another node is transmitting) is a critical information. The

24 Single-node architecture

receiver has to be able to provide that information. The precise semantics of this carrier-
sense signal depends on the implementation. For example, the IEEE 802.15.4 standard [468]
distinguishes the following modes:

• The received energy is above threshold; however, the underlying signal does not need to
comply with the modulation and spectral characteristics.

• A carrier has been detected, that is, some signal which complies with the modulation.
• Carrier detected and energy is present.

Also, the signal strength at which an incoming data packet has been received can provide
useful information (e.g. a rough estimate about the distance from the transmitter assuming
the transmission power is known); a receiver has to provide this information in the Received
Signal Strength Indicator (RSSI).

Frequency stability The frequency stability denotes the degree of variation from nominal center
frequencies when environmental conditions of oscillators like temperature or pressure change.
In extreme cases, poor frequency stability can break down communication links, for example,
when one node is placed in sunlight whereas its neighbor is currently in the shade.

Voltage range Transceivers should operate reliably over a range of supply voltages. Otherwise,
inefficient voltage stabilization circuitry is required.

Transceivers appropriate for WSNs are available from many manufacturers. Usually, there is an
entire family of devices to choose from, for example, customized to different regulatory restrictions
on carrier frequency in Europe and North America. Currently popular product series include the
RFM TR 1001, the Chipcon CC 1000 and CC 2420 (as one of the first IEEE 802.15.4 compliant
models), and the Infineon TDA525x family, to name but a few. They are described in a bit more
detail at the end of this section.

An important peculiarity and a key difference compared to other communication devices is the
fact that these simple transceivers often lack a unique identifier: each Ethernet device, for example,
has a MAC-level address that uniquely identifies this individual device. For simple transceivers, the
additional cost of providing such an identifier is relatively high with respect to the device’s total
costs, and thus, unique identifiers cannot be relied upon to be present in all devices. The availability
of such device identifiers is very useful in many communication protocols and their absence will
have considerable consequences for protocol design.

Improving these commercial designs to provide better performance at lower energy consumption
and reduced cost is an ongoing effort by a large research community, facing challenges such as low
transistor transconductance or limitations of integrated passive RF components. As these hardware-
related questions are not the main focus of this book, the reader is referred to other material
[26, 134, 647].

Transceiver structure

A fairly common structure of transceivers is into the Radio Frequency (RF) front end and the
baseband part:

• the radio frequency front end performs analog signal processing in the actual radio frequency
band, whereas

• the baseband processor performs all signal processing in the digital domain and communicates
with a sensor node’s processor or other digital circuitry.

Hardware components 25

Between these two parts, a frequency conversion takes place, either directly or via one or
several Intermediate Frequencys (IFs). The boundary between the analog and the digital domain is
constituted by Digital/Analog Converters (DACs) and Analog/Digital Converters (ADCs).

A detailed discussion of the low-power design of RF front end and baseband circuitry is well
beyond the scope of this book; one place to start with is reference [3].

The RF front end performs analog signal processing in the actual radio frequency band, for
example in the 2.4 GHz Industrial, Scientific, and Medical (ISM) band; it is the first stage of
the interface between the electromagnetic waves and the digital signal processing of the further
transceiver stages [46, 470]. Some important elements of an RF front ends architecture are sketched
in Figure 2.2:

• The Power Amplifier (PA) accepts upconverted signals from the IF or baseband part and amplifies
them for transmission over the antenna.

• The Low Noise Amplifier (LNA) amplifies incoming signals up to levels suitable for further
processing without significantly reducing the SNR [470]. The range of powers of the incoming
signals varies from very weak signals from nodes close to the reception boundary to strong
signals from nearby nodes; this range can be up to 100 dB. Without management actions, the
LNA is active all the time and can consume a significant fraction of the transceiver’s energy.

• Elements like local oscillators or voltage-controlled oscillators and mixers are used for frequency
conversion from the RF spectrum to intermediate frequencies or to the baseband. The incoming
signal at RF frequencies fRF is multiplied in a mixer with a fixed-frequency signal from the local
oscillator (frequency fLO). The resulting intermediate-frequency signal has frequency fLO − fRF.
Depending on the RF front end architecture, other elements like filters are also present.

The efficiency of RF front ends in wireless sensor networks is discussed in Section 4.3.

Transceiver operational states

Many transceivers can distinguish four operational states [670]:

and baseband procesing
Intermediate frequency

Frequency
conversion

Antenna
interface

Low noise
amplifier
(LNA)

Power
amplifier

(PA)

Radio frontend

Figure 2.2 RF front end [46]

26 Single-node architecture

Transmit In the transmit state, the transmit part of the transceiver is active and the antenna
radiates energy.

Receive In the receive state the receive part is active.

Idle A transceiver that is ready to receive but is not currently receiving anything is said to be in an
idle state. In this idle state, many parts of the receive circuitry are active, and others can be
switched off. For example, in the synchronization circuitry, some elements concerned with
acquisition are active, while those concerned with tracking can be switched off and activated
only when the acquisition has found something. Myers et al. [580] also discuss techniques
for switching off parts of the acquisition circuitry for IEEE 802.11 transceivers. A major
source of power dissipation is leakage.

Sleep In the sleep state, significant parts of the transceiver are switched off. There are transceivers
offering several different sleep states, see reference [580] for a discussion of sleep states for
IEEE 802.11 transceivers. These sleep states differ in the amount of circuitry switched off
and in the associated recovery times and startup energy [855]. For example, in a complete
power down of the transceiver, the startup costs include a complete initialization as well
as configuration of the radio, whereas in “lighter” sleep modes, the clock driving certain
transceiver parts is throttled down while configuration and operational state is remembered.

The sensor node’s protocol stack and operating software must decide into which state the trans-
ceiver is switched, according to the current and anticipated communications needs. One problem
complicating this decision is that the operation of state changes also dissipate power [670]. For
example, a transceiver waking up from the sleep mode to the transmit mode requires some startup
time and startup energy, for example, to ramp up phase-locked loops or voltage-controlled oscilla-
tors. During this startup time, no transmission or reception of data is possible [762]. The problem
of scheduling the node states (equivalently: switching on and off node/transceiver components) so
as to minimize average power consumption (also called power management) is rather complex,
an in-depth treatment can be found in reference [85], and a further reference is [741].

Advanced radio concepts

Apart from these basic transceiver concepts, a number of advanced concepts for radio communi-
cation are the objectives of current research. Three of them are briefly summarized here.

Wakeup radio
Looking at the transceiver concepts described above, one of the most power-intensive operations
is waiting for a transmission to come in, ready to receive it. During this time, the receiver circuit
must be powered up so that the wireless channel can be observed, spending energy without any
immediate benefit.

While it seems unavoidable to provide a receiver with power during the actual reception of a
packet, it would be desirable not to have to invest power while the node is only waiting for a
packet to come in. A receiver structure is necessary that does not need power but can detect when
a packet starts to arrive. To keep this specialized receiver simple, it suffices for it to raise an event
to notify other components of an incoming packet; upon such an event, the main receiver can be
turned on and perform the actual reception of the packet.

Such receiver concepts are called wakeup receivers [312, 667, 752, 931, 931]: Their only
purpose is to wake up the main receiver without needing (a significant amount of) power to do
so – Zhong et al. [931] state a target power consumption of less than 1 µW. In the simplest case,
this wakeup would happen for every packet; a more sophisticated version would be able to decide,

Hardware components 27

using proper address information at the start of the packet, whether the incoming packet is actually
destined for this node and only then wake up the main receiver.

Such wakeup receivers are tremendously attractive as they would do away with one of the main
problems of WSNs: the need to be permanently able to receive in a network with low average
traffic. It would considerably simplify a lot of the design problems of WSNs, in particular of the
medium access control – Section 5.2.4 will discuss these aspects and some ensuing problems in
more detail. Unfortunately, so far the realization of a reliable, well-performing wakeup receiver has
not been achieved yet.

Spread-spectrum transceivers
Simple transceiver concepts, based on modulations like Amplitude Shift Keying (ASK) or Fre-
quency Shift Keying (FSK), can suffer from limited performance, especially in scenarios with a
lot of interference. To overcome this limitation, the use of spread-spectrum transceivers has been
proposed by some researchers [155, 281]. These transceivers, however, suffer mostly from complex
hardware and consequently higher prices, which has prevented them from becoming a mainstream
concept for WSNs so far. Section 4.2.5 presents details.

Ultrawideband communication
UltraWideBand (UWB) communication is a fairly radical change from conventional wireless com-
munication as outlined above. Instead of modulating a digital signal onto a carrier frequency,
a very large bandwidth is used to directly transmit the digital sequence as very short impulses
(to form nearly rectangular impulses requires considerable bandwidth, because of which this con-
cept is not used traditionally) [44, 646, 866, 885].1 Accordingly, these impulses occupy a large
spectrum starting from a few Hertz up to the range of several GHz. The challenge is to syn-
chronize sender and receiver sufficiently (to an accuracy of trillionth of seconds) so that the
impulses can be correctly detected. A side effect of precisely timed impulses is that UWB is
fairly resistant to multipath fading [181, 472], which can be a serious obstacle for carrier-based
radio communication.

Using such a large bandwidth, an ultrawideband communication will overlap with the spectrum
of a conventional radio system. But, because of the large spreading of the signal, a very small
transmission power suffices. This power can be small enough so that it vanishes in the noise floor
from the perspective of a traditional radio system.

As one concrete example, consider a time-hopping Pulse Position Modulation (PPM) proposed as
combined modulation and multiple access scheme by Win and Scholtz [885]. For each symbol, a
number of pulses are transmitted with almost periodic spacing. The deviations from the periodicity
encode both the modulation as well as the transmitting user.

For a communication system, the effect is that a very high data rate can be realized over short
distances; what is more, UWB communication can relatively easily penetrate obstacles such as
doors, which are impermeable to narrowband radio waves. For a WSN, the high data rate is not
strictly necessary but can be leveraged to reduce the on-time of the transceivers. The nature of
UWB also allows to precisely measure distances (with claimed precision of centimeters).

These desirable features of UWB communication have to be balanced against the difficulties
of building such transceivers at low-cost and low-power consumption. More precisely, an UWB
transmitter is actually relatively simple since it does not need oscillators or related circuitry found
in transmitters for a carrier-frequency-based transmitter. The receivers, on the other hand, require
complex timing synchronization. As of this writing, UWB transceivers have not yet been used in
prototypes for wireless sensor nodes.

1 A more precise definition of an ultrawideband system is that it uses at least 500 MHz or a fractional spectrum of at
least 20 % of the carrier frequency. This definition would theoretically encompass also spread-spectrum systems with high
bandwidth; however, most people have the usage of short pulses in mind when speaking about UWB.

28 Single-node architecture

One of the best sources of information about UWB in WSN might be the documents of
the IEEE 802.15.4a study group, which looks at UWB as an alternative physical layer for the
IEEE 802.15.4 standard for short-range, low bitrate wireless communication. Some references to
start from are [82, 187, 566, 603, 884]. A comparison between UWB and Direct Sequence Spread
Spectrum (DSSS) technologies for sensor networks has been made in [939], under the assumption
of an equal bandwidth for both types of systems.

Nonradio frequency wireless communication

While most of the wireless sensor network work has focused on the use of radio waves as
communication media, other options exists. In particular, optical communication and ultrasound
communication have been considered as alternatives.

Optical
Kahn et al. [392] and others have considered the use of optical links between sensor nodes. Its
main advantage is the very small energy per bit required for both generating and detecting optical
light – simple Light-Emitting Diodes (LEDs) are good examples for high-efficiency senders. The
required circuitry for an optical transceiver is also simpler and the device as a whole can be smaller
than the radio frequency counterpart. Also, communication can take place concurrently with only
negligible interference. The evident disadvantage, however, is that communicating peers need to
have a line of sight connection and that optical communication is more strongly influenced by
weather conditions.

As a case in point, consider the so-called “corner-cube reflector”: three mirrors placed at right
angles to each other in a way that each beam of light directed at it is reflected back to its source
(as long as it comes from a cone centered around the main diagonal of the cube) – an example for
such a structure is shown in Figure 2.3. This reflection property holds only as long as the mirrors
are exactly at right angles. When one the mirrors is slightly moved, a signal can be modulated onto
an incoming ray of light, effectively transmitting information back to the sender. In fact, data rates
up to 1 kb/s have been demonstrated using such a device. Its main advantage is that the mechanical
movement of one such mirror only takes very little energy, compared to actually generating a beam
of light or even a radio wave. Hence, a passive readout of sensor nodes can be done very energy

Figure 2.3 Example of a corner-cube reflector for optical communication [168]. Reproduced by permission
of IEEE

Hardware components 29

efficiently over long distances as long as the reader has enough power to produce the laser beam
(up to 150 m have been demonstrated using a 5 mW laser).

Ultrasound
Both radio frequency and optical communication are suitable for open-air environments. In some
application scenarios, however, sensor nodes are used in environments where radio or optical
communication is not applicable because these waves do not penetrate the surrounding medium. One
such medium is water, and an application scenario is the surveillance of marine ground floor erosion
to help in the construction of offshore wind farms. Sensors are deployed on the marine ground floor
and have to communicate amongst themselves. In such an underwater environment, ultrasound is
an attractive communication medium as it travels relatively long distances at comparably low
power.

A further aspect of ultrasound is its use in location systems as a secondary means of communi-
cation with a different propagation speed. Details will be discussed in Chapter 9.

Some examples of radio transceivers

To complete this discussion of possible communication devices, a few examples of standard
radio transceivers that are commonly used in various WSN prototype nodes should be briefly
described. All these transceivers are in fact commodity, off-the-shelf items available via usual
distributors. They are all single-chip solutions, integrating transmitter and receiver functionality,
requiring only a small number of external parts and have a fairly low-power consumption. In
principle, similar equipment is available from a number of manufacturers – as can be expected,
there is not one “best product” available, but each of them has particular advantages and disadvan-
tages.

RFM TR1000 family
The TR1000 family of radio transceivers from RF Monolithics2 is available for the 916 MHz and
868 MHz frequency range. It works in a 400 kHz wide band centered at, for example, 916.50 MHz.
It is intended for short-range radio communication with up to 115.2 kbps. The modulation is either
on-off-keying (at a maximum rate of 30 kbps) or ASK; it also provides a dynamically tunable output
power. The maximum radiated power is given in the data sheet [690] as 1.5 dBm, ≈ 1.4 mW,
whereas in the Mica motes a number of 0.75 mW is given [351]. The transceiver offers received
signal strength information. It is attractive because of its low-power consumption in both send and
receive modes and especially in sleep mode. Details about parameters and configurations can be
found in the data sheet [690].

Hardware accelerators (Mica motes)
The Mica motes use the RFM TR1000 transceiver and contain also a set of hardware accelerators.
On the one hand, the transceiver offers a very low-level interface, giving the microcontroller tight
control over frame formats, MAC protocols, and so forth. On the other hand, framing and MAC
can be very computation intensive, for example, for computing checksums, for making bytes out of
serially received bits or for detecting Start Frame Delimiters (SFDs) in a stream of symbols. The
hardware accelerators offer some of these primitive computations in hardware, right at the disposal
of the microcontroller.

Chipcon CC1000 and CC2420 family
Chipcon3 offers a wide range of transceivers that are appealing for use in WSN hardware. To name
but two examples: The CC1000 operates in a wider frequency range, between 300 and 1000 MHz,

2 http://www.rfm.com
3 http://www.chipcon.com

30 Single-node architecture

programmable in steps of 250 Hz. It uses FSK as modulation, provides RSSI, and has programmable
output power. An interesting feature is the possibility to compensate for crystal temperature drift.
It should also be possible to use it in frequency hopping protocols. Details can be found in the data
sheet[157].

The CC2420 [158] is a more complicated device. It implements the physical layer as prescribed
by the IEEE 802.15.4 standard with the required support for this standard’s MAC protocol. In
fact, the company claims that this is the first commercially available single-chip transceiver for
IEEE 802.15.4. As a consequence of implementing this standard, the transceiver operates in the
2.4 GHz band and features the required DSSS modem, resulting in a data rate of 250 kbps. It
achieves this at still relatively low-power consumption, although not quite on par with the simpler
transceivers described so far.

Infineon TDA 525x family
The Infineon TDA 525x family provides flexible, single-chip, energy-efficient transceivers. The
TDA 5250 [375], as an example, is a 868–870 MHztransceiver providing both ASK and FSK
modulation, it has a highly efficient power amplifier, RSSI information, a tunable crystal oscillator,
an onboard data filter, and an intelligent power-down feature. One of the interesting features is
a self-polling mechanism, which can very quickly determine data rate. Compared to some other
transceiver, it also has an excellent blocking performance that makes it quite resistant to interference.

IEEE 802.15.4/Ember EM2420 RF transceiver
The IEEE 802.15.4 low-rate Wireless Personal Area Network (WPAN) [468] works in three differ-
ent frequency bands and employs a DSSS scheme. Some basic data can be found in Table 2.1. For
one particular RF front-end design, the Ember4 EM2420 RF Transceiver [240], some numbers on
power dissipation are available. For a radiated power of −0.5 dBm (corresponding to ≈0.9 mW)
and with a supply voltage of 3.3 V, the transmit mode draws a current of 22.7 mA, correspond-
ing to ≈74.9 mW, whereas in the receive mode, 25.2 mA current are drawn, corresponding to
≈83.2 mW. In the sleep mode, only 12 µA are drawn.

In all bands, DSSS is used. In the 868 MHz band, only a single channel with a data rate
of 20 kbps is available, in the 915 MHz band ten channels of 40kbps each and in the 2.4 GHz
band 16 channels of 250 kbps are available. In the lower two bands, the chips are Binary Phase
Shift Keying (BPSK)-modulated, and the data symbols are encoded differentially. A pseudonoise
sequence of 15 chips is used for every bit. The modulation scheme in the 2.4 GHz band is a little

Table 2.1 The different PHY’s of the IEEE 802.15.4 standard
[468]. Reproduced by permission of IEEE

Band 868 MHz 915 MHz 2.4 GHz

Frequency [MHz] 868– 902– 2400–
868.6 928 2483.5

Chip rate [kchips/s] 300 600 2000
of channels 1 10 16
Modulation BPSK BPSK O-QPSK
Data rate [kb/s] 20 40 250
Symbol rate [ksymbols/s] 20 40 62.5
Symbol type binary binary 16-ary

orthogonal

4 http://www.ember.com

Hardware components 31

bit more complicated. As can be observed from the table, a channel symbol consists of four user
bits. These 16 different symbol values are distinguished by using 16 different nearly orthogonal
pseudorandom chip sequences. The resulting chip sequence is then modulated using a modulation
scheme called offset -Quaternary Phase Shift Keying (QPSK). Some of the design rationale for this
modulation scheme is also given in reference [115, Chap. 3].

National Semiconductor LMX3162
The radio hardware of the µAMPS-1 node [563, 762, 872] consists of a digital baseband processor
implemented on an FPGA, whereas for the RF front end, a (now obsolete) National Semiconductor
LMX3162 transceiver [588] is used. The LMX3162 operates in the 2.4 GHz band and offers six
different radiated power levels from 0 dBm up to 20 dBm. To transmit data, the baseband processor
can control an externally controllable Voltage-Controlled Oscillator (VCO). The main components
of the RF front end (phase-lock loop, transmit and receive circuitry) can be shut off. The baseband
processor controls the VCO and also provides timing information to a TDMA-based MAC protocol
(see Chapter 5). For data transmission, FSK with a data rate of 1 Mbps is used.

Conexant RDSSS9M
The WINS sensor node of Rockwell5 carries a Conexant RDSSS9M transceiver, consisting of the
RF part working in the ISM band between 902 and 928 MHzand a microcontroller (a 65C02)
responsible for processing DSSS signals with a spreading factor of 12 bits per chip. The data
rate is 100 kbps. The RF front end offers radiated power levels of 1 mW, 10 mW and 100 mW. A
number of 40 sub-bands are available, which can be freely selected. The microcontroller implements
portions of a MAC protocol also.

2.1.5 Sensors and actuators
Without the actual sensors and actuators, a wireless sensor network would be beside the point
entirely. But as the discussion of possible application areas has already indicated, the possible
range of sensors is vast. It is only possible to give a rough idea on which sensors and actuators
can be used in a WSN.

Sensors

Sensors can be roughly categorized into three categories (following reference [670]):

Passive, omnidirectional sensors These sensors can measure a physical quantity at the point of
the sensor node without actually manipulating the environment by active probing – in this
sense, they are passive. Moreover, some of these sensors actually are self-powered in the
sense that they obtain the energy they need from the environment – energy is only needed
to amplify their analog signal. There is no notion of “direction” involved in these mea-
surements. Typical examples for such sensors include thermometer, light sensors, vibration,
microphones, humidity, mechanical stress or tension in materials, chemical sensors sensitive
for given substances, smoke detectors, air pressure, and so on.

Passive, narrow-beam sensors These sensors are passive as well, but have a well-defined notion
of direction of measurement. A typical example is a camera, which can “take measurements”
in a given direction, but has to be rotated if need be.

Active sensors This last group of sensors actively probes the environment, for example, a sonar
or radar sensor or some types of seismic sensors, which generate shock waves by small

5 See http://wins.rsc.rockwell.com/.

32 Single-node architecture

explosions. These are quite specific – triggering an explosion is certainly not a lightly under-
taken action – and require quite special attention.

In practice, sensors from all of these types are available in many different forms with many indi-
vidual peculiarities. Obvious trade-offs include accuracy, dependability, energy consumption, cost,
size, and so on – all this would make a detailed discussion of individual sensors quite ineffective.

Overall, most of the theoretical work on WSNs considers passive, omnidirectional sensors.
Narrow-beam-type sensors like cameras are used in some practical testbeds, but there is no real
systematic investigation on how to control and schedule the movement of such sensors. Active
sensors are not treated in the literature to any noticeable extent.

An assumption occasionally made in the literature [128, 129] is that each sensor node has a
certain area of coverage for which it can reliably and accurately report the particular quantity that
it is observing. More elaborately, a sensor detection model is used, relating the distance between
a sensor and the to-be-detected event or object to a detection probability; an example for such a
detection model is contained in references [599, 944].

Strictly speaking, this assumption of a coverage area is difficult to justify in its simplest form.
Nonetheless, it can be practically useful: It is often possible to postulate, on the basis of application-
specific knowledge, some properties of the physical quantity under consideration, in particular, how
quickly it can change with respect to distance. For example, temperature or air pressure are unlikely
to vary very strongly within a few meters. Hence, allowing for some inevitable inaccuracies in the
measurement, the maximum rate of changeover distance can be used to derive such a “coverage
radius” within which the values of a single sensor node are considered “good enough”. The precise
mathematical tools for such a derivation are spatial versions of the sampling theorems.

Actuators

Actuators are just about as diverse as sensors, yet for the purposes of designing a WSN, they are a
bit simpler to take account of: In principle, all that a sensor node can do is to open or close a switch
or a relay or to set a value in some way. Whether this controls a motor, a light bulb, or some other
physical object is not really of concern to the way communication protocols are designed. Hence, in
this book, we shall treat actuators fairly summarily without distinguishing between different types.

In a real network, however, care has to be taken to properly account for the idiosyncrasies of
different actuators. Also, it is good design practice in most embedded system applications to pair
any actuator with a controlling sensor – following the principle to “never trust an actuator” [429].

2.1.6 Power supply of sensor nodes
For untethered wireless sensor nodes, the power supply is a crucial system component. There are
essentially two aspects: First, storing energy and providing power in the required form; second,
attempting to replenish consumed energy by “scavenging” it from some node-external power source
over time.

Storing power is conventionally done using batteries. As a rough orientation, a normal AA
battery stores about 2.2–2.5 Ah at 1.5 V. Battery design is a science and industry in itself, and
energy scavenging has attracted a lot of attention in research. This section can only provide some
small glimpses of this vast field; some papers that deal with these questions (and serve as the basis
for this section) are references [134, 392, 667, 670] and, in particular, reference [703].

Storing energy: Batteries

Traditional batteries
The power source of a sensor node is a battery, either nonrechargeable (“primary batteries”) or,
if an energy scavenging device is present on the node, also rechargeable (“secondary batteries”).

Hardware components 33

Table 2.2 Energy densities for various primary
and secondary battery types [703]

Primary batteries

Chemistry Zinc-air Lithium Alkaline
Energy (J/cm3) 3780 2880 1200

Secondary batteries

Chemistry Lithium NiMHd NiCd
Energy (J/cm3) 1080 860 650

In some form or other, batteries are electro-chemical stores for energy – the chemicals being the
main determining factor of battery technology.

Upon these batteries, very tough requirements are imposed:

Capacity They should have high capacity at a small weight, small volume, and low price. The main
metric is energy per volume, J/cm3. Table 2.2 shows some typical values of energy densities,
using traditional, macroscale battery technologies. In addition, research on “microscale”
batteries, for example, deposited directly onto a chip, is currently ongoing.

Capacity under load They should withstand various usage patterns as a sensor node can consume
quite different levels of power over time and actually draw high current in certain operation
modes.

Current numbers on power consumption of WSN nodes vary and are treated in detail in
Section 2.2, so it is difficult to provide precise guidelines. But for most technologies, the
larger the battery, the more power can be delivered instantaneously. In addition, the rated
battery capacity specified by a manufacturer is only valid as long as maximum discharge
currents are not exceeded, lest capacity drops or even premature battery failure occurs [670].6

Self-discharge Their self-discharge should be low; they might also have to last for a long time
(using certain technologies, batteries are operational only for a few months, irrespective of
whether power is drawn from them or not).

Zinc-air batteries, for example, have only a very short lifetime (on the order of weeks),
which offsets their attractively high energy density.

Efficient recharging Recharging should be efficient even at low and intermittently available
recharge power; consequently, the battery should also not exhibit any “memory effect”.

Some of the energy-scavenging techniques described below are only able to produce cur-
rent in the µA region (but possibly sustained) at only a few volts at best. Current battery
technology would basically not recharge at such values.

Relaxation Their relaxation effect – the seeming self-recharging of an empty or almost empty
battery when no current is drawn from it, based on chemical diffusion processes within
the cell – should be clearly understood. Battery lifetime and usable capacity is considerably
extended if this effect is leveraged. As but one example, it is possible to use multiple batteries
in parallel and “schedule” the discharge from one battery to another, depending on relaxation
properties and power requirements of the operations to be supported [153].

6 This effect is due to the need for active material in a battery to be transported to the electrodes. If too much power is
drawn, this transport is not fast enough and the battery fails even though energy is still stored in it.

34 Single-node architecture

Unconventional energy stores
Apart from traditional batteries, there are also other forms of energy reservoirs that can be contem-
plated. In a wider sense, fuel cells also qualify as an electro-chemical storage of energy, directly
producing electrical energy by oxidizing hydrogen or hydrocarbon fuels. Fuel cells actually have
excellent energy densities (e.g. methanol as a fuel stores 17.6 kJ/cm3), but currently available
systems still require a nonnegligible minimum size for pumps, valves, and so on. A slightly more
traditional approach to using energy stored in hydrocarbons is to use miniature versions of heat
engines, for example, a turbine [243]. Shrinking such heat engines to the desired sizes still requires
a considerable research effort in MicroElectroMechanical Systems (MEMSs); predictions regarding
power vary between 0.1–10 W at sizes of about 1 cc [703]. And lastly, even radioactive substances
have been proposed as an energy store [463]. Another option are so-called “gold caps”, high-quality
and high-capacity capacitors, which can store relatively large amounts of energy, can be easily and
quickly recharged, and do not wear out over time.

DC–DC Conversion
Unfortunately, batteries (or other forms of energy storage) alone are not sufficient as a direct
power source for a sensor node. One typical problem is the reduction of a battery’s voltage as its
capacity drops. Consequently, less power is delivered to the sensor node’s circuits, with immediate
consequences for oscillator frequencies and transmission power – a node on a weak battery will
have a smaller transmission range than one with a full battery, possibly throwing off any calibrations
done for the range at full battery ranges.

A DC – DC converter can be used to overcome this problem by regulating the voltage delivered
to the node’s circuitry. To ensure a constant voltage even though the battery’s supply voltage drops,
the DC – DC converter has to draw increasingly higher current from the battery when the battery
is already becoming weak, speeding up battery death (see Figure 3 in reference [670]). Also, the
DC – DC converter does consume energy for its own operation, reducing overall efficiency. But the
advantages of predictable operation during the entire life cycle can outweigh these disadvantages.

Energy scavenging

Some of the unconventional energy stores described above – fuel cells, micro heat engines, radioac-
tivity – convert energy from some stored, secondary form into electricity in a less direct and easy to
use way than a normal battery would do. The entire energy supply is stored on the node itself – once
the fuel supply is exhausted, the node fails.

To ensure truly long-lasting nodes and wireless sensor networks, such a limited energy store is
unacceptable. Rather, energy from a node’s environment must be tapped into and made available
to the node – energy scavenging should take place. Several approaches exist [667, 701, 703]:

Photovoltaics The well-known solar cells can be used to power sensor nodes. The available power
depends on whether nodes are used outdoors or indoors, and on time of day and whether
for outdoor usage. Different technologies are best suited for either outdoor or indoor usage.
The resulting power is somewhere between 10 µW/cm2 indoors and 15 mW/cm2 outdoors.
Single cells achieve a fairly stable output voltage of about 0.6 V (and have therefore to
be used in series) as long as the drawn current does not exceed a critical threshold, which
depends, among other factors, on the light intensity. Hence, solar cells are usually used
to recharge secondary batteries. Best trade-offs between complexity of recharging circuitry,
solar cell efficiency, and battery lifetime are still open questions.

Temperature gradients Differences in temperature can be directly converted to electrical energy.
Theoretically, even small difference of, for example, 5 K can produce considerable power, but
practical devices fall very short of theoretical upper limits (given by the Carnot efficiency).

Hardware components 35

Seebeck effect-based thermoelectric generators are commonly considered; one example is a
generator, which will be commercially available soon, that achieves about 80 µW/cm2 at
about 1 V from a 5 Kelvin temperature difference.7

Vibrations One almost pervasive form of mechanical energy is vibrations: walls or windows in
buildings are resonating with cars or trucks passing in the streets, machinery often has low-
frequency vibrations, ventilations also cause it, and so on. The available energy depends on
both amplitude and frequency of the vibration and ranges from about 0.1 µW/cm3 up to
10, 000 µW/cm3 for some extreme cases (typical upper limits are lower).

Converting vibrations to electrical energy can be undertaken by various means, based on
electromagnetic, electrostatic, or piezoelectric principles. Figure 2.4 shows, as an example, a
generator based on a variable capacitor [549]. Practical devices of 1 cm3 can produce about
200 µW/cm3 from 2.25 m/s2, 120 Hz vibration sources, actually sufficient to power simple
wireless transmitters [702].

Pressure variations Somewhat akin to vibrations, a variation of pressure can also be used as
a power source. Such piezoelectric generators are in fact used already. One well-known
example is the inclusion of a piezoelectric generator in the heel of a shoe, to generate power
as a human walks about [759]. This device can produce, on average, 330 µW/cm2. It is,
however, not clear how such technologies can be applied to WSNs.

Flow of air/liquid Another often-used power source is the flow of air or liquid in wind mills or
turbines. The challenge here is again the miniaturization, but some of the work on millimeter-
scale MEMS gas turbines might be reusable [243]. However, this has so far not produced
any notable results.

To summarize, Table 2.3 gives an overview of typical values of power and energy densities for
different energy sources. The values in this table vary somewhat from those presented above as
partially different technologies or environments were assumed; all these numbers can only serve as
a general orientation but should always be taken with a grain of salt.

7 µm

500-µm depth7 µm

512 µm

Stationary comb

Stationary comb

Anchor

Anchor

F
re

e
be

am

F
re

e
be

am

Motion Oscillating mass

Figure 2.4 A MEMS device for converting vibrations to electrical energy, based on a variable capacitor [549].
Reproduced by permission of IEEE

7 Compare http://www.adsx.com.

36 Single-node architecture

Table 2.3 Comparison of energy sources [667]

Energy source Energy density

Batteries (zinc-air) 1050–1560 mWh/cm3

Batteries (rechargeable lithium) 300 mWh/cm3 (at 3–4 V)

Energy source Power density

Solar (outdoors) 15 mW/cm2 (direct sun)
0.15 mW/cm2 (cloudy day)

Solar (indoors) 0.006 mW/cm2 (standard office desk)
0.57 mW/cm2 (<60 W desk lamp)

Vibrations 0.01–0.1 mW/cm3

Acoustic noise 3 · 10−6 mW/cm2 at 75 dB
9, 6 · 10−4 mW/cm2 at 100 dB

Passive human-powered systems 1.8 mW (shoe inserts)
Nuclear reaction 80 mW/cm3, 106 mWh/cm3

As these examples show, energy scavenging usually has to be combined with secondary batteries
as the actual power sources are not able to provide power consistently, uninterruptedly, at a required
level; rather, they tend to fluctuate over time. This requires additional circuitry for recharging
of batteries, possibly converting to higher power levels, and a battery technology that can be
recharged at low currents. An alternative approach is to align the task execution pattern of the sensor
network (which sensor is active when) with the characteristics of energy scavenging – Kansal and
Srivastava [399] introduce this idea and describe some protocols and algorithms; they show that
the network lifetime is extended by up to 200 % if these scavenging characteristics are taken into
account in the task allocation.

2.2 Energy consumption of sensor nodes
2.2.1 Operation states with different power consumption
As the previous section has shown, energy supply for a sensor node is at a premium: batteries
have small capacity, and recharging by energy scavenging is complicated and volatile. Hence, the
energy consumption of a sensor node must be tightly controlled. The main consumers of energy
are the controller, the radio front ends, to some degree the memory, and, depending on the type,
the sensors.

To give an example, consider the energy consumed by a microcontroller per instruction. A typical
ball park number is about 1 nJ per instruction [391]. To put this into perspective with the battery
capacity numbers from Section 2.1.6, assume a battery volume of one cubic millimeter, which is
about the maximum possible for the most ambitious visions of “smart dust”. Such a battery could
store about 1 J. To use such a battery to power a node even only a single day, the node must not
consume continuously more than 1/(24 · 60 · 60) Ws/s ≈ 11.5 µW. No current controller, let alone
an entire node, is able to work at such low-power levels.

One important contribution to reduce power consumption of these components comes from
chip-level and lower technologies: Designing low-power chips is the best starting point for an
energy-efficient sensor node. But this is only one half of the picture, as any advantages gained by
such designs can easily be squandered when the components are improperly operated.

The crucial observation for proper operation is that most of the time a wireless sensor node has
nothing to do. Hence, it is best to turn it off. Naturally, it should be able to wake up again, on the

Energy consumption of sensor nodes 37

basis of external stimuli or on the basis of time. Therefore, completely turning off a node is not
possible, but rather, its operational state can be adapted to the tasks at hand. Introducing and using
multiple states of operation with reduced energy consumption in return for reduced functionality is
the core technique for energy-efficient wireless sensor node. In fact, this approach is well known
even from standard personal computer hardware, where, for example, the Advanced Configuration
and Power Interface (ACPI) [8] introduces one state representing the fully operational machine and
four sleep states of graded functionality/power consumption/wakeup time (time necessary to return
to fully operational state). The term Dynamic Power Management (DPM) summarizes this field of
work (see e.g. reference [63] for a slightly older, but quite a broad-range overview).

These modes can be introduced for all components of a sensor node, in particular, for controller,
radio front end, memory, and sensors. Different models usually support different numbers of such
sleep states with different characteristics; some examples are provided in the following sections. For
a controller, typical states are “active”, “idle”, and “sleep”; a radio modem could turn transmitter,
receiver, or both on or off; sensors and memory could also be turned on or off. The usual terminology
is to speak of a “deeper” sleep state if less power is consumed.

While such a graded sleep state model is straightforward enough, it is complicated by the fact
that transitions between states take both time and energy. The usual assumption is that the deeper
the sleep state, the more time and energy it takes to wake up again to fully operational state (or to
another, less deep sleep state). Hence, it may be worthwhile to remain in an idle state instead of
going to deeper sleep states even from an energy consumption point of view.

Figure 2.5 illustrates this notion based on a commonly used model (used in, e.g. references
[558, 769]). At time t1, the decision whether or not a component (say, the microcontroller) is to be
put into sleep mode should be taken to reduce power consumption from Pactive to Psleep. If it remains
active and the next event occurs at time tevent, then a total energy of Eactive = Pactive(tevent − t1)

has be spent uselessly idling. Putting the component into sleep mode, on the other hand, requires a
time τdown until sleep mode has been reached; as a simplification, assume that the average power
consumption during this phase is (Pactive + Psleep)/2. Then, Psleep is consumed until tevent. In total,
τdown(Pactive + Psleep)/2 + (tevent − t1 − τdown)Psleep energy is required in sleep mode as opposed to
(tevent − t1)Pactive when remaining active. The energy saving is thus

Esaved =(tevent − t1)Pactive − (τdown(Pactive + Psleep)/2 +
(tevent − t1 − τdown)Psleep).

(2.1)

Once the event to be processed occurs, however, an additional overhead of

Eoverhead = τup(Pactive + Psleep)/2, (2.2)

Pactive

Psleep

Timeteventt1

Esaved
Eoverhead

τdown τup

Figure 2.5 Energy savings and overheads for sleep modes

38 Single-node architecture

is incurred to come back to operational state before the event can be processed, again making a
simplifying assumption about average power consumption during makeup. This energy is indeed
an overhead since no useful activity can be undertaken during this time. Clearly, switching to a
sleep mode is only beneficial if Eoverhead < Esaved or, equivalently, if the time to the next event is
sufficiently large:

(tevent − t1) >
1

2

(
τdown + Pactive + Psleep

Pactive − Psleep
τup

)
. (2.3)

Careful scheduling of such transitions has been considered from several perspectives – reference
[769], for example, gives a fairly abstract treatment – and in fact, a lot of medium access control
research in wireless sensor networks can be regarded as the problem of when to turn off the receiver
of a node.

2.2.2 Microcontroller energy consumption
Basic power consumption in discrete operation states

Embedded controllers commonly implement the concept of multiple operational states as outlined
above; it is also fairly easy to control. Some examples probably best explain the idea.

Intel StrongARM
The Intel StrongARM [379] provides three sleep modes:

• In normal mode, all parts of the processor are fully powered. Power consumption is up to
400 mW.

• In idle mode, clocks to the CPU are stopped; clocks that pertain to peripherals are active. Any
interrupt will cause return to normal mode. Power consumption is up to 100 mW.

• In sleep mode, only the real-time clock remains active. Wakeup occurs after a timer interrupt
and takes up to 160 ms. Power consumption is up to 50 µW.

Texas Instruments MSP 430
The MSP430 family [814] features a wider range of operation modes: One fully operational mode,
which consumes about 1.2 mW (all power values given at 1 MHz and 3 V). There are four sleep
modes in total. The deepest sleep mode, LPM4, only consumes 0.3 µW, but the controller is only
woken up by external interrupts in this mode. In the next higher mode, LPM3, a clock is also still
running, which can be used for scheduled wake ups, and still consumes only about 6 µW.

Atmel ATmega
The Atmel ATmega 128L [28] has six different modes of power consumption, which are in principle
similar to the MSP 430 but differ in some details. Its power consumption varies between 6 mW
and 15 mW in idle and active modes and is about 75 µW in power-down modes.

Dynamic voltage scaling

A more sophisticated possibility than discrete operational states is to use a continuous notion of
functionality/power adaptation by adapting the speed with which a controller operates. The idea is
to choose the best possible speed with which to compute a task that has to be completed by a given
deadline. One obvious solution is to switch the controller in full operation mode, compute the task
at highest speed, and go back to a sleep mode as quickly as possible.

The alternative approach is to compute the task only at the speed that is required to finish it
before the deadline. The rationale is the fact that a controller running at lower speed, that is, lower

Energy consumption of sensor nodes 39

clock rates, consumes less power than at full speed. This is due to the fact that the supply voltage
can be reduced at lower clock rates while still guaranteeing correct operation. This technique is
called Dynamic Voltage Scaling (DVS) [133].

This technique is actually beneficial for CMOS chips: As the actual power consumption P

depends quadratically on the supply voltage VDD [649], reducing the voltage is a very efficient
way to reduce power consumption. Power consumption also depends on the frequency f , hence
P ∝ f · V 2

DD.
Consequently, dynamic voltage scaling also reduces energy consumption. The Transmeta Crusoe

processor, for example, can be scaled from 700 MHz at 1.65 V down to 200 MHz at 1.1 V [649].
This reduces the power consumption by a factor of 700·1.652

200·1.12 = 7.875, but the speed is only reduced
by a factor of 700/200 = 3.5. Hence, the energy required per instruction is reduced by 3.5/7.875 ≈
44 %. Other processors and microcontrollers behave similarly, Figure 2.6 shows an example for the
StrongARM SA-1100 [558]. The ultimate reason for this improvement is the convex shape of the
function power against speed, caused by varying the supply voltage.

When applying dynamic voltage scaling, care has to be taken to operate the controller within
its specifications. There are minimum and maximum clock rates for each device, and for each
clock rate, there is a minimum and maximum threshold that must be obeyed. Hence, when there is
nothing to process, going into sleep modes is still the only option. Also, using arbitrary voltages
requires a quite efficient DC-DC converter to be used [134].

How to control DVS from an application or from the operating system is discussed in
Section 2.3.4 on page 48.

2.2.3 Memory
From an energy perspective, the most relevant kinds of memory are on-chip memory of a microcon-
troller and FLASH memory – off-chip RAM is rarely if ever used. In fact, the power needed to drive
on-chip memory is usually included in the power consumption numbers given for the controllers.

Hence, the most relevant part is FLASH memory – in fact, the construction and usage of FLASH
memory can heavily influence node lifetime. The relevant metrics are the read and write times and

0

0.2

0.4

0.6

0.8

1

E
ne

rg
y

pe
r

op
er

at
io

n

59.0
88.5

118.0
147.5

176.9
206.4

0.9
1.0

1.1
1.2

1.3
1.4

1.5
1.6

Core voltage (V)Clock (MHz)

Figure 2.6 Energy per operation with dynamic power scaling on an Intel StrongARM SA-1100 [558]. Repro-
duced by permission of IEEE

40 Single-node architecture

energy consumption. All this information is readily available from manufacturers’ data sheets and
do vary depending on several factors. Read times and read energy consumption tend to be quite
similar between different types of FLASH memory [329]. Writing is somewhat more complicated,
as it depends on the granularity with which data can be accessed (individual bytes or only complete
pages of various sizes). One means for comparability is to look at the numbers for overwriting the
whole chip. Considerable differences in erase and write energy consumption exist, up to ratios of
900:1 between different types of memory [329].

To give a concrete example, consider the energy consumption necessary for reading and writing
to the Flash memory used on the Mica nodes [534]. Reading data takes 1.111 nAh, writing requires
83.333 nAh.

Hence, writing to FLASH memory can be a time- and energy-consuming task that is best avoided
if somehow possible. For detailed numbers, it is necessary to consult the documentation of the
particular wireless sensor node and its FLASH memory under consideration.

2.2.4 Radio transceivers
A radio transceiver has essentially two tasks: transmitting and receiving data between a pair of
nodes. Similar to microcontrollers, radio transceivers can operate in different modes, the simplest
ones are being turned on or turned off. To accommodate the necessary low total energy consumption,
the transceivers should be turned off most of the time and only be activated when necessary – they
work at a low duty cycle. But this incurs additional complexity, time and power overhead that has
to be taken into account.

To understand the energy consumption behavior of radio transceivers and their impact on the
protocol design, models for the energy consumption per bit for both sending and receiving are
required. Several such models of different accuracy and level of detail exist and are mostly textbook
knowledge [14, 661, 682, 938] (for a research paper example see reference [762]); the presentation
here mostly follows reference [559], in particular, with respect to concrete numbers.

Modeling energy consumption during transmission

In principle, the energy consumed by a transmitter is due to two sources [670]: one part is due to
RF signal generation, which mostly depends on chosen modulation and target distance and hence
on the transmission power Ptx, that is, the power radiated by the antenna. A second part is due to
electronic components necessary for frequency synthesis, frequency conversion, filters, and so on.
These costs are basically constant.

One of the most crucial decisions when transmitting a packet is thus the choice of Ptx. Chapter 4
will discuss some of the factors involved in such a decision; controlling the transmission power will
also play a role in several other chapters of Part II. For the present discussion, let us assume that
the desired transmission power Ptx is known – Chapter 4 will make it clear that Ptx is a function
of system aspects like energy per bit over noise Eb/N0, the bandwidth efficiency ηBW, the distance
d and the path loss coefficient γ .

The transmitted power is generated by the amplifier of a transmitter. Its own power consumption
Pamp depends on its architecture, but for most of them, their consumed power depends on the power
they are to generate. In the most simplistic models, these two values are proportional to each other,
but this is an oversimplification. A more realistic model assumes that a certain constant power level
is always required irrespective of radiated power, plus a proportional offset:

Pamp = αamp + βampPtx. (2.4)

where αamp and βamp are constants depending on process technology and amplifier architecture [559].

Energy consumption of sensor nodes 41

As an example, Min and Chandrakasan [563] report, for the µAMPS-1 nodes, αamp = 174 mW
and βamp = 5.0. Accordingly, the efficiency of the power amplifier ηPA for Ptx = 0 dBm = 1 mW
radiated power is given by

ηPA = Ptx

Pamp
= 1 mW

174 mW + 5.0 · 1 mW
≈ 0.55 %.

This model implies that the amplifier’s efficiency Ptx/Pamp is best at maximum output power.
Maximum power is, however, not necessarily the common case and therefore such a design is
not necessarily the most beneficial one – in cellular systems, for example, amplifiers often do not
operate at their maximum output power. While it is not clear how this observation would translate to
WSNs, it appears promising especially in dense networks to use amplifiers with different efficiency
characteristics [447]. Nonetheless, here we shall restrict the attention to the model of Equation (2.4).

In addition to the amplifier, other circuitry has to be powered up during transmission as well,
for example, baseband processors. This power is referred to as PtxElec.

The energy to transmit a packet n-bits long (including all headers) then depends on how long it
takes to send the packet, determined by the nominal bit rate R and the coding rate Rcode, and on
the total consumed power during transmission. If, in addition, the transceiver has to be turned on
before transmission, startup costs also are incurred (mostly to allow voltage-controlled oscillators
and phase-locked loops to settle). Equation (2.5) summarizes these effects.

Etx(n,Rcode, Pamp) = TstartPstart + n

RRcode
(PtxElec + Pamp). (2.5)

It should be pointed out that this equation does not depend on the modulation chosen for transmis-
sion (Section 4.3 will discuss in detail an example containing multiple modulations). Measurements
based on IEEE 802.11 hardware [221] have shown that in fact there is a slight dependence on the
modulation, but the difference between 1 Mbit/s and 11 Mbit/s is less than 10 % for all considered
transmission power values, so this is an acceptable simplification. Moreover, it is assumed that the
coding overhead only depends on the coding rate, which is an acceptable assumption. In this model,
the antenna efficiency is missing as well, that is, it is assumed to have a perfect antenna. Otherwise,
there would be further power losses between the output of the PA and the radiated power.

This model can be easily enhanced by the effects of Forward Error Correction (FEC) coding
since, with respect to transmission, FEC just increases the number of bits approximately by a factor
of one divided by the code rate (see Chapter 6), since the coding energy is negligible [563].

Disregarding the distance-independent terms in these energy costs and only assuming a simplified
energy cost proportional to some power of the distance has been called “one of the top myths”
of energy consumption in radio communication [560]. Clearly, choosing such an inappropriately
simplified model would have considerable consequences on system design, for example, incorrectly
favoring a multihop approach (see Chapter 3).

Modeling energy consumption during reception

Similar to the transmitter, the receiver can be either turned off or turned on. While being turned on,
it can either actively receive a packet or can be idle, observing the channel and ready to receive.
Evidently, the power consumption while it is turned off is negligible. Even the difference between
idling and actually receiving is very small and can, for most purposes, be assumed to be zero.

To elucidate, the energy Ercvd required to receive a packet has a startup component TstartPstart

similar to the transmission case when the receiver had been turned off (startup times are considered
equal for transmission and receiving here); it also has a component that is proportional to the

42 Single-node architecture

packet time n
RRcode

. During this time of actual reception, receiver circuitry has to be powered up,
requiring a (more or less constant) power of PrxElec – for example, to drive the LNA in the RF front
end. The last component is the decoding overhead, which is incurred for every bit – this decoding
overhead can be substantial depending on the concrete FEC in use; Section 6.2.3 goes into details
here. Equation (2.6) summarizes these components.

Ercvd = TstartPstart + n

RRcode
PrxElec + nEdecBit. (2.6)

The decoding energy is relatively complicated to model, as it depends on a number of hardware
and system parameters – for example, is decoding done in dedicated hardware (by, for example,
a dedicated Viterbi decoder for convolutional codes) or in software on a microcontroller; it also
depends on supply voltage, decoding time per bit (which in turn depends on processing speed
influenced by techniques like DVS), constraint length K of the used code, and other parameters.
Min and Chandrakasan [559] give more details.

Again, it is worthwhile pointing out that different modulation schemes only implicitly affect this
result via the increase in time to transmit the packet.

Some numbers

Providing concrete numbers for exemplary radio transceivers is even more difficult than it is for
microcontrollers: The range of commercially available transceivers is vast, with many different
characteristics. Transceivers that appear to have excellent energy characteristics might suffer from
other shortcomings like poor frequency stability under temperature variations (leading to partitioning
of a network when parts of the node are placed in the shade and others in sunlight), poor blocking
performance, high susceptibility to interference on neighboring frequency channels, or undesirable
error characteristics; they could also lack features that other transceivers have, like tunability to
multiple frequencies. Hence, the numbers presented here should be considered very cautiously,
even more so since they had been collected from different sources and were likely determined in
noncomparable environments (and not all numbers are available for all examples). Still, they should
serve to provide some impression of current performance figures for actual hardware.

Table 2.4 summarizes the parameters discussed here for a number of different nodes. These
numbers have been collected from references [670] and [563];8 the data sheets [588, 690] offer
further information. Note that the way of reporting such figures in the literature is anything but
uniform and that hence many of the numbers given here had to be calculated or estimated. The
reader is encouraged to check with the original publications for full detail. In particular, the data
about the WINS and MEDUSA-II node do not allow to distinguish between αamp and PtxElec and
βamp is estimated by curve fitting. Stemm and Katz [789] present additional data for some older
hardware geared toward handheld devices. References [351, 353, 725, 769] also contain further
examples for sensor nodes; Feeney and Nilsson [254] and Ebert et al. [221] present actual
measurement results for IEEE 802.11-based hardware. One useful reference number for rule-of-
thumb estimations might be the 1 µJ required to transmit a single bit and 0.5 µJ to receive one for
the RFM TR1000 transceiver [353].

Looking at the startup times in Table 2.4, we see that actually considerable time and energy can
be spent to turn on a transceiver. Chandrakasan et al. [134] argue therefore that architectures
with short startup times are preferable and point out the impact of startup time on the energy per
bit when using different modulations; they also propose an appropriate transceiver architecture with

8 Since these numbers are likely obtained by different measurement methods, they are not directly comparable and the reader
must be cautious. However, at least they give useful ballpark estimates.

Energy consumption of sensor nodes 43

Table 2.4 Some parameters of transceiver energy consumption

Symbol Description Example transceiver

µAMPS-1 WINS MEDUSA-II
[559] [670] [670]

αamp Equation (2.4) 174 mW N/A N/A
βamp Equation (2.4) 5.0 8.9 7.43
Pamp Amplifier pwr. 179–674 mW N/A N/A
PrxElec Reception pwr. 279 mW 368.3 mW 12.48 mW
PrxIdle Receive idle N/A 344.2 mW 12.34 mW
Pstart Startup pwr. 58.7 mW N/A N/A
PtxElec Transmit pwr. 151 mW ≈ 386 mW 11.61 mW
R Transmission 1 Mbps 100 kbps OOK 30 kbps

rate ASK 115.2 kbps
Tstart Startup time 466 µs N/A N/A

fast startup time. Wang et al. [855] also point this out and provide figures on how startup time
influences the choice between modulations.

These startup costs motivate some considerations of the entire system architecture. One possible
idea is to have only very simply functionalities on line that can handle most of the processing, for
example, decide whether a packet is intended for a given node, and only startup other components,
for example, the controller, if necessary [648]. Clearly, wakeup radios are the most advanced
version of this concept. Naturally, startup costs also have to be taken into account during protocol
design.

Another common observation based on these figures is that transmitting and receiving have
comparable power consumption, at least for short-range communication [648]. Details differ, of
course, but it is an acceptable approximation to assume PtxElec = PrxElec and even neglecting the
amplifier part can be admissible as long as very low transmission powers are used. In fact, for
some architectures, receiving consumes more power than transmitting.

Chandrakasan et al. [132] summarize these numbers into an energy per bit versus bitrate
figure, pointing out that energy efficiency improves as transmission rates go up if duty cycling is
used on the radio.

Dynamic scaling of radio power consumption

Applying controller-based Dynamic Voltage Scaling (DVS) principles to radio transceivers as well
is tempting, but nontrivial. Scaling down supply voltage or frequency to obtain lower power con-
sumption in exchange for higher latency is only applicable to some of the electronic parts of a
transceiver, but this would mean that the remainder of the circuitry – the amplifier, for instance,
which cannot be scaled down as its radiated and hence its consumed power mostly depends on the
communication distance – still has to be run at high power over an extended period of time [670].

However, the frequency/voltage versus performance trade-off exploited in DVS is not the only
possible trade-off to exploit. Any such “parameter versus performance” trade-off that has a convex
characteristic should be amenable to an analogous optimization technique. For radio communication,
in particular, possible parameters include the choice of modulation and/or code, giving raise to
Dynamic Modulation Scaling (DMS), Dynamic Code Scaling (DCS) and Dynamic Modulation-
Code Scaling (DMCS) optimization techniques [449, 559, 650, 735, 738]. The claim that such
trade-offs do not apply to communication is another one of the “myths” of energy consumption in
communication [560].

44 Single-node architecture

The idea of these approaches is to dynamically adapt modulation, coding, or other parameters to
maximize system metrics like throughput or, particularly relevant here, energy efficiency. It rests
on the hardware’s ability to actually perform such modulation adaptations, but this is a commonly
found property of modern transceivers. In addition, delay constraints and time-varying radio channel
properties have to be taken into account.

The details of these approaches are somewhat involved, and partially, complicated optimiza-
tion problems have to be approximately solved. The required computational effort should not be
underestimated and a combined analysis should be undertaken on how best to split up energy
consumption. Nonetheless, these approaches are quite beneficial in energy efficiency terms.

2.2.5 Relationship between computation and communication
Looking at the energy consumption numbers for both microcontrollers and radio transceivers, an
evident question to ask is which is the best way to invest the precious energy resources of a sensor
node: Is it better to send data or to compute? What is the relation in energy consumption between
sending data and computing?

Again, details about this relationship heavily depend on the particular hardware in use, but
a few rule-of-thumb figures can be given here. Typically, computing a single instruction on a
microcontroller requires about 1 nJ. Also, 1 nJ about suffices to take a single sample in a radio
transceiver; Bluetooth transceivers could be expected to require roughly 100 nJ to transmit a single
bit (disregarding issues like startup cost and packet lengths) [391]. For other hardware, the ratio of
the energy consumption to send one bit compared to computing a single instruction is between 1500
to 2700 for Rockwell WINS nodes, between 220 to 2900 for MEDUSA II nodes, and about 1400
for WINS NG 2.0 nodes [670]. Hill et al. [353] notes, for the RFM TR1000 radio transceiver, 1 µJ
to transmit a single bit and 0.5 µJ to receive one; their processor takes about 8 nJ per instruction.
This results in a (actually quite good) ratio of about 190 for communication to computation costs.
In a slightly different perspective, communicating 1 kB of data over 100 m consumes roughly the
same amount of energy as computing three million instructions [648]. Hill and Culler [351] give
some more numbers for specific applications.

Disregarding the details, it is clear that communication is a considerably more expensive under-
taking than computation. Still, energy required for computation cannot be simply ignored; depending
on the computational task, it is usually still smaller than the energy for communication, but still
noticeable. This basic observation motivates a number of approaches and design decisions for the
networking architecture of wireless sensor networks. The core idea is to invest into computation
within the network whenever possible to safe on communication costs, leading to the notion of
in-network processing and aggregation. These ideas will be discussed in detail in Chapter 3.

2.2.6 Power consumption of sensor and actuators
Providing any guidelines about the power consumption of the actual sensors and actuators is next to
impossible because of the wide diversity of these devices. For some of them – for example, passive
light or temperature sensors – the power consumption can perhaps be ignored in comparison to other
devices on a wireless node (although Hill et al. [353] report a power consumption of 0.6 to 1 mA
for a temperature sensor). For others, in particular, active devices like sonar, power consumption
can be quite considerable and must even be considered in the dimensioning of power sources on the
sensor node, not to overstress batteries, for example. To derive any meaningful numbers, requires a
look at the intended application scenarios and the intended sensors to be used. Some hints on power
consumption of sensor/controller interfaces, namely, AD converters, can be found in reference [26].

In addition, the sampling rate evidently is quite important. Not only does more frequent sampling
require more energy for the sensors as such but also the data has to processed and, possibly,
communicated somewhere.

Operating systems and execution environments 45

Table 2.5 Example characteristics of sensors. Reproduced from [534] by permission of
ACM

Sensor Accuracy Interchangeability Sample Startup Current
rate [Hz] [ms] [mA]

Photoresistor N/A 10 % 2000 10 1.235
I2C temperature 1 K 0.20 K 2 500 0.15
Barometric pressure 1.5 mbar 0.5 % 10 500 0.01
Bar. press. temp. 0.8 K 0.24 K 10 500 0.01
Humidity 2 % 3 % 500 500– 0.775

3000
Thermopile 3 K 5 % 2000 200 0.17
Thermistor 5 K 10 % 2000 10 0.126

To give some quantitative ideas, Table 2.5 provides examples of various sensor characteristics.

2.3 Operating systems and execution environments
2.3.1 Embedded operating systems
The traditional tasks of an operating system are controlling and protecting the access to resources
(including support for input/output) and managing their allocation to different users as well as the
support for concurrent execution of several processes and communication between these processes
[807]. These tasks are, however, only partially required in an embedded system as the executing
code is much more restricted and usually much better harmonized than in a general-purpose system.
Also, as the description of the microcontrollers has shown, these systems plainly do not have the
required resources to support a full-blown operating system.

Rather, an operating system or an execution environment – perhaps the more modest term is the
more appropriate one – for WSNs should support the specific needs of these systems. In particular,
the need for energy-efficient execution requires support for energy management, for example, in
the form of controlled shutdown of individual components or Dynamic Voltage Scaling (DVS)
techniques. Also, external components – sensors, the radio modem, or timers – should be handled
easily and efficiently, in particular, information that becomes available asynchronously (at any
arbitrary point in time) must be handled.

All this requires an appropriate programming model, a clear way to structure a protocol stack,
and explicit support for energy management – without imposing too heavy a burden on scarce
system resources like memory or execution time. These three topics are treated in the following
sections, with a case study completing the operating system considerations.

2.3.2 Programming paradigms and application programming interfaces
Concurrent Programming

One of the first questions for a programming paradigm is how to support concurrency. Such support
for concurrent execution is crucial for WSN nodes, as they have to handle data communing from
arbitrary sources – for example, multiple sensors or the radio transceiver – at arbitrary points in
time. For example, a system could poll a sensor to decide whether data is available and process
the data right away, then poll the transceiver to check whether a packet is available, and then
immediately process the packet, and so on. (Figure 2.7). Such a simple sequential model would run
the risk of missing data while a packet is processed or missing a packet when sensor information is

46 Single-node architecture

processed. This risk is particularly large if the processing of sensor data or incoming packets takes
substantial amounts of time, which can easily be the case. Hence, a simple, sequential programming
model is clearly insufficient.

Process-based concurrency

Most modern, general-purpose operating systems support concurrent (seemingly parallel) execution
of multiple processes on a single CPU. Hence, such a process-based approach would be a first
candidate to support concurrency in a sensor node as well; it is illustrated in (b) of Figure 2.7. While
indeed this approach works in principle, mapping such an execution model of concurrent processes
to a sensor node shows, however, that there are some granularity mismatches [491]: Equating
individual protocol functions or layers with individual processes would entail a high overhead in
switching from one process to another. This problem is particularly severe if often tasks have to be
executed that are small with respect to the overhead incurred for switching between tasks – which
is typically the case in sensor networks. Also, each process requires its own stack space in memory,
which fits ill with the stringent memory constraints of sensor nodes.

Event-based programming

For these reasons, a somewhat different programming model seems preferable. The idea is to
embrace the reactive nature of a WSN node and integrate it into the design of the operating
system. The system essentially waits for any event to happen, where an event typically can be the
availability of data from a sensor, the arrival of a packet, or the expiration of a timer. Such an
event is then handled by a short sequence of instructions that only stores the fact that this event
has occurred and stores the necessary information – for example, a byte arriving for a packet or the
sensor’s value – somewhere. The actual processing of this information is not done in these event
handler routines, but separately, decoupled from the actual appearance of events. This event-based
programming [353] model is sketched in Figure 2.8.

Poll sensor

Process
sensor

data

Poll transceiver

Process
received
packet

Sequential programming model

Handle sensor
process

Handle packet
process

Process-based programming model

OS-mediated
process switching

Figure 2.7 Two inadequate programming models for WSN operating systems: purely sequential execution
(a) and process-based execution (b)

Operating systems and execution environments 47

Idle/Regular
processing

Radio
event

Radio event handler

Sensor
event

Sensor event
handler

Figure 2.8 Event-based programming model

Such an event handler can interrupt the processing of any normal code, but as it is very simple
and short, it can be required to run to completion in all circumstances without noticeably disturbing
other code. Event handlers cannot interrupt each other (as this would in turn require complicated
stack handling procedures) but are simply executed one after each other.

As a consequence, this event-based programming model distinguishes between two different
“contexts”: one for the time-critical event handlers, where execution cannot be interrupted and a
second context for the processing of normal code, which is only triggered by the event handlers.

This event-based programming model is slightly different to what most programmers are used
to and commonly requires some getting used to. It is actually comparable, on some levels, to
communicating, extended finite state machines, which are used in protocol design formalisms as
well as in some parallel programming paradigms. It does offer considerable advantages. Li et al.
[491] compared the performance of a process-based and an event-based programming model (using
TinyOS [353] described below) on the same hardware and found that performance improved by a
factor of 8, instruction/data memory requirements were reduced by factors of 2 and 30, respectively,
and power consumption was reduced by a factor of 12.

Interfaces to the operating system

In addition to the programming model that is stipulated, if not actually imposed, by the operating
system, it is also necessary to specify some interfaces to how internal state of the system can be
inquired and perhaps set. As the clear distinction between protocol stack and application programs
vanishes somewhat in WSNs, such an interface should be accessible from protocol implementations
and it should allow these implementations to access each other. This interface is also closely tied
with the structure of protocol stacks discussed in the following section.

Such an Application Programming Interface (API) comprises, in general, a “functional interface,
object abstractions, and detailed behavioral semantics” [558]. Abstractions are wireless links, nodes,
and so on; possible functions include state inquiry and manipulation, sending and transmitting of
data, access to hardware (sensors, actuators, transceivers), and setting of policies, for example, with
respect to energy/quality trade-offs.

While such a general API would be extremely useful, there is currently no clear standard – or
even an in-depth discussion – arising from the literature. Some first steps in this direction are more
concerned with the networking architecture [751], not so much with accessing functionality on a
single node. Until this changes, de facto standards will continue to be used and are likely to serve
reasonably well. Section 2.3.5 describes one such de facto standard.

2.3.3 Structure of operating system and protocol stack
The traditional approach to communication protocol structuring is to use layering: individual
protocols are stacked on top of each other, each layer only using functions of the layer directly

48 Single-node architecture

below. This layered approach has great benefits in keeping the entire protocol stack manageable,
in containing complexity, and in promoting modularity and reuse. For the purposes of a WSN,
however, it is not clear whether such a strictly layered approach will suffice (the presentation here
follows to some degree reference [431]).

As an example, consider the use of information about the strength of the signal received from
a communication partner. This physical layer information can be used to assist in networking
protocols to decide about routing changes (a signal becomes weaker if a node moves away and
should perhaps no longer be used as a next hop), to compute location information by estimating
distance from the signal strength, or to assist link layer protocols in channel-adaptive or hybrid
FEC/ARQ schemes. Hence, one single source of information can be used to the advantage of many
other protocols not directly associated with the source of this information.

Such cross-layer information exchange is but one way to loosen the strict confinements of the
layered approach. Also, WSNs are not the only reason why such liberations are sought. Even in
traditional network scenarios, efficiency considerations [170], the need to support wired networking
protocols in wireless systems (e.g. TCP over wireless [42]), the need to migrate functionality into
the backbone despite the prescriptions of Internet’s end-to-end model [97], or the desire to support
handover mechanisms by physical layer information in cellular networks [257] all have created a
considerable pressure for a flexible, manageable, and efficient way of structuring and implementing
communication protocols. Hill and Culler [351] discuss some more examples in which cross-layer
optimization is particularly useful in WSNs.

When departing from the layered architecture, the prevalent trend is to use a component model.
Relatively large, monolithic layers are broken up into small, self-contained “components”, “building
blocks”, or “modules” (the terminology varies). These components only fulfill one well-defined
function each – for example, computation of a Cyclic Redundancy Check (CRC) – and interact
with each other over clear interfaces. The main difference compared to the layered architecture is
that these interactions are not confined to immediate neighbors in an up/down relationship, but can
be with any other component.

This component model not only solves some of the structuring problems for protocol stacks, it
also fits naturally with an event-based approach to programming wireless sensor nodes. Wrapping of
hardware, communication primitives, in-network processing functionalities all can be conveniently
designed and implemented as components.

One popular example for an operating system following this approach is TinyOS [353], described
in detail later. It uses the notion of explicit wiring of components to allow event exchange to take
place between them. While this is beneficial for “push” types of interactions (events are more or
less immediately distributed to the receiving component), it does not serve well other cases where
a “pull” type of information exchange is necessary. Looking at the case of the received signal
strength information described above, the receiving component might not be interested in receiving
all such events; rather, it might suffice to be informed asynchronously. A good solution for this is
a blackboard, based on publish/subscribe principles [251], where information can be deposited and
anonymously exchanged, allowing a looser coupling between components. This concept has been
proposed in reference [431] and appears a promising add-on.

2.3.4 Dynamic energy and power management
Switching individual components into various sleep states or reducing their performance by scaling
down frequency and supply voltage and selecting particular modulation and codings were the
prominent examples discussed in Section 2.2 for improving energy efficiency. To control these
possibilities, decisions have to be made by the operating system, by the protocol stack, or potentially
by an application when to switch into one of these states. Dynamic Power Management (DPM) on
a system level is the problem at hand.

Operating systems and execution environments 49

One of the complicating factors to DPM is the energy and time required for the transition of a
component between any two states. If these factors were negligible, clearly it would be optimal to
always & immediately go into the mode with the lowest power consumption possible. As this is
not the case, more advanced algorithms are required, taking into account these costs, the rate of
updating power management decisions, the probability distribution of time until future events, and
properties of the used algorithms. In fact, this field is very broad and only a few examples can
be discussed here – for an overview, refer, for example, to reference [304] (especially parts III, V,
and VI therein) or reference [62].

Probabilistic state transition policies

Sinha and Chandrakasan [769] consider the problem of policies that regulate the transition
between various sleep states. They start out by considering sensors randomly distributed over a
fixed area and assume that events arrive with certain temporal distributions (Poisson process) and
spatial distributions. This allows them to compute probabilities for the time to the next event,
once an event has been processed (even for moving events). They use this probability to select
the deepest sleep state out of several possible ones that still fulfill the threshold requirements of
Equation (2.3).

In addition, they take into account the possibility of missing events when the sensor as such
is also shut down in sleep mode. This can be acceptable for some applications, and Sinha and
Chandrakasan give some probabilistic rules on how to decide whether to go into such a deep
sleep mode.

Other examples for state transition policies are discussed in references [611, 767, 784].

Controlling dynamic voltage scaling

To turn the possibilities of DVS into a technical solution also requires some further considerations.
For example, it is the rare exception that there is only a single task to be run in an operating
system; hence, a clever scheduler is required to decide which clock rate to use in each situation
to meet all deadlines. This can require feedback from applications and has been mostly studied in
“traditional” applications, for example, video playback in reference [649]. Another approach [259]
incorporates dynamic voltage scaling control into the kernel of the operating system and achieves
energy efficiency improvements in mixed workloads without modifications to user programs. Many
other papers have considered DVS-based power management in various circumstances, often in the
context of hard real-time systems, for example, references [109, 302, 307, 445, 537, 763, 869, 906]
and the citations in reference [669]. Applying these results to the specific settings of a WSN
is, however, still a research task as WSNs usually do not operate under similarly strict timing
constraints, nor are the application profiles comparable.

Trading off fidelity against energy consumption

Most of the just described work on controlling DVS assumes hard deadlines for each task (the
task has to be completed by a given time, otherwise its results are useless). In WSNs, such an
assumption is often not appropriate. Rather, there are often tasks that can be computed with a
higher or lower level of accuracy. The fidelity achieved by such tasks is a candidate for trading it
off against other resources. When time is considered, the concept of “imprecise computation” results
[515]. In a WSN, the natural trade-off is against energy required to compute a task. Essentially, the
question arises again how best to invest a given amount of energy available for a given task [770].
Deliberately embracing such inaccuracies in return for lower energy consumption is a characteristic
feature of WSNs; some examples will be discussed in various places in the book.

50 Single-node architecture

Some approaches to exploit such trade-offs have been described in the literature, for example,
in references [260, 669], but mostly in the context of multimedia systems. Sinha et al. [770]
discuss the energy-quality trade-off for algorithm design, especially for signal processing purposes
(filtering, frequency domain transforms, and classification). The idea is to transform an algorithm
such that it quickly approximates the final result and keeps computing as long as energy is available,
producing incremental refinements (being a direct counterpart to imprecise computation [515],
where computation can continue as long as time is available). As a simple example, the computation
of a polynomial f (x) = ∑N

i=0 kix
i is given: depending on whether x < 1 or x ≥ 1, computation

should start with the low-order or high-order terms for having the best possible approximation in
case the computation has to be aborted because it exceeded its energy allocation. The performance
of such (original or transformed) algorithms is studied using their E − Q metric, indicating which
(normalized) result quality can be achieved for how much (normalized) energy.

2.3.5 Case Study: TinyOS and nesC
Section 2.3.2 has advocated the use of an event-based programming model as the only feasible
way to support the concurrency required for sensor node software while staying within the confined
resources and running on top of the simple hardware provided by these nodes. The open question is
how to harness the power of this programming model without getting lost in the complexity of many
individual state machines sending each other events. In addition, modularity should be supported
to easily exchange one state machine against another. The operating system TinyOS [353], along
with the programming language nesC [285], addresses these challenges (the exposition here follows
mainly these references).

TinyOS supports modularity and event-based programming by the concept of components. A
component contains semantically related functionality, for example, for handling a radio interface
or for computing routes. Such a component comprises the required state information in a frame,
the program code for normal tasks, and handlers for events and commands. Both events and com-
mands are exchanged between different components. Components are arranged hierarchically, from
low-level components close to the hardware to high-level components making up the actual appli-
cation. Events originate in the hardware and pass upward from low-level to high-level components;
commands, on the other hand, are passed from high-level to low-level components.

Figure 2.9 shows a timer component that provides a more abstract version of a simple hardware
time. It understands three commands (“init”, “start”, and “stop”) and can handle one event (“fire”)
from another component, for example, a wrapper component around a hardware timer. It issues
“setRate” commands to this component and can emit a “fired” event itself.

The important thing to note is that, in staying with the event-based paradigm, both command and
event handlers must run to conclusion; they are only supposed to perform very simple triggering
duties. In particular, commands must not block or wait for an indeterminate amount of time; they
are simply a request upon which some task of the hierarchically lower component has to act.
Similarly, an event handler only leaves information in its component’s frame and arranges for a
task to be executed later; it can also send commands to other components or directly report an
event further up.

The actual computational work is done in the tasks. In TinyOS, they also have to run to com-
pletion, but can be interrupted by handlers. The advantage is twofold: there is no need for stack
management and tasks are atomic with respect to each other. Still, by virtue of being triggered by
handlers, tasks are seemingly concurrent to each other.

The arbitration between tasks – multiple can be triggered by several events and are ready to
execute – is done by a simple, power-aware First In First Out (FIFO) scheduler, which shuts the
node down when there is no task executing or waiting.

Operating systems and execution environments 51

TimerComponent

setRate fire

init start stop fired

Event
handlers

Command
handlers

Frame

Tasks

Figure 2.9 Example Timer component (adapted from references [285, 353])

With handlers and tasks all required to run to completion, it is not clear how a component
could obtain feedback from another component about a command that it has invoked there – for
example, how could an Automatic Repeat Request (ARQ) protocol learn from the MAC protocol
whether a packet had been sent successfully or not? The idea is to split invoking such a request
and the information about answers into two phases: The first phase is the sending of the command,
the second is an explicit information about the outcome of the operation, delivered by a separate
event. This split-phase programming approach requires for each command a matching event but
enables concurrency under the constraints of run-to-completion semantics – if no confirmation for
a command is required, no completion event is necessary.

Having commands and events as the only way of interaction between components (the frames of
components are private data structures), and especially when using split-phase programming, a large
number of commands and events add up in even a modestly large program. Hence, an abstraction is
necessary to organize them. As a matter of fact, the set of commands that a component understands
and the set of events that a component may emit are its interface to the components of a hierarchi-
cally higher layer; looked at it the other way around, a component can invoke certain commands
at its lower component and receive certain events from it. Therefore, structuring commands and
events that belong together forms an interface between two components.

The nesC language formalizes this intuition by allowing a programmer to define interface types
that define commands and events that belong together. This allows to easily express split-phase
programming style by putting commands and their corresponding completion events into the same
interface. Components then provide certain interfaces to their users and in turn use other interfaces
from underlying components.

Figure 2.10 shows how the Timer component of the previous example can be reorganized into
using a clock interface and providing two interfaces StdCtrl and Timer. The corresponding nesC
code is shown in Listing 2.1. Note that the component TimerComponent is defined here as a module
since it is a primitive component, directly containing handlers and tasks.

Such primitive components or modules can be combined into larger configurations by simply
“wiring” appropriate interfaces together. For this wiring to take place, only components that have
the correct interface types can be plugged together (this is checked by the compiler). Figure 2.11
shows how the TimerComponent and an additional component HWClock can be wired together
to form a new component CompleteTimer, exposing only the StdCtrl and Timer interfaces to the
outside; Listing 2.2 shows the corresponding nesC code. Note that both modules and configurations
are components.

52 Single-node architecture

TimerComponent

start stop fired

Time

start top fired

Timer

init

StdCtr

init

StdCtrl

setRate fire

Clock

setRate firesetRate fire

Clock

Figure 2.10 Organizing the Timer component using interfaces [285, 353]

Listing 2.1: Defining modules and interfaces [285]

interface StdCtrl {
command result_t init ();

}

interface Timer {
command result_t start (char type , uint32_t interval);
command result_t stop ();
event result_t fired ();

}

interface Clock {
command result_t setRate (char interval , char scale);
event result_t fire ();

}

module TimerComponent {
provides {

interface StdCtrl ;
interface Timer;

}
uses interface Clock as Clk;

}

Using these component definition, implementation, and connection concepts, TinyOS and nesC
together form a powerful and relatively easy to use basis to implement both core operating system
functionalities as well as communication protocol stacks and application functions. Experience has
shown [285] that in fact programmers do use these paradigms and arrive at relatively small, highly
specialized components that are then combined as needed, proving the modularity claim. Also, code
size and memory requirements are quite small.

Overall, TinyOS can currently be regarded as the standard implementation platform for WSNs.
It is also becoming available for an increasing number of platforms other than the original “motes”
on which it had been developed. For practical work, the project web page [820] provides a lot of
valuable information along with a good tutorial [821].

Operating systems and execution environments 53

TimerComponent

start stop fired

Timer

start stop firedinit

StdCtrl

init

setRate fire

Cloc

setRate firesetRate fire

Clock

Figure 2.11 Building a larger configuration out of two components [285, 353]

Listing 2.2: Wiring components to form a configuration [285]

configuration CompleteTimer {
provides {

interface StdCtrl ;
interface Timer;

}
implementation {

components TimerComponent , HWClock ;
StdCtrl = TimerComponent .HWClock ;
Timer = TimerComponent .Timer;
TimerComponent .Clk = HWClock .Clock;

}
}

On top of the TinyOS operating system, a vast range of extensions, protocols, and applications
have been developed. Some brief examples must suffice here.9 Levis and Culler [481] describe a
virtual machine concept on top of TinyOS that provides a high-level interface to concisely represent
programs; it is particularly beneficial for over-the-air reprogramming and retasking of an existing
network. Conceiving of the sensor network as a relational database is made possible by the TinyDB
project.

2.3.6 Other examples
Apart from TinyOS, there are a few other execution environments or operating systems for WSN
nodes. One example is Contiki10 [216], which has been ported to various hardware platforms and
actually implements a TCP/IP stack on top of a platform with severely restricted resources [215].
Other examples are ecos [224] and the Mantis project [4].

9 In February 2004, google found about 15.800 results when searching for “TinyOS”; in November 2004, already 123.000!
10 http://www.sics.se/~adam/contiki/

54 Single-node architecture

2.4 Some examples of sensor nodes
There are quite a number of actual nodes available for use in wireless sensor network research
and development. Again, depending on the intended application scenarios, they have to fulfill quite
different requirements regarding battery life, mechanical robustness of the node’s housing, size, and
so on. A few examples shall highlight typical approaches; an overview of current developments
can be found, for example, in reference [352].

2.4.1 The “Mica Mote” family
Starting in the late 1990s, an entire family of nodes has evolved out of research projects at the
University of California at Berkeley, partially with the collaboration of Intel, over the years. They
are commonly known as the Mica motes11, with different versions (Mica, Mica2, Mica2Dot) having
been designed [351, 353, 534]; references [285, 481] have an overview table of the family members;
schematics for some of these designs are available from [822]. They are commercially available
via the company Crossbow12 in different versions and different kits. TinyOS is the usually used
operating system for these nodes.

An early example for the schematics of such a node is shown in Figure 2.12 [353].
All these boards feature a microcontroller belonging to the Atmel family, a simple radio modem

(usually a TR 1000 from RFM), and various connections to the outside. In addition, it is possible to
connect additional “sensor boards” with, for example, barometric or humidity sensors, to the node
as such, enabling a wider range of applications and experiments. Also, specialized enclosures have
been built for use in rough environments, for example, for monitoring bird habitats [534]. Sensors
are connected to the controller via an I2C bus or via SPI, depending on the version.

The MEDUSA-II nodes [670] share the basic components and are quite similar in design.

2.4.2 EYES nodes
The nodes developed by Infineon in the context of the European Union – sponsored project “Energy-
efficient Sensor Networks” (EYES) 13 are another example of a typical sensor node (Figure 2.13). It
is equipped with a Texas Instrument MSP 430 microcontroller, an Infineon radio modem TDA 5250,
along with a SAW filter and transmission power control; the radio modem also reports the measured
signal strength to the controller. The node has a USB interface to a PC and the possibility to add
additional sensors/actuators.

2.4.3 BTnodes
The “Btnodes” [103] have been developed at the ETH Zürich out of several research projects
(Figure 2.14). They feature an Atmel ATmega 128L microcontroller, 64 + 180 kB RAM, and
128 kB FLASH memory. Unlike most other sensor nodes (but similar to some nodes developed
by Intel), they use Bluetooth as their radio technology in combination with a Chipcon CC1000
operating between 433 and 915 MHz.

2.4.4 Scatterweb
The ScatterWeb platform [694] was developed at the Computer Systems & Telematics group at the
Freie Universität Berlin (Figure 2.15). This is an entire family of nodes, starting from a relatively

11 A mote: a small particle, like a mote of dust.
12 http://www.xbow.com
13 http://www.eyes.eu.org

Some examples of sensor nodes 55

Coprocessor
AT90L2313

EEPROMSPI

Serial
port

UART

ADC
Light sensor

Pwr

data

IO pins

Temp
AD7418

IO pins
I2C

RFM TR100
916-MHz transceiver

IO pins

Ctrl

TX
RX

LEDsIO pins

Inst.

register

Pgm. mem.
(flash)

Inst.

decoder

PC

SRAM

Regs

SR

ALU

SP

EEPROM

Int
unit

Timer
Unit

Reference

voltage

4-MHz

clock

TX
RX

I2C
SPI

AT 90LS8535

32.768-MHz

clock

8-bit data bus

Ctrl lines

Figure 2.12 Schematics and photograph of a Mica node [353]. Reproduced by permission of ACM

standard sensor node (based on MSP 430 microcontroller) and ranges up to embedded web servers,
which comes equipped with a wide range of interconnection possibilities – apart from Bluetooth
and a low-power radio mode, connections for I2C or CAN are available, for example.

2.4.5 Commercial solutions
Apart from these academic research prototypes, there are already a couple of sensor-node-type
devices commercially available, including appropriate housing, certification, and so on. Some of
these companies include “ember” (www.ember.com) or “Millenial” (www.millenial.net).
The market here is more dynamic than can be reasonably reflected in a textbook and the reader is
encouraged to watch for up-to-date developments.

56 Single-node architecture

Figure 2.13 EYES sensor node. Reproduced by permission of Thomas Lentsch, Infineon

Figure 2.14 Btnode. Reproduced by permission of Jan Beutel, ETH Zurich

2.5 Conclusion
This chapter has introduced the necessary hardware prerequisites for building wireless sensor
networks – the nodes as such. It has shown the principal ways of constructing such nodes and has
shown some numbers on the performance and energy consumption of its main components – mainly
the controller, the communication device, and the sensors. On the basis of these numbers, it will
often be convenient to assume that a wireless sensor node consists of two separate parts [778]: One
part that is continuously vigilant, can detect and report events, and has small or even negligible
power consumption. This is complemented by a second part that performs actual processing and

Conclusion 57

Figure 2.15 A ScatterWeb embedded web server. Reproduced by permission of Prof. Dr.-Ing. J. Schiller, FU
Berlin

communication, has higher, nonnegligible power consumption, and has therefore to be operated in
a low duty cycle. This separation of functionalities is justified from the hardware properties as is
it supported by operating systems like TinyOS.

Looking at the large variety of components to choose from, each with their own characteristic
advantages and disadvantages, it is not surprising that there is not a single, “perfect” wireless
sensor node – different application requirements will require different trade-offs to be made and
different architectures to be used. As a consequence, there will be sensor networks that employ a
heterogeneous mix of various node types to fulfill their tasks, for example, nodes with more or less
computation power, different types of wireless communication, or different battery sizes. This can
have consequences on how to design a wireless sensor network by exploiting this heterogeneity in
hardware to assign different tasks to the best-suited nodes.

While much of the work described here is still on-going research or in its prototypical state,
the emerging capabilities of future sensor nodes with respect to communication, computation,
and storage as well as regarding their energy consumption trade-offs are quite apparent already.
The absolute numbers are still subject to change, but it is unlikely that inherent trade-offs, for
example, between the energy required for computation or communication, are going to change
dramatically in the foreseeable future. These trade-offs form the basis for the construction of
networking functionalities, geared toward the specific requirements of wireless sensor network
applications.

3
Network architecture

Objectives of this Chapter
This chapter introduces the basic principles of turning individual sensor nodes into a wireless sensor
network. On the basis of the high-level application scenarios of Chapter 1, more concrete scenarios
and the resulting optimization goals of how a network should function are discussed. On the basis
of these scenarios and goals, a few principles for the design of networking protocols in wireless
sensor networks are derived – these principles and the resulting protocol mechanisms constitute
the core differences of WSNs compared to other network types. To make the resulting capabilities
of a WSN usable, a proper service interface is required, as is an integration of WSNs into larger
network contexts.

At the end of this chapter, the reader should be able to appreciate the basic networking “phi-
losophy” followed by wireless sensor network research. Upon this basis, the next part of the book
will then discuss in detail individual networking functionalities.

Chapter Outline
3.1 Sensor network scenarios 60
3.2 Optimization goals and figures of merit 63
3.3 Design principles for WSNs 67
3.4 Service interfaces of WSNs 74
3.5 Gateway concepts 78
3.6 Conclusion 81

The architecture of wireless sensor networks draws upon many sources. Historically, a lot of
related work has been done in the context of self-organizing, mobile, ad hoc networks (references
[635, 793, 827] provide some overview material). While these networks are intended for different
purposes, they share the need for a decentralized, distributed form of organization. From a different
perspective, sensor networks are related to real-time computing [429, 514] and even to some
concepts from peer-to-peer computing [55, 480, 574, 608, 842], active networks [111], and mobile
agents/swarm intelligence [86, 98, 176, 220, 892].

Protocols and Architectures for Wireless Sensor Networks. Holger Karl and Andreas Willig
Copyright 2005 John Wiley & Sons, Ltd. ISBN: 0-470-09510-5

60 Network architecture

Consequently, the number of ideas and publications on networking architectures for wireless
sensor networks is vast, and it is often difficult to clearly attribute who first came up with a certain
idea, especially since many of them are fairly obvious extrapolations of ideas from the areas just
mentioned; also, similar concepts have often been proposed more or less concurrently by different
authors. Nonetheless, proper attribution shall be given where possible. A (not necessarily complete)
collection of important architectural papers on wireless sensor networks is [26, 88, 126, 134, 233,
245, 246, 274, 342, 344, 351, 353, 392, 433, 500, 534, 648, 653, 667, 758, 778, 788, 798, 921, 923];
pointers and discussion of architectural issues are also included in practically all overview papers,
for example, [17, 367, 670, 699].

3.1 Sensor network scenarios
3.1.1 Types of sources and sinks
Section 1.3 has introduced several typical interaction patterns found in WSNs – event detection,
periodic measurements, function approximation and edge detection, or tracking – it has also already
briefly touched upon the definition of “sources” and “sinks”. A source is any entity in the network
that can provide information, that is, typically a sensor node; it could also be an actuator node that
provides feedback about an operation.

A sink, on the other hand, is the entity where information is required. There are essentially three
options for a sink: it could belong to the sensor network as such and be just another sensor/actuator
node or it could be an entity outside this network. For this second case, the sink could be an actual
device, for example, a handheld or PDA used to interact with the sensor network; it could also
be merely a gateway to another larger network such as the Internet, where the actual request for
the information comes from some node “far away” and only indirectly connected to such a sensor
network. These main types of sinks are illustrated by Figure 3.1, showing sources and sinks in
direct communication.

For much of the remaining discussion, this distinction between various types of sinks is actually
fairly irrelevant. It is important, as discussed in Section 3.1.4, whether sources or sinks move, but
what they do with the information is not a primary concern of the networking architecture. There
are some consequences of a sink being a gateway node; they will be discussed in Section 3.5.

3.1.2 Single-hop versus multihop networks
From the basics of radio communication and the inherent power limitation of radio communica-
tion follows a limitation on the feasible distance between a sender and a receiver. Because of this

Source

Sink Internet

Source

Sink InternetSink

Source

Sink

Source

Sink

Source

Sink

Source

Figure 3.1 Three types of sinks in a very simple, single-hop sensor network

Sensor network scenarios 61

Source

Sink

Obstacle

Figure 3.2 Multihop networks: As direct communication is impossible because of distance and/or obstacles,
multihop communication can circumvent the problem

limited distance, the simple, direct communication between source and sink is not always possible,
specifically in WSNs, which are intended to cover a lot of ground (e.g. in environmental or agri-
culture applications) or that operate in difficult radio environments with strong attenuation (e.g. in
buildings).

To overcome such limited distances, an obvious way out is to use relay stations, with the
data packets taking multi hops from the source to the sink. This concept of multihop networks
(illustrated in Figure 3.2) is particularly attractive for WSNs as the sensor nodes themselves can
act as such relay nodes, foregoing the need for additional equipment. Depending on the particular
application, the likelihood of having an intermediate sensor node at the right place can actually
be quite high – for example, when a given area has to be uniformly equipped with sensor nodes
anyway – but nevertheless, there is not always a guarantee that such multihop routes from source
to sink exist, nor that such a route is particularly short.

While multihopping is an evident and working solution to overcome problems with large dis-
tances or obstacles, it has also been claimed to improve the energy efficiency of communication.
The intuition behind this claim is that, as attenuation of radio signals is at least quadratic in most
environments (and usually larger), it consumes less energy to use relays instead of direct commu-
nication: When targeting for a constant SNR at all receivers (assuming for simplicity negligible
error rates at this SNR), the radiated energy required for direct communication over a distance d

is cdα (c some constant, α ≥ 2 the path loss coefficient); using a relay at distance d/2 reduces this
energy to 2c(d/2)α .

But this calculation considers only the radiated energy, not the actually consumed energy – in
particular, the energy consumed in the intermediate relay node. Even assuming that this relay
belongs to the WSN and is willing to cooperate, when computing the total required energy it is
necessary to take into account the complete power consumption of Section 2.2.4. It is an easy
exercise to show that energy is actually wasted if intermediate relays are used for short distances d .
Only for large d does the radiated energy dominate the fixed energy costs consumed in transmitter
and receiver electronics – the concrete distance where direct and multihop communication are in
balance depends on a lot of device-specific and environment-specific parameters. Nonetheless,
this relationship is often not considered. In fact, Min and Chandrakasan [560] classify the
misconception that multihopping saves energy as the number one myth about energy consumption
in wireless communication. Great care should be taken when applying multihopping with the end
of improved energy efficiency.

It should be pointed out that only multihop networks operating in a store and forward fashion
are considered here. In such a network, a node has to correctly receive a packet before it can forward
it somewhere. Alternative, innovative approaches attempt to exploit even erroneous reception of
packets, for example, when multiple nodes send the same packet and each individual transmission
could not be received, but collectively, a node can reconstruct the full packet. Such cooperative
relaying techniques are not considered here.

62 Network architecture

Figure 3.3 Multiple sources and/or multiple sinks. Note how in the scenario in the lower half, both sinks and
active sources are used to forward data to the sinks at the left and right end of the network

3.1.3 Multiple sinks and sources
So far, only networks with a single source and a single sink have been illustrated. In many cases,
there are multiple sources and/or multiple sinks present. In the most challenging case, multiple
sources should send information to multiple sinks, where either all or some of the information has
to reach all or some of the sinks. Figure 3.3 illustrates these combinations.

3.1.4 Three types of mobility
In the scenarios discussed above, all participants were stationary. But one of the main virtues of
wireless communication is its ability to support mobile participants. In wireless sensor networks,
mobility can appear in three main forms:

Node mobility The wireless sensor nodes themselves can be mobile. The meaning of such mobility
is highly application dependent. In examples like environmental control, node mobility should
not happen; in livestock surveillance (sensor nodes attached to cattle, for example), it is the
common rule.

In the face of node mobility, the network has to reorganize itself frequently enough to be
able to function correctly. It is clear that there are trade-offs between the frequency and
speed of node movement on the one hand and the energy required to maintain a desired
level of functionality in the network on the other hand.

Sink mobility The information sinks can be mobile (Figure 3.4). While this can be a special case
of node mobility, the important aspect is the mobility of an information sink that is not part
of the sensor network, for example, a human user requested information via a PDA while
walking in an intelligent building.

In a simple case, such a requester can interact with the WSN at one point and complete
its interactions before moving on. In many cases, consecutive interactions can be treated as

Optimization goals and figures of merit 63

Request

Movement
direction

Propagation
of answers

Figure 3.4 A mobile sink moves through a sensor network as information is being retrieved on its behalf

separate, unrelated requests. Whether the requester is allowed interactions with any node or
only with specific nodes is a design choice for the appropriate protocol layers.

A mobile requester is particularly interesting, however, if the requested data is not locally
available but must be retrieved from some remote part of the network. Hence, while the
requester would likely communicate only with nodes in its vicinity, it might have moved to
some other place. The network, possibly with the assistance of the mobile requester, must
make provisions that the requested data actually follows and reaches the requester despite
its movements [758].

Event mobility In applications like event detection and in particular in tracking applications, the
cause of the events or the objects to be tracked can be mobile.

In such scenarios, it is (usually) important that the observed event is covered by a sufficient
number of sensors at all time. Hence, sensors will wake up around the object, engaged
in higher activity to observe the present object, and then go back to sleep. As the event
source moves through the network, it is accompanied by an area of activity within the
network – this has been called the frisbee model, introduced in reference [126] (which also
describes algorithms for handling the “wakeup wavefront”). This notion is described by
Figure 3.5, where the task is to detect a moving elephant and to observe it as it moves
around. Nodes that do not actively detect anything are intended to switch to lower sleep
states unless they are required to convey information from the zone of activity to some
remote sink (not shown in Figure 3.5).

Communication protocols for WSNs will have to render appropriate support for these forms of
mobility. In particular, event mobility is quite uncommon, compared to previous forms of mobile
or wireless networks.

3.2 Optimization goals and figures of merit
For all these scenarios and application types, different forms of networking solutions can be
found. The challenging question is how to optimize a network, how to compare these solu-
tions, how to decide which approach better supports a given application, and how to turn rel-
atively imprecise optimization goals into measurable figures of merit? While a general answer
appears impossible considering the large variety of possible applications, a few aspects are fairly
evident.

64 Network architecture

Figure 3.5 Area of sensor nodes detecting an event – an elephant [378] – that moves through the network
along with the event source (dashed line indicate the elephant’s trajectory; shaded ellipse the activity area
following or even preceding the elephant)

3.2.1 Quality of service

WSNs differ from other conventional communication networks mainly in the type of service they
offer. These networks essentially only move bits from one place to another. Possibly, additional
requirements about the offered Quality of Service (QoS) are made, especially in the context of
multimedia applications. Such QoS can be regarded as a low-level, networking-device-observable
attribute – bandwidth, delay, jitter, packet loss rate – or as a high-level, user-observable, so-called
subjective attribute like the perceived quality of a voice communication or a video transmission.
While the first kind of attributes is applicable to a certain degree to WSNs as well (bandwidth,
for example, is quite unimportant), the second one clearly is not, but is really the more important
one to consider! Hence, high-level QoS attributes corresponding to the subjective QoS attributes in
conventional networks are required.

But just like in traditional networks, high-level QoS attributes in WSN highly depend on the
application. Some generic possibilities are:

Event detection/reporting probability What is the probability that an event that actually occurred
is not detected or, more precisely, not reported to an information sink that is interested in
such an event? For example, not reporting a fire alarm to a surveillance station would be a
severe shortcoming.

Clearly, this probability can depend on/be traded off against the overhead spent in setting
up structures in the network that support the reporting of such an event (e.g. routing tables)
or against the run-time overhead (e.g. sampling frequencies).

Event classification error If events are not only to be detected but also to be classified, the error
in classification must be small.

Event detection delay What is the delay between detecting an event and reporting it to any/all
interested sinks?

Missing reports In applications that require periodic reporting, the probability of undelivered
reports should be small.

Optimization goals and figures of merit 65

Approximation accuracy For function approximation applications (e.g. approximating the temper-
ature as a function of location for a given area), what is the average/maximum absolute or
relative error with respect to the actual function?1 Similarly, for edge detection applications,
what is the accuracy of edge descriptions; are some missed at all?

Tracking accuracy Tracking applications must not miss an object to be tracked, the reported
position should be as close to the real position as possible, and the error should be small.
Other aspects of tracking accuracy are, for example, the sensitivity to sensing gaps [923].

3.2.2 Energy efficiency
Much of the discussion has already shown that energy is a precious resource in wireless sensor
networks and that energy efficiency should therefore make an evident optimization goal. It is clear
that with an arbitrary amount of energy, most of the QoS metrics defined above can be increased
almost at will (approximation and tracking accuracy are notable exceptions as they also depend on
the density of the network). Hence, putting the delivered QoS and the energy required to do so into
perspective should give a first, reasonable understanding of the term energy efficiency.

The term “energy efficiency” is, in fact, rather an umbrella term for many different aspects of a
system, which should be carefully distinguished to form actual, measurable figures of merit. The
most commonly considered aspects are:

Energy per correctly received bit How much energy, counting all sources of energy consumption
at all possible intermediate hops, is spent on average to transport one bit of information
(payload) from the source to the destination? This is often a useful metric for periodic
monitoring applications.

Energy per reported (unique) event Similarly, what is the average energy spent to report one
event? Since the same event is sometimes reported from various sources, it is usual to
normalize this metric to only the unique events (redundant information about an already
known event does not provide additional information).

Delay/energy trade-offs Some applications have a notion of “urgent” events, which can justify
an increased energy investment for a speedy reporting of such events. Here, the trade-off
between delay and energy overhead is interesting.

Network lifetime The time for which the network is operational or, put another way, the time
during which it is able to fulfill its tasks (starting from a given amount of stored energy). It
is not quite clear, however, when this time ends. Possible definitions are:

Time to first node death When does the first node in the network run out of energy or fail
and stop operating?

Network half-life When have 50 % of the nodes run out of energy and stopped operating?
Any other fixed percentile is applicable as well.

Time to partition When does the first partition of the network in two (or more) disconnected
parts occur? This can be as early as the death of the first node (if that was in a pivotal
position) or occur very late if the network topology is robust.

1 Clearly, this requires assumptions about the function to be approximated; discontinuous functions or functions with unlim-
ited first derivative are impossible to approximate with a finite number of sensors.

66 Network architecture

Time to loss of coverage Usually, with redundant network deployment and sensors that can
observe a region instead of just the very spot where the node is located, each point
in the deployment region is observed by multiple sensor nodes. A possible figure of
merit is thus the time when for the first time any spot in the deployment region is no
longer covered by any node’s observations.
If k redundant observations are necessary (for tracking applications, for example), the
corresponding definition of loss of coverage would be the first time any spot in the
deployment region is no longer covered by at least k different sensor nodes.

Time to failure of first event notification A network partition can be seen as irrelevant if
the unreachable part of the network does not want to report any events in the first
place. Hence, a possibly more application-specific interpretation of partition is the
inability to deliver an event. This can be due to an event not being noticed because
the responsible sensor is dead or because a partition between source and sink has
occurred.

It should be noted that simulating network lifetimes can be a difficult statistical problem.

Obviously, the longer these times are, the better does a network perform. More generally, it is
also possible to look at the (complementary) distribution of node lifetimes (with what probability
does a node survive a given amount of time?) or at the relative survival times of a network (at what
time are how many percent of the nodes still operational?). This latter function allows an intuition
about many WSN-specific protocols in that they tend to sacrifice long lifetimes in return for an
improvement in short lifetimes – they “sharpen the drop” (Figure 3.6).

All these metrics can of course only be evaluated under a clear set of assumptions about the
energy consumption characteristics of a given node, about the actual “load” that the network has to
deal with (e.g. when and where do events happen), and also about the behavior of the radio channel.

3.2.3 Scalability
The ability to maintain performance characteristics irrespective of the size of the network is referred
to as scalability. With WSN potentially consisting of thousands of nodes, scalability is an evidently
indispensable requirement. Scalability is ill served by any construct that requires globally consistent
state, such as addresses or routing table entries that have to be maintained. Hence, the need to restrict
such information is enforced by and goes hand in hand with the resource limitations of sensor nodes,
especially with respect to memory.

The need for extreme scalability has direct consequences for the protocol design. Often, a penalty
in performance or complexity has to be paid for small networks as discussed in the following
Section 3.3.1. Architectures and protocols should implement appropriate scalability support rather
than trying to be as scalable as possible. Applications with a few dozen nodes might admit more-
efficient solutions than applications with thousands of nodes; these smaller applications might be

Lifetime

P
ro

ba
bi

lit
y

of
ex

ce
ed

in
g

a
gi

ve
n

lif
et

im
e

0

1

Figure 3.6 Two probability curves of a node exceeding a given lifetime – the dotted curve trades off better
minimal lifetime against reduced maximum lifetime

Design principles for WSNs 67

more common in the first place. Nonetheless, a considerable amount of research has been invested
into highly scalable architectures and protocols.

3.2.4 Robustness
Related to QoS and somewhat also to scalability requirements, wireless sensor networks should
also exhibit an appropriate robustness. They should not fail just because a limited number of nodes
run out of energy, or because their environment changes and severs existing radio links between
two nodes – if possible, these failures have to be compensated for, for example, by finding other
routes. A precise evaluation of robustness is difficult in practice and depends mostly on failure
models for both nodes and communication links.

3.3 Design principles for WSNs
Appropriate QoS support, energy efficiency, and scalability are important design and optimization
goals for wireless sensor networks. But these goals themselves do not provide many hints on how to
structure a network such that they are achieved. A few basic principles have emerged, which can be
useful when designing networking protocols; the description here follows partially references [246,
699]. Nonetheless, the general advice to always consider the needs of a concrete application holds
here as well – for each of these basic principles, there are examples where following them would
result in inferior solutions.

3.3.1 Distributed organization
Both the scalability and the robustness optimization goal, and to some degree also the other goals,
make it imperative to organize the network in a distributed fashion. That means that there should
be no centralized entity in charge – such an entity could, for example, control medium access or
make routing decisions, similar to the tasks performed by a base station in cellular mobile networks.
The disadvantages of such a centralized approach are obvious as it introduces exposed points of
failure and is difficult to implement in a radio network, where participants only have a limited
communication range. Rather, the WSNs nodes should cooperatively organize the network, using
distributed algorithms and protocols. Self-organization is a commonly used term for this principle.

When organizing a network in a distributed fashion, it is necessary to be aware of potential
shortcomings of this approach. In many circumstances, a centralized approach can produce solutions
that perform better or require less resources (in particular, energy). To combine the advantages,
one possibility is to use centralized principles in a localized fashion by dynamically electing, out
of the set of equal nodes, specific nodes that assume the responsibilities of a centralized agent, for
example, to organize medium access. Such elections result in a hierarchy, which has to be dynamic:
The election process should be repeated continuously lest the resources of the elected nodes be
overtaxed, the elected node runs out of energy, and the robustness disadvantages of such – even only
localized – hierarchies manifest themselves. The particular election rules and triggering conditions
for reelection vary considerably, depending on the purpose for which these hierarchies are used.
Chapter 10 will, to a large degree, deal with the question of how to determine such hierarchies in
a distributed fashion.

3.3.2 In-network processing
When organizing a network in a distributed fashion, the nodes in the network are not only passing
on packets or executing application programs, they are also actively involved in taking decisions

68 Network architecture

about how to operate the network. This is a specific form of information processing that happens
in the network, but is limited to information about the network itself. It is possible to extend this
concept by also taking the concrete data that is to be transported by the network into account in
this information processing, making in-network processing a first-rank design principle.

Several techniques for in-network processing exist, and by definition, this approach is open to
an arbitrary extension – any form of data processing that improves an application is applicable. A
few example techniques are outlined here; they will reappear in various of the following chapters,
especially in Chapter 12.

Aggregation

Perhaps the simplest in-network processing technique is aggregation. Suppose a sink is interested
in obtaining periodic measurements from all sensors, but it is only relevant to check whether the
average value has changed, or whether the difference between minimum and maximum value is
too big. In such a case, it is evidently not necessary to transport are readings from all sensors to the
sink, but rather, it suffices to send the average or the minimum and maximum value. Recalling from
Section 2.3 that transmitting data is considerably more expensive than even complex computation
shows the great energy-efficiency benefits of this approach. The name aggregation stems from
the fact that in nodes intermediate between sources and sinks, information is aggregated into a
condensed form out of information provided by nodes further away from the sink (and potentially,
the aggregator’s own readings).

Clearly, the aggregation function to be applied in the intermediate nodes must satisfy some
conditions for the result to be meaningful; most importantly, this function should be composable.
A further classification [528] of aggregate functions distinguishes duplicate-sensitive versus insen-
sitive, summary versus exemplary, monotone versus nonmonotone, and algebraic versus holistic
(a more detailed discussion can be found in Section 12.3). Functions like average, counting, or
minimum can profit a lot from aggregation; holistic functions like the median are not amenable to
aggregation at all.

Figure 3.7 illustrates the idea of aggregation. In the left half, a number of sensors transmit
readings to a sink, using multihop communication. In total, 13 messages are required (the numbers
in the figure indicate the number of messages traveling across a given link). When the highlighted
nodes perform aggregation – for example, by computing average values (shown in the right half
of the figure) – only 6 messages are necessary.

Challenges in this context include how to determine where to aggregate results from which
nodes, how long to wait for such results, and determining the impact of lost packets.

1

1

3
1

1

6

1

1

1
1

1

1

Figure 3.7 Aggregation example

Design principles for WSNs 69

Distributed source coding and distributed compression

Aggregation condenses and sacrifices information about the measured values in order not to have
to transmit all bits of data from all sources to the sink. Is it possible to reduce the number of
transmitted bits (compared to simply transmitting all bits) but still obtain the full information about
all sensor readings at the sink?

While this question sounds surprising at first, it is indeed possible to give a positive answer. It is
related to the coding and compression problems known from conventional networks, where a lot of
effort is invested to encode, for example, a video sequence, to reduce the required bandwidth [901].
The problem here is slightly different, in that we are interested to encode the information provided
by several sensors, not just by a single camera; moreover, traditional coding schemes tend to put
effort into the encoding, which might be too computationally complex for simple sensor nodes.

How can the fact that information is provided by multiple sensors be exploited to help in
coding? If the sensors were connected and could exchange their data, this would be conceivable
(using relatively standard compression algorithms), but of course pointless. Hence, some implicit,
joint information between two sensors is required. Recall here that these sensors are embedded in
a physical environment – it is quite likely that the readings of adjacent sensors are going to be
quite similar; they are correlated. Such correlation can indeed be exploited such that not simply
the sum of the data must be transmitted but that overhead can be saved here. The theoretical basis
is the theorem by Slepian and Wolf [774], which carries their name. Good overview papers are
references [653, 901].

Slepian-Wolf theorem–based work is an example of exploiting spatial correlation that is com-
monly present in sensor readings, as long as the network is sufficiently dense, compared to the
derivate of the observed function and the degree of correlation between readings at two places.
Similarly, temporal correlation can be exploited in sensor network protocols.

Distributed and collaborative signal processing

The in-networking processing approaches discussed so far have not really used the ability for
processing in the sensor nodes, or have only used this for trivial operations like averaging or
finding the maximum. When complex computations on a certain amount of data is to be done,
it can still be more energy efficient to compute these functions on the sensor nodes despite their
limited processing power, if in return the amount of data that has to be communicated can be
reduced.

An example for this concept is the distributed computation of a Fast Fourier Transform (FFT)
[152]. Depending on where the input data is located, there are different algorithms available to
compute an FFT in a distributed fashion, with different trade-offs between local computation com-
plexity and the need for communication. In principle, this is similar to algorithm design for parallel
computers. However, here not only the latency of communication but also the energy consumption
of communication and computation are relevant parameters to decide between various algorithms.

Such distributed computations are mostly applicable to signal processing type algorithms; typical
examples are beamforming and target tracking applications. Zhao and Guibas [924] provide a good
overview of this topic.

Mobile code/Agent-based networking

With the possibility of executing programs in the network, other programming paradigms or compu-
tational models are feasible. One such model is the idea of mobile code or agent-based networking.
The idea is to have a small, compact representation of program code that is small enough to be
sent from node to node. This code is then executed locally, for example, collecting measurements,

70 Network architecture

and then decides where to be sent next. This idea has been used in various environments; a classic
example is that of a software agent that is sent out to collect the best possible travel itinerary by
hopping from one travel agent’s computer to another and eventually returning to the user who has
posted this inquiry. There is a vast amount of literature available on mobile code/software agents in
general, see, for example, references [98, 176, 892]. A newer take on this approach is to consider
biologically inspired systems, in particular, the swarm intelligence of groups of simple entities,
working together to reach a common goal [86, 220].

In wireless sensor networks, mobile agents and related concepts have been considered in various
contexts, mostly with respect to routing of queries and for data fusion; see, for example, references
[96, 99, 207, 663, 664, 665, 829]. Also, virtual machines for WSNs have been proposed that have
a native language that admits a compact representation of the most typical operations that mobile
code in a WSN would execute, allowing this code to be small [481].

3.3.3 Adaptive fidelity and accuracy
Section 2.3.4 has already discussed, in the context of a single node, the notion of making the
fidelity of computation results contingent upon the amount of energy available for that particular
computation. This notion can and should be extended from a single node to an entire network
[246].

As an example, consider a function approximation application. Clearly, when more sensors
participate in the approximation, the function is sampled at more points and the approximation
is better. But in return for this, more energy has to be invested. Similar examples hold for event
detection and tracking applications and in general for WSNs.

Hence, it is up to an application to somehow define the degree of accuracy of the results
(assuming that it can live with imprecise, approximated results) and it is the task of the com-
munication protocols to try to achieve at least this accuracy as energy efficiently as possible.
Moreover, the application should be able to adapt its requirements to the current status of the
network – how many nodes have already failed, how much energy could be scavenged from the
environment, what are the operational conditions (have critical events happened recently), and so
forth. Therefore, the application needs feedback from the network about its status to make such
decisions.

But as already discussed in the context of WSN-specific QoS metrics, the large variety of WSN
applications makes it quite challenging to come up with a uniform interface for expressing such
requirements, let alone with communication protocols that implement these decisions. This is still
one of the core research problems of WSN.

3.3.4 Data centricity

Address data, not nodes

In traditional communication networks, the focus of a communication relationship is usually the
pair of communicating peers – the sender and the receiver of data. In a wireless sensor network,
on the other hand, the interest of an application is not so much in the identity of a particular sensor
node, it is much rather in the actual information reported about the physical environment. This
is especially the case when a WSN is redundantly deployed such that any given event could be
reported by multiple nodes – it is of no concern to the application precisely which of these nodes
is providing data. This fact that not the identity of nodes but the data are at the center of attention
is called data-centric networking. For an application, this essentially means that an interface is
exposed by the network where data, not nodes, is addressed in requests. The set of nodes that

Design principles for WSNs 71

is involved in such a data-centric address is implicitly defined by the property that a node can
contribute data to such an address.

As an example, consider the elephant-tracking example from Figure 3.5. In a data-centric appli-
cation, all the application would have to do is state its desire to be informed about events of a
certain type – “presence of elephant” – and the nodes in the network that possess “elephant detec-
tors” are implicitly informed about this request. In an identity-centric network, the requesting node
would have to find out somehow all nodes that provide this capability and address them explicitly.
As another example, it is useful to consider the location of nodes as a property that defines whether
a node belongs to a certain group or not. The typical example here is the desire to communicate
with all nodes in a given area, say, to retrieve the (average) temperature measured by all nodes in
the living room of a given building.

Data-centric networking allows very different networking architectures compared to traditional,
identity-centric networks. For one, it is the ultimate justification for some in-network processing
techniques like data fusion and aggregation. Data-centric addressing also enables simple expressions
of communication relationships – it is no longer necessary to distinguish between one-to-one, one-
to-many, many-to-one, or many-to-many relationships as the set of participating nodes is only
implicitly defined. In addition to this decoupling of identities, data-centric addressing also supports
a decoupling in time as a request to provide data does not have to specify when the answer should
happen – a property that is useful for event-detection applications, for example.

Apart from providing a more natural way for an application to express its requirements, data-
centric networking and addressing is also claimed to improve performance and especially energy
efficiency of a WSN. One reason is the hope that data-centric solutions scale better by being
implementable using purely local information about direct neighbors. Another reason could be the
easier integration of a notion of adaptive accuracy into a data-centric framework as the data as
well as its desired accuracy can be explicitly expressed – it is not at all clear how stating accuracy
requirements in an identity-centric network could even be formulated, let alone implemented. But
this is still an objective of current research.

Implementation options for data-centric networking

There are several possible ways to make this abstract notion of data-centric networks more concrete.
Each way implies a certain set of interfaces that would be usable by an application. The three most
important ones are briefly sketched here and partially discussed in more detail in later chapters.

Overlay networks and distributed hash tables
There are some evident similarities between well-known peer-to-peer applications [55, 480, 574,
608, 842] like file sharing and WSN: In both cases, the user/requester is interested only in looking
up and obtaining data, not in its source; the request for data and its availability can be decoupled
in time; both types of networks should scale to large numbers.

In peer-to-peer networking, the solution for an efficient lookup of retrieval of data from an
unknown source is usually to form an overlay network, implementing a Distributed Hash Table
(DHT) [686, 704, 792, 922]. The desired data can be identified via a given key (a hash) and the
DHT will provide one (or possibly several) sources for the data associated with this key. The crucial
point is that this data source lookup can be performed efficiently, requiring O(log n) steps where n

is the number of nodes, even with only distributed, localized information about where information
is stored in the peer-to-peer network.

Despite these similarities, there are some crucial differences. First of all, it is not clear how the
rather static key of a DHT would correspond to the more dynamic, parameterized requests in a WSN.
Second, and more importantly, DHTs, coming from an IP-networking background, tend to ignore
the distance/the hop count between two nodes and consider nodes as adjacent only on the basis

72 Network architecture

of semantic information about their stored keys. This hop-count-agnostic behavior is unacceptable
for WSNs where each hop incurs considerable communication overhead. There is some on-going
work on taking the topology of the underlying network also into account [460, 683, 846] or the
position of nodes [685, 760] when constructing the overlay network, but the applicability of this
work to WSN is still open. Chapter 12 will deal with these approaches in more detail.

Publish/Subscribe
The required separation in both time and identity of a sink node asking for information and the
act of providing this information is not well matched with the synchronous characteristics of a
request/reply protocol. What is rather necessary is a means to express the need for certain data and
the delivery of the data, where the data as such is specified and not the involved entities.

This behavior is realized by the publish/subscribe approach [251]: Any node interested in a
given kind of data can subscribe to it, and any node can publish data, along with information
about its kind as well. Upon a publication, all subscribers to this kind of data are notified of the
new data. The elephant example is then easily expressed by sink nodes subscribing to the event
“elephant detected”; any node that is detecting an elephant can then, at any later time, publish this
event. If a subscriber is no longer interested, it can simply unsubscribe from any kind of event
and will no longer be notified of such events. Evidently, subscription and publication can happen
at different points in time and the identities of subscribers and publishers do not have to be known
to each other.

Implementing this abstract concept of publishing and subscribing to information can be done
in various ways. One possibility is to use a central entity where subscriptions and publications
are matched to each other, but this is evidently inappropriate for WSNs. A distributed solution is
preferable but considerably more complicated.

Also relevant is the expressiveness of the data descriptions (their “names”) used to match pub-
lications and subscriptions. A first idea is to use explicit subjects or keywords as names, which
have to be defined up front – published data only matches to subscriptions with the same keyword
(like in the “elephant detected” example above). This subject-based approach can be extended into
hierarchical schemes where subjects are arranged in a tree; a subscription to a given subject then
also implies interest in any descendent subjects. A more general naming scheme allows to formu-
late the matching condition between subscriptions and publications as general predicates over the
content of the publication and is hence referred to as content-based publish/subscribe approach
(see e.g. reference [123] and the references therein for an introduction and overview).

In practice, general predicates on the content are somewhat clumsy to handle and restricted
expressions (also called filters) of the form (attribute, value, operator) are preferable,
where attribute corresponds to the subjects from above (e.g. temperature) and can assume
values, value is a concrete value like "25◦C" or a placeholder (ALL or ANY), and operator is a
relational operator like “=”, “<”, “≤”. Moreover, this formalism also lends itself very conveniently
to the expression of accuracy requirements or periodic measurement support.

The question remains where to send publication and subscription messages if a decentralized
approach is chosen – simply flooding all messages evidently defeats the purpose. Mühl et al.
[576] give an overview of various approaches, for example, flooding the subscriptions or exploiting
information contained in the content-based filters to limit propagation of messages [121, 122, 575].

Publish/subscribe networking is a very popular approach for WSN. In fact, some of the most
popular protocols are incarnations of this principle and are discussed in detail in Part II, in particular
in Chapter 12.

Databases
A somewhat different view on WSN is to consider them as (dynamic) databases [269, 303, 374, 887].
This view matches very well with the idea of using a data-centric organization of the networking

Design principles for WSNs 73

protocols. Being interested in certain aspects of the physical environment that is surveyed by a
WSN is equivalent to formulating queries for a database.

To cast the sensor networks into the framework of relational databases, it is useful to regard
the sensors as a virtual table to which relational operators can be applied. Then, extracting the
average temperature reading from all sensors in a given room can be simply written as shown in
Listing 3.1 [528] – it should come as no surprise to anybody acquainted with the Standard Query
Language (SQL).

Listing 3.1: Example of an SQL-based request for sensor readings [528]

SELECT AVG(temperature)
FROM sensors
WHERE location = "Room 123"

Such SQL-based querying of a WSN can be extended to an easy-to-grasp interface to wireless
sensor networks, being capable of expressing most salient interaction patterns with a WSN. It is,
however, not quite as clear how to translate this interface into actual networking protocols that
implement this interface and can provide the results for such queries. In a traditional relational
database, this implementation of a query is done by determining an execution plan; the same is
necessary here. Here, however, the execution plan has to be distributed and has to explicitly take
communication costs into account.

3.3.5 Exploit location information
Another useful technique is to exploit location information in the communication protocols when-
ever such information is present. Since the location of an event is a crucial information for many
applications, there have to be mechanisms that determine the location of sensor nodes (and possibly
also that of observed events) – they are discussed in detail in Chapter 9. Once such informa-
tion is available, it can simplify the design and operation of communication protocols and can
improve their energy efficiency considerably. We shall see various examples in different protocols
in Part II.

3.3.6 Exploit activity patterns
Activity patterns in a wireless sensor network tend to be quite different from traditional networks.
While it is true that the data rate averaged over a long time can be very small when there is only
very rarely an event to report, this can change dramatically when something does happen. Once
an event has happened, it can be detected by a larger number of sensors, breaking into a frenzy
of activity, causing a well-known event shower effect. Hence, the protocol design should be able
to handle such bursts of traffic by being able to switch between modes of quiescence and of high
activity.

3.3.7 Exploit heterogeneity
Related to the exploitation of activity patterns is the exploitation of heterogeneity in the network.
Sensor nodes can be heterogenous by constructions, that is, some nodes have larger batteries,
farther-reaching communication devices, or more processing power. They can also be heterogenous
by evolution, that is, all nodes started from an equal state, but because some nodes had to perform

74 Network architecture

more tasks during the operation of the network, they have depleted their energy resources or other
nodes had better opportunities to scavenge energy from the environment (e.g. nodes in shade are
at a disadvantage when solar cells are used).

Whether by construction or by evolution, heterogeneity in the network is both a burden and
an opportunity. The opportunity is in an asymmetric assignment of tasks, giving nodes with more
resources or more capabilities the more demanding tasks. For example, nodes with more mem-
ory or faster processors can be better suited for aggregation, nodes with more energy reserves for
hierarchical coordination, or nodes with a farther-reaching radio device should invest their energy
mostly for long-distance communication, whereas, shorter-distance communication can be under-
taken by the other nodes. The burden is that these asymmetric task assignments cannot usually
be static but have to be reevaluated as time passes and the node/network state evolves. Task reas-
signment in turn is an activity that requires resources and has to be balanced against the potential
benefits.

3.3.8 Component-based protocol stacks and cross-layer optimization
Finally, a consideration about the implementation aspects of communication protocols in WSNs
is necessary. Section 2.3.3 has already made the case for a component-based as opposed to a
layering-based model of protocol implementation in WSN. What remains to be defined is mainly
a default collection of components, not all of which have to be always available at all times
on all sensor nodes, but which can form a basic “toolbox” of protocols and algorithms to build
upon.

In fact, most of the chapters of Part II are about such building blocks. All wireless sensor net-
works will require some – even if only simple – form of physical, MAC and link layer2 protocols;
there will be wireless sensor networks that require routing and transport layer functionalities. More-
over, “helper modules” like time synchronization, topology control, or localization can be useful.
On top of these “basic” components, more abstract functionalities can then be built. As a conse-
quence, the set of components that is active on a sensor node can be complex, and will change
from application to application.

Protocol components will also interact with each other in essentially two different ways [330].
One is the simple exchange of data packets as they are passed from one component to another
as it is processed by different protocols. The other interaction type is the exchange of cross-layer
information.

This possibility for cross-layer information exchange holds great promise for protocol opti-
mization, but is also not without danger. Kawadia and Kumar [412], for example, argue that
imprudent use of cross-layer designs can lead to feedback loops, endangering both functionality
and performance of the entire system. Clearly, these concerns should not be easily disregarded and
care has to be taken to avoid such unexpected feedback loops.

3.4 Service interfaces of WSNs
3.4.1 Structuring application/protocol stack interfaces
Looking at Section 2.3’s discussion of a component-based operating system and protocol stack
already enables one possibility to treat an application: It is just another component that can directly
interact with other components using whatever interface specification exists between them (e.g. the
command/event structure of TinyOS). The application could even consist of several components,

2 While these components do not form a layer in the strict sense of the word, it will still be useful to refer to the corresponding
functionality as that of a, say, “physical layer”.

Service interfaces of WSNs 75

integrated at various places into the protocol stack. This approach has several advantages: It is
streamlined with the overall protocol structure, makes it easy to introduce application-specific code
into the WSN at various levels, and does not require the definition of an abstract, specific service
interface. Moreover, such a tight integration allows the application programmer a very fine-grained
control over which protocols (which components) are chosen for a specific task; for example, it is
possible to select out of different routing protocols the one best suited for a given application by
accessing this component’s services.

But this generality and flexibility is also the potential downside of this approach. The allowing of
the application programmer to mess with protocol stacks and operating system internals should not
be undertaken carelessly. In traditional networks such as the Internet, the application programmer
can access the services of the network via a commonly accepted interface: sockets [791]. This
interface makes clear provisions on how to handle connections, how to send and receive packets,
and how to inquire about state information of the network.3 This clarity is owing to the evident tasks
that this interface serves – the exchange of packets with one (sometimes, several) communication
peers.

Therefore, there is the design choice between treating the application as just another component or
designing a service interface that makes all components, in their entirety, accessible in a standardized
fashion. These two options are outlined by Figure 3.8. A service interface would allow to raise
the level of abstraction with which an application can interact with the WSN – instead of having
to specify which value to read from which particular sensor, it might be desirable to provide an
application with the possibility to express sensing tasks in terms that are close to the semantics
of the application. In this sense, such a service interface can hide considerable complexity and is
actually conceivable as a “middleware” in its own right.

Clearly, with a tighter integration of the application into the protocol stack, a broader optimiza-
tion spectrum is open to the application programmer. On the downside, more experience will be
necessary than when using a standardized service interface. The question is therefore on the one
hand the price of standardization with respect to the potential loss of performance and on the other
hand, the complexity of the service interface.

In fact, the much bigger complexity and variety of communication patterns in wireless sensor
networks compared to Internet networks makes a more expressive and potentially complex service
interface necessary. To better understand this trade-off, a clearer understanding of expressibility
requirements of such an interface is necessary.

Hardware abstraction

Application

Hardware abstraction

Service interface

Application

Figure 3.8 Two options for interfacing an application to a protocol stack: As just another component or via
a deliberately designed, general service interface

3 It is certainly correct to argue that the socket interface has its shortcomings and open issues, especially with regard to
wireless communication. But these issues are mostly related to the wish to access lower-layer information, for example, received
signal strength information, which is not directly exposed by the interface, but only via various, nonstandard workarounds.

76 Network architecture

3.4.2 Expressibility requirements for WSN service interfaces
The most important functionalities that a service interface should expose include:

• Support for simple request/response interactions: retrieving a measured value from some sensor
or setting a parameter in some node. This is a synchronous interaction pattern in the sense that
the result (or possibly the acknowledgment) is expected immediately. In addition, the responses
can be required to be provided periodically, supporting periodic measurement-type applications.

• Support for asynchronous event notifications: a requesting node can require the network to inform
it if a given condition becomes true, for example, if a certain event has happened. This is an
asynchronous pattern in the sense that there is no a priori relationship between the time the
request is made and the time the information is provided.
This form of asynchronous requests should be accompanied by the possibility to cancel the
request for information. It can be further refined by provisions about what should happen after
the condition becomes true; a typical example is to request periodic reporting of measured values
after an event.

• For both types of interactions, the addressees should be definable in several ways. The simplest
option is an explicit enumeration of the single or multiple communication peers to whom a
(synchronous or asynchronous) request is made – this corresponds to the peer address in a socket
communication.
More interesting is the question of how to express data centricity. One option, closely related to
the publish/subscribe approach discussed in Section 3.3.4, is the implicit definition of peers by
some form of a membership function of an abstract group of nodes. Possible examples for such
membership functions include:
• Location – all nodes that are in a given region of space belong to a group.
• Observed value – all nodes that have observed values matching a given predicate belong to a

group. An example would be to require the measured temperature to be larger than 20◦C.
Along with these groups, the usual set-theoretic operations of intersection, union, or difference
between groups should be included in the service interface as well.
Because of this natural need for a service interface semantics that corresponds to the publish/
subscribe concept, this approach is a quite natural, but not the only possible, fit with WSNs.

• In-networking processing functionality has to be accessible. For an operation that accesses an
entire group of nodes, especially when reading values from this group (either synchronously or
asynchronously), it should be possible to specify what kind of in-network processing should be
applied to it. In particular, processing that modifies the nature of the result (i.e., data fusion)
must be explicitly allowed by the requesting application.
In addition, it can be desirable for an application to be able to infuse its own in-network processing
functions into the network. For example, a new aggregation function could be defined or a specific
mobile agent has to be written by the application programmer anyway.
In-network processing and application-specific code may also be useful to detect complex events:
events that cannot be detected locally, by a single sensor, but for which data has to be exchanged
between sensors.

• Related to the specification of aggregation functions is the specification of the required accuracy
of a result. This can take on the form of specifying bounds on the number of group members
that should contribute to a result, or the level of compression that should be applied. Hand in
hand with required accuracy goes the acceptable energy expenditure to produce a given piece of
information.

• Timeliness requirements about the delivery of data is a similar aspect. For example, it may be
possible to provide a result quickly but at higher energy costs (e.g. by forcing nodes to wake
up earlier than they would wake up anyway) or slowly but at reduced energy costs (e.g. by
piggy-backing information on other data packets that have to exchanged anyway).

Service interfaces of WSNs 77

In general, any trade-offs regarding the energy consumption of any possible exchange of data
packets should be made explicit as far as possible.

• The need to access location, timing, or network status information (e.g. energy reserves available
in the nodes or the current rate of energy scavenging) via the service interface.
It may also be useful to agglomerate location information into higher-level abstractions to be
able to talk about objects that correspond to a human view of things, for example, “room 123”.
Similarly, facts like the administrative entity a sensor network belongs to can be practically
important [751].

• To support the seamless connection of various nodes or entire networks as well as the simple
access to services in an “unknown” network, there is a need for an explicit description of the
set of available capabilities of the node/the network – for example, which physical parameters
can be observed or which entities can be controlled. Sgroi et al. [751] argue for a “concept
repository” for this purpose.

• Security requirements as well as properties have be somehow expressed.
• While not a direct part of an actual service interface, additional management functionality, for

example, for updating components, can be convenient to be present in the interface as well.

To avoid confusion, it is worthwhile to point out that the design of synchronous or asyn-
chronous interface semantics has very little to do with a blocking or nonblocking design of the
actual service invocation. It is, for example, easy to implement an asynchronous semantics with
blocking invocations as long as the operating system provides threads. These really are separate
issues.

3.4.3 Discussion

Evidently, the wealth of options that a general-purpose interface to WSNs would have to offer is
vast. Looking at the overall picture, three key issues – data centricity, trade-offs against energy,
and accuracy – make these networks quite different from all existing network types and how to
offer them in a convenient service interface to an application programmer is anything but clear. It
is hence perhaps not so surprising that there has only been relatively little work on a systematic
approach to service interfaces for WSN.

One attempt has been undertaken by Sgroi et al. [751], who start from a relatively conserva-
tive client/server interface paradigm and use it to arrange a “query manager” and a “command
interface”, embellished by additional sets of parameters. While their parameter sets are rela-
tively extensive and can incorporate most of the issues above, it is not clear that this API can
indeed support all types of programming models in WSNs. It is, in particular, unclear how
to extend in-network processing functionalities (e.g. write new aggregation functions) based on
their API, how to control energy trade-offs, or how to select from an application one out of
several components that are suitable for a given tasks (e.g. select one of several routing
protocols).

Some of the candidates for data centricity, in particular, publish/subscribe and databases, are
relatively close to meeting all these requirements for a service interface, but all of them still need
extensions. The publish/subscribe interface, for example, can be extended by subscriptions that
express accuracy and tasking aspects. Akin to publish/subscribe is the notion of events where an
application can express interests in single events or in certain complex events. One example is the
DSWare system [490]. Also, the database approach appears promising.

On the basis of the idea of mobile agents, the SensorWare system [96] provides a set of simple
commands, in particular, query, send, wait, value, and replicate. These commands allow
mobile code to send itself to some other node, to replicate it into the network by sending itself

78 Network architecture

to the “children” of a node, or to wait for the results returned from these children. This provides
considerable flexibility, but is still a fairly low level of programming.

One example for a highly application-specific way of defining service requests is EnviroTrack
[2], which is specialized to the tracking of mobile objects. It allows to define “contexts” for
certain tracking tasks, which have activation functions and “reporting” objects, resulting in an
extremely compact expression of the service request, which then has to be transformed into concrete
interactions of sensor nodes.

As one example for another research approach, consider the attempt to model the behavior
and characteristics of sensor networks as a set of Unified Modeling Language (UML) schemes,
resulting in the “Sensor Modeling Language” (SensorML) [749]. As this effort is driven by specific
application requirements (geosciences and earth-observing satellites), it concentrates mostly on the
description of the capabilities of individual sensors, but makes provisions to express, for example,
accuracy and data processing. The big advantage here is the potential to describe the “meaning” of
measured parameters explicitly. Another example for such an approach is to use the DARPA Agent
Markup Language (DAML) as an explicit description language for the capabilities of heterogeneous
sensors [384]. How such UML-based concepts could be applied to entire networks is, however,
completely open.

Looking at the high complexity of service interfaces necessary to harness all the possible options
and requirements of how an application might want to interact with a protocol stack, it is rather
questionable whether the existing, quite heavy-weight, but still limited, proposals for service inter-
faces are the last word on the topic. A better understanding in structuring this interaction is still
necessary. Moreover, the price to pay in performance optimization when using a predefined ser-
vice interface still has to be weighted against the danger of inexperienced application programmers
messing with the protocol stack’s internals.

3.5 Gateway concepts
3.5.1 The need for gateways
For practical deployment, a sensor network only concerned with itself is insufficient. The network
rather has to be able to interact with other information devices, for example, a user equipped with a
PDA moving in the coverage area of the network or with a remote user, trying to interact with the
sensor network via the Internet (the standard example is to read the temperature sensors in one’s
home while traveling and accessing the Internet via a wireless connection). Figure 3.9 shows this
networking scenario.

To this end, the WSN first of all has to be able to exchange data with such a mobile device or with
some sort of gateway, which provides the physical connection to the Internet. This is relatively
straightforward on the physical, MAC, and link layer – either the mobile device/the gateway is

Gateway
node

Internet Remote
users

Wireless sensor network

Figure 3.9 A wireless sensor network with gateway node, enabling access to remote clients via the Internet

Gateway concepts 79

equipped with a radio transceiver as used in the WSN, or some (probably not all) nodes in the WSN
support standard wireless communication technologies such as IEEE 802.11. Either option can be
advantageous, depending on the application and the typical use case. Possible trade-offs include the
percentage of multitechnology sensor nodes that would be required to serve mobile users in com-
parison with the overhead and inconvenience to fit WSN transceivers to mobile devices like PDAs.

The design of gateways becomes much more challenging when considering their logical design.
One option to ponder is to regard a gateway as a simple router between Internet and sensor network.
This would entail the use of Internet protocols within the sensor network. While this option has
been considered as well [215] and should not be disregarded lightly, it is the prevalent consensus
that WSNs will require specific, heavily optimized protocols. Thus, a simple router will not suffice
as a gateway.

The remaining possibility is therefore to design the gateway as an actual application-level gate-
way: on the basis of the application-level information, the gateway will have to decide its action. A
rough distinction of the open problems can be made according to from where the communication
is initiated.

3.5.2 WSN to Internet communication
Assume that the initiator of a WSN–Internet communication resides in the WSN (Figure 3.10) – for
example, a sensor node wants to deliver an alarm message to some Internet host. The first problem
to solve is akin to ad hoc networks, namely, how to find the gateway from within the network.
Basically, a routing problem to a node that offers a specific service has to be solved, integrating
routing and service discovery [139, 420, 435, 696, 799].

If several such gateways are available, how to choose between them? In particular, if not all
Internet hosts are reachable via each gateway or at least if some gateway should be preferred for
a given destination host? How to handle several gateways, each capable of IP networking, and the
communication among them? One option is to build an IP overlay network on top of the sensor
network [946].

How does a sensor node know to which Internet host to address such a message? Or even worse,
how to map a semantic notion (“Alert Alice”) to a concrete IP address? Even if the sensor node does
not need to be able to process the IP protocol, it has to include sufficient information (IP address
and port number, for example) in its own packets; the gateway then has to extract this information
and translate it into IP packets. An ensuing question is which source address to use here – the
gateway in a sense has to perform tasks similar to that of a Network Address Translation (NAT)
device [225].

Gateway
nodes

Alice’s desktop

Alice’s PDA

Alert Alice

Internet

Figure 3.10 An event notification to “Alice” needs decisions about, among others, gateway choice, mapping
“Alice” to a concrete IP address, and translating an intra-WSN event notification message to an Internet
application message

80 Network architecture

Gateway
nodes

Remote requester

Internet Gateway

Figure 3.11 Requesting sensor network information from a remote terminal entails choices about which
network to address, which gateway node of a given network, and how and where to adapt application-layer
protocol in the Internet to WSN-specific protocols

3.5.3 Internet to WSN communication
The case of an Internet-based entity trying to access services of a WSN is even more challenging
(Figure 3.11). This is fairly simple if this requesting terminal is able to directly communicate with
the WSN, for example, a mobile requester equipped with a WSN transceiver, and also has all the
necessary protocol components at its disposal. In this case, the requesting terminal can be a direct
part of the WSN and no particular treatment is necessary.

The more general case is, however, a terminal “far away” requesting the service, not immediately
able to communicate with any sensor node and thus requiring the assistance of a gateway node.
First of all, again the question of service discovery presents itself – how to find out that there
actually is a sensor network in the desired location, and how to find out about the existence of a
gateway node?

Once the requesting terminal has obtained this information, how to access the actual services?
Clearly, addressing an individual sensor (like addressing a communication peer in a traditional
Internet application) both goes against the grain of the sensor network philosophy where an indi-
vidual sensor node is irrelevant compared to the data that it provides and is impossible if a sensor
node does not even have an IP address.

The requesting terminal can instead send a properly formatted request to this gateway, which
acts as an application-level gateway or a proxy for the individual/set of sensor nodes that can
answer this request; the gateway translates this request into the proper intrasensor network protocol
interactions. This assumes that there is an application-level protocol that a remote requester and
gateway can use and that is more suitable for communication over the Internet than the actual sensor
network protocols and that is more convenient for the remote terminal to use. The gateway can
then mask, for example, a data-centric data exchange within the network behind an identity-centric
exchange used in the Internet.

It is by no means clear that such an application-level protocol exists that represents an actual
simplification over just extending the actual sensor network protocols to the remote terminal, but
there are some indications in this direction. For example, it is not necessary for the remote terminal
to be concerned with maintaining multihop routes in the network nor should it be considered as “just
another hop” as the characteristics of the Internet connection are quite different from a wireless hop.

In addition, there are some clear parallels for such an application-level protocol with so-called
Web Service Protocols, which can explicitly describe services and the way they can be accessed. The
Web Service Description Language (WSDL) [166], in particular, can be a promising starting point
for extension with the required attributes for WSN service access – for example, required accuracy,
energy trade-offs, or data-centric service descriptions. Moreover, the question arises as to how to

Conclusion 81

Gateway
nodes

Internet

Gateway

Figure 3.12 Connecting two WSNs with a tunnel over the Internet

integrate WSN with general middleware architectures [699] or how to make WSN services acces-
sible from, say, a standard Web browser (which should be an almost automatic by-product of using
WSDL and related standards in the gateway). However, research here is still in its early infancy
[384, 508, 656]. Also, once a general-purpose service interface to WSNs is commonly accepted
(such as [751]), this will have a clear impact on how to access WSN services from afar as well.

3.5.4 WSN tunneling
In addition to these scenarios describing actual interactions between a WSN and Internet terminals,
the gateways can also act as simple extensions of one WSN to another WSN. The idea is to build a
larger, “virtual” WSN out of separate parts, transparently “tunneling” all protocol messages between
these two networks and simply using the Internet as a transport network (Figure 3.12) [751]. This
can be attractive, but care has to be taken not to confuse the virtual link between two gateway
nodes with a real link; otherwise, protocols that rely on physical properties of a communication
link can get quite confused (e.g. time synchronization or localization protocols).

Such tunnels need not necessarily be in the form of fixed network connections; even mobile
nodes carried by people can be considered as means for intermediate interconnection of WSNs
[292]. Fall [252] also studies a similar problem in a more general setting.

3.6 Conclusion
The main conclusion to draw from this chapter is the fact that wireless sensor networks and their
networking architecture will have many different guises and shapes. For many applications, but by
no means all, multihop communication is the crucial enabling technology, and most of the WSN
research as well as the following part of this book are focused on this particular form of wireless
networking.

Four main optimization goals – WSN-specific forms of quality of service support, energy effi-
ciency, scalability, and robustness – dominate the requirements for WSNs and have to be carefully
arbitrated and balanced against each other. To do so, the design of WSNs departs in crucial aspects
from that of traditional networks, resulting in a number of design principles. Most importantly,
distributed organization of the network, the use of in-network processing, a data-centric view of
the network, and the adaptation of result fidelity and accuracy to given circumstances are pivotal
techniques to be considered for usage.

The large diversity of WSNs makes the design of a uniform, general-purpose service interface
difficult; consequently, no final solutions to this problem are currently available. Similarly, the
integration of WSNs in larger network contexts, for example, to allow Internet-based hosts a simple
access to WSN services, is also still a fairly open problem.

Part II
Communication
protocols

Protocols and Architectures for Wireless Sensor Networks. Holger Karl and Andreas Willig
Copyright 2005 John Wiley & Sons, Ltd. ISBN: 0-470-09510-5

4
Physical layer

Objectives of this Chapter
This chapter is devoted to the physical layer, that is, those functions and components of a sensor
node that mediate between the transmission and reception of wireless waveforms and the processing
of digital data in the remaining node, including the higher-layer protocol processing.

It is a commonly acknowledged truth that the properties of the transmission channel and the
physical-layer shape significant parts of the protocol stack. The first goal of this chapter is therefore
to provide the reader with a basic understanding of some fundamental concepts related to digital
communications over wireless channels.

The second important goal is to explain how the specific constraints of wireless sensor networks
(regarding, for example, energy and node costs) in turn shape the design of modulation schemes
and transceivers. The reader should get an understanding on some of the fundamental trade-offs
regarding transmission robustness and energy consumption and how these are affected by the
power-consumption properties of transceiver components.

Chapter Outline

4.1 Introduction 85
4.2 Wireless channel and communication fundamentals 86
4.3 Physical layer and transceiver design considerations in WSNs 103
4.4 Further reading 109

4.1 Introduction
The physical layer is mostly concerned with modulation and demodulation of digital data; this task
is carried out by so-called transceivers. In sensor networks, the challenge is to find modulation
schemes and transceiver architectures that are simple, low cost, but still robust enough to provide
the desired service.

Protocols and Architectures for Wireless Sensor Networks. Holger Karl and Andreas Willig
Copyright 2005 John Wiley & Sons, Ltd. ISBN: 0-470-09510-5

86 Physical layer

The first part of this chapter explains the most important concepts regarding wireless channels
and digital communications (over wireless channels); its main purpose is to provide appropriate
notions and to give an insight into the tasks involved in transmission and reception over wireless
channels. We discuss some simple modulation schemes as well.

In the second part, we discuss the implications of the specific requirements of wireless sensor net-
works, most notably the scarcity of energy, for the design of transceivers and transmission schemes.

4.2 Wireless channel and communication fundamentals
This section provides the necessary background on wireless channels and digital communication
over these. This is by no means an exhaustive discussion; it should just provide enough background
and the most important notions to understand the energy aspects involved. Wireless channels are
discussed in some more detail in references [124, 335, 620, 682, 744], some good introductory books
on digital communication in general are references [772], [661], and more specific for wireless
communications and systems are references [682, 848].

In wireless channels, electromagnetic waves propagate in (nearly) free space between a trans-
mitter and a receiver. Wireless channels are therefore an unguided medium, meaning that signal
propagation is not restricted to well-defined locations, as is the case in wired transmission with
proper shielding.

4.2.1 Frequency allocation
For a practical wireless, RF-based system, the carrier frequency has to be carefully chosen. This
carrier frequency determines the propagation characteristics – for example, how well are obstacles
like walls penetrated – and the available capacity. Since a single frequency does not provide any
capacity, for communication purposes always a finite portion of the electromagnetic spectrum,
called a frequency band, is used. In radio-frequency (RF) communications, the range of usable
radio frequencies in general starts at the Very Low Frequency (VLF) range and ends with the
Extremely High Frequency (EHF) range (Figure 4.1). There is also the option of infrared or optical
communications, used, for example, in the “Smart Dust” system [392]. The infrared spectrum is
between wavelengths of 1 mm (corresponding to 300 GHz1) and 2.5 µm (120 THz), whereas the
optical range ends at 780 nm (≈385 THz).

300 kHz30 kHz3 kHz 3 MHz 30 MHz 300 MHz 3 GHz 30 GHz 300 GHz

100 km 10 km 1 km 100 m 10 m 1 m 10 cm 1 cm 1 mm

VLF LF MF HF VHF UHF SHF EHF

VLF = Very low frequency
LF = Low frequency
MF = Medium frequency
HF = High frequency
VHF = Very high frequency
UHF = Ultrahigh frequency
SHF = Super high frequency
EHF = Extremely high frequency

Figure 4.1 Electromagnetic spectrum – radio frequencies

1 Assuming that the speed of light is 300,000,000 m/s.

Wireless channel and communication fundamentals 87

Table 4.1 Some of the ISM bands

Frequency Comment

13.553–13.567 MHz
26.957–27.283 MHz
40.66–40.70 MHz
433–464 MHz Europe
902–928 MHz Only in the Americas
2.4–2.5 GHz Used by WLAN/WPAN technologies
5.725–5.875 GHz Used by WLAN technologies
24–24.25 GHz

The choice of a frequency band is an important factor in system design. Except for ultraw-
ideband technologies (see Section 2.1.4), most of today’s RF-based systems work at frequencies
below 6 GHz. The range of radio frequencies is subject to regulation to avoid unwanted interfer-
ence between different users and systems. Some systems have special licenses for reserved bands;
for example, in Europe, the GSM system can exclusively use the GSM 900 (880–915 MHz) and
GSM 1800 (1710–1785 MHz) bands.2 There are also licensefree bands, most notably the Indus-
trial, Scientific, and Medical (ISM) bands, which are granted by the ITU for private and unlicensed
use subject to certain restrictions regarding transmit power, power spectral density, or duty cycle.
Table 4.1 lists some of the ISM frequency bands. Working in an unlicensed band means that one
can just go to a shop, buy equipment, and start to transmit data without requiring any permission
from the government/frequency allocation body. It is not surprising that these bands are rather
popular, not only for sensor networks but also for/in other wireless technologies. For example, the
2.4-GHz ISM band is used for IEEE 802.11, Bluetooth, and IEEE 802.15.4.

Some considerations in the choice of frequency are the following:

• In the public ISM bands, any system has to live with interference created by other systems (using
the same or different technologies) in the same frequency band, simply because there is no usage
restriction. For example, many systems share the 2.4-GHz ISM band, including IEEE 802.11b
[466, 467], Bluetooth [318, 319], and the IEEE 802.15.4 WPAN [468] – they coexist with each
other in the same band. Therefore, all systems in these bands have to be robust against interference
from other systems with which they cannot explicitly coordinate their operation. Coexistence
needs to be approached both on the physical and the MAC layer [154, 359, 360, 469]. On
the other hand, requesting allocation of some exclusive spectrum for a specific sensor network
application from the competent regulatory organizations is a time consuming and likely futile
endeavor.

• An important parameter in a transmission system is the antenna efficiency, which is defined as
the ratio of the radiated power to the total input power to the antenna; the remaining power is
dissipated as heat. The small form factor of wireless sensor nodes allows only small antennas.
For example, radio waves at 2.4 GHz have a wave length of 12.5 cm, much longer than the
intended dimensions of many sensor nodes. In general, it becomes more difficult to construct
efficient antennas as the ratio of antenna dimension to wavelength decreases. As the efficiency
decreases, more energy must be spent to achieve a fixed radiated power. These problems are
discussed in some detail in reference [115, Chap. 8].

2 http://www.gsmworld.com/technology/spectrum/frequencies.shtml

88 Physical layer

4.2.2 Modulation and demodulation
When digital computers communicate, they exchange digital data, which are essentially sequences
of symbols, each symbol coming from a finite alphabet, the channel alphabet. In the process
of modulation, (groups of) symbols from the channel alphabet are mapped to one of a finite
number of waveforms of the same finite length; this length is called the symbol duration. With
two different waveforms, a binary modulation results; if the size is m ∈ N, m > 2, we talk about
m-ary modulation. Some common cases for the symbol alphabet are binary data (the alphabet being
{0, 1}) or bipolar data ({−1, 1}) in spread-spectrum systems.

When referring to the “speed” of data transmission/modulation, we have to distinguish between
the following parameters:

Symbol rate The symbol rate is the inverse of the symbol duration; for binary modulation, it is
also called bit rate.

Data rate The data rate is the rate in bit per second that the modulator can accept for transmission;
it is thus the rate by which a user can transmit binary data. For binary modulation, bit rate
and data rate are the same and often the term bit rate is (sloppily) used to denote the data
rate.

For m-ary modulation, the data rate is actually given as the symbol rate times the number of bits
encoded in a single waveform. For example, if we use 8-ary modulation, we can associate with
each waveform one of eight possible groups of three bits and thus the bit rate is three times the
symbol rate. The fundamentals of modulation and several modulation schemes are discussed in
textbooks on digital communications, for example, references [78, 661, 772].

Modulation is carried out at the transmitter. The receiver ultimately wants to recover the trans-
mitted symbols from a received waveform. The mapping from a received waveform to symbols
is called demodulation. Because of noise, attenuation, or interference, the received waveform is
a distorted version of the transmitted waveform and accordingly the receiver cannot determine the
transmitted symbol with certainty. Instead, the receiver decides for the wrong symbol with some
probability, called the symbol error rate. For digital data represented by bits, the notion of bit
error rate (BER) is even more important: it describes the probability that a bit delivered to a higher
layer is incorrect. If binary modulation is used, bit error probability and symbol error probability are
the same; in case of m-ary modulation they can differ: even if a symbol is demodulated incorrectly,
the delivered group of bits might be correct at some places (as long as the SNR is not too low,
it is often acceptable to assume that an incorrect symbol maps to only a single incorrect bit). All
upper layers are primarily interested in the bit error probability.

The most common form of modulation is the so-called bandpass modulation, where the infor-
mation signal is modulated onto a periodic carrier wave of comparably high frequency [772, Chap.
3]. The spectrum used by bandpass modulation schemes is typically described by a center fre-
quency fc and a bandwidth B, and most of the signal energy can be found in the frequency
range

[
fc − B

2 , fc + B
2

]
.3 The carrier is typically represented as a cosine wave, which is uniquely

determined by amplitude, frequency, and phase shift.4 Accordingly, the modulated signal s(t) can,
in general, be represented as:

s(t) = A(t) · cos(ω(t) + φ(t)),

3 For theoretical reasons, it is not possible to have perfectly band-limited digital signals; there is always some minor signal
energy leaking into neighboring frequency bands. For example, the spectrum occupied by a rectangular pulse can be described
by a function similar to sin(x)/x, which has nonzero values almost everywhere.

4 There are three main advantages of bandpass modulation over digital baseband modulation like, for example, pulse
modulation: it is technically comparably easy to generate sinusoids; one does not need to build huge antennas to transmit a
5-kHz data signal efficiently, and by choice of nonoverlapping bands, multiple users can transmit in parallel, which would not
be possible in case of baseband modulation.

Wireless channel and communication fundamentals 89

–3

–2

–1

0

1

2

3

0 10 20 30 40 50 60

Time

A
m

pl
itu

de

Figure 4.2 Amplitude shift keying (ASK) example

where A(t) is the time-dependent amplitude, ω(t) is the time-dependent frequency, and φ(t) is the
phase shift. Accordingly, there are three fundamental modulation types: Amplitude Shift Keying
(ASK), Phase Shift Keying (PSK) and Frequency Shift Keying (FSK), which can be used as they
are or in combination.

In ASK, the waveforms si(·) for the different symbols are chosen as:

si(t) =
√

2Ei(t)

T
· cos [ω0t + φ] ,

where ω0 is the center frequency, φ is an arbitrary constant initial phase, and Ei(t) is constant
over the symbol duration [0, T] and assumes one of m different levels. The particular form of the

amplitude
√

2Ei(t)

T
is a convention; it displays explicitly the symbol energy E. An example for

ASK modulation is shown in Figure 4.2, where the binary data string 110100101 is modulated,
using E0(t) = 1 and E1(t) = 2 for all t to represent logical zeros and ones. A special case of ASK
modulation is a scheme with a binary channel alphabet where zeros are mapped to no signal at all,
E0(t) = 0, and E1(t) = 1 for all t . Since it corresponds to switching off the transmitter, it is called
On-Off-Keying (OOK).

In PSK, we have:

si(t) =
√

2E

T
· cos [ω0t + φi(t)] ,

where ω0 is the center frequency, E is the symbol energy, and φi(t) is one of m different constant
values describing the phase shifts. The same binary data as in the ASK example is shown using
PSK in Figure 4.3. Two popular PSK schemes are BPSK and QPSK; they are used, for example,

90 Physical layer

–1.5

–1

–0.5

0

0.5

1

1.5

0 10 20 30 40 50 60
Time

A
m

pl
itu

de

Figure 4.3 Phase shift keying (PSK) example

for the 1-Mbps and 2-Mbps modulations in IEEE 802.11 [467]. In BPSK, phase shifts of zero and
π are used and in QPSK, four phase shifts of 0, π

2 , π and 3π
2 are used.5

In FSK, we have:

si(t) =
√

2E

T
· cos [ωi(t) · t + φ] ,

where ωi(t) is one of n different frequencies, E is the symbol energy, and φ is some constant
initial phase. Figure 4.4 repeats the above example with FSK modulation.

Clearly, these basic types can be mixed. For example, Quadrature Amplitude Modulation (QAM)
combines amplitude and phase modulation, using two different amplitudes and two different phases
to represent two bits in one symbol.

4.2.3 Wave propagation effects and noise
Waveforms transmitted over wireless channels are subject to several physical phenomena that all
distort the originally transmitted waveform at the receiver. This distortion introduces uncertainty
at the receiver about the originally encoded and modulated data, resulting ultimately in bit errors.

Reflection, diffraction, scattering, doppler fading

The basic wave propagation phenomena [682, Chap. 3] are:

Reflection When a waveform propagating in medium A hits the boundary to another medium
B and the boundary layer between them is smooth, one part of the waveform is reflected

5 More precisely, IEEE 802.11 uses Differential Binary Phase Shift Keying (DBPSK) and Differential Quaternary Phase
Shift Keying (DQPSK). In these differential versions, the information is not directly encoded in the phase of a symbol’s
waveform, but in the difference between phases of two subsequent symbols’ waveforms.

Wireless channel and communication fundamentals 91

–1.5

–1

–0.5

0

0.5

1

1.5

0 10 20 30 40 50 60

Time

A
m

pl
itu

de

Figure 4.4 Frequency shift keying (FSK) example

(a) (b) (c)

Figure 4.5 Illustration of wave propagation phenomena

back into medium A, another one is transmitted into medium B, and the rest is absorbed
(Figure 4.5(a)). The amount of reflected/transmitted/absorbed energy depends on the mate-
rials and frequencies involved.

Diffraction By Huygen’s principle, all points on a wavefront can be considered as sources of a
new wavefront. If a waveform hits a sharp edge, it can by this token be propagated into a
shadowed region (Figure 4.5(b)).

Scattering When a waveform hits a rough surface, it can be reflected multiple times and diffused
into many directions (Figure 4.5(c)).

Doppler fading When a transmitter and receiver move relative to each other, the waveforms
experience a shift in frequency, according to the Doppler effect. Too much of a shift can
cause the receiver to sample signals at wrong frequencies.

Radio antennas radiate their signal into all directions at (nearly) the same strength, or they
have a preferred direction characterized by a beam. In the first case, we have omnidirectional
antennas,and in the second, we speak of directed antennas. In either case, it is likely that not
only a single but multiple copies of the same signal would reach the receiver over different paths
with different path lengths and attenuation (Figure 4.6), where a direct path or Line Of Sight
(LOS) path and a reflected, or Non line Of Sight (NLOS) path are shown.

92 Physical layer

Tx

Rx

Figure 4.6 Multipath propagation

The signal at the receiver is therefore a superposition of multiple and delayed copies of the
same signal. A signal actually occupies a certain spectrum, which can be represented by Fourier
techniques. The different signal copies have different relative delays, which translate for each
frequency component of the signal into different relative phase shifts at the receiver. Depending
on the relative phase shift of the signal components, destructive or constructive interference can
occur. If the channel treats all frequency components of a signal in “more or less the same way”
(i.e., their amplitudes at the receiver are strongly correlated [682, Sec. 5.4]), we have frequency-
nonselective fading, also often called flat fading; otherwise, we have a frequency-selective
channel. The frequency (non-)selectivity of a channel is closely related to its time dispersion
or delay spread, more exactly to the RMS delay spread value.6 The coherence bandwidth cap-
tures, for a given propagation environment, the range of frequencies over which a channel can
be considered flat; it is defined as the inverse of the RMS delay spread times a constant fac-
tor. A channel is a flat fading channel if the full signal bandwidth is smaller than the coherence
bandwidth.

For wireless sensor networks with their small transmission ranges (leading to small RMS delay
spread) and their comparably low symbol rates, it is reasonable to assume flat fading channels.

When transmitter and receiver move relatively to each other, the number and relative phase offset
of the multiple paths changes over time and the received signal strength can fluctuate on the order
of 30–40 dB within short time; this is called fast fading or multipath fading. Depending on the
relative speed, the fluctuations occur at timescales of tens to hundreds of milliseconds.7

The importance of fading is its impact on the receiver. Since any receiver needs a minimum
signal strength to have a chance for proper demodulation, a fade with its resulting drop in received
signal strength is a source of errors. When the signal strength falls below this threshold because of
fast fading, this is called a deep fade. When judging fast fading channels, specifically the rate at
which the signal falls below this threshold (the level-crossing rate) and the duration of the deep
fades are important. Qualitatively, fading channels tend to show bursty errors, that is, symbol
errors tend to occur in clusters separated by errorfree periods.

Another source of errors (predominantly) caused by multipath propagation is InterSymbol
Interference (ISI): When the transmitter transmits its symbols back-to-back, the presence of multiple
paths with different delays can lead to a situation where waveforms belonging to some symbol st

and reaching the receiver on an Line Of Sight (LOS) path overlap with delayed copies of previously
sent symbols st−1, st−2, The severity of ISI depends on the relationship between the symbol
duration and the RMS delay spread.

6 To characterize time dispersion of a multipath channel, the channel impulse response can be used: The transmitter emits
a very short pulse and the receiver records the incoming pulses and their signal strength. The first received pulse corresponds
to the shortest path and all subsequent pulses are from longer paths and likely attenuated. The time difference between the
delayed pulses and the reference pulse are called excess delays, the mean excess delay is defined as the weighted average
of the excess delays (using the pulse amplitudes as weights), and the RMS delay spread (root mean square) is the standard
deviation of the weighted excess delays [682, Chap. 5].

7 Example: For 2.4 GHz, the wavelength is 12.5 cm, and accordingly a change of 6.25 cm in the path length difference
of two paths suffices to move from amplification (constructive interference) to cancellation (destructive interference) or vice
versa.

Wireless channel and communication fundamentals 93

Path loss and attenuation

Wireless waveforms propagating through free space are subject to a distance-dependent loss of
power, called path loss. The received power at a distance of d ≥ d0 m between transmitter and
receiver is described by the Friis free-space equation (compare reference [682, p.107], reflections
are not considered):

Prcvd(d) =Ptx · Gt · Gr · λ2

(4π)2 · d2 · L
=Ptx · Gt · Gr · λ2

(4π)2 · d2
0 · L ·

(
d0

d

)2

= Prcvd(d0) ·
(

d0

d

)2

,

(4.1)

where Ptx is the transmission power, Gt and Gr are the antenna gains8 of transmitter and receiver,
d0 is the so-called far-field distance, which is a reference distance9 depending on the antenna
technology, d ≥ d0 is the distance between transmitter and receiver, λ is the wavelength and
L ≥ 1 summarizes losses through transmit/receive circuitry. Note that this equation is only valid
for d ≥ d0. For environments other than free space, the model is slightly generalized:

Prcvd(d) = Prcvd(d0) ·
(

d0

d

)γ

, (4.2)

where γ is the path-loss exponent, which typically varies between 2 (free-space path loss) and 5
to 6 (shadowed areas and obstructed in-building scenarios [682, Table 4.2]). However, even values
γ < 2 are possible in case of constructive interference. The path loss is defined as the ratio of the
radiated power to the received power Ptx

Prcvd(d)
and, starting from Equation 4.2, can be expressed in

decibel as:

PL(d)[dB] = PL(d0)[dB] + 10γ log10

(
d

d0

)
(4.3)

This is the so-called log-distance path loss model. PL(d0)[dB] is the known path loss at the
reference distance.

We can draw some first conclusions from this equation. First, the received power depends on
the frequency: the higher the frequency, the lower the received power. Second, the received power
depends on the distance according to a power law. For example, assuming a path-loss exponent
of 2, a node at a distance of 2d to some receiver must spent four times the energy of a node at
distance d to the same receiver, to reach the same level of received power Prcvd. Since, in general,
the bit/symbol error rate at the receiver is a monotone function of the received power Prcvd, higher
frequencies or larger distances must be compensated by an appropriate increase in transmitted power
to maintain a specified Prcvd value. This will be elaborated further on in the following sections of
this chapter.

An extension of the log-distance path-loss model takes the presence of obstacles into account.
In the so-called lognormal fading, the deviations from the log-distance models due to obstacles

8 Antenna gain: For directional antennas, this gives the ratio of the received power in the main direction to what would
have been received from an isotropic/omnidirectional antenna (using the same transmit power).

9 d0 is for cellular systems with large coverage in the range of 1 km; for short range systems like WLANs, it is in the range
of 1 m [682, p. 139].

94 Physical layer

are modeled as a multiplicative lognormal random variable. Equivalently, the received power can
be expressed in dB as:

PL(d)[dB] = PL(d0)[dB] + 10γ log10

(
d

d0

)
+ Xσ [dB], (4.4)

where Xσ is a zero-mean Gaussian random variable with variance σ 2, also called the shadowing
variance.

Significant variations in the distance between transmitter and receiver or the movement beyond
obstacles lead to variations of the long-term mean signal strength at the receiver. Movements
and “distance hops” happen at timescales of (tens of) seconds to minutes and the variations are
accordingly referred to as slow fading.

Besides path loss, there is often also attenuation. Most signals are not transmitted in a vacuum
but in some media, for example, air, cables, liquids, and so on. In outdoor scenarios, there may
also be fog or rain. These media types introduce additional, frequency-dependent signal attenuation.
However, since attenuation obeys also a power law depending on the distance, it is only rarely
modeled explicitly but accounted for in the path-loss exponent of the log-distance model.

Noise and interference

In general, interference refers to the presence of any unwanted signals from external (w.r.t. trans-
mitter and receiver) sources, which obscure or mask a signal. These signals can come from other
transmitters sending in the same band at the same time (multiple access interference) or from other
devices like microwave ovens radiating in the same frequency band. In co-channel interference,
the interference sources radiates in the same or in an overlapping frequency band as the transmitter
and receiver node under consideration. In adjacent-channel interference, the interferer works in a
neighboring band. Either the interferer leaks some signal energy into the band used by transmitter
and receiver or the receiver has imperfect filters and captures signals from neighboring bands.

An important further phenomenon is thermal noise or simply noise. It is caused by thermal
motions of electrons in any conducting media, for example, amplifiers and receiver/transmitter
circuitry. Within the context of digital receivers, noise is typically measured by the single-sided
noise Power Spectral Density (PSD)10 N0 given by [772, Sec. 4]:

N0 = K · T

[
Watts

Hertz

]

where K is Boltzmanns constant (≈ 1.38 · 10−23 J/K) and T is the so-called system temperature in
Kelvin. The thermal noise is additive, that is, the received signal r(t) can be represented as a sum
of the transmitted signal s(t) (as it arrives at the receiver after path loss, attenuation, scattering,
and so forth) and the noise signal n(t):

r(t) = s(t) + n(t) (4.5)

and furthermore this noise is Gaussian, that is, n(t) has a Gaussian/normal distribution with zero
mean and finite variance σ 2 for all t . A very important property of Gaussian noise is that its PSD
can be assumed constant (with value N0/2 over all frequencies of practical interest). A process with
constant PSD is also called white noise. Hence, thermal noise is also often referred to as Additive
White Gaussian Noise (AWGN).

10 Technically, the PSD of a wide-sense-stationary random process n(t) is the Fourier transform of the process’s autocorre-
lation function; intuitively, the PSD describes the distribution of a signal’s power in the frequency domain.

Wireless channel and communication fundamentals 95

Symbols and bit errors

The symbol/bit error probability depends on the actual modulation scheme and on the ratio of the
power of the received signal (Prcvd) to the noise and interference power. When only AWGN is
considered, this ratio is called Signal-to-Noise Ratio (SNR) and is given in decibel as:

SNR = 10 log10

(
Prcvd

N0

)

where N0 is the noise power and Prcvd is the average received signal power. When other sources
of interference are considered, too, often the Signal to Interference and Noise Ratio (SINR) is
important:

SINR = 10 log10

(
Prcvd

N0 + ∑k
i=1 Ii

)

where N0 is the noise power and Ii is the power received from the i-th interferer.
The SINR describes the power that arrives at the receiver and is thus related to the symbols

sent over the channel. In the end, the symbols are not relevant; the data bits are. To correctly
demodulate and decode an arriving bit, the energy per such a bit Eb in relation to the noise energy
N0 is relevant. This ratio Eb/N0 has a close relationship to the SNR (or SINR, when interference
is treated as noise) [772, Sec. 3.7]:

Eb

N0
= SNR · 1

R
= Prcvd

N0
· 1

R
(4.6)

where R is the bit rate. It will be useful later on in this chapter to look also at the bandwidth W

occupied by the modulated signal and to use the bandwidth efficiency ηBW = R
W

(in bit/s/Hz) as
a measure of a modulation scheme’s efficiency. This can be used to rewrite Equation 4.6 as:

Eb

N0
= Prcvd

N0
· 1

ηBW · W
. (4.7)

An important distinction not directly concerning modulation but concerning the receiver is the
one between coherent detection and noncoherent detection. In coherent detection, the receiver has
perfect phase and frequency information, for example, learned from preambles or synchronization
sequences (see also Section 4.2.6). In general, coherent receivers are much more complex than
noncoherent ones, but need lower signal-to-noise ratios to achieve a given target Bit-Error Rate
(BER).

If we prescribe a desired maximum BER, we can, for many modulation schemes, determine
some minimum SNR needed to achieve this BER on an AWGN channel. To illustrate this, we
show in Figure 4.7 the BER versus the ratio Eb/N0 given in decibel for coherently detected binary
PSK and binary FSK. The qualitative behavior of such BER versus Eb/N0 is the same for all
popular modulation types. For example, with BPSK, the Eb/N0 ratio must be larger than 4 dB to
reach a BER of at least 10−3. The noise power is fixed, so we have to tune the received power
Prcvd to achieve the desired SNR. For given antennas, this can only be achieved by increasing the
radiated power at the transmitter Ptx; compare Equation 4.1. An alternative is clearly to use better
modulation schemes.

The choice of modulation schemes for wireless sensor networks is discussed in Section 4.3.2.

96 Physical layer

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

–10 –5 0 5 10 15

Coherently detected BPSK
Coherently detected BFSK

B
E

R

Eb /N [dB]

Figure 4.7 Bit error rate for coherently detected binary PSK and FSK

4.2.4 Channel models
For investigation of modulation or error control schemes, models for wireless channels are needed
[36]. Because of the apparent complexity of real wireless channels, mostly stochastic models
are used, which replace complex and tedious modeling of propagation environments by random
variables. At the lowest level, such models work on the level of waveforms, describing the received
signal. “Higher”, more abstract models describe the statistics of symbol or bit errors or even of
packet errors. These models are more amenable for investigation of network protocols, where often
thousands or millions of packets are transmitted.

Signal models

We have already seen one waveform model, the AWGN model, having a constant SNR. As a
reminder, this model expresses the received signal r(t) as:

r(t) = s(t) + n(t),

where s(t) is the transmitted signal and n(t) is white Gaussian noise. One important property of
this model is that the SNR is constant throughout. The simplicity of this model eases theoretical
analysis; however, it is not appropriate to model time-varying channels like fading channels.

There are other popular models, specifically for frequency-nonselective fading channels [80].
These models assume that the SNR is a random variable, fluctuating from symbol to symbol or
from block to block [79]. In the Rayleigh fading model, it is assumed that there is no LOS path.
Instead, a large number of signal copies with stochastically independent signal amplitudes of the
same mean value overlap at the receiver. By virtue of the central limit theorem, it can be shown that
the amplitude of the resulting signal has a Rayleigh distribution, whereas the phase is uniformly
distributed in [0, 2π]. A second popular model is the Rice fading model, which makes the same

Wireless channel and communication fundamentals 97

assumptions as the Rayleigh fading model, but additionally a strong LOS component is present.
Such a fading channel together with AWGN can be represented as:

r(t) = R · eiθ · s(t) + n(t)

where again n(t) is white Gaussian noise and R · eiθ is a Gaussian random variable such that R

has a Rice or Rayleigh probability density function.

Digital models

In the AWGN channel, each transmitted symbol is erroneous with a certain fixed error probability,
and errors of subsequent symbols are independent. If these two conditions hold true and if in
addition the error probability does not depend on the symbol value, we have a Binary Symmetric
Channel (BSC) [180].

There have been several efforts to find good stochastic models for (Rayleigh) fading channels
on the bit/symbol level. These models try to capture the tendency of fading channels to have bursty
errors. Often, such channels are modeled as Markov chains with the states of the chain corre-
sponding to different channel “quality levels”. For example, the popular two-state Gilbert–Elliot
model [231, 290] describes the alternation between deep fades and good periods in a fading chan-
nel. Wang and Moayeri [858] discuss how the parameters of an N-state Markov chain describing
the received signal level can be derived under Rayleigh fading assumptions from simple physi-
cal parameters like wavelength, relative speed of the nodes, and others. A more general class of
models, which has also often been used, are Hidden Markov Models (HMMs); see, for instance,
reference [241, 834].

WSN-specific channel models

One design constraint of wireless sensor networks is the intention to use small transmission power
(and consequently the radiated power) – on the order of 1 dBm [855] – with the hope to save
energy by leveraging multihop communication. The choice of a small transmit power has several
consequences for the channel characteristics:

• By the Friis equation (Equation 4.1), a small transmit power implies a small range.
• Having a small transmission range means that the rms delay spread will be in the range of

nanoseconds [682, Table 5.1], which is small compared to symbol durations in the order of
milli- or microseconds. Since in addition the data rates are moderate, it is reasonable to expect
frequency nonselective fading channels with noise [762] and a low-to-negligible degree of ISI.
Accordingly, no special provisions against ISI like equalizers are needed.

Sohrabi et al. [779] present measurements of the near-ground propagation conditions for a
200-MHz frequency band between 800 MHz and 1000 MHz in various environments. These mea-
surements comprise the path-loss exponents γ , shadowing variance σ 2, the reference path loss
PL(d0)[dB] at d0 = 1 m and the coherence bandwidth. The measurement sites under consideration
include parking lots, hallways, engineering buildings and plant fences, covering distances between
1 and 30 m. Mobility was not considered. The average path-loss exponents (the average is formed
over the range of frequencies), the average shadowing variance, and the ranges of the reference
path loss PL(d0)[dB] are quoted in Table 4.2. It is interesting to note that the average path-loss
exponents can range from γ = 1.9 up to γ = 5. It is also interesting to note that already at a
distance of 1 m the signal has lost between 30 and 50 dB. The coherence bandwidth depends
strongly on the environment as well as on the distance; with increasing distance, the coherence

98 Physical layer

Table 4.2 Average path-loss exponents, shadowing variance,
and range of path loss at reference distances for near-ground
measurements in 800–1000 MHz [779]

Location Average Average Range of
of γ of σ 2 [dB] PL(1m)[dB]

Engineering building 1.9 5.7 [−50.5,−39.0]
Apartment hallway 2.0 8.0 [−38.2,−35.0]
Parking structure 3.0 7.9 [−36.0,−32.7]
One-sided corridor 1.9 8.0 [−44.2,−33.5]
One-sided patio 3.2 3.7 [−39.0,−34.2]
Concrete canyon 2.7 10.2 [−48.7,−44.0]
Plant fence 4.9 9.4 [−38.2,−34.5]
Small boulders 3.5 12.8 [−41.5,−37.2]
Sandy flat beach 4.2 4.0 [−40.8,−37.5]
Dense bamboo 5.0 11.6 [−38.2,−35.2]
Dry tall underbrush 3.6 8.4 [−36.4,−33.2]

bandwidth decreases, but is for many scenarios in the range of 50 MHz and beyond. Accordingly,
low-bandwidth channels in this frequency range can be considered as frequency nonselective. Other
references propose path-loss values in the range of γ = 4 [245, 648]. In reference [563], the param-
eters PL(1m)[dB] = −30 and γ = 3.5 are used to model transmission using the µAMPS-1 nodes
(2.4 GHz, 1 Mbps FSK transceiver).

4.2.5 Spread-spectrum communications
In spread-spectrum systems [293, 297, 557], the bandwidth occupied by the transmitted waveforms
is much larger than what would be really needed to transmit the given user data.11 The user signal is
spreaded at the transmitter and despreaded at the receiver. By using a wideband signal, the effects of
narrowband noise/interference are reduced. Spread-spectrum systems offer an increased robustness
against multipath effects but pay the price of a more complex receiver operation compared to
conventional modulation schemes.

The two most popular kinds of spread-spectrum communications are Direct Sequence Spread
Spectrum (DSSS) and Frequency Hopping Spread Spectrum (FHSS).

Direct sequence spread spectrum

In Direct Sequence Spread Spectrum (DSSS), the transmission of a data bit of duration tb is replaced
by transmission of a finite chip sequence c = c1c2 . . . cn with ci ∈ {0, 1} if the user bit is a logical
one, or c1c2 . . . cn if it is a logical zero (ci is the logical inverse of ci). Each chip ci has duration
tc = tb/n, where n is called the spreading factor or gain. Each chip is then modulated with a
digital modulation scheme like BPSK or QPSK. Since the spectrum occupied by a digital signal
is roughly inverse of the symbol duration, the spectrum of the chip sequence is much wider than
the spectrum the user data signal would require in case of direct modulation. The intention is that
the chip duration becomes smaller than the average or RMS delay spread value and the channel
becomes, thus, frequency selective. Therefore, when multipath fading is present, a chip sequence
c coming from an LOS and a delayed copy c (of the same chip sequence overlap, and the delay

11 Information theorists would say that the Fourier bandwidth (describing the occupied spectrum) is much larger than the
Shannon bandwidth (describing the number of dimensions of the signal space used per second) [542].

Wireless channel and communication fundamentals 99

LOS path

Reflected path

Logical one Logical zero

c1 c2 c3 c4 c1 c2 c3 c4

c1 c2 c3 c4 c1 c2 c3 c4

Figure 4.8 Direct sequence spread-spectrum example

difference (the lag) between these amounts to more than one chip duration. This is exploited by
proper design of the chip sequences: these are pseudorandom sequences chosen such that the
autocorrelation between a chip sequence and a lagged version of itself has a peak for lag zero and
almost vanishes for all nonzero lags.

To explain this, consider the example shown in Figure 4.8. Both a direct LOS path and a reflected
path are present, with the lag corresponding to three chip durations. The direct LOS chip sequence
is given by c = c1c2 . . . cn followed by c−1 = c1c2 . . . cn, whereas the chip sequence from the
reflected path starts with a lag of three chips. Somewhat simplified, the operation of the receiver
can be described as follows (coherent matched filter receiver): Let us assume that the receiver is
synchronized to the direct LOS path. It compares the incoming chip sequence with the well-known
reference sequence c by computing the inner product (term-wise multiplication and final summation
in terms of modulo-2 operations). If the received sequence is the same as c, then this operation
yields the value n, if the incoming chip sequence is c−1, then the result is −n. By proper choice
of the chip sequence, it can be achieved that the inner product formed between the chip sequence
and a shifted/lagged version of it assumes absolute values smaller than n. For example, the 11-chip
Barker sequence used in IEEE 802.11 [467] assumes for all shifted versions only the values −1,
0, or 1.12 Delayed copies distort the direct signal in the same way as AWGN does. Thus, DSSS
increases robustness against multipath effects.

However, there are also downsides. First, receivers must be properly synchronized with the
transmitter, and second, there is the issue of management of chip sequences. In systems like
IEEE 802.11 with DSSS Physical Layer (PHY) or IEEE 802.15.4, there is only a single chip
sequence used by all nodes. Proper measures at the MAC level must be taken to avoid collisions.
It is also possible to assign different chip sequences or codes to different users, which then can
transmit in parallel and create only minor distortion to each other. Such an approach is called
Code Division Multiple Access (CDMA) and is used, for example, in UMTS [847]. However,
immediately the question how codes are assigned to nodes (“code management”) comes up.

Frequency hopping spread spectrum

In Frequency Hopping Spread Spectrum (FHSS) systems like Bluetooth [318, 319] and the (out-
dated) FHSS version of IEEE 802.11, the available spectrum is subdivided into a number of
equal-sized subbands or channels (not to be confused with the physical channels discussed above);
Bluetooth and IEEE 802.11 divide their spectrum in the 2.4-GHz range into 78 subbands 1-MHz
wide. The user data is always transmitted within one channel at a time; its bandwidth is thus lim-
ited. All nodes in a network hop synchronously through the channels according to a prespecified

12 When the inner product of a chip sequence with a shifted version of itself assumes “large” values only for lag zero, but
comparably small values for all other lags, it is also called nearly orthogonal.

100 Physical layer

schedule. This way, a channel currently in a deep fade is left at some point in time and the nodes
switch to another, hopefully, good channel. Different networks can share the same geographic area
by using (mostly) nonoverlapping hopping schedules.

As an example, the FHSS version of IEEE 802.11 hops with 2.5 Hz and many packets can be
transmitted before the next hop. In Bluetooth, the hopping frequency is 1.6 kHz and at most one
packet can be transmitted before the next hop. Packets can have lengths corresponding to one,
three, or five hops. During a longer packet, hopping is suppressed – the packet is transmitted at
the same frequency. Once a packet is finished, the systems continues with the frequency it would
have reached if the long packet had been absent.

4.2.6 Packet transmission and synchronization
The MAC layer above the physical layer uses packets or frames as the basic unit of transmission.13

From the perspective of the MAC layer, such a frame has structure; for the transceiver, however,
it is just a block of bits. Transceivers perform the functions of modulation and demodulation along
with associated high- and intermediate-frequency processing, typically in hardware, and provide an
interface to the physical layer. They are discussed in Section 2.2.4.

The receiver must know certain properties of an incoming waveform to make any sense of
it and to detect a frame, including its frequency, phase, start and end of bits/symbols, and start
and end of frames [772, Chap. 8], [286]. What is the root of this synchronization problem?
The generation of sinusoidal carriers and of local clocks (with respect to which symbol times are
expressed) involves oscillators of a certain nominal frequency. However, because of production
inaccuracies, temperature differences, aging effects, or any of several other reasons, the actual
frequency of oscillators deviates from the nominal frequency. This drift is often expressed in parts
per million (ppm) and gives the number of additional or missing oscillations a clock makes in the
amount of time needed for one million oscillations at the nominal rate. As a rule of thumb, the
cheaper the oscillator, the more likely are larger drifts.

To compensate this drift, the receiver has to learn about the frequency or time base of the
transmitter. The receiver has to extract synchronization information from the incoming waveform.
An often-found theme for such approaches is the distinction between training (or acquisition)
and tracking phases. Frames are equipped with a well-known training sequence that allows the
receiver to learn about the detailed parameters of the transmitter, for example, its clock rate – the
receive can “train” its parameters. This training sequence is often placed at the beginning of frames
(for example, in IEEE 802.11 [467] or IEEE 802.15.4 [468]), but sometimes it is placed in the
middle (e.g. in GSM [848]). In the first case we speak of a preamble, and in the second case
of a midamble. In either case, the training sequence imposes some overhead. As an example, in
IEEE 802.15.4, the preamble consists of 32 zero bits.

After the receiver has successfully acquired initial synchronization from the training sequence,
it enters a tracking mode, continuously readjusting its local oscillator.

Important synchronization problems are:

Carrier synchronization The receiver has to learn the frequency and, for coherent detection
schemes, also the phase of the signal. A frequency drift can be caused by oscillators or
by Doppler shift in case of mobile nodes. One way to achieve frequency synchronization
is to let the transmitter occasionally send packets with known spectral shape and to let the
receiver scan some portion of the spectrum around the nominal frequency band for this
shape; for example, in the GSM system, special frequency correction bursts are used to

13 In OSI terminology, this would be MAC PDUs. In fact, packets and frames are two words for the same thing; however,
the word frame tends to be used more often when discussing lower layers.

Wireless channel and communication fundamentals 101

this end [848, Chap. 3]. The phase varies typically much faster than the frequency; accord-
ingly, phase synchronization must be done more often than frequency synchronization [286].
Phase synchronization can be avoided in noncoherent detection schemes but at the price of
a higher BER at the same transmit power.

Bit/symbol synchronization Having acquired carrier synchronization, the receiver must determine
both the symbol duration as well as the start and end of symbols to demodulate them
successfully. The continuous readjustment in the tracking phase requires sufficient “stimuli”
indicating symbol bounds. This can be explained with the example of OOK, where logical
zeros are modulated as the absence of any carrier. If a long run of zeros occurs in the data,
the receiver clock gets no stimulus for readjustment and may drift away from the transmitter
clock, this way adding spurious symbols or skipping symbols. For example, for the RF
Monolithics TR1000 transceiver used in the Mica motes, more than four consecutive zero or
one bits should be avoided [351]. This situation can be avoided by choosing coding schemes
with a sufficient number of logical ones, by bit-stuffing techniques, or by scrambling where
the data stream is shifted through a linear-feedback shift register. The scrambling technique
is, for example, applied in IEEE 802.11 and no extra symbols have to be sent. The other
schemes incur some overhead symbols.

Frame synchronization The receiver of a frame must be able to detect where the frame starts
and where it ends, that is, the frame bounds. Frame synchronization assumes that bit/symbol
synchronization is already acquired. There are several techniques known for framing [327],
including time gaps, length fields, usage of special flag sequences along with bit-stuffing
techniques to avoid the occurrence of these sequences in the packet data, and others. One
technique to mark the start of a frame is the approach of IEEE 802.15.4, where the preamble
is immediately followed by a well-known Start Frame Delimiter (SFD). This SFD is part
of the physical layer header, not of the data part, and thus no measures to avoid the SFD
pattern in the data part have to be taken.

Let us discuss a simple example (Figure 4.9). In the Mica motes [351], one option for modulation
is OOK. Accordingly, bits are represented by two transmission power levels: a power level of zero
corresponds to a logical zero, whereas a nonzero power level corresponds to a logical one (ignoring
the noise floor). A packet consists of a preamble, a start frame delimiter, and a data part. A long
idle period on the medium is interpreted as boundary between packets. Within such a long idle
period, the receiver of a packet needs to sample the medium for activity only occasionally. The
time between samples must be smaller than the preamble length not to miss it, but large enough

Preamble SFD Information bitsAccess delay

Transmitted bits

Receiver sampling
activity

Slow sampling,
no signal found yet

Find SFD and
acquire synch Sample information bits

Figure 4.9 Example for sampling and synchronization (adapted from reference [351, Fig. 5])

102 Physical layer

to keep the energy costs induced by sampling. When sampling reveals activity in the channel, its
frequency is increased to find the end of the preamble and to derive the length of a transmitted bit
from the SFD. Once this information is determined, the receiver samples the medium in the mid
of the data bits. To avoid the presence of long idle periods in the data part and misinterpretation
as packet boundary, the length of runs of zeros (and ones) must be bounded, for example, by four.
This has to be achieved by proper transformation of the user data.

4.2.7 Quality of wireless channels and measures for improvement
As opposed to wired channels, wireless channels often have a poorer quality in terms of bit/symbol
error rate. The actual channel quality depends on many factors, including frequency, distance
between transmitter and receiver, and their relative speed, propagation environment (number of
paths and their respective attenuation), technology, and much more. Consequently, there is no such
thing as “the” wireless channel. Many measurements of error rates have appeared in the literature;
two of them are references [13, 223].

A great deal of work has been devoted to improve transmission quality on wireless channels,
working on the physical as well as on higher layers and in many cases not taking energy concerns
or other constraints specific for wireless sensor networks into account. Some of the mechanisms
developed are the following:

Optimization of transmission parameters The choice of modulation scheme as well as the choice
of radiated power (within legal constraints) can influence the BER significantly. Another
control knob is the choice of packet sizes and the structure of packets. This is discussed in
Chapter 6.

Diversity mechanisms All diversity techniques [682, Chap. 7], [625] seek to obtain and exploit
statistically independent (or at least uncorrelated) replicas of the same signal. Simply speak-
ing, it is hoped that even if one replica is in a deep fade and delivers symbol errors, another
replica is currently good. The receiver tries to pick the best of all replicas. In explicit diver-
sity schemes, the multiple copies are explicitly created by the transmitter, by sending the
same packet over another frequency, during another time slot, or sending it into another
spatial direction. In implicit diversity schemes, the signal is sent only once, but multiple
copies are created in the channel through multipath propagation. In either case, the receiver
needs mechanisms to take advantage of the multiple copies. One simple example is the
so-called receive diversity, where the receiver is equipped with two or more appropriately
spaced antennas and the receiver combines the different signals (e.g. by so-called selection
combining: pick the signal with the best quality; or by maximum ratio combining: sum
up all signals, weighted by their quality). Receive diversity works best when the signals at
the two antennas are independent or at least uncorrelated. As a rule of thumb, this can be
achieved with an antenna spacing of at least 40–50 % of the wavelength [682, Chap. 5].

Equalization Equalization techniques [682, Chap. 7], [660] are useful to combat InterSymbol
Interference (ISI). Equalization works as follows: The transmitter sends a well-known symbol
pattern/waveform, the so-called training sequence. The equalizer at the receiver works in
two modes: training and tracking. During the training phase, the equalizer analyzes the
received version of the well-known pattern, learns the mode of distortion, and computes
an algorithm for “inverting” the distortion. In the tracking phase, the remaining packet is
analyzed by applying the inversion algorithm to it and the equalizer continually readjusts
the inversion algorithm. Equalization requires some signal processing at the receiver and the
channel is assumed to be stationary during the packet transmission time. As a side effect,
the training sequence can also be used to acquire bit synchronization.

Physical layer and transceiver design considerations in WSNs 103

Forward error correction (FEC) The transmitter accepts a stream or a block of user data bits or
source bits, adds suitable redundancy, and transmits the result to the receiver. Depending
on the amount and structure of the redundancy, the receiver might be able to correct some
bit/symbol errors. It is known that AWGN channels have a higher capacity than Rayleigh
fading channels and many coding schemes achieve better BER performance on AWGN than
on fading channels with their bursty errors [79]. The operation of interleaving applies a
permutation operation to a block of bits, hoping to distribute bursty errors smoothly and
letting the channel “look” like an AWGN channel. FEC is discussed in some more detail in
Section 6.2.3.

ARQ The basic idea of ARQ protocols [322, 511] can be described as follows: The transmitter
prepends a header and appends a checksum to a data block. The resulting packet is then
transmitted. The receiver checks the packet’s integrity with the help of the checksum and
provides some feedback to the transmitter regarding the success of packet transmission. On
receiving negative feedback, the transmitter performs a retransmission. ARQ protocols are
discussed in Section 6.2.2.

4.3 Physical layer and transceiver design
considerations in WSNs

So far, we have discussed the basics of the PHY without specific reference to wireless sensor
networks. Some of the most crucial points influencing PHY design in wireless sensor networks are:

• Low power consumption.
• As one consequence: small transmit power and thus a small transmission range.
• As a further consequence: low duty cycle. Most hardware should be switched off or operated in

a low-power standby mode most of the time.
• Comparably low data rates, on the order of tens to hundreds kilobits per second, required.
• Low implementation complexity and costs.
• Low degree of mobility.
• A small form factor for the overall node.

In this section, we discuss some of the implications of these requirements.
In general, in sensor networks, the challenge is to find modulation schemes and transceiver

architectures that are simple, low-cost but still robust enough to provide the desired service.

4.3.1 Energy usage profile
The choice of a small transmit power leads to an energy consumption profile different from other
wireless devices like cell phones. These pivotal differences have been discussed in various places
already but deserve a brief summary here.

First, the radiated energy is small, typically on the order of 0 dBm (corresponding to 1 mW).
On the other hand, the overall transceiver (RF front end and baseband part) consumes much more
energy than is actually radiated; Wang et al. [855] estimate that a transceiver working at frequencies
beyond 1 GHz takes 10 to 100 mW of power to radiate 1 mW. In reference [115, Chap. 3], similar
numbers are given for 2.4-GHz CMOS transceivers: For a radiated power of 0 dBm, the transmitter
uses actually 32 mW, whereas the receiver uses even more, 38 mW. For the Mica motes, 21 mW
are consumed in transmit mode and 15 mW in receive mode [351]. These numbers coincide well

104 Physical layer

with the observation that many practical transmitter designs have efficiencies below 10 % [46] at
low radiated power.

A second key observation is that for small transmit powers the transmit and receive modes
consume more or less the same power; it is even possible that reception requires more power
than transmission [670, 762]; depending on the transceiver architecture, the idle mode’s power
consumption can be less or in the same range as the receive power [670]. To reduce average power
consumption in a low-traffic wireless sensor network, keeping the transceiver in idle mode all the
time would consume significant amounts of energy. Therefore, it is important to put the transceiver
into sleep state instead of just idling. It is also important to explicitly include the received power
into energy dissipation models, since the traditional assumption that receive energy is negligible is
no longer true.

However, there is the problem of the startup energy/startup time, which a transceiver has to
spend upon waking up from sleep mode, for example, to ramp up phase-locked loops or voltage-
controlled oscillators. During this startup time, no transmission or reception of data is possible [762].
For example, the µAMPS-1 transceiver needs a startup time of 466 µs and a power dissipation
of 58 mW [561, 563]. Therefore, going into sleep mode is unfavorable when the next wakeup
comes fast. It depends on the traffic patterns and the behavior of the MAC protocol to schedule
the transceiver operational state properly. If possible, not only a single but multiple packets should
be sent during a wakeup period, to distribute the startup costs over more packets. Clearly, one can
attack this problem also by devising transmitter architectures with faster startup times. One such
architecture is presented in reference [855].

A third key observation is the relative costs of communications versus computation in a sen-
sor node. Clearly, a comparison of these costs depends for the communication part on the BER
requirements, range, transceiver type, and so forth, and for the computation part on the processor
type, the instruction mix, and so on. However, in [670], a range of energy consumptions is given
for Rockwell’s WIN nodes, UCLA’s WINS NG 2.0 nodes, and the MEDUSA II nodes. For the
WIN nodes, 1500 to 2700 instructions can be executed per transmitted bit, for the MEDUSA II
nodes this ratio ranges from 220:1 up to 2900:1, and for the WINS NG nodes, it is around 1400:1.
The bottom line is that computation is cheaper than communication!

4.3.2 Choice of modulation scheme
A crucial point is the choice of modulation scheme. Several factors have to be balanced here: the
required and desirable data rate and symbol rate, the implementation complexity, the relationship
between radiated power and target BER, and the expected channel characteristics.

To maximize the time a transceiver can spend in sleep mode, the transmit times should be
minimized. The higher the data rate offered by a transceiver/modulation, the smaller the time
needed to transmit a given amount of data and, consequently, the smaller the energy consumption.

A second important observation is that the power consumption of a modulation scheme depends
much more on the symbol rate than on the data rate [115, Chap. 3]. For example, power consumption
measurements of an IEEE 802.11b Wireless Local Area Network (WLAN) card showed that the
power consumption depends on the modulation scheme, with the faster Complementary Code
Keying (CCK) modes consuming more energy than DBPSK and DQPSK; however, the relative
differences are below 10 % and all these schemes have the same symbol rate. It has also been found
that for the µAMPS-1 nodes the power consumption is insensitive to the data rate [762].

Obviously, the desire for “high” data rates at “low” symbol rates calls for m-ary modulation
schemes. However, there are trade-offs:

• m-ary modulation requires more complex digital and analog circuitry than 2-ary modulation
[762], for example, to parallelize user bits into m-ary symbols.

Physical layer and transceiver design considerations in WSNs 105

Table 4.3 Bandwidth efficiency ηBW and Eb/N0[dB] required at the receiver
to reach a BER of 10−6 over an AWGN channel for m-ary orthogonal FSK and
PSK (adapted from reference [682, Chap. 6])

m 2 4 8 16 32 64

m-ary PSK:ηBW 0.5 1.0 1.5 2.0 2.5 3.0
m-ary PSK:Eb/N0 10.5 10.5 14.0 18.5 23.4 28.5

m-ary FSK:ηBW 0.40 0.57 0.55 0.42 0.29 0.18
m-ary FSK:Eb/N0 13.5 10.8 9.3 8.2 7.5 6.9

• Many m-ary modulation schemes require for increasing m an increased Eb/N0 ratio and conse-
quently an increased radiated power to achieve the same target BER; others become less and less
bandwidth efficient. This is exemplarily shown for coherently detected m-ary FSK and PSK in
Table 4.3, where for different values of m, the achieved bandwidth efficiencies and the Eb/N0

required to achieve a target BER of 10−6 are displayed. However, in wireless sensor network
applications with only low to moderate bandwidth requirements, a loss in bandwidth efficiency
can be more tolerable than an increased radiated power to compensate Eb/N0 losses.

• It is expected that in many wireless sensor network applications most packets will be short, on
the order of tens to hundreds of bits. For such packets, the startup time easily dominates overall
energy consumption, rendering any efforts in reducing the transmission time by choosing m-ary
modulation schemes irrelevant.

Let us explore the involved trade-offs a bit further with the help of an example.

Example 4.1 (Energy efficiency of m-ary modulation schemes) Our goal is to transmit data over
a distance of d = 10 m at a target BER of 10−6 over an AWGN channel having a path-loss
exponent of γ = 3.5 (corresponding to the value determined in reference [563]). We com-
pare two families of modulations: coherently detected m-ary PSK and coherently detected
orthogonal m-ary orthogonal FSK. For these two families we display in Table 4.3, the band-
width efficiencies ηBW and the Eb/N0 in dB required at the receiver to reach a BER of 10−6

over an AWGN channel.

From the discussion in Section 4.2.3, the relationship between Eb/N0 and the received power
at a distance d is given as:

Eb

N0
= SNR · 1

R
= Prcvd(d)

N0
· 1

R

= 1

N0 · R · Ptx · Gt · Gr · λ2

(4π)2 · d
γ

0 · L
·
(

d0

d

)γ

,

(4.8)

which can be easily solved for Ptx given a required Eb/N0 value and data rate R. We denote

the solution as Ptx

(
Eb

N0
, R

)
. One example: From Table 4.3 we obtain that 16-PSK requires an

Eb/N0 of 18.5 dB to reach the target BER. When fixing the parameters Gt = Gr = L = 1,
λ = 12.5 cm (according to a 2.4 GHz transceiver), reference distance d0 = 1 m, distance
d = 10 m, a data rate of R = 1 Mbps, and a noise level of N0 = −180 dB this corresponds
to Ptx (18.5 dB, R) ≈ 2.26 mW.

We next utilize a transceiver energy consumption model developed in references [762, 855]
that incorporates startup energy and transmit energy. In this model, it is assumed that during

106 Physical layer

the startup time mainly a frequency synthesizer is active, consuming energy PFS, while
during the actual waveform transmission power is consumed by the frequency synthesizer,
the modulator (using PMOD), and the radiated energy Ptx(·, ·). The power amplifier is not
explicitly considered. Using reference [855], we assume PFS = 10 mW, PMOD = 2 mW and
a symbol rate of B = 1 M symbols/sec. The duration of the startup time is Tstart. For the
case of binary modulation, we assume the following energy model:

Ebinary

(
Eb

N0
, B

)
= PFS · Tstart

+
(

PMOD + PFS + Ptx

(
Eb

N0
, B

))
· n

B
,

where n is the number of data bits to transmit in a packet. For the case of m-ary modulation,
it is assumed that the power consumption of the modulator and the frequency synthesizer
are increased by some factors α ≥ 1, β ≥ 1, such that the overall energy expenditure is:

Em-ary

(
Eb

N0
, B · log2 m

)
= β · PFS · Tstart

+
(

α · PMOD + β · PFS + Ptx

(
Eb

N0
, B · log2 m

))
· n

B · log2(m)
.

Accepting the value β = 1.75 from reference [855] for both PSK and FSK modulation, one
can evaluate the ratio

Em-ary(·,·)
Ebinary(·,·) to measure the energy advantage or disadvantage of m-

ary modulation over binary modulation. As an example, we show this ratio in Figure 4.10
for varying m ∈ {4, 8, 16, 32, 64}, with α = 2.0, a startup time of 466 µs, and two different
packet sizes, 100 bits and 2000 bits. The two upper curves correspond to a packet size of 100
bits; the two lower curves correspond to the packet size of 2000 bits. Other results obtained
with a shorter startup time of 100 µs or α = 3.0 look very similar. One can see that for
large packet sizes m-ary FSK modulation is favorable, since the actual packet transmission
times are shortened and furthermore the required Eb/N0 decreases for increasing m, at the
expense of a reduced bandwidth efficiency, which translates into a wider required spectrum
(the FSK scheme is orthogonal FSK). For m-ary PSK, only certain values of m give an
energy advantage; for larger m the increased Eb/N0 requirements outweigh the gains due
to reduced transmit times. For small packet sizes, the binary modulation schemes are more
energy efficient for both PSK and FSK, because the energy costs are dominated by the startup
time. If one reduces β to β = 1 (assuming no extra energy consumption of the frequency
synthesizer due to m-ary modulation), then m-ary modulation would, for all parameters under
consideration, be truly better than binary modulation. The results presented in reference [855]
indicate that the advantage of m-ary modulation increases as the startup time decreases. For
shorter startup times also the packet lengths required to make m-ary modulation pay out are
smaller.

Can we conclude from this that it is favorable to use large packets? Unfortunately, the
answer is: it depends. As we will see in Chapter 6, longer packets at the same bit error rate
and without employing error-correction mechanisms lead to higher packet error rates, which
in turn lead to retransmitted packets, easily nullifying the energy gains of choosing m-ary
modulation. A careful joint consideration of modulation and other schemes for increasing
transmission robustness (FEC or ARQ schemes) is needed.

But it can be beneficial to transmit multiple short packets during a single wakeup period,
thus achieving a lower relative influence of the startup costs per packet [562].

Physical layer and transceiver design considerations in WSNs 107

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0 10 20 30 40 50 60 70

m-FSK
m-PSK

m

A
m

pl
itu

de

Figure 4.10 Comparison of the energy consumption of m-ary FSK/PSK to binary FSK/PSK for α = 2.0 and
startup time of 466 µs.

Clearly, this example provides only a single point in the whole design space. The bottom line
here is that the choice of modulation scheme depends on several interacting aspects, including
technological factors (in the example: α, β), packet size, target error rate, and channel error model
(in reference [855], a similar example is carried out for the case of Rayleigh fading). The optimal
decision would have to properly balance the modulation scheme and other measures to increase
transmission robustness, since these also have energy costs:

• With retransmissions, entire packets have to be transmitted again.
• With FEC coding, more bits have to be sent and there is additional energy consumption for coding

and decoding. While coding energy can be neglected, and the receiver needs significant energy for
the decoding process [563]. This is especially cumbersome if the receiver is a power-constrained
node. Coding and retransmission schemes are discussed in more detail in Chapter 6.

• The cost of increasing the radiated power [855] depends on the efficiency of the power ampli-
fier (compare Section 2.2.4), but the radiated power is often small compared to the overall
power dissipated by the transceiver, and additionally this drives the PA into a more efficient
regime.14

In [670], a similar analysis as in our example has been carried out for m-ary QAM. Specifically,
the energy-per-bit consumption (defined as the overall energy consumption for transmitting a packet
of n bits divided by n) of different m-ary QAM modulation schemes has been investigated for
different packet sizes, taking startup energy and the energy costs of power amplifiers as well as
PHY and MAC packet overheads explicitly into account. For the particular setup used in this

14 Of course, one disadvantage of using an increased transmit power is an increased interference for other transmissions and
thus a decreased overall network capacity. However, this plays no role during low-load situations, which prevail in wireless
sensor networks – unless event storms or other correlated traffic models are present.

108 Physical layer

investigation, 16-QAM seems to be the optimum modulation schemes for all different sizes of the
user data.

4.3.3 Dynamic modulation scaling
Even if it is possible to determine the optimal scheme for a given combination of BER target,
range, packet sizes and so forth, such an optimum is only valid for short time; as soon as one of
the constraints changes, the optimum can change, too. In addition, other constraints like delay or
the desire to achieve high throughput can dictate to choose higher modulation schemes.

Therefore, it is interesting to consider methods to adapt the modulation scheme to the current
situation. Such an approach, called dynamic modulation scaling, is discussed in reference [738].
In particular, for the case of m-ary QAM and a target BER of 10−5, a model has been developed
that uses the symbol rate B and the number of levels per symbol m as parameters. This model
expresses the energy required per bit and also the achieved delay per bit (the inverse of the data
rate), taking into account that higher modulation levels need higher radiated energy. Extra startup
costs are not considered. Clearly, the bit delay decreases for increasing B and m. The energy per
bit depends much more on m than on B. In fact, for the particular parameters chosen, it is shown
that both energy per bit and delay per bit are minimized for the maximum symbol rate. With
modulation scaling, a packet is equipped with a delay constraint, from which directly a minimal
required data rate can be derived. Since the symbol rate is kept fixed, the approach is to choose the
smallest m that satisfies the required data rate and which thus minimizes the required energy per
bit. Such delay constraints can be assigned either explicitly or implicitly. One approach explored in
the paper is to make the delay constraint depend on the packet backlog (number of queued packets)
in a sensor node: When there are no packets present, a small value for m can be used, having low
energy consumption. As backlog increases, m is increased as well to reduce the backlog quickly
and switch back to lower values of m. This modulation scaling approach has some similarities to
the concept of dynamic voltage scaling discussed in Section 2.2.2.

4.3.4 Antenna considerations
The desired small form factor of the overall sensor nodes restricts the size and the number of
antennas. As explained above, if the antenna is much smaller than the carrier’s wavelength, it
is hard to achieve good antenna efficiency, that is, with ill-sized antennas one must spend more
transmit energy to obtain the same radiated energy.

Secondly, with small sensor node cases, it will be hard to place two antennas with suitable
distance to achieve receive diversity. As discussed in Section 4.2.7, the antennas should be spaced
apart at least 40–50 % of the wavelength used to achieve good effects from diversity. For 2.4 GHz,
this corresponds to a spacing of between 5 and 6 cm between the antennas, which is hard to achieve
with smaller cases.

In addition, radio waves emitted from an antenna close to the ground – typical in some appli-
cations – are faced with higher path-loss coefficients than the common value α = 2 for free-space
communication. Typical attenuation values in such environments, which are also normally charac-
terized by obstacles (buildings, walls, and so forth), are about α = 4 [245, 648].

Moreover, depending on the application, antennas must not protrude from the casing of a node,
to avoid possible damage to it. These restrictions, in general, limit the achievable quality and
characteristics of an antenna for wireless sensor nodes.

Nodes randomly scattered on the ground, for example, deployed from an aircraft, will land in
random orientations, with the antennas facing the ground or being otherwise obstructed. This can
lead to nonisotropic propagation of the radio wave, with considerable differences in the strength
of the emitted signal in different directions. This effect can also be caused by the design of an

Further reading 109

antenna, which often results in considerable differences in the spatial propagation characteristics
(so-called lobes of an antenna).

Antenna design is an issue in itself and is well beyond the scope of this book. Some specific
considerations on antenna design for wireless sensor nodes are discussed in [115, Chap. 8].

4.4 Further reading
Jointly optimizing coding and modulation Biglieri et al. [79] consider coding and modulation

from an information-theoretic perspective for different channel models, including the AWGN,
flat fading channels and block fading channels. Specifically, the influence of symbol-by-
symbol power control at the transmitter in the presence of channel-state information such
that deep fades are answered with higher output powers (“channel inversion”), of receiver
diversity and interleaving and of coding schemes with unequal protection (i.e., user bits of
different importance are encoded differently) on the channel capacity are discussed. One
particularly interesting result is that the capacity of a Rayleigh fading channel with power
control can be higher than the capacity of an AWGN channel with the same average radiated
power.

DSSS in WSN Some efforts toward the construction of DSSS transceivers for wireless sensor
networks with their space and power constraints are described in references [155, 280,
281]. In addition, Myers et al. [580] discuss low-power spread-spectrum transceivers for
IEEE 802.11.

Energy efficiency in GSM Reducing energy consumption is an issue not only in wireless sensor
networks but also in other types of systems, for example, cellular systems. For the interested:
advanced signal processing algorithms for reducing power consumption of GSM transceivers
are discussed in references [525].

5
MAC protocols

Objectives of this Chapter
Medium Access Control (MAC) protocols solve a seemingly simple task: they coordinate the times
where a number of nodes access a shared communication medium. An “unoverseeable” number
of protocols have emerged in more than thirty years of research in this area. They differ, among
others, in the types of media they use and in the performance requirements for which they are
optimized.

This chapter presents the fundamentals of MAC protocols and explains the specific requirements
and problems these protocols have to face in wireless sensor networks. The single most important
requirement is energy efficiency and there are different MAC-specific sources of energy waste to
consider: overhearing, collisions, overhead, and idle listening. We discuss protocols addressing one
or more of these issues. One important approach is to switch the wireless transceiver into a sleep
mode. Therefore, there are trade-offs between a sensor network’s energy expenditure and traditional
performance measures like delay and throughput.

Chapter Outline
5.1 Fundamentals of (wireless) MAC protocols 112
5.2 Low duty cycle protocols and wakeup concepts 120
5.3 Contention-based protocols 129
5.4 Schedule-based protocols 133
5.5 The IEEE 802.15.4 MAC protocol 139
5.6 How about IEEE 802.11 and bluetooth? 145
5.7 Further reading 146
5.8 Conclusion 148

Medium Access Control (MAC) protocols is the first protocol layer above the Physical Layer (PHY)
and consequently MAC protocols are heavily influenced by its properties. The fundamental task of
any MAC protocol is to regulate the access of a number of nodes to a shared medium in such a way
that certain application-dependent performance requirements are satisfied. Some of the traditional

Protocols and Architectures for Wireless Sensor Networks. Holger Karl and Andreas Willig
Copyright 2005 John Wiley & Sons, Ltd. ISBN: 0-470-09510-5

112 MAC protocols

performance criteria are delay, throughput, and fairness, whereas in WSNs, the issue of energy
conservation becomes important.

Within the OSI reference model, the MAC is considered as a part of the Data Link Layer (DLL),
but there is a clear division of work between the MAC and the remaining parts of the DLL.
The MAC protocol determines for a node the points in time when it accesses the medium to
try to transmit a data, control, or management packet to another node (unicast) or to a set of
nodes (multicast, broadcast). Two important responsibilities of the remaining parts of the DLL
are error control and flow control. Error control is used to ensure correctness of transmission
and to take appropriate actions in case of transmission errors and flow control regulates the rate
of transmission to protect a slow receiver from being overwhelmed with data. The link layer is
discussed in Chapter 6.

In this chapter, we first give a brief introduction to MAC protocols in general and to the par-
ticular requirements and challenges found in wireless sensor networks (Section 5.1). Most notably,
the issue of energy efficiency is the prime consideration in WSN MAC protocols, and therefore,
we concentrate on schemes that explicitly try to reduce overall energy consumption. One of the
main approaches to conserve energy is to put nodes into sleep state whenever possible. Protocols
striving for low duty cycle or wakeup concepts (Section 5.2) are designed to accomplish this. Other
important classes of useful MAC protocols are contention-based (Section 5.3) and schedule-based
protocols (Section 5.4). The IEEE 802.15.4 protocol combines contention- and schedule-based ele-
ments and can be expected to achieve significant commercial impact; it is discussed in Section 5.5.
The question why other commercially successful protocols like IEEE 802.11 and Bluetooth are not
the primary choice in wireless sensor networks is touched in Section 5.6. The final Section 5.8 con-
tains some concluding remarks and a comparison of the different protocols discussed in this chapter.

5.1 Fundamentals of (wireless) MAC protocols
In this section, we discuss some fundamental aspects and important examples of wireless MAC
protocols, since the protocols used in wireless sensor networks inherit many of the problems and
approaches already existing for this more general field.

MAC protocols are an active research area for more than 30 years now [5], and there exists a
huge body of literature. Some survey papers covering MAC protocols in general as well as wireless
MAC protocols can be found in references [7, 18, 23, 143, 311, 390, 579]. General introductions
into MAC protocols can be found in references [6, 68, 709, 808]. Energy aspects were not one
of the top priorities in earlier research on MAC protocols (this is not to say they have not been
addressed [886]), but with the advent of wireless sensor networks, energy has been established as
one of the primary design concerns.

5.1.1 Requirements and design constraints for wireless MAC protocols
Traditionally, the most important performance requirements for MAC protocols are throughput
efficiency, stability, fairness, low access delay (time between packet arrival and first attempt to
transmit it), and low transmission delay (time between packet arrival and successful delivery), as
well as a low overhead. The overhead in MAC protocols can result from per-packet overhead (MAC
headers and trailers), collisions, or from exchange of extra control packets. Collisions can happen if
the MAC protocol allows two or more nodes to send packets at the same time. Collisions can result
in the inability of the receiver to decode a packet correctly, causing the upper layers to perform a
retransmission. For time-critical applications, it is important to provide deterministic or stochastic
guarantees on delivery time or minimal available data rate. Sometimes, preferred treatment of
important packets over unimportant ones is required, leading to the concept of priorities.

Fundamentals of (wireless) MAC protocols 113

The operation and performance of MAC protocols is heavily influenced by the properties of the
underlying physical layer. Since WSNs use a wireless medium, they inherit all the well-known
problems of wireless transmission. One problem is time-variable, and sometimes quite high, error
rates, which is caused by physical phenomena like slow and fast fading, path loss, attenuation, and
man-made or thermal noise (see Chapter 4 and [682, Chapters 4 & 5]). Depending on modulation
schemes, frequencies, distance between transmitter and receiver, and the propagation environment,
instantaneous bit error rates in the range of 10−3 . . . 10−2 can easily be observed [213, 223, 594,
882].

As explained in Chapter 4, the received power Prcvd decreases with the distance between trans-
mitting and receiving node. This path loss combined with the fact that any transceiver needs a
minimum signal strength to demodulate signals successfully leads to a maximum range that a
sensor node can reach with a given transmit power. If two nodes are out of reach, they can-
not hear each other. This gives rise to the well-known hidden-terminal/exposed-terminal problems
[823]. The hidden-terminal problem occurs specifically for the class of Carrier Sense Multiple
Access (CSMA) protocols, where a node senses the medium before starting to transmit a packet.
If the medium is found to be busy, the node defers its packet to avoid a collision and a subsequent
retransmission. Consider the example in Figure 5.1. Here, we have three nodes A, B, and C that
are arranged such that A and B are in mutual range, B and C are in mutual range, but A and C

cannot hear each other. Assume that A starts to transmit a packet to B and some time later node C

also decides to start a packet transmission. A carrier-sensing operation by C shows an idle medium
since C cannot hear A’s signals. When C starts its packet, the signals collide at B and both packets
are useless. Using simple CSMA in a hidden-terminal scenario thus leads to needless collisions.

In the exposed-terminal scenario, B transmits a packet to A, and some moment later, C wants
to transmit a packet to D. Although this would be theoretically possible since both A and D would
receive their packets without distortions, the carrier-sense operation performed by C suppresses
C’s transmission and bandwidth is wasted. Using simple CSMA in an exposed terminal scenario
thus leads to needless waiting.

Two solutions to the hidden-terminal and exposed-terminal problems are busy-tone solutions
[823] and the RTS/CTS handshake used in the IEEE 802.11 WLAN standard [815] and first
presented in the MACA [407]/MACAW [75] protocols. These will be described in Section 5.1.2
in the context of CSMA protocols.

On wired media, it is often possible for the transmitter to detect a collision at the receiver
immediately and to abort packet transmission. This feature is called collision detection (CD) and is
used in Ethernet’s CSMA/CD protocol to increase throughput efficiency. Such a collision detection
works because of the low attenuation in a wired medium, resulting in similar SNRs at transmitter
and receiver. Consequently, when the transmitter reads back the channel signal during transmission
and observes a collision, it can infer that there must have been a collision at the receiver too. More
importantly, the absence of a collision at the transmitter allows to conclude that there has been no

A B C D

Figure 5.1 Hidden-terminal scenario (circles indicate transmission & interference range)

114 MAC protocols

collision at the receiver during the packet transmission.1 In a wireless medium, neither of these
two conclusions holds true – the interference situation at the transmitter does not tell much about
the interference situation at the receiver. Furthermore, simple wireless transceivers work only in
a half-duplex mode, meaning that at any given time either the transmit or the receive circuitry is
active but not both.2 Therefore, collision detection protocols are usually not applicable to wireless
media.

Another important problem arises when there is no dedicated frequency band allocated to a
wireless sensor network and the WSN has to share its spectrum with other systems. Because of
license-free operations, many wireless systems use the so-called ISM bands, with the 2.4 GHz
ISM band being a prime example. This specific band is used by several systems, for example, the
IEEE 802.11/IEEE 802.11b WLANs [466, 815], Bluetooth [318], and the IEEE 802.15.4 WPAN.
Therefore, the issue of coexistence of these systems arises [154, 359, 360, 469].

Finally, the design of MAC protocols depends on the expected traffic load patterns. If a WSN
is deployed to continuously observe a physical phenomenon, for example, the time-dependent
temperature distribution in a forest, a continuous and low load with a significant fraction of periodic
traffic can be expected. On the other hand, if the goal is to wait for the occurrence of an important
event and upon its occurrence to report as much data as possible, the network is close to idle for a
long time and then is faced with a bulk of packets that are to be delivered quickly. A high MAC
efficiency is desirable during these overload phases. An example for this class of applications is
wildfire observation [742].

5.1.2 Important classes of MAC protocols
A huge number of (wireless) MAC protocols have been devised during the last thirty years. They
can be roughly classified into the following classes [311]: fixed assignment protocols, demand
assignment protocols, and random access protocols.

Fixed assignment protocols

In this class of protocols, the available resources are divided between the nodes such that the
resource assignment is long term and each node can use its resources exclusively without the
risk of collisions. Long term means that the assignment is for durations of minutes, hours, or
even longer, as opposed to the short-term case where assignments have a scope of a data burst,
corresponding to a time horizon of perhaps (tens of) milliseconds. To account for changes in the
topology – for example, due to nodes dying or new nodes being deployed, mobility, or changes in
the load patterns – signaling mechanisms are needed in fixed assignment protocols to renegotiate
the assignment of resources to nodes. This poses questions about the scalability of these protocols.

Typical protocols of this class are TDMA, FDMA, CDMA, and SDMA. The Time Division
Multiple Access (TDMA) scheme [708] subdivides the time axis into fixed-length superframes
and each superframe is again subdivided into a fixed number of time slots. These time slots are
assigned to nodes exclusively and hence the node can transmit in this time slot periodically in
every superframe. TDMA requires tight time synchronization between nodes to avoid overlapping
of signals in adjacent time slots. In Frequency Division Multiple Access (FDMA), the available
frequency band is subdivided into a number of subchannels and these are assigned to nodes,
which can transmit exclusively on their channel. This scheme requires frequency synchronization,

1 When two distant nodes A and B send very short packets at the same time, it may happen that A finishes its packet
transmission before the signal from B’s packet actually arrives (due to the propagation delay). In this case, neither A nor
B would see any collision but nodes halfway between A and B would. Only when packets are long enough or the distance
between nodes is suitably bounded, nodes A and B have a chance to detect collisions and react upon them.

2 This way, transmit and receive circuitry can share components, leading to reduced transceiver complexity.

Fundamentals of (wireless) MAC protocols 115

relatively narrowband filters, and the ability of a receiver to tune to the channel used by a transmitter.
Accordingly, an FDMA transceiver tends to be more complex than a TDMA transceiver. In Code
Division Multiple Access (CDMA) schemes [293, 297, 700], the nodes spread their signals over
a much larger bandwidth than needed, using different codes to separate their transmissions. The
receiver has to know the code used by the transmitter; all parallel transmissions using other codes
appear as noise. Crucial to CDMA is the code management. Finally, in Space Division Multiple
Access (SDMA), the spatial separation of nodes is used to separate their transmissions. SDMA
requires arrays of antennas and sophisticated signal processing techniques [476] and cannot be
considered a candidate technology for WSNs.

Demand assignment protocols

In demand assignment protocols, the exclusive allocation of resources to nodes is made on a
short-term basis, typically the duration of a data burst. This class of protocols can be broadly
subdivided into centralized and distributed protocols. In central control protocols (examples are the
HIPERLAN/2 protocol [209, 247, 248, 249, 250], DQRUMA [408], or the MASCARA protocol
[621]; polling schemes [757, 805, 824] can also be subsumed under this class), the nodes send
out requests for bandwidth allocation to a central node that either accepts or rejects the requests.
In case of successful allocation, a confirmation is transmitted back to the requesting node along
with a description of the allocated resource, for example, the numbers and positions of assigned
time slots in a TDMA system and the duration of allocation. The node can use these resources
exclusively. The submission of requests from nodes to the central station is often donecontention
based, that is, using a random access protocol on a dedicated (logical) signaling channel. Another
option is to let the central station poll its associated nodes. In addition, the nodes often piggyback
requests onto data packets transmitted in their exclusive data slots, thus avoiding transmission of
separate request packets. The central node needs to be switched on all the time and is responsible
for resource allocation. Resource deallocation is often done implicitly: when a node does not use
its time slots any more, the central node can allocate these to other nodes. This way, nodes do not
need to send extra deallocation packets. Summarizing, the central node performs a lot of activities,
it must be constantly awake, and thus needs lots of energy. This class of protocols is a good choice
if a sufficient number of energy-unconstrained nodes are present and the duties of the central station
can be moved to these. An example is the IEEE 802.15.4 protocol discussed in Section 5.5. If there
are no unconstrained nodes, a suitable approach is to rotate the central station duties among the
nodes like, for example, in the LEACH protocol described in Section 5.4.1.

An example of distributed demand assignment protocols are token-passing protocols like
IEEE 802.4 Token Bus [372]. The right to initiate transmissions is tied to reception of a small
special token frame. The token frame is rotated among nodes organized in a logical ring on top
of a broadcast medium. Special ring management procedures are needed to include and exclude
nodes from the ring or to correct failures like lost tokens. Token-passing protocols have also been
considered for wireless or error-prone media [387, 535, 883], but they tend to have problems with
the maintenance of the logical ring in the presence of significant channel errors [883]. In addition,
since token circulation times are variable, a node must always be able to receive the token to avoid
breaking the logical ring. Hence, a nodes transceiver must be switched on most of the time. In
addition, maintaining a logical ring in face of frequent topology changes is not an easy task and
involves significant signaling traffic besides the token frames themselves.

Random access protocols

The nodes are uncoordinated, and the protocols operate in a fully distributed manner. Random access
protocols often incorporate a random element, for example, by exploiting random packet arrival
times, setting timers to random values, and so on. One of the first and still very important random

116 MAC protocols

access protocols is the ALOHA or slotted ALOHA protocol, developed at the University of Hawaii
[5]. In the pure ALOHA protocol, a node wanting to transmit a new packet transmits it immediately.
There is no coordination with other nodes and the protocol thus accepts the risk of collisions at
the receiver. To detect this, the receiver is required to send an immediate acknowledgment for a
properly received packet. The transmitter interprets the lack of an acknowledgment frame as a sign
of a collision, backs off for a random time, and starts the next trial. ALOHA provides short access
and transmission delays under light loads; under heavier loads, the number of collisions increases,
which in turn decreases the throughput efficiency and increases the transmission delays. In slotted
ALOHA, the time is subdivided into time slots and a node is allowed to start a packet transmission
only at the beginning of a slot. A slot is large enough to accommodate a maximum-length packet.
Accordingly, only contenders starting their packet transmission in the same slot can destroy a node’s
packet. If any node wants to start later, it has to wait for the beginning of the next time slot and has
thus no chance to destroy the node’s packet. In short, the synchronization reduces the probability
of collisions and slotted ALOHA has a higher throughput than pure ALOHA.

In the class of CSMA protocols [422], a transmitting node tries to be respectful to ongoing
transmissions. First, the node is required to listen to the medium; this is called carrier sensing. If
the medium is found to be idle, the node starts transmission. If the medium is found busy, the node
defers its transmission for an amount of time determined by one of several possible algorithms. For
example, in nonpersistent CSMA, the node draws a random waiting time, after which the medium
is sensed again. Before this time, the node does not care about the state of the medium. In different
persistent CSMA variants, after sensing that the medium is busy, the node awaits the end of the
ongoing transmission and then behaves according to a backoff algorithm. In many of these backoff
algorithms, the time after the end of the previous frame is subdivided into time slots. In p-persistent
CSMA, a node starts transmission in a time slot with some probability p and with probability 1 − p

it waits for another slot.3 If some other node starts to transmit in the meantime, the node defers and
repeats the whole procedure after the end of the new frame. A small value of p makes collisions
unlikely, but at the cost of high access delays. The converse is true for a large value of p.

In the backoff algorithm executed by the IEEE 802.11 Distributed Coordination Function (DCF),
a node transmitting a new frame picks a random value from the current contention window and
starts a timer with this value. The timer is decremented after each slot. If another node starts in the
meantime, the timer is suspended and resumed after the next frame ends and contention continues.
If the timer decrements to zero, the node transmits its frame. When a transmission error occurs
(indicated, for example, by a missing acknowledgment frame), the size of the contention window is
increased according to a modified binary exponential backoff procedure.4 While CSMA protocols
are still susceptible to collisions, they have a higher throughput efficiency than ALOHA protocols,
since ongoing packets are not destroyed when potential competitors hear them on the medium.

As explained above, carrier-sense protocols are susceptible to the hidden-terminal problem since
interference at the receiver cannot be detected by the transmitter. This problem may cause packet
collisions. The energy spent on collided packets is wasted and the packets have to be retransmitted.
Several approaches have appeared [268] to solve or at least to reduce the hidden-terminal problem;
we present two important ones: the busy-tone solution and the RTS/CTS handshake.

In the original busy-tone solution [823], two different frequency channels are used, one for the
data packets and the other one as a control channel. As soon as a node starts to receive a packet
destined to it, it emits an unmodulated wave on the control channel and ends this when packet

3 The special case p = 1 amounts to a node that always starts transmission when the preceding packet ends, surely creating
collisions when two or more nodes want to transmit. This choice is best accompanied by a collision detection and resolution
facility, like, for example, in Ethernet.

4 In the binary exponential backoff procedure, the contention window is doubled after each collision/transmission error as
indicated by lack of an immediate acknowledgment. In the truncated binary exponential backoff procedure, the contention
window is doubled until an upper bound is reached. Afterward it stays constant.

Fundamentals of (wireless) MAC protocols 117

reception is finished. A node that wishes to transmit a packet first senses the control channel for
the presence of a busy tone. If it hears something, the node backs off according to some algorithm,
for example similar to nonpersistent CSMA. If it hears nothing, the node starts packet transmission
on the data channel. This protocol solves both the hidden- and exposed-terminal problem, given
that the busy-tone signal can be heard over the same distance as the data signal. If the busy tone
is too weak, a node within radio range of the receiver might start data transmission and destroy
the receiver’s signal. If the busy tone is too strong, more nodes than necessary suppress their
transmissions. The control channel does not need much bandwidth but a narrow bandwidth channel
requires good frequency synchronization. A solution with two busy tones, one sent by the receiver
and the other by the transmitter node, is discussed in [203, 321]. Another variant of the busy-tone
approach is used by PAMAS, discussed in Section 5.3.2.

The RTS/CTS handshake as used in IEEE 802.11 [815] is based on the MACAW protocol
[75] and is illustrated in Figure 5.2. It uses only a single channel and two special control packets.
Suppose that node B wants to transmit a data packet to node C. After B has obtained channel
access (for example after sensing the channel as idle), it sends a Request To Send (RTS) packet to
C, which includes a duration field indicating the remaining length of the overall transaction (i.e.,
until the point where B would receive the acknowledgment for its data packet). If C has properly
received the RTS packet, it sends a Clear To Send (CTS) packet, which again contains a duration
field. When B receives the CTS packet, it starts transmission of the data packet and finally C

answers with an acknowledgment packet. The acknowledgment is used to tell B about the success
of the transmission; lack of acknowledgment is interpreted as collision (the older MACA protocol
[407] lacks the acknowledgment). Any other station A or D hearing either the RTS, CTS, data
or acknowledgment packet sets an internal timer called Network Allocation Vector (NAV) to the
remaining duration indicated in the respective frame and avoids sending any packet as long as this

A B C D

RTS

CTS

Data

Ack

NAV indicates
busy medium

NAV indicates
busy medium

Figure 5.2 RTS/CTS handshake in IEEE 802.11

118 MAC protocols

timer is not expired. Specifically, nodes A and D send no CTS answer packets even when they
have received a RTS packet correctly. This way, the ongoing transmission is not distorted.

Does this scheme eliminate collisions completely? No, there still exist some collision scenarios.
First, in the scenario described above, nodes A and C can issue RTS packets to B simultaneously.
However, in this case, only the RTS packets are lost and no long data frame has been transmitted.
Two further problems are illustrated in Figure 5.3 [668]: In the left part of the figure, nodes A and
B run the RTS-CTS-Data-Ack sequence, and B’s CTS packet also reaches node C. However, at
almost the same time, node D sends an RTS packet to C, which collides at node C with B’s CTS
packet. This way, C has no chance to decode the duration field of the CTS packet and to set its
NAV variable accordingly. After its failed RTS packet, D sends the RTS packet again to C and C

answers with a CTS packet. Node C is doing so because it cannot hear A’s ongoing transmission
and has no proper NAV entry. C’s CTS packet and A’s data packet collide at B. In the figure’s
right part, the problem is created by C starting its RTS packet to D immediately before it can sense
B’s CTS packet, which C consequently cannot decode properly. One solution approach [668] is to
ensure that CTS packets are longer than RTS packets. For an explanation, consider the right part
of Figure 5.3. Here, even if B’s CTS arrives at C immediately after C starts its RTS, it lasts long
enough that C has a chance to turn its transceiver into receive mode and to sense B’s signal. An
additional protocol rule states that in such a case node C has to defer any further transmission for
a sufficiently long time to accommodate one maximum-length data packet. Hence, the data packet
between A and B can be transmitted without distortion. It is not hard to convince oneself that the
problem in the left half of Figure 5.3 is eliminated too.

A further problem of the RTS/CTS handshake is its significant overhead of two control packets
per data packet, not counting the acknowledgment packet. If the data packet is small, this overhead
might not pay off and it may be simpler to use some plain CSMA variant. For long packets, the
overhead of the RTS/CTS handshake can be neglected, but long packets are more likely to be
hit by channel errors and must be retransmitted entirely, wasting precious energy (channel errors
often hit only a few bits). A good compromise is to fragment a large packet like, for example, in

RTS

CTS

Data

RTS

RTS

CTS

RTS

RTS
CTS

CTSData

Data

Ack

A B C D A B C D

Figure 5.3 Two problems in RTS/CTS handshake [668]

Fundamentals of (wireless) MAC protocols 119

IEEE 802.11 or in the S-MAC protocol discussed in Section 5.2.2 and to use the RTS/CTS only
once for the whole set of fragments.

5.1.3 MAC protocols for wireless sensor networks
In this section, we narrow down the specific requirements and design considerations for MAC
protocols in wireless sensor networks.

Balance of requirements

For the case of WSNs, the balance of requirements is different from traditional (wireless) networks.
Additional requirements come up, first and foremost, the need to conserve energy. The importance
of energy efficiency for the design of MAC protocols is relatively new and many of the “classical”
protocols like ALOHA and CSMA contain no provisions toward this goal. Some papers covering
energy aspects in MAC protocols are references [143, 299, 886]. Other typical performance figures
like fairness, throughput, or delay tend to play a minor role in sensor networks. Fairness is not
important since the nodes in a WSN do not represent individuals competing for bandwidth, but
they collaborate to achieve a common goal. The access/transmission delay performance is traded
against energy conservation, and throughput is mostly not an issue either.

Further important requirements for MAC protocols are scalability and robustness against frequent
topology changes, as caused for example by nodes powering down temporarily to replenish their
batteries by energy scavenging, mobility, deployment of new nodes, or death of existing nodes.
The need for scalability is evident when considering very dense sensor networks with dozens or
hundreds of nodes in mutual range.

Energy problems on the MAC layer

As we have discussed in Chapters 2 and 4, a nodes transceiver consumes a significant share of
energy. Recall that a transceiver can be in one of the four main states (Section 2.1.4): transmitting,
receiving, idling, or sleeping. Section 2.2.4 has discussed the energy-consumption properties of
some transceiver designs in the different operational states. In a nutshell, the lessons are: Transmit-
ting is costly, receive costs often have the same order of magnitude as transmit costs, idling can be
significantly cheaper but also about as expensive as receiving, and sleeping costs almost nothing
but results in a “deaf” node. Applying these lessons to the operations of a MAC protocol, we can
derive the following energy problems and design goals [915]:

Collisions collisions incur useless receive costs at the destination node, useless transmit costs at the
source node, and the prospect to expend further energy upon packet retransmission. Hence,
collisions should be avoided, either by design (fixed assignment/TDMA or demand assign-
ment protocols) or by appropriate collision avoidance/hidden-terminal procedures in CSMA
protocols. However, if it can be guaranteed for the particular sensor network application at
hand that the load is always sufficiently low, collisions are no problem.

Overhearing Unicast frames have one source and one destination node. However, the wireless
medium is a broadcast medium and all the source’s neighbors that are in receive state hear
a packet and drop it when it is not destined to them; these nodes overhear the packet.
References [668, 915] show that for higher node densities overhearing avoidance can save
significant amounts of energy. On the other hand, overhearing is sometimes desirable, for
example, when collecting neighborhood information or estimating the current traffic load for
management purposes.

120 MAC protocols

Protocol overhead Protocol overhead is induced by MAC-related control frames like, for example,
RTS and CTS packets or request packets in demand assignment protocols, and furthermore
by per-packet overhead like packet headers and trailers.

Idle listening A node being in idle state is ready to receive a packet but is not currently receiving
anything. This readiness is costly and useless in case of low network loads; for many radio
modems, the idle state still consumes significant energy. Switching off the transceiver is a
solution; however, since mode changes also cost energy, their frequency should be kept at
“reasonable” levels. TDMA-based protocols offer an implicit solution to this problem, since
a node having assigned a time slot and exchanging (transmitting/receiving) data only during
this slot can safely switch off its transceiver in all other time slots.

Most of the MAC protocols developed for wireless sensor networks attack one or more of these
problems to reduce energy consumption, as we will see in the next sections.

A design constraint somewhat related to energy concerns is the requirement for low complexity
operation. Sensor nodes shall be simple and cheap and cannot offer plentiful resources in terms
of processing power, memory, or energy. Therefore, computationally expensive operations like
complex scheduling algorithms should be avoided. The desire to use cheap node hardware includes
components like oscillators and clocks. Consequently, the designer of MAC protocols should bear
in mind that very tight time synchronization (as needed for TDMA with small time slots) would
require frequent resynchronization of neighboring nodes, which can consume significant energy.
Time synchronization issues are discussed in Chapter 8.

Structure of the following discussion

In the following sections, we discuss a number of different MAC protocols proposed for wireless
sensor networks because of their ability to conserve energy. The presentation in the following
sections is not structured according to the above discussed classes of MAC protocols (fixed assign-
ment, demand assignment, random access) but instead it is according to the way they attack one
or more of the energy problems.

In Section 5.2, we discuss protocols that explicitly attack the idle listening problem by applying
periodic sleeping or even wakeup radio concepts.

Some other protocols are classified into either contention-based or schedule-based protocols.
This distinction is to be understood by the number of possible contenders upon a transmit oppor-
tunity toward a receiver node:

• In contention-based protocols (Section 5.3), any of the receiver’s neighbors might try its luck at
the risk of collisions. Accordingly, those protocols contain mechanisms to avoid collisions or to
reduce their probability.

• In schedule-based protocols (Section 5.4), only one neighbor gets an opportunity and collisions
are avoided. These protocols have a TDMA component, which provides also an implicit idle
listening avoidance mechanism: when a node knows its allocated slots and can be sure that it
communicates (transmits/receives) only in these slots, it can safely switch off its receiver at all
other times.

In Section 5.5, we discuss the IEEE 802.15.4 protocol, which combines elements of schedule- and
contention-based protocols and can be expected to achieve some commercial impact.

5.2 Low duty cycle protocols and wakeup concepts
Low duty cycle protocols try to avoid spending (much) time in the idle state and to reduce the
communication activities of a sensor node to a minimum. In an ideal case, the sleep state is left

Low duty cycle protocols and wakeup concepts 121

Wakeup period

Listen period

Sleep period

Figure 5.4 Periodic wakeup scheme

only when a node is about to transmit or receive packets. A concept for achieving this, the wakeup
radio, is discussed in Section 5.2.4. However, such a system has not been built yet, and thus, there
is significant interest to find alternative approaches.

In several protocols, a periodic wakeup scheme is used. Such schemes exist in different flavors.
One is the cycled receiver approach [503], illustrated in Figure 5.4. In this approach, nodes spend
most of their time in the sleep mode and wake up periodically to receive packets from other nodes.
Specifically, a node A listens onto the channel during its listen period and goes back into sleep
mode when no other node takes the opportunity to direct a packet to A. A potential transmitter
B must acquire knowledge about A’s listen periods to send its packet at the right time – this task
corresponds to a rendezvous [503]. This rendezvous can, for example, be accomplished by letting
node A transmit a short beacon at the beginning of its listen period to indicate its willingness to
receive packets. Another method is to let node B send frequent request packets until one of them
hits A’s listen period and is really answered by A. However, in either case, node A only receives
packets during its listen period. If node A itself wants to transmit packets, it must acquire the
target’s listen period. A whole cycle consisting of sleep period and listen period is also called a
wakeup period. The ratio of the listen period length to the wakeup period length is also called the
node’s duty cycle. From this discussion, we already can make some important observations:

• By choosing a small duty cycle, the transceiver is in sleep mode most of the time, avoiding idle
listening and conserving energy.

• By choosing a small duty cycle, the traffic directed from neighboring nodes to a given node
concentrates on a small time window (the listen period) and in heavy load situations significant
competition can occur.

• Choosing a long sleep period induces a significant per-hop latency, since a prospective trans-
mitter node has to wait an average of half a sleep period before the receiver can accept packets.
In the multihop case, the per-hop latencies add up and create significant end-to-end latencies.

• Sleep phases should not be too short lest the start-up costs outweigh the benefits.

In other protocols like, for example, S-MAC (Section 5.2.2), there is also a periodic wakeup but
nodes can both transmit and receive during their wakeup phases. When nodes have their wakeup
phases at the same time, there is no necessity for a node wanting to transmit a packet to be awake
outside these phases to rendezvous its receiver.

Subsequently, we discuss some variations of this approach. They differ in various aspects, for
example, the number of channels required or in the methods by which prospective transmitters can
learn the listen periods of the intended receivers.

5.2.1 Sparse topology and energy management (STEM)
The Sparse Topology and Energy Management (STEM) protocol does not cover all aspects of a
MAC protocol but provides a solution for the idle listening problem [742]. STEM targets networks
that are deployed to wait for and report on the behaviour of a certain event, for example, when
studying the paths of elephants in a habitat. From the perspective of a single sensor, most of

122 MAC protocols

Wakeup period

Listen period

Wakeup
channel

Data
channel

Sleep period

Figure 5.5 STEM duty cycle for a single node [742, Fig. 3]

the time there are no elephants and the sensor has nothing to report. However, once an elephant
appears, the sensor reports its readings periodically. More abstractly, the network has a monitor
state, where the nodes idle and do nothing, and also a transfer state, where the nodes exhibit
significant sensing and communication activity. STEM tries to eliminate idle listening in the mon-
itor state and to provide a fast transition into the transfer state, if required. In the transfer state,
different MAC protocols can be employed. The term “topology” in STEMs name comes from the
observation that as nodes enter and leave the sleep mode network topology changes. An impor-
tant requirement for such topology-management schemes is that the network stays connected (or
bi-connected or fulfills even higher connectivity requirements) even if a subset of nodes is in the
sleep mode.

For an explanation of STEM, please refer to Figure 5.5. Two different channels are used, requiring
two transceivers in each node: the wakeup channel and the data channel. The data channel is
always in sleep mode, except when transmitting or receiving data packets. The underlying MAC
protocol is executed solely on the data channel during the transfer states. On the wakeup channel
the time is divided into fixed-length wakeup periods of length T . A wakeup period is subdivided
into a listen period of length TRx � T and a sleep period, where the wakeup channel transceiver
enters sleep mode, too. If a node enters the listen period, it simply switches on its receiver for
the wakeup channel and waits for incoming signals. If nothing is received during time TRx , the
node returns into sleep mode. Otherwise the transmitter and receiver start a packet transfer on
the data channel. There are two different variants for the transmitter to acquire the receiver’s
attention:

• In STEM-B, the transmitter issues so-called beacons on the wakeup channel periodically and
without prior carrier sensing. Such a beacon indicates the MAC addresses of transmitter and
receiver. As soon as the receiver picks up the beacon, it sends an acknowledgment frame back
on the wakeup channel (causing the transmitter to stop beacon transmission), switches on the
transceiver for the data channel, and both nodes can proceed to execute the regular MAC protocol
on the data channel, like for example an RTS/CTS handshake. Any other node receiving the
beacon on the wakeup channel recognizes that the packet is not destined for it and goes back to
sleep mode. The transmitter sends these beacons at least for one full wakeup period to be sure
to hit the receivers listen period.

• In STEM-T, the transmitter sends out a simple busy tone on the control channel (the T in STEM-T
comes from “tone”) for a time long enough to hit the receiver’s listen period. Since the busy tone
carries no address information, all the transmitter’s neighbors (the receiver as well as other nodes)
will sense the busy tone and switch on their data channel, without sending an acknowledgment
packet. The other nodes can go back to sleep when they can deduce from the packet exchange
on the data channel that they are not involved in the data transfer. A transceiver capable of
generating and sensing busy tones can be significantly cheaper and less energy-consuming than
a transceiver usable for data transmission but requires proper frequency synchronization.

Low duty cycle protocols and wakeup concepts 123

In STEM-B, several transmitters might transmit their beacons simultaneously, leading to beacon
collisions. A node waking up and receiving just some energy on the wakeup channel without being
able to decode it behaves exactly as in STEM-T: It sends no acknowledgment, switches on its
data channel, and waits what happens. The transmitter in this case transmits the beacons for the
maximum time (since it hears no acknowledgment), then switches to the data channel, and tries to
start the conversation with the receiver node.

It is noteworthy that in STEM a node entering the listen period remains silent, that is, transmits
no packet. The opposite approach has been chosen, for example, in the mediation device protocol
discussed in Section 5.2.3 or in the Piconet system [64], where node just waking up announces its
willingness to receive a packet by transmitting a query beacon packet. In the approach taken by
STEM, the transmitter has to send beacons or a busy tone for an average time of ≈ T

2 and in the
worst case for a maximum of ≈ T . If packet transmissions are a rare event, it pays off to avoid
the frequent (and mostly useless) query beacons and to put some extra burden on the transmitter
to reach its receiver. Therefore, in low load situations, STEM-T is preferable over STEM-B.

The wakeup latency achievable with STEM-T or STEM-B is intimately related to the wakeup
period T . Indeed, the results presented by Schurgers et al. [742] confirm the guess of a linear
dependence of the mean wakeup latency on the wakeup period. STEM-B can achieve half the
wakeup latency of STEM-T if no collisions occur on the wakeup channel. The reason for STEM-
B’s advantage under the assumption of no collisions is that in STEM-T (as well as in STEM-B
with collisions) the busy tone/beacon frames are sent for the maximum time, while in STEM-B
likely an acknowledgment frame will be received much earlier. With respect to energy expenditure,
STEM-T can have advantages, since the acknowledgment packet is saved and the length of the
listen period TRx can be significantly shorter in STEM-T than for STEM-B, since it suffices to
detect energy, whereas in STEM-B this time has to accommodate at least one full beacon packet.

5.2.2 S-MAC
The S-MAC (Sensor-MAC) protocol [914, 915] provides mechanisms to circumvent idle listening,
collisions, and overhearing. As opposed to STEM, it does not require two different channels.

S-MAC adopts a periodic wakeup scheme, that is, each node alternates between a fixed-length
listen period and a fixed-length sleep period according to its schedule, compare Figure 5.6. How-
ever, as opposed to STEM, the listen period of S-MAC can be used to receive and transmit packets.
S-MAC attempts to coordinate the schedules of neighboring nodes such that their listen periods
start at the same time. A node x’s listen period is subdivided into three different phases:

Wakeup period

Listen period

Sleep period

For SYNCH For RTS For CTS

Figure 5.6 S-MAC principle

124 MAC protocols

• In the first phase (SYNCH phase), node x accepts SYNCH packets from its neighbors. In
these packets, the neighbors describe their own schedule and x stores their schedule in a table
(the schedule table). Node x’s SYNCH phase is subdivided into time slots and x’s neighbors
contend according to a CSMA scheme with additional backoff, that is, each neighbor y wishing
to transmit a SYNCH packet picks one of the time slots randomly and starts to transmit if no
signal was received in any of the previous slots. In the other case, y goes back into sleep mode
and waits for x’s next wakeup. In the other direction, since x knows a neighbor y’s schedule, x

can wake at appropriate times and send its own SYNCH packet to y (in broadcast mode). It is
not required that x broadcasts its schedule in every of y’s wakeup periods. However, for reasons
of time synchronization and to allow new nodes to learn their local network topology, x should
send SYNCH packets periodically. The according period is called synchronization period.

• In the second phase (RTS phase), x listens for RTS packets from neighboring nodes. In S-MAC,
the RTS/CTS handshake described in Section 5.1.2 is used to reduce collisions of data packets
due to hidden-terminal situations. Again, interested neighbors contend in this phase according to
a CSMA scheme with additional backoff.

• In the third phase (CTS phase), node x transmits a CTS packet if an RTS packet was received in the
previous phase. After this, the packet exchange continues, extending into x’s nominal sleep time.

In general, when competing for the medium, the nodes use the RTS/CTS handshake, including the
virtual carrier-sense mechanism, whereby a node maintains a NAV variable. The NAV mechanism
can be readily used to switch off the node during ongoing transmissions to avoid overhearing.
When transmitting in a broadcast mode (for example SYNCH packets), the RTS and CTS packets
are dropped and the nodes use CSMA with backoff.

If we can arrange that the schedules of node x and its neighbors are synchronized, node x and
all its neighbors wake up at the same time and x can reach all of them with a single SYNCH
packet. The S-MAC protocol allows neighboring nodes to agree on the same schedule and to create
virtual clusters. The clustering structure refers solely to the exchange of schedules; the transfer of
data packets is not influenced by virtual clustering.

The S-MAC protocol proceeds as follows to form the virtual clusters: A node x, newly switched
on, listens for a time of at least the (globally known) synchronization period. If x receives any
SYNCH packet from a neighbor, it adopts the announced schedule and broadcasts it in one of
the neighbors’ next listen periods. In the other case, node x picks a schedule and broadcasts it.
If x receives another node’s schedule during the broadcast packet’s contention period, it drops its
own schedule and follows the other one. It might also happen that a node x receives a different
schedule after it already has chosen one, for example, because bit errors destroyed previous SYNCH
packets. If node x already knows about the existence of neighbors who adopted its own schedule,
it keeps its schedule and in the future has to transmit its SYNCH and data packets according to
both schedules. On the other hand, if x has no neighbor sharing its schedule, it drops its own and
adopts the other one. Since there is always a chance to receive SYNCH packets in error, node x

periodically listens for a whole synchronization period to relearn its neighborhood. This makes the
virtual cluster formation fairly robust.

By this approach, a large multihop network is partitioned into “islands of schedule synchroniza-
tion”. Border nodes have to follow two or more different schedules for broadcasting their SYNCH
packets and for forwarding data packets. Thus, they expend more energy than nodes only having
neighbors of the same “schedule regime”.

The periodic wakeup scheme adopted by S-MAC allows nodes to spend much time in the sleep
mode, but there is also a price to pay in terms of latency. Without further modifications, the per-hop
latency of S-MAC will be approximately equal to the sleep period on average when all nodes follow
the same schedule. Ye et al. [915] describe the adaptive-listening scheme, which roughly halves
the per-hop latency. Consider the following situation: Node x receives during its listen period an

Low duty cycle protocols and wakeup concepts 125

B

A

C

RTS

CTS

Data

Ack

Data Data Data

Ack Ack

C ’s NAV settings

Figure 5.7 S-MAC fragmentation and NAV setting

RTS or CTS packet belonging to a packet exchange from neighbor node y to node z. From the
duration field of these packets, x can infer the time t0 when the packet exchange ends. Since it
might happen that x is the next hop for z’s packet, node x schedules an extra listen period around
time t0 and z tries to send an extra RTS at time t0, ignoring x’s normal wakeup cycle. Under ideal
circumstances, x is awake when z sends the RTS and the packet can take the next hop quickly.

S-MAC also adopts a message-passing approach (illustrated in Figure 5.7), where a message
is a larger data item meaningful to the application. In-network processing usually requires the
aggregating node to receive a message completely. On the other hand, on wireless media, it is
advisable to break a longer packet into several shorter ones (fragmentation, see also Chapter 6).
S-MAC includes a fragmentation scheme working as follows. A series of fragments is transmitted
with only one RTS/CTS exchange between the transmitting node A and receiving node B. After
each fragment, B has to answer with an acknowledgment packet. All the packets (data, ack, RTS,
CTS) have a duration field and a neighboring node C is required to set its NAV field accordingly.
In S-MAC, the duration field of all packets carries the remaining length of the whole transaction,
including all fragments and their acknowledgments. Therefore, the whole message shall be passed
at once. If one fragment needs to be retransmitted, the remaining duration is incremented by the
length of a data plus ack packet, and the medium is reserved for this prolonged time. However, there
is the problem of how a nonparticipating node shall learn about the elongation of the transaction
when he has only heard the initial RTS or CTS packets.

This scheme has some similarities to the fragmentation scheme used in IEEE 802.11 but there
are important differences. In IEEE 802.11, the RTS and CTS frame reserve the medium only for
the time of the first fragment, and any fragment reserves only for the next fragment. If one packet
needs to be retransmitted, the initiating node has to give up the channel and recontend for it in the
same way as for a new packet. The approach taken by S-MAC reduces the latency of complete
messages by suppressing intertwined transmissions of other packets. Therefore, in a sense, this
protocol is unfair because single nodes can block the medium for long time. However, as explained
in Section 5.1.3, the fairness requirement has a different weight in a wireless sensor network than
it has in a data network where users want to have fair medium access.

126 MAC protocols

S-MAC has one major drawback: it is hard to adapt the length of the wakeup period to changing
load situations, since this length is essentially fixed, as is the length of the listen period.

The T-MAC protocol presented by van Dam and Langendoen [838] is similar to S-MAC but
adaptively shortens the listen period. If a node x senses no activity on the medium for a specified
duration, it is allowed to go back into sleep mode prematurely. Therefore, if no node wants to
transmit to x, the listen period can be ended quickly, whereas in S-MAC, the listen period has a
fixed length.

5.2.3 The mediation device protocol
The mediation device protocol [115, Chap. 4] is compatible with the peer-to-peer communication
mode of the IEEE 802.15.4 low-rate WPAN standard [114, 115, 468, 521]. It allows each node in
a WSN to go into sleep mode periodically and to wake up only for short times to receive packets
from neighbor nodes. There is no global time reference, each node has its own sleeping schedule,
and does not take care of its neighbors sleep schedules.

Upon each periodic wakeup, a node transmits a short query beacon, indicating its node address
and its willingness to accept packets from other nodes. The node stays awake for some short time
following the query beacon, to open up a window for incoming packets. If no packet is received
during this window, the node goes back into sleep mode.

When a node wants to transmit a packet to a neighbor, it has to synchronize with it. One
option would be to have the sender actively waiting for query beacon, but this wastes considerable
energy for synchronization purposes only. The dynamic synchronization approach achieves this
synchronization without requiring the transmitter to be awake permanently to detect the destinations
query beacon. To achieve this, a mediation device (MD) is used. We first discuss the case where
the mediation device is not energy constrained and can be active all the time; this scenario is
illustrated in Figure 5.8. Because of its full duty cycle, the mediation device can receive the query
beacons from all nodes in its vicinity and learn their wakeup periods.

B

MD

C

= Transmit mode

= Receive mode

= Sleep mode

RTS

Query

Query
response

RTS

CTS

Data

Ack

Query

Timing adjustments

Figure 5.8 Mediation device protocol with unconstrained mediators [115, Chap. 4, Fig. 3]

Low duty cycle protocols and wakeup concepts 127

Suppose that node A wants to transmit a packet to node B. Node A announces this to the
mediation device by sending periodically request to send (RTS) packets, which the MD captures.
Node A sends its RTS packets instead of its query beacons and thus they have the same period.
Again, there is a short answer window after the RTS packets, where A listens for answers. After
the MD has received A’s RTS packet, it waits for B’s next query beacon. The MD answers this
with a query response packet, indicating A’s address and a timing offset, which lets B know when
to send the answering clear to send (CTS) to A such that the CTS packet hits the short answer
window after A’s next RTS packet. Therefore, B has learned A’s period. After A has received
the CTS packet, it can send its data packet and wait for B’s immediate acknowledgment. After
the transaction has finished, A restores its periodic wakeup cycle and starts to emit query beacons
again. Node B also restores its own periodic cycle and thus decouples from A’s period.

This protocol has some advantages. First, it does not require any time synchronization between
the nodes, only the mediation device has to learn the periods of the nodes. Second, the protocol is
asymmetric in the sense that most of the energy burden is shifted to the mediation device, which
so far is assumed to be power unconstrained. The other nodes can be in the sleep state most of the
time and have to spend energy only for the periodic beacons. Even when a transmitter wants to
synchronize with the receiver, it does not have to wait actively for the query beacon, but can go
back to sleep and wait for the mediation device to do the synchronization work. This way very low
duty cycles can be supported. This protocol has also some drawbacks: The nodes transmit their
query beacons without checking for ongoing transmissions and, thus, the beacons of different nodes
may collide repeatedly when nodes have the same period and their wakeup periods overlap. If the
wakeup periods are properly randomized and the node density is sufficiently low, this collision
probability can be low too. However, in case of higher node densities or unwanted synchronization
between the nodes, the number of collisions can be significant. A possible solution to this is
the following: When the MD registers collisions, it might start to emit a dedicated reschedule
control frame. All colliding nodes can hear this frame as long as the MD repeats it often enough.
Reception of this frame causes each node to randomly pick a new period from a certain interval
[a, b] indicated in the reschedule frame. If the MD continues to perceive collisions, it can enlarge
the interval accordingly.

The main drawbacks, however, are the assumptions that: (i) the mediation device is energy
unconstrained, which does not conform to the idea of a “simply thrown out” wireless sensor network,
and (ii) there are sufficient mediation devices to cover all nodes. The distributed mediation device
protocol deals with these problems in a probabilistic manner. It lets nodes randomly wake up and
serve as MD for a certain time and afterward lets them go back to their regular periodic wakeup
behavior. The service time must be chosen to be at least as long as the maximum period of all
neighbors plus the length of a query beacon. However, under these assumptions, it cannot be
expected that a temporary MD knows all its neighbors’ periods and wakeup times. If we assume
that all nodes have the same period, then it suffices for the temporary MD to hear an RTS from the
transmitter node A and a query beacon from receiving node B in order to compute their time offsets
and to instruct node B accordingly in the MD’s query response. A problem with this approach is
that nodes A and B may have two or more MD devices in their vicinity, causing a collision of
several query responses. By properly randomizing the times where nodes decide to serve as MD,
the probability of this can be kept low.

5.2.4 Wakeup radio concepts
The ideal situation would be if a node were always in the receiving state when a packet is transmitted
to it, in the transmitting state when it transmits a packet, and in the sleep state at all other times; the
idle state should be avoided. The wakeup radio concept strives to achieve this goal by a simple,
“powerless” receiver that can trigger a main receiver if necessary (see Section 2.1.4 for details).

128 MAC protocols

One proposed wakeup MAC protocol [931] assumes the presence of several parallel data channels,
separated either in frequency (FDMA) or by choosing different codes in a CDMA schemes. A
node wishing to transmit a data packet randomly picks one of the channels and performs a carrier-
sensing operation. If the channel is busy, the node makes another random channel choice and
repeats the carrier-sensing operation. After a certain number of unsuccessful trials, the node backs
off for a random time and starts again. If the channel is idle, the node sends a wakeup signal to the
intended receiver, indicating both the receiver identification and the channel to use. The receiver
wakes up its data transceiver, tunes to the indicated channel, and the data packet transmission can
proceed. Afterward, the receiver can switch its data transceiver back into sleep mode. This wakeup
radio concept has the significant advantage that only the low-power wakeup transceiver has to be
switched on all the time while the much more energy consuming data transceiver is nonsleeping if
and only if the node is involved in data transmissions. Furthermore, this scheme is naturally traffic
adaptive, that is, the MAC becomes more and more active as the traffic load increases. Periodic
wakeup schemes do not have this property.

However, there are also some drawbacks. First, to our knowledge, there is no real hardware yet
for such an ultralow power wakeup transceiver. Second, the range of the wakeup radio and the
data radio should be the same. If the range of the wakeup radio is smaller than the range of the
data radio, possibly not all neighbor nodes can be woken up. On the other hand, if the range of the
wakeup radio is significantly larger, there can be a problem with local addressing schemes (compare
Chapter 7): These schemes do not use globally or networkwide-unique addresses but only locally
unique addresses, such that no node has two or more one-hop neighbors with the same address.
Put differently: A node’s MAC address should be unique within its two-hop neighborhood. Since
the packets exchanged in the neighbor discovery phase have to use the data channel, the two-
hop neighborhood as seen on the data channel might be different from the two-hop neighborhood
on the wakeup channel. Third, this scheme critically relies on the wakeup channel’s ability to
transport useful information like node addresses and channel identifications; this might not always
be feasible for transceiver complexity reasons and additionally requires methods to handle collisions
or transmission errors on the wakeup channel. If the wakeup channel does not support this feature,
the transmitter wakes up all its neighbors when it emits a wakeup signal, creating an overhearing
situation for most of them. If the transmitting node is about to transmit a long data packet, it might
be worthwhile to prepend the data packet with a short filter packet [552] announcing the receiving
node’s address. All the other nodes can go back to sleep mode after receiving the filter packet.
Instead of using an extra packet, all nodes can read the bits of the data packet until the destination
address appeared. If the packet’s address is not identical to its own address, the node can go back
into sleep mode.

5.2.5 Further reading
The protocol described by Miller and Vaidya [552] has some similarities to STEM. It uses two
different channels, one for wakeup and the other one for data transmission. However, the nodes try
to adapt their wakeup period to the observed periodicity of the traffic destined to them. Each node
has buffer space for L packets. If the buffer is full, the node wakes up its whole neighborhood and
transmits all packets (“full wakeup”). However, if the traffic is sufficiently regular, the source and
destination node agree on a time where only the destination wakes up and the nodes can exchange
their packet (“triggered wakeup”). In this case, the transmitter can empty its buffer and the costly
full wakeups arise less frequently.

In the DMAC protocol proposed by Lu et al. [520], the following problem is attacked. If all the
nodes on the way from some source node to a sink node have their individual wakeup schedules,
the accumulated latency from source to sink can be significant. Especially when the schedules are
unsynchronized the per-hop latency can be enormous. DMAC attacks this problem by carefully

Contention-based protocols 129

arranging the wakeup schedules according to the distance of a node from the sink. In the best case,
as soon as one node has received a packet, the listen period of its upstream neighbor starts.

In references [226, 227, 228], the preamble sampling technique is applied to both ALOHA and
CSMA protocols. A node wakes up periodically and listens for a short time to the medium to check
whether there is any signal. If so, the node tries to receive the packet. If a node wants to transmit
a packet, it prepends the packet with a preamble, long enough to let the intended receiver pick
it up. The remaining packet is transmitted after the preamble. One problem for this protocol can
be the start-up energy needed to switch the transceiver from sleep into idle or receive mode (see
Section 4.3.1). El-Hoiydi et al. [226] let a node try to learn its neighbors’ wakeup periods and
phases and to start the preamble only immediately before the receiving node wakes up, in order to
keep the preamble length at minimum.

Lin et al. [503] consider different variants of cycled receiver schemes in which nodes periodically
wake up to receive packets. They consider the problem of how transmitter and receiver find each
other. One option is to let the transmitter send short packets frequently until they hit the receiver’s
listen period and trigger an answer of the receiver, or the receiver could send a short beacon packet
at the start of its listen period. The trade-offs are investigated under a Gilbert–Elliot channel model.

5.3 Contention-based protocols
In contention-based protocols, a given transmit opportunity toward a receiver node can in principle
be taken by any of its neighbors. If only one neighbor tries its luck, the packet goes through the
channel. If two or more neighbors try their luck, these have to compete with each other and in
unlucky cases, for example, due to hidden-terminal situations, a collision might occur, wasting
energy for both transmitter and receiver. Section 5.1.2 briefly presented two important contention-
based protocols: (slotted) ALOHA and CSMA, along with mechanisms to solve the hidden-terminal
problem. In the following sections, we discuss variations of these protocols with the goal to conserve
energy.

As opposed to some of the contention-based protocols having a periodic wakeup scheme (for
example S-MAC, see Section 5.2.2), the protocols described in this section have no idle listening
avoidance and make no restrictions as to when a node can receive a packet.

5.3.1 CSMA protocols
Woo and Culler [888] investigate several CSMA variants for their inherent energy costs and their
fairness, without specifying any measures for idle listening avoidance or overhearing avoidance.
“Inherent cost” subsumes mainly the energy spent on transmitting and receiving.

The authors consider a multihop network with a single or only a few sinks and the same traffic
pattern as already envisioned for STEM (Section 5.2.1): A network that is idle for long times and
starts to become active when triggered by an important external event. Upon the triggering event,
all nodes wish to transmit simultaneously, potentially creating lots of collisions. In the case that
the nodes want to send their packets periodically, the danger of collisions is repeated if no special
measures are taken. The nodes are assumed to know an upstream neighbor to which they have to
forward packets destined for the sink. This upstream neighbor is also called the parent node. Each
node generates local sensor traffic and additionally works as a forwarder for downstream nodes.
Only a single channel is required.

We briefly discuss the skeleton of the different CSMA protocols. Figure 5.9 shows the several
steps a node passes through in case of a transmission as a finite state automaton. After a node gets
a new packet for transmission from its upper layers, it starts with a random delay and initializes
its trial counter num retries with zero. The purpose of the random delay is to desynchronize

130 MAC protocols

Random
delay

Idle

Backoff

Await CTS

Await ack

Idle

Listen

C: ---
A: numtrials : = 0

C: busy &&
numtrials < maxtrials

A: numtrials++, set timer

C: timeout
A: --

C = Condition
A = Action

C: got ack
A: indicate success

C: got CTS
A: send data

C: none or foreign CTS
&& numtrials < maxtrials

A: numtrials++, set timerC: no ack
&& numtrials = maxtrials

A: indicate failure

C: idle
A: send RTS

C: no ack
&& numtrials < maxtrials

A: numtrials++, settimer

C: none or foreign CTS
&& numtrials = maxtrials

A: indicate failure

C: busy&&
numtrials = maxtrials

A: indicate failure

Figure 5.9 Schematic of the CSMA protocol presented in reference [888]

nodes that are initially synchronized by the external event. During this random delay, the node’s
transceiver can be put into sleep mode. During the following listen period, the node performs
carrier sensing. If the medium is found to be busy and the number of trials so far is smaller than
the maximum number, the node goes into the backoff mode. In the backoff mode, the node waits
a random amount of time, which can depend on the number of trials and during which the node
can sleep (the protocol is thus a nonpersistent CSMA variant). The backoff mode can also be
used by the application layer to initiate a “phase change” for its locally generated periodic traffic.
This phase change aims to desynchronize correlated or periodic traffic of different nodes. After the
backoff mode finishes, the node listens again. If the medium is busy and the node has exhausted its

Contention-based protocols 131

maximum number of trials, the packet is dropped. If the medium is idle, the node transmits an RTS
packet and enters the “Await CTS” state, where it waits for the corresponding CTS packet (this step
can be skipped if the node knows that there is currently a low load situation). In case no CTS packet
arrives or a CTS packet for another transaction is received, the node either enters the backoff mode
or drops the packet, depending on the value of num retries. If the CTS packet arrives, the
node sends its data packet and waits for an acknowledgment. This acknowledgment can be either
an explicit acknowledgment packet, or the parent node piggybacks the acknowledgment on a packet
that it forwards to the node’s grandparent. However, for such a piggybacked acknowledgment, it
is not an easy task to determine an appropriate waiting time until the acknowledgment must arrive
at the child.

Several variants of this skeleton (no random delay vs. random delay, random listening time vs.
constant listening time, fixed window backoff vs. exponentially increasing backoff vs. exponentially
decreasing backoff vs. no backoff) have been investigated in a single-hop scenario with a triggering
event and it turns out that protocols with random delay, fixed listening time, and a backoff algo-
rithm with sleeping radio transceiver give the best throughput as well as lowest aggregate energy
consumption, when compared with other CSMA variants, including IEEE 802.11.

5.3.2 PAMAS
The PAMAS protocol (Power Aware Multiaccess with Signaling) presented by Raghavendra
and Singh [668] is originally designed for ad hoc networks. It provides a detailed overhearing
avoidance mechanism while it does not consider the idle listening problem. The protocol combines
the busy-tone solution and RTS/CTS handshake similar to the MACA protocol [407] (MACA uses
no final acknowledgment packet). A distinctive feature of PAMAS is that it uses two channels:
a data channel and a control channel. All the signaling packets (RTS, CTS, busy tones) are
transmitted on the control channel, while the data channel is reserved for data packets. We follow
Raghavendra and Singh [668] in first describing the main protocol operation and then discussing
the power-conservation enhancements.

Let us consider an idle node x to which a new packet destined to a neighboring node y arrives.
First, x sends an RTS packet on the control channel without doing any carrier sensing. This packet
carries both x’s and y’s MAC addresses. If y receives this packet, it answers with a CTS packet
if y does not know of any ongoing transmission in its vicinity. Upon receiving the CTS, x starts
to transmit the packet to y on the data channel. When y starts to receive the data, it sends out
a busy-tone packet on the control channel. If x fails to receive a CTS packet within some time
window, it enters the backoff mode, where a binary exponential backoff scheme is used (i.e., the
backoff time is uniformly chosen from a time interval that is doubled after each failure to receive
a CTS).

Now, let us look at the nodes receiving x’s RTS packet on the control channel. There is the
intended receiver y and there are other nodes; let z be one of them. If z is currently receiving
a packet, it reacts by sending a busy-tone packet, which overlaps with y’s CTS at node x and
effectively destroys the CTS. Therefore, x cannot start transmission and z’s packet reception is not
disturbed. Since the busy-tone packet is longer than the CTS, we can be sure that the CTS is really
destroyed. Next, we consider the intended receiver y. If y knows about an ongoing transmission
in its vicinity, it suppresses its CTS, causing x to back off. Node y can obtain this knowledge
by either sensing the data channel or by checking whether there was some noise on the control
channel immediately after receiving the RTS. This noise can be an RTS or CTS of another node
colliding at y. In the other case, y answers with a CTS packet and starts to send out a busy-tone
packet as soon as x’s transmission has started. Furthermore, y sends out busy-tone packets each
time it receives some noise or a valid packet on the control channel, to prevent its neighborhood
from any activities.

132 MAC protocols

A node that receives an RTS packet while being in the backoff state starts its packet reception
procedure, that is, it checks the conditions for sending a CTS.

When can a node put its transceivers (control and data) into sleep mode? Roughly speaking,
any time a node knows that it cannot transmit or receive packets because some other node in
its vicinity is already doing so. However, the decision to go into sleep mode raises an important
question: when to wake up again? This decision is easy if a node x knows about the length of an
ongoing transmission, for example from overhearing the RTS or CTS packets or the header of the
data packets on the data channel. However, often this length is unknown to x, for example, because
these packets are corrupted or a foreign data transmission cycle starts when x is just sleeping.
Additional procedures are needed to resolve this.

Suppose that x wakes up and finds the data channel busy. There are two cases to distinguish:
either x has no own packet to send or x wants to transmit. In the first case, x desires to go back into
sleep mode and to wake up exactly when the ongoing transmission ends to be able to receive an
immediately following packet. Waking up at the earliest possible time has the advantage of avoiding
unwanted delays. However, since x may not have overheard the RTS, CTS, or data packet header
belonging to the ongoing transmission, it runs a probing protocol on the control channel to inquire
the length of the ongoing packet. This probing protocol works similar to a binary search algorithm.
Let l be the maximal packet length in seconds. First, x sends a t probe(l/2, l) packet, and any trans-
mitter node who finishes in the time interval [l/2, l] answers with a t probe response(t) packet,
indicating the time t where its transmission ends. If x manages to receive t probe response(t)

packet, it knows exactly when this single ongoing transmission ends and when to wake up the
next time. If x receives only noise in response, several t probe response(t) may have collided
at x and x starts to search in the subinterval [3l/4, l], again hoping for a single answer only. If no
answer arrives at all upon t probe(3l/4, l), x next checks the interval [l/2, 3l/4], and so on.

In the other case, x wakes up during an ongoing transmission and wants to transmit a packet.
Therefore, x has not only to take care of ongoing transmissions but also of ongoing receptions in
its vicinity. To find the time for the next wakeup, x runs the described probing protocol for the set
of transmitters, giving a time t when the longest ongoing transmission ends. In addition, x runs a
similar probing protocol for the set of receivers in its neighborhood, indicating the time r when the
longest ongoing reception ends. Finally, x schedules its wakeup for time min{r, t}. The rationale
for this choice is: If t < r , waking up at t might give another node y a chance to transmit a packet
to x without any additional delay. On the other hand, if r < t , there is some chance that x can start
its own transmission.

Raghavendra and Singh [668] compare the power-saving performance of PAMAS with over-
hearing avoidance against PAMAS without this feature. Analytical and simulation results are
presented for several network topologies, node densities, and load scenarios. For the case of random
networks, the power savings for low load situations depend on the average node degree, that is,
the average number of neighbors that a node has. Clearly, the more neighbors a node x has, the
more can switch their transceivers off when x actually transmits. For low loads also, the number
of control packets is smaller than for high loads. This is particularly true for the busy-tone packets.
PAMAS saves up to 60 % of energy for low loads and a high node degree, and still between 20
and 30 % are reached for low node degrees under a low load. In high load situations, between ≈10
and ≈40 % of energy savings can be achieved, with higher savings for higher node degrees.

5.3.3 Further solutions
Adireddy and Tong [9] take a more information-theoretic view on wireless sensor networks and
investigate the asymptotic stable throughput, which is defined as the maximum stable throughput
achievable in a high density wireless sensor network as the number of nodes goes to infinity but

Schedule-based protocols 133

the overall load is kept fixed. Specifically, they investigate a variation of slotted ALOHA taking
channel state information into account.

Tseng et al. [832] propose three different mechanisms that enhance IEEE 802.11’s power-saving
capabilities by letting nodes go into sleep mode periodically. The nodes are assumed to have
independent clocks and independent sleep schedules. By different choices of the nodes’ activity
periods, it can be guaranteed that two nodes can reach each other eventually. Further changes
to the original IEEE 802.11 power-saving protocol are proposed, for example, to let each node
send a beacon irrespective of whether any of its neighbors sent one before; this allows a node to
learn its neighborhood more quickly. Three different wakeup schemes (dominating-awake interval,
periodically fully awake interval, and quorum-based interval) are proposed and investigated. These
protocols offer different points in the energy-consumption/network adaption space, where network
adaption refers to the network’s ability to accommodate topological changes.

5.4 Schedule-based protocols
We discuss some schedule-based protocols that do not explicitly address idle listening avoidance but
do so implicitly, for example, by employing TDMA schemes, which explicitly assign transmission
and reception opportunities to nodes and let them sleep at all other times. A second fundamental
advantage of schedule-based protocols is that transmission schedules can be computed such that no
collisions occur at receivers and hence no special mechanisms are needed to avoid hidden-terminal
situations.

However, these schemes also have downsides. First, the setup and maintenance of schedules
involves signaling traffic, especially when faced to variable topologies. Second, if a TDMA variant
is employed, time is divided into comparably small slots, and both transmitter and receiver have
to agree to slot boundaries to actually meet each other and to avoid overlaps with other slots,
which would lead to collisions. However, maintaining time synchronization involves some extra
signaling traffic. For cheap sensor nodes with cheap oscillators, one can expect the clocks of different
nodes to drift comparably quickly and resynchronization is required frequently (see Chapter 8). A
third drawback is that such schedules are not easily adapted to different load situations on small
timescales. Specifically, in TDMA, it is difficult for a node to give up unused time slots to its
neighbors. A further disadvantage is that the schedule of a node (and possibly those of its neighbors)
may require a significant amount of memory, which is a scarce resource in several sensor node
designs. Finally, distributed assignment of conflict-free TDMA schedules is a difficult problem in
itself (for example [169]).

5.4.1 LEACH
The LEACH protocol (Low-energy Adaptive Clustering Hierarchy) presented by Heinzelman
et al. [344] assumes a dense sensor network of homogeneous, energy-constrained nodes, which
shall report their data to a sink node. In LEACH, a TDMA-based MAC protocol is integrated with
clustering and a simple “routing” protocol.

LEACH partitions the nodes into clusters and in each cluster a dedicated node, the clusterhead,
is responsible for creating and maintaining a TDMA schedule; all the other nodes of a cluster are
member nodes. To all member nodes, TDMA slots are assigned, which can be used to exchange
data between the member and the clusterhead; there is no peer-to-peer communication. With the
exception of their time slots, the members can spend their time in sleep state. The clusterhead
aggregates the data of its members and transmits it to the sink node or to other nodes for further
relaying. Since the sink is often far away, the clusterhead must spend significant energy for this
transmission. For a member, it is typically much cheaper to reach the clusterhead than to transmit

134 MAC protocols

directly to the sink. The clusterheads role is energy consuming since it is always switched on
and is responsible for the long-range transmissions. If a fixed node has this role, it would burn
its energy quickly, and after it died, all its members would be “headless” and therefore useless.
Therefore, this burden is rotated among the nodes. Specifically, each node decides independent of
other nodes whether it becomes a clusterhead, and therefore there is no signaling traffic related
to clusterhead election (although signaling traffic is needed for subsequent association of nodes to
some clusterhead). This decision takes into account when the node served as clusterhead the last
time, such that a node that has not been a clusterhead for a long time is more likely to elect itself
than a node serving just recently [346]. The protocol is round based, that is, all nodes make their
decisions whether to become a clusterhead at the same time and the nonclusterhead nodes have
to associate to a clusterhead subsequently. The nonclusterheads choose their clusterhead based on
received signal strengths. The network partitioning into clusters is time variable and the protocol
assumes global time synchronization.

After the clusters have been formed, each clusterhead picks a random CDMA code for its cluster,
which it broadcasts and which its member nodes have to use subsequently. This avoids a situation
where a border node belonging to clusterhead A distorts transmissions directed to clusterhead B,
shown in Figure 5.10.

A critical network parameter is the percentage of nodes that are clusterheads. If there are only a
few clusterheads, the expected distance between a member node and its clusterhead becomes longer
and therefore the member has to spend more energy to reach its clusterhead while maintaining a
given BER target. On the other hand, if there are many clusterheads, there will be more energy-
expensive transmissions from clusterheads to the sink and less aggregation. Therefore, there exists
an optimum percentage of clusterheads, which for the scenario investigated in [344, 346] is ≈5 %. If
this optimum is chosen, LEACH can achieve a seven to eight times lower overall energy dissipation
compared to the case where each node transmits its data directly to the sink, and between four and
eight times lower energy than in a scenario where packets are relayed in a multihop fashion. In
addition, since LEACH distributes the clusterhead role fairly to all nodes, they tend to die at about
the same time.

The protocol is organized in rounds and each round is subdivided into a setup phase and a
steady-state phase (Figure 5.11). The setup phase starts with the self-election of nodes to cluster-
heads. In the following advertisement phase, the clusterheads inform their neighborhood with an
advertisement packet. The clusterheads contend for the medium using a CSMA protocol with no
further provision against the hidden-terminal problem. The nonclusterhead nodes pick the adver-
tisement packet with the strongest received signal strength. In the following cluster-setup phase,
the members inform their clusterhead (“join”), again using a CSMA protocol. After the cluster
setup-phase, the clusterhead knows the number of members and their identifiers. It constructs a

Clusterhead A Clusterhead B

Figure 5.10 Intercluster interference

Schedule-based protocols 135

Setup phase Steady-state phase

Fixed-length round

……… ……….

Advertisement phase Cluster setup phase Broadcast schedule

Time slot
1

…. ….….

Clusterheads
compete with
CSMA

Members
compete with
CSMA

Self-election of
clusterheads

Time slot
2

Time slot
n

Time slot
1

Figure 5.11 Organization of LEACH rounds

TDMA schedule, picks a CDMA code randomly, and broadcasts this information in the broadcast
schedule subphase. After this, the TDMA steady-state phase begins.

Because of collisions of advertisement or join packets, the protocol cannot guarantee that each
nonclusterhead node belongs to a cluster. However, it can guarantee that nodes belong to at most
one cluster.

The clusterhead is switched on during the whole round and the member nodes have to be switched
on during the setup phase and occasionally in the steady-state phase, according to their position in
the cluster’s TDMA schedule.

With the protocol described so far, LEACH would not be able to cover large geographical areas
of some square miles or more, because a clusterhead two miles away from the sink likely does
not have enough energy to reach the sink at all, not to mention achieving a low BER. If it can
be arranged that a clusterhead can use other clusterheads for forwarding, this limitation can be
mitigated.

5.4.2 SMACS
The Self-Organizing Medium Access Control for Sensor Networks (SMACS) protocol described by
Sohrabi et al. [778], Sohrabi and Pottie [780] is part of a wireless sensor network protocol suite
that addresses MAC, neighbor discovery, attachment of mobile nodes, a multihop routing protocol,
and a local routing protocol for cooperative signal processing purposes.

SMACS essentially combines neighborhood discovery and assignment of TDMA schedules to
nodes. SMACS is based on the following assumptions:

• The available spectrum is subdivided into many channels and each node can tune its transceiver
to an arbitrary one; alternatively, it is assumed that many CDMA codes are available.

• Most of the nodes in the sensor network are stationary and such an assignment is valid for fairly
long times.

• Each node divides its time locally into fixed-length superframes (of duration Tframe seconds),
which do not necessarily have the same phase as the neighbor’s superframes. However, all nodes
have the same superframe length and this requires time synchronization. Superframes are also

136 MAC protocols

subdivided into time slots but this is only loose since transmissions are not confined to occur
only within a single time slot.

The goal of SMACS is to detect neighboring nodes and to set up exclusive links or channels
to these. A link is directional, that is on a given link all packets are transmitted in one direction.
Furthermore, a link occupies a TDMA slot in either endpoint. When two nodes want bidirectional
operation, two such links are needed; from the perspective of one node, there is a receive slot and
a transmit slot to the other node. The assignment of links shall be such that no collisions occur at
receivers. To achieve this, SMACS takes care that for a single node the time slots of different links
do not overlap (using a simple greedy algorithm) and furthermore for each link randomly one out
of a large number of frequency channels/CDMA codes is picked and allocated to the link. It is not
required that a node and its neighbors transmit at entirely different times. In this case, however,
they must transmit to different receivers and have to use different frequencies/codes. After link
setup, the nodes wake up periodically (once per superframe) in the respective receive time slots
with the receiver tuned to the corresponding frequency or with the correct CDMA code at hand;
the transmit time slots are only used when required.

By using a local scheme instead of a global assignment, the task of transmitting the neighborhood
information to a central node and the computation results back is avoided.

Regarding the neighbor discovery and link setup, we consider four different cases. Suppose that
nodes x and y want to set up a link and x is switched on first. First, we assume that neither x nor
y has any neighbor so far, as illustrated by Figure 5.12. Node x listens on a fixed frequency band
for a random amount of time. If nothing is received during this time, node x sends an invitation
message, more specifically a TYPE1(x, unattached) message, indicating its own node identification
and the number of attached neighbors, which so far is zero. When any neighbor z of node x receives
this message, it waits for a random but bounded amount of time and answers with a TYPE2(x, z,
n) message, indicating its own address, x’s address and its number of neighbors n. Now, suppose
that the so-far unconnected node y answers first – with TYPE2(x, y, unattached) – and x receives
this message properly. Since y sent the first answer, x invites y to construct a link by sending a

X Y

Type1 (X, 0)

Type2 (X,Y, unconnected)

Type3 (Y, --)

Type4 (LinkSpec)

Figure 5.12 SMACS: link setup for two lonesome nodes

Schedule-based protocols 137

TYPE3(y, –) message, carrying the identification of the “winning” node y and no further parameters.
This message is sent when the contention period for the TYPE2(·, ·, ·) answer message ends. Now,
node y knows that (i) it has been selected, and (ii) it can pick any time slot it wants since neither
x nor y has any link allocated so far. Node y answers to node x with a link specification, that is,
two time slot specifications and a frequency/code, using a TYPE2(x, y, LinkSpec) message. The
time slot specifications have a common time base since node y adopts x’s superframe phase upon
receiving the TYPE3(y, –) message. By this rule, neighboring nodes that discover each other first,
have a common phase (and a common period).

Any other node z loosing against y goes back into sleep mode and tries again at some later time.
The nodes repeat their invitations periodically using TYPE1(·, ·) messages.

The second case is where node x already has some neighbors but the winning node y has none
so far. Therefore, x sends a TYPE1(x, attached) message and y manages to answer first with its
TYPE2(x, y, unattached) message. After this, node x knows that it can schedule the connection to
y freely, since y has no obligations so far. Node x picks two convenient time slots and a frequency
and sends a TYPE3(y, LinkSpec) message to y. Again, since y has no neighbors so far, y adopts
the superframe phase of x. Finally, node y answers with TYPE2(x, y, –) message, carrying an
empty link specification (meaning that x’s link specification is adopted).

In the third case, node x does not have any neighbor yet, but y has. Therefore, y answers to
x’s TYPE1(x, unattached) with a TYPE2(x, y, attached) message. Node x proceeds with sending
a TYPE3(y, –) message without link specification to y, and it is y’s turn to pick the time slots and
frequency. Accordingly, y sends back a TYPE2(x, y, LinkSpec) to x.

In the final case, both x and y are already attached to other nodes and their superframes are
typically not aligned. Accordingly, x sends a TYPE1(x, attached) message and y answers with
a TYPE2(x, y, attached) message. Node x answers with a TYPE3(y, Schedule) message, which
contains its entire schedule as well as timing information allowing y to determine the phase shift
between x and y’s superframes. After receiving this information, node y determines time slots that
are free in both schedules, and which are not necessarily aligned with any time slot boundaries in
either schedule.

This protocol allows to set up static connections between stationary nodes. Since the neigh-
borhood discovery process is repeated from time to time, the protocol can adapt to changes in
topology. In reference [778], an extension (“eavesdrop and register” algorithm) is described that
allows a mobile node to set up, maintain, and tear down connections to stationary nodes as it moves
through the network.

A critical issue with this protocol is the choice of the superframe length. It should be large enough
to accommodate the highest node degree in the network, which is a random variable for random
deployments. If the superframe length is too short, some of a node’s neighbors may simply not be
visible to it. A second problem occurs in a densely populated sensor network with low traffic load,
where schedules are highly populated and nodes wake up quite often just to notice that there is no
packet destined to them. The number of wakeup slots depends on the node density for this protocol.

5.4.3 Traffic-adaptive medium access protocol (TRAMA)
The Traffic-Adaptive Medium Access (TRAMA) protocol presented by Rajendran et al. [672]
creates schedules allowing nodes to access a single channel in a collision-free manner. The schedules
are constructed in a distributed manner and on an on-demand basis. The protocol assumes that all
nodes are time synchronized and divides time into random access periods and scheduled-access
periods. A random access period followed by a scheduled-access period is called a cycle. The
nodes broadcast their neighborhood information and, by capturing the respective packets from their
neighbors, can learn about their two-hop neighborhood. Furthermore, they broadcast their schedule
information, that is, they periodically provide their neighbors with an updated list of receivers
for the packets currently in a nodes queue. On the basis of this information, the nodes execute a

138 MAC protocols

distributed scheduling algorithm to determine for each time slot of the scheduled-access period the
transmitting and receiving nodes and the nodes that can go into sleep mode.

The protocol itself consists of three different components: the neighborhood protocol, the
schedule exchange protocol and the adaptive election algorithm. The neighborhood proto-
col is executed solely in the random access phase, which is subdivided into small time slots. A
node picks randomly a number of time slots and transmits small control packets in these without
doing any carrier sensing. These packets indicate the node’s identification and contain incremental
neighborhood information, that is only those neighbor identifications are included that belong to
new neighbors or neighbors that were missing during the last cycle. When a node does not transmit,
it listens to pick up its neighbors’ control packets. The length of the random access phase should be
chosen such that a node receives its neighbors packets with sufficiently high probability to ensure
consistent topology information. It depends thus on the node degree. All nodes’ transceivers must
be active during the random access period.

By the schedule exchange protocol, a node transmits its current transmission schedule (indicat-
ing in which time slots it transmits to which neighbor) and also picks up its neighbors’ schedules.
This information is used to actually allocate slots to transmitters and receivers. How does a node
know which slots it can use? All nodes possess a global hash function h, and a node with identifi-
cation x computes for time slot occurring at t the following priority value p:

p = h(x ⊕ t)

where x ⊕ t is the concatenation of x’s node identification with the current time t . To compute its
schedule, a node looks ahead for a certain number of time slots, called its schedule interval (say:
100 slots) and for each of these slots computes its own priority and the priority of all its two-hop
neighbors. For higher node densities, this incurs significant computation costs. The slots for which
x has the highest priority value can be used by x to transmit its packets. These are called winning
slots ; for the sake of example, let us say these are slots 17, 34, 90, and 94. By looking at its packet
queue, x can determine whether it needs all of these slots or can leave some of them to other nodes.
Node x assigns to each of its winning slots a receiving node or a set of receivers, and sends this
assignment as its schedule packet. The last of the future winning slots (slot 94 in our example) is
always used for broadcasting x’s next schedule, that is the whole schedule computation has to be
repeated immediately before slot 94, spanning again over a full schedule interval. By using the last
winning slot, the schedule can be transmitted without risk of collision.

The neighbors of x should wake up at slot 94 to receive x’s next schedule (they should also have
woken up to receive the current schedule!) and to determine when they have to leave sleep mode
to receive a packet from x. In turn, x should also wake up when its neighbors have announced to
transmit their next schedule.

With what we have described so far, node x can determine its winning slots and thus its transmit
opportunities. The other question is: when must x prepare for receptions and when can x go into
sleep mode during the scheduled-access phase? Fix one specific slot. There are two easy cases:
Suppose that a one-hop neighbor y of x has the highest priority in x’s two-hop neighborhood and
that y has announced a packet for this slot. Either x is the receiver or x can go to sleep. A more
complicated situation is depicted in Figure 5.13. Here, node D has the highest priority in B’s two-
hop neighborhood, but, on the other hand node, A has highest priority in its two-hop neighborhood.
The adaptive election algorithm of TRAMA provides approaches for resolving this situation and
also for allowing nodes to reuse their neighbors’ unused winning slots.

Rajendran et al. [672] compare the performance of TRAMA with S-MAC (having 10 and
50 % duty cycle, respectively), the IEEE 802.11 protocol, a CSMA protocol according to refer-
ence [422], and NAMA [54], a precursor of TRAMA. The investigated performance measures are
average packet delivery ratio, the achievable percentage of sleep time, the average sleep inter-
val (which should be long since switching on and off transceivers costs energy), and the average

The IEEE 802.15.4 MAC protocol 139

C
A

B
D

Prio 100 Prio 95 Prio 79 Prio 200

Figure 5.13 TRAMA: conflict situation

queuing delay of a packet waiting for transmission. Two scenarios are simulated: a single-hop
scenario and a multihop scenario with one sink node and the sensors transmitting periodically to
the sink. The underlying physical layer resembles the RF Monolithics TR1000 transceiver [690]
(see also Section 2.1.4). As opposed to S-MAC, the energy savings of TRAMA depend on the
load situation, while in S-MAC it depends on the duty cycle. The investigations confirmed also
a well-known property of TDMA protocols stating that these have higher delays but also higher
maximum throughput than contention-based protocols.

The TRAMA protocol needs significant computation and memory in dense sensor networks since
the two-hop neighborhood of a node tends to be large in this case. Therefore, TRAMA is a feasible
solution only if the sensor nodes have sufficient resources.

5.4.4 Further solutions
So far, we have mainly concentrated on protocols that assume almost no infrastructure, except
some sink nodes. If we can assume the presence of infrastructure nodes, that is, nodes that are
interconnected and not energy constrained, we can shift burdens to these nodes. For example, Shih
et al. [762] assume an infrastructure setting (base stations close to the sensors) with tight latency
requirements. As for the MAC, they investigate a combination of FDMA and TDMA (similar to
GSM [848]) and derive a formula for the optimum number of FDMA channels for best energy
efficiency under delay constraints.

All the schemes discussed so far need a periodically recurring neighbor discovery/network setup
phase to adapt their schedules to changing network topologies. It would be very interesting to
have topology-invariant schemes, which do not need these phases; one example scheme is pro-
posed in reference [160] and another can be found in [161]. However, these schemes still need the
knowledge of global network parameters (number of nodes, maximum node degree) and contain
no provisions to let nodes sleep. Another topology-independent scheme for schedule formation is
described in reference [386].

5.5 The IEEE 802.15.4 MAC protocol
The Institute of Electrical and Electronics Engineers (IEEE) finalized the IEEE 802.15.4 standard
in October 2003 ([468]; see also [929], [317], and [114]). The standard covers the physical layer

140 MAC protocols

and the MAC layer of a low-rate Wireless Personal Area Network (WPAN). Sometimes, people
confuse IEEE 802.15.4 with ZigBee5, an emerging standard from the ZigBee alliance. ZigBee uses
the services offered by IEEE 802.15.4 and adds network construction (star networks, peer-to-peer/
mesh networks, cluster-tree networks), security, application services, and more.

The targeted applications for IEEE 802.15.4 are in the area of wireless sensor networks, home
automation, home networking, connecting devices to a PC, home security, and so on. Most of these
applications require only low-to-medium bitrates (up to some few hundreds of kbps), moderate
average delays without too stringent delay guarantees, and for certain nodes it is highly desirable
to reduce the energy consumption to a minimum. The physical layer offers bitrates of 20 kbps
(a single channel in the frequency range 868–868.6 MHz), 40 kbps (ten channels in the range
between 905 and 928 MHz) and 250 kbps (16 channels in the 2.4 GHz ISM band between 2.4 and
2.485 GHz with 5-MHz spacing between the center frequencies). There are a total of 27 channels
available, but the MAC protocol uses only one of these channels at a time; it is not a multichannel
protocol. More details about the physical layer can be found in Section 2.1.4.

The MAC protocol combines both schedule-based as well as contention-based schemes. The
protocol is asymmetric in that different types of nodes with different roles are used, which is
described next.

5.5.1 Network architecture and types/roles of nodes
The standard distinguishes on the MAC layer two types of nodes:

• A Full Function Device (FFD) can operate in three different roles: it can be a PAN coordinator
(PAN = Personal Area Network), a simple coordinator or a device.

• A Reduced Function Device (RFD) can operate only as a device.

A device must be associated to a coordinator node (which must be a FFD) and communicates only
with this, this way forming a star network. Coordinators can operate in a peer-to-peer fashion and
multiple coordinators can form a Personal Area Network (PAN). The PAN is identified by a 16-bit
PAN Identifier and one of its coordinators is designated as a PAN coordinator.

A coordinator handles among others the following tasks:

• It manages a list of associated devices. Devices are required to explicitly associate and disasso-
ciate with a coordinator using certain signaling packets.

• It allocates short addresses to its devices. All IEEE 802.15.4 nodes have a 64-bit device address.
When a device associates with a coordinator, it may request assignment of a 16-bit short address
to be used subsequently in all communications between device and coordinator. The assigned
address is indicated in the association response packet issued by the coordinator.

• In the beaconed mode of IEEE 802.15.4, it transmits regularly frame beacon packets announcing
the PAN identifier, a list of outstanding frames, and other parameters. Furthermore, the coordi-
nator can accept and process requests to reserve fixed time slots to nodes and the allocations are
indicated in the beacon.

• It exchanges data packets with devices and with peer coordinators.

In the remainder of this section, we focus on the data exchange between coordinator and devices
in a star network; a possible protocol for data exchange between coordinators is described in
Section 5.2.3. We start with the beaconed mode of IEEE 802.15.4.

5 see http://www.zigbee.org/; a brief slide set on ZigBee entitled “ZigBee Overview” can be found under
http://www.zigbee.org/en/resources.

The IEEE 802.15.4 MAC protocol 141

Active period Inactive period

Contention
access period

Guaranteed
time slots

(GTS)Beacon

Figure 5.14 Superframe structure of IEEE 802.15.4

5.5.2 Superframe structure
The coordinator of a star network operating in the beaconed mode organizes channel access and
data transmission with the help of a superframe structure displayed in Figure 5.14.

All superframes have the same length. The coordinator starts each superframe by sending a frame
beacon packet. The frame beacon includes a superframe specification describing the length of the
various components of the following superframe:

• The superframe is subdivided into an active period and an inactive period. During the inactive
period, all nodes including the coordinator can switch off their transceivers and go into sleep
state. The nodes have to wake up immediately before the inactive period ends to receive the next
beacon. The inactive period may be void.

• The active period is subdivided into 16 time slots. The first time slot is occupied by the beacon
frame and the remaining time slots are partitioned into a Contention Access Period (CAP)
followed by a number (maximal seven) of contiguous Guaranteed Time Slots (GTSs).

The length of the active and inactive period as well as the length of a single time slot and the usage
of GTS slots are configurable.

The coordinator is active during the entire active period. The associated devices are active in the
GTS phase only in time slots allocated to them; in all other GTS slots they can enter sleep mode.
In the CAP, a device can shut down its transceiver if it has neither any own data to transmit nor
any data to fetch from the coordinator.

It can be noted already from this description that coordinators do much more work than devices
and the protocol is inherently asymmetric. The protocol is optimized for cases where energy-
constrained sensors are to be attached to energy-unconstrained nodes.

5.5.3 GTS management
The coordinator allocates GTS to devices only when the latter send appropriate request packets
during the CAP. One flag in the request indicates whether the requested time slot is a transmit
slot or a receive slot. In a transmit slot, the device transmits packets to the coordinator and in a
receive slot the data flows in the reverse direction. Another field in the request specifies the desired
number of contiguous time slots in the GTS phase.

The coordinator answers the request packet in two steps: An immediate acknowledgment packet
confirms that the coordinator has received the request packet properly but contains no information
about success or failure of the request.

142 MAC protocols

After receiving the acknowledgment packet, the device is required to track the coordinator’s
beacons for some specified time (called aGTSDescPersistenceTime). When the coordinator has
sufficient resources to allocate a GTS to the node, it inserts an appropriate GTS descriptor into
one of the next beacon frames. This GTS descriptor specifies the short address of the requesting
node and the number and position of the time slots within the GTS phase of the superframe. A
device can use its allocated slots each time they are announced by the coordinator in the GTS
descriptor. If the coordinator has insufficient resources, it generates a GTS descriptor for (invalid)
time slot zero, indicating the available resources in the descriptors length field. Upon receiving
such a descriptor, the device may consider renegotiation. If the device receives no GTS descriptor
within aGTSDescPersistenceTime time after sending the request, it concludes that the allocation
request has failed.

A GTS is allocated to a device on a regular basis until it is explicitly deallocated. The deallocation
can be requested by the device by means of a special control frame. After sending this frame, the
device shall not use the allocated slots any further. The coordinator can also trigger deallocation
based on certain criteria. Specifically, the coordinator monitors the usage of the time slot: If the
slot is not used at least once within a certain number of superframes, the slot is deallocated. The
coordinator signals deallocation to the device by generating a GTS descriptor with start slot zero.

5.5.4 Data transfer procedures
Let us first assume that a device wants to transmit a data packet to the coordinator. If the device
has an allocated transmit GTS, it wakes up just before the time slot starts and sends its packet
immediately without running any carrier-sense or other collision-avoiding operations. However, the
device can do so only when the full transaction consisting of the data packet and an immediate
acknowledgment sent by the coordinator as well as appropriate InterFrame Spaces (IFSs) fit into
the allocated time slots. If this is not the case or when the device does not have any allocated
slots, it sends its data packet during the CAP using a slotted CSMA protocol, described below. The
coordinator sends an immediate acknowledgment for the data packet.

The other case is a data transfer from the coordinator to a device. If the device has allocated a
receive GTS and when the packet/acknowledgment/IFS cycle fits into these, the coordinator simply
transmits the packet in the allocated time slot without further coordination. The device has to
acknowledge the data packet.

The more interesting case is when the coordinator is not able to use a receive GTS. The handshake
between device and coordinator is sketched in Figure 5.15. The coordinator announces a buffered
packet to a device by including the devices address into the pending address field of the beacon
frame. In fact, the device’s address is included as long as the device has not retrieved the packet
or a certain timer has expired. When the device finds its address in the pending address field, it
sends a special data request packet during the CAP. The coordinator answers this packet with
an acknowledgment packet and continues with sending the data packet. The device knows upon
receiving the acknowledgment packet that it shall leave its transceiver on and prepares for the
incoming data packet, which in turn is acknowledged. Otherwise, the device tries again to send
the data request packet during one of the following superframes and optionally switches off its
transceiver until the next beacon.

5.5.5 Slotted CSMA-CA protocol
When nodes have to send data or management/control packets during the CAP, they use a slotted
CSMA protocol. The protocol contains no provisions against hidden-terminal situations, for example

The IEEE 802.15.4 MAC protocol 143

Coordinator Device

Beacon

Data request

Acknowledgement

Data

Acknowledgement

Figure 5.15 Handshake between coordinator and device when the device retrieves a packet [468, Fig. 8]

there is no RTS/CTS handshake. To reduce the probability of collisions, the protocol uses random
delays; it is thus a CSMA-CA protocol (CSMA with Collision Avoidance). Using such random
delays is also part of the protocols described in Section 5.3.1. We describe the protocol operation
in some more detail; please refer to Figure 5.16 also.

The time slots making up the CAP are subdivided into smaller time slots, called backoff periods.
One backoff period has a length corresponding to 20 channel symbol times and the slots considered
by the slotted CSMA-CA protocol are just these backoff periods.

The device maintains three variables NB, CW, and BE. The variable NB counts the number of
backoffs, CW indicates the size of the current congestion window, and BE is the current backoff
exponent. Upon arrival of a new packet to transmit, these variables are initialized with NB = 0,
CW = 2, and BE = macMinBE (with macMinBE being a protocol parameter), respectively. The
device awaits the next backoff period boundary and draws an integer random number r from the
interval [0, 2BE − 1]. The device waits for r backoff periods and performs a carrier-sense operation
(denoted as Clear Channel Assessment (CCA) in the standard). If the medium is idle, the device
decrements CW, waits for the next backoff period boundary, and senses the channel again. If the
channel is still idle, the device assumes that it has won contention and starts transmission of its
data packet. If either of the CCA operations shows a busy medium, the number of backoffs NB
and the backoff exponent BE are incremented and CW is set back to CW = 2. If NB exceeds a
threshold, the device drops the frame and declares a failure. Otherwise, the device again draws an
integer r from [0, 2BE − 1] and waits for the indicated number of backoff slots. All subsequent
steps are repeated.

144 MAC protocols

Success
(transmit data packet)

Channel idle?

NB > MaxCSMABackoffs? CW = 0?

NB : = 0; CW : = 2;
BE : = macMinBE

Await next backoff
period boundary

Random delay for
random_int(2^BE – 1)

backoff periods

NB : = NB + 1
CW : = 2

BE : = min(BE + 1, aMaxBE)

Failure

Perform CCA on
backoff period boundary

CW : = CW – 1

N

Y

Y

N

Y

N

Figure 5.16 Schematic of the slotted CSMA-CA algorithm (simplified version of [468, Fig. 61])

5.5.6 Nonbeaconed mode
The IEEE 802.15.4 protocol offers a nonbeaconed mode besides the beaconed mode. Some impor-
tant differences between these modes are the following:

• In the nonbeaconed mode, the coordinator does not send beacon frames nor is there any GTS
mechanism. The lack of beacon packets takes away a good opportunity for devices to acquire
time synchronization with the coordinator.

• All packets from devices are transmitted using an unslotted (because of the lack of time syn-
chronization) CSMA-CA protocol. As opposed to the slotted CSMA-CA protocol, there is no

How about IEEE 802.11 and bluetooth? 145

synchronization to backoff period boundaries and, in addition, the device performs only a single
CCA operation. If this indicates an idle channel, the device infers success.

• Coordinators must be switched on constantly but devices can follow their own sleep schedule.
Devices wake up for two reasons: (i) to send a data/control packet to the coordinators, or (ii) to
fetch a packet destined to itself from the coordinator by using the data request/acknowledgment/
data/acknowledgment handshake (fetch cycle) discussed above. The data request packet is sent
through the unslotted CSMA-CA mechanism and the following acknowledgment is sent without
any further ado. When the coordinator has a data packet for the device, it transmits it using the
unslotted CSMA-CA access method and the device sends an immediate acknowledgment for the
data. Therefore, the device must stay awake for a certain time after sending the data request
packet. The rate by which the device initiates the fetch cycle is application dependent.

5.5.7 Further reading
Performance evaluations of certain aspects of IEEE 802.15.4 are presented in [521] and [880]. Lu
et al. [521] focus on the case of beacon-enabled networks and investigate some of the throughput/
energy/delay trade-offs. Some attention is paid to the aspect of synchronizing devices to the beacons,
for example, to initiate fetch cycles. In the tracking mode, the device scans the channel for the first
beacon, learns the timing from this, and tries to wake up immediately before the next beacon, and
so on. Accordingly, nodes have a precise idea when the next beacon will arrive and when they can
learn about packets destined to them. In the nontracking mode, a node simply wakes up at some
time, seeks the next beacon, and goes back into sleep mode for longer time when no packet is stored
at the coordinator. Willig [880] investigates theoretical throughput bounds for the two CSMA-CA
variants. The unslotted CSMA-CA variant has a higher throughput because of its lower overhead
(no waiting for backoff period boundaries, only one carrier-sense operation). One key parameter for
the achievable throughput is the transceiver turnover times since these directly impact the collision
rates. In the unslotted version, the number of collisions can be decreased when the turnover times
are decreased. This is, however, not true for the slotted version because of the synchronization of
devices to the coordinator: when two backlogged devices choose the same number r of backoff
periods as their random delay, they will sense the channel at the same time, see the same idle
channel, and start to transmit at the same time.

5.6 How about IEEE 802.11 and bluetooth?
An obvious question is the following: Given that there are already a number of proven wireless MAC
protocols and wireless products out there, why not simply use them? Specifically: There are two pop-
ular and commercially available systems, Bluetooth and IEEE 802.11. What is “wrong” about them?

The Bluetooth system is designed as a Wireless Personal Area Network (WPAN) with one major
application, the connection of devices to a personal computer [318]. It already has been used as
a means for prototyping wireless sensor network applications [72]. The PHY is based on a FHSS
scheme having a hopping frequency of 1.6 kHz and an appropriate allocation of hopping sequences.
The nodes are organized into piconets with one master and up to seven active slave nodes. The
master chooses the hopping sequence, which the slaves have to follow. Furthermore, there can be
several passive slave nodes in a piconet. The master polls the active slaves continuously. Two major
drawbacks of Bluetooth are the need to constantly have a master node, spending much energy on
polling his slaves, and the rather limited number of active slaves per piconet.6 This is not compatible
with the case of dense wireless sensor networks where a huge number of master nodes would be

6 A newer version of Bluetooth remedies this limitation.

146 MAC protocols

needed. An active slave must always be switched on since it cannot predict when it will be polled
by the master. A passive slave has to apply at the master to become an active slave. This fails if
there are seven active nodes already. Furthermore, it is required that each node is able to take the
role of masters or slaves and thus bears considerable complexity. Also, the fast frequency hopping
operations require tight synchronization between the nodes in a piconet.

In the IEEE 802.11 family of protocols, several physical layers are specified sharing a single
MAC protocol [284, 815], the DCF, and on top of it the Point Coordination Function (PCF). Without
further provisions, IEEE 802.11 requires any node x to constantly be in listen mode since another
node y may attempt to transmit a frame to x at any time. Secondly, nodes are required to overhear
RTS and CTS packets to adjust their NAV timers properly. IEEE 802.11 has some power-saving
functionalities [691], but, in general, the system is targeted towards high bitrates and the available
transceivers require orders of magnitude more energy than acceptable in low-bitrate sensor network
applications. Furthermore, IEEE 802.11 is a single-hop protocol for both the infrastructure and ad
hoc network scenarios and, in general, is targeted at letting a number of independent and competing
users share a common channel in a fair manner. These goals do not match the goals of wireless
sensor networks.

5.7 Further reading
MAC protocols is a popular issue in the sensor networks literature and many protocols are missing.
The following list of references provides some further starting points.

• There are some proposals to add power-control elements to MAC protocols. A recurring theme
here is the augmentation of protocols using RTS/CTS handshakes with methods for adapting
the transmit power to the minimum level necessary to reach the intended neighbor with a given
BER target or packet-loss probability; see, for example, [895] or the BASIC scheme discussed
in [389]. In BASIC, the RTS and CTS packets are transmitted at highest power, the data and
acknowledgment packets at just the right power, inferred from the signal strengths of either RTS
or CTS. The same authors Jung and Vaidya [389] propose a variation of BASIC in which the
transmitter increases transmit power periodically within the data packet to keep contenders away.
In the PCMA protocol described by Monks et al. [572], the transmitter issues a RTS packet and
the receiver measures the signal strength of this packet. Using this information, the receiver
can derive bounds on acceptable interference from hidden nodes and this bound is transmitted
along with the CTS answer. Any neighbor hearing the CTS is allowed to transmit as long as
the interference it creates to the receiver is below the given bound. Further references are [446],
[573], [48], and [577].

• Chlamtac et al. [163] propose different access protocols for RF ID applications. One of these
protocols is based on TDMA, a second one is a random access protocol, and a third one is a
directory protocol.

• The DE-MAC protocol presented by Kalidindi et al. [393] is a TDMA-based scheme, which
aims to regulate slot assignment such that energy-poor nodes can go into sleep mode more often.

• Tay et al. [813] present a nonpersistent CSMA variant with carefully chosen backoff times
specifically targeted for achieving small delays for the first few packets after a sensor network
starts to report data about a triggering event.

• The capacity of MAC protocols based on the RTS/CTS virtual carrier-sensing approach in ad
hoc networks is discussed in [43].

• One reference focusing on quality-of-service aspects in wireless multihop networks instead of
energy is [398].

Further reading 147

Ta
bl

e
5.

1
Su

m
m

ar
y

of
im

po
rt

an
t

W
SN

M
A

C
pr

ot
oc

ol
s

Pr
ot

oc
ol

R
ef

er
en

ce
s

Fl
at

/
#

of
re

qu
ir

ed
Id

le
lis

te
ni

ng
O

ve
rh

ea
ri

ng
C

ol
lis

io
n

O
ve

rh
ea

d
cl

us
te

re
d

ch
an

ne
ls

av
oi

da
nc

e
av

oi
da

nc
e

av
oi

da
nc

e

L
E

A
C

H
[3

46
]

R
ot

at
in

g
cl

us
te

rs
1

B
y

T
D

M
A

B
y

T
D

M
A

B
y

T
D

M
A

C
lu

st
er

el
ec

tio
n/

fo
rm

at
io

n
ST

E
M

[7
42

]
B

ot
h

2
Pe

ri
od

ic
sl

ee
p

ST
E

M
-B

D
ep

en
ds

on
M

A
C

D
ep

en
ds

on
M

A
C

,
w

ak
eu

p
be

ac
on

s
S-

M
A

C
[9

14
,

91
5]

Fl
at

1
Pe

ri
od

ic
sl

ee
p

T
hr

ou
gh

N
A

V
R

T
S/

C
T

S
R

T
S/

C
T

S,
SY

N
C

H
,

vi
rt

ua
l

cl
us

te
r

in
it.

M
ed

ia
tio

n
de

vi
ce

[1
15

,
C

ha
p.

4]
Fl

at
1

Pe
ri

od
ic

sl
ee

p
Im

pl
ic

it
N

o
Pe

ri
od

ic
m

ed
ia

to
r

se
rv

ic
e,

qu
er

y
be

ac
on

s,
R

T
S/

C
T

S
W

ak
eu

p
ra

di
o

[6
67

,
93

1]
Fl

at
≥2

W
ak

eu
p

si
gn

al
W

ak
eu

p
si

gn
al

M
ul

tic
ha

nn
el

C
SM

A
E

xt
ra

w
ak

eu
p

ra
di

o

C
SM

A
pr

ot
oc

ol
s

[8
88

]
Fl

at
1

–
Sl

ee
p

du
ri

ng
ba

ck
of

f
R

T
S/

C
T

S
R

T
S/

C
T

S

PA
M

A
S

[6
68

]
Fl

at
2

–
Y

es
R

T
S/

C
T

S,
bu

sy
to

ne
Si

gn
al

in
g

ch
an

ne
l

SM
A

C
S

[7
78

,
78

0]
Fl

at
M

an
y

B
y

T
D

M
A

B
y

T
D

M
A

B
y

T
D

M
A

N
ei

gh
bo

rh
oo

d
di

sc
ov

er
y,

ch
an

ne
l

se
tu

p
T

R
A

M
A

[6
72

]
Fl

at
1

B
y

sc
he

du
lin

g
B

y
sc

he
du

lin
g

B
y

sc
he

du
lin

g
N

ei
gh

bo
r

pr
ot

oc
ol

,
sc

he
du

le
tr

an
sm

is
si

on

148 MAC protocols

5.8 Conclusion
Several different MAC protocols for wireless sensor networks have been discussed in this chapter;
their most important characteristics are summarized in Table 5.1. All of them are designed with the
goal to conserve energy; other goals like small delays or high throughput are often traded off for
energy conservation. There is no generic “best” MAC protocol; the proper choice depends on the
application, the expected load patterns, the expected deployment (sparse versus dense sensor net-
works), and the specifics of the underlying hardware’s energy-consumption behavior, for example,
the relative costs of transmitting, receiving, switching between modes, wakeup times, and wakeup
energy from sleep mode as well as the specific computation costs for executing the MAC protocol.
We summarize some of the more important features of the discussed protocols in Table 5.1.

6
Link-layer protocols

Objectives of this Chapter
The most important tasks of the link layer are the formation and maintenance of direct communica-
tion associations (“links”) between neighboring sensor nodes and the reliable and efficient transfer
of information across these links. The reliability has to be achieved despite time-variable error
conditions on the wireless link, and many mechanisms with different performance and energy-
consumption characteristics have been devised. We discuss some of these mechanisms and point to
a simple relationship between reliability, energy, and error rates: Increased error rates or increased
reliability targets increase the energy consumption. Therefore, the reliability goals should be care-
fully stated according to application needs and expected error conditions.

Chapter Outline
6.1 Fundamentals: tasks and requirements 150
6.2 Error control 151
6.3 Framing 167
6.4 Link management 174
6.5 Summary 179

The Data Link Layer (DLL) – or link layer for short – has the task of ensuring a reliable
communications link between neighboring nodes, which in the case of wireless (sensor) networks
means between nodes in radio range. Therefore, error control is one of its most important tasks,
although there are others too. Error-control techniques are designed with the goal to achieve a
certain level of reliability in the transmission of packets despite errors on the transmission channel.
In wireless sensor networks, we have the additional requirement to achieve this reliability level
with a minimum amount of energy. The most important control knobs and correction mechanisms
that error-control schemes typically use are redundancy, retransmissions, and choice of transmit
parameters like packet sizes and transmit powers. These control knobs are discussed in this chapter.
One key aspect of these mechanisms is that they do not work under all channel error patterns equally

Protocols and Architectures for Wireless Sensor Networks. Holger Karl and Andreas Willig
Copyright 2005 John Wiley & Sons, Ltd. ISBN: 0-470-09510-5

150 Link-layer protocols

well. A channel governed by a simple BSC model (independent bit errors with a constant error
probability p) is quite different from channels exhibiting “bursty” errors and the performance as
well as the energy expenditure depend on the channel type.

A trivial but nonetheless key lesson of this chapter – illustrated by a simple example – is that,
in general, reliability costs energy, and increased reliability costs (sometimes exponentially) more
energy. Therefore, reliability goals should be set carefully. This chapter has a single-hop perspective;
the issue of reliable transmission in the end-to-end case is treated in Chapter 13.

However, the link layer has more tasks than reliable transmission. This chapter gives an overview
of the different functions of the link layer, focusing on aspects important for wireless sensor
networks. General treatments can be found in standard textbooks, for example, references [68, 458,
808].

6.1 Fundamentals: tasks and requirements
The DLL sits on top of the packet transmission and reception service offered by the MAC layer
and offers its services to the network layer and other higher layers. Specifically, the network layer
can use the link-layer services for packet delivery and to aid in routing and topology-control
operations.

One of the most important tasks of the link layer is to create a reliable communication link
for packet transmission between neighboring nodes, that is, nodes in mutual radio range. This
can be broken down into the following aspects (a more refined breakdown is discussed in refer-
ence [930]):

Framing User data is fragmented and formatted into packets or frames, which include the user
data and protocol-related information for the link layer (and the underlying MAC layer). The
format and size of packets can have significant impact on performance metrics like throughput
and energy consumption. The issues involved in framing are discussed in Section 6.3.

Error control This function acknowledges the fact that all transmission media and, particularly,
wireless media introduce distortions into transmitted waveforms, which may render transmit-
ted packets useless. With error-control mechanisms, the effect of errors shall be compensated
for. The efficiency and energy consumption of the different error-control mechanisms depends
on the error patterns on the link. Error control is discussed in Section 6.2.

Flow control The receiver of a (series of) packets may be temporarily not willing to accept packets,
for example, because of lack of buffer space or processing capacity. Flow-control mechanisms
introduce some signaling to let the transmitter slow down transmission. Since many sensor
node designs use only very low bitrates, it is reasonable to assume that flow control is
not an issue in sensor networks. This holds especially true when the destinations are more
capable sink nodes. Accordingly, flow control has not been explicitly investigated in the
context of wireless sensor networks, and it seems that the existing mechanisms – some
of them integrated in error-control protocols (sliding window mechanism) – are sufficient.
Therefore, we refer the reader to the standard networking literature.

Link management This mechanism involves discovery, setup, maintenance, and teardown of links
to neighbors. An important part of the link-maintenance process is the estimation of the
link quality, which can be used by higher-layer protocols for routing decisions or topology-
control purposes. This link-quality estimation is discussed in Section 6.4.2. Some procedures
for link setup and teardown have already been discussed in the context of MAC protocols,
for example, in the SMACS protocol (Chapter 5).

Error control 151

Sometimes, the link layer has additional tasks, for example, the implementation of certain security
mechanisms. Security issues are, in general, out of the scope of this book; a short glimpse on this
topic can be found in Section 14.2.

6.2 Error control
In this section, we discuss several error-control methods, that is, methods that deal with transmission
errors on wireless links to provide a certain service. The data transport service provided by a link
layer can be characterized in terms of the following attributes:

Error-free The information that the receiving node’s link layer delivers to its user should contain
no errors, that is the transmitted bits are reproduced exactly.

In-sequence If the user of the transmitter’s DLL hands over two pieces of information A and
B in this sequence, the receiver’s DLL must never pass B before A to its user; all other
outcomes – A before B, only A, only B, or no packet at all – are allowed.

Duplicate-free The receiver’s DLL user should get the same piece of information at most once.

Loss-free The receiver’s DLL user should get any piece of information at least once.

Additionally, there can be delay constraints and energy constraints, meaning that either the delay a
packet experiences in the DLL and lower layers or the energy spent by the DLL and lower layers
should be bounded by an explicitly given value.

The most important error-control techniques are Forward Error Correction (FEC) and Automatic
Repeat Request (ARQ) and combinations thereof; these are discussed in Sections 6.2.2 and 6.2.3.
ARQ protocols address all the desired service attributes (error-free, in-sequence, duplicate-, and
loss-free), while FEC methods are focused primarily on achieving error-free transmission.

There exists a rich literature on error control; some standard references are [74, 178, 322, 504,
511, 551, 661].

6.2.1 Causes and characteristics of transmission errors
It is a well-known fact that transmission on wireless channels is much more error prone than
on wired channels. Physical phenomena like reflection, diffraction, and scattering of waveforms,
partially in conjunction with moving nodes or movements in the environment, lead to fast fading
and intersymbol interference. Path loss, attenuation, and the presence of obstacles lead to slow
fading. In addition, there is noise and interference from other nodes/other systems working in
overlapping or neighboring frequency bands. All these impairments are discussed in Chapter 4 and
in references [124, 592, 682].

The distortion of waveforms translates into bit errors and packet losses. We explain this distinction
with the help of an example. In Figure 6.1, we show the format of the Physical-layer Protocol Data
Unit (PPDU) of the IEEE 802.11 WLAN standard with DSSS physical layer [467]. The PPDU
is subdivided into a preamble, a PHY header, and the MAC-layer Protocol Data Unit (MPDU)

Sync (128 bit) SFD (16 bit) Signal (8 bit) Service (8 bit) Length (16 bit) MPDU (variable)

Preamble PHY header

Figure 6.1 Format of an IEEE 802.11/802.11b physical layer frame

152 Link-layer protocols

data part. The latter carries the MAC packet. The preamble is a constant bit pattern and useful
for equalization purposes and to allow the receiver to acquire bit and frame synchronization. The
PHY header describes among others the length and the modulation scheme used in the data part;
in addition, the header is protected by its own checksum field. The end of the PHY header and the
beginning of the actual MPDU is indicated by a fixed SFD. Packet losses occur if (i) the receiver
fails to acquire bit/frame synchronization, (ii) the SFD is wrong, or (iii) bit errors in the remaining
PHY header lead to an incorrect header checksum.1 The result of a packet loss is that subsequent
receiver stages like a FEC decoder or a MAC protocol entity do not see any data at all. When
synchronization and PHY header have been acquired successfully, the bits making up the MPDU
can be processed further by FEC or MAC. If any of these bits is not the same as its transmitted
counterpart, we have a bit error. ARQ protocols provide checksums to detect bit errors and often
drop the entire packet.2

In this particular framing scheme, applying FEC [504, 551] may correct bit errors in the data/
MPDU part, but the PHY header is not covered and therefore packet losses cannot be prevented.
Measurements with an IEEE 802.11-compliant radio transceiver taken in an industrial Non Line Of
Sight (NLOS) environment [882] have shown that indeed both types of errors occur, at sometimes
impressive (or disturbing) rates. The frame structure shown in Figure 6.1 is quite common and
packet losses may therefore occur in other systems as well.

The bit error and packet-loss statistics depend on a multitude of factors, including frequency,
modulation scheme, distance, propagation environment (number of paths, materials), and the pres-
ence of interferers. Several studies of these statistics [13, 213, 223, 594, 882, 888] show some
common properties:

• Both bit errors and packet losses are “bursty”, that is they tend to occur in clusters with error-free
periods (“runs”) between the clusters. The empirical distributions of the cluster and run lengths
often have a large coefficient of variation or sometimes even seem to be heavy tailed [436].

• The error behavior even for stationary transmitter and receiver is time varying, and the instanta-
neous bit-error rates can be sometimes quite high (10−4 . . . 10−2). The same is true for packet-loss
rates, which can reach values well beyond 50 %.

The bursty nature of wireless channel errors is a source of both problems and opportunities as we
will see in the following sections.

6.2.2 ARQ techniques
The basic idea of ARQ protocols [322, 511] can be described as follows. The transmitting node’s
link layer accepts a data packet, creates a link-layer packet by prepending a header and a checksum,
and transmits this packet to the receiver. The receiver checks the packet’s integrity with the help of
the checksum and provides feedback to the transmitter regarding the success of packet transmission.
On receiving negative feedback, the transmitter performs a retransmission.

Key ingredients of ARQ protocols

Let us discuss some of the steps in some more detail:

1 It is important to note that the meaning of the word “packet loss” is not uniform throughout the literature: many authors
subsume both bit errors and synchronization errors as packet losses, since either way the receiver gets no valid packet.

2 For certain types of user data, bit errors do not matter (much), and the MAC/ARQ checksum does not need to span the
whole user data but only the MAC and link-layer header. An example is image transmission, where a few pixels distorted by
bit errors are not visible to the human eye.

Error control 153

U = User data

U = User data FCS = f (H, U)H = DLL/MAC
header

DLL–interface

Figure 6.2 Generic packet formatting at the DLL

Packet formatting The DLL at the transmitter accepts user data U from upper layers, typically
subject to some restriction in size (Figure 6.2). This restriction can be imposed, for example,
by technological parameters or restrictions of the physical layer like carrier or bit synchro-
nization schemes having poor tracking algorithms (see Section 4.2.6. The DLL prepends
a header H to the packet, which contains control and address information. The address
information is needed because wireless media are broadcast media by nature and a packet
can theoretically be received by all neighbors in radio range. The address distinguishes the
intended receiver and the transmitter. The control information can include sequence numbers,
or flags, depending on the specific ARQ protocol.

Checksum The checksum (also often called frame check sequence) is appended to a packet after
the packet-formatting process. In general, the checksum is a function of both the user data
U as well as the header H . A widespread class of checksums are CRC values, often 8-,
16-, or 32-bits wide. The computation of CRC values is comparably easy, since they can be
implemented with a linear-feedback shift register [322]. The receiver repeats the checksum
calculation for the received header H ′ and the received user data U ′. If the newly computed
checksum is the same as the one carried in the packet, the receiver accepts the packet as
correct. Typically, the size of user data U and header H is larger than the width of the
checksum field and the checksum computation is not one-to-one. It could thus happen that
a certain error pattern transforms the user data U into other user data U ′ such that for
both U and U ′ the same checksum is computed – the packet would be accepted despite
the (undetected) presence of errors. Hence, there is always a residual error rate, and the
residual becomes larger as the checksum field becomes smaller; it depends, furthermore,
on the statistical characteristics of both the user bits and the error patterns [797]. Small
checksum fields are desirable in sensor networks to keep the number of transmitted bits low.

Feedback generation The feedback-generation step provides the transmitter with information
about the outcome of the packet transmission. Two often-used mechanisms for obtaining
feedback are timers (at the transmitter) and acknowledgment packets. Acknowledgements
can be positive or negative. With a positive acknowledgement, the receiver confirms that
he has received a packet. Positive acknowledgements can be sent for each packet or one
acknowledgment packet can carry information about several data packets. The latter approach
is clearly more energy efficient as is shown in reference [162] for the Selective Reject ARQ
protocol. A negative acknowledgement is sent when the receiver detects a reception failure.
However, in environments where multiple nodes can hear each other, negative acknowledg-
ments are only feasible if (i) the MAC/DLL header has a separate checksum and is correctly
received and the receiver thus knows which node has transmitted the packet, or (ii) the
receiver has detected the reception failure by other means, for example, by finding a hole

154 Link-layer protocols

in the received sequence numbers. Hence, the next packet triggers detection of reception
failure. Since both data and acknowledgment packets can get lost, the transmitter needs to
use timers. The transmitter sets the timer when the last bit of the data packet has been sent to
alert itself when the likely time for receiving the acknowledgment has expired. The timeout
value must be large enough to include the processing time at the receiver, the duration of the
ack packet, and the propagation delay. In WSNs, the nodes are only a short distance apart
and the propagation delay is negligible. It is also an option for the receiver to piggyback
acknowledgment information onto data packets going in the opposite direction. However,
there must be sufficient traffic to avoid large delays for the acknowledgment information.
In light traffic cases, as expected in many sensor network applications, such a scheme will
often fail and extra ack packets must be sent.

Retransmissions Upon receiving negative feedback for a packet, the transmitter performs retrans-
missions. A first consequence of this fact is that the transmitter has to buffer the packets.
Secondly, the transmitter must decide when to retransmit and what to retransmit. We will
discuss these issues in some more detail below.

Standard ARQ protocols

Three standard ARQ protocols have emerged in the literature. They differ in their buffer require-
ments and retransmission strategies [68, 322, 505, 743, 808]:

Alternating bit The transmitter buffers one packet, sends it, and sets a timer. The receiver either
receives the packet and sends a positive acknowledgment back or nothing is received and
the receiver keeps quiet or sends a negative acknowledgment. If the transmitter receives
a positive ack, the buffer is freed and the next packet can be transmitted. Otherwise, the
transmitter retransmits the packet. The transmitter stamps each new packet with sequence
numbers alternating between 0 and 1. Retransmitted packets are literal copies of the original
packet and have thus the same sequence number. The sequence numbers allow the receiver
to detect duplicates, which result if the positive acknowledgment, not the data packet, is lost.
Alternating bit can provide loss-free, duplicate-free and in-sequence delivery of data given
that the round-trip time (RTT) can be tightly bounded and the transmitter timeouts are larger
than the RTT. Alternating bit [57] is also often referred to as Send-and-Wait.

Goback N Alternating bit is inefficient in case of “long fat pipes”, that is, links where multiple
packets can be in transit during a round-trip time (links with a large product of bandwidth
and delay). Goback N is a protocol that allows the transmitter to have multiple outstanding,
that is, unacknowledged frames. The transmitter keeps a buffer for up to N packets, called its
window. Each packet in the window has its own timer, started upon the packet’s transmission.
The receiver accepts frames only in sequence and drops frames that are correctly received
but do not have the expected sequence number (typically, because some previous frame had
been lost). Therefore, the receiver only needs buffer space for a single frame. One common
strategy for acknowledgements is to let the receiver always acknowledge the last packet
arrived in sequence. If at the transmitter the timer for the oldest frame expires because the
corresponding acknowledgement has not been received, this frame and all other frames in
the window are retransmitted.

Selective Repeat/Selective Reject Selective Repeat has similarities to Goback N. However, unlike
the Goback N protocol, in Selective Repeat the receiver also has N buffers and uses them to
buffer frames arriving out of sequence. To achieve in-sequence delivery of data to the user, the
receiver keeps out-of-sequence packets in the buffer until the missing packets have arrived.

Error control 155

The receiver can use both positive acknowledgements and negative acknowledgements. On
the other side, the transmitter retransmits only those packets for which no acknowledgment
has been received within the timeout period.

Send-and-Wait and Selective Repeat have the important property that only erroneous packets are
retransmitted while Goback N potentially also retransmits correctly received packets, which is a
waste of energy. In practice, often, the number of retransmissions allowed per packet is bounded
to avoid spending too much energy in hopeless cases. In this case, a loss-free service cannot be
guaranteed. Such a protocol is also said to be semireliable.

We illustrate the dependency between the desired reliability and the energy consumption with a
simple example.

Example 6.1 (Energy consumption of alternating bit) Let us consider the alternating bit proto-
col over a BSC with a fixed bit error probability p, a packet of length l bits, and an infinite
number of trials. The packet-success probability Ps is thus given by

Ps(l) = (1 − p)l

and the packet-error probability is Pe(l) = 1 − Ps(l). The number of trials i ∈ N needed
to successfully transmit the packet over the link is a geometric random variable X with
probability mass function:

Pr [X = i] = Ps(l) · Pe(l)
i−1

and cumulative distribution function

F(k) = Pr [X ≤ k] =
k∑

i=1

Pr [X = i] = 1 − Pe(l)
k k ∈ N.

If we prescribe ourselves a desired delivery probability δ ∈ (0, 1), we can ask for the number
k∗ of trials needed to deliver the packet with at least probability δ. Any smaller number of
transmissions does not reach the reliability target. The value k∗ is directly proportional to
the energy consumption. The number k∗ is given by:

k∗ = F−1(δ) = min{k ∈ N : F(k) ≥ δ}.

Technically, k∗ is the δ-quantile of the random variable X. With simple algebra it follows that

k∗ =
⌈

log(1 − δ)

log Pe(l)

⌉
.

The number k∗ is graphed in Figure 6.3 for packets of length l = 1023 bits and two differ-
ent reliability values δ1 = 0.9 and δ2 = 0.99; in the figure, the integer constraint for k∗ is
neglected.

The figure shows clearly that for relaxed reliability requirements δ = 0.9, and for moderate-
to-high bit-error rates (in the range 10−5 . . . 10−2), we have to spend significantly less energy
than for the higher reliability requirement. Below a BER of 10−5, the channel is already good
enough to transmit the packet successfully with the first trial and to guarantee any of the
desired reliability bounds.

156 Link-layer protocols

1

10

100

1000

1e-07 1e-06 1e-05 0.0001 0.001

Reliability = 0.9
Reliability = 0.99

k
*(

p)

p

Figure 6.3 Minimum number k∗ of trials needed to be sure that the packet reaches the receiver with prescribed
probability δ ∈ {0.9, 0.99} with alternating bit for varying bit-error rate p

How to use acknowledgments?

The acknowledgment packets discussed so far in this chapter are link-layer acknowledgments and
their meaning is that the receiver (i) has correctly received the packet, (ii) has sufficient buffer space
to process it further, and (iii) actually accepts the packet because it is received in sequence or an
out-of-sequence packet is accepted in Selective Reject. On the other hand, several MAC protocols
use MAC-layer acknowledgments, for example, the mediation device protocol (Section 5.2.3) or S-
MAC (Section 5.2.2). Sending out a MAC-layer ack implies at least condition (i) and for Alternating
Bit and Selective Repeat, often (ii) and (iii) are implied too. This depends on the implementation:
The receiver should place the packets immediately into link-layer buffers instead of using a MAC
layer buffer and doing the transfer later. In the case that all three conditions are met, the MAC
layer acks can be used simultaneously as link-layer acks.

If there are no MAC layer acknowledgments or the MAC acks satisfy only condition (i), either
extra link-layer acknowledgment packets are required or the receiver can piggyback the acknowl-
edgment information onto outgoing data packets destined for the transmitting node. However,
piggybacking is not effective in case of low traffic load or in scenarios where almost all traffic is
directed to a few sink nodes.

It is clear that we can save energy by reducing the number of acknowledgment packets, that is,
if we let one acknowledgment packet acknowledge multiple data packets. On the downside, such
a scheme requires the transmitter and, in case of Selective Repeat also the receiver, to provide a
certain number of buffers, possibly creating a problem on memory-constrained sensor nodes.

Two such schemes have been discussed in reference [162] for the Goback N and Selective
Repeat protocols. Their work is similar to the AIRMAIL link-layer protocol [33]. We focus on the
Selective Repeat case, since it avoids retransmission of already received frames. In the first scheme,
named windowed feedback with selective repeat, the receiver sends acknowledgments either after
receiving a fixed number W of packets (called window size), after a timeout, or a duplicate packet
reception. The acknowledgment contains a bitmap indicating the receiver’s view on the packets’

Error control 157

status since sending the last acknowledgment. In the instantaneous feedback with selective repeat
scheme, the receiver in addition sends a (negative) acknowledgment upon receiving an out-of-
order packet. The behavior of the transmitter is simple. It can continue to send as long as the new
packets belong to the current window of size W . Upon reaching the end of the window without
having received any feedback, the transmitter repeats the newest frame, triggering acknowledgment
generation in the receiver. When the transmitter receives the acknowledgment, it can free the
buffers for the correctly received packets and the erroneous packets are retransmitted. The window
is advanced according to how many of the oldest packets in the window are acknowledged.

To judge the performance of these schemes, consider the following metrics. For a slotted system
with fixed-size packets, the energy efficiency is measured as the average fraction of slots carrying
acknowledgment frames, this way characterizing only the savings in ack frames. The throughput
is evaluated as the average acceptance rate of new packets into the transmitter’s window per slot
given a saturated source. The delay is measured as the time between arrival of a packet at the
transmitter and the time instant when the packet is acknowledged and its buffer is freed. Some of
the results are:

• For both fast fading and slow fading scenarios with a mean packet-error rate of 30 %, increas-
ing the window size increases the throughput and reduces the average energy consumption for
both schemes, with the windowed feedback scheme giving better energy efficiency at the same
throughput levels.

• When considering the relationship between energy consumption and delay, an increase in window
size leads, for the instantaneous feedback scheme, to a reduction of energy consumption with
only moderately varying delays. For the windowed feedback scheme, an increasing window size
leads also to a decreased energy consumption but also to vastly increased delays.

Summarizing, given a fixed energy-consumption target, the scheme of choice depends on the second
performance metric: if delay is at premium, the instantaneous feedback scheme is preferable, but
if throughput is more important, the windowed feedback scheme is better.

In reference [689], these considerations are extended to allow a central node (base station) to
explicitly control the acknowledgment generation behavior of its associated nodes based on traffic
types and remaining energy. Here, much protocol complexity is moved to the central node, which
should have appropriate memory and computation resources.

When to retransmit?

In ARQ protocols, a transmitter does not only have to decide that he has to retransmit but he
also has to decide when to do so. Does the point in time make a difference? This depends on the
channel error characteristics:

• In case of a static BSC channel, any time instant is just as good as any other – we cannot improve
the chances of successful transmission by waiting.

• In case of fading channels, the situation is different. If a packet is hit by a deep fade and if the
packet length is short as compared to the average fade duration, an immediate retransmission will
likely be hit by the same deep fade and is thus a waste of energy. If the protocol is semireliable,
the maximum number of trials may be exhausted before the channel turns back into a good state.

Therefore, in case of fading channels, it is wise to postpone retransmissions. It has been shown
in other contexts [73, 116, 117] that postponing retransmissions and serving packets destined to
other nodes meanwhile can significantly increase the throughput on a wireless network since no

158 Link-layer protocols

precious time and bandwidth (and energy!) is spent on useless immediate retransmissions. But how
long shall we wait?

The probing protocol presented by Zorzi and Rao [942] distinguishes two different “channel
modes”, the normal mode and the probing mode. During the normal mode, the transmitting
node sends packets according to an ARQ protocol, for example, Goback N or Selective Repeat.
If the transmitter receives negative feedback (for example, lack of acknowledgement and timer
expiration), it switches into the probing mode. In this mode, the transmitter periodically sends
small probe packets. These probes are acknowledged by the receiver. Upon receiving such a probe
acknowledgment, the transmitter assumes that both the forward channel (transmitter to receiver)
and the backward channel (receiver to transmitter) are okay and continues in normal mode.

Two versions of the probing protocol are proposed, corresponding to Goback N and Selective
Repeat. In the first one, upon switching back to normal mode, the transmitter simply transmits the
failed packets and all subsequent packets again to the receiver. In the selective probing protocol,
the receiver has buffers for the packets following a missed/corrupted packet. In the probe packet
acknowledgment, the receiver indicates the buffered frames and the transmitter retransmits only the
missing ones. Such an approach is useful if, because of long links, there can be several outstanding
frames and the error burst was short enough to hit only one of them or in the case that the forward
channel is good but the return channel is currently bad. The probing protocols decrease throughput
since after the channel switches back to a good state it takes some time before the transmitter notices
this and switches back to normal mode. This time is related to the period of the probing packets.
The energy efficiency of the probing protocols and a classical Goback N protocol are compared by
looking at the average number of trials needed to transmit a data packet. For bad channel conditions
(long error bursts) and channels with short round-trip times, the probing protocol manages to keep
this number close to one. The average number of probing packets needed, however, increases also
with degrading channel conditions/longer error bursts.

The usage of probing packets in the probing protocol is questionable if the data packets are small
themselves. In this case, one can directly use the data packets and avoid one extra transmission
when the channel switches back into the good state. Such an approach amounts to inserting waiting
times of fixed duration before the next trial, as described in reference [73]. When the fade statistics
are known a priori or can be estimated with sufficient precision, such an approach can be successful.
Another variation is to use linearly or exponentially growing inter-packet spaces between successive
probing packets instead of using constant spaces.

6.2.3 FEC techniques
In all FEC mechanisms, the transmitter accepts a stream or a block of user data bits or source bits,
adds suitable redundancy, and transmits the result toward the receiver. A conceptual view of where
FEC could be placed in a communication system is shown in Figure 6.4.

Depending on the amount and structure of the redundancy, the receiver might be able to correct
some bit errors. FEC can be used as an open loop technique, which means that there is no
feedback from the receiver. Accordingly, the transmitter uses the same coding method all the time.
This can be an interesting feature in terms of energy, since feedback is usually provided through
acknowledgment packets. These would require the transmitting node to switch its transceiver into
receive mode and wait for the acknowledgment; therefore, we incur both the reception costs (for
the acknowledgment) and the costs for receiver turnaround. Furthermore, since typically the data
packets in wireless sensor networks tend to be small, the acknowledgment packets make up a
significant share of the total energy to transmit a packet.

Several coding schemes have been developed since Claude Shannon opened up the field of coding
and information theory in 1948 [756]. Two widely used classes are block codes and convolutional
codes, which are discussed next. The recently investigated class of turbo codes [66, 67, 773] has the

Error control 159

Channel
encoder
(FEC)

Inter-
leaver

Modula-
tor

Demo-
dulator

Deinter-
leaver

Channel
decoder

Channel

Source symbols Channel symbols Channel symbols Digital waveform

Channel symbols Channel symbolsSource symbols Digital waveform

Information
source

Information
sink

Figure 6.4 Conceptual view of FEC placement in a send/receive chain; channel encode and decode imple-
ment FEC

potential to nearly achieve the Shannon capacity of channels, but requires complex implementation
and so far has not been considered as a candidate for wireless sensor networks.

Block-coded FEC

A block FEC coder takes a block or a word of a number k of p-ary source symbols and produces
a block consisting of n of q-ary channel symbols; mostly, we have p = q = 2, n ≥ k, and the
symbols correspond to bits. Different source blocks are coded independent of each other [504, 772].
The mapping of the 2k different source words into the 2n different channel bits is injective and the
range of this mapping is the set of valid channel symbols. Such a mapping is also called a code,
and the ratio k

n
is called the code rate (small code rate equals high redundancy and small useful

data rate). The number t of reliably correctable bits in a channel block of length n bits depends on
the coding scheme; however, an upper bound is imposed by the Hamming bound, which states
that a block code with k user bits mapped to n channel bits can correct up to t bit errors only if
the relation

2n−k ≥
t∑

i=0

(
n

i

)

holds. The fact that a triple (n, k, t) satisfies this relation does not imply that a code with this
properties really exists.

An important metric for a block code is its Hamming distance: the Hamming distance of two
valid channel words w1 and w2 is defined as the number of bits in which they differ and the
Hamming distance dmin of the whole code is defined as the minimum Hamming distance of all
pairs of valid channel words. Any code with a Hamming distance dmin can reliably detect up to
and including dmin − 1 bit errors and can reliably correct up to and including dmin−1

2 bit errors. For
practical applications, the set of valid codewords should be structured to allow easy coding and
decoding. For example, in so-called linear block codes [551, Chap. 3] a vector space structure is
imposed on the 2n codewords and the subset of 2k valid codewords is a subspace. Decoding can be
regarded as finding the orthogonal projection of the received codeword onto the subspace of valid
codewords. Popular and widely used examples of block codes are Reed–Solomon (RS) codes and
Bose–Chaudhuri–Hocquenghem (BCH) codes.

If block coding FEC is applied as an open-loop technique, a constant overhead is incurred in
every packet. On the transmitting node, this overhead consists of transmitting some extra bits
and in doing the computations necessary for coding. For binary BCH codes, the coding process
uses a linear-feedback shift register [551, Sec. 4.4] and can be assumed to have negligible energy

160 Link-layer protocols

costs [411, 761]. For decoding, several efficient algorithms have been developed, for example the
Berlekamp-Massey algorithm [551, Sec. 6.6]. The energy costs of these algorithms depend both on
the block length n and the code rate/number of correctable bits. With respect to the block length
n, these algorithms show a linear increase in energy costs [294, 721]. According to [721, Eq. 13],
the decoding energy depends on the block length n and the number of correctable bits t as

Edec = (2nt + 2t2) · (Eadd + Emult), (6.1)

where Eadd and Emult are the energy needed to carry out addition and multiplication in the Galois
field GF(2m) with m = �log2 n + 1�. For Reed–Solomon codes, similar relations hold, since they
are a subclass of nonbinary BCH codes. In [478], it has been shown experimentally that the energy
costs also depend on the code rate, with increasing code rates (less protection) having less energy
costs (Figure 6.5).

If the error conditions on the channel vary over time, the residual error rate (rate of uncor-
rectable errors) of FEC techniques varies too. If the bit-error rate is very small all the time – or at
least during good channel periods in a fading channel – a large FEC overhead would not be justi-
fied. Conversely, in case of extremely high error rates like, for example, during a deep fade in a
Rayleigh fading channel model (see Section 4.2.4) or if the received signal strength of a transmitter
node at a receiver node is close to the receive threshold, very low code rates would be needed
to ensure error-free transmission. As discussed before, decoding codes with very low code rates
is energy consuming. Therefore, it might be more appropriate to await the end of the fade and
continue with a moderate code rate in the following good channel period.

Convolutional codes

In convolutional codes [845] also k bits of user data are mapped to n channel symbols; how-
ever, the coding of two successive k-bit blocks is not independent. We explain the operation of a
convolutional coder briefly (Figure 6.6).

The encoding procedure runs in steps. During each step, k bits of user data are shifted into a
shift register. This shift register has a total length of K · k bits, where K is called the constraint

0

0.5

1

1.5

2

3

3.5

2.5

0.7 0.75 0.8 0.85 0.9 0.95 1

Code rate

B
at

te
ry

 e
ne

rg
y

pe
r

us
ef

ul
 b

it
(µ

J/
bi

t)

n = 2047

n = 1023

n = 511

n = 255

Figure 6.5 Computational costs of Reed–Solomon coding for different block sizes and code rates [478,
Fig. 5]. Reproduced with kind permission of Springer Science Business Media

Error control 161

+ + ++ ……...

k · K

……...
Stream of user bits
(k shifted in at once)

Code bits: Bit 1 Bit 2 Bit 3 Bit n

1 2 3

Figure 6.6 Operation of convolutional coding (adapted from reference [772, Fig. 6.2])

length of the code. The k user data bits are shifted into the register on one side while on the other
side the “oldest” block of k bits is removed. Furthermore, there are n modulo-2 adders, each of
which sums up a specific subset of the k · K registers. The outputs of the n adders are transmitted
once per step. This coding scheme has the property that the k bits are present in the shift register for
K steps and thus the coding of any k user bits depends not only on these bits themselves but also
on the previous (K − 1) · k user bits. Again, the ratio k

n
is called the textitcode rate. The constraint

length K controls the amount of redundancy contained in the code bits. If we increase K , we can
also increase the coding gain, that is we can reduce the transmit energy needed to achieve a given
BER target or reduce the BER for fixed transmit power [772, Sec. 6.4.5].

Similar to block codes, the encoding procedure of convolutional codes is cheap in terms of energy
[762]. For decoding convolutional codes, often the Viterbi algorithm is used [844], [772, Sec. 6.3].
For this algorithm, the memory requirements of the receiver depend exponentially on the constraint
length K [772, Sec. 6.3.5]. As shown in reference [761] for both a software and a hardware
implementation of the Viterbi algorithm, the energy consumption increases also exponentially with
K . However, the hardware implementation is doing so at energy levels being some orders of
magnitude below the energy required by the software solution.

Certain block codes and convolutional codes have been compared for their energy efficiency
in reference [721]. The chosen energy-efficiency criterion is the product of the packet success
probability and the energy costs per packet, which include transceiver and decoding costs. For a
BSC with fixed bit-error rate of p = 10−3 and with choosing the packet lengths in an optimal way,
the block coding schemes achieve better energy efficiency than convolutional coding schemes. With
respect to the latter, high rate convolutional codes have been shown to achieve comparably small
packet success probabilities, while low rate codes achieve high reliability but at significant energy
costs. However, even the favorable medium rate codes with code rates of 3/4 and 5/6 and with
the maximum investigated constraint length of K = 9 are outperformed by BCH codes in terms of
energy efficiency.

Min et al. [561] compare several convolutional codes with respect to their energy efficiency
when the goal is to achieve a certain acceptable residual error probability on a fixed wireless link
with a path loss of 70 dB and the energy consumption characteristics of MITs µAMPS-1 nodes
(Section 2.2.4). These characteristics include the energy consumed by the transceiver for coding and
decoding as well as further processing costs. All the chosen codes have a constraint length of K = 3
but different code rates: 1/2, 2/3, and 3/4. For very small desired residual error probabilities (≈10−9

and smaller), the rate-1/2 code is the most energy efficient, while in the range of ≈10−9 . . . 10−7,

162 Link-layer protocols

0

10–7

10–5 100

10–6

Uncoded

Uncoded

R = 3/4,

R = 2/3, K = 3

R = 1/2, K = 3

R = 2/3, K = 3

R = 3/4, K = 3

K = 3

Globally optimal
choices

Probability of bit error

To
ta

l e
ne

rg
y

pe
r

bi
t (

J)

Figure 6.7 Energy consumption during transmission of 10 kB of data over a link with 70-dB path loss and
different coding schemes [561, Fig. 9b]. Reproduced by permission of the IEEE

the rate-2/3 code is the best one, and, finally, if the residual error rate requirements are lenient,
uncoded modulation is the method of choice; compare Figure 6.7. This shows that by relaxing the
reliability requirements codes with higher code rates, and thus less overhead, can be used, saving
transmit energy.

Interleaving

Many coding schemes, particularly convolutional schemes, do not achieve optimum performance
when they are faced with a medium with bursty error characteristics. A common way to circum-
vent this (and to make the energy investment into FEC coding pay off more likely) is to use
interleaving. Here, an interleaver in the transmitting node accepts a fixed-length data packet gen-
erated by the FEC encoder (compare Figure 6.4), which often consists of multiple coded blocks.
The bits in this packet are permuted before transmitting. The deinterleaver at the receiving node
inverts the permutation before the packet is handed to the FEC decoder. When an error burst
hits such an permuted packet, the deinterleaving spreads this concentrated burst over this entire
packet length. Hence, error bursts are spread over multiple coding blocks instead of just being
concentrated to one or a few blocks. This increases the chance that each block can be successfully
decoded.

A typical mode of operation of an interleaver is as follows:

• The interleaver waits for m codewords wi (i = 1, . . . , m) of n bits each (wi =
(wi,1, wi,2, . . . , wi,n)).

• These are arranged in an m × n matrix.

Error control 163

• Example with n = 6, m = 4; successive codewords are arranged in rows:

w1,1 w1,2 w1,3 w1,4 w1,5 w1,6

w2,1 w2,2 w2,3 w2,4 w2,5 w2,6

w3,1 w3,2 w3,3 w3,4 w3,5 w3,6

w4,1 w4,2 w4,3 w4,4 w4,5 w4,6

• These symbols are transmitted as

w1,1 w2,1 w3,1 w4,1 w1,2 w2,2 . . . w3,6 w4,6.

In this example, all error bursts of length ≤ m = 4 are distributed by the deinterleaving operation
“fairly” over all the codewords wi such that each one has only one bit error. Accordingly, inter-
leaving is most effective if m channel symbols have a duration of at least the mean fade duration.
It must be noted that interleaving does not reduce the pre-FEC decoding bit-error rate, but only
arranges the errors in a “nicer” way for the FEC decoder. Interleaving has one significant draw-
back, though: The transmitting node must wait with its transmission until m · n data symbols have
been collected; thus significant delay can be introduced by interleaving. The use of interleaving
in sensor networks is mentioned in references [411, 648] but is, to our knowledge, not explicitly
addressed yet.

Multihop FEC

So far, we have discussed FEC solely in the context of a single hop. Zorzi and Rao [943] consider
the multihop case, investigating three different schemes for their energy efficiency with respect to
a given constraint on received power at the final destination: (i) Direct FEC-coded transmission
from source to destination, (ii) multihop transmission with the intermediate nodes doing FEC
decoding and recoding again (and expecting the target receive power, too), and (iii) multihop
transmission without letting intermediate nodes do FEC decoding but only have them forward
the packets. The relative advantages of the three schemes depend on the distance between source
and destination, with the multihop schemes being clearly preferable over longer distances. FEC
decoding at the intermediate nodes only pays off over the longest investigated distances between
source and destination since accumulation of too many errors is avoided.

6.2.4 Hybrid schemes
From the discussion so far, it is clear that no single fixed error-control strategy will give optimum
energy efficiency at all times. We illustrate the involved trade-offs with an example:

Example 6.2 (Energy efficiency of FEC and ARQ) Let us consider a transmitter and a receiver
node connected by a wireless channel. The channel is a BSC with a fixed bit-error rate p. As
for FEC, we consider the special case of binary BCH codes. For these codes, the following
property holds [551, Sec. 4.3]: For all positive integers m and t , there exists a binary BCH
code that has a code block length of n = 2m − 1, of which at most t · m are overhead
bits and that can reliably correct up to t errors. Additionally, we assume that uncorrectable
errors are at least reliably detected. Furthermore, we assume that a simple alternating bit
protocol with unlimited number of retransmissions runs between the two nodes. We fix the
block length n at n = 1023. According to reference [551, Table 4.6], for error-correcting

164 Link-layer protocols

Table 6.1 Amount of user data k

for various numbers of correctable
bits t in a block n = 1023 bits long
for BCH coding [551, Table 4.6]

t k

0 1023
2 1003
4 983
6 963
8 943

10 923

capabilities of t = 0, 2, 4, 6, 8, 10 bits within n = 1023 bits, an amount of k-bits user data
can be transported as given by Table 6.1.

For all t , the probability that a packet of n = 1023 is transmitted successfully (i.e., the
number of bit errors is ≤ t) is given by:

P(n, t, p) =
t∑

i=0

(
n

i

)
(1 − p)n−ipi. (6.2)

With the alternating bit protocol over a BSC the number X of trials needed to transmit the
packet successfully is a geometric random variable with expectation

E [X] = 1

P(n, t, p)
.

If we assume unit costs to transmit and receive a single bit (Et = 1) and if we further-
more take the decoding costs Edec according to Equation 6.1 into account (with Eadd =
3.3 · 10−4 and Emult = 3.7 · 10−2 energy units – these numbers are chosen only for illustra-
tion purposes), we can express the expected amount of energy spent for any of the k user
bits as:

E [Y] = n · Et + Edec

k · P(n, t, p)
.

This expected value is visualized for the different values of t in Figure 6.8.

It can be seen that for extremely low bit-error rates FEC coding is more costly than
going without any FEC. Beyond p ≈ 10−4, it is more appropriate to use FEC. How-
ever, for poor channels (p ≈ 10−2 and higher), all schemes would need a large amount
of energy, and in such a case, other mechanisms should be employed, for example, choosing
more appropriate packet sizes (see Section 6.3) or dropping the packet and hoping that a
neighboring sensor node has made the same environmental observation and finds a better
channel.

While the exact numbers may in real systems differ from the above illustrative choice, the
conclusions are likely to remain valid.

Error control 165

0

1

2

3

4

5

6

7

8

1e-07 1e-06 1e-05 1e-04 0.001 0.01 0.1
p

no FEC
t = 2
t = 4
t = 6
t = 8
t = 10

Figure 6.8 Energy spent per successfully transmitted data bit for reliable packet transmission with various
BCH codes and without any FEC with n = 1023 bits code length and various numbers t of correctable errors

In the example, we have examined a simple scheme where ARQ and FEC are combined; in this
scheme a light FEC code is applied to any packet and uncorrectable errors are handled by the ARQ
protocol. Without going too much into details one can imagine other schemes, for example:

• Normal packets are transmitted uncoded and only retransmitted packets enjoy FEC coding. This
is clearly the most energy-efficient solution for the good periods of a fading channel. In this
case, however, it makes sense to keep FEC enabled not only during a retransmission (likely in
a bad channel period) but also for some subsequent packets, lest they be destroyed by the same
channel fade.

• Instead of retransmitting the data packets, special parity packets can be transmitted. Such an
approach is discussed in another context in reference [119].

• In packet combining schemes, the receiving node tries to take advantage of the information
contained in already received erroneous packets, for example, by using packet-combining methods
like equal-gain combining or bit-by-bit majority voting [334, 394, 860]. The goal is to reduce the
number of retransmissions needed. Such an approach makes sense if only a few bits of a packet
are hit by bit errors; on the other hand, it requires buffering and significant signal processing at
the receiver. A somewhat similar approach, the intermediate checksum scheme, is discussed in
Section 6.3.2.

To the best of our knowledge, so far these techniques have not been considered in the context of
wireless sensor networks.

6.2.5 Power control
Another control knob for increasing the reliability of packet transmission over a link is the transmit
power, more precisely, the radiated output power of the transmitter. Increasing this power increases

166 Link-layer protocols

the energy per bit Eb/N0/the SNR and thus decreases the bit-error rate and the need for retrans-
missions. Ebert and Wolisz [222] show that for a single-hop ad hoc network scenario there is in
fact an optimal transmit power (which is equivalent to a BER target) balancing the radiated energy
and the need for retransmissions for a given packet length.

In larger networks with multihop communications, however, things are a bit different. If one
node increases its transmit power, it also increases the interference seen by other nodes and thus
effectively the bit error rates they have to deal with. To which extent, this is a problem depends on
the expected load situation.

Narendran et al. [583] describe a fully distributed scheme in which two nodes sharing a link
jointly control the transmit power and the code rate. The transmitter adapts power and code based
on measurements of word error rates, interference, and received power taken at the receiver and
fed back to the transmitter. The algorithm is interesting, although it is developed and evaluated
in a cellular system scenario where all this information is readily available at the base stations.
However, the approach is sufficiently generic to be applied in sensor networks as well.

The approach is most easily explained for block coding FEC schemes. It is assumed that the FEC
decoder at the receiver does not only deliver blocks of user bits but also the information whether
the block contained uncorrectable errors or not. Using this information, the receiver can compute
the word error rate (WER). The algorithm proceeds in iterations. At the end of an iteration, the
receiver computes the WER over all received words in this iteration and checks whether an upper
or lower threshold is exceeded. Somewhere between these bounds is the desired word error rate
(DWER). If indeed a threshold is exceeded, the receiver provides the transmitter with the word
error rate, the received power, and the observed interference level. The transmitter has a range
[Pmin, Pmax] available within which it can choose the output power, as well as a set {c1, . . . , cN }
of coding schemes. For each coding scheme, one can compute a priori the Carrier to Interference
Ratio (CIR) needed to obtain DWER and, accordingly, one can compute for each coding scheme
ci the output power level pi needed to obtain this specific CIR at the receiver. Ultimately, the
transmitter picks the power-level/code pair that can reach the goal with minimum overall energy.
If the word error rate exceeds the upper threshold, we have a bad iteration. Since nodes act
independently, oscillations can occur, or, even worse, the power increase of one node x triggers
a power increase at its neighbors, in turn triggering a further power increase at x, and so forth.
Therefore, a connection drop policy is adopted, by which the link is shut down with increasing
probability as more and more bad iterations occur. In order to reduce the amount of feedback traffic
from the receiver, it is also possible to send feedback only if the averaged WER, taken over several
iterations, exceeds a threshold. Narendran et al. [583] show that such an approach can increase
the lifetime of mobile nodes significantly. Clearly, if such an assignment of transmit power settings
could be made a priori and if this could also be combined with scheduling, even better power
savings would be possible [185].

6.2.6 Further mechanisms to combat errors
In this section, we briefly touch upon further strategies to deal with errors, not necessarily tied to
the link layer.

An interesting strategy is error concealment. The idea is to not correct all transmission errors
but to live with them to some extent and to take other measures to let the influence of errors
disappear for the application. This relaxes the reliability requirements and energy consumption,
but sometimes at the price of higher computational efforts. One interesting example in the context
of wireless sensor networks is discussed by Honarbacht and Kummert [355]. Let us assume
that a source sensor observes a continuous and slowly varying signal from the environment. The
sink node uses an asynchronous Kalman filter and a Taylor approximation of the sensor signal to
predict missing values, at moderate computational costs. Honarbacht and Kummert [355] show

Framing 167

that using this filtering technique the number of signal samples needed to reconstruct the signal
at the receiver can be reduced significantly; in one example, 5 % of ≈2800 samples are sufficient
to let the predicted signal look almost the same as the signal consisting of all samples. If such
a technique can be applied, the reliability requirements can be relaxed and thus the energy costs
can be decreased. However, error concealment is not primarily a link-layer technique but needs to
incorporate application information.

In reference [740] (and in a much more general context also in reference [835]), the variation
of modulation schemes and therefore bit rates have been considered for given BER constraints and
in the presence of deadlines.

6.2.7 Error control: summary

In this section, we have considered several error-control approaches and their energy-consumption
aspects. Error control is carried out to improve the reliability of packet transmission over a link and
the fundamental trade-off is that both increased reliability requirements and increased channel error
rates demand more and more energy. Therefore, before starting to design error-control schemes, it
is of paramount importance to properly assess the required reliability. In wireless sensor networks
we have the fortunate situation that often the same or at least correlated information about physical
events is present in multiple nodes and thus there is no need for a single node to give its very best
to forward a packet with very high reliability.

FEC coding schemes have the potential to achieve a real gain in energy efficiency for a given
reliability target and in case of a medium with not too low and not too high bit-error rates. For very
low BER, the coding overhead is wasted, and for extremely high BERs, the overhead is wasted
too, since practical coding schemes do not have sufficient error-correction capabilities to justify
the energy investment. For both convolutional and block coding schemes, the energy needed for
the encoding operation is negligible but the decoding energy can be significant and outweigh the
energy gains. Block coding schemes tend to be more energy efficient than convolutional coding, but
convolutional codes often have better error-correction capabilities. If the encoding and decoding
can be done in hardware, FEC schemes can be attractive.

ARQ schemes, on the other hand, can adapt their overhead to the channel conditions. On excellent
channels, the only overhead is the acknowledgement frames and their number can be reduced by
clever choice of acknowledgement schemes. On the other hand, in case of channel errors, the
standard ARQ protocols retransmit whole packets, even when only a few bits were wrong.

There are at least two ways out. First, we have discussed hybrid schemes that combine FEC and
ARQ in appropriate ways, for example, by applying a computationally moderately expensive FEC
scheme to all packets and let the ARQ protocol correct the remaining errors. Second, one can try to
find adaptive schemes that actually change their error-control strategy depending on the channel
conditions, for example, switch from Goback-N1 to Goback-N2, adaptive multicopy ARQ [25] or
adaptive error coding [145, 223, 230]. However, it depends on the application, the node hardware,
and the expected error patterns whether the extra complexity needed for adaptation (channel state
estimation, signaling of adaptation control operations) really pays off in terms of energy or whether
a carefully designed “fixed” scheme will work well enough.

Another discussion of the relative advantages of FEC and ARQ can be found in reference [17].

6.3 Framing
In the process of framing, the link-layer constructs a frame that is then transmitted. Some general
considerations regarding framing have already been discussed in Section 6.2.2 and the important

168 Link-layer protocols

aspect of addressing is discussed in Chapter 7. Here we discuss the important issue of the choice
of packet size. We illustrate in the following example why this issue is important.

Example 6.3 (Energy efficiency for different packet sizes) Consider two nodes connected
through a BSC with some bit-error probability p ∈ (0, 1). Each packet has a fixed over-
head of o bits (header, trailer) and a variable number u of user data bits. Accordingly, the
probability of successful transmission of such a packet is given by:

P(o, u, p) = (1 − p)o+u, (6.3)

and the probability of a packet error (at least one bit is erroneous) is just Q(o, u, p) =
1 − P(o, u, p). In case of a simple Alternating bit ARQ protocol with an infinite number of
retransmissions, the number of trials needed to transmit a packet, X, is a geometric random
variable with success probability P(o, u, p) and expectation

E [X] = 1

P(o, u, p)
= 1

(1 − p)o+u
.

The positive acknowledgment packets consist solely of overhead and are also of o bits length.
We concentrate on the transmitter. Suppose that the energy spent on transmitting/receiving
a packet of size l bits is given by:

et (l) = et,0 + et · l er (l) = er,0 + er · l,

respectively, where et,0 and er,0 are fixed energy costs spent each time transmitting/receiving
a packet, resulting, for example, from transceiver switching, warm-ups, and so forth. Param-
eters et and er are the energy spent on transmitting/receiving a single bit. Other sources of
energy consumption are not considered. The overall average energy spent to successfully
transmit a packet is given by the amount of energy spent per packet multiplied by the aver-
age number of trials needed until success. The transmitter spends the following energy per
packet:

et (o + u) + er(o),

where the first term corresponds to transmitting the data packet and the second term corre-
sponds to a trial to receive an acknowledgment (idle and receive mode are assumed to have
the same costs). The expected overall energy spent per packet is thus

et (o + u) + er (o)

(1 − p)o+u

and the energy spent per user bit is therefore

h(o, u, p) = et (o + u) + er (o)

u · (1 − p)o+u

energy units. This function is plotted in Figure 6.9 for varying bit-error rate p and fixed values
for er,0 = et,0 = 100, er = et = 1 and o = 100 for two different user data sizes (u = 100
bits and u = 500 bits) and varying bit-error rate p.

Framing 169

0

2

4

6

8

10

12

14

16

18

20

1e-05 0.0001 0.001

h(100, 100, p)
h(100, 500, p)

BER p

h
(1

00
 u

, p
)

[e
ne

rg
y

un
its

]

Figure 6.9 Energy per useful bit (in energy units) for user data sizes u = 100 and u = 500 bits for varying
bit error rate p

Two points are remarkable: the relative differences can be significant and it depends on the
bit error rate p and on the parameters er,0, et,0, er , and et which choice of u is more energy
efficient for any given p. In general, a lot of energy can be saved if the packet sizes are
chosen properly. Experimental results using a WaveLAN radio confirm this [479].

Clearly, a large framing overhead favors large packet sizes to achieve a reasonable energy
efficiency per user bit. On the other hand, larger packets are more susceptible to bit errors if no
mechanisms like FEC are applied. Therefore, it can be expected that for a given instantaneous bit-
error rate p there is an optimal packet size, which is easy to obtain analytically (solve ∂h(o,u,p)

∂u
= 0

and check for minimality). For the setting given in the example, we show in Figure 6.10 the energy
per user bit for varying size of user data u and a fixed bit error rate of p = 0.001. This figure has
a minimum at u ≈ 463 bits. However, it is remarkable that if we choose smaller values of u, the
energy consumption rises steeply and thus the transmitter should carefully control its packet size.
Similar results have been obtained by Sankarasubramaniam et al. [721], who propose to use
a fixed, but nearly optimal packet size, arguing that the adaptation to varying channel conditions
itself can be a costly process and requires some resource management. This packet size is derived
from the technological parameters and an estimate of the bit error probability p.

It must be noted that the assumption of a BSC is rather simplistic and typically far from reality. If
the channel errors are dominated by fading, then likely no packet will go through the channel during
bad channel states no matter what its size is; in good channel states, larger packets achieve better
throughput and energy efficiency. Siew and Goodman [766] derive the optimal packet size with
respect to throughput for a Rayleigh fading channel alternating between deep fades, where packets
are assumed to be erroneous, and good channel periods, where packets go through unharmed.
In order for a packet to be transmitted correctly, it must lie entirely within a good period. The
longer a packet, the more likely it will be hit by (parts of) a fade. Again, there is some optimal
packet size.

170 Link-layer protocols

0

5

10

15

20

25

30

0 500 1000 1500 2000 2500 3000
u

h (100,u,0.001)

Figure 6.10 Energy per useful bit for fixed bit error rate p and varying user data size u

6.3.1 Adaptive schemes
Wireless channels do not have stationary error conditions but fluctuate both over short timescales
(fast fading) and longer timescales (slow fading). For such a time-variable environment, it seems
appropriate to let the transmitter and receiver nodes continuously estimate channel conditions and
to adapt the packet size accordingly.

However, this idea has one drawback. How shall an application or an upper-layer protocol
running on a sensor node cope with varying packet sizes? If the link layer signals the variations to
the application/upper layers, the latter have to take care of fragmenting their data appropriately for
transmission, introducing extra application logic. On the other hand, if the different packet sizes
shall be transparent to the application, this fragmentation and reassembly work has to be carried
out at the link layer, again adding extra complexity. A solution where fragmentation and reassembly
is carried out in the link layer is described in references [478, 479]. Their architecture also includes
packet classification and FEC coding at appropriate places, which allows to treat packets from
different applications differently. Ideally, the MAC layer supports transmission of fragment series
or packet trains, like, for example, the S-MAC protocol (Section 5.2.2).

How to estimate the instantaneous channel conditions, specifically the instantaneous bit-error rate
p? A standard scheme used, for example, by Lettieri and Srivastava [479], lets the receiver col-
lect channel quality information and transmit this back to the transmitter with the acknowledgment
frames, allowing the latter to adjust its frame size. The receiver might use different metrics:

• The success information obtained by a pure ARQ scheme (for example number of observed
retransmissions per packet) can be used to estimate the instantaneous bit-error rate.

• If FEC is used, the FEC decoder might provide information about the number of corrected errors,
which the receiver feeds back to the transmitter [479].

• If the transceiver delivers additional receive information like RSSI, this can also be taken into
account.

Framing 171

The first method has the advantage of making the fewest assumptions about the capabilities of the
underlying transceiver. We discuss it in more detail.

Under the assumption that the channel can be modeled as a BSC for a certain observation
period and that the packet length has not changed over this period, either the receiver or the
transmitter might estimate the current packet success rate P(o, u, p), for example, by counting the
overall number of trials T spent to transmit a number M of packets (if the receiver collects this
information it must return it to the transmitter). The number T/M is taken as expectation of a
geometric random variable with success parameter P(o, u, p) and this value is used when solving
Equation 6.3 for p. Similar approaches are described in references [479] and [332] where packet
sizes are picked from a set of a few given packet sizes. Modiano [570] proposes two different
approaches. In the first one, a table is precomputed, relating the number of retransmissions R

requested for M packets transmitted with a given packet size k to a new optimal packet size chosen
from a set of fixed ones. In the second approach, a Maximum Likelihood Estimation (MLE) method
is devised, working as follows.

Example 6.4 (MLE Method for adapting packet sizes) For a BSC with bit-error probability p

and packets consisting of o overhead bits and u user bits, the packet error probability is
given by:

Q(o, u, p) = 1 − (1 − p)o+u

and the probability that R out of the M last packets need retransmissions is given by:

Pr
[
R |p] =

(
M

R

)
· Q(o, u, p)R · (1 − Q(o, u, p))M−R

Assuming that o and u are known and R and M have been observed, the value of p most
likely to have caused this situation is needed; it is the value p that maximizes Pr

[
R |p]

. It
can be determined by taking the derivative d/dp Pr

[
R |p]

and solving d/dp Pr
[
R |p] = 0

for p. The result is [570]

p̂ = 1 −
(

M − R

M

) 1
u

and it is then straightforward to find the packet size u′ that gives the best energy efficiency.

A problem with this estimator is the occurrence of very high or very low error rates: in case
of very high error rates we often have M = R and the estimator gives p̂ = 1; conversely,
for extremely low error rates we would find p̂ = 0, leading to infinite packet lengths, respec-
tively. Therefore, reasonable minimum and maximum packet lengths should be chosen as
boundary values.

A critical issue is the choice of the observation period length. If the period is too short, there
might not be enough data to obtain an accurate estimate of the bit error probability p. On the other
hand, if the period is too long, the algorithm can take too much time to adapt to changing channel
conditions and suboptimal packet sizes are in use for too long.

All methods to estimate the instantaneous channel conditions use this as a short-term prediction
of channel quality. If a node wants to send a new packet after a long period of silence, all available
channel information is old and should be considered useless.

172 Link-layer protocols

6.3.2 Intermediate checksum schemes

Lettieri and Srivastava [479] and Willig [879] discuss a scheme that allows to use long
packets without requiring a fragmentation/reassembly scheme. This approach tries to take advan-
tage of cases where only a few bits in a packet are erroneous and it rescues most of the cor-
rect bits. Retransmissions are restricted only to those parts of a packet where errors actually
occurred. The intermediate checksum scheme can be integrated with the standard ARQ
protocols.

The idea is as follows [879], compare Figure 6.11. If there are u bits of user data, protocols
with conventional header/data/trailer framing schemes (Figure 6.11(a)) put a header of o bits in
front of the user data and a trailer of h bits behind the user data. The header typically carries
source and destination address, frame length information and further control information whereas
the trailer consists of the frame’s checksum. Thus, the overall frame has size o + s + h. In case
of a retransmission, all of these o + s + h bits would have to be transmitted again. In contrast, in
the intermediate checksum scheme (Figure 6.11(b)), the u user data bits are partitioned into a
number L of chunks, with each chunk having a raw size of c bits to which a checksum of h′ bits
is appended. The last chunk might have less than c bits. A frame is created by appending all the
chunks to a frame header of size o′ ≥ o bits, and the overall frame has size o′ + L · (c + h′) bits.
The frame header in the intermediate checksum scheme additionally includes a separate header
checksum and information about the chunk size/number of chunks.

The receiver behaves as follows. If it detects an error in the frame header, the whole frame is
discarded and the transmitter has to retransmit the last frame entirely. If the header is correct, the
receiver checks each chunk separately and buffers the correct chunks. If all chunks are correct, the
receiver delivers the frame to its upper layers and sends a final acknowledgment. If some chunks are
incorrect, the faulty chunks are indicated to the transmitter with an incomplete acknowledgment.
The transmitter retransmits only the faulty chunks. For example, if the first frame has L = 8 chunks
and the receiver receives five out of eight, it requests the missing three chunks. This has the
beneficial effect that the retransmission frame is much smaller, consumes less energy, produces
less interference, is less likely hit by errors, and reaches the receiver with smaller delay. There are
also disadvantages: The intermediate checksums impose a higher overhead, which may void any
gains in goodput and energy reduction for small bit error rates. However, again the question for the
optimal chunk size must be raised. Willig [879] shows that for a BSC with moderate-to-high bit
error rates (≥ 10−4), the intermediate checksum scheme can achieve higher throughput and needs
less frames than the normal framing scheme even if the frame sizes are chosen optimally. The
chunk sizes are adapted according to a simple scheme where the transmitter counts the chunks
requested for retransmissions and the overall number of chunks transmitted and uses this data for
estimating the instantaneous bit-error rate.

User data

FCS

DLL/MAC
header

Traditional framing:

Intermediate checksum framing:

DLL/MAC header

FCS

FCSFCS

(a)

(b)

Figure 6.11 “Traditional” framing with header/data/checksum compared with intermediate checksum framing

Framing 173

A disadvantage of such a scheme is that CRC computation is not so easy anymore. In the tradi-
tional scheme, the CRC can be obtained by shifting the header and data through a linear-feedback
shift register, whose content is simply appended. The intermediate checksum scheme needs more
elaborate control of the CRC computation process [479].

6.3.3 Combining packet-size optimization and FEC

Packet-size optimization can also be combined with FEC [332, 721]. Sankarasubramaniam et al.
[721] investigate BCH codes and convolutional codes regarding their energy efficiency. For a
BSC-type channel and for a moderate bit-error rate p = 0.001, the optimum packet length (user
data plus overhead) with respect to energy consumption can be significantly increased when BCH
codes are used as compared to the case without error correction. With being able to correct six
bits, the optimal packet size would be 2047 bits, and according to the relationship between block
size n = 2047, user data size k, and error-correction capability t = 6 described in Section 6.2.4,
a packet can contain at least k ≥ 2047 − 6 · 11 = 1981 bits of user data and such a frame is
successfully delivered with probability P(2047, 6, 0.001) ≈ 0.995 (compare Equation 6.2). Hara
et al. [332] code packets of different sizes with a Reed–Solomon code and the throughput for
an alternating bit protocol is evaluated. For very good signal-to-noise ratios (low bit-error rates),
the uncoded protocol is better than the coded one; for higher SNRs the coded version is
better.

In reference [478], packet-size optimization, an error-control scheme combining FEC
(Reed–Solomon codes and rate-1/2 convolutional codes) and Selective Repeat ARQ have been
applied to Rayleigh fading channels. The channel is modeled as a two-state Markov chain with
states “good” and “bad”, with the channel behaving according to a BSC model in either state. In
the bad state, the bit-error rate is assumed to be 0.5 while the BER of the good state varies. The
transition probabilities between the states are derived from a physical model taking only simple
physical parameters into account [858]. The duration of channel fades/bad states and good states
depends essentially on the speed of a mobile station (via its Doppler frequency). For example, if
the mobile is fast, then many channel fades can occur during a single packet, letting the channel
almost look like a BSC; for a very slow mobile, on the other hand, a single fade can span several
packets. The effects of packet size variation, FEC, and ARQ have been investigated for three dif-
ferent application data types: (i) for simple datagram data generated from a saturated data source,
(ii) for periodic speech data with an additional delay constraint (packets not successfully delivered
until their deadline are dropped), and (iii) TCP traffic. The bit-error rate in the good state was either
10−2 or 10−8, corresponding to two different channels named good and “bad”. Some interesting
points are:

• For the datagram traffic and small packet sizes (50 bytes), the results are shown in Figure 6.12.
Here, a combined FEC and ARQ scheme shows, for both the good and the bad channel, almost
the same values on energy per useful bit and expected packet delay. The scheme with ARQ-only
offers small delays and small energy consumption for the good channel and large delays as well
as large energy consumption are encountered in case of a bad channel. For a packet size of 1500
bytes, ARQ plus FEC offers better delays at higher energy costs for the good channel while
for the bad channel both schemes offer the same average delay, with FEC plus ARQ requiring
significantly more energy.

• For the speech source, it is shown that for low bit-error rates during the good channel period,
the ARQ-only scheme requires lesser energy than FEC plus ARQ and both schemes drop no
packets because of deadline violations. For higher bit error rates, the ARQ-only scheme requires
much more energy and at the same time drops much more packets than the ARQ plus FEC
scheme.

174 Link-layer protocols

5

6

7

8

9

10

A
ve

ra
ge

 p
ac

ke
t d

el
ay

 (
m

s)

(a) Small packets (L = 50)

ARQ alone

ARQ + FEC

Bad
channel

Good
channel

5 6 7 8
Energy per useful bit (µJ/bit)

(b) Large packets (L = 1500)

A
ve

ra
ge

 p
ac

ke
t d

el
ay

 (
m

s)

5 6 7 8 9
Energy per useful bit (mJ/bit)

150

160

170

180

190

200

Bad
channel

Good
channel

ARQ alone

ARQ + FEC

Figure 6.12 Expected delay and energy consumption for datagrams of different sizes L (in bytes) and different
good state error rates [478]. Reproduced with kind permission of Springer Science Business Media

6.3.4 Treatment of frame headers
Virtually all frame formats have some frame header that contains control information like sequence
numbers, addresses, packet-length information, and flow-control information. If such a frame con-
tains only a single checksum covering both header and data part (compare Figure 6.11(a)), upon
occurrence of errors, it cannot be said whether the header information or the user data is bogus. It
is recommended [478] [879] to either protect the header with its own checksum or even apply FEC
coding to it separately in order to recover at least partial information from the user data in case of a
correct header. The use of such a feature in intermediate checksum schemes is obvious. In addition,
several user data types can tolerate some bit errors, and in wireless sensor networks, several noisy
sensor measurements of the same phenomenon can be aggregated to provide higher-quality data.

Another consideration in defining and treating headers is to reduce the header size as much as
possible. A good point of attack is address fields. If locally unique addresses are sufficient, then
the address field can be significantly smaller than if network-wide or globally unique addresses are
required. This is explored in some more detail in Chapter 7.

6.3.5 Framing: summary
The two aspects to framing discussed in this chapter (choice of packet size, intermediate checksum
schemes) have a common theme. They try to reduce the amount of information that must be
retransmitted in case of errors without imposing too much additional overhead. Indeed, significant
energy savings are possible but the additional complexities like obtaining the necessary feedback
for adaptive schemes or the necessary fragmentation and reassembly processes impose energy as
well as memory costs. The pros and cons of such schemes depend on the application and must be
carefully investigated.

6.4 Link management
The upper layers, specifically the routing protocol, need to know about the available neighbors
and also about the link quality of these neighbors. This quality information can be used to make

Link management 175

sensible routing decisions by avoiding bad links with a high chance of packet loss. It is important
to realize the following:

• The quality of a link is not binary, that is there are more link qualities than just “good” and
“bad”. One way to characterize the link quality is the probability of loosing a packet over this
link.

• The quality of a link is time variable, for example, because of mobility or when some obstacle
has moved between the two nodes.

• The quality has to be estimated, either actively by sending probe packets and evaluating the
responses or passively by overhearing and judging the neighbors’ transmissions. Both approaches
incur energy costs, which in some cases are already expended by the underlying MAC protocol
as part of the neighborhood discovery, for example, in TRAMA (Section 5.4.3) or in S-MAC
(Section 5.2.2).

The neighboring nodes and their associated link qualities are often stored in a neighborhood table
[890, 930], which can be accessed by upper layers. In the case of very dense sensor networks of
cheap and memory-constrained nodes, it might happen that there is not enough memory available
to store all the possible neighbors. In such a case, it is desirable to select the neighbors with the
best link qualities. How can this be done with constrained table space? This problem is discussed
in reference [890] and will not be covered here. In the remaining section, we look more closely at
the notion of link quality as well as requirements and approaches for its estimation.

The process of neighborhood discovery itself is often an integral part of MAC protocols (for
example TRAMA and S-MAC, see Chapter 5) or address allocation protocols (for example [739],
see Chapter 7). It must be repeated from time to time to accommodate changing topologies. Neigh-
borhood discovery is not covered in more detail here; a reference dealing with this is Borbash and
McGlynn [89].

6.4.1 Link-quality characteristics
Woo et al. [890] and Ganesan et al. [277] express the link quality in terms of packet loss rates.
Specifically, Ganesan et al. [277] present measurements of the link quality in a 13 × 13 grid of
169 motes placed on an open parking place, spaced two feet apart. In this experiment, one node at
a time transmits packets and all the others try to receive them. The most important findings of this
experiment are as follows:

• For a given transmit power, there is no deterministic relationship between distance and link
quality; nodes at the same distance from the transmitter can experience widely varying packet
loss rates. In extreme cases, nearby neighbors cannot hear a node’s packets but far away nodes
(occasionally) can.

• The region around a node having a certain packet loss rate does not have the shape of a circle,
but is irregularly shaped. This is illustrated in Figure 6.13, showing a contour plot of reception
probability when one central node transmits packets. The lines are isolines, that is the points on
a line have the same reception probability.

• There is a significant degree of asymmetric links. In an asymmetric link, packets sent from
node A to node B are received by B with few losses but conversely A receives B’s packets with
much higher loss probability. The fraction of asymmetric links grows with the distance, taking
values between 5 and 15 % of all links.

• The packet loss rate is time variable even when the neighbors in question are stationary. Although
the mean loss rate for a given distance over time is more or less fixed, there can be significant
short-term variations.

176 Link-layer protocols

0

5

10

15

0 5 10 15 (a)

0

5

10

15

0 5 10 15 (b)

Figure 6.13 Contour plot of packet reception probability for packets generated by a central node and for two
different power settings [277, Fig. 4]. Reproduced by permission of Deepak Ganesan, Bhaskar Krishnamachari,
Alec Woo, David Culler, Deborah Estrin, and Stephen Wicker

Woo et al. [890] present results of a measurement in a linear network. A number of nodes
are arranged in a line with a spacing of two feet. Each node transmits 200 packets and all other
nodes try to capture the packets, but only one node transmits at a time. This way there can be
many different measurements of the same distance between transmitter and receivers. The quality-
vs-distance relationship (with quality measured as packet reception rate) shows three different
regions, compare Figure 6.14:

• In the effective region, receiving nodes have a distance of at most 10 ft to the transmitter and
consistently more than 90 % of the packets are received by nodes in this region.

• The poor region starts at a distance of 40 ft between transmitter and receivers and the nodes
consistently have loss rates well beyond 90 %.

• In the transitional region in between, the variance of the experienced loss rates for nodes at the
same distance is significant.

Link management 177

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70

Feet

R
ec

ep
tio

n
su

cc
es

s
ra

te

Effective
region

Transitional
region

Clear region

Each circle represents
the link quality of a
directed edge
in the topology

Edges with the same
distance can have
very different
reliability

Figure 6.14 Packet reception rates for receivers at varying distance [890, Fig. 1a]. Reproduced by permission
of ACM

All these findings occur with different transmit powers, although at different scales. To summarize:

Link quality should be understood
in a statistical and time-varying sense.

6.4.2 Link-quality estimation

If a node wants to estimate the quality of a link toward a neighboring node, it has to do so by
receiving packets from the neighbor and judging their quality or computing loss rates. Because of
the large variability of loss rates for the same distance, it would not be sufficient to derive the
packet loss information from the known distance to the next node. The estimation of link qualities
in wireless and mobile networks has been considered, for example, in references [417, 889, 890].

There are several desirable properties for an estimator [889, 890]:

Precision It should collect enough results and give statistically meaningful results.

Agility It should detect significantly changing link conditions quickly. These can, for example,
result from node movements.

Stability The estimation should be immune to short/transient fluctuations in the link quality. This,
in general, requires averaging over multiple samples/events to smooth out the transient.

Efficiency It should avoid too much listening for other nodes’ transmissions since this can cost
precious energy. Furthermore, the computational complexity and the amount of memory
needed to keep the link statistics should stay within the bounds permitted by a wireless sensor
node. This can be an obstacle for implementation of more advanced filtering algorithms like
Wiener or Kalman filters [414].

Clearly, these goals are conflicting. For example, one needs to find good trade-offs between stability
and agility [417].

178 Link-layer protocols

There are passive and active estimators:

Active estimator In an active estimator, the node sends out special measurement packets and
collects responses from its neighbors. By repeatedly doing so, the necessary loss statistics
can be obtained.

Passive estimator In a passive estimator, the node overhears the transmissions of its neighbors
and estimates the loss rates from observing the neighbor’s sequence numbers; packet losses
are detected from gaps in the received numbers.

Passive estimation is especially feasible if the neighbors generate sufficient traffic within a cer-
tain amount of time, for example, if the nodes generate traffic with a minimum message rate. If
transmissions cost much more energy than receiving or idling, then passive estimation may be
preferable.

The setting for a passive estimation is illustrated in Figure 6.15. Input events to the estimator
are packet arrivals; packet losses have to be inferred indirectly from these using sequence numbers.
The estimator should observe several events before producing an estimate to obtain statistically
meaningful results.

Suppose that the estimator shall at time t + T produce an estimate of the packet loss rate in
the interval (t, t + T], where T is the observation period (for example, T = 30 s [889]). Suppose
furthermore that somehow the estimator has determined that the last sequence number it could
have seen immediately before time t is number seven. Upon arrival of packet number 10 at time
τ0, it knows that two packets are missing in the time interval (t, τ0]. Upon arrival of packet 15 at
time τ1, it knows that so far only 3 out of 8 packets in the interval (t, τ1] have been received. But
which value shall be produced at time t + T ? To produce a reliable estimate, we need the number
of packets lost in the last gap. If the packets are generated periodically, this issue seems easy to
resolve. But even then, the MAC layer and the application introduce some random jitter, and one
can give only a reasonable guess of the gap size.

Assuming that these numbers are available, they can be used in different ways within estimators.
Woo and Culler [889] investigate several passive estimators, including exponentially weighted
moving average (EWMA), flip-flop estimators that switch between a stable and an agile EWMA
estimator if these two deliver vastly different results, pure moving average, time-weighted moving
average, and window mean with EWMA (abbreviated WMEWMA). The latter has been found
to give the best compromise between stability and agility and works as follows: The estimator
produces predictions P̂n only at times tn = t + n · T ; denote by P̂1, P̂2, P̂3, . . . the sequence of
estimates at these times. The estimator has two tuning parameters, α ∈ (0, 1) and the observation
period T ∈ N, expressed in durations of fixed-size packets. At an update instant tn, let rn be the
number of received packets in (tn−1, tn] and fn be the number of packets identified as lost during

7 10 11 15Gap = 2 Gap = 3 Gap = ?

S Packet with sequence numbers

Figure 6.15 Illustration of the estimation problem

Summary 179

(tn−1, tn]. Then,

µn = rn

rn + fn

P̂n = α · P̂n−1 + (1 − α) · µn

The history needed by this estimator is summarized in P̂n−1, and except the storage for P̂n−1, fn,
and rn, no further memory is needed.

6.5 Summary
The design of the link layer should strive for energy-efficiency and therefore depends to a good
degree on the energy consumption characteristics of the underlying physical layer and on the
expected load characteristics. There are several control knobs that can be used to save energy, for
example, FEC or packet-size optimization. If the sensor network application is characterized by
mostly periodic data transfer, the different adaptation mechanisms are attractive since energy is
drained constantly and we can decrease the drain rate. On the other hand, if the network waits for
the occurrence of rare events before it starts any transmission, it may make more sense to be not
too clever and start with robust settings (FEC, small packets) from the very beginning.

It is an interesting and important task to find suitable models for the energy expenditure of the
link layer, possibly considered jointly with the MAC layer and physical layer. Research in this
direction has started, for example, in references [932] and [746], but much more work appears to
be necessary.

7
Naming and addressing

Objectives of this Chapter
Naming and addressing schemes are used to denote and to find things. In networking, names and
addresses often refer to individual nodes as well as to data items stored in them.

Addresses/names are always tied to a representation, which has a certain length when considered
as a string of bits. As opposed to other types of networks, representation size is a critical issue in
wireless sensor networks, since addresses are present in almost any packet. However, coordination
among nodes is needed to assign reasonably short addresses.

A second key aspect is content-based addressing, where not nodes or network interfaces but data
is addressed. Content-based addressing can be integrated with data-centric routing and is also a key
enabler of in-network processing.

Chapter Outline
7.1 Fundamentals 182
7.2 Address and name management in wireless sensor networks 186
7.3 Assignment of MAC addresses 186
7.4 Distributed assignment of locally unique addresses 189
7.5 Content-based and geographic addressing 194
7.6 Summary 198

Naming and addressing are two fundamental issues in networking. We can say very roughly that
names are used to denote things (for example, nodes, data, transactions) whereas addresses supply
the information needed to find these things; they help, for example, with routing in a multihop
network. This distinction is not sharp; sometimes addresses are used to denote things too – an IP
address contains information to both find a node (the network part of an address) and to identify
a node – more precisely: a network interface within a node – within a single subnetwork (the
host part).

In traditional networks like the Internet or ad hoc networks, frequently independent nodes or
stations as well as the data hosted by these are named and addressed. This is adequate for the

Protocols and Architectures for Wireless Sensor Networks. Holger Karl and Andreas Willig
Copyright 2005 John Wiley & Sons, Ltd. ISBN: 0-470-09510-5

182 Naming and addressing

intended use of these networks: They connect many users and let them exchange data or access
servers. The range of possible user data types is enormous and the network can support these
tasks best by making the weakest assumption about the data – all data is just a pile of bits to be
moved from one node to another. In wireless sensor networks, the nodes are not independent but
collaborate to solve a given task and to provide the user with an interface to the external world.
Therefore, it might be appropriate to shift the view from naming nodes toward naming aspects of
the physical world or naming data.

The issue of naming and addressing is often tightly integrated with those parts of a protocol stack
using them, for example, routing or address resolution protocols. These protocols are not the subject
of this chapter but treated in subsequent chapters. Here we focus on aspects like address allocation,
address representation, and proper use of different addressing/naming schemes in wireless sensor
networks.

7.1 Fundamentals
7.1.1 Use of addresses and names in (sensor) networks
In most computer and sensor networks, the following types of names, addresses, and identifiers can
be found [458, 718]:

Unique node identifier A unique node identifier (UID) is a persistent data item unique for every
node. An example of a UID might be a combination of a vendor name, a product name,
and a serial number, assigned at manufacturing time. Such a UID may or may not have any
function in the protocol stack.

MAC address A MAC address is used to distinguish between one-hop neighbors of a node. This
is particularly important in wireless sensor networks using contention-based MAC protocols,
since by including a MAC addresses into unicast MAC packets a node can determine which
packets are not destined to it and go into sleep mode while such a packet is in transit. This
overhearing avoidance is an important method of conserving energy at the MAC layer
(Chapter 5).

Network address A network address is used to find and denote a node over multiple hops and
therefore network addresses are often connected to routing.

Network identifiers In geographically overlapping wireless (sensor) networks of the same type
and working in the same frequency band, it is also important to distinguish the networks
by means of network identifiers. An example is given in reference [45] where medical
body area sensor networks for clinical patients in the same room have to be distinguished to
prevent confusion of sensor data belonging to different patients.

Resource identifiers A name or resource identifier is represented in user-understandable terms
or in a way that “means something” to the user. For example, upon reading the name
www.xemacs.org, an experienced user knows that (i) the thing the name refers to is likely
a web server and (ii) the user can find information about a great text editor. In contrast, upon
looking at the IP address 199.184.165.136, hardly any user draws either conclusion.
Names can refer to nodes, groups of nodes, data items, or similar abstractions.

A single node can have many names and addresses. For example, the WWW server www.xemacs.
org has the name www.xemacs.org, it has the IP address 199.184.165.136 and, assuming
that the server is attached to an Ethernet, it has a 48-bit IEEE MAC address. The mapping between
user-friendly names like www.xemacs.org and the addresses relevant for network operation is

Fundamentals 183

carried out by binding services. This mapping is also often referred to as name resolution. In our
example, the domain name service (DNS) provides the mapping from the name to the IP address
while the address resolution protocol (ARP) maps the IP address to a MAC address [790].

7.1.2 Address management tasks
We summarize the fundamental tasks of address management, which are independent of the type
of addresses:

Address allocation In general, this denotes the assignment of an address to an entity from an
address pool.

Address deallocation In on-demand addressing schemes, the address space often has a small-to-
moderate size. The node population in sensor networks is intrinsically dynamic, with nodes
dying or moving away and new nodes being added to the network. If the addresses of the
leaving nodes were not put back into the address pool for reuse, the address pool would be
exhausted eventually and no addresses could be allocated to new nodes. Address deallocation
can be either graceful or abrupt. In graceful deallocation, a node explicitly sends out control
packets to give up its address. In abrupt deallocation, the node disappears or crashes and
consequently does not send appropriate control packets, leaving the responsibility to detect
and deallocate the node’s address to the network. When very large address spaces are used,
like for example the IEEE 802.3 MAC addresses of 48-bits length, address deallocation is
not an issue.

Address representation A format for representing addresses needs to be negotiated and imple-
mented.

Conflict detection/resolution Address conflicts can occur in networks with distributed assignment
of on-demand addresses or in case of mergers of so-far distinct networks. If conflicts cannot
be tolerated, they must be resolved.

Binding If several addressing layers are used, a mapping between the different layers has to be
provided. For example, in IP networks, an IP address has to be mapped to a MAC address
using the ARP protocol.

Any address management scheme for sensor and ad hoc networks is occasionally faced with
network partitions and network merge events. Consider for example the network shown in
Figure 7.1. If the critical node runs out of energy, the network is split into two partitions that have
no connectivity anymore. The critical issue here is address deallocation. Both subnetworks should
detect that several nodes cannot be reached anymore and their addresses should be reclaimed. On
the other hand, address deallocation and reallocation of reclaimed addresses should not happen
too quickly. If for some reason the network remerges, the same address allocation as before the
partition event is in place and no address conflicts need to be resolved [936].

Critical node

Figure 7.1 Example for network partition

184 Naming and addressing

7.1.3 Uniqueness of addresses
We can distinguish the following uniqueness requirements for network names and addresses.

Globally unique A globally unique address or identifier is supposed to occur at most once all
over the world. An example is the 48-bit IEEE MAC addresses used in Ethernet and Token
Ring networks.1 The binary representation of such addresses must be sufficiently large to
accommodate all devices worldwide.

Networkwide unique A networkwide unique address is supposed to be unique within a given
network, but the same address can be used in different networks. By having different
networks A and B, we mean that there is no pair of nodes a ∈ A and b ∈ B that can
communicate.

Locally unique A locally unique address might occur several times in the same network, but it
should be unique within a suitably defined neighborhood. To illustrate this:

• For MAC addresses it is reasonable to require that they are unique only within a two-hop
neighborhood. The problem underlying this requirement is displayed in Figure 7.2: node
C is a one-hop neighbor of B and a two-hop neighbor of A. If A and C have the same
MAC addresses, B would not be able to infer the transmitter of an incoming packet, nor
would B be able to direct its packets to a unique intended receiver.

• Another example is given by a sensor network with different sensor types like temperature,
humidity, and light sensors. We might require that no two temperature sensors have the
same address but a temperature and a humidity sensor may. In this case, the neighborhood
is constituted by the sensors of the same type.

7.1.4 Address allocation and assignment
The address assignment can happen a priori (e.g. during the manufacturing process or before
network deployment) or on demand, by using an address assignment protocol. Such an on-demand
address assignment protocol can be either centralized or distributed. In a centralized solution,
there is one single authority/node taking care of (parts of) the address pool, whereas in distributed
solutions, there is no such exposed node. Instead, potentially all nodes play the same role in
address assignment. Address release/deallocation plays an important role when networkwide or
locally unique addresses are assigned on demand.

In distributed address assignment, it might not always be possible to guarantee networkwide
uniqueness at all times. One can either decide to simply live with some few address conflicts or
to detect and resolve them. For the latter case, Vaidya [836] introduces the distinction between
strong and weak Duplicate Address Detection (DAD):

• In strong DAD, it is required that if address x is already assigned to node A at time t0 and
subsequently assigned to node B at time t1, then this duplicate assignment must be detected
latest at time t1 + T where T is some fixed time bound.

A B C

Figure 7.2 Example for network partition

1 Uniqueness is jeopardized or destroyed by the possibility to reprogram the MAC address of an Ethernet card and by the
fact that some manufacturers assign the same address several times [591].

Fundamentals 185

• In weak DAD, duplicate addresses are tolerated as long as they do not distort ongoing sessions.
For example, if two networks A and B merge and one address x is assigned in both networks, no
action should be taken as long as still all packets from nodes of the former network A destined
to x reach the node in A with address x and not the node with the same address in the other
network.

An example for a centralized address assignment scheme is the DHCP protocol [211] known
from the Internet world. However, there are some problems with centralized schemes:

• Centralized solutions do not scale well to sensor networks. The sheer number of nodes creates
significant traffic, which is directed to one or a few address servers and the area around these
servers becomes a hot spot. This can be circumvented to some extent by employing cluster-based
techniques, where disjoint shares of the address space are allocated to clusterheads, which in turn
allocate these addresses to their cluster members.

• If the network is partitioned before a new node enters, the central address server might not be
reachable.

• The DHCP protocol requires nodes to renew their addresses periodically to detect abrupt deal-
locations.

7.1.5 Addressing overhead
One of the most important aspects of addresses is the number of bits needed for their representa-
tion or their overhead. This overhead and consequently the energy needed to transmit addressing
information is related to two factors: (i) The frequency with which addresses are used and (ii) the
size of their representation. Consider MAC addresses as an example. There are some MAC proto-
cols like TRAMA (Section 5.4.3) or SMACS (Section 5.4.2) that set up dedicated links between
two neighboring nodes by assigning conflict-free time slots or frequencies. If such a link is used
for a data packet, there is no need to carry address information in these packets since source and
destination nodes are implicitly given.

In contrast, in contention-based MAC protocols, at a given time any node might transmit to any
other node and addressing information is thus vital to identify source and destination and to achieve
overhearing avoidance. Accordingly, the fewer bits spent per address, the better. Let us look into
the trade-offs involved here:

• Say we choose a priori assigned, globally unique addresses like in IEEE 802.3/Ethernet. Here,
48 bits are used to accommodate the current and anticipated number of devices. Given that in
Ethernet networks often comparably large frames of several hundreds of bytes are used, the
six-byte addresses are a negligible overhead, and the a priori assignment eliminates the need for
an address assignment protocol. On the other hand, in wireless sensor networks, there will be
many small data packets and a single 48-bit address can be larger than the data!

• A networkwide unique address must have a sufficient number of bits to accommodate all the nodes
in the network. In a sensor network with 10,000 nodes, an address of 14 bits suffices. However,
in order to minimize the number of address bits, the size of the network must be known in
advance. Some safety margin in address field width is important if multiple deployment phases
can occur, that is, if further nodes are deployed long after the network first became operational,
for example, to replace nodes with depleted energy reserves.

• A locally unique address must be unique within a certain neighborhood, which is typically much
smaller than the entire network. For example, MAC addresses should be unique within a two-
hop neighborhood, which may consist of some dozens of nodes, depending on the node density.
Accordingly, the addresses can use fewer bits than would be needed for networkwide unique

186 Naming and addressing

addresses. On the other hand, since the exact topology is rarely known in advance, an address
assignment protocol is needed. Having fewer address bits is important if the number of data bits
in a packet is small too. A scheme for choosing small address representations is discussed in
Section 7.4.

An important trade-off found here is that the use of shorter local MAC addresses can save significant
energy in case of small data packets, but require overhead in terms of address assignment/negotiation
protocols. In sensor networks with mostly stationary nodes, such a protocol needs to run at the
beginning and occasionally later on to handle new and deleted nodes. In this case, the gains from
saving address bits in every data packet can outweigh the costs of the negotiation protocol. On the
other hand, in highly mobile sensor or ad hoc networks, the negotiation protocol would need to
run too often to result in energy savings.

7.2 Address and name management in wireless sensor
networks

We have seen that MAC addresses are indispensable if the MAC protocol shall employ over-
hearing avoidance and go into sleep mode as often as possible. However, do MAC addresses
need to be globally or networkwide unique? No, since the scope of a MAC protocol is commu-
nication between neighboring nodes and it is sufficient that addresses are locally unique within a
two-hop neighborhood (see Section 7.1.3). This requirement ensures that no two neighbors of a
selected node have the same MAC address. As discussed above, locally unique addresses poten-
tially are short but need an address assignment protocol. These issues are treated in Sections 7.3
and 7.4.2

How about higher-layer addresses, specifically network layer addresses, which for traditional
routing protocols must be globally or networkwide unique? We will discuss briefly that fulfilling
this requirement is a formidable task. We will argue also that this requirement is not really necessary
in wireless sensor networks since after all the whole network is not a collection of individual nodes
belonging to individual users but the nodes collaborate to process signals and events from the
physical environment. The key argument is that users ultimately are interested in the data and
not in the individual or groups of nodes delivering them. Taking this a step further, the data
can also influence the operation of protocols, which is the essence of data-centric networking.
Data-centric or content-based addressing schemes are thus important and will be discussed in
Section 7.5.

7.3 Assignment of MAC addresses
In this section, we discuss assignment methods for MAC addresses. As already discussed in Section
7.1.5, the assignment of globally unique MAC addresses is undesirable in sensor networks with
mostly small packets.

An a priori assignment of networkwide unique addresses is feasible only if it can be done with
reasonable effort. But there is still the problem that the overhead to represent addresses can be
considerable although not as large as in globally unique addresses. For example, up to 16,384
nodes can be addressed with 14 bits and this number is much friendlier than 48 bits used for
globally unique IEEE addresses.

2 On this level, wireless sensor networks leverage two important differences to MANETs. In MANETs, the assumed
mobility is much higher than in sensor networks. Furthermore, typical packets are significantly longer, rendering efforts to
shorten address fields almost meaningless.

Assignment of MAC addresses 187

Therefore, we concentrate on dynamic and distributed assignment of networkwide and local
addresses. The protocols discussed in this section differ in the amount and scope of collaboration
with other nodes.

7.3.1 Distributed assignment of networkwide addresses
Let us start with a very simple approach: A node randomly picks an address from a given address
range and hopes that this address is unique. For ease of exposition, we assume that this address
range is given by the integers between 0 and 2m − 1 and an address can thus be represented with
m bits. The address space has a size of n = 2m addresses.

A node chooses its address without any prior information, in which case it is best to use a
uniform distribution on the address range since this has maximum entropy. However, this approach
is not without problems, as is shown in the following example.

Example 7.1 (Random address assignment) Suppose that we have k nodes and each of these
nodes picks uniformly and independently a random address from 0 to 2m − 1. What is the
probability that these nodes choose a conflict-free assignment? A similar problem is known
as the “birthday problem”3 [255, Chap. II] and can be answered by simple combinatorial
arguments. For k = 1 this probability is one. For k = 2, the second node picks with proba-
bility n−1

n
an address different from the first node’s choice. For k = 3, the third node picks

with probability (n−1)·(n−2)

n2 an address different from the first two and so forth. Hence, we
have the probability P(n, k) to find a conflict-free assignment

P(n, k) = 1 · n − 1

n
· . . . · n − k + 1

n
= 1

nk
· n!

(n − k)!
= k!

nk
·
(

n

k

)
,

which, by Stirlings approximation (n! ≈ √
2π · nn+1/2 · e−n [255, Chap. II]), is approxi-

mately given by:

P(n, k) ≈ e−k ·
(

n

n − k

)(n−k)+1/2

.

For an address field of m = 14 bits size, corresponding to n = 214 = 16384 distinct addresses,
we show in Figure 7.3 the probability P(n, k) for different values of k. Already, for quite
small values of k, the probability of conflicts becomes close to one. For example: for k = 275
the conflict probability is already larger than 90 % but only ≈1.7 % of the address space is
used!

Therefore, this method of random assignment quickly leads to address conflicts. To preserve
networkwide uniqueness, either a conflict- resolution protocol is needed or more clever
assignment schemes should be chosen.

Can we do better? A node can try to obtain information about already-allocated addresses by
overhearing packets in its vicinity [234] and avoiding these addresses. In many sensor network appli-
cations, where nodes transmit their sensor data to a local coordinator aggregating and processing

3 What is the probability that in a room with n people, no two of them have the same birthday?

188 Naming and addressing

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300
k

Figure 7.3 “Birthday probability” that k out of n = 214 station pick random addresses without conflicts

the data, overhearing can avoid many conflicts with other local nodes transmitting to the same
coordinator.

With random address assignment we are faced with address collisions with high probability.
How do we deal with them? The first solution is to simply accept them and do nothing. Other
techniques have been investigated in the context of IP address assignment in MANETs:

• Perkins et al. [636] present an address autoconfiguration protocol suitable for MANETs. A
node starts by randomly selecting a temporary address and a proposed fixed address and sends
out an address request control packet, carrying the chosen temporary and fixed addresses. The
temporary address is allocated from a dedicated address pool, being disjoint from the pool of
true node addresses. The underlying routing protocol tries to find a path to a node having the
same fixed address. If there exists such a node (and a path to it), an address reply packet is
generated and sent toward the temporary address. Upon receiving this reply, the node knows that
the chosen fixed address is allocated and tries another address. If no address reply is received
within a certain time, the node repeats the address request packet a configurable number of times
to compensate for possibly lost address reply packets. If still no address reply is received after all
trials are exhausted, the node accepts the chosen IP address. It is proved by Vaidya [836] that
this protocol breaks down if the delays cannot be bounded, for example, after network partitions.
If in sensor networks this scheme is applied to MAC addresses instead of network addresses,
then other nodes do not have any routing information, and the address request/reply packets must
be flooded into the network. Further problems of this approach are discussed in reference [591].

• Nesargi and Prakash [591] regard the address assignment problem as a distributed agreement
problem, a well-known problem in distributed systems [526]. A requesting node (the requester)
contacts a neighboring node already having an address, the initiator. The initiator keeps a table
of all known address assignments and picks an unused address. The initiator then disseminates
the proposed new address to all nodes in the network and collects the answers. All nodes put
the proposed address into a list of candidate addresses. If a node finds the address either in the
candidate list or in its local list of known assignments, it answers with a reject packet, otherwise
it answers with an accept packet. If all known nodes have answered with an accept packet, the
initiator assigns the address to the requester and informs all other nodes in the network that the

Distributed assignment of locally unique addresses 189

assignment now is permanent. Otherwise, the initiator picks another address and tries again. This
approach is similar to a two-phase commit protocol and clearly produces too much overhead
in terms of transmitted packets and buffer space requirements to be feasible in wireless sensor
networks.

• A hierarchical address autoconfiguration algorithm for IPv6 addresses intended for MANETs
is described in reference [871]. Some nodes in the network become leader nodes and choose
a subnet ID randomly. A DAD is executed between leader nodes to guarantee uniqueness of
subnet IDs. Other nodes create their addresses from the subnet ID of their leader and a local
address (for example, based on the nodes MAC address). In reference [828], a leader is elected
for each network partition, assigning addresses to newly arriving nodes. Mergers of networks are
detected by introducing separate network identifiers.

The observation that the networkwide uniqueness requirement translates into a distributed consen-
sus problem [591] gives some insight into lower bounds on the complexity and communication
overhead involved in this assignment problem. The price in terms of communication overhead is to
be paid upon an address assignment trial, for example, when the network must be flooded because
the requesting node has no routable address. Alternatively, if a proactive routing protocol is used,
the nodes possess tables of used addresses that can be consulted quickly or can infer the pres-
ence of duplicate nodes because of receiving bogus routing messages carrying the node’s source
address [870]. However, on-demand routing protocols are more popular in sensor networks than
are proactive protocols (see Chapter 11) because of their overhead.

7.4 Distributed assignment of locally unique addresses
Schurgers et al. [734, 739] discuss a protocol that assigns locally unique MAC addresses to nodes,
utilizing a localized protocol in which a node communicates only with immediate neighbors. By
restricting the uniqueness requirement to a small local neighborhood, fewer bits are needed for
address representation than for networkwide or globally unique addresses. The energy reduction
due to the saved address bits can be significant if the size of the data payload has the same order
of magnitude as the address size.

By using locally unique addresses, we can reuse the same address several times in the overall
network. In the scheme described in references [734, 739], the second key ingredient besides
address reuse is greediness, in the sense that a node allocates the numerically lowest nonallocated
address. By this approach, lower addresses tend to be used more often than higher addresses and
the relative frequencies of how often each address is used in the network becomes uneven, with
most of the probability mass at lower addresses. This opportunity is taken by not transmitting
addresses directly but by encoding them according to the lossless Huffman coding procedure and
transmitting the codewords. The mapping from addresses to codes is called the codebook and
must be known a priori to nodes. In Huffman coding [180, Chap. 5], short codes are assigned to
frequent addresses while longer codes are assigned to less frequent ones. According to a well-known
theorem, Huffman coding is optimal, that is, gives the shortest expected codeword length of all
codes [180, Theorem 5.8.1] and is within one bit close to the entropy of the underlying distribution.
The relative frequencies of the addresses are a function of the node deployment and have to be
known in advance to compute the optimal codebook. Each node needs access to the codebook.

7.4.1 Address assignment algorithm
Before describing an assignment protocol, the exact requirements have to be clarified [739]. The
assignment algorithm must take the existence of asymmetric links into account (Section 6.4.1),

190 Naming and addressing

A B

C
D

E

F

G

H

Z

X

W

V

Y

U

Figure 7.4 Example situation for address assignment with bidirectional, inbound, and outbound neigh-
bors [739]

which are links where a node A may hear some other node B but not vice versa. It is assumed
that each node has already discovered its bidirectional and inbound neighbors from a previous
run of a neighborhood discovery protocol. An inbound neighbor of a node A is a neighbor whose
transmissions A can hear but (apparently) not vice versa. Similarly, an outbound neighbor of A

is a node that receives A’s transmissions but not vice versa.
Consider the situation shown in Figure 7.4. We want to assign addresses to nodes A and B. The

requirements are:

• Node A and B are assigned different addresses.
• The address of node A is different from those of nodes W , X, Y , and Z since all these nodes

can direct packets to B.
• By symmetry, B’s address must be different from the addresses of E, F , G, and H .
• Do B’s and C’s (or D’s) addresses have to be different? If they are the same, all packets from

node A destined to node B would also be received by C. If, however, the link between A and
C is perfectly unidirectional and if the additional constraint is introduced that any node accepts
packets only from bidirectional neighbors, there is no need to let C choose another address than
B (how shall C tell A about the conflict anyway?). By the same argument, both A and B can
also have the same address as W and X, since B would not accept packets from any of these.
It is not even required that W and X have different addresses as far as node B is concerned.

The requirements can be summarized as follows [739]. Under the assumption that nodes commu-
nicate only with bidirectional neighbors, then for any node A all its bidirectional neighbors must
have distinct addresses. Furthermore, the address of any inbound neighbor must be different from
the address of all bidirectional neighbors.

The classification of links into bidirectional, inbound, and outbound links is an immediate result
of the neighborhood discovery protocol. In order to accommodate the time-varying and stochastic
nature of wireless links (Section 6.4.1), this neighborhood discovery should be repeated from time
to time.

We briefly describe the distributed address assignment algorithm described by Schurgers et al.
[739]. Many details are omitted, for example, those concerning compensation for packet losses or
the maintenance of a soft state for stored neighbor addresses to detect leaving nodes [739]. After
a node A has performed neighborhood discovery, it starts by broadcasting a HELLO message.
The bidirectional and outbound neighbors of A reply to this message by sending INFO messages.4

With reference to Figure 7.4, let us assume that node B replies with an INFO packet. This packet
contains the following information:

• the unique node identifier of B, which can also be a networkwide or globally unique and routable
address;

4 By having the neighbors delay their INFO messages randomly, the amount of collisions is reduced.

Distributed assignment of locally unique addresses 191

• B’s MAC address;
• and the MAC addresses of all bidirectional neighbors of B.

Only neighbors that already have a MAC address send INFO messages. By assumption, node A

will only hear the INFO messages of its bidirectional neighbors and therefore knows their identity.
To see why it is useful that B includes its neighbors as well, remember that A must choose its
MAC address distinct from nodes Y and Z.

The time that node A listens for INFO messages is bounded. After this time has elapsed, node
A knows the entire one-hop and two-hop neighborhood. Now, two important cases can occur:

• If all of A’s one-hop neighbors have different addresses, there is no conflict and A can choose
an address such that this address is unique within A’s two-hop neighborhood.

• If there is a conflict between A’s one-hop neighbors, node A issues a CONFLICT message,
indicating the conflicting address. Reception of this message by the conflicting nodes triggers a
new address selection round.

7.4.2 Address selection and representation
When node A has successfully executed the assignment algorithm, it can pick an own address.
Instead of picking a random address, A selects the lowest possible nonconflicting address. In a
sense, address selection is greedy. By this approach, lower addresses are preferred and occur more
often in the network. Accordingly, lower addresses have a higher relative frequency and we have a
nonuniform address distribution. Schurgers et al. [734] investigate the address distribution under
the greedy allocation scheme for the case of uniform node distribution with different node densities.5

The node density is defined in [734] as the expected number of neighbors of a node. It turns out
that the address distribution converges to the uniform distribution as the density increases. On the
other hand, for lower densities, the distribution has most of its weight at lower addresses. This is
illustrated in Figure 7.5.

Such skewed, nonuniform address assignments are useful because of the following reason. The
minimum average number of bits needed to describe the outcome of a random experiment with finite
and discrete range is given by the entropy H(X) of the underlying random variable X [27, 180].
The uniform distribution over a given range has maximum entropy, and thus needs, on average,
most bits as compared to other more-skewed distributions. An optimum coding scheme for discrete
random variables is the Huffman coding scheme, requiring that an average number of bits be within
one bit close to the entropy H(X).

If we can determine the relative frequencies/address distribution of MAC addresses under the
greedy allocation scheme, the Huffman algorithm gives an optimum codebook for allocating
variable-length codewords to MAC addresses. This codebook is disseminated to the sensor nodes
in advance. The node includes the codewords instead of the true addresses into the packets, on
average saving a number of bits.6 To implement this, the receiver has to spend some extra effort
to parse the variable-length addresses and find the remaining packet fields. Fortunately, Huffman
codes are prefix-free codes that can be decoded easily.

After the codebook has been constructed, a slight modification is possible, illustrated in
Figure 7.6. Suppose that a node allocates an address and that the codeword for the lowest possible
address has a width of m bits. The codebook may contain several codewords (say, M) of the same
width, and instead of simply choosing the smallest address, one of the M codewords of width

5 Technically, such a setup corresponds to a Poisson point process, which are briefly explained in Section 13.2.3.
6 What if the actual address distribution differs from the assumed distribution? The expected loss in coding performance is

given by the relative entropy or Kullback–Leibler distance between the assumed and the actual distributions [180, Chap. 2].

192 Naming and addressing

Frequency

Address

0
0 10 20 30 40 50 60

0.05

0.1

0.15

0.2

lambda: 4
lambda: 6
lambda: 10
lambda: 15
lambda: 30

Figure 7.5 Relative frequencies of MAC addresses under the greedy algorithm for different node densities λ

[734]. Reproduced by permission of ACM

0
0 5 10 15 20 25 30

0.02

0.04

0.06

Address

8 bits

7 bits

6 bits

5 bits

4 bits

Address selection frequency

Lowest first
Range based

Figure 7.6 Lowest-first versus range-based allocation of MAC addresses under the modified greedy algorithm
[739]. Reproduced by permission of IEEE

m is picked at random. The corresponding relative address frequencies are shown in Figure 7.6.
The range-based choice reduces the address collision probability and thus decreases the number of
CONFLICT messages [734].

A performance evaluation study of this scheme is presented in reference [739]. The assumed
node hardware contains an RF Monolithics transceiver, running at 2.4 kb/s and a StrongARM
processor at 150 MHz. N = 500 nodes are uniformly placed over a rectangular area with a node
density of λ = 10 average neighbors per node. The extra overhead for decoding variable-length

Distributed assignment of locally unique addresses 193

3

101 102 103 104

4

5

6

Network size N

Average address size (bits)

λ = 5

λ = 5

λ = 10

λ = 10

λ = 15

λ = 15

λ = 20

λ = 20

Figure 7.7 Average address size versus number of nodes N in the network for different node densities λ (solid
lines represent variable-length scheme, dashed lines fixed-length scheme) [739]. Reproduced by permission
of IEEE

addresses is assumed to require 50 processor instructions on average. Energy-wise, transmitting a
single bit corresponds to about 120 instructions. The variable-length scheme is compared against
two other schemes. The first one uses preassigned networkwide unique addresses with an address
representation having fixed and minimum length. The second one (“fixed-length scheme”) uses the
same address allocation protocol as the variable-length scheme but represents addresses by a fixed
number of bits, namely, the minimum number of bits needed to represent the highest address found
in the network. The study revealed the following results (Figure 7.7):

• For the same network size N , the variable-length coding scheme (solid lines) has the lowest
average address size, typically around one bit better than the fixed-length scheme (dashed lines).
For comparison, the light gray curve indicates the number of bits needed for networkwide unique
addresses.

• The average address size for the variable-length and fixed-length schemes tends to converge to a
fixed value as the network size N increases; therefore, the average address size is dominated by
the node density and is almost independent of the actual number of nodes. Only for fewer nodes,
edge effects play a role. This is not true for networkwide unique addresses, whose representation
size grows logarithmically with the number of nodes.

• The energy saved by having fewer addressing bits with the variable-length/fixed-length scheme
pays off already after a few dozens of data packets and amortizes the extra overhead introduced
by the address assignment protocol (HELLO, INFO, CONFLICT packets). The point of reference
for this statement is a version where addresses are assigned a priori and a 14-bit address field is
used. The exact point where the variable-length/fixed-length scheme amortizes depends on the
node density.

The average address size given by the codeword-based scheme depends on how well the actual
(local) node density fits the density for which the codebook was computed. A general advantage
of variable-length addresses over fixed-length ones is the increased flexibility in the size or density
of the network, as variable-length codewords can become arbitrarily long, whereas for fixed-length
codewords the number of distinguishable one- or two-hop neighbors is naturally bounded.

194 Naming and addressing

7.4.3 Further schemes
A scheme that is similar in spirit to the codeword-based scheme but assigns addresses to links
instead of nodes is presented in reference [454].

We have argued that centralized address assignment is bad. A compromise between purely
centralized and purely distributed schemes are assignment schemes that use a clustered approach
where a clusterhead is responsible for conflict-free address assignment to its cluster members.
Such a scheme is described in reference [76] in the context of a cellular wireless LAN. Here,
address assignment takes place in two steps. First, the base stations are assigned addresses that are
locally unique (i.e. with respect to neighboring base stations). Second, mobile nodes apply for a
fixed-length address at their current base station. This address is unique with respect to the current
base station.

7.5 Content-based and geographic addressing
Traditional fixed and ad hoc networks offer services and protocols that allow a number of inde-
pendent users to exchange data among each other and with the remaining world. On the other
hand, in wireless sensor networks, the nodes interact with the physical environment, and they
collaborate, that is they are not independent of each other. A user of a wireless sensor network
ultimately wants to know something about the physical environment the network interacts with,
but he typically does not care about the individual sensor nodes. As an example, a user wants to
ask “Give me the mean temperature in room C-1.3 in the HPI building” instead of “Obtain the
temperature values of sensor nodes 13, 47, 2225, 14592, and 14593 and give me the mean value”.
It is preferable to allow users to name the data they are interested in and not the (set of) nodes
producing the data.

In traditional IP-based networks, this requirement corresponds to introducing a naming system
on top of IP addresses and to introducing appropriate binding services like DNS or other directory
services, providing a mapping from names (meaningful to the user) to IP addresses (meaningful for
the routing protocol). In sensor networks, however, these levels of indirection can be eliminated
and the user-specified attributes can be directly used to find (groups of) nodes. This idea is often
referred to as data-centric addressing (Section 3.3.4). Such an approach to make the application
data meaningful to the operation of network (especially routing) protocols is also a key enabler for
in-network processing techniques.

Geographic addressing can be regarded as a special case of content-based addressing. Here,
some of the user-specifiable attributes refer to spatial coordinates. Geographic addressing assumes
that each node knows its own location with respect to some agreed-upon coordinate system. Thus,
locationing techniques (Chapter 9) are essential for working with geographic addresses. On the
other hand, geographic addresses can help with routing (Section 11.5). For example, in the directed
diffusion protocol [378], location information can help to make the flooding/interest propagation
step directional and to reduce the number of interest packets significantly.

Both content-based and geographic addressing are no replacements for MAC protocols but can
be used, for example, on the network layer to help with routing decisions.

7.5.1 Content-based addressing
Several content- or attribute-based naming systems have appeared in the literature; some examples
are references [10, 342]. Before turning to a more general discussion, we present an example
naming scheme, developed in the context of wireless sensor networks.

Content-based and geographic addressing 195

Example 7.2 (A low-level-naming mechanism [342]) In this approach, content-based addressing
is integrated with directed diffusion routing. In a nutshell, in directed diffusion a sink node
issues an interest message, specifying a set of attributes to describe the desired data. This
message is disseminated into the network. The nodes that can produce sensor data matching
the interest are called source nodes. A data packet generated by a source node travels through
intermediate nodes to the sink. An intermediate node stores the interest along with a (set
of) possible upstream neighbors in the interest cache. Upon receiving a data packet, the
intermediate node searches its cache for an interest matching the data and forwards the data
packet to the associated upstream neighbor. Directed diffusion is described in more detail in
Chapter 12.

Both the interests and the data packets are represented as sets of Attribute Value Operation
(AVO) tuples. The set of attributes is predefined and each attribute possesses a unique, well-
known key as well as an understanding of the data type for the corresponding value.7 The
different operators and their meaning are shown in Table 7.1. The IS operator specifies that
the corresponding attribute actually has the indicated value and is typically generated by
the data source; IS is also called an actual operator. All the other operators are called
formal operators, and they are used to specify the interests against which the actual values
generated by the source are matched.

The intermediate nodes use an operation called one-way match (shown in Listing 7.1 in
a pseudocode notation) to decide which interest a received data packet matches. Basi-
cally, for a given interest, the intermediate node goes through all its formal attributes and
checks whether (i) the data packet possesses a corresponding attribute at all and (ii) whether
the actual value carried in the data packet’s attribute matches the formal operator in the
interest.

Let us look at an example. Suppose that the user at the sink node wants to know when the
temperature in a certain geographic area exceeds a certain threshold. He combines several
attributes to an interest message shown in Listing 7.2. In this example, the attribute type
specifies the kind of sensors to which the interest is directed (here: temperature sen-
sors). The next attribute threshold-from-below specifies that the sink is interested
in cases where a threshold of 20 ◦C is crossed from below. The area under observation is
a square between (0,0) and (20,20) (expressed in meters). If the temperature exceeds this

Table 7.1 Set of operators [342]

Operator name Meaning

EQ Matches if actual value is equal to value
NE Matches if actual value is not equal to value
LT Matches if actual value is smaller than value
GT Matches if actual value is greater than value
LE Matches if actual value is smaller or equal to value
GE Matches if actual value is larger or equal to value
EQ ANY Matches anything, value is meaningless
IS Specifies a literal attribute

7 For sensor networks, the representation of all AVO tuple components should be as short as possible to reduce the number
of bits needed.

196 Naming and addressing

threshold, a matching sensor shall report this event every 0.05 s for a duration of 10 s. The
final attribute class expresses that the present AVO tuple is an interest and not a data
message.

Suppose we have different types of sensors, including temperature sensors. Each sensor
possesses a set of AVO tuples describing itself; a self description of a temperature sensor
could look like the one shown in Listing 7.3. If the interest message shown in Listing 7.2
reaches the temperature sensor, the one-way check reveals that the self-description of the
sensor matches the attributes in the interest. Accordingly, the sensor (more precisely: all
sensors matching this interest and actually willing to serve interests at all) start to observe
their environment and generate data messages when the event of interest actually occurs. An
example of such a data message is shown in Listing 7.4. As explained above, nonmatching
sensors store the interest in their interest cache.

It must be noted that the set of attributes used in the listings are really just examples; in
general, the attributes and their values depend on the application.

Listing 7.1: One-way matching Algorithm [342]

parameters : attribute sets A and B
// A corresponds to the interest , B to the data message

foreach attribute a in A where a.op is formal {
matched = false
foreach attribute b in B where

a.key == b.key and b.op is actual {
if b.val satisfies condition

expressed by a.key and a.val then {
matched = true

}
}
if (not matched) then {

return false
}

}
return true; // matching successful !

Listing 7.2: Example interest message

<type ,temperature ,EQ >
<threshold -from -below ,20,IS >
<x-coordinate ,20,LE >
<x-coordinate ,0,GE >
<y-coordinate ,20,LE >
<y-coordinate ,0,GE >
<interval ,0.05 ,IS >
<duration ,10,IS >
<class ,interest ,IS >

Content-based and geographic addressing 197

Listing 7.3: Example temperature sensor

<type ,temperature ,IS >
<x-coordinate ,10,IS >
<y-coordinate ,10,IS >

Listing 7.4: Example data message

<type ,temperature ,IS >
<x-coordinate ,10,IS >
<y-coordinate ,10,IS >
<temperature ,20.01 ,IS >
<class ,data ,IS >

One important characteristic of any naming system is its expressiveness. This notion is difficult
to define; it includes both a measure of the number of things that can actually be named by the
naming system as well as the effort needed to represent/write down the name.8 A second important
characteristic is the computational effort needed to check whether an entity (in the preceding
example: the data packet with its actual attributes) matches a name (here: an interest). With respect
to the example, one can see that (i) the attributes are simple to evaluate and (ii) the one-way
match procedure allows only one mode of attribute combination – all of the candidate attributes
must match simultaneously, corresponding to a logical AND between them. By restricting attribute
combination to AND, at most as many attribute checks are needed as there are formal attributes.
Therefore, the computational effort is linear in the number of formal attributes. Allowing general
Boolean functions over the single attribute matches would potentially require significantly more
computation time.

The naming system of Heidemann et al. [342] has been implemented (together with directed
diffusion), and two specific application examples are discussed: in-network aggregation and a
possibility to specify nested queries. Nested queries are one specific way to detect composite
events. In a composite event, the occurrence of one event triggers interest in another event. The
key point in these experiments is that by using a content-based naming system and by deploying
so-called filters into the network, which can process the named data, a good amount of computation
can be moved into the network, close to the event sources. Local aggregation and processing can
save significant bandwidth.

An example where the approach to name data is investigated for possible energy savings is
given in [453]. The SPIN protocol introduces so-called metadata, that is, a description of the data
a node can produce. The metadata is assumed to be shorter than the actual data. A source node
producing data disseminates an advertisement containing the metadata through the network. Other
nodes interested in the advertised data send back a request packet. Upon receiving a request, the
source node sends the full data packet.

8 Example: the programming language Smalltalk has the same computational capabilities as a Turing machine, but Smalltalk
programs are easier to write and read for humans. So a Smalltalk program developed within some time T typically has much
more functionality than a Turing machine whose development took the same time T . Therefore, we would rate Smalltalk as
the more expressive language.

198 Naming and addressing

Clearly, there are much more sophisticated naming schemes and accompanying resolution/binding
protocols allowing much more sophistication. Carzaniga and Wolf [123] integrate content-based
addressing with publish/subscribe middleware for IP-based wireless and ad hoc networks without
specifying a particular naming scheme. In reference [426], a sensor network is envisioned as keeping
one single shared XML document and each node is responsible for producing some of its parts.
Accordingly, data items correspond to XML elements and are addressed as such.

Naming systems and resolution protocols also play a significant role in service discovery (see,
for example, the intentional naming system [10]), peer-to-peer file-sharing networks (for example,
content-addressable networks [686]), and the X.500 directory system. However, these systems are
not directly applicable to sensor networks because of their different architecture and requirement
sets. Energy efficiency played no role in the design of these systems.

7.5.2 Geographic addressing
It is often convenient for users to express their queries to a sensor network in terms of not only the
type and modality of data they want to receive but also the region or location from where the data
should originate. By the same token, as for content-based addresses, users do not want to separately
specify each node belonging to the region of interest but they prefer to specify a region and let
the network figure out which sensors are appropriate. Furthermore, if the location of a sensor node
is known, geographic routing schemes can be applied, which are discussed in Section 11.5. There
are many different ways to specify a region, for example [589]:

• Specify a single point.
• Specify a circle or a sphere by giving center point and radius.
• Specify a rectangle or a parallelepiped by giving two or three corner points.
• Specify a polygon (two-dimensional) or a polytope (three-dimensional) by giving a list of points.

Geographic addressing [589] requires that a sensor can check whether its position lies within a
given area. This test can be complex if general polygons/polytopes are used to specify the region
of interest. Such a point-in-polygon test is a standard task in computational geometry. The use of
more complex shapes also has the disadvantage that more points and thus more data bits are needed
to specify them.

7.6 Summary
In any network including sensor networks, there are different levels of addresses and names, for
example MAC addresses and network-layer addresses. MAC addresses are used to distinguish
between immediate neighbors and network-layer addresses are used to identify (groups of) nodes
in a multihop network. A prime concern regarding naming and addressing in sensor networks is
the overhead and energy consumption incurred with these schemes. Energy can, for example, be
wasted by having inefficient address representations, by running expensive address assignment and
deallocation protocols, or by requiring several binding/address resolution protocols.

At the lowest level are MAC addresses, which in contention-based MAC protocols are indis-
pensable to realize energy savings from overhearing avoidance. If required by the MAC protocol,
they need to be present in all data packets and can induce significant overhead, especially if the
user data is small. As opposed to schedule-based MAC protocols, MAC addresses are always
needed in contention-based MAC protocols since a transmitted packet can potentially have many
receivers. A general trade-off exists here between stricter uniqueness requirements and the size of
the address. On the other hand, locally unique addresses (which are sufficient for the MAC layer)

Summary 199

require an address assignment protocol. However, if most of the sensor nodes are stationary, the
savings achieved by (efficient representations of) locally unique addresses pay off quickly. Running
address assignment protocols with stricter than local uniqueness requirements (say, networkwide
uniqueness) quickly becomes impractical in wireless sensor networks since a distributed consen-
sus problem has to be solved, which inevitably has substantial overhead. Furthermore, the address
representation size of locally unique addresses depends only on the network density but not on the
absolute number of nodes in the network. This is not the case for networkwide unique addresses.

Networkwide or globally unique addresses are needed by traditional routing protocols to denote
and find individual nodes. In wireless sensor networks, however, content-based addressing provides
an attractive alternative. A key to their usefulness is the integration of content-based addresses with
routing and their ability to enable in-network processing.

8
Time synchronization

Objectives of this Chapter
Time is an important aspect for many applications and protocols found in wireless sensor networks.
Nodes can measure time using local clocks, driven by oscillators. Because of random phase shifts
and drift rates of oscillators, the local time reading of nodes would start to differ – they loose
synchronization – without correction.

The time synchronization problem is a standard problem in distributed systems. In wireless
sensor networks, new constraints have to be considered, for example, the energy consumption of
the algorithms, the possibly large number of nodes to be synchronized, and the varying precision
requirements.

This chapter gives an introduction to the time synchronization problem in general and discusses
the specifics of wireless sensor networks. Following this, some of the protocols proposed for sensor
networks are discussed in more detail.

Chapter Outline
8.1 Introduction to the time synchronization problem 201
8.2 Protocols based on sender/receiver synchronization 207
8.3 Protocols based on receiver/receiver synchronization 217
8.4 Further reading 226

8.1 Introduction to the time synchronization problem
In this section, we explain why time synchronization is needed and what the exact problems are,
followed by a list of features that different time synchronization algorithms might have. We also
discuss the particular challenges and constraints for time synchronization algorithms in wireless
sensor networks [238, 239].

Protocols and Architectures for Wireless Sensor Networks. Holger Karl and Andreas Willig
Copyright 2005 John Wiley & Sons, Ltd. ISBN: 0-470-09510-5

202 Time synchronization

Figure 8.1 Determination of angle of arrival of a distant sound event by an array of acoustic sensors

8.1.1 The need for time synchronization in wireless sensor networks
Time plays an important role in the operation of distributed systems in general and in wireless sensor
networks in particular, since these are supposed to observe and interact with physical phenomena.

A simple example shall illustrate the need for accurate timing information (Figure 8.1). An
acoustic wavefront generated by a sound source a large distance away impinges onto an array of
acoustic sensors and the angle of arrival is to be estimated. Each of the sensors knows its own
position exactly and records the time of arrival of the sound event. In the specific setup shown
in the figure, the angle θ can be determined when the lengths d and x are known, using the
trigonometric relationship x = d · sin θ , and accordingly θ = arcsin x

d
.1 The sensor distance d can

be derived from the known position of the sensors and the distance x can be derived from the
time difference �t between the sensor readings and the known speed of sound c ≈ 330 m/s, using
x = c · �t . Assuming d = 1 m and �t = 0.001 s gives θ ≈ 0.336 (in radians). If the clocks of the
sensors are only within 500 µs accurate, the true time difference can be in the range between 500
and 1500 µs, and thus the estimates for θ can vary between θ ≈ 0.166 and θ ≈ 0.518. Therefore,
a seemingly small error in time synchronization can lead to significantly biased estimates.

There are at least two ways to get a more reliable estimate. The first one (and the one focused
on in this chapter) is to keep the sensors clocks as tightly synchronized as possible, using dedicated
time synchronization algorithms. The second one is to combine the readings of multiple sensors
and to “average out” the estimation errors. There are many other applications requiring accurate
time synchronization, for example, beamforming [237, 856, 907].

However, not only WSN applications but also many of the networking protocols used in sen-
sor networks need accurate time. Prime examples are MAC protocols based on TDMA or MAC
protocols with coordinated wakeup, like the one used in the IEEE 802.15.4 WPAN standard [468].
Sensor nodes running a TDMA protocol need to agree on boundaries of time slots; otherwise their
transmissions would overlap and collide.

It is important to note that the time needed in sensor networks should adhere to physical time,
that is two sensor nodes should have the same idea about the duration of 1 s and additionally a
sensor node’s second should come as close as possible to 1 s of real time or coordinated universal
time (UTC).2 The physical time has to be distinguished from the concept of logical time that allows

1 To keep the example simple, we assume that further sensors provide the information necessary to distinguish between the
angles θ and 2π − θ .

2 The duration of a second is precisely defined in terms of the number of transitions between the two hyperfine levels of the
ground state of Caesium-133 [643] and this information is provided by a number of atomic clocks spread around the world.
The operators of these clocks work together to provide the international UTC time scale. The UTC time does not use the atomic
times directly but occasionally seconds are inserted or deleted to keep the UTC time in synch with astronomical timescales as
they are used for navigation purposes. See the website of your favorite standardization institute, for example, www.ptb.de
or www.nist.gov. Many countries have (sometimes several) local times that are based on UTC; for example, the central
European daylight saving time CEDST is just UTC plus 2 h. These local times are transmitted as reference times.

Introduction to the time synchronization problem 203

to determine the ordering of events in a distributed system [464, 526] but does not necessarily show
any correspondence to real time.

Many time synchronization algorithms have appeared over time; overviews and surveys of algo-
rithms developed for classical distributed systems can be found in references [24, 179, 677]. We
restrict the discussion to algorithms relevant for wireless sensor networks, that is, algorithms that
care about their energy consumption and which can run in large-scale networks.

8.1.2 Node clocks and the problem of accuracy
Almost all clock devices of sensor nodes and computers share the same common structure [24,
179]: The node possesses an oscillator of a specified frequency and a counter register, which is
incremented in hardware after a certain number of oscillator pulses. The node’s software has only
access to the value of this register and the time between two increments determines the achievable
time resolution: events happening between two increments cannot be distinguished from their
timestamps.

The value of the hardware clock of node i at real time t can be represented as Hi(t). It can
be understood as an abstraction of the counter register providing an ever-increasing time value. A
common approach to compute a local software clock Li(t) from this value is to apply an affine
transformation to the hardware clock:3

Li(t) := θi · Hi(t) + φi.

φi is called phase shift and θi is called drift rate. Given that it is often neither possible nor
desirable to influence the oscillator or the counter register, one can change the coefficients θi and
φi to do clock adjustment. Now we can define the notion of precision of the clocks within a
network, where we distinguish two cases:

External synchronization The nodes 1, 2, . . . , n are said to be accurate at time t within a
bound δ if

|Li(t) − t | < δ

holds for all nodes i ∈ {1, 2, . . . , n}.
Internal synchronization The nodes 1, 2, . . . , n are said to agree on the time with a bound of δ if

|Li(t) − Lj(t)| < δ

holds for all i, j ∈ {1, 2, . . . , n}.
To achieve external synchronization, a reliable source of real time/UTC time must be available,
for example, a GPS receiver [401]. Clearly, if nodes 1, 2, . . . , n are externally synchronized with
bound δ, they are also internally synchronized with bound 2δ.

There are three problems:

• Nodes are switched on at different and essentially random times, and therefore, without correction,
their initial phases φi are random too.

3 We adopt the convention to write real times with small letters (for example, t , t ′) and values of local clocks with capital
letters. For simplicity, we do not consider overruns of the counter register.

204 Time synchronization

• Oscillators often have a priori a slight random deviation from their nominal frequency, called
drift and sometimes clock skew. This can be due to impure crystals but oscillators also depend
on several environmental conditions like pressure, temperature, and so on, which in a deployed
sensor network might well differ from laboratory specifications. The clock drift is often expressed
in parts per million (ppm) and gives the number of additional or missing oscillations a clock
makes in the amount of time needed for one million oscillations at the nominal rate. In general,
cheaper oscillators – like those used in designs for cheap sensor nodes – have larger drifts with
higher probability. In several publications from the field of wireless sensor networks, clock drifts
in the range between 1 and 100 ppm are assumed [236, 839]. For Berkeley motes, the datasheets
specify a maximum drift rate of 40 ppm. A deviation of 1 ppm amounts to 1 s error every ≈11.6
days, a deviation of 100 ppm to 1 s every ≈2.78 h.

• The oscillator frequency is time variable. There are short-term variations – caused by temperature
changes, variations of electric supply voltage, air pressure, and so on – as well as long-term vari-
ations due to oscillator aging, see Vig [843] and http://www.ieee-uffc.org/fcmain.
asp?view=review for detailed explanations. It is often safe to assume that the oscillator fre-
quency is reasonably stable over times in the range of minutes to tens of minutes. On the other
hand, this also implies that time synchronization algorithms should resynchronize once every
few minutes to keep track of changing frequencies.

This implies that even if two nodes have the same type of oscillator and are started at the same
time with identical logical clocks, the difference |Li(t) − Lj(t)| can become arbitrarily large as t

increases. Therefore, a time synchronization protocol is needed.
How often must such a time synchronization protocol run? Suppose that a node adjusts only its

phase shift φi as a result of a synchronization round. If the node’s oscillator drift rate is constant
and known to be x ppm and if the desired accuracy is δ s, then after at most δ

x·10−6 s the accuracy
constraint is violated. For x = 20 ppm and an accuracy of 1 ms, a resynchronization is needed
every 50 s. More advanced schemes try to estimate and correct not only the phase shift φi but also
the current drift θi , hopefully prolonging the periods before resynchronization is required. Again,
a one-time synchronization is not useful, since the drift rate is time varying. It is, however, often
possible to bound the maximum drift rate, that is there is a ρi > 0 such that

1

1 + ρi

≤ d

dt
Hi(t) ≤ 1 + ρi (8.1)

and this can be used to find a conservative resynchronization frequency.

8.1.3 Properties and structure of time synchronization algorithms
Time synchronization protocols can be classified according to certain criteria:

Physical time versus logical time In wireless sensor networks, applications and protocols mostly
require physical time.

External versus internal synchronization Algorithms may or may not require time synchroniza-
tion with external timescales like UTC.

Global versus local algorithms A global algorithm attempts to keep all nodes of a sensor network
(partition) synchronized. The scope of local algorithms is often restricted to some geographi-
cal neighborhood of an interesting event. In global algorithms, nodes are therefore required to
keep synchronized with not only single-hop neighbors but also with distant nodes (multihop).
Clearly, an algorithm giving global synchronization also gives local synchronization.

Introduction to the time synchronization problem 205

Absolute versus relative time Many applications like the simple example presented in
Section 8.1.1 need only accurate time differences and it would be sufficient to estimate
the drift instead of phase offset. However, absolute synchronization is the more general case
as it includes relative synchronization as a special case.

Hardware- versus software-based algorithms Some algorithms require dedicated hardware like
GPS receivers or dedicated communication equipment while software-based algorithms use
plain message passing, using the same channels as for normal data packets.

A priori versus a posteriori synchronization In a priori algorithms, the time synchronization
protocol runs all the time, even when there is no external event to observe. In a poste-
riori synchronization (also called post-facto synchronization [235]), the synchronization
process is triggered by an external event.

Deterministic versus stochastic precision bounds Some algorithms can (under certain conditions)
guarantee absolute upper bounds on the synchronization error between nodes or with respect
to external time. Other algorithms can only give stochastic bounds in the sense that the
synchronization error is with some probability smaller than a prescribed bound.

Local clock update discipline How shall a node update its local clock parameters φi and θi? An
often-found requirement is that backward jumps in time should be avoided, that is for t < t ′
it shall not happen that Li(t) > Li(t

′) after an adjustment.4 An additional requirement might
be to avoid sudden jumps, that is the difference Li(t

′) − Li(t) for times t immediately before
and t ′ immediately after readjustment should be small.

The most important performance metrics of time synchronization algorithms are the following:

Precision For deterministic algorithms, the maximum synchronization error between a node and
real time or between two nodes is interesting; for stochastic algorithms, the mean error, the
error variance, and certain quantiles are relevant.

Energy costs The energy costs of a time synchronization protocol depend on several factors: the
number of packets exchanged in one round of the algorithm, the amount of computation
needed to process the packets, and the required resynchronization frequency.

Memory requirements To estimate drift rates, a history of previous time synchronization packets
is needed. In general, a longer history allows for more accurate estimates at the cost of
increased memory consumption; compare Section 8.2.2.

Fault tolerance How well can the algorithm cope with failing nodes, with error-prone and time-
variable communication links, or even with network partitions? Can the algorithm handle
mobility?

It is useful to decompose time synchronization protocols for wireless sensor networks into four
conceptual building blocks, the first three of which are already identified in reference [24]:

• The resynchronization event detection block identifies the points in time where resynchroniza-
tion is triggered. In most protocols, resynchronizations are triggered periodically with a period
depending on the maximum drift rate. A single resynchronization process is called a round. If
rounds can overlap in time, sequence numbers are needed to distinguish them and to let a node
ignore all but the newest resynchronization rounds.

4 Users of make tools tend to have strong opinions on this. . .

206 Time synchronization

• The remote clock estimation block acquires clock values from remote nodes/remote clocks.
There are two common variants. First, in the time transmission technique, a node i sends its
local clock Li(t) at time t to a neighboring node j , which receives it at local time Lj(t

′) (with
t ′ > t). Basically, node j assumes t ≈ t ′ and uses Li(t) as estimation for the time Li(t

′). This
estimation can be made more precise by removing known factors from the difference t ′ − t , for
example the time that i packet occupies the channel and the propagation delay. Second, in the
remote clock reading technique, a node j sends a request message to another node i, which
answers with a response packet. Node j estimates i’s clock from the round-trip time of the
message and the known packet transmission times. Finally, node j may inform node i about the
outcome. This technique is discussed in more detail below.

• The clock correction block computes adjustments of the local clock based on the results of the
remote clock estimation block.

• The synchronization mesh setup block determines which nodes synchronize with each other in
a multihop network. In fully connected networks, this block is trivial.

8.1.4 Time synchronization in wireless sensor networks
In wireless sensor networks, there are some specifics that influence the requirements and design of
time synchronization algorithms:

• An algorithm must scale to large multihop networks of unreliable and severely energy-constrained
nodes. The scalability requirement refers to both the number of nodes as well as to the average
node degree/node density.

• The precision requirements can be quite diverse, ranging from microseconds to seconds.
• The use of extra hardware only for time synchronization purposes is mostly ruled out because

of the extra cost and energy penalties incurred by dedicated circuitry.
• The degree of mobility is low. An important consequence is that a node can reach its neighbors

at any time, whereas in networks with high degree of mobility, intermittent connectivity and
sporadic communication dominates (there are some publications explicitly targeting MANETs
[84, 695]).

• There are mostly no fixed upper bounds for packet delivery delay, owing to the MAC protocol,
packet errors, and retransmissions.

• The propagation delay between neighboring nodes is negligible. A distance of 30 m needs 10−7

s for speed of light c ≈ 300.000.000 m/s.
• Manual configuration of single nodes is not an option. Some protocols require this, for example,

the network time protocol (NTP) [553, 554, 556], where each node must be configured with a
list of time servers.

• It will turn out that the accuracy of time synchronization algorithms critically depends on the
delay between the reception of the last bit of a packet and the time when it is timestamped.
Optimally, timestamping is done in lowest layers, for example, the MAC layer. This feature is
much easier to implement in sensor nodes with open firmware and software than it would be
using commodity hardware like commercial IEEE 802.11 network cards.

Many of the traditional time synchronization protocols try to keep the nodes synchronized all the
time, which is reasonable when there are no energy constraints and the topology is sufficiently
stable. Accordingly, energy must be spent all the time for running time synchronization protocols.
For several sensor network applications this is unnecessary, for example, when the main task of
a network is to monitor the environment for rare events like forest fires. With post-facto syn-
chronization [235] (or a posteriori synchronization), a time synchronization on demand can be
achieved. Here, nodes are unsynchronized most of the time. When an interesting external event

Protocols based on sender/receiver synchronization 207

is observed at time t0, a node i stores its local timestamp Li(t0) and triggers the synchronization
protocol, which for example, provides global synchronization with UTC time. After the protocol
has finished at some later time t1, node i has learned about its relative offset � to UTC time, that
is, t1 = Li(t1) + �. Node i can use this information to relate the past event at t0 also to UTC
time. After node i has delivered the information about the event, it can go into sleep mode again,
dropping synchronization. In a nutshell, post-facto synchronization is synchronization on demand
and for a short time, to report about an important event.

Before discussing some of the proposals for time synchronization protocols suitable for sensor
networks, let us briefly discuss some of the “obvious” solutions and why they do not fit.

• Equip each node with a GPS receiver : GPS receivers still cost some few dollars, need a separate
antenna, need energy continuously to keep in synch (acquiring initial synchronization takes
minutes!), and have form factors not compatible with the idea of very small sensor nodes [401].
Furthermore, to be useful, a GPS receiver needs a line of sight to at least four of the GPS
satellites, which is not always achievable in hilly terrains, forests, or in indoor applications. One
application of GPS in a sensor network for wildlife tracking is reported by Juang et al. [388].

• Equip each node with some receiver for UTC signals :5 the same considerations apply as for a
GPS receiver.

• Let some nodes at the edge of the sensor network send strong timing signals : Such a solution
can be used indoors and in flat terrain but requires a separate frequency and thus a separate
transceiver on each node to let the time server not distort ongoing transmissions.

In the following sections, we present several proposals for time synchronization protocols in
wireless sensor networks.

8.2 Protocols based on sender/receiver synchronization
In this kind of protocols, one node, called the receiver, exchanges data packets with another node,
called the sender, to let the receiver synchronize to the sender’s clock. One of the classic protocols
for this is the network time protocol (NTP), widely used in the Internet [553, 554, 556]. In general,
sender/receiver based protocols require bidirectional links between neighboring nodes.

8.2.1 Lightweight time synchronization protocol (LTS)
The lightweight time synchronization (LTS) protocol presented by van Greunen and Rabaey
[839] attempts to synchronize the clocks of a sensor network to the clocks held by certain reference
nodes, which, for example, may have GPS receivers. The protocol has control knobs that allow
to trade off energy expenditure and achievable accuracy, and it gives stochastic precision bounds
under certain assumptions about the underlying hardware and operating system. LTS makes no
restrictions with respect to the local clock update discipline and it does not try to estimate actual
drift rates.

LTS subdivides time synchronization into two building blocks:

• A pair-wise synchronization protocol synchronizes two neighboring nodes.
• To keep all nodes or the set of interesting nodes synchronized to a common reference, a spanning

tree from the reference node to all nodes is constructed. If the single-hop synchronization errors
are independent and identically distributed and have mean zero, the leaf nodes of the tree also

5 For example, in Germany, a DCF77 receiver can be used for this.

208 Time synchronization

i j

Trigger resynchronization

Format synch packet

Timestamp packet with

Hand over packet for transmission

Start packet transmission

Operating system,
channel access

Propagation delay

Packet transmission time

Packet reception interrupt

Timestamp with

Timestamp with

Format synch answer packet

Hand over packet
for transmission

Start packet transmission

Packet reception interrupt

Timestamp with

OS, Channel access

Figure 8.2 Partial sketch of operation in sender/receiver synchronization

have an expected synchronization error of zero but the variance is the sum of the variances along
the path from the reference node to the leaf node. Therefore, this variance can be minimized by
finding a minimum-height spanning tree.

Pair-wise synchronization

We first explain the pair-wise synchronization protocol (Figure 8.2). The protocol uses a remote
clock reading technique. Suppose a node i wants to synchronize its clock to that of a node j .

Protocols based on sender/receiver synchronization 209

After the resynchronization is triggered at node i, a synchronization request packet is formatted
and timestamped at time t1 with time Li(t1). Node i hands the packet over to the operating system
and the protocol stack, where it stays for some time. The medium access delay (Section 5.1.1) can
be highly variable and make up for a significant fraction of this time. Often, this delay is a random
variable. When node i is sending the first bit at time t2, node j receives the last bit of the packet
at time t3 = t2 + τ + tp, where τ is the propagation delay and tp is the packet transmission time
(packet length divided by bitrate). Some time later (interrupt latency), at time t4, the packet arrival
is signaled to node j ’s operating system or application through an interrupt and it is timestamped
at time t5 with Lj(t5). At t6, node j has formatted its answer packet, timestamps it with Lj(t6), and
hands it over to its operating system and networking stack. This packet includes also the previous
timestamps Lj (t5) and Li(t1). Node i receives the packet reception interrupt at time t7 (which
is t6 plus operating system/networking overhead, medium access delay, propagation delay, packet
transmission time, and interrupt latency) and timestamps it at time t8 with Li(t8).6

Let us now analyze how node i infers its clock correction. More precisely, node i wants to
estimate O = �(t1) := Li(t1) − Lj(t1). To do this, we make the assumption that there is no drift
between the clocks in the time between t1 and t8, that is O = �(t∗) for all t∗ ∈ [t1, t8], and in
fact node i estimates O by estimating �(t5). From the figure, the timestamp Lj(t5), which node
i’s gets back, is generated at some unknown time between t1 and t8. However, we can reduce this
uncertainty by the following observations:

• There is one propagation delay τ plus one packet transmission time tp between t1 and t5.
• There is another time τ + tp between t5 and t8 for the response packet. For stationary nodes, we

can safely assume that propagation delays are the same in both directions.
• The time between t5 and t6 is also known to node i from the difference Lj(t6) − Lj(t5).

Therefore, the uncertainty about t5 can be reduced to the interval I = [Li(t1) + τ + tp, Li(t8) − τ −
tp − (Lj (t6) − Lj (t5))]. If we assume that the times spent in the operating system and networking
stack, the interrupt latencies as well as the medium access delay are the same in both directions, then
node i would conclude that j has generated its timestamp Lj(t5) at time (from i’s point of view)

Li(t5) = Li(t1) + τ + tp + Li(t8) − τ − tp − (Lj (t6) − Lj(t5))

2
.

Therefore,

O = �(t5) = Li(t5) − Lj(t5) = Li(t8) + Li(t1) − Lj(t6) − Lj (t5)

2
.

Now node i can adjust its local clock by adding the offset O to it. This way, node i synchronizes to
j ’s local time, at the cost of two packets. When the goal is additionally to let node j learn about O,
a third packet, sent from i to j and including O, is needed. In this case, the whole synchronization
needs three packets.

The maximum synchronization error of this scheme is |I |/2 if the times τ and tp are known with
high precision. The actual synchronization error can essentially be attributed to different interrupt
latencies at i and j , to different times between getting a receive interrupt and timestamping the
packet, and to different channel access times. These uncertainties can be reduced significantly if the
requesting node can timestamp its packet as lately as possible, best immediately before transmitting
or right after obtaining medium access [272].

6 Another account of the different variable delays in this process can be found in reference [430].

210 Time synchronization

Several authors including Elson et al. [236] propose to let the receiver timestamp packets as early
as possible, for example, in the interrupt routine called upon packet arrival from the transceiver.
For the case of Berkeley motes, Elson et al. [236] show that for several receivers tasked with
timestamping the same packet in their interrupt routines, the pair-wise differences in the actual
timestamp generation times are normally distributed with zero mean and a standard deviation of σ =
11.1 µs (compare Figure 8.6). van Greunen and Rabaey [839] make the additional assumption
that the differences in channel access times obey the same distribution. Depending on the degree
of correlation between access time difference and timestamping difference, the variance of the sum
of these variables is at most four times the variance σ 2 of either component. Accordingly, van
Greunen and Rabaey [839] characterize this sum (i.e. the overall error in the above estimation
of O) as a normal random variable with variance 4σ 2 and standard deviation 2σ . It is well known
for the normal distribution that 99% of all outcomes have a difference of at most 2.3 times the
standard deviation from the mean, and therefore under these assumptions, the maximum error after
adjusting i’s clock to j ’s is with 99% probability smaller than 2.3 · 2 · σ µs.

Networkwide synchronization

Given the ability to carry out pair-wise synchronizations, LTS next solves the task to synchronize all
nodes of a (connected) sensor network with a reference node. If a specific node i has a distance of hi

hops to the reference node, and if the synchronization error is normally distributed with parameters
µ = 0 and σ ′ = 2σ at each hop, and if furthermore the hops are independent, the synchronization
error of i is also normally distributed with variance σ 2

i = 4hiσ
2.7 On the basis of this observation,

LTS aims to construct a spanning tree of minimum height and only node pairs along the edges
of the tree are synchronized. If the synchronization process along the spanning tree takes a lot of
time, the drift between the clocks will introduce additional errors.

Two different variants are proposed, a centralized and a distributed one.

Centralized multihop LTS
The reference node – for example, a node with a GPS receiver or another high-quality time
reference – constructs a spanning tree T and starts synchronization: First the reference node syn-
chronizes with its children in T , then the children with their children, and so forth. Hence, each
node must know its children. There are several algorithms available for distributed construction of
a spanning tree [31, 526]; for LTS, two specific ones are discussed in reference [839], namely the
distributed depth-first search (DDFS) and the Echo algorithms.

The reference node also has to take care of frequent resynchronization to compensate for drift. It
is assumed that the reference node knows four parameters: the maximum height h of the spanning
tree, the maximum drift ρ such that Equation 8.1 is satisfied for all nodes in the network, the single-
hop standard deviation 2 · σ (discussed above), and the desired accuracy δ. The goal is to always
have a synchronization error of leaf nodes smaller than δ with 99% probability.8 Immediately after
resynchronization, a leaf node’s accuracy is smaller than h · 2.3 · 2 · σ and it is allowed to grow at
most to level δ. With maximum drift rate ρ, this growth takes δ−2·2.3·h·σ

ρ
time. The actual choice of

the synchronization period should be somewhat smaller to account for the drift occurring during a
single resynchronization, possibly harming the initial accuracy 2.3 · 2 · h · σ .

A critical issue is the communication costs. A single pair-wise synchronization costs three pack-
ets, and synchronizing a network of n nodes therefore costs on the order of 3n packets, not taking
channel errors or collisions into consideration. Additionally, significant energy is needed to construct

7 Please note that any single node i is with 99% probability synchronized within an error bound of 2.3 · 2 · √hi · σ . However,
this does not imply that all nodes simultaneously are synchronized with 99% within the same bounds. This can be easily seen
from the Bonferroni inequations.

8 We will leave out the 99% qualification henceforth.

Protocols based on sender/receiver synchronization 211

the spanning tree, and it is proposed to repeat this construction upon each synchronization round
to achieve some fault tolerance.

For reasons of fault tolerance, it is also beneficial to have multiple reference nodes: If one of
them fails or if the network becomes partitioned, another one can take over. A leader election
protocol is useful to support dynamic reference nodes.

Distributed multihop LTS
The second variant is the distributed multihop LTS protocol. No spanning tree is constructed, but
each node knows the identities of a number of reference nodes along with suitable routes to them.
It is the responsibility of the nodes to initiate resynchronization periodically.

Consider the situation shown in Figure 8.3 and assume that node 1 wants to synchronize with the
reference node R. Node 1 issues a synchronization request toward R, which results in a sequence
of pair-wise synchronizations: node 4 synchronizes with node R, node 3 synchronizes with node
4, and so forth until node 1 is reached. Two things are noteworthy:

• As a by-product, nodes 2, 3, and 4 also achieve synchronization with node R.
• Given the same accuracy requirement δ and the same drift rate ρ for all nodes, the resynchroniza-

tion frequency for a node i that is hi hops away from the reference node is given by δ−4·2.3·hi ·σ
ρ

.
Therefore, in the figure, nodes 1 and 6 have the shortest resynchronization period. If these two
nodes always request resynchronization with node R, the intermediate nodes 2, 3, 4, and 5 never
have to request resynchronization by themselves.

A node should choose the closest reference node to minimize its synchronization error. This way,
a minimum weight tree is not constructed explicitly, but it is the responsibility of the routing
protocol to find good paths. For certain network setups and routing protocols, the issue of routing/
synchronization cycles may arise, which have to be avoided. From the previous example, it is also
beneficial if a node can take advantage of ongoing synchronizations. Consider for example node
5 in Figure 8.3. Instead of synchronizing node 5 independently with the reference node R (which
would cause nodes 3 and 4 to handle two synchronization requests simultaneously), node 5 can ask
all nodes in its neighborhood about ongoing synchronization requests. If there is any, node 5 can
wait for some time and then attempt to synchronize with the responder.

Another optimization of LTS is also explained in Figure 8.3, using dashed lines. Suppose again
that node 5 wants to synchronize. As explained above, one option would be to let node 5 join an
ongoing synchronization request at node 3. On the other hand, it might be necessary to keep nodes
7 and 8 also synchronized with R. To achieve this, node 5 can issue its request through nodes 7 and
8 to R and synchronize the intermediate hops as a by-product. This is called path diversification.

The properties of the LTS variants were investigated by simulating 500 randomly distributed
nodes in a 120 m (120 m rectangle, each node having a transmit range of 10 m. The single reference

1 2 3 4

5

6

7 8

R

Figure 8.3 Distributed multihop LTS

212 Time synchronization

node is placed at the center. It is shown that the distributed multihop LTS is more costly in terms of
exchanged packets when all nodes of a network have to be synchronized (between 40 and 100 %
overhead to the central algorithm), even when optimizations like path diversification or joining
ongoing synchronizations are employed (reducing overhead to 15 to 60 %). However, if only a
fraction of nodes has to be synchronized, the distributed algorithms can restrict its overhead to
the interesting set and conserve all the other nodes’ energy whereas the centralized algorithms
always include all nodes and thus have fixed costs that occur whether or not time synchronization
is currently requested.

The distributed multihop LTS has the advantage that it is capable of post-facto synchronization.
Node i can decide by itself when to synchronize with neighbors closer to the reference node.

8.2.2 How to increase accuracy and estimate drift
We take the opportunity and use the pair-wise synchronization protocol of LTS to explain how the
synchronization error between nodes can be decreased and how the drift of node x’s clock with
respect to a reference node R’s clock can be estimated. Both can be transformed into standard
estimation problems [414].

Increasing accuracy

Assuming that the drift between x and R is negligible for a certain time and node x wants to
estimate the phase offset to R’s clock. Node x can increase the accuracy of its estimation by
repeating the packet exchange, obtaining multiple estimates O(t0), O(t1), . . . , O(tn−1). Let A be
the initial phase offset at time t0 and let us assume that the synchronization errors observed at the
different times t0, . . . , tn−1 are independent. One can therefore model each O(tk) as:

O(tk) = A + w(tk)

where the w(tk) are sampled from a white Gaussian noise process with zero mean and standard
deviation σx = 2 · σ , that is all w(tk) are independent. Therefore,

Â = 1

n

n−1∑
k=0

O(tk)

is an unbiased minimum-variance estimator for A, and its variance is σ2
x

n
, which is linearly decreasing

in n. Therefore, the estimator variance scales with n as O(n−1).
If the node responding to a request packet is known to send its answer as quickly as possible,

another approach making fewer assumptions about the observations and the noise can be used.
Referring to Figure 8.2, we can observe the following: When node i makes the k-th observation Ok ,
it measures the time difference between times t1,k and t8,k , that is the times between timestamping
the request and the response packets. Clearly, the observation k with the minimum difference
t8,k − t1,k has the smallest uncertainty and is the most precise one [184].

Drift estimation

Clearly, it is impossible to estimate the drift from just one resynchronization. Therefore, let
O(t0), O(t1), . . . , O(tn−1) be the estimated offsets obtained by node x for the resynchronizations
carried out at times t0, t1, . . . , tn−1. We assume that node x’s drift ρx is constant through the interval
[t0, tn−1].

Protocols based on sender/receiver synchronization 213

Let us first consider the case where the pair-wise synchronization protocol of Section 8.2.1 runs
repeatedly but node x does not readjust its clock after making an observation. In this case, we can
write O(ti) as follows:

O(ti) = A + ρx(ti − t ′) + w(ti)

where A is the exact offset between the two clocks at a reference time t ′ and w(t0), w(t1), . . . , w(tn−1)

are white Gaussian noise. From the above discussion, the white Gaussian noise assumption is
compatible with the assumptions made for LTS. For simplicity, we assume t ′ = 0. Now there are at
least two approaches to jointly estimate A and ρx :

• We can choose the time difference t1 − t0 so large that the magnitude of w(t0) and w(t1) is very
likely negligible as compared to ρx(t1 − t0). Hence,

O(t1) − O(t0) = A + ρx(t1 − t ′) + w(t1) − A − ρx(t0 − t ′) − w(t0) ≈ ρx(t1 − t0)

which gives us ρx from the observations O(t0) and O(t1). In a second step, we can subtract
ρx(t1 − t ′) from O(t1) to obtain an estimate of A.

• If more estimates are available, we have conceptually the problem of line fitting with noisy data.
The probability density function of making the observations O(t0), . . . , O(tn−1) for assumed
known parameters A and ρx can be written as:

p(O(t1), . . . , O(tn−1); A, ρx) =
n−1∏
i=0

1√
2πσ 2

x

exp

(
− (O(ti) − A − ρxti)

2

2σ 2
x

)

= (
2πσ 2

x

)− n
2 · exp

(
− 1

2σ 2
x

n−1∑
i=0

n(O(ti) − A − ρxti)
2

)
.

Kay [414, Chap. 3] shows that the minimum-variance unbiased estimator for this type of esti-
mation problem is given by:

Â = 2(2n − 1)

n(n + 1)

n−1∑
k=0

O(tk) − 6

n(n + 1)

n−1∑
k=0

k · O(tk)

ρ̂x = −6

n(n + 1)

n−1∑
k=0

O(tk) + 12

n(n2 − 1)

n−1∑
k=0

k · O(tk)

(the least-squares estimator is the same). More advanced estimation techniques are needed when
w(ti) is known to be not correlated or non-Gaussian.

Another interesting case is when node x’s clock is readjusted upon every resynchronization by
the estimated offset O(tk). In the following, we derive a simple maximum-likelihood estimator for
the drift rate ρx . According to our data model from above, for the first observation O(t0), we have:

O(t0) = A + ρx(t0 − t ′) + w(t0)

and immediately after this observation node x corrects its clock by subtracting O(t0). The “new”
phase offset A(t0) immediately after clock correction is just −w(t0). From now on, we do not have
to consider the initial offset A = A(t ′) anymore. For O(t1) we have:

O(t1) = A(t0) + ρx(t1 − t0) + w(t1) = ρx(t1 − t0) + w(t1) − w(t0)

214 Time synchronization

and the new phase offset immediately after correction is A(t1) = −w(t1). By repeating this argu-
ment, we obtain

O(tk) = A(tk−1) + ρx(tk − tk−1) + w(tk)

= ρx(tk − tk−1) + w(tk) − w(tk−1)

= ρx(tk − tk−1) + w∗(tk)

where the w∗(tk) are independent Gaussian random variables with zero mean and variance σ 2∗ =
2 · σ 2

x . The log-likelihood of making the observations O(t1), . . . , O(tn−1) for given ρx is given by:

L(ρx) = log

[
n−1∏
k=1

1√
2πσ 2∗

exp

(
1

2σ 2∗
(O(tk) − ρx(tk − tk−1))

2
)]

= −n

2
log(2πσ 2

∗) + 1

2σ 2∗

n−1∑
k=1

(O(tk) − ρx(tk − tk−1))
2.

Setting the derivative d
dρx

L(ρx) to zero and solving for ρx yields

ρx =
∑n−1

k=1 O(tk) · (tk − tk−1)∑n−1
k=1(tk − tk−1)2

.

8.2.3 Timing-sync protocol for sensor networks (TPSN)
The Timing-Sync Protocol for Sensor Networks (TPSN) [271, 272] is another interesting sender/
receiver based protocol. Again, we first explain the approach to pair-wise synchronization before
turning to the multihop case.

Pair-wise synchronization

The pair-wise synchronization protocol of TPSN has some similarities with LTS. It operates in an
asymmetric way: Node i synchronizes to the clock of another node j but not vice versa (Figure 8.4).
The operation is as follows:

• Node i initiates resynchronization at time t0. It formats a synchronization pulse packet and
hands it over to the operating system and networking stack at time t1.

• The networking stack executes the MAC protocol and determines a suitable time for transmission
of the packet, say t2. Immediately before transmission, the packet is timestamped with Li(t2). By
timestamping the packet immediately before transmission and not already when the packet has
been formatted in the application layer, two sources of uncertainty are removed: the operating
system/networking stack and the medium access delay. The remaining uncertainty is the small
time between timestamping the packet and the true start of its transmission. This delay is created,
for example, by the need to recompute the packet checksum immediately before sending it.

• After propagation delay and packet transmission time, the last bit arrives at the receiver at time
t3, and some time after this the packet receive interrupt is triggered, say at time t4. The receiver
timestamps the packet already in the interrupt routine with Lj(t4).

• Node j formats an acknowledgement packet and hands it over at time t5 to the operating system
and networking stack. Again, the networking stack executes the MAC protocol and sends the
packet at time t6. Immediately before transmission, the packet is timestamped with Lj(t6), and
the packet carries also the other timestamps Li(t2) and Lj(t4).

Protocols based on sender/receiver synchronization 215

i j

Trigger resynchronization

Format synch packet

Hand over packet for transmission

Start packet transmission

Operating system,
channel access

Propagation delay

Packet transmission time

Packet reception interrupt
Timestamp with

Timestamp with

Format synch answer packet

Hand over packet
for transmission

Start packet transmission

Packet reception interrupt

OS, Channel access

Timestamp with

Timestamp with

Figure 8.4 Sender/receiver synchronization in TPSN

• Finally, node i timestamps the incoming acknowledgement packet as early as possible with
Li(t7).

If O is the true offset of node i’s clock to node j ’s clock, we have for the synchronization pulse
packet

Lj(t4) = Li(t2) + O + τ + tp + δs,i + δr,j ,

216 Time synchronization

where τ is the propagation delay, tp is the packet transmission time (packet length divided by
channel bitrate), δs,i is the (small) uncertainty at the transmitter side between timestamping and
actual start of transmission, and δr,j is the receiver uncertainty at j . In the other direction, for the
acknowledgement packet, we have

Li(t7) = Lj(t6) − O + τ + tp + δs,j + δr,i

(assuming that acknowledgement packet and synchronization pulse packet have the same length
and the propagation delay is the same in both directions). Now

(Lj (t4) − Li(t2)) − (Li(t7) − Lj (t6))

= (O + τ + tp + δs,i + δr,j) − (−O + τ + tp + δs,j + δr,i)

= 2 · O + (δs,i − δs,j) + (δr,j − δr,i).

Therefore,

O = (Lj (t4) − Li(t2)) − (Li(t7) − Lj(t6))

2
− δs,i − δs,j

2
− δr,j − δr,i

2
.

The key feature of this approach is that node i timestamps the outgoing packet as lately as possible
and node j timestamps the incoming packet as early as possible. This requires support from
the MAC layer, which is easier to achieve in sensor nodes than with commodity hardware like
IEEE 802.11 network interface cards. For an implementation of this protocol on MICA motes with
a 115 kbps transceiver, the average magnitude of the transmitter uncertainty δs,i − δs,j is 1.15 µs
(the expectation is clearly zero) [272]. The average magnitude of the total synchronization error
was found to be ≈17 µs.

This protocol allows arbitrary jumps in node i’s local clock. The relative performance of TPSN
compared with the RBS protocol is discussed in Section 8.3.1.

Networkwide synchronization

The networkwide synchronization algorithm of TPSN essentially builds a spanning tree where
each node knows its level in the tree and the identity of its parent. The root node is assigned
level 0 and it is its responsibility to trigger the construction of the tree. All reachable nodes in the
network synchronize with the root node. If the root node has access to a precise external timescale
like UTC, all nodes therefore synchronize to UTC.

The protocol works as follows. To start the tree construction, the root node sends a level discovery
packet containing its level 0. All one-hop neighbors of the root node assign themselves a level of
one plus the level indicated in the received level discovery packet and accept the root as their
parent. Subsequently, the level 1 nodes send their own level discovery packets of level 1 and so
forth. The level 1 nodes choose a random delay to avoid excessive MAC collisions. Once a node
has received a level discovery packet, the packet originator is accepted as parent and all subsequent
packets are dropped. After a node has found a parent, it periodically resynchronizes to the parent’s
clock.

A node might fail to receive level discovery packets because of MAC collisions or because it
is deployed after initial tree construction. If a node i does not receive any level discovery packet
within a certain amount of time, it asks its one-hop neighborhood about an already existing tree by
issuing a level request packet. The neighboring nodes answer by sending their own level. Node i

collects the answers from some time window and chooses the neighbor with the smallest level as
its parent.

Protocols based on receiver/receiver synchronization 217

The tree maintenance is integrated with resynchronization. To account for drift, a node i must
run the pair-wise algorithm with its parent j periodically. If this fails subsequently for a number
of times, node i concludes that its parent has moved or passed away. If the level of i is two or
larger, it sends a level request packet, collects the answers for some time and assigns itself a new
level from the lowest-level answer packet. If i is at level one, it concludes that the root node has
died. There are several possibilities to resolve this situation. One of them is to run a leader election
protocol among level 1 nodes.

This approach has the following properties:

• The resulting spanning tree is not necessarily a minimal one, since MAC collisions and random
delays may lead to a situation where a node receives a level discovery from a higher-level node
first. However, there is a trade-off between the synchronization accuracy (longer paths imply
larger average error) and the overhead for tree construction. Algorithms for finding minimal
spanning trees are more elaborate.

• If two nodes i and j are geographically close together and receive the same level ν level discovery
in the tree setup phase, both assign themselves level ν + 1 and try to resend the level discovery
packet. One of them wins contention. Since both are close together, their one-hop neighbor-
hoods are almost identical. As a result, all so-far-unsynchronized neighbors accept node i as
their parent and create significant resynchronization load for i, whereas node j spends almost no
energy because it has no children. To avoid unfairness, the tree construction should be repeated
periodically, which in turn creates network load.

• The average magnitude of the synchronization error between a level ν node and the root node
increases with ν, but gracefully. For one hop, the average synchronization error is ≈17 µs and
for five hops ≈23 µs.

• It is possible to achieve post-facto synchronization. In this case, no spanning tree is constructed.
Consider a scenario in which a node i0 wants to communicate an event (which happened at time
t) to another node in over a number of intermediate hops i1, i2, . . . , in−1. Node i0 sends the
packet with its local timestamp Li0(t) to i1. Subsequently, node i1 synchronizes its clock to that
of node i0 and forwards the packet to node i2, and so forth. Finally, all nodes including node in
have synchronized to node i0 and in has the packet with timestamp Li0(t) and can thus decide
about the age of the event.

8.3 Protocols based on receiver/receiver synchronization
In sender/receiver based synchronization, the receiver of a timestamped packet synchronizes with
the sender of the packet. In receiver/receiver synchronization approaches, multiple receivers of the
same timestamped packet synchronize with each other, but not with the sender. We discuss two
protocols belonging to this class.

8.3.1 Reference broadcast synchronization (RBS)
The reference broadcast synchronization (RBS) protocol [236] consists of two components. In
the first one, a set of nodes within a single broadcast domain (i.e. a set of nodes that can hear each
other) estimate their peers’ clocks. The second component allows to relate timestamps between
distant nodes with several broadcast domains between them. We explain each component in turn.

Synchronization in a broadcast domain

The basic idea is as follows. A sender sends periodically a (not necessarily timestamped) packet
into a broadcast channel and all receivers timestamp this packet. The receivers exchange their

218 Time synchronization

i R j

Packet reception
interrupt

Timestamp with
Packet reception

interrupt

Receiver uncertainty

Timestamp with

Send

Send

P
P

Figure 8.5 RBS example: Two nodes i and j and a sender R

timestamps and can use this data to learn about their neighbors’ clocks. By repeating this process,
the nodes can not only learn about their mutual phase offsets but also about their drift rates. The
nodes do not adjust their local clocks but construct a table that, for each neighbor, stores the
necessary parameters to convert clock values.

An example
An example is shown in Figure 8.5. Two nodes i and j want to synchronize. At time t0, another
node R broadcasts a pulse packet, which includes its identification R and a sequence number
s.9 Since nodes i and j have a different distance to node R, the propagation delays differ: The
last bit reaches node i at real time t1,i and node j at time t1,j , and the propagation delays are
τi and τj , respectively. In both nodes, a packet reception interrupt is generated, say, at times t2,i

and t2,j for nodes i and j . Some short time later, at time t3,i , node i timestamps the packet with
its local timestamp Li(t3,i); node j behaves similarly, producing a timestamp Lj (t3,j). After this,
nodes i and j exchange their timestamps and the identity (sender address, sequence number) of
the corresponding pulse packet. Both nodes can easily compute the relative phase shifts of their
clocks by assuming t3,i = t3,j . Specifically, node i stores the value O(t3,i) = Li(t3,i) − Lj (t3,j)

as the phase offset in a local table without readjusting its clock. Clearly, this scheme can ben-
efit from having receivers timestamp incoming packets as quickly as possible in the interrupt
routine.

Adopting the terminology introduced for TPSN, the time between receiving the last bit and
timestamping the packet is called receiver uncertainty. This is denoted by δr,i and δr,j for nodes i

and j , respectively.

9 The pulse packet does not need to be a dedicated time synchronization packet, normal data packets carrying sequence
numbers suffice.

Protocols based on receiver/receiver synchronization 219

Achievable precision for a single pulse
Ultimately, the whole computation is perfectly precise when the assumption t3,i = t3,j is really
true. Let us briefly analyze the sources of possible synchronization errors.

• The propagation delay : In a sensor network, the broadcast domain is typically small and the
propagation delay of the packet is negligible. Furthermore, it is only the difference in propagation
delay between i and j that matters and this difference tends to be even smaller.

• The delay between receiving the last bit and generating the packet reception interrupt: This might
be due to hardware processing delays (like checksum computations) and also short-term blocking
of interrupts in case of critical sections or servicing interrupts of higher priority. Again, it is the
difference between i and j that counts for synchronization errors.

• The delay between receiving the packet interrupt and timestamping the packet: If the timestamp
is already generated in the interrupt routine, this delay is small.

• The drift between timestamping and exchanging the observed timestamps also contributes to
synchronization errors. The more the time that elapses, the larger this error will be.

Compared to sender/receiver based approaches, the time required for R to format its packet,
move it through its operating system and networking software, as well as the medium access delay
are completely irrelevant since the common point of reference for i and j is the time instant t0
where the packet appears on the medium.

Elson et al. [236] have characterized the differences between the times where receivers times-
tamp a pulse packet among a set of five Berkeley motes. All motes are equipped with a 19.200 b/s
transceiver and run TinyOS. For the measurements, the motes raise an I/O pin at the same time they
timestamp the packet, and the I/O signals were picked up by an external logic analyzer. Another
node sent 160 pulse packets at random times, and for each pulse packet and for each of the 10
possible receiver pairs, the difference of the signal transition times was captured. The results, shown
in Figure 8.6, indicate that the error between receivers seem to have a normal distribution with
sample mean zero and a standard deviation of σ = 11.1 µs (according to a Chi-square test with
confidence level 99.8 %), which is significantly smaller than the time needed to transmit a single
bit at a bitrate of 19.200 bps.

Comparison of RBS and TPSN
Ganeriwal et al. [272] compare RBS and TPSN, both analytically and by comparing implementa-
tions on MICA motes. Both protocols timestamp received packets already in the receiver interrupt.

–60 –40 –20 0 20 40 60
0

10

20

30

40

50

60

70

80

90

100

Pair-wise difference in packet reception time[msec]

N
um

be
r

of
 tr

ia
ls

Figure 8.6 Distribution of differences in packet reception time. Reproduced from [236, Fig. 2] by permission
of Jeremy Elson

220 Time synchronization

As compared to other sender/receiver based protocols, TPSN removes much of the uncertainty
at the sender (operating system and networking stack, medium access delay) by timestamping an
outgoing packet immediately before transmission. For the case of TPSN, we have derived the
equation

O = (Lj (t4) − Li(t2)) − (Li(t7) − Lj(t6))

2
− δs,i − δs,j

2
− δr,j − δr,i

2

where Lx(ty) are the timestamps and δs,i and δr,i are transmitter and receiver uncertainty at node
i, respectively.

Now, let us consider RBS. Say, we have two receivers i and j , and node i wants to estimate
the offset to node j . Let the true offset be O. From Figure 8.5, we can write (with t1 = t1,i being
the time where i timestamps the pulse packet):

Li(t1) = Lj (t1) + O − (δr,i − δr,j) − (τi − τj)

resulting in

O = Li(t1) − Lj(t1) + (δr,i − δr,j) + (τi − τj).

Assuming that (i) the difference in propagation delay is negligible, and (ii) he transmitter uncertainty
is small (Section 8.2.3), the error in estimating the offset is dominated by the term

δr,j −δr,i

2 in the
case of TPSN and by δr,i − δr,j for RBS.

For neither TPSN nor RBS, the possible clock drift during exchange of the synchronization
packets has been considered.

Using multiple pulses
The sender can send pulse packets regularly, and for each pulse packet, the nodes i and j exchange
their local observations. The least-squares linear regression proposed for RBS is almost equivalent to
the minimum-variance unbiased estimator discussed in Section 8.2.2. An outlier-rejection technique
is used additionally. By disregarding those observations older than a certain threshold (a few minutes
in RBS), time-varying drift rates can be accommodated.

Multiple nodes and RBS costs
It is straightforward to extend this technique to m > 2 nodes in a broadcast domain: The pulse
packets are picked up by all m nodes and all nodes exchange their observations. This way, a single
one of these nodes, say node i, can estimate drift and phase offsets for all its peers in the broadcast
domain. By storing these values for each peer in a table, node i can convert its local timestamps to
the time base of any of its peers. As for the pulse senders, there are at least the following choices:

• In networks where stationary infrastructure nodes are present (like, for example, IEEE 802.15.4
in the beaconed mode, see Section 5.5), these nodes can send the pulse packets. They can do
even more – they can also collect the observations from the sensor nodes, compute for each node
pair the offsets and drift rates with the least-squares method, and send the results back.

• Each node acts as both a receiver and a sender of pulse packets. In this scenario, both the sender
identification and the sequence numbers in pulse packets are really needed.

The precision goal in a broadcast domain is then to reduce the maximum of the phase errors between
all node pairs, called group dispersion. It is shown that the group dispersion depends both on the
group size (larger groups have larger dispersion) and on the number of observations used to estimate

Protocols based on receiver/receiver synchronization 221

phase shift and drift rate (increasing the number of observations decreases the group dispersion).
For two nodes, it is shown that increasing the number of observations beyond 30 provides no
additional gains in precision. The RBS protocol is also compared with NTP, which uses a sender/
receiver based scheme. In the investigated scenario, RBS has a much smaller group dispersion
than what could be achieved with NTP. Furthermore, the performance of RBS is almost insensitive
to the background load in the broadcast domain, whereas NTPs group dispersion increases with
increasing load. This can be explained by the influence of medium access delays in NTP. In the
given scenario, RBS is approximately eight times better than NTP without background load.

This technique of synchronizing introduces some overhead, which is not yet fully characterized:

• To exchange the observations of a group of m nodes in a broadcast domain, a number of 2m

packets is needed when the observations are collected and evaluated at a central node and
afterward sent back to the receivers. In scenarios without central nodes, exchanging observations
takes m · (m − 1) = O(m2) packets. In dense sensor networks, a node can be a member in several
(partially overlapping) broadcast domains, and the workload increases accordingly.

• The rate of pulse packets needed to keep the group dispersion below a certain level depends on
the group size. A more precise characterization of this relationship needs to be developed.

• The least-squares regression requires significant computation.

RBS and post-facto synchronization
When looking at the overhead, one gets the feeling that RBS can become quite expensive in terms
of the number of exchanged packets and computation. However, one of the most important features
of RBS is that it can participate in post-facto synchronization. In this mode, the nodes do not
synchronize with each other until an external event of interest happens. Each node i timestamps this
event with a local timestamp Li(t0). This event triggers synchronization among nodes and the nodes
learn about their relative phase shifts and drift rates. If synchronization is acquired quickly enough
after the event occurred, it is safe to assume that the relative drift has not changed. Therefore, node
j can use its estimation of node i’s phase shift and drift rate to accurately estimate Lj(t0), that is,
to make a backward extrapolation.

Network synchronization over multiple hops

What we have seen so far is local synchronization in a broadcast domain. In most cases, a broadcast
domain covers only a tiny fraction of a whole sensor network. So the question is: How can an a
node learn at which time, measured with respect to its local timescale, a remote event occurred?

Timestamp conversion approach
The basic idea is to not produce a global timescale, but to convert a packet’s timestamp at each
hop into the next hop node’s timescale until it reaches the final destination. Figure 8.7 serves as
an example. Let us assume that node 1 has observed an event that it wants to report to the sink
node. The human operator at the sink node wants to know when the event happened and he needs
this information in an accepted timescale like UTC. Node 1 timestamps the event at time L1(t),
and the packet has to pass through nodes 1 → 3 → 5 → 9 → 8 → 14 → 15 → Sink. Furthermore,
assume that nodes form broadcast domains as indicated by the circles. Observe that nodes 5, 8,
and 9 are members of multiple broadcast domains. The source node 1 is in the same broadcast
domain as the next node 3 and thus node 1 can use its estimates of the phase shift and drift rate of
node 3 to convert the timestamp L1(t) into L3(t). Node 1 timestamps the event packet not with its
own timestamp but with L3(t). Node 3, upon receiving this packet, makes a routing decision and
infers that node 5 is the next hop. Fortunately, node 5 is in the same broadcast domain as node 3
and node 3 can thus convert the received timestamp L3(t) into L5(t). This process is continued
until the packet reaches the sink. The last node before the sink, node 15, is in the same broadcast

222 Time synchronization

5

4

3

7

8

9

2

6

10

1

11

12 13

14

16
17

15

Sink (UTC)

Figure 8.7 RBS example: Multiple broadcast domains

domain as the sink, which keeps UTC time. Again, node 15 knows its phase shift and drift rate
with respect to the sink and can thus convert the timestamp L15(t) to UTC time.

The following points are noteworthy:

• The sink node gets an event timestamp in the UTC timescale.
• Each node keeps its local timescale and timestamp conversion can be integrated with packet

forwarding. In fact, when node i has to decide about a possible forwarder, only candidates j that
have a broadcast domain in common with i are suitable candidates. This requires that for node
i and a possible forwarder j there exists a third node whose pulse packets can be heard by both
i and j . These might not always exist in sparse sensor networks.

• There is no information related to time synchronization that must be globally available.
• If the synchronization error over a single hop is characterized by a normal distribution with zero

mean and standard deviation σ and if the synchronization errors of different hops are independent,
then after n hops the synchronization error is Gaussian with zero mean and standard deviation
σ · √

n. This growth rate is also confirmed by measurements.

How to create the broadcast domains?
One of the open points in RBS is how the broadcast domains are constituted and how it can be
ensured that a time conversion path actually exists between two desired nodes, say, a sensor and a
sink node.

Let us look at two different scenarios (Figure 8.8). In the first scenario, a number of static nodes
act as dedicated pulse senders and also as packet forwarders; these are shown as circles in the figure.
Ordinary sensor nodes (displayed as rectangles) in the range of a pulse sender do not necessarily
have to be immediate neighbors to be synchronized. The sensor nodes timestamp the pulse packets,
transmit their observations to the pulse sender, which computes for each pair of sensor nodes the

Source Sink

Figure 8.8 RBS: Integrating packet forwarding and timestamp conversion

Protocols based on receiver/receiver synchronization 223

relative phase shifts and drift rates, and distributes the results back. A broadcast domain is thus
formed by the transmission range of the pulse sender. A sensor node i about to forward a packet
has two options:

• It can by itself determine another sensor node j in the same broadcast domain to forward the
packet to. If both are one-hop neighbors, node i can convert the timestamp and send the packet
directly to j . This is indicated by solid arcs in Figure 8.8. In the other case, node i can ask the
pulse sender to forward the packet to node j without manipulating it. In both cases, the pulse
sender is not required to keep the table with conversion information.

• It can forward the packet to the pulse sender. It is the pulse sender’s responsibility to look up
a successor node j and to convert the timestamp (indicated by the dashed lines in Figure 8.8).
Accordingly, the pulse sender is required to keep the table with conversion parameters.

In either case, the pulse sender does not make use of its local clock and thus need not be synchronized
with its sensor nodes.10 In both cases, the broadcast domains should be chosen as follows:

• Each sensor node is a member of at least one broadcast domain.
• When a packet is to be delivered from a source node to a sink node in a different broadcast

domain, there must be a series of neighboring broadcast domains on the path between source and
sink and two neighboring broadcast domains must overlap in at least one node. These gateway
nodes (the rectangular nodes with two different grey levels in Figure 8.8) know the conversion
parameters for all nodes in both broadcast domains and can convert timestamps accordingly.
There needs to be enough overlap between domains to ensure the presence of gateway nodes.
Ideally, between two domains there is more than one gateway node to allow for some balancing
of forwarding load.

• The number of conversions necessary between a source and a sink node should be small to avoid
loss of precision; this calls for large broadcast domains. On the other hand, in larger domains,
more packets have to be exchanged and a larger transmit power has to be used to reach all
neighbors, draining batteries more quickly.

This can be considered as a clustering problem (see Chapter 10), with the goal to find overlapping
clusters. A dedicated clustering protocol for the purposes of RBS is presented by [567]. This
protocol allows to adjust the cluster size to find a trade-off between minimizing the number of hops
and minimizing the number of packets/transmit power.

If there are no dedicated nodes available or when really all nodes including pulse senders need
to be synchronized, the broadcast domains must be smaller and all members of a broadcast domain
must be one-hop neighbors to be able to exchange the pulse observations as well as to forward
data packets. A broadcast domain is thus a clique of nodes. In such a scenario each node acts both
as a receiver as well as a sender of pulse packets, and forwarding decisions are restricted to those
one-hop neighbors that share at least one broadcast domain with the forwarding node.

8.3.2 Hierarchy referencing time synchronization (HRTS)
The TSync protocol presented by Dai and Han [189] combines a receiver/receiver and a sender/
receiver based technique. It consists of two subprotocols, which may act independent of each other.
The Hierarchy Referencing Time Synchronization (HRTS) protocol discussed below is a receiver/
receiver technique synchronizing all nodes in a broadcast domain and additionally constructing a
synchronization tree to synchronize a whole network. The synchronization is triggered periodically

10 To achieve such a synchronization by means of RBS, another pulse sender would be needed in range of the original
pulse sender and its associated nodes ...

224 Time synchronization

by the root of the tree. The other protocol, called ITR (Individual-based Time Request) protocol,
is discussed briefly in Section 8.4.

Synchronization in a broadcast domain

We explain the approach by an example, shown in Figure 8.9. A dedicated node, called a root node
or base station (node R in Figure 8.9) triggers time synchronization at time t1 (corresponding to
local time LR(t1)) by broadcasting a sync begin announcement packet. This packet includes two
parameters, a level value (explained below) and the identification of one of node R’s one-hop
neighbors, say node i. The selected node i timestamps the received packet at time t2 with its local
time Li(t2). Another node j timestamps the same packet at time t ′2 with Lj (t

′
2). Similar to RBS,

t2 and t ′2 can differ slightly because of random receiver uncertainties. Since node i has found its
identification in the packet, it formats an answer packet and timestamps it for transmission at time
t3 with its local time Li(t3). Both timestamps Li(t2) and Li(t3) are included in the answer packet.
The root node R receives the packet and timestamps it at time t4 with LR(t4). 11 The root node R

i R j

Timestamp with

Timestamp with

Timestamp
answer with

Timestamp with

Compute offset

Figure 8.9 TSync: Synchronization in a single broadcast domain

11 The explicit inclusion of a node identification requires node R to know its neighborhood. Alternatively, node R can omit
the identification and all neighbors start a timer with a random value. Node R then just picks the first answer.

Protocols based on receiver/receiver synchronization 225

can now estimate the offset OR,i between its own local clock and the local clock of node i in a
similar fashion as in the pair-wise synchronization protocol of LTS and TPSN as

OR,i = (Li(t2) − LR(t1)) − (LR(t4) − Li(t3))

2
.

In the next step, the root node R broadcasts the values O and Li(t2) to all nodes. Now, let us
look how the individual nodes adjust their clocks:

• Node i simply subtracts the offset OR,i from its local clock.
• Assume that another node j in the same broadcast domain has phase offset Oj,i to node i.

Under the assumption that i and j receive the sync begin at the same time, we have t2 = t ′2
and Li(t2) = Lj(t

′
2) + Oj,i . Upon receiving the clock value Li(t2) from the root node’s final

broadcast, node j can compute Oj,i directly as Oj,i = Li(t2) − Lj(t
′
2). On the other hand, since

Li(t2) = LR(t2) + OR,i

Lj (t2) = Lr(t2) + OR,j

we obtain

LR(t2) + OR,i = Lj(t
′
2) + Oj,i

which gives

OR,j = Lj (t2) − LR(t2)

≈ Lj (t
′
2) − LR(t2)

= LR(t2) + OR,i − Oj,i − LR(t2)

= OR,i − Oj,i

= OR,i − (Li(t2) − Lj(t
′
2)).

Therefore, node j can compute the phase offset to node R directly from its own observation
Lj(t

′
2) and the values from the final broadcast, without exchanging any packets with other nodes.

The important property of this scheme is that three packets suffice to synchronize all of R’s
neighbors to R’s clock, no matter what their number is and whether they are in mutual range or
not. In contrast to RBS, the receivers of the sync begin packet do not have to exchange their
observations in a pair-wise fashion and the protocol is therefore insensitive to the network density.

Dai and Han [189] have shown experimentally that with respect to a single broadcast domain as
well as over multiple hops the HRTS protocol and RBS have approximately the same distribution of
synchronization errors when taken over a large number of repetitions. Similar to the other protocols,
the receive and transmit uncertainties can be reduced by timestamping outgoing packets as lately
as possible and timestamping incoming packets as early as possible.

Although not necessary for this approach to work, Dai and Han [189] propose to run this
protocol over a separate MAC channel. The goal is to separate synchronization-related traffic from
user data traffic and thus to reduce the probability of collision and the medium access delays when
the selected node i answers to the root node’s sync begin packet. Specifically, the root node sends
the sync begin on a dedicated control channel and includes the specification of another dedicated

226 Time synchronization

channel, the clock channel. Both the root node and the selected node i switch to the clock channel
and i transmits its answer packet. Finally, the root node broadcasts the packet containing Li(t2)

and O, again on the control channel. All other nodes can continue forwarding data packets as R

and i exchange their packets.

Network synchronization over multiple hops

Let us assume that the whole network is static and connected and that there is at least one reference
node having access to an external time source and, thus, to UTC time; there can be multiple
reference nodes. These reference nodes are assigned level 0 and become root nodes for their one-
hop neighborhoods. They trigger resynchronization periodically, according to the protocol described
in the previous section. The level is included in the sync begin packet. All nodes behave according
to a simple rule. They maintain a local level variable, initialized with a sufficiently large value.
If a node receives a sync begin packet with a level value being truly smaller than its own level
variable, the node accepts the packet, sets its own level to the received level value plus one, and
becomes a root node of its own, starting synchronization with its neighbors after the triggering
synchronization round has finished. In the other case, if the received level is larger than or equal
to the own level variable, the sync begin packet is simply dropped. The process continues in a
recursive fashion until the fringe of the network is reached.

This way, nodes always synchronize over multiple hops with the closest reference node, and
their level variable indicates the hop distance. If an already-synchronized node learns later about a
closer reference node, it assigns itself a new level and starts resynchronization of its children.

The overhead (expressed as number of exchanged packets) of HRTS and RBS are compared
by Dai and Han [189] for a scenario with 200 nodes placed in an area of 400 × 400 m2 square
meters when varying the average node degree. RBS creates much higher overhead than HRTS,
however, the overhead of HRTS increases when the node density increases. One explanation for
this might be the observation that the broadcast domains of higher-level nodes are smaller than
those of reference nodes because of overlapping transmission ranges of neighboring children. This
way they have relatively fewer children.

The protocol has a further mechanism to restrict the depth of a synchronization tree rooted in
a reference node. In addition to the level parameter and the identity of the answering node, each
sync begin packet carries also a depth parameter, which is decremented in every level of the tree.
The tree construction stops upon reaching a depth of zero.

8.4 Further reading
• The TinySync and MiniSync protocols are presented by Sichitiu and Veerarittiphan [764].

They belong to the class of sender/receiver protocols and consist of schemes for pair-wise
synchronization and synchronizing a network. Similar to RBS, the nodes do not adjust their
local clocks but compute conversion parameters for their respective phase shifts and drift rates.
Let us assume that node i wants to synchronize with node j . At time t0,1 (and local time Li(t0,1)),
node i sends a packet to node j , which timestamps it as Lj(t1,1). Node j answers immediately
and i receives the answer at Li(t2,1). Under the assumption of constant drift rate, we need to
find coefficients ai,j and bi,j such that Lj(t) = ai,j · Li(t) + bi,j holds for all t . From only a
single three-way handshake, one can constrain the parameters ai,j and bi,j by considering that
node j must have received the first packet after it has been sent by i. By the same token, node
j must have sent the answer before node i has received it. To summarize, it must hold that

Lj(t1,1) > ai,j · Li(t0,1) + bi,j

Lj (t1,1) < ai,j · Li(t2,1) + bi,j .

Further reading 227

Figure 8.10 Deriving constraints for drift rate and phase offset in TinySync/MiniSync (adapted from [764,
Fig. 2])

An estimate of ai,j and bi,j can be obtained by taking more three-way handshakes at later
times t0,k , t1,k and t2,k into account, compare Figure 8.10 in which an example involving two
handshakes is shown. The slope of the dashed line between the points (t1,1, t0,1), and (t1,2, t2,2)

gives an upper bound ai,j on the drift rate ai,j . The other dashed line indicates a lower bound
ai,j ; finally, an estimate ai,j is taken from between these bounds. Sichitiu and Veerarittiphan
[764] demonstrate how these bounds can be tightened; TinySync and MiniSync differ in the
respective set of handshake operations taken into account (observation set) and in the update
policies for this observation set.

• The concept of sender/receiver synchronization and the approach of using timestamps taken
immediately after reception of a packet (thus eliminating the uncertainties coming from medium
access and the sender’s operating system) are combined in reference [568, 569]. In the proposed
protocol, a set of IEEE 802.11 stations synchronize their times independently with an access
point. The necessary time synchronization pulses are actually provided by beacon packets sent
by the access points in regular intervals. The trick is that not only the receiver station i timestamps
the beacon packet immediately after arrival (say, with Li(t1)) but the access point a is also forced
to receive its own beacon packet and to timestamp it with La(t

′
1) (Figure 8.11). The access point

piggybacks its timestamp onto the next beacon packet (actually, a history of timestamps is
piggybacked to provide some fault tolerance). Having two such measurements – say, Li(t1),
Li(t2) and La(t

′
1), La(t

′
2) – the receiver can estimate the drift with respect to the access point

by equating t1 and t ′1 as well as t2 and t ′2 and computing the slope Li(t2)−Li(t1)

La(t2)−La(t1)
. The actual

clock adjustment policy used in reference [569] avoids sudden jumps: Instead, of modifying a
receiver’s phase shift φi (for example, by adding La(t2) − Li(t2) to Li(t2)) the drift rate θi is
controlled instead. Node i modifies its drift rate at t2 such that its local clock will coincide with
the access points clock at a carefully selected time in the future. Because of its focus on the
infrastructure mode of IEEE 802.11, the multihop case is not discussed.

• Karp et al. [410] discuss some problems of RBS. The first problem is that the pair-wise synchro-
nization approach of RBS based on least-squares linear regression is, in general, not consistent.12

The second problem is that for synchronizing two nodes i and j , which are n hops apart, the
variance of the synchronization error increases linearly with n. Karp et al. [410] argue that this

12 To explain consistency, assume that node i has learned its phase shift φi,j and drift rate θi,j with respect to another node
j ; thus, Lj (t) = θi,j · Li(t) + φi,j . Additionally, node j has learned about node k, resulting in Lk(t) = θj,k · Lj (t) + φj,k .

228 Time synchronization

a j

Packet reception interrupt Packet reception interrupt

Timestamp with

Timestamp with

P

Figure 8.11 Continuous clock synchronization [568, 569]

is an artifact of considering only a single path between i and j . Theoretically, by increasing
the amount of information available to a pair of nodes (which can exchange their observations
regarding multiple common pulse senders instead of only a single one) and by considering mul-
tiple synchronization paths between remote nodes i and j , a minimum-variance global estimator
can be produced that is consistent and for which the synchronization error grows only logarith-
mically in the number of hops (at least in selected scenarios). However, without optimizations,
this global estimator requires observations from all nodes and all pulse senders.

• A scheme with an approach similar to RBS is CesiumSpray system from Verissimo et al. [841].
CesiumSpray is designed for a local network with a single broadcast domain and contains no
provisions for multiple hops.

• The MultiHop Time Synchronization Protocol (MTSP) [777] uses a pair-wise synchronization
protocol similar to LTS and TPSN. It requires that transmitted packets are timestamped as lately as
possible and received packets are timestamped as early as possible. Both the pair-wise protocol
and the networkwide protocol are designed such that nodes with smaller local clock values
synchronize to other nodes with higher clock values but not vice versa. Eventually, all nodes in
the network synchronize to the fastest node.

• The Individual-based Time Request (ITR) protocol proposed by Dai and Han [189] is supposed
to run in parallel to the HRTS protocol. ITR allows a node to acquire synchronization on demand,
for example, when it has missed some of HRTSs synchronization packets or after waking up from
a long sleep period. ITR is also useful for implementing post-facto synchronization. The protocol
is built on a similar pair-wise synchronization approach as TPSN (Section 8.2.3) or Simple NTP
[555]. An interesting feature of ITR is its way to synchronize two nodes that are n ≥ 2 hops

Consistency would require that

Lk(t) = θj,k · [θi,j · Li(t) + φi,j

] + φj,k

and hence, θi,k = θi,j · θj,k as well as φi,k = θj,k · φi,j + φj,k .

Further reading 229

away: The intermediate nodes just forward synchronization request and answer packets without
acquiring synchronization on the fly!

• swol Hu and Servetto [801], Hu and Servetto [802] propose an interesting technique for
global synchronization in dense sensor networks, which we explain briefly by an analogy. Let
us assume that you are in a large football stadium and somewhere someone else (the seed)
starts to clap hands rhythmically. The neighbors of the seed (the first generation) get inter-
ested, listen to the seed, independently estimate the seed’s clapping period and start to clap at
the estimated period. The second generation neighbors hear the seed’s and the first generation
neighbors’ clapping. The first generation neighbors can have small random deviations from the
seed; however, these will be independent. The second generation neighbors try to estimate the
clapping frequency from the composite signal and start clapping too. All further generations
behave in the same way. Under suitable assumptions (one of them being a high node density and
thus a large number of nodes in the respective generations), the peak intensity of the composite
signal perceived by second and further generation neighbors coincides with the seed’s clapping
period.

9
Localization and positioning

Objectives of this Chapter
This chapter gives an overview of the methods to determine the symbolic location – “in the living
room” – and the numeric position – “at coordinates (23.54, 11.87)” – of a wireless sensor node.
The properties of such methods and the principal possibilities for a node to determine information
about its whereabouts are discussed. The mathematical basics for positioning are introduced and
the single-hop and multihop positioning case are described using several example systems.

At the end of the chapter, the reader will understand the principal design trade-offs for positioning
and gain an appreciation for the overhead involved in obtaining this information.

Chapter Outline
9.1 Properties of localization and positioning procedures 232
9.2 Possible approaches 233
9.3 Mathematical basics for the lateration problem 237
9.4 Single-hop localization 240
9.5 Positioning in multihop environments 243
9.6 Impact of anchor placement 247
9.7 Further reading 248
9.8 Conclusion 249

In many circumstances, it is useful or even necessary for a node in a wireless sensor network to
be aware of its location in the physical world. For example, tracking or event-detection functions
are not particularly useful if the WSN cannot provide any information where an event has happened.
To do so, usually, the reporting nodes’ location has to be known. Manually configuring location
information into each node during deployment is not an option. Similarly, equipping every node with
a Global Positioning System (GPS) receiver [354] fails because of cost and deployment limitations
(GPS, e.g. does not work indoors).

Protocols and Architectures for Wireless Sensor Networks. Holger Karl and Andreas Willig
Copyright 2005 John Wiley & Sons, Ltd. ISBN: 0-470-09510-5

232 Localization and positioning

This chapter introduces various techniques of how sensor nodes can learn their location auto-
matically, either fully autonomically by relying on means of the WSN itself or by using some
assistance from external infrastructure.

9.1 Properties of localization and positioning procedures
The simple intuition of “providing location information to a node” has a number of facets that should
be classified to make the options for a location procedure clear. The most important properties are
(following the survey papers [349, 350]):

Physical position versus symbolic location Does the system provide data about the physical posi-
tion of a node (in some numeric coordinate system) or does a node learn about a symbolic
location – for example, “living room”, “office 123 in building 4”? Is it, in addition, pos-
sible to match physical position with a symbolic location name (out of possibly several
applicable ones)?

While these two concepts are different, there is no consistent nomenclature in the litera-
ture – position and location are often used interchangeably. The tendency is to use “location”
as the more general term. We have to rely on context to distinguish between these two
contexts.

Absolute versus relative coordinates An absolute coordinate system is valid for all objects and
embedded in some general frame of reference. For example, positions in the Universal
Transverse Mercator (UTM) coordinates form an absolute coordinate system for any place
on earth. Relative coordinates, on the other hand, can differ for any located object or set of
objects – a WSN where nodes have coordinates that are correct with respect to each other
but have no relationship to absolute coordinates is an example.

To provide absolute coordinates, a few anchors are necessary (at least three for a two-
dimensional system). These anchors are nodes that know their own position in the absolute
coordinate system. Anchors can rotate, translate, and possibly scale a relative coordinate
system so that it coincides with the absolute coordinate system. These anchors are also
commonly called “beacons” or “landmarks” in the literature.

Localized versus centralized computation Are any required computations performed locally, by
the participants, on the basis of some locally available measurements or are measurements
reported to a central station that computes positions or locations and distributes them back
to the participants? Apart from scaling and efficiency considerations (both with respect to
computational and communication overhead), privacy issues are important here as it might
not be desirable for a participant to reveal its position to a central entity.

Accuracy and precision The two most important figures of merit for a localization system are the
accuracy and the precision of its results. Positioning accuracy is the largest distance between
the estimated and the true position of an entity (high accuracy indicates a small maximal
mismatch). Precision is the ratio with which a given accuracy is reached, averaged over many
repeated attempts to determine a position. For example, a system could claim to provide a
20-cm accuracy with at least 95 % precision. Evidently, accuracy and precision values only
make sense when considered together, forming the accuracy/precision characteristic of a
system.

Scale A system can be intended for different scales, for example – in indoor deployment – the size
of a room or a building or – in outdoor deployment – a parking lot or even worldwide oper-
ation. Two important metrics here are the area the system can cover per unit of infrastructure
and the number of locatable objects per unit of infrastructure per time interval.

Possible approaches 233

(x = 2, y = 1)

(x = 8, y = 2)

(x = 5, y = 4)

(x = ?, y = ?)

(x = ?, y = ?)

(x = ?, y = ?)

Figure 9.1 Determining the position of sensor nodes with the assistance from some anchor points; not all
nodes are necessarily in contact with all anchors

Limitations For some positioning techniques, there are inherent deployment limitations. GPS, for
example, does not work indoors; other systems have only limited ranges over which they
operate.

Costs Positioning systems cause costs in time (infrastructure installation, administration), space
(device size, space for infrastructure), energy (during operation), and capital (price of a
node, infrastructure installation).

Figure 9.1 illustrates the positioning problem. The figures in this chapter use the “access point”
icon to indicate anchors for easy distinction. It should be pointed out, however, that normal sensor
nodes can just as well be used as anchors, as long as they have are aware of their position.

In addition, a positioning or localization system can be used to provide the recognition or
classification of objects; this property is less important in the WSN context or, if used, usually not
considered a part of the localization system.

9.2 Possible approaches
Three main approaches exist to determine a node’s position: Using information about a node’s
neighborhood (proximity-based approaches), exploiting geometric properties of a given scenario
(triangulation and trilateration), and trying to analyze characteristic properties of the position of a
node in comparison with premeasured properties (scene analysis). The overview given here again
considerably follows reference [350].

9.2.1 Proximity
The simplest technique is to exploit the finite range of wireless communication. It can be used
to decide whether a node that wants to determine its position or location is in the proximity of
an anchor. While this only provides coarse-grain information, it can be perfectly sufficient. One
example is the natural restriction of infrared communication by walls, which can be used to provide
a node with simple location information about the room it is in.

Proximity-based systems can be quite sophisticated and can even be used for approximate posi-
tioning when a node can analyze proximity information of several overlapping anchors (e.g. [106]).
They can also be relatively robust to the uncertainties of the wireless channel – deciding whether a
node is in the proximity of another node is tantamount to deciding connectivity, which can happen
on relatively long time scales, averaging out short-term fluctuations.

234 Localization and positioning

9.2.2 Trilateration and triangulation
Lateration versus angulation

In addition to mere connectivity/proximity information, the communication between two nodes
often allows to extract information about their geometric relationship. For example, the distance
between two nodes or the angle in a triangle can be estimated – how this is done is discussed in
the following two subsections. Using elementary geometry, this information can be used to derive
information about node positions. When distances between entities are used, the approach is called
lateration; when angles between nodes are used, one talks about angulation.

For lateration in a plane, the simplest case is for a node to have precise distance measurements
to three noncolinear anchors. The extension to a three-dimensional space is trivial (four anchors
are needed); all the following discussion will concentrate on the planar case for simplicity. Using
distances and anchor positions, the node’s position has to be at the intersection of three circles
around the anchors (Figure 9.2).

The problem here is that, in reality, distance measurements are never perfect and the intersection
of these three circles will, in general, not result in a single point. To overcome these imperfections,
distance measurements form more that three anchors can be used, resulting in a multilateration
problem. Multilateration is a core solution technique, used and reused in many concrete systems
described below. Its mathematical details are treated in Section 9.3.

Angulation exploits the fact that in a triangle once the length of two sides and two angles are
known the position of the third point is known as the intersection of the two remaining sides of the
triangle. The problem of imprecise measurements arises here as well and can also be solved using
multiple measurements.

Determining distances

To use (multi-)lateration, estimates of distances to anchor nodes are required. This ranging process1

ideally leverages the facilities already present on a wireless node, in particular, the radio commu-
nication device. The characteristics of wireless communication are partially determined by the
distance between sender and receiver, and if these characteristics can be measured at the receiver,

(x = 2, y = 1)

(x = 8, y = 2)

(x = 5, y = 4)

r1

r2

r3

Figure 9.2 Triangulation by intersecting three circles

1 Because of this name, proximity-based approaches are sometimes also called “range-free” approaches.

Possible approaches 235

they can serve as an estimator of distance. The most important characteristics are Received Signal
Strength Indicator (RSSI), Time of Arrival (ToA), and Time Difference of Arrival (TDoA).

Received signal strength indicator
Assuming that the transmission power Ptx, the path loss model, and the path loss coefficient α are
known, the receiver can use the received signal strength Prcvd to solve for the distance d in a path
loss equation like

Prcvd = c
Ptx

dα
⇔ d = α

√
cPtx

Prcvd
.

This is appealing since no additional hardware is necessary and distance estimates can even
be derived without additional overhead from communication that is taking place anyway. The
disadvantage, however, is that RSSI values are not constant but can heavily oscillate, even when
sender and receiver do not move. This is caused by effects like fast fading and mobility of the
environment – ranging errors of ±50 % are reported, for example, by Savarese et al. [724]. To
some degree, this effect can be counteracted by repeated measurements and filtering out incorrect
values by statistical techniques [864]. In addition, simple, cheap radio transceivers are often not
calibrated and the same actual signal strength can result in different RSSI values on different devices
(reference [873] considers the calibration problem in detail); similarly, the actual transmission power
of such a transceiver shows discrepancies from the intended power [725]. A third problem is the
presence of obstacles in combination with multipath fading [104]. Here, the signal attenuation along
an indirect path, which is higher than along a direct path, can lead to incorrectly assuming a longer
distance than what is actually the case. As this is a structural problem, it cannot be combated by
repeated measurements.

A more detailed consideration shows that mapping RSSI values to distances is actually a random
process. Ramadurai and Sichitiu [674], for example, collected, for several distances, repeated
samples of RSSI values in an open field setup. Then, they counted how many times each distance
resulted in a given RSSI value and computed the density of this random variable – Figure 9.3(a)
shows this probability density function for a single given value of RSSI, Figure 9.3(b) for several.
The information provided in particular by small RSSI values, indicating longer distances, is quite
limited as the density is widely spread.

65
70

75
80

85
90

0
20

40
60

80
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45

Signal strengthDistance

pd
f

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

Distance

P
ro

ba
bi

lit
y

di
st

rib
ut

io
n

fu
nc

tio
n

(a) Probability density function of distances
resulting in a given RSSI value

(b) Several probability density functions of distances
for various given RSSI values

Figure 9.3 Random nature of mapping RSSI values to distances [674]. Reproduced by permission of
V. Ramadurai and M. L. Sichitiu

236 Localization and positioning

Hence, when using RSSI as a ranging technique, it is necessary to accept and deal with con-
siderable ranging errors or to treat the outcome of the ranging process as a stochastic result to
begin with.

Time of arrival
Time of Arrival (ToA) (also sometimes called “time of flight”) exploits the relationship between
distance and transmission time when the propagation speed is known. Assuming both sender and
receiver know the time when a transmission – for example, a short ultrasound pulse – starts, the
time of arrival of this transmission at the receiver can be used to compute propagation time and,
thus, distance. To relieve the receiver of this duty, it can return any received “measurement pulse”
in a deterministic time; the original sender then only has to measure the round trip time assuming
symmetric paths.

Depending on the transmission medium that is used, time of arrival requires very high resolution
clocks to produce results of acceptable accuracy. For sound waves, these resolution requirements
are modest; they are very hard for radio wave propagation.

One disadvantage of sound is that its propagation speed depends on external factors such as
temperature or humidity – careful calibration is necessary but not obvious.

Time difference of arrival
To overcome the need for explicit synchronization, the Time Difference of Arrival (TDoA) method
utilizes implicit synchronization by directly providing the start of transmission information to the
receiver. This can be done if two transmission mediums of very different propagation speeds are
used – for example, radio waves propagating at the speed of light and ultrasound, with a different
in speed of about six orders of magnitude.2 Hence, when a sender starts an ultrasound and a
radio transmission simultaneously, the receiver can use the arrival of the radio transmission to start
measuring the time until arrival of the ultrasound transmission, safely ignoring the propagation time
of the radio communication.3

The obvious disadvantage of this approach is the need for two types of senders and receivers
on each node. The advantage, on the other hand, is a considerably better accuracy compared to
RSSI-based approaches. This concept and variations of it have been used in various research efforts
[659, 725] and accuracies of down to 2 cm have been reported [725].

Discussion
There is a clear trade-off between ranging error and complexity/cost. RSSI-based approaches are
simpler and work with hardware that is required anyway; TDoA-based approaches provide supe-
rior ranging results but need more complex and additional hardware, which also adds to energy
consumption. The open question is thus whether it is possible to solve the actual positioning or
localization problem based on the error-prone measurements provided by RSSI-based approaches
or whether the overhead for TDoA is unavoidable.

There is a number of additional work on making ranging measurements more reliable, for
example, by using acoustic ranging as opposed to radio frequency attenuation [291] or by con-
sidering the effects introduced by quantizing RSSI values (in effect, proximity systems can be
regarded as yes/no quantizations of RSSI) [624].

Determining angles

As an alternative to measuring distances between nodes, angles can be measured. Such an angle
can either be the angle of a connecting line between an anchor and a position-unaware node to a

2 Speed of light in vacuum: 299,792,458 m/s, ultrasound in air about 344 m/s at 21 ◦C.
3 In fact, this is precisely what happens when one estimates the distance to a thunderstorm by counting the seconds between

lightning and thunder.

Mathematical basics for the lateration problem 237

Length known

Angle f1

Angle f2

Figure 9.4 Angulation based on two anchors

given reference direction (“0◦ north”). It can also be the angle between two such connecting lines
if no reference direction is commonly known to all nodes (Figure 9.4).

A traditional approach to measuring angles is to use directional antennas (antennas that only
send to/receive from a given direction), rotating on their axis, similar to a radar station or a
conventional lighthouse. This makes angle measurements conceptually simple, but such devices are
quite inappropriate for sensors nodes; they can be useful for supporting infrastructure anchors.

Another technique is to exploit the finite propagation speed of all waveforms. With multiple
antennas mounted on a device at known separation and measuring the time difference between
a signal’s arrival at the different antennas, the direction from which a wavefront arrived at the
device can be computed. The smaller the antenna separation, the higher the precision of the time
differences has to be, which results in strenuous timing requirements given the desirable small size
of sensor nodes.

Overall, angulation is a less frequently discussed technique compared to lateration; Section 9.4
discusses some examples.

9.2.3 Scene analysis
A quite different technique is scene analysis. The most evident form of it is to analyze pictures
taken by a camera and to try to derive the position from this picture. This requires substantial
computational effort and is hardly appropriate for sensor nodes.

But apart from visual pictures, other measurable characteristic “fingerprints” of a given location
can be used for scene analysis, for example, radio wave propagation patterns. One option is to
use signal strength measurements of (one or more anchors) transmitting a known signal strength
and compare the actually measured values with those stored in a database of previously off-line
measured values for each location – the RADAR system [35] is one example that uses this approach
to determine positions in a building. Using other physical characteristics such as multipath behavior
is also conceivable.

While scene analysis is interesting for systems that have a dedicated deployment phase and where
off-line measurements are acceptable, this is not always the case for WSNs. Hence, this approach
is not the main focus of attention.

9.3 Mathematical basics for the lateration problem
Since (multi)lateration is one of the most popular techniques for positioning applied in WSNs and
serves as a primitive building block for some of the approaches discussed later, it is worthwhile to
have a closer look at the mathematics behind it.

238 Localization and positioning

9.3.1 Solution with three anchors and correct distance values
Assume that there are three anchors with known positions (x, yi), i = 1, . . . , 3, a node at unknown
position (xu, yu), and perfect distance values ri , i = 1, . . . , 3. From the Pythagoras theorem, a set
of three equations follows:

(xi − xu)
2 + (yi − yu)

2 = r2
i for i = 1, . . . , 3. (9.1)

To solve this set of equations, it is more convenient to write it as a set of linear equations in
xu and yu. To do so, the quadratic terms x2

u and y2
u have to be removed. This can be achieved by

subtracting the third equation from the two previous ones, resulting in two remaining equations:

(x1 − xu)
2 − (x3 − xu)

2 + (y1 − yu)
2 − (y3 − yu)

2 = r2
1 − r2

3 (9.2)

(x2 − xu)
2 − (x2 − xu)

2 + (y2 − yu)
2 − (y2 − yu)

2 = r2
2 − r2

3 . (9.3)

Rearranging of terms results in

2(x3 − x1)xu + 2(y3 − y1)yu = (r2
1 − r2

3) − (x2
1 − x2

3) − (y2
1 − y2

3) (9.4)

2(x3 − x2)xu + 2(y3 − y2)yu = (r2
2 − r2

2) − (x2
2 − x2

3) − (y2
2 − y2

3), (9.5)

which can be easily rewritten as a linear matrix equation

2

[
x3 − x1 y3 − y1

x3 − x2 y3 − y2

] [
xu

yu

]
=

[
(r2

1 − r2
3) − (x2

1 − x2
3) − (y2

1 − y2
3)

(r2
2 − r2

2) − (x2
2 − x2

3) − (y2
2 − y2

3)

]
, (9.6)

where the matrix on the left side and the right hand side only consists of known constants.

Example 9.1 (Position determination) Using the example positions of Figure 9.2 – (x1, y1) =
(2, 1), (x2, y2) = (5, 4), and (x3, y3) = (8, 2) – with the distances between anchors and node
of unknown position r1 = √

10, r2 = 2, r3 = 3, Equation 9.6 becomes

2

[
6 1
3 −2

] [
xu

yu

]
=

[
64
22

]
, (9.7)

resulting in xu = 5 and yu = 2 as the position of the unknown nodes.

9.3.2 Solving with distance errors
The real challenge for triangulation arises when the distance measurements are not perfect but only
estimates r̃ with an unknown error ε are known. Solving the above equations with r̃i = ri + εi will
in general not yield the correct values for the unknown positions (xu, yu).

The intuitive solution to this problem is to use more than three anchors and redundant distant
measurements to account for the error in each individual measurement. Mathematically, this turns
the above equations into an overdetermined system of equations, written in matrix form as

2

xn − x1 yn − y1
...

...

xn − xn−1 yn − yn−1

[
xu

yu

]
=

(r2
1 − r2

n) − (x2
1 − x2

n) − (y2
1 − y2

n)
...

(r2
n−1 − r2

n) − (x2
n−1 − x2

n) − (y2
n−1 − y2

n)

 . (9.8)

Mathematical basics for the lateration problem 239

For such an overdetermined system of linear equation, a solution can be computed that minimizes
the mean square error, that is, the solution is the pair (xu, yu) that minimizes ‖Ax − b‖2, where 0.5A
is the left-hand matrix (an n − 1 × 2 matrix), x = (xu, yu) a shorthand for the vector describing
the unknown position, and b the right hand side (an n − 1 row vector) from Equation (9.8). Since
‖·‖2, the 2-norm of a vector (the square root of the sum of the squares of the vector elements), is
minimized, this reflects solving for the position that best satisfies, with minimum average error, all
the position constraints from all n anchors.

To find a solution for this minimization problem, look at an expression for the square of the
2-norm from above. Observe that for any vector v, ‖v‖2

2 = vTv. Hence,

‖Ax − b‖2
2 = (Ax − b)T(Ax − b) = xTATAx − 2xTATb + bTb. (9.9)

Minimizing this expression is equivalent to minimizing the mean square error. Regarding this as
a function in x, its gradient has to be set equal to zero:

2ATAx − 2ATb = 0 ⇔ ATAx = ATb. (9.10)

Equation (9.10) is called the normal equation for the linear least squares problem. This equation
has a unique solution under certain conditions (A has to have full rank). There are various methods
to solve such an equation, for example, Cholesky or QR factorization (by substituting A = QR, Q
an orthonormal and R an upper triangular matrix, directly into the normal equation and simplifying
the resulting term), which differ in overhead and numeric stability (refer to any decent book on
numerical mathematics for details).

Example 9.2 (Positions with imprecise information) To illustrate this concept, look at the pre-
vious example, assuming that for the three anchors only incorrect position estimates r̃1 = 5,
r̃2 = 1, and r̃3 = 4 are available. Solving the resulting equation corresponding to Equation 9.7
gives the incorrect position (5.2, 4.8) with a distance of

√
(5.2 − 5)2 + (4.2 − 2)2 ≈ 2.2

between estimated and correct position.4

Adding additional anchors at (x4, y4) = (3, 1), (x5, y5) = (7, 5), (x6, y6) = (2, 8), and
(x7, y7) = (4, 6) with distance estimates r̃4 = 2, r̃5 = 3, r̃6 = 7, and r̃7 = 4, respectively
should improve this estimate. The resulting matrix A and right hand side b are

A =

2 5
−1 2
−4 4

1 5
−3 1

2 −2

b =

56
−4
−16

30
−29

17

. (9.11)

Solving ATAx = ATb for x results in x = (5.5, 2.7), with a distance error of√
(5.5 − 5)2 + (2.7 − 2)2 ≈ 0.86.

4 Note that this is not necessarily the mean square solution!

240 Localization and positioning

Hence, this formalism allows computing of the position with the smallest mean square error out
of n ≥ 3 anchors in the presence of errors in the distance measurements. The generalization to
three dimensions is obvious.

It is possible to extend this formalism even further when other parameters have to be estimated as
well. Savvides et al. [725], for example, discuss how to include the estimation of the unknown ultra-
sound propagation speed (in the context of a TDoA ranging system) into this optimization problem.

9.4 Single-hop localization
Using these basic building blocks of distance/range or angle measurements and the mathematical
basics, quite a number of positioning or locationing systems have been developed. This section
concentrates on systems where a node with unknown position can directly communicate with
anchors – if anchors are used at all. The following section contains systems where, for some nodes,
multihop communication to anchors is necessary. These single-hop systems usually predate wireless
sensor networks but provide much of the basic technology upon which multihop systems are built.

9.4.1 Active Badge
The “Active Badge Location System” [863] is the first system designed and built for locating simple,
portable devices – badges – within a building. It uses diffused infrared as transmission medium and
exploits the natural limitation of infrared waves by walls as a delimeter for its location granularity.
A badge periodically sends a globally unique identifier via infrared to receivers, at least one of
which is installed in every room. This mapping of identifiers to receivers (and hence rooms) is stored
on a central server, which can be queried for the location of a given badge. Harter and Hopper
[333] describe an appropriate software environment for the Active Badge system. It is possible to
run additional queries, such as which badge is in the same room as a particular given badge. As
soon as badges are directly connected to persons, privacy issues play a crucial role as well.

9.4.2 Active office
After the Active Badge system introduced locating techniques, Ward et al. [864] targeted the posi-
tioning of indoor devices. Here, ultrasound is used, with receivers placed at well-known position,
mounted in array at the ceiling of a room; devices for which the position is to be determined act
as ultrasound senders.

When the position of a specific device shall be determined, a central controller sends a radio
message, containing the device’s address. The device, upon receiving this radio message, sends
out a short ultrasound pulse. This pulse is received by the receiver array that measures the time of
arrival and computes the difference between time of arrival of the ultrasound pulse and the time of
the radio pulse (neglecting propagation time for the radio wave). Using this time, a distance estimate
is computed for every receiver and a multilateration problem is solved (on the central controller),
computing a position estimate for the mobile device. Sending the radio pulse is repeated every
200 ms, allowing the mobile devices to sleep for most of the time.

The system also compensates for imprecision in the distance estimates by discarding outliers
based on statistical tests. The obtained accuracy is very good, with at least 95 % of averaged
position estimates lying within 8 cm of the true position. With several senders on a mobile device,
the accuracy is even high enough to provide orientation information.

9.4.3 RADAR
The RADAR system [35] is also geared toward indoor computation of position estimates. Its
most interesting aspect is its usage of scene analysis techniques, comparing the received signal

Single-hop localization 241

characteristics from multiple anchors with premeasured and stored characteristic values. Both the
anchors and the mobile device can be used to send the signal, which is then measured by the
counterpart device(s). While this is an intriguing technique, the necessary off-line deployment
phase for measuring the “signal landscape” cannot always be accommodated in practical systems.

9.4.4 Cricket

In the Active Badge and active office systems described above, the infrastructure determines the
device positions. Sometimes, it is more convenient if the devices themselves can compute their
own positions or locations – for example, when privacy issues become relevant. The “Cricket”
system [659] is an example for such a system. It is also based on anchors spread in a building,
which provide combined radio wave and ultrasound pulses to allow measuring of the TDoA (signal
strength information had been found to be not reproducible enough to work satisfactorily). From
this information, symbolic location information within the building is extracted. Reference [659]
also discusses interference and collision considerations that are necessary when devices/anchors are
not synchronized with each other. A simple randomized protocol is used to overcome this obstacle.

9.4.5 Overlapping connectivity

Bulusu et al. [106] describe an example for an outdoor positioning system that operates without any
numeric range measurements. Instead, it tries to use only the observation of connectivity to a set of
anchors to determine a node’s position (Figure 9.5). The underlying assumption is that transmissions
(of known and fixed transmission power) from an anchor can be received within a circular area
of known radius. Anchor nodes periodically send out transmissions identifying themselves (or,
equivalently, containing their positions). Once a node has received these announcements from all
anchors of which it is in reach (typically waiting for a few periods to smooth out the effect of
random packet losses), it can determine that it is in the intersection of the circles around these
anchors. The estimated position is then the arithmetic average of the received anchors’ positions.
Moreover, assuming that the node knows about all the anchors that are deployed, the fact that some
anchor announcements are not received implies that the node is outside the respective circles. This
information further allows to restrict the node’s possible position.

The achievable absolute accuracy depends on the number of anchors – more anchors allow
a finer-grained resolution of the area. At 90 % precision, the relative accuracy is one-third the
separation distance between two adjacent anchors – assuming that the anchors are arranged in a
regular mesh and that the coverage area of each anchor is a perfect circle. In a 10 m × 10 m area,
the average error is 1.83 m; in 90 % of the cases, positioning error is less than 3 m. Accuracy
degrades if the real coverage range deviates from a perfect sphere (as it usually does in reality). In

Figure 9.5 Positioning using connectivity information to multiple anchors [106]

242 Localization and positioning

addition, the transmission range has to be chosen carefully to result in a minimal positioning error,
given a set of anchors.

9.4.6 Approximate point in triangle
The previous approach has used a range-free connectivity detection to decide whether a node is
inside or outside a circle around a given anchor. In fact, more information can be extracted from
pure connectivity information. The idea is to decide whether a node is within or outside of a triangle
formed by any three anchors [339]. Using this information, a node can intersect the triangles and
estimate its own position, similar to the intersection of circles from Section 9.4.5.

Figure 9.6 illustrates the idea. The node has detected that it is inside the triangles BDF, BDE,
and CDF and also that it is outside the triangle ADF (and ABF, AFC, and others). Hence, it can
estimate its own position to be somewhere within the dark gray area – for example, this area’s
center of gravity.

The interesting question is how to decide whether a node is inside or outside the triangle formed
by any three arbitrarily selected anchors. The intuition is to look at what happens when a node
inside a triangle is moved: Irrespective of the direction of the movement, the node must be closer
to at least one of the corners of the triangle than it was before the movement. Conversely, for a
node outside a triangle, there is at least one direction for which the node’s distance to all corners
increases.

Moving a sensor node to determine its position is hardly practical. But one possibility to
approximate movements is for a node to inquire all its neighbors about their distance to the
given three corner anchors, compared to the enquiring node’s distance. If, for all neighbors, there
is at least one corner such that the neighbor is closer to the corner than the enquiring node,
it is assumed to be inside the triangle, else outside – this is illustrated in Figure 9.7. Deciding
which of two nodes is closer to an anchor can be approximated by comparing their corresponding
RSSI values.

Both the RSSI comparison and the finite amount of neighbors introduce errors in this deci-
sion. For example, for a node close to the edge of the triangle, there is a chance that the next
neighbor in the direction toward the edge is already outside the triangle, incorrectly leading the
enquiring node to assume this also – reference [339] gives more cases and details. Therefore, the
approach is likely to work better in dense networks where the probability of such kinds of errors
is reduced. Note that it can still be regarded as a range-free algorithm since only relative signal
strength received by two nodes is compared, but no direct relationship is presupposed between
RSSI values and distance. Nonetheless, nonmonotonic RSSI behavior over distance is a source
of error for this approach. Because of these potential errors, it is only an Approximate Point in
Triangle (APIT) test.

A

B

C

E

F

D

Figure 9.6 Position estimates using overlapping triangles

Positioning in multihop environments 243

?

?

Figure 9.7 Testing whether a node is in a triangle or not using APIT (enquiring node is marked with a “?”)

f

2f
3f

a

b

g

Figure 9.8 Rotating beacons provide angle of arrival information via timing offsets [586]

9.4.7 Using angle of arrival information

One example method to obtain angular information in a sensor network is described by Nasipuri
and Li [586]. They use anchors nodes that use narrow, rotating beams where the rotation speed
is constant and known to all nodes. Nodes can then measure the time of arrival of each such
beam, compute the differences between two consecutive signals, and determine the angles α,
β, and γ from Figure 9.8 using straightforward geometric relationships. The challenge here is
mainly to ensure that the beams are narrow enough (less than 15◦ are recommended) so that
nodes have a clear triggering point for the time measurements and to handle effects of multipath
propagation. An advantage of this approach is that it is unaffected by the network density and
causes no traffic in the network; the sensor nodes themselves can remain quite simple. In simula-
tions, excellent accuracy is reported, limiting the positioning error to about 2 m in a 75 m × 75 m
area [586].

9.5 Positioning in multihop environments
All the approaches and concepts described in Section 9.4 assume that a node trying to determine
its position can directly communicate with – in general – several anchor nodes. This assumption
is not always true in a wireless sensor network – not every node is in direct contact with at
least three anchors. Mechanisms are necessary that can somehow cope with the limited geographic
availability of (relatively) precise ranging or position information. Such mechanisms and approaches
are described here. In some form or another, they rest upon the fact that for a sufficiently connected
graph with known length of the edges, it is possible to reconstruct its embedding in the plane (or
in three-dimensional space).

244 Localization and positioning

9.5.1 Connectivity in a multihop network

A semidefinite program feasibility formulation

A first approach [206] to the multihop positioning problem is (predominantly) based upon con-
nectivity information and considers the position determination as a feasibility problem. Assume
that the positions of n anchors are known and the positions of m nodes is to be determined, that
connectivity between any two nodes is only possible if nodes are at most R distance units apart,
and that the connectivity between any two nodes is also known. The fact that two nodes are con-
nected introduces a constraint to the feasibility problem – for two connected nodes, it is impossible
to choose positions that would place them further than R away. For a single node, multiple such
constraints can exist that have to be satisfied concurrently – akin to the overlapping circles from
above, which restrict the possible positions of a node.

On the basis of this formulation, Doherty et al. [206] give a formulation of the feasibility
problem as a semidefinite program (a generalization of linear programs). This problem can be
solved, but only centrally, requiring all connectivity information at one point.

The main observation here is that in this formulation, the fact that two nodes are not connected
does not provide any additional information – it is impossible to write down a constraint that two
nodes are at least a given distance away from each other in a semidefinite program; nodes cannot
be “pushed apart”. As an example consequence, a linear chain of nodes with only one anchor in
it cannot be distinguished from a situation where all nodes are clustered around the anchor. This
implies that anchor nodes should preferably be placed at the borders of the network, to impose
as many “pull apart” constraints as possible. Such controlled placement considerably reduces the
average positioning error compared to random anchor placements.

Doherty et al. [206] also discuss variations and extensions of this basic idea, in particular, using
estimates of the actual distance instead of only the upper bound derived from connectivity; angular
information instead of ranges (inspired by directed, optical communication); and computing bounds
on the position error by solving multiple feasibility problems. Because of its essentially centralized
character, however, this concept is only of limited applicability to WSNs.

MultiDimensional scaling

The same basic problem of range-free, connectivity-based locationing is solved by Shang et al.
[755] using the mathematical formalism of MultiDimensional Scaling (MDS). On the basis of
connectivity between nodes, an all-pair shortest path algorithm roughly estimates positions of nodes.
This initial estimate is improved by MDS, and if nodes with absolute position information are
available, the resulting coordinates are properly normalized.

The details of this mathematical technique are somewhat involved; the reader is referred to
reference [755]. The main advantage to this approach is that it is fairly stable with respect to
anchor placement, achieving good results even if only few anchors are available or placed, for
example, inside the network. Ji and Zha [383] show, in addition, that MDS is also suitable for
anisotropic networks (networks where the distance between neighbors is not uniform over the extent
of the network).

9.5.2 Multihop range estimation
The basic multilateration approach requires a node to have range estimates to at least three anchors
to allow it to estimate its own position. Niculescu and Nath [597] consider the problem when
anchors are not able to provide such range estimates to all nodes in the network, but only to
their direct neighbors (because of, for example, limits on the transmission power). The idea is

Positioning in multihop environments 245

X

B

A

C

Figure 9.9 Euclidean distance estimation in the absence of direct connectivity [597]

to use indirect range estimation by multihop communication to be able to reuse the well-known
multilateration algorithm.

To compute range estimates between a node and a far-off anchor via multiple intermediate hops,
Niculescu and Nath [597] describe three different possibilities. All of them are based on flooding
the network with information, independently starting from each anchor, similar to the operation of
a distance vector (DV) routing protocol.

The simplest possibility is the “DV-Hop” method. The idea is to count the number of hops
(along the shortest path) between any two anchors and to use it to estimate the average length of
a single hop by dividing the sum of the distances to other anchors by the sum of the hop counts.
Every anchor computes this estimated hop length and propagates it into the network. A node with
unknown position can then use this estimated hop length (and the known number of hops to other
anchors) to compute a multihop range estimate and perform multilateration. Note that this is, in
fact, a range-free approach as there is no need to estimate internode distances.

When range estimates between neighboring nodes are available, they can be directly used in the
same framework, resulting in the “DV-Distance” method.

In presence of range estimates and a sufficient number of neighbors, a node can actually try to
compute its true Euclidean distance to a faraway anchor. Figure 9.9 illustrates the idea: Assuming
that the distances AB, AC, BC, XB, XC are all known, it is possible to compute the unknown
distance XA (actually, there are two solutions, one where X is on the other side of the line
BC – node X can potentially distinguish these two solutions based on local information). This
way, actual positions can be forwarded between nodes.

The obtainable accuracy here depends on the ratio of anchors relative to the total number of
nodes. The “Euclidean” method increases accuracy as the number of anchors goes up; the “distance
vector”-like methods are better suited for a low ratio of anchors. As one would expect, the distance
vector methods perform less well in anisotropic networks than in uniformly distributed networks;
the Euclidean method, on the other hand, is not very sensitive to this effect.

9.5.3 Iterative and collaborative multilateration
The previous approach tried to estimate distances between nodes with unknown position and the
anchors in order to apply multilateration with the anchors themselves. An alternative approach
is to use normal nodes, once they have estimated their positions, just like anchor nodes in a
multilateration algorithm. Figure 9.10 shows an example: Nodes A, B, and C are unaware of
their position. Node A can triangulate its own position using three anchors. Once node A has
a position estimate, node B can use it and two anchors for its own estimate, in turn providing
node C with the missing information for its own triangulation. The basic idea for such iterative
multilateration has been proposed by Savvides et al. [725] and similarly by Savarese et al.
[723, 724].

A centralized implementation is fairly trivial, typically starting with the as-yet-undetermined
node that has the most connections to anchors/nodes with already-determined position estimates and
iteratively computing more position estimates. In a distributed implementation, nodes can compute
a position estimate once at least three neighbors can provide position information, resulting in an

246 Localization and positioning

(2,10)

(8,0)

(18,20)

(38,5)

(?,?)

(?,?)

(?,?)

A B

C

(2,10)

(8,0)

(18,20)

(38,5)

(?,?)

(?,?)

(?,?)

C

(2,10)

(8,0)

(18,20)

(38,5)

(?,?)

(?,?)

(?,?)

C

(2,10)

(8,0)

(18,20)

(38,5)

(?,?)

(?,?)

(12,14)

A B

C

(2,10)

(8,0)

(18,20)

(38,5)

(?,?)

(?,?)

(12,14)

C

(2,10)

(8,0)

(18,20)

(38,5)

(?,?)

(?,?)

(12,14)

C

(2,10)

(8,0)

(18,20)

(38,5)

(?,?)

(30,12)

(12,14)

A B

C

(2,10)

(8,0)

(18,20)

(38,5)

(?,?)

(30,12)

(12,14)

C

(2,10)

(8,0)

(18,20)

(38,5)

(?,?)

(30,12)

(12,14)

C

(2,10)

(8,0)

(18,20)

(38,5)

(22,2)

(30,12)

(12,14)

A B

C

(2,10)

(8,0)

(18,20)

(38,5)

(22,2)

(30,12)

(12,14)

C

(2,10)

(8,0)

(18,20)

(38,5)

(22,2)

(30,12)

(12,14)

C

I: II:

III: IV:

Figure 9.10 Iterative multilateration: Nodes A, B, and C can determine their positions in several iterations
(bold arrows indicate the links whose range estimates are used in a given iteration)

initial estimate of a node’s position. When more information becomes available – for example,
because more neighbors have estimated their own position – it is possible to use it to improve the
position estimate and propagate an updated estimate to a node’s neighbors. The hope is that this
algorithm will converge to the correct set of positions for all nodes. It should be pointed out that
the initial position estimates for such an iterative refinement can also be computed by other means,
for example, the DV-hop or DV-distance approaches from Section 9.5.2.

The average position error after such an iterative refinement depends on the accuracy of the
range estimation, the initial position estimate, the average number of neighbors, and on the number
of anchors [724]. Also, it is not guaranteed that the refinement algorithm converges at all; there
can be situations where the position error increases the longer the algorithm runs. In fact, the
straightforward refinement algorithm does not result in acceptable performance. This is mainly due
to error propagation through the entire network. As one improvement, Savarese et al. [724] suggest
to add confidence weights to all position estimates and to solve a modified weighted optimization
problem, resulting in the convergence of almost all scenarios.

One particular challenge to this class of algorithm occurs when not all nodes in the network will
have three nodes with position estimates. This is easy to detect for a single node, but difficult to
do for an entire group of nodes. Depending on the topology, however, it might still be possible to
estimate at least some positions – Savvides et al. [725] call this collaborative multilateration.

Figure 9.11 illustrates two problematic cases. The scenario on the left side is still fully deter-
mined as sufficient information is available to solve the equation system for the two nodes with
unknown position. For the right scenario, there are two solutions (X and X′) for position of
node X, which cannot be distinguished, but the position of the other unknown node can still
be determined.

Impact of anchor placement 247

X

X′

A

B

C

Figure 9.11 Problematic scenarios for iterative multilateration (adapted from [725])

Savvides et al. [725] approach these problematic cases by defining “participating nodes” – nodes
that have at least three anchors or other participating nodes as neighbors, making nodes A and B
in Figure 9.11 participating nodes. For such participating nodes, positioning can be solved.

Savarese et al. [724] take a slightly different approach here. The crucial observation is that a
node, in order to determine its position, needs at least three independent references to anchor
nodes – the paths to the anchors have to be edge-disjoint. Such nodes are called sound. In
Figure 9.11, nodes A, B, and C are all sound. Soundness can be detected during the initial position
estimation, for example, by recording over which neighbor the shortest path to a given anchor
extends. If three or more such paths are detected, the node declares itself sound and enters the
refinement phase. Node X from Figure 9.11, for example, will not be able to declare itself sound.
As a consequence, the “soundness” procedure will be able to locate more nodes than the participat-
ing node concept from [725]. The algorithm of reference [724] is also better suited to low anchor
ratios and can determine the positions of more nodes.

As quite a number of parameters influence precision and accuracy of these mechanisms, the
reader is referred to the original publications for details; reference [465] also presents an extensive
quantitative comparison of different mechanisms. General guidelines that can be derived are to
ensure a high connectivity (more than 10 neighbors on average), to employ at least 5 % anchors,
and to place anchors toward the edge of a network [724].

9.5.4 Probabilistic positioning description and propagation
The previous approaches all have described the position of a node, once it has been determined, by
an explicit set of coordinates. This “deterministic” description collapses the inherent randomness,
caused, for example, by uncertainties in range estimates. Ramadurai and Sichitiu [674] try to
explicitly take into account this randomness by describing the position of a node by a probability
function of the node’s possible location, describing the amount of information that is available for
this node’s location.

Initially, a node can be at all locations with equal probability. A concrete distance measurement,
for example, an RSSI value, gives rise to a probability density function, relating each distance
to a certain probability with which it corresponds to the RSSI value (Figure 9.3). Hence, a node
that measures a certain RSSI value from an anchor knows that it has a high probability of being
somewhere in a circle around the anchor (Figure 9.12(a)). Once information from a second anchor
becomes available (Figure 9.12(b)), the two density functions can be convoluted and an improved
description of the node’s position probabilities results (Figure 9.12(c)).

Ramadurai and Sichitiu [674] describe the mathematical details of these operations and the
proper formalism for describing these probability functions. The resulting positioning error varies
considerably between different nodes, ranging from excellent to quite large.

9.6 Impact of anchor placement
Several references discussed so far have already pointed out the importance of properly placed
anchor nodes [206, 724], expressing a preference for anchors to be placed on the perimeter of a

248 Localization and positioning

(b) Probability density functions
of two distance measurements
from two independent anchors

(c) Probability density function
of a node after intersecting two
anchor’s distance measurements

(a) Probability density function of a
node positions after receiving a
distance estimate from one anchor

0
60

50
40

30
20

10
0 0 10 20 30 40 50 60

0.5

1

1.5

× 10
–3

P
ro

ba
bi

lit
y

Y meters X meters

Figure 9.12 Probabilistic treatment of node positions [674]. Reproduced by permission of V. Ramadurai and
M. L. Sichitiu

given area. Also, accuracy and precision improve if more anchors are available. The question is,
hence, where to deploy such anchors and how many are necessary?

An up-front planning of anchor deployment is usually not possible in combination with most
WSN deployment scenarios. Rather, an adaptive deployment scheme where anchors are added
when and where necessary appears more promising. One simple such approach is described in ref-
erence [107] where a mobile entity is wandering around the given area, measuring positioning error
compared against an external positioning source (e.g. differential GPS). Two different algorithms
are suggested to decide where to deploy an additional anchor – either at the point of maximum
location error or at the center of grids with maximum cumulative location error.

The obvious drawback of this approach is the need to have an absolute measure of positioning
error. Bulusu et al. [105, 108] present an adaptive algorithm that tries to replace the mobile
agent with a localized estimate of positioning errors. Already-existing anchors collect information
about each other. Then, an anchor tries to estimate the positioning error that a hypothetical node
would encounter at some given point; the anchor uses information about existing anchors and
their reachability for this estimate. On the basis of these estimates, there are several schemes
(analogous to those in reference [107]) that decide where an additional anchor should be placed.
Clearly, this concept will be less precise than the actual measurements but incurs considerably
less overhead. In addition to these adaptive placement algorithms, suited mostly for low-density
networks, reference [105] also considers the possibility to selectively turn on/off anchors to reduce
energy consumption while providing a given level of positioning accuracy.

9.7 Further reading
There is a lot of additional basic and advanced material on the topic of localization and positioning.
Some pointers for going more into depth are:

GPS The practically most important system is certainly the Global Positioning System (GPS)
[229, 400], which is based on some of the same ranging and multilateration principles as
described here, despite being based on satellites as anchors.

Angulation Used in aviation, the VHF Omnidirectional Ranging (VOR) system is a practically
important example for an angulation-based system. Angulation is also used by Niculescu
and Nath [598] to amend the APS system with angulation information in a multihop context.

Error impact Some basic design considerations for positioning systems are discussed in refer-
ence [104]. It considers the tuning of density for quality/lifetime trade-offs, multiple sensor

Conclusion 249

modalities to make ranging more robust, and exploiting environmental characteristics. It also
considers some basic problems and the impact of various error sources – the non-line-of-
sight problem for ranging, correlation between RSSI and distance, and the impact of anchor
number. The impact of errors and their modeling is also discussed in detail in reference [775].
Both papers are somewhat more general, using positioning as a working example for more
general considerations.

Anchor-free systems In the absence of anchors, only relative coordinate systems can be computed.
References [581, 658] are two example papers dealing with this problem. An interesting
result from reference [581] is the fact that an average neighborhood size of 15 is necessary
for good accuracy.

Performance Langendoen and Reijers [465] compare important positioning algorithms in a uni-
form simulation environment under a set of different assumptions. They find that no singe
algorithm performs best in all situations. Reference [726] compares centralized and dis-
tributed algorithms. Wang et al. [857] complement simulation-based work with an analysis
of lower bounds on positioning accuracy.

Nonstandard approaches The lighthouse system [698] is an interesting alternative approach to
localization – it uses a rotating, broad beam from anchor nodes to let nodes measure the start
and end time of the beam, from which the distance to the anchor can be computed at high
precision. Niculescu and Nath [599] describe a positioning system where only nodes that
are engaged in a “conversation” are arranged in a common coordinate system; this restriction
allows to save overhead compared to a general solution.

9.8 Conclusion
Determining positions – and, to a lesser degree, also locations – in a wireless sensor network is
burdened with considerable overhead and the danger of inaccuracies and imprecision. A non-
negligible amount of anchors is necessary for global coordinate systems, and the time and message
overhead necessary to compute positions if no direct communication between anchors and nodes
is available should not be underestimated. Nonetheless, it is possible to derive out of erroneous
measurements an often satisfactory degree of position estimates.

10
Topology control

Objectives of this Chapter
In a densely deployed wireless network, a single node has many neighboring nodes with which
direct communication would be possible when using sufficiently large transmission power. This
is, however, not necessarily beneficial: high transmission power requires lots of energy, many
neighbors are a burden for a MAC protocol, and routing protocols suffer from volatility in the
network when nodes move around and frequently form or sever many links.

To overcome these problems, topology control can be applied. The idea is to deliberately restrict
the set of nodes that are considered neighbors of a given node. This can be done by controlling
transmission power, by introducing hierarchies in the network and signaling out some nodes to take
over certain coordination tasks, or by simply turning off some nodes for a certain time.

Chapter Outline

10.1 Motivation and basic ideas 251
10.2 Controlling topology in flat networks – Power control 256
10.3 Hierarchical networks by dominating sets 266
10.4 Hierarchical networks by clustering 274
10.5 Combining hierarchical topologies and power control 285
10.6 Adaptive node activity 286
10.7 Conclusions 288

10.1 Motivation and basic ideas
One perhaps typical characteristic of wireless sensor networks is the possibility of deploying many
nodes in a small area, for example, to ensure sufficient coverage of an area or to have redundancy
present in the network to protect against node failures. While these are clear advantages of a dense
network deployment – density as measured, for example, by the average number of neighbors that

Protocols and Architectures for Wireless Sensor Networks. Holger Karl and Andreas Willig
Copyright 2005 John Wiley & Sons, Ltd. ISBN: 0-470-09510-5

252 Topology control

Figure 10.1 Topology in a densely deployed wireless sensor network

a single node has – there are also disadvantages. In a relatively crowded network (Figure 10.1),
many typical wireless networking problems are aggravated by the large number of neighbors: many
nodes interfere with each other, there are a lot of possible routes, nodes might needlessly use large
transmission power to talk to distant nodes directly (also limiting the reuse of wireless bandwidth),
and routing protocols might have to recompute routes even if only small node movements have
happened.

Some of these problems can be overcome by topology-control techniques. Instead of using the
possible connectivity of a network to its maximum possible extent, a deliberate choice is made
to restrict the topology of the network. The topology of a network is determined by the subset
of active nodes and the set of active links along which direct communication can occur. Formally
speaking, a topology-control algorithm takes a graph G = (V , E) representing the network – where
V is the set of all nodes in the network and there is an edge (v1, v2) ∈ E ⊆ V 2 if and only if nodes
v1 and v2 can directly communicate with each other – and transforms it to a graph T = (VT ,ET)

such that VT ⊆ V and ET ⊆ E.

10.1.1 Options for topology control

To compute a modified graph T out of a graph G representing the original network G, a topology-
control algorithm has a few options:

• The set of active nodes can be reduced (VT ⊂ V), for example, by periodically switching off
nodes with low energy reserves and activating other nodes instead, exploiting redundant deploy-
ment in doing so.

• The set of active links/the set of neighbors for a node can be controlled. Instead of using all links
in the network, some links can be disregarded and communication is restricted to crucial links.

When a flat network topology (all nodes are considered equal) is desired, the set of neighbors
of a node can be reduced by simply not communicating with some neighbors. There are several
possible approaches to chose neighbors, but one that is obviously promising for a WSN is to
limit the reach of a node’s transmissions – typically by power control, but also by using adaptive
modulations (using faster modulations is only possible over shorter distances) – and using the
improved energy efficiency when communicating only with nearby neighbors.

Figure 10.2 illustrates how the dense topology from Figure 10.1 can be reduced by applying
power control. In essence, power control attempts to optimize the trade-off between the higher
likelihood of finding a (useful) receiver at higher power values on the one hand and the increased
chance of collisions/interference/reduced spatial reuse on the other hand [357].

• Active links/neighbors can also be rearranged in a hierarchical network topology where some
nodes assume special roles. One example, illustrated in Figure 10.3, is to select some nodes as
a “backbone” (or a “spine”) for the network and to only use the links within this backbone and
direct links from other nodes to the backbone. To do so, the backbone has to form a dominating

Motivation and basic ideas 253

Figure 10.2 Sparser topology after reducing transmission power

Figure 10.3 Restricting the topology by using a backbone

Figure 10.4 Using clusters to partition a graph

set: a subset D ⊂ V such that all nodes in V are either in D itself or are one-hop neighbors
of some node d ∈ D (∀ v ∈ V : v ∈ D ∨ ∃ d ∈ D : (v, d) ∈ E). Then, only the links between
nodes of the dominating set or between other nodes and a member of the active set are maintained.
For a backbone to be useful, it should be connected.

A related, but slightly different, idea is to partition the network into clusters (Figure 10.4).
Clusters are subsets of nodes that together include all nodes of the original graph such that,
for each cluster, certain conditions hold (details vary). The most typical problem formulation
is to find clusters with clusterheads – a representative of a cluster such that each node is only
one hop away from its clusterhead. When the (average) number of nodes in a cluster should
be minimized, this is equivalent to finding a maximum (dominating) independent set (a subset
C ⊂ V such that ∀ v ∈ V − C : ∃ c ∈ C : (v, c) ∈ E and no two nodes in C are joined by an
edge in E – ∀ c1, c2 ∈ C : (c1, c2) �∈ E). In such a clustered network, only links within a cluster
are maintained (typically only those involving the clusterhead) as also selected links between
clusters to ensure connectivity of the whole network”.

Both problems are intrinsically hard and various approximations and relaxations have
been studied.

These three main options for topology control – flat networks with a special attention to power
control on the one hand, hierarchical networks with backbones or clusters on the other hand – will
be treated in more detail in Sections 10.2 10.3, and 10.4, respectively. First, a few desirable aspects
of topology-control algorithms should be discussed.

254 Topology control

10.1.2 Aspects of topology-control algorithms
There are a few basic metrics to judge the efficacy and quality of a topology-control algorithm [671]:

Connectivity Topology control should not disconnect a connected graph G. In other words, if
there is a (multihop) path in G between two nodes u and v, there should also be some such
path in T (clearly, it does not have to be the same path).

Stretch factors Removing links from a graph will likely increase the length of a path between any
two nodes u and v. The hop stretch factor is defined as the worst increase in path length
for any pair of nodes u and v between the original graph G and the topology-controlled path
T . Formally,

hop stretch factor = max
u,v∈V

|(u, v)T |
|(u, v)G| (10.1)

where (u, v)G is the shortest path in graph G and |(u, v)| is its length.

Similarly, the energy stretch factor can be defined:

energy stretch factor = max
u,v∈V

ET (u, v)

EG(u, v)
(10.2)

where EG(u, v) is the energy consumed along the most energy-efficient path in graph G.

Clearly, topology-control algorithms with small stretch factors are desirable. It particular,
stretch factors in O(1) can be advantageous.

Graph metrics The intuitive examples above already indicated the importance of a small number
of edges in T and a low maximum degree (number of neighbors) for each node.

Throughput The reduced network topology should be able to sustain a comparable amount of
traffic as the original network (this can be important even in wireless sensor networks with
low average traffic, in particular, in case of event showers). One metric to capture this aspect
is throughput competitiveness (the largest φ ≤ 1 such that, given a set of flows from node
si to node di with rate ri that are routable in G, the set with rates φri can be routed in T),
see reference [671] for details.

Robustness to mobility When neighborhood relationships change in the original graph G (for
example, because nodes move around or the radio channel characteristics change), some
other nodes might have to change their topology information (for example, to reactivate
links). Clearly, a robust topology should only require a small amount of such adaptations
and avoid having the effects of a reorganization of a local node movement ripple through
the entire network.

Algorithm overhead It almost goes without saying that the overhead imposed by the algorithm
itself should be small (low number of additional messages, low computational overhead).
Also, distributed implementation is practically a condition sine qua none.

In the present context of WSNs, connectivity and stretch factors are perhaps the most important
characteristics of a topology-control algorithm, apart from the indispensable distributed nature and
low overhead. Connectivity as optimization goal, however, deserves a short caveat.

Motivation and basic ideas 255

A caveat to connectivity

Consider a simple example of power control. Five thousand nodes are uniformly, randomly deployed
over a an area of 1000 by 1000 m. The transmission range of each node can be set to a precise
radius of r m (i.e. all nodes at most r m apart can communicate directly, and no other nodes
can). This model is known as the disk graph model; the special case of r = 1 is called the Unit
disk graph. For one such example network and a given transmission range, the network is either
connected or not. Determining connectivity for 100 different, randomly generated networks gives
a rough estimate of the probability of connectivity as a function of the transmission range, shown
as the dotted line in Figure 10.5.

As expected, the probability of connectivity is zero for small transmission ranges and raises
relatively sharply, until it levels off and slowly approaches probability 1 at about 30 m transmis-
sion range.

The same experiment allows to consider an additional metric. For each repetition, the size of
the largest connected component can be computed, and this size, averaged over the 100 repetitions,
is shown in Figure 10.5, also as a function of the transmission range. Clearly, even for relatively
small transmission ranges, almost all nodes are connected into a single component, even though the
probability of connectivity is still practically zero because there are three nodes in an unfortunate
position. For example, for transmission range 25 m, the average size of the largest component is
4997 – that is, only 3 out of 5000 nodes are not connected – whereas the probability of connectivity
is still practically zero. Evidently, for WSN, connectivity might not be the relevant metric, but rather,
a large value of the maximum component size would be more important.

That being said, the overwhelming part of research has gone into studying connectivity properties,
with the importance of component sizes being only slowly realized.

Another important aspect treated later (Chapter 13) is coverage – making sure that all points
in the plane are covered by an observing node. If the few nodes missing for connectivity are
important for coverage as well, it might actually be inevitable to invest the energy required to
connect them.

Figure 10.5 also shows another effect. The average size of the largest component and, to a
slightly smaller degree, also the probability of having a connected network do not slowly increase
with the maximum transmission range (or, equivalently, the density of the network). Rather, both
metrics increase sharply from zero to their maximum values once a certain critical threshold for
the transmission range is exceeded. This effect is known for a large number of aspects of (random)
graphs in general and called a phase transition. The existence of such thresholds is provable for
purely random graphs and plausible for (unit) disk graphs as used to model wireless networks.
Krishnamachari et al. [441] discuss various examples for such thresholds and recommend to set
operational parameters of a network just slightly larger than the critical threshold to obtain the

0

1000

2000

3000

4000

5000

10 15 20 25 30 35 40

Maximum transmission range

A
ve

ra
ge

 s
iz

e
of

 th
e

la
rg

es
t c

om
po

ne
nt

0

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y

of
co

nn
ec

tiv
ity

Maximum component size Probability of connectivity

Figure 10.5 Optimization goal of topology control: Probability of connected network versus average size of
the largest component

256 Topology control

desired behavior without wasting resources. Phase transition phenomena are often characterized
using percolation theory techniques [545].

10.2 Controlling topology in flat networks – Power control
Controlling the set of neighbors to which a node talks to is the basic approach of topology control.
In this section, a flat topology is considered where all nodes are operational and have the same
tasks. This problem is closely linked to controlling the transmission power of nodes and can often
be found in the literature under this headline. For brevity, power control will here also be used as
the concise, albeit somewhat imprecise, term for this problem class.

10.2.1 Some complexity results
The possible variations of the power control problem are numerous. To give a rough orientation,
some basic complexity results are summarized here before some power control algorithms are
discussed in more detail below.

To describe a power control problem, a four-tuple (M,P,O, I) is used (adapted and extended
from reference [517]):

• M ∈ {dir, undir} describes a directed or undirected graph model (the definition given above is a
directed graph (V , E), the corresponding undirected graph is (V , E ∩ E−1), that is, asymmetric
links are removed).

• P is the property of the graph that is to be guaranteed in the topology-controlled graph T .
Examples for properties include but are not limited to:
— Strongly connected.
— k-node connected (k-NC), that is, there are k nodes in the graph the deletion of which

disconnects the undirected graph; the graph stays connected when deleting any k − 1 nodes.
— k-edge connected (k-EC) (analogous for edges). Note that k-node connectivity implies k-edge

connectivity, but not necessarily vice versa.
Particularly important are so-called monotone properties that continue to hold when transmission
powers of some nodes are increased [517]. Being k-NC connected, for example, is monotone
(increasing range only adds new connections), whereas being acyclic is not a monotone graph
property (increasing range can lead to cycles).

• O is the objective function that is to be minimized. Examples include minimizing the maximum
power assigned to any node (O = max P) or minimizing the sum of the power values assigned
to all nodes (O = total P).

• I is any additional information that the topology control can use. The most prominent example
is information about the geographic positions of nodes (I = pos).

Lloyd et al. [517] give a summary of some basic complexity results for topology control:

• (undir, 1-NC, total P,−) is NP-hard, there is an approximation algorithm with a performance
guarantee1 of 2 [146]. Geometric versions of the problem stay NP-hard in 2 or 3 dimen-
sions.

• (undir, 1-NC, max P, −) and (undir, 2-NC, max P,−) are solvable in polynomial time [678].

1 An approximation algorithm has a performance guarantee ρ if, for every problem instance, the approximated solution is
within a factor of ρ of the optimal solution.

Flat network topologies 257

• For any monotone property P testable in polynomial time on an (un)directed graph, (undir,P,

max P,−) and (dir,P, max P, −) can be solved in polynomial time. This is not necessar-
ily the case for all P if also the number of nodes using maximum power should be mini-
mized [517].

• There are nonmonotone but still efficiently testable properties P (e.g. graph is a tree) such that
minimizing max P is NP-complete [517].

• Lloyd et al. [517] also describe a generic approach to design approximation algorithms for
total P problems, which in general are NP-hard.

• There are several distributed, polynomial time constructions for subgraphs T of G with a constant
stretch factor – these graphs are called spanner graphs (the distance between any two nodes in
T is at most a given constant times the distance of the two nodes in G) [671].

10.2.2 Are there magic numbers? – bounds on critical parameters
Given this range of different problems, how do we design concrete algorithms that achieve a
given optimization goal by controlling the graph’s topology? A first idea is for every node only
to communicate with its k nearest neighbors, where the (expected) number k is to be determined
such that it optimizes a given goal, for example, throughput or connectivity. The simplest situation
would be if it were possible to determine a value of k that would not depend on the actual graph to
be controlled. Such a constant value of k could justifiably be called a “magic number” and there
have been several attempts in the literature to proof the existence of such a number, starting already
in the 1970s.

The probably best-known of these papers is by Kleinrock and Silvester [421]. They consider
the problem of a set of nodes uniformly distributed on a square and try to maximize the expected
progress that a packet can make toward its destination, assuming a slotted ALOHA MAC protocol
and several concurrent packet transmissions. They suggested that k = 6 would indeed maximize the
progress per hop. This result was soon corrected to k ≈ 8 by Takagi and Kleinrock [804], using
basically the same line of reasoning. Similar results, in slightly different settings, were achieved
by Hou and Li [357].

While these are interesting results, it is important to realize that these papers do not address the
problem of connectivity. Rather, their optimization goal is throughput. In other words, when using
these “magic numbers”, it is not guaranteed that the resulting graph will be connected. It fact, it is
most likely not the case.

When looking at the connectivity problem, there are two options to approach the problem. One
considers the transmission range of a node, and the other considers the number of neighbors. Under
certain assumptions, these two options are equivalent, but lead to slightly different styles of proofs
and results.

Controlling transmission range

The first option, controlling the transmission range, is purely geometric and assumes a unit disk
graph model and a uniform distribution of nodes in a given area of size A. This model assumption
corresponds to the theory of geometric random graphs, which can be used here to great benefit
(see e.g. reference [205] for an overview).

For such a network, it is known that its probability of being connected goes to zero if r(|V |) ≤√
(1−ε)A log |V |

π |V | , for any ε > 0 [642].2 If, on the other hand, r(|V |) ≥
√

A(log |V |+γ|V |)
π |V | , then the graph

2 This paper also conjectures that connectivity and coverage have similar bounds, but this conjecture was refuted by Piret
[645], who showed a counterexample for a linear network (nodes arranged on a line).

258 Topology control

is connected with probability converging to one if and only if γ|V | → ∞ as a function of the
number of nodes in the network [315].

A similar approach, based on geometric random graphs, is taken by Bettstetter [69] to deter-
mine an expression for the probability of a (dense) graph being k connected (making these results
more general than the previous ones), depending on the transmission range r of the nodes and on
the node density ρ (assuming uniform distribution of nodes over a given area). The key result used
here is by Penrose [630], who shows that a graph with a large number of nodes is k connected
as soon as the transmission power becomes large enough to ensure that the smallest degree in the
graph is at least k (with high probability). Bettstetter uses this result to develop a formula for
the probability of the minimum node degree in a graph, resulting in the following main result:

P(G is k connected) ≈
(

1 −
k−1∑
l=0

(ρπr2)l

l!
e−ρπr2

)
. (10.3)

The paper also shows that this formula holds for infinite areas but not for finite areas as used
in simulations and explains how to account for this edge effect. This treatment of edge effects
and the practical approximation formulas make this a valuable and practical paper for use in
simulation-based investigations as well. It is unclear, however, how these results would generalize
to nonuniform node deployment and, in particular, to sparse networks as the theory of geometric
random graphs does not apply there. In another paper, Bettstetter [70] also provides an extension
of this work to mobile networks; reference [71] considers the multihop case.

The problem of k connectivity is also addressed by Li et al. [495] who show that the probability
that a network of n nodes is at least (k + 1) connected is at least ee−α

when the transmission radius
r satisfies nπr2 ≥ ln n + (2k − 1) ln ln n − 2 ln k + 2α for k > 0 and n sufficiently large. As the
k-connectivity problem is NP-hard, Hajiaghayi et al. [324] provide some additional heuristics,
some of which achieve an O(k) approximation of the optimal solution.

To also address sparse networks, Santi and Blough [722] formulate the problem slightly
differently. They consider the random, uniform deployment of a fixed number of (possibly mobile)
nodes n in a d-dimensional deployment region R = [0, l]d , also including the hitherto not considered
case of d = 3. There is no restriction on the node density ρ = n/ld . The goal is to assign a minimal
range r to all nodes such that the resulting graph is connected.

For the one-dimensional case d = 1, it is shown that the graph is connected with high probability
if rn ≥ 2l ln l and that it is disconnected with high probability if rn < l ln l. For the d = 2 and
d = 3 case, the following results are given:

• Assume rd l = kld ln l for some constant k > 0, r = r(l) � l and n = n(l) � 1. If k > d · 2ddd/2

(or k = d · 2ddd/2 and additionally r = r(l) � 1), then the communication graph is connected
with high probability.

• Assume r = r(l) � l and n = n(l) � 1. If f d ∈ O(ld), then the communication graph is dis-
connected with high probability.

It is important to point out that these results, being formulated as constraints on the transmission
range, can just as well be seen as a constraint on the minimum number of nodes that are necessary
to cover a given region when there is an externally (e.g. hardware) imposed maximum transmission
range.

Santi and Blough [722] also validated their analysis by simulation and provided some results
on the dependence of the size of the largest component on the transmission range. These results
are consistent with the caveat of Section 10.1.2. Moreover, they considered the mobile version of
the connectivity problem as well. The transmission range can be substantially reduced if short-
term disconnections can be tolerated (a temporal analog to only requiring a large component to be
connected).

Flat network topologies 259

Controlling the number of neighbors

The second option is not to look at the area that a node’s transmission range must cover, but
rather directly at the number of nodes. The previous results already suggest that the expected
number of neighbors of a node should grow logarithmically, and this conjecture has indeed been
proven by Xue and Kumar [904]. More precisely, they show the following (assuming that links
are symmetric, i.e. an originally asymmetric link is complemented by the missing link in the
reverse direction): (i) For the network to be connected, the number of neighbors of a node needs to
grow like θ(log |V |), with the constants being bounded as follows. (ii) For less than 0.074 log |V |
neighbors, the network is asymptotically disconnected. (iii) For more than 5.1774 log |V | neighbors,
the network is asymptotically connected. Blough et al. [83] point out that these results continue
to hold when a strictly asymmetric link is dropped.

These results show that there are no magic numbers defining the number of neighbors required
to obtain a connected network. The large degree (logarithmic in the number of nodes) required for
connectivity is actually somewhat inconvenient for practical network operation.

10.2.3 Some example constructions and protocols
Sparsing a topology can be efficiently done locally if information about distances between nodes
or their relative positions is available. Several constructions for such proximity graphs exist with
different properties – some are described here (partially following the description given in refer-
ence [671]). Much of this work relies on results from computational geometry; Eppstein [242], for
example, provides an overview.

The concrete results are sometimes in the form of a geometric construction on a given graph,
which would – usually – correspond to a centralized protocol. Sometimes, distributed protocols are
also given.

The relative neighborhood graph

The Relative Neighborhood Graph (RNG) [830] T of a graph G = (V , E) is defined as T =
(V , E′) where there is an edge between nodes u and v if and only if there is no other node w (a
“witness”) that is closer to either u or v than u and v are apart from each other – formally, ∀ u, v ∈
V : (u, v) ∈ E′ iff � ∃ w ∈ V : max{d(u,w), d(v,w)} < d(u, v), where d(u, v) is the Euclidean
distance between two nodes. Put another way, the RNG construction removes the longest edge
from any triangle (Figure 10.6).

The RNG is easy to determine with a local algorithm. It is also necessarily connected if the
original graph G is connected. However, its worst-case spanning ratio is �(|V |) (hence, nodes that
are only a few hops apart in the original graph can become very distant from each other in the
RNG), and its energy stretch is polynomial. Its average degree is 2.6.

Figure 10.6 Constructions of the RNG: Shaded region must not contain another node for two nodes to be
connected

260 Topology control

The Gabriel graph

The Gabriel graph (GG) is defined similarly to the RNG; the formal definition for its edges is
∀ u, v ∈ V : (u, v) ∈ E′ if f � ∃ w ∈ V : d2(u, w) + d2(v, w) < d2(u, v). Equivalently, u and v are
connected if and only if the circle with diameter d(u, v) and nodes u and v on its circumference
contains no other nodes but u and v. It also maintains connectivity, its worst-case spanning ratio
is �(

√|V |), its energy stretch is O(1) (depending on the precise energy-consumption model), its
worst-case degree is �(|V |).

A distributed construction for the Gabriel graph is described, for example, in references [93, 409].
A node simply has to test, for all its neighbors, whether the circle definition of the edge holds – this
is easy to do if all nodes exchange their position with their neighbors.

Delaunay triangulation

Another sparsing construction leverages a classical structure from computational geometry, the
Delaunay triangulation. To construct it, imagine that to each node all the points in the plane for
which it is the closest node are assigned. The resulting structure (Figure 10.7) is called the Voronoi
diagram of a node set with the Voronoi region around each node (it can extend to infinity) [605];
it can be constructed in O(|V | log |V |) time. Then, connect any two nodes for which the Voronoi
regions touch to obtain the Delaunay triangulation. Another way of constructing this triangulation
is the “empty circle” rule: there is an edge between nodes u and v if and only if there exists a
circle that does contain no other nodes except u and v.

Using of the Delaunay triangulation of a graph for topology control has been suggested by
various authors, for example, [279, 362, 494]. First, it is known to be a spanner (see references
in [279]). Its construction via the empty circle rule, however, requires global knowledge. What
is worse, the Delaunay construction might produce very long links, longer than the maximum
transmission range. Gao et al. [279] show that the restricted Delaunay graph, which only contains
links up to the maximum transmission range, is still a spanner with constant stretch factor. Please
refer to reference [279] for details on the construction as well as a performance comparison with the
RNG and the Gabriel graph. Li et al. [494] present another distributed construction of a localized
Delaunay graph, resulting in a spanner of factor 2.5.

Spanning tree–based construction

Another construction is based on local minimum spanning trees [487]. The idea is that each node
will collect information about its neighboring nodes (at maximum transmission power) and then
construct (using Prim’s algorithm, for example) a minimum spanning tree for these nodes, with
energy costs used as link weights (links with same costs are distinguished by adding node identifiers

Figure 10.7 Voronoi diagram (dotted lines) and Delaunay triangulation (straight lines) for five nodes

Flat network topologies 261

as tiebreaker). The key is then to only maintain those edges in the reduced topology that correspond
to direct neighbors in the minimal spanning tree.

This construction results in interesting properties. It preserves the connectivity of the original
graph, and the maximum degree of each node will be six. It is possible to restrict to bidirectional
links, and power control can be easily added. Moreover, the average node degree is small (close
to theoretical bounds). It compares favorably with several other constructions discussed here.

Relay regions and enclosures

A crucial part of constructing a topology is deciding which neighbors to use. For wireless net-
works, this decision should be based (at least to a large degree) on the energy consumption that
results from using a given node as a direct neighbor. Rodoplu and Meng [697] start from this
point of view and first consider the notion of a relay region: Given a node i and another node
r , for which points in the plane would i use r as a relay node in order to reduce the total
power consumption, compared with the direct communication case? Formally, the relay region
Ri→r = {(x, y)|Pi→(x,y) > (Pi→r + Pr→(x,y))}, where Pa→b is the minimum power required to
communicate directly from a to b (identifying nodes with their position in the notation). Depend-
ing on the used power consumption model, the shape of the relay region is different; taking into
account that the relay also requires power itself, the relay region is “bended” around the relay node
as sketched in Figure 10.8 and asymptotically approaches a line orthogonal to the shortest line
between nodes i and r .

On the basis of this power-aware definition of the set of points to which a relay node should
be used, the next step is to define the nodes with which a given node i should communicate
directly – in reference [697], the area where these nodes are located is called the exposure. A first
intuition would be to simply intersect the complements of all relay regions and to only consider
nodes that lie in this intersection as direct neighbors. For a node outside this intersection, there is
at least one other node that can provide a less power costly route than direct communication. This
intuition holds for some cases, as exemplified by the left half of Figure 10.9.

To ensure that a sufficient number of edges are preserved in the graph, Rodoplu and Meng
[697] deviate from this simple definition. The example in the right part of Figure 10.9 highlights a
case where both nodes x and z are maintained as neighbors, since node y, which would “dominate”
node z, is in turn dominated by node x and thus not considered. Formally, this characterization
of the neighboring set is expressed as a fixed point equation. On top of the thus defined graph, a
routing algorithm is used to find minimum energy paths in the network.

Several papers have followed up on this definition of relay regions. Li and Halpern [484], for
example, consider an enclosure definition closer to the intuition and characterize conditions under
which this definition is applicable; they also describe a simple algorithm for determining it based
on a stepwise increment of the transmission power that a node uses.

Node r

Node i

Figure 10.8 Illustration of the relay region of node i with node r as possible relay (shaded area indicates
points where it is more power efficient to relay instead of direct communication) [697]

262 Topology control

Node i

Node z
Node y

Node x
Node i

Node x

Node y

Node z

Node w

Figure 10.9 Two scenarios of how to construct the neighbors for node i out of the relay regions with other
nodes [697]

Cone-based topology control

When not only distances to neighboring nodes but their directions are also available (with respect to
some arbitrary absolute orientation, using some angle-of-arrival technique discussed in Section 9.1),
even more powerful topology-control algorithms become possible. One out of several ideas based
on such direction information – cone-based topology control – is introduced by Wattenhofer
et al. [865] and further analyzed in reference [485] (the “Yao graph”, another, related idea is
described in reference [905]). They set out to obtain a connected subgraph that minimizes power
consumption by finding minimum power paths; moreover, the topology should have a small
degree.

Cone-based topology control is a two-phase algorithm. The first phase constructs a connected
topology with each node starting from a very small transmission power and increasing it until it
has “sufficiently many” neighbors. In the second phase, redundant edges are removed. The creative
insight here is a clever solution to the “sufficiently many” decision problem.

An arbitrary node u starts looking for neighbors by sending broadcast messages with increasing
power; these packets are answered by neighbors. Any discovered neighbor is recorded by u in a
neighbor list. Node u continues this process until there is a neighbor v in every cone of angle α

or until u uses the maximum transmission power. Node u can easily detect this condition as each
discovered neighbor v “covers” a cone of angle α around itself. When the superposition of these
cones covers the full angle 2π , the process terminates.

The important observation is now the choice of α. Wattenhofer et al. [865] show that when
α = 2π/3 (and nodes of course only use the smallest power to reach all their neighbors), then the
resulting graph is connected if the graph obtained by using maximum power is also connected, that
is, their topology algorithm maintains connectivity. Li et al. [485] improve this result by showing
that taking α = 5π/6 is a necessary and sufficient condition to preserve connectivity (in other
words, using an α > 5π/6 does no longer guarantee connectivity).

The second phase of the algorithm simply removes all neighbors w of u for which there is
another neighbor v of both u and w such that sending via v is more energy efficient than sending
directly (or up to a given constant more efficient).

In addition to this appealingly simple construction, the resulting graph also shows good perfor-
mance compared with an optimal graph obtained by a more complicated algorithm.

An extension to the Yao graph makes this type of construction even k connected (if the original
graph was k connected in the first place) [495]: adding links to the closest k + 1 nodes per cone,
not only the closest node per cone.

Flat network topologies 263

Centralized algorithms for (bi)connectivity, minimizing maximum power

Ramanathan and Rosales-Hain [678] were likely the first authors to seek topology-control algo-
rithms for node (bi)connectivity that minimize the maximum power: the (undir, 1-NC, max P, −)

and the (undir, 2-NC, max P,−) problems in the notation of Section 10.2.1. In reference [678],
they present two centralized algorithms to solve this problem.

For both algorithms, the network is represented as a graph G = (V , L, P, γ, E), where V is the
set of nodes, L : V → C, C = R× R, represents the locations of all nodes in the plane, P : V → R

the transmission power used by each node (this is easily generalized to other tunable parameters
like antenna direction, but is not pursued in the paper), γ : C × C → R the path loss between any
two sets of coordinates, and E = {(u, v) : P(u) − γ (L(u), L(v)) ≥ S} (power and path loss given
in dB) is the set of edges that exist if and only if the transmission power of node u suffices to result,
after path loss, in a received power at v larger than a given, constant receiver sensitivity S. The
paper only assumes that path loss increases monotonically with distance and uses distance orderings
as equivalent to path-loss orderings. In that only these orderings are used in the algorithms, the
approach is nongeometric.

The paper then looks for a mapping P such that the resulting (V , E) is connected and
maxu∈V P (u) is minimized over all possible mappings P . This problem is solved by using a
centralized, greedy algorithm (similar to minimum spanning tree algorithms) that starts out with
each node using transmission power 0, forming its own connected component. The algorithm iter-
atively connects those two components that have the “cheapest” link between them. It stops when
only one connected component remains and the graph is therefore connected. The simplest imple-
mentation traverses a list of all node pairs (u, v) in order of increasing costs and checks whether
these two nodes belong to different components; if so, they are connected by assigning them the
smallest transmission power that allows them to communicate.

This problem formulation (and the algorithm) does not have a unique solution as it does not
constrain the power levels of the nodes that use less than the maximum power. Here, preference is
given to per-node optimal solutions, in which it is not possible to reduce the transmission power of
any node without sacrificing connectivity. In particular, it may be possible to reduce the transmission
power of some nodes because the links that they had to form early on in the greedy algorithm are
not needed in the final graph as other nodes provide paths that ensure connectivity. An example
for such nodes is shown in Figure 10.10.

The biconnectivity problem is formulated as finding a set of minimal power increments neces-
sary to make a connected graph biconnected. A similar greedy algorithm, with a corresponding
postprocessing phase, achieves this goal.

In addition to these two centralized algorithms, Ramanathan and Rosales-Hain [678] also
provide two distributed heuristics. One tries to keep a node’s degree at a specified value (results
from Section 10.2.2 apply here), and the other also exploits information from a routing protocol.

Tseng et al. [831] extend the basic ideas of this concept to account for nodes with unequal initial
energy supplies. They are interested in maximizing the lifetime of the network (time until first
node failure) and consider a “fixed power regime”, where nodes have to change their transmission
power levels once at initialization time, and a “variable power” one, where nodes can change their
transmission power under certain conditions. The principal construction in this paper is, similar to
reference [678], also based on an adaption of a minimal spanning tree.

A distributed, common power protocol – COMPOW

The motivation behind the COMPOW (“common power”) protocol [582] is twofold: The first
observation is that when assigning the identical transmission power to all nodes the resulting

264 Topology control

1 1

2

3

4 4

A B

C D

E F

1 1

2

3

A B

C D

E F

1 1

A B

C D

E F

1 1

A B

C D

E F

1 1

2A B

C D

E F

1 1

2A B

C D

E F

2

3

A B

C D

E F

1 1

2

3

A B

C D

E F

1 1

3

4

A B

C D

E F

3

A B

C D

E F

1 1

2

3

A B

C D

E F

2

3

4 4 4

A B

C D

E F

Topology 1) ConnectA-C and B-D 2) ConnectA-B

3) ConnectC-D 4) ConnectC-E and D-F 5) Remove edge A-B

Figure 10.10 Greedy algorithm for connectivity at minimal transmission power with postprocessing phase.
Nodes use the largest transmission power indicated on any adjacent edge. Postprocessing phase 5 allows nodes
A and B to reduce their transmission power back to 1. [678]

per-node throughput is only negligibly worse than when every node has its individual power
level – the difference is only a factor of 1√|V | . The second observation is the need to keep the
transmission power level as low as possible to just ensure connectivity, lest valuable area would
be needlessly consumed by long-range transmissions. Both observations are based on arguments
adapted from reference [316].3

The heuristic used by the COMPOW protocol to determine the smallest power that results in a
connected network is fairly simple. It is based on the assumption that a finite number of different
power level is available and that the COMPOW protocol can be tightly integrated with a routing
protocol. Then, each node determines routing tables for each transmission power level. A node will
use the smallest transmission power for which the associated routing table has the same number of
entries (i.e. reachable nodes) as the table for the maximum transmission power.

While this idea is relatively simple to implement, the need to maintain routing tables with all
potential neighbors in the network makes it hardly appropriate for wireless sensor networks.

The K -NEIGH protocol

The results of Section 10.2.2 are used also by Blough et al. [83] to develop the K-NEIGH protocol.
The idea is to keep the number of neighbors per node at or around a number k determined by the
formulas of Xue and Kumar [904].

The proposed protocol is distributed, based on distance estimates between nodes, and requires a
total of 2|V | message exchanges. It is based on nodes announcing their identifier at high transmission
power, collecting their observed neighbors, sorting neighbors by distance, and computing the k

nearest neighbors that can mutually reach each other. Each node then uses the smallest transmission
power that suffices to reach all its neighbors thus computed. In the design of this protocol, care has
to be taken to wait long enough for nodes waking up at random times and also to properly account
for potentially asymmetric links.

3 The arguments in the paper about power-optimal routes rest on a over-simplified power consumption model.

Flat network topologies 265

10.2.4 Further reading on flat topology control
Further sparsing constructions Wang et al. [861] describe another sparsing construction, the

Yao-Yao graph. It is unknown whether this is actually a spanner. Other extensions of the
Yao graph are discussed in references [308, 710].

Hardness results Clementi et al. [171, 172] and Blough et al. [83] provide further hardness
results.

Percolation theory Many of the problems discussed here can also profitably be approached with
techniques from percolation theory. Xue and Kumar [904] provide some references that can
serve as a starting point.

Distributed power control Kubisch et al. [448] describe two distributed algorithms for control-
ling the number of neighbors to certain values and evaluate their performance by simulation.

Asymmetric maximum power Liu and Li [512] are concerned with the problem of nodes having
different maximum transmission ranges, resulting in the formation of asymmetric links.
They describe a distributed topology-control algorithm that minimizes maximum power and
maintains the reachability of every node.

Power control and mobility Royer et al. [705] have studied how power control interacts with
ad hoc routing protocols – namely, Ad hoc On-demand Distance Vector (AODV) – per-
formance. They show that there is no single optimum density but that density should increase
with movement.

Power control and IEEE 802.11 When not considering topology control as such, but only using
power control as a means to improve energy efficiency and interference in an IEEE 802.11
context, the mechanisms described by Agarwal et al. [11] are useful. They allow each node
to choose a separate power level per neighbor, put explicit RSSI information into the RTS/
CTS exchange packets, and adapt power levels according to this information, which is also
cached. The authors show some modest improvements in energy efficiency and throughput.
Roughly similar goals are also targeted by references [571, 572].

Power control and code assignment Huang et al. [363] consider the combined problem of power
control for topology control and the resulting, variable code assignment problem (where code
can be a time slot, a frequency band, or an orthogonal CDMA code).

Impact on network performance metrics Much of the work mentioned so far has treated the
network purely as a graph, abstracting away from the need to carry traffic. Li and Sinha
[486], for example, evaluate the impact of power control on actual network performance
metrics like throughput and energy per delivered packet and show considerable improvements
in these crucial metrics. Similarly, Zuniga and Krishnamachari [947] have looked at the
time it takes to distribute a query in a WSN and derived an equation for the optimum
transmission radius to minimize the time when the last node has received the query.

Cross-layer aspects As some of the previous items here have shown, considering power con-
trol in isolation of other network layers is not necessarily a good approach. As another,
fairly general example, consider the work by Cruz and Santhanam [185], who have
described a combined link schedule and power control algorithm, minimizing total power
under constraints of minimal data rate that each link has to carry; it also solves the routing
problem.

266 Topology control

10.3 Hierarchical networks by dominating sets

10.3.1 Motivation and definition

The previous Section 10.2 has looked at controlling the transmission range and hence the number of
neighbors of a node. This and the following section look at approaches that choose which specific
nodes should be neighbors of a given nodes, and which other nodes (and the links to these nodes)
should be ignored. While this implicitly also influences the number of active neighbors, some of
these neighbors can be far away, and some nearby.

Usually, but not necessarily, this selection of neighbors/links implies some form of hierarchy
among nodes. In this section, some nodes are selected to from a “virtual backbone” or, formally,
a dominating set – a set of nodes D ⊂ V is a dominating set if all nodes in V are either in D

itself or are one-hop neighbors of some node d ∈ D (∀ v ∈ V : v ∈ D ∨ ∃ d ∈ D : (v, d) ∈ E).
Figure 10.3 has already visualized this notion. Haynes et al. [337] provide an extension treatment
of domination issues in general graphs.

Having such a dominating set at hand simplifies routing, for example, by allowing to restrict the
actual routing protocol to the backbone nodes only; all “dominated” nodes can simply forward a
nonlocal packet to (one of) their adjacent backbone node(s) that will then take care of forwarding
the packet towards its destination.

To be useful, such a dominating set should be in some sense “small” or even minimal – the
above definition admits V = U as a solution, which evidently does not provide any advantages. A
typical metric in which to measure the size and/or minimality of a dominating set U is its number
of nodes; other options are conceivable as well.This is called the Minimum Dominating Set (MDS)
problem. Moreover, a backbone should intuitively be connected using nodes only within itself; it
should not be necessary to recur to other, nonbackbone nodes to route a packet from one place to
the other.

Hence, the problem at hand is the following: Devise a preferably distributed algorithm that
determines a Minimum Connected Dominating Set (MCDS). In addition, each node should know
whether it is in this set or not and, if not, which of its neighbors are in the dominating set.

10.3.2 A hardness result

Not surprisingly, the MDS problem is NP-hard (this and the following results are taken from refer-
ence [182]). It is even a hard problem to approximate in general graphs as it not even approximable
within c log |V | for some c > 0 (i.e. there is no polynomial time algorithm that always finds a dom-
inating set that has at most c log |V | more nodes than a minimal dominating set would have). It is
approximable within 1 + log |V |. For the case of unit disk graphs, it is possible to find a Polynomial
Time Approximation Scheme (PTAS).

When also requiring connectivity in solving the MCDS problem (which is also NP-hard), it
is possible to approximate it within ln 	 + 3, where 	 is the maximum degree of the original
graph [182]. This observation is encouraging for the design of practical algorithms (and also an
incentive to solve MCDS on top of a power-controlled topology which limits the degree of the
nodes).

A further important result is proven by Wan et al. [851]. They show that any algorithm that
computes a nontrivial connected dominating set solution must send at least �(m log n) messages,
where the message size is on the order of the number of bits required to express unique identifiers
for all nodes O(log |V |).

Hierarchical networks by dominating sets 267

10.3.3 Some ideas from centralized algorithms

While centralized algorithms are usually not directly applicable to WSNs, they can provide some
ideas on how to design distributed algorithms for a given problem. Two such centralized examples
are described here; both are taken from reference [309].

Growing a tree

A naı̈ve approach
The idea of the first algorithm is to construct the dominating set as a spanning tree, iteratively
adding nodes and edges to this tree until all the nodes are covered. This algorithm is formulated
using “colors” of nodes: white nodes have not yet been processed, black nodes belong to the
dominating set, and gray nodes are the dominated nodes.

The algorithm is shown in pseudocode in Listing 10.1. It takes a graph G = (V ,E) and produces
a set of edges T that belong to the tree-shaped dominating set and a coloring of the nodes. A run
of this algorithm is illustrated in Figure 10.11.

The resulting graph is indeed a tree as there is never an edge between two gray nodes or between
a gray node and two different black nodes; the black nodes also form a tree. The set of black nodes

Listing 10.1: A naı̈ve dominating set algorithm based on growing a tree

initialize all nodes ’ color to white
pick an arbitrary node and color it gray

while (there are white nodes) {
pick a gray node v that has white neighbors
color the gray node v black
foreach white neighbor u of v {

color u gray
add (v,u) to tree T

}
}

1: 2:

3: 4:

Figure 10.11 Illustration of a naı̈ve dominating set algorithm based on growing a tree (thick lines indicate
edges in the tree, black nodes form the dominating set)

268 Topology control

(the nonleaf nodes of the spanning tree) is also a dominating set, as each gray node has a black
node as a neighbor and there are no white nodes left over. The size of this dominating set, however,
need not be particularly small or even minimal. In the example of Figure 10.11, the two nodes at
the bottom right would also have formed a (smaller) dominating set. Clearly, picking the gray node
to be turned into a black node is the crucial step in this algorithm.

Judiciously choosing gray nodes
One intuitively appealing heuristic choice for the next gray node is that node which would turn
the whitest nodes gray [309]. This number can be regarded as the “yield” of choosing a particular
gray node.

This greedy heuristic does indeed find the optimal solution for the example in Figure 10.11. But
there are simple graphs for which this heuristic fails; one such graph is shown in Figure 10.12.
Here, the algorithm would start at node u, add any one of the nodes directly connected to u, and
then has to break ties between node u’s peer nodes and chooses one node connected to node v. If
node u has d neighbors, the worst case for such a greedy yield-based algorithm is a dominating set
size of O(d), where the optimal size is 4 (u, v, and two nodes from any of the vertical lines – nodes
u and v would suffice if connectivity of the dominating set were not required).

The reason for this nonoptimal performance is the fact that the algorithm cannot distinguish
between choosing a gray node from the first or the second row – each operation reduces the
number of white nodes by one. This myopic operation hinders the algorithm from realizing that
once a node from the second row has been chosen, the bottom node v is gray and could be turned
black, producing the required dominating set as node v would cover all the remaining white nodes
in the second row.

This shortsightedness can be overcome by allowing the algorithm to look ahead one step [309].
In addition to considering the yield of turning individual gray nodes black, the algorithm can also
look at pairs of a gray node g and an adjacent white node w, speculating about what would happen
if this node w would be also turned black in the following step. For each combination of nodes g

and w, the yield of this operation can be computed. The heuristic is then to choose the individual
gray node or the pair of a gray and a white node that produces the highest yield.

This idea is illustrated in Figure 10.13. The upper part shows the plain yield-based heuristic,
failing by turning gray nodes in the upper row black one after the other without making essential
progress – picking any gray node individually gives a yield of 1 without favoring a node in the
second row. In the lower part, the lookahead for nodes marked g and w (after the first step of the
algorithm) gives a yield of 1 + (d − 1) white nodes turned gray, clearly favoring this operation
over choosing individual gray nodes.

This particular example shows that this lookahead heuristic is promising. It is rather powerful:
Guha and Khuller [309] have shown that it produces connected dominating sets at most a factor

...

...

...

u

v

d

Figure 10.12 Example graph for which a greedy, one-step yield-based heuristic fails [309]

Hierarchical networks by dominating sets 269

...

...

...

u

v

d ...

...

...

u

v

d
...

...

...

u

v

d

...

...

...

u

v = w

d
...

...

...

u

v

dLook-
ahead
using
nodes g
and w g

Figure 10.13 Greedy dominating set construction without and with lookahead

of 2(1 + H()) larger than an optimal one (H(·) is the harmonic function H(k) = ∑k
i=1 1/i ≤

ln k + 1 and 	 the maximum degree of the graph). Moreover, there is empirical evidence that this
algorithm works well in practice.

Connecting separate components

In the previous approach, the set of nodes that will eventually form the dominating set is always
connected. An alternative idea is to first construct a not necessarily connected dominating set and
then, in a second phase, explicitly connect the nodes in this set.

Finding a nonconnected dominating set
In a centralized algorithm, finding some (nonconnected) dominating set is fairly easy. Using the
white/gray/black coloring codes from above, pick a gray or white node, color it black and color
all of its white neighbors gray. Proceed until there is no white node left. Like in the previous
algorithm, care has to be taken in choosing which node to turn black in order to obtain a small
dominating set.

One simple heuristic would be to pick that node that turns most white nodes gray. Having in
mind the need to later on connect the black nodes into a connected set, it also intuitively makes
sense to choose gray nodes that lie in between two black nodes since there is a good chance that
such gray nodes might have to be added to the dominating set anyway. Figure 10.14 shows an
example where this consideration breaks the tie between nodes A and B, resulting in B being
added to the dominating set.

Formally, the heuristic proposed by Guha and Khuller [309] is thus to select that white or
gray node as the next black node that most reduces the sum of the number of the white nodes and
the number of connected components of black nodes. When there is no node left that reduces this
number, there is also no white node left and the first phase can terminate.

Ensuring connectivity – building a Steiner tree
Once this nonconnected dominating set has been found, it has to be connected, that is some more
gray nodes have to be turned black so as to ensure that two black nodes can reach each other with

270 Topology control

B

A

Figure 10.14 Taking into account the need to connect two black nodes breaks the tie between nodes A and B

only other black nodes as intermediaries. This is fairly simple as well, since at most two gray nodes
can separate two “adjacent” black components. Recursively connecting two black components with
one or two gray nodes in between will eventually lead to a single connected component of black
nodes, solving the problem.

As a side remark, this problem can also be regarded as finding a Steiner tree: find a minimum
spanning tree that contains all nodes of a predefined set of nodes, adding other nodes as required.
This is yet another NP-complete problem, but has a constant approximation factor [182]. Steiner
tree heuristics are treated in Section 11.4.2 in the context of multicasting.

Overall, the dominating sets determined by this heuristic are at most ln 	 + 3 larger than the
optimal possible ones.

10.3.4 Some distributed approximations

Distributedly growing a tree

The heuristic of growing a tree [309] can be straightforwardly implemented in a distributed fashion
as well, as described by Das and Bharghavan [192]. Essentially, all gray nodes explore their two-
hop neighborhood, determining the biggest yield that each node could achieve. Then, the largest
yield is chosen distributedly (in effect, a leader election takes place along the already existing
backbone) and the next black node is determined.

The dominating set C determined by this algorithm is at most 2H() large than the optimal
one; it takes O(|C|(+ |C|)) time and O(n|C|) messages to compute [192].

Connecting a dominating set

Das and Bharghavan [192] have also considered how to adapt the other centralized algorithm
described in Section 10.3.3, determining a small dominating set and then connecting it in a separate
step.

Suppose the degree of the graph is bounded by some constant c, 	 ≤ c. Let every node broadcast
its degree to all of its neighbors. Using this degree information from all neighbors, every node marks
the neighboring node with the highest degree as its dominating node (or itself). The resulting set
is dominating (obviously, since each node chooses one dominator), but not necessarily connected;
a Steiner tree–like connection algorithm takes care of ensuring connectivity in a second phase.

The resulting dominating set has a performance ratio of 	 + 1 in O(n) time. Since 	 ≤ c, this
is still a constant performance ratio. Guaranteeing a maximum degree for a random deployment of
sensor nodes is nontrivial, though.4

Overall, the algorithms presented by Das and Bharghavan [192] have a logarithmic approxi-
mation factor [851] (see this reference also for an example).

4 Das and Bharghavan [192] also discuss a similar algorithm for the case of unbounded degree; however, the details of
this algorithm are not fully spelled out in their paper. Reference [851] has some additional analysis on this algorithm, showing
a logarithmic performance ratio.

Hierarchical networks by dominating sets 271

Marking nodes with unconnected neighbors

While both the algorithms discussed so far tried from the outset to limit the size of the dominating
set, another idea is to first look for some, possibly large, connected dominating set that can be
easily constructed and then reduced in size. If a such constructed set had some other favorable
properties, even a nonminimal dominating set might be acceptable.

A nonoptimal connected dominating set construction
A simple observation [894] does allow to quickly, with low message overhead, construct a connected
dominating set. Assume again that all nodes are initially unmarked (colored white). Mark any node
(make it a member of the dominating set) if it has two neighbors that are not directly connected.
This decision can be made locally after nodes have exchanged their neighbor sets – any node simply
has to check whether each of its neighbors is included in all the received neighbor lists.

This simple construction entails some interesting properties:

• If the original graph is a connected but not fully connected graph, the resulting set of marked
nodes is a dominating set. This can be shown by considering several cases. The crucial case is a
nonmarked node v with only nonmarked neighbors and at least one nondirectly connected node
u. Recognizing that the first node on a shortest path between v and u would have to be marked
by construction shows the contradiction.

• The resulting set of marked nodes is connected. The proof is also by contradiction, using a shortest
path between two marked nodes from two different connected components of the dominating
set. It is shown that either all nodes along this path have to be marked or it is not the shortest
path, contradicting the assumption that the two components were disconnected.

• The shortest path between any two nodes does not include any nonmarked nodes. The proof
again goes by contradiction about the property of nodes on a shortest path. This property is not
necessarily enjoyed by the previous constructions and makes this particular dominating set much
more amenable for using as a routing backbone.

• The dominating set is not minimal; in fact, it can be trivial (encompassing all nodes of the
original graph). Wu and Li [894] claim that it performs well for practical graphs.

Figure 10.15 shows an example graph where the resulting set of marked nodes is not minimal
(both u, v and u, w would suffice).

Two pruning heuristics
Wu and Li [894] propose two heuristics to reduce the size of the dominating set in such situations.
The first one is to unmark any node v such that both v itself and its neighborhood are included in
the neighborhood of some other marked node u; also, the unique identifier of v must be smaller than
u’s. The second heuristic unmarks a node v if its neighborhood is included in the neighborhoods of
two marked neighbors u and w and v has the smallest identifier. Figure 10.15 also shows that the
distribution of the identifiers has considerable impact on which nodes can be removed. The case
of mobile nodes is also treated in reference [894].

u v w

a b c d

Figure 10.15 Example graph for marking nodes with unconnected neighbors [894]

272 Topology control

Compared to the algorithms of Das and Bharghavan [192], the algorithm here only requires
O(2) time to exchange neighborhood sets and constant time for the reduction phase. Moreover,
simulation results indicate that the dominating set (after reduction heuristics) tends also to be smaller
than that produced by the previous algorithms. The approximation factor of this algorithm even
with both heuristics, however, is only linear [851].

A degree and position-based pruning heuristic
In the previously described pruning heuristics, the unique identifiers of nodes are used to decide
which node can be excluded from the dominating set. Stojmenovic et al. [796] propose to modify
these heuristics by replacing the identifier by a key that comprises the degree of a node and its
x and y coordinates (alternatively, identifiers can be used instead of the coordinates if they are
not known). Node u’s key is larger (and will more likely remain in the dominating set) than node
v’s if either u’s degree is larger or, if both degrees are equal, nodes’ x and y coordinates are
(lexicographically) larger.

This heuristic gives preference to nodes with large degrees, which makes intuitive sense for
a dominating set. However, the authors evaluated their CDS construction only in the context of
broadcasting, so a direct comparison is not available. Wan et al. [851] show that this improved
heuristic is not enough to improve the linear approximation factor of the original algorithm.

Span

Another distributed approximation to the backbone problem is Span [141]. An important motivation
for the Span design is the need to carry traffic in a backbone-based network at about the same
rate as the underlying, flat network topology could accomplish – essentially, capacity should not be
sacrificed for topology control. The practical consequence is that paths that “could operate without
interference in the original network should be represented in the backbone” [141].

This desire to have a backbone that preserves capacity and has interference-free paths means
that paths from the original network should not be overly dilated in the backbone network. More
concretely, if any two nodes can communicate in the original network via at most one intermediate
node, an extended path with at most two intermediaries is acceptable, but if a two-hop path extends
to a five-hop path, additional nodes are required in the backbone – they should become “coordi-
nators”. Evidently, this rule is a relaxed version of the heuristic to mark nodes with unconnected
neighbors. Figure 10.16 shows a simple example case. Note that the question whether the resulting
backbone structure is actually connected is not explicitly discussed in the Span paper [141].

This rule can be easily implemented: A node v observes its neighbors and their broadcast traffic.
If node v has two neighbors u and w that cannot communicate via at most two backbone nodes,
this node v should become a member of the backbone itself to give a shorter route to nodes u and
w. Typically, such a condition will be observed by multiple nodes and avoiding that all of them
announce their willingness to join the backbone at the same time is one of the main concerns of
the Span design. Such an “announcement contention” is combated using simple random backoff
delays. This delay depends on (i) the relative number of not satisfactorily connected nodes that
would be connected by this new node becoming a coordinator and (ii) the relative remaining battery

A B C

Figure 10.16 A case where Span would extend the backbone by node B as nodes A and C could have a
two-hop path via B

Hierarchical networks by dominating sets 273

capacity of the prospective coordinators. Both these numbers are used to bias the backoff delay,
giving precedence to potential coordinators that connect many additional node pairs and that have
a relatively full battery left. Reference [141] gives detailed formulas. Implicitly, this consideration
of remaining battery capacity will result in rotating the role of coordinators among all nodes as the
backbone membership is periodically reelected.

Role-based hierarchical self organization

All the dominating set approaches discussed so far were purely graph theoretical ones; they did
not take into account the particular tasks and roles that the nodes in this graph have to fulfill.
Kochhal et al. [427] propose a scheme to construct a dominating set that explicitly considers such
information.

In particular, the degree of fault tolerance in sensing a given area that is implied by redundant
deployment of sensors, resulting in multiple sensors surveying a given point, is used to decide
the roles played by a given sensor. This degree of fault tolerance is expressed as an attribute
of any given sensor, the Cumulative Sensing Degree (CSD) value. Reference [427] describes the
technicalities necessary to define this value (which are somewhat involved because the surveillance
space is discretized into small rectangles); intuitively, a high CSD value implies that the chances
of an event being detected among its neighboring sensors is high.

This property of the CSD values is then used to assist in constructing a Connected Dominating
Set (CDS). The initial construction marks nodes with unconnected neighbors [894], as described
in the previous section. The pruning heuristics, however, use the CSD values to select nodes to be
removed from the dominating set (among other values like energy level or node degree). On the
basis of the resulting connected dominating set, sensor coordinators are finally elected.

This solution is attractive in that it combines a simple graph theoretic approach with knowledge
about the actual sensing tasks that individual nodes have to perform. Reference [427] goes into
further detail about how to use the CSD metric also as a basis for a more general QoS discussion.

10.3.5 Further reading
Weakly connected dominating sets Chen and Liestman [148] relax the requirement of finding

a connected dominating set and are only looking for weakly connected dominating sets
instead. A subset S ⊂ V of nodes in a graph G = (V , E) is weakly connected if the weakly
induced subset S<w> is connected; S<w> consists of S and all the neighbors of S, and
the edges of S<w> are all those edges in E that have at least one endpoint in S. Weakly
connected dominating sets can be smaller than CDSs but retain most of their attractive
properties. While it is still NP-complete to find a minimal weakly connected set, Chen and
Liestman [148] present distributed approximation algorithms with a performance ratio of
O(ln(maximum degree of G)).

Nontrivial approximation in constant time None of the previous algorithms managed to produce
a nontrivial approximation ratio in a constant number of rounds. The first algorithm that
did achieve this has been presented by Kuhn and Wattenhofer [450]. More precisely,
given a parameter k and maximum degree 	 of the input graph, their algorithm produces a
dominating set of expected size O(k	2/k log 	|DSopt|) in O(k2) rounds; each node sends
O(k2) messages of size O(log). The approximation is based on a linear programming
relaxation.

Generalized pruning heuristics Dai and Wu [188] describe another heuristic, to remove any
“gateway” node that is already covered by k other gateways. This rule formulation generalizes
the two separate heuristics proposed in reference [894].

274 Topology control

Backbones and databases Liang and Haas [497] describe a scheme how a virtual backbone can
assist in the maintenance of location data bases for mobile nodes.

Exploiting node heterogeneity In many practical deployments, nodes will be heterogeneous in
their capabilities and energy resources, for example, because some nodes can be powered
from electrical outlets. Such more powerful nodes obviously lend themselves to act as back-
bone nodes (or as clusterheads, see below). As an example of such an approach, Conner
et al. [177] describe the ReOrg protocol along with a proper routing protocol and give an
experimental evaluation.

“Virtually minimal” dominating sets When using a minimal dominating set in a very dense net-
work (with a lot of nodes in one radio range) to retrieve information, the resulting resolution
of the retrieved information can be too low to be useful. For such cases, Deb et al. [197]
introduce the notion of minimal dominating sets, which are constructed on a “virtual” graph
that, for the purpose of deciding domination relationships, use a radius r smaller than the
actual communication range R. In addition, distance information between nodes already part
of that minimal virtual dominating set and candidate nodes is used for probabilistic delays in
forwarding join requests and the actual joining of nodes into the dominating set. The result
of this construction is a backbone that contains more nodes than necessary; the process is
parameterized to result in a desired density of active nodes.

Backbones with many leaves In combination with data aggregation as described in Chapter 12, it
may be desirable to have a dominating set with many leaves. Boukerche et al. [94] describe
an appropriate, distributed heuristic.

Energy efficiency and broadcasting The problem of finding a backbone is clearly related to the
broadcasting problem. This is discussed in more detail in Section 11.4.

10.4 Hierarchical networks by clustering
10.4.1 Definition of clusters
The previous Section 10.3 has introduced a hierarchy into a network by designating some nodes as
belonging to a backbone, a dominating set. Another idea for a hierarchy is to locally mark some
nodes as having a special role, for example, controlling neighboring nodes. In this sense, local
groups or clusters of nodes can be formed; the “controllers” of such groups are often referred to
as clusterheads. The hoped-for advantages of such clustering are similar to that of a backbone, but
with additional emphasis on local resource arbitration (e.g. in MAC protocols), shielding higher
layers of dynamics in the network (making routing tables more stable since all traffic is routed over
the clusterheads), and making higher-layer protocols more scalable (since the size and complexity of
the network as seen by higher layers is in a sense reduced by clustering). In addition, clusterheads
are natural places to aggregate and compress traffic converging from many sensors to a single
station.

Formally, given a graph G = (V ,E), clustering is simply the identification of a set of subsets
of nodes Vi , i = 1, . . . , n such that ∪i=1,...,nVi = V . A number of questions about the detailed
properties required from these sets distinguish various clustering approaches:

Are there clusterheads? The partitioning of V into several clusters does not mandate anything
about the internal structure of a cluster; in principle, all nodes can be equal (one example
is described in reference [501]). Typically, however, for each set Vi there is a unique node
ci , the clusterhead, that represents the set and can take on various tasks. We shall almost
exclusively deal with examples using clusterheads.

Hierarchical networks by clustering 275

Figure 10.17 An example graph with a maximum independent set [59]

May clusterheads be neighbors? In principle, again, it is perfectly acceptable for two clusterheads
(of two different clusters) to be direct neighbors. It is, however, often desirable to have
clusterheads separated. Formally, clusterheads should form an independent set: a subset
C ⊂ V such that no two nodes in C are joined by an edge in E − ∀ c1, c2 ∈ C : (c1, c2) �∈ E.

Finding an arbitrary such set is trivial; the interesting case is maximum independent sets,
which contain as many nodes as possible without violating the independence property, result-
ing in as many clusters around these clusterheads as possible. Figure 10.17 shows an example
graph with one maximum independent set; others are possible (and easy to find) as the
maximum independent set is, in general, not unique.

An important property of such a maximal independent set is that it is also dominating
(easily proven via the contraposition). This property essentially justifies the importance of
this problem formulation: maximum independent sets naturally partition the network and
also form a subset of nodes that can control the network.

Determining maximum independent sets is, as expected, NP-complete. It does admit a PTAS
for scalar graphs and unit disk graphs [182]. For bounded degree graphs, it is approximable
within (+ 3)/5 for small 	, and within O(log log 	/ log) for larger values [182].

While the maximum independent set formulation is elegant and simple, it does not necessarily
reflect the actually desired configuration of the clusters. Consider, for example, a graph
G = ({v0, . . . , vn}, {(v0, vi)|i = 1, . . . , n}) (i.e. one node connected to n other nodes that are
not connected with each other). The maximum independent set for this graph is v1, . . . , vn,
resulting in n clusters, one of size 2, the others of size 1. Much more practical, in most
circumstances, would be to use node 0 as the head of only a single cluster. Such an intuition
about networks is reflected in most of the later-on described heuristics even though the actual
optimization objectives are usually not fully formalized. Objectives like uniform spread of
clusters over a given area are often considered important [59].

May clusters overlap? When forming clusters out of the maximal independent set shown in
Figure 10.17, the question arises to which cluster to assign nonclusterhead nodes, partic-
ularly those nodes that are adjacent to two clusterheads. One option would be to assign these
nodes to both clusters, resulting in overlapping clusters. If that is not desirable, some deci-
sion rule is required to unambiguously assign nodes to clusterheads. Figure 10.18 highlights
these possibilities.

How do clusters communicate? Whether clusters overlap or not, a node that is adjacent to two
clusterheads can naturally assist in the communication between two clusters – it forms a
gateway (other names are bridge, boundary node, or similar terms). The idea is that intr-
acluster communication can be routed via the clusterheads, who then use the gateways for
any intercluster communication.

There may be cases, however, where two clusterheads are separated by two nodes, and no
single node can fulfill the duties of a gateway. In such a situation, two nodes from each

276 Topology control

Figure 10.18 Maximum independent set induces overlapping or nonoverlapping clusters (example adapted
from reference [59])

Figure 10.19 Two clusters connected by two distributed gateways

cluster together can act as a so-called distributed gateway to enable the communication
between clusters. This idea is shown in Figure 10.19.

The clusterheads together with the (distributed) gateways again form a connected dominating
set and thus a backbone of the entire network. This equivalence can also steer the gateway
selection, as for example it might not be necessary to connect all neighboring clusters via
gateways (although this is often done regardless of global optimization opportunities) or the
choice between different gateways can be optimized by preferring nodes to serve as gateways
that can connect more than two clusters, being in the intersection of several clusters. Choosing
the optimal set of gateways to connect the given clusterheads into a connected sets is again
a Steiner tree problem.

How many gateways exist between clusters? There can be several options to connect two clus-
terheads via several (distributed) gateways (examples are described in reference [40]).
Depending on the optimization goal for the eventual connected dominating set, some degree
of redundancy in the intercluster communication may be desirable.

What is the maximal diameter of a cluster? The presence of clusterheads and the goal of con-
structing a maximum independent set point to a maximum cluster diameter of two – each
node in a cluster is at most two hops away from any other node. This is not necessarily the
case: sometimes, one-hop clusters are considered (which often do not have clusterheads);
sometimes, multihop clusters with larger diameters are used.

Is there a hierarchy of clusters? Clusterheads impose a hierarchy of nodes onto the network.
Usually, such a two-level hierarchy is considered sufficient. Nonetheless, it is possible to
consider the clusters as such as nodes in a new, induced graph, along with the links between
clusters as edges in this graph. To this graph, again, clustering (or other dominating set
approaches) can be applied.

Hierarchical networks by clustering 277

10.4.2 A basic idea to construct independent sets
A first, simple idea to construct – hopefully large – independent sets exploits the inherently local
nature of being independent – if selected nodes can restrain all their neighbors from being selected
as well, independence ensues. The idea is thus for every node to communicate with its neighbors
and to locally select nodes to join the set of independent nodes (to become clusterheads in the end).

To do so, all nodes need a property that can be locally determined, easily exchanged with all
neighbors, and unambiguously ranked by each node (ties can be broken locally). A simple example
for such a property is a unique identifier of each node, sorted for example in ascending order, where
ties cannot happen at all. Using the identifier has actually been the first proposal for a distributed
clustering algorithm [38, 39, 40].

Irrespective of the precise choice of the property used for ranking nodes, a basic distributed
algorithm to compute independent sets starts out by marking all nodes as being ready to become
clusterheads, but as yet undecided. During the course of the algorithm, this status is switched
to either “clusterhead” or “cluster member” (comparable to the colors white, black, and gray in
Section 10.3). In the first step, each node determines its local ranking property and exchanges it with
all of its neighbors. Once this information is available, a node can decide to become a clusterhead
if it has the largest rank (or the smallest, depending on definition) among all its as-yet-undecided
neighbors. It changes its state accordingly and announces its new state to its neighbors. Nodes that
learn about a clusterhead in their neighborhood switch to cluster member state and in turn announce
that to their neighbors. Note that this is the crucial step: Once a node with a large rank becomes
a cluster member to some other node, it can “unblock” nodes with lower rank in its vicinity to
become clusterheads on their own. The algorithm terminates once all nodes have decided to become
either a clusterhead or a cluster member.

This algorithm is illustrated with a simple linear network in Figure 10.20. Note how, in step 1,
nodes 2 and 5 cannot become clusterheads because their neighboring nodes 3 and 6 have not yet
decided and would, potentially, take precedence over them. Once nodes 3 and 6 have learned about
node 7 being a clusterhead in their vicinity, they decide to become cluster members and propagate
this information to nodes 2 and 5. Then, these nodes can become clusterheads in step 3.

This essential algorithm has been considered with several small variations. One variation is
whether to actually hold back nodes from forming clusters as long as the clusterhead decision
might still be revised, or to allow intermediate clusters to be formed, which will later be reclustered

1 2 3 7 6 5 4

1 2 3 7 6 5 4

1 2 3 7 6 5 4

1 2 3 7 6 5 4

1 2 3 7 6 5 4

Init:

Step 1:

Step 2:

Step 3:

Step 4:

Figure 10.20 Basic algorithm for determining independent sets, using node identifiers as rank (white nodes
are undecided, black nodes are clusterheads, gray ones are cluster members)

278 Topology control

and nodes might join another clusterhead. This variation might be particularly useful in mobile
networks (compare e.g. reference [502]).

Another important variation is how to rank nodes. The using of smallest (or largest) identifiers
has been the first proposal [38, 39, 40] (describing, for example, the “linked cluster architecture”,
with some provisions made for how to exchange connectivity information between nodes).

Ranking nodes according to their degree, using the identifiers only to break ties, was proposed
and investigated in references [288, 501, 616]. Essentially the same idea has been used in refer-
ence [501], where clusters are grown around nodes with the highest degree, but no clusterhead is
elected.

10.4.3 A generalization and some performance insights
Other rankings besides identifiers or node degrees are conceivable. Basagni et al. [59] generalize
these approaches by introducing weights for each node and formulate the clustering problem as the
Maximum Weight Independent Set (MWIS) problem. Here, the goal is to find an independent set
of nodes such that the sum of the weights of the nodes in this set is maximized. As it generalizes
the maximum independent set problem, MWIS is NP-hard as well.

The algorithm described in reference [59] is straightforward and quite similar to the algorithm
described above. It is actually a centralized algorithm, in each round choosing the node with the
largest weight as a clusterhead and assigning all neighbors to this clusterhead; all these nodes are
removed from the set of nodes that have to be considered. The algorithm terminates when all nodes
have been assigned to some cluster. The result is a set of independent, dominating clusterheads,
with nonoverlapping clusters. The algorithms of the previous section are obtained through proper
choice of node weight.

The concrete performance of this algorithm depends on the actual choice of weights. It is possible
to provide a lower bound on its performance, as long as all the weights are nonnegative. To do so,
the notion of “performance” of a clustering algorithm has to be made more precise; the obvious
choice here is how well it approximates the maximum weighted set that it is supposed to find.
In other words, what is the ratio between the maximum weight of the best independent set and
the weight of the set found by the algorithm, given a graph G and a node weighting w. Using
this performance definition, Basagni et al. [59] show that this generalized algorithm always finds
independent sets at least as heavy as maximum weight/	, where 	 is the maximum degree of the
graph. This is nontrivial, as it holds irrespective of the actually used node weighting. 5

What is more, they also show that this is the best bound on a performance ratio that can be
proven for any polynomial time algorithm for nontrivial classes of graphs, as long as P �= NP. In
this sense, these simple algorithms are actually optimal.

Nonetheless, the actual performance of an algorithm (and not the worst-case bound) does con-
siderably depend on the concrete weighting in use. The authors compare a “lowest ID” weighting
with a weighting that gives preference to slowly moving nodes in a mobile ad hoc network; the
metrics of interest are the number of reaffiliations of nodes to new clusters and the number of
elections of new clusterheads as the result of mobility. In both these metrics, a mobility-aware
weighting outperforms an identifier-based weighting (degree-based approach are known to perform
not well in such situations). Reference [58] extends upon this work.

10.4.4 Connecting clusters
Once the clusterheads have been determined, by whatever algorithm, it is usually also necessary
to determine the (possibly distributed) gateways between the clusters. Put simply, this problem is
reduced again to the Steiner tree problem.

5 They actually also prove another, sharper bound in their paper.

Hierarchical networks by clustering 279

But the situation here is simpler than in the general Steiner tree setting as some properties of
the clusterheads are known. In particular, they form a dominating, independent set where all nodes
are separated by at most three hops (in case of two ordinary cluster members meeting at the edge
of two clusters). For such a setting, Chlamtac and Farago [159] have shown that a connected
backbone results if each clusterhead connects to all other clusterheads that are at most three hops
away. While for some networks, this might mean more connections than necessary, but there are
networks where all this links are needed to ensure connectivity.

In addition to this basic connectivity consideration, other aspects like load balancing between
multiple gateways can be considered. Various approaches have been proposed here; reference [53],
for example, treats this topic in more detail.

10.4.5 Rotating clusterheads
Being a clusterhead means taking over additional tasks: organizing medium access within the cluster
or participating in routing decisions. Hence, the battery of clusterheads will tend to be exhausted
sooner. Often, it is considered desirable that all nodes have roughly equal battery capacities at any
point in time.6 Hence, the duty of being a clusterhead should be shared among all nodes. Such
sharing is in fact a viable option as there is usually not only a single solution to a maximum
independent set problem but rather a number of different, (nearly) equally good ones.

To be able to rotate the clusterheads, the clustering algorithm cannot run only once but must be
repeatedly executed. These repetitions can happen periodically or can be triggered by node mobility,
for example. Of course, choosing periods and triggers judiciously is an important optimization
problem, depending for example, on average node speed, battery draining rate, and so on.

Using virtual identifiers for rotation

As an example for clusterhead rotations, consider the extensions to the node-identifier-based or
node-degree-based algorithms introduced by Amis and Prakash [21]. To enable the ID-based
algorithm to rotate clusterheads, the identifier is replaced, on each node independently, by a queue
of virtual identifiers that are used in a round-robin fashion in the actual clustering algorithm. The
node degree heuristic is adapted by forcing a clusterhead to step down if its degree has changed
more than a given threshold in between two runs of the clustering algorithm.

Low-Energy Adaptive Clustering Hierarchy (LEACH)

Another early and popular example for rotating clusterheads is the Low-Energy Adaptive Clustering
Hierarchy (LEACH) [344, 346] protocol. Its target scenario is a sensor network with a known
number of nodes and known area, with a dedicated data sink to which all data is to be reported. As
the data can be aggregated (e.g. by averaging), the introduction of clusterheads stands to reason.
These nodes shall collect data readings from their cluster members and transmit it directly, at high
transmission power, to the data sink in a single hop. As this is an energy-intensive operation, it
makes sense to protect the clusterheads from being drained by rotating their role among all nodes.

A simple, lightweight protocol for clusterhead election and rotation is desirable, and the idea
here is to use a simple random choice of clusterheads, foregoing the entire overhead for determining
optimal clusterheads as their role is a temporary one anyway. Nodes independently decide to act as
clusterheads and announce this to their neighboring nodes. These nodes then join that clusterhead
in their vicinity with minimal communication costs (if there is more than a single one); nodes that
do not hear a clusterhead announcement but do not want to become clusterheads themselves have
to communicate with the data sink directly.

6 An alternative is to deliberately burn out some nodes early on and to preserve other nodes for a long time. This is a
principal design decision.

280 Topology control

For such a random choice of clusterheads, the optimal ratio of clusterheads out of the total
number of nodes is required. Taking into account the high costs for communication with a remote
data sink, operation without clusterheads will result in low energy efficiency. Adding even a few
will quickly improve overall energy efficiency, despite the additional effort for aggregation that
these clusterheads incur. When increasing the ratio further, the advantages of clustering slowly
diminish (in the extreme case, each node is a clusterhead for itself, voiding any aggregation or
multihopping benefits). Hence, there is an optimal number at a relatively low ratio; for a typical
example scenario, Heinzelman et al. [346] determine an optimal number of 5 %, but this does
depend on the particular setup and has to be determined beforehand.

Once such an optimal percentage P of clusterheads is known, the actual LEACH algorithm
proceeds in 1/P rounds (assuming, for simplicity, that 1/P is an integer value). In each round, a
set of clusterheads of expected size nP (n the total number of nodes) of nodes is elected from the
set G of nodes that have not yet served as a clusterhead (initially, and after every 1/P rounds, G

encompasses all nodes). At the beginning of round r , each node in G becomes a clusterhead with
probability P/(1 − P · (r mod 1/P)). This probability increases with every round, such that in
round 1/P − 1, all as-yet-unelected nodes will become a clusterhead with probability 1, ensuring
that every node is serving as a clusterhead exactly once in some round. In round 1/P , the process
starts afresh.

Heinzelman et al. [346] further discuss the suitability of the resulting clustering structure for
transmission scheduling and how this scheme can be used to determine multiple levels of cluster-
ing. Overall, this is a simple and elegant solution to the rotation problem, but requiring that all
clusterheads can directly talk to a data sink should (and can) be replaced by some more elaborate
mechanisms.

10.4.6 Some more algorithm examples
On the basis of these principal considerations, a few more algorithms shall be described in slightly
more detail.

A Weighted Clustering Algorithm

The node weights (or ranks) discussed so far have been fairly simple: identifiers, node degree, or
(inverse) node speed. None of these parameters can fully express all aspects of a node’s suitability
to serve as a clusterhead. Moreover, there might be constraints imposed by other system layers
on the topology selection; for example, Bluetooth only allows a clusterhead (a master) to control
clusters of at most seven members (slaves). In general, it might be desirable to prescribe a desirable
size of a cluster in number of nodes that a clusterhead can efficiently control.

Chatterjee et al. [140] describe a clustering algorithm that takes the following aspects into
account to compute node weights:

• A cluster should not exceed a maximum size δ

• Battery power (being a clusterhead means increased effort, which should be balanced over all
nodes)

• Mobility (slow nodes are preferred)
• Closeness of neighbors (clusters with short distances between members are preferred).

Formally, the weight of a node v is expressed as

Wv = w1|dv − δ| + w2

 ∑

u∈N(v)

dist(v, u)

 + w3S(v) + w4T (v)

Hierarchical networks by clustering 281

where the wi are nonnegative weighting factors, N(v) are the neighbors of v (at maximum power),
S(v) is the average speed of node v, and T (v) is the time node v has already served as a clusterhead
(since system start). Tuning the weights will give importance to different system aspects.

The actual algorithm is then essentially identical to the ones discussed above where small weights
take precedence (ties are broken arbitrarily). An interesting aspect of this algorithm is that it will,
all else being equal, rotate the role of clusterheads among several nodes to ensure sharing of the
load between several nodes.

Several other papers consider similar problems; reference [918] is a more recent example.

An emergent algorithm for cluster establishment

Most of the algorithms described so far were distributed in that there was no central entity that knew
about the complete state of the network and computed the final solution. They were, in this sense,
localized – nodes only drew upon information known to themselves or to their neighbors – but
they still had a clear goal explicitly incorporated into the algorithm (e.g. nodes with highest degree
become clusterheads).

An alternative approach to construct localized algorithms does away with such explicit goals.
These are so-called emergent algorithms or protocols. To quote from reference [130]: “. . .an
emergent protocol for a sensor network is a localized protocol in which the desired global property
is neither explicitly encoded in the protocol nor organized by a central authority, but emerges as a
result of repeated local interaction and feedback between the nodes.”

Chan and Perrig [130] apply this design principle to the clustering problem. They define an
emergent algorithm for clustering that essentially moves around clusterheads until an even spread
of clusters has been achieved, without explicitly writing down this as a goal of the algorithm.

In this algorithm, every node can be in three states: unclustered (unaware of any cluster), cluster-
head, or follower (to potentially more than one clusterhead; only at the end a node finally decides
for a single clusterhead). Unclustered nodes turn themselves into clusterheads spontaneously (after
random delays) if there is no cluster in their vicinity; these clusterheads recruit their neighbors as
followers. The interesting idea now is that clusterheads can abdicate if there is a follower node
that would make a better clusterhead, for example, one that would have more followers and less
overlap with other clusters. Such a superior node will be promoted to clusterhead status by the
old, abdicating clusterhead. In effect, the clusterhead role moves around in the network. Nodes
terminate the algorithm after a predefined time.

The interesting property of this algorithm is that it achieves a packing efficiency that approaches
closest hexagonal packing of clusters in a given area. Its runtime is constant, independent of the size
of the network (as enough clusterheads are spawned in a distributed fashion). It does outperform
algorithms like “lowest ID”.

10.4.7 Multihop clusters
The clusters discussed so far have all been derived from the maximum independent set formulation,
with clusterheads forming a dominating set as well. Consequently, the maximum diameter of a
cluster is two, resulting in relatively small clusters. Depending on the purpose of clustering, larger
clusters can be useful even though not every node is a neighbor of a clusterhead then – routing or
aggregation protocols, for example, can profit even from larger clusters whereas cluster support for
MAC protocols is mostly based on the dominance property of the clusterheads.

A crucial problem here is to limit the cluster size from both above and below. An early treat-
ment of this topic can be found in reference [676], where an expanding ring search is used. In
this search, the depth limit is successively increased until the cluster exceeds a given size thresh-
old. Bannerjee and Khuller [52] also discuss the problem; their contribution is discussed in

282 Topology control

Section 10.4.8. Another example for such multihop clusters, which also discusses the relationship
to MAC protocols, is described in reference [186].

NP-completeness and a heuristic

When using multihop clusters, the definition of the dominating set is extended to allow a node to
dominate nodes that are up to d ≥ 1 hops away. The resulting problem is then to find a minimal
set of nodes D such that all nodes of the graph are either in D or at most d hops away from some
node in D. Amis et al. [22] show that this problem is NP-complete.

Amis et al. [22] also provide a heuristic solution for this problem. Their algorithm only requires
O(d) message exchanges between nodes and forms a backbone between the clusterheads by
determining gateways between clusters. It is fair in that it tries to distribute the load of being
a clusterhead; it is also a stable algorithm since clusterheads are reelected when possible.

The details of the heuristic are somewhat complex. The basic idea is to have two phases of
flooding of node identifiers, with the flooding limited to d hops. In the first case, the largest
identifiers are propagated and nodes that have not heard from nodes with larger identifiers within
these d rounds can safely elect themselves as clusterheads. However, there may be cases of nodes
that have to serve as clusterheads since they have the largest identifier in the d-hop neighborhood
of some node but are themselves dominated by some other node in their vicinity. To allow these
nodes to learn about the need to become clusterheads, a second round of d-hop-limited flooding
is undertaken, but this time, the smallest identifiers are propagated. The information exchanged in
these rounds lets nodes find out whether they should become clusterheads. The clusters themselves
are then formed by nonclusterheads starting convergecasts toward their clusterheads and adopting
nodes in the wake of this convergecast into a cluster. For details, please refer to reference [22].

Fixing the size of clusters by growth budgets

A slightly different tilt is given to the clustering problem when trying to prescribe the size of a
cluster, that is, the number of nodes within it, rather than its maximum depth or diameter. One
example of how to achieve this goal is “growth budgets,” introduced by Krishnan and Starobinski
[444]. The basic idea (incorporated in their “rapid algorithm”) is quite simple. Given a cluster target
size B, a clusterhead asks its neighbors to adopt Bi ≥ 0 nodes into the cluster, where B − 1 = ∑

Bi

(the clusterhead itself counts as a member as well, thus B − 1). Each node, on being asked to adopt
x nodes, becomes a member of the cluster and again asks its neighbors to find another set of nodes
of size x − 1 (implicitly, a spanning tree of the cluster is formed as well). Such a search terminates
when the budget has been used up or when there are no more nodes to adopt into a cluster.

In the latter case, the growth budget has not been used fully and the resulting cluster will be
too small. The “persistent” algorithm [444] will try to repair such a situation by reporting unused
budget to the parent node in the spanning tree, which can then try to allocate the budget to other
neighbors. This readjustment can percolate up to the clusterhead and shift budget to other parts of
the cluster.

Evidently, the first algorithm uses fewer messages, namely O(B), than the persistent algorithm,
which has a polynomial message complexity. Other algorithms, like expanding ring search, can
achieve similar goals but have worse complexities.

When to use multihop clusters

The question when to actually use multihopping within a cluster is considered, for example, by
Mhatre and Rosenberg [550]. They assume a heterogenous system model where clusterheads
communicate directly (over longer distances) with a remote data collection entity and sensors

Hierarchical networks by clustering 283

send their data to the clusterheads, where they can possibly be aggregated. These sensors can
communicate with their clusterhead either directly or via multihop communication. The authors
provide an expression for the critical distance beyond which multihopping should be used; this
distance only depends on radio parameters (in particular, path-loss coefficient) and is independent
of the network characteristics. Moreover, a scheme to compute the optimum number of clusterheads
in such a scenario is also provided.

10.4.8 Multiple layers of clustering
Once clusters and their gateways have been determined, they induce a new graph where clusters
are the nodes of the graph and any two nodes are connected if there exists a gateway between
the clusters. To this induced graph, again a clustering algorithm can be applied, electing new
clusterheads and connecting neighboring nodes by gateways. Evidently, this process can be repeated
recursively. One hoped-for advantage of such multiple layers of clustering is to contain topology
changes, for example, relevant for routing protocols, better and only to modify information in a
local vicinity.

One of the first papers to describe such multilayer clustering is reference [679]. There, a het-
erogeneous setup is assumed where only some nodes can relay traffic. Naturally, these nodes form
the first-level clusterheads, attempting to control the size of each cluster by forming, merging,
and splitting clusters. These clusters in turn can elect clusterheads, forming higher-layer clusters.
The height of the hierarchy should be kept small, that is, clusters should be of uniform size. An
interesting aspect is how the gateways between clusters are formed. Relay-capable nodes that are
at the edge of a cluster and detect such nodes of another cluster in their vicinity can invite them
to form a “virtual gateway”. To increase redundancy and stability of the topology, these gateways
can also incorporate additional relay-capable nodes moving in range, merge with another gateway,
or split up into two if nodes move out of range.

Bannerjee and Khuller [52] extend upon this setting and provide a distributed solution to the
problem of hierarchical clustering. They start out by considering a standard clustering problem in
a graph, with the following three additional requirements: (i) Cluster size |Vi | for any cluster Vi

is bounded by a given constant k, k ≤ |Vi | < 2k (one cluster is allowed to be smaller than k to
avoid some special cases), (ii) two clusters should only have a small, constant number of nodes in
common, (iii) each node should only belong to a small set of different clusters. In fact, there are
graphs where these requirements cannot be met but they are feasible for unit disk graphs (and similar
graphs). These requirements are satisfied by an algorithm that traverses a breadth-first spanning tree
of a given graph and connects nodes in subtrees of a node u into clusters, possibly using u to connect
these subtree clusters together if they are too small. This process continues up the tree.

Bandyopadhyay and Coyle [49] suggest to the use of multiple levels of clustering to save
energy in a scenario where sensor nodes are to report sensor readings to a remote processing center.
They start out by a simple, randomized clusterhead election protocol where a node volunteers as
a clusterhead with probability p. Clusters are of size k. Any node that is not covered by such
a cluster also becomes a “forced” clusterhead. On the basis of quite standard assumptions about
energy consumption and node deployment, closed-form solutions for both p and k are analytically
derived. This randomized algorithm can be fairly easily extended to multiple levels: From the (level
1) clusterheads, again some of them elect themselves as level 2 clusterheads and announce this fact
to their level 1 clusterhead neighbors at most k2 hops away; these then join such a level 2 cluster.
The extension to more layers is obvious. Again, optimal values for pi and ki are determined,
minimizing the energy spent to communicate data readings to a processing center. It is assumed
that each node sends its data to a next level clusterhead, which aggregates the data from all its
children before forwarding them. The authors claim that this scheme outperforms other clustering

284 Topology control

schemes in the resulting energy efficiency and that the algorithm has lower complexity than most
other ones.

10.4.9 Passive clustering
In terms of energy consumption, one of the most expensive operations in a network is flooding:
disseminating a particular piece of operation to all nodes. Flooding happens, for example, in routing
protocols when routes have to be computed, but it also occurs when a new data sink announces its
interest in certain kinds of observable data.

Usually, flooding is implemented by every node repeating every packet that it has received, with
the exception of already received ones to avoid cycles. But not every node would have to retransmit
a packet; because of the broadcast nature of the wireless channel, retransmission by a minimum
dominating set – such as clusterheads and gateways connecting them – would suffice. The methods
discussed above would be amenable to compute such a set; however, they can incur considerable
overhead.

This clustering overhead can be reduced if the information flow that is happening anyway during
a flooding operation is leveraged to compute a clustering structure on the fly. Actively sending out
any message for clustering as such is avoided; the approach discussed here is hence called passive
clustering [462]. The necessary information exchange is achieved by adding state information about
each sender into any packet that is sent anyway, namely “initial”, “clusterhead”, “gateway”, and
“ordinary node”. This distributes information about the state of neighboring nodes; it suffices to
build a clustering structure that well approximates maximum independent sets with optimal gateway
choice and is competitive with ID-based or degree-based algorithms.

The procedure works as follows. Suppose a node starts a flood; it will be stamped as coming from
an “initial” node. The first node receiving and forwarding this packet will become a clusterhead and
announces this fact by appropriately stamping the forwarded packet. Any initial nodes receiving
such a packet will turn into “ordinary nodes” or into gateways.

The decision to become a gateway depends on the number of clusterheads and other gateways
that a node has already heard from. Intuitively, a node that has heard from two or more clusterheads
should become a gateway to connect these two clusterheads but only if there is no other gateway
nearby already fulfilling this role. This intuition is formalized by two system parameters a and
β: A nonclusterhead hearing from clusterheads or gateways becomes a gateway if and only if
a(# adjacent clusterheads) + β > # adjacent gateways; a and β control the degree of redundancy
of gateways between two clusters.

Hence, after the initial declaration of a clusterhead, up to two nodes can declare themselves
as gateways (depending on the choice of a and β) and forward the flood packet; all other nodes
(hearing from these two gateways) will declare themselves as ordinary nodes and stop forwarding
the packet.

In effect, a set of clusterheads and gateways is constructed while performing the flooding oper-
ation, limiting the required overhead. While there is no means to guarantee a nearly optimal
performance, simulations show that for practical networks the resulting clustering structure is quite
similar to that produced by active clustering schemes.

Combining this passive clustering with WSN-typical protocols is also appealing. Handziski et al.
[331] discuss an example how to combine passive clustering with directed diffusion (described in
Chapter 12).

10.4.10 Further reading
1-hop clusters One of the few papers dealing with 1-hop clusters (cliques, every node in a cluster

can communicate with every other one) is reference [438]. A first fit heuristic is proposed to

Combining hierarchical topologies and power control 285

find largest cliques but cannot guarantee that optimal clusters are always found. It requires
three passes for each change of the network topology.

Clustering and mobility In general, clustering in a mobile network is difficult because the clus-
tering structure can undergo “ripple through” changes as nodes move around, resulting in
network-wide, high-overhead consequences of local activities. Most of the schemes described
above have been evaluated to some smaller or larger degree for mobile networks. Few of
them, however, have been designed on the basis of a concrete mobility model. McDonald
and Znati [544] present such a mobility-based framework for clustering where clusters are
constructed such that there is a specified lower probability bound α on the mutual availability
of paths between all nodes of the cluster over a given time interval t . They also provide an
analysis of link errors and intra and intercluster routing issues.

Gao et al. [278] also consider this problem and present an algorithm that determines a
constant-factor approximation of the smallest possible number of clusterheads covering all
mobile nodes (which is an NP-complete problem). They describe a kinetic data structure to
update the set of clusterheads in a mobile network.

Energy efficiency Safwat et al. [714] describe a scheme where the residual battery capacities
of nodes is taken into account in the election process. Another paper that considers energy
efficiency in cluster formation is reference [325].

10.5 Combining hierarchical topologies and power control
Both hierarchal approaches (backbones, clusters) and power control are effective means to influence
the topology of a wireless network. Several approaches that combine these mechanisms exist and
some of them are briefly described here.

10.5.1 Pilot-based power control
One early proposal [461] used the clusterheads to perform power control in a way akin to the power
control mechanisms in cellular networks. After an initial clustering structure has been set up (by
some arbitrary mechanism), clusterheads use power control on both pilot signals and on normal
data packets. The pilot signal power control is used to control the cluster membership as nodes only
join a cluster based on these pilots. The data packet power control is used to ensure adequately low
errors for faraway nodes and efficient transmission for nearby nodes; it also combats unusually bad
transmission conditions. The main advantage is that the power control logic can be “centralized”
in the clusterheads, simplifying the problem of a fully distributed power control.

10.5.2 Ad hoc Network Design Algorithm (ANDA)
Allowing the clusterheads to control the size of their cluster by power control is also used in
the Ad hoc Network Design Algorithm (ANDA) system [151] and concrete rules are derived to
maximize the network lifetime. The assumption is that network lifetime is mostly determined by
the clusterheads as they have to fulfill the most demanding tasks. Hence, energy drainage should
be balanced across clusterheads.

The underlying assumptions for this approach are that (i) the positions of ordinary nodes and
of (preselected) clusterheads are known, (ii) the traffic load is evenly distributed over ordinary
nodes, (iii) the lifetime of a clusterhead is proportional to its initial energy supply and inversely
proportional to crα + dn, where r is the coverage radius of a clusterhead, n is the number of

286 Topology control

cluster members, α is the path-loss coefficient, and c, d are constants. The optimization goal is to
maximize the lifetime of all clusterheads or, equivalently, maximize the minimum lifetime over all
clusterheads.

This maximization task is an optimization problem where the decision variables describe the
membership of ordinary node i in cluster j ; the required radio range is implied. This problem
can be solved optimally for static networks by a simple greedy algorithm: Assign node i to that
clusterhead that gives the longest lifetime, and repeat for all nodes. For dynamic network scenarios,
an additional reconfiguration procedure is necessary and optimality can no longer be guaranteed;
practical performance is still good.

10.5.3 CLUSTERPOW

The CLUSTERPOW [413] protocol grew out of the observation that the COMPOW protocol
(described in Section 10.2.3) is not well suited for a scenario where node distribution is nonhomo-
geneous as the lowest common power level to ensure connectivity would be far too high for most
communications between nodes.

The basic idea is simply to assume a discrete set of transmission power levels as given, for
example, 1, 10, and 100 mW. Clusters are formed independently at each power level and there are
separate routing tables for each power level. Packet transmissions take place at the lowest power
level that guarantees that the destination is reachable (such that an appropriate entry exists in the
routing table) and the power level is reduced once the packet enters clusters of lower power levels
containing the destination.

Replacing the initial transmissions at high power levels can often be useful. To do so, the
“tunneled CLUSTERPOW” protocol is also described in reference [413]. To avoid infinite routing
loops in this context, also the addresses of intermediate nodes used to route at lower power levels
must be encapsulated into the data packet.

10.6 Adaptive node activity
There are some additional approaches to topology control that do not fit strictly under the headline
of backbone/dominating set computation or clustering. All of them influence the topology of a
graph by selecting certain nodes to be turned on or off – an operation that of course also fits well
into the context of clustering or backbone mechanisms. Evidently, nodes that are sources or sinks
of data are always kept active.

10.6.1 Geographic Adaptive Fidelity (GAF)
One option to exploit redundancy in the network is to declare certain subsets of node as equivalent
from a the perspective of a higher-layer (e.g. for routing) protocol. In this sense, two nodes can be
classified as equivalent if they (i) do not play any special role from an application perspective, that
is, they are neither source nor sink of data, and (ii) can communicate with the exact same set of
neighbors and can hence replace each other in a routing protocol. As the second point clearly is a
topology-control issue, this equivalence opens a lever to alternatively turn off equivalent nodes.

This idea of equivalent nodes and a position-based realization has been described by Xu et al.
[903] in the Geographic Adaptive Fidelity (GAF) protocol. The idea is to divide the area into
rectangles that are small enough such that any node in one rectangle can communicate with any
other node in an adjacent rectangle (rectangle touching only at the corner are not considered). The
critical positions are those that are at diametrically opposed corners of two rectangles; two such

Adaptive node activity 287

r

r
R

Figure 10.21 Relationship between maximum radio range R and rectangle length r in the GAF protocol

nodes should still be able to communicate at maximum radio range. Figure 10.21 illustrates this
relationship for a rectangle length r and a maximum radio R.

The distance between two such critical nodes is
√

r2 + (2r)2. As this distance has to be smaller
than R, it follows that r < R/

√
5. Since nodes are assumed to know their location, they can easily

construct such equivalency rectangles, determine nodes in their own rectangle, and collaboratively
determine a sleeping pattern, taking turns in participating in a routing protocol. Xu et al. [903]
show that using this scheme, existing ad hoc routing protocol energy efficiency can be improved
between 40 and 60 %.

On top of GAF (or other approaches that have a notion of equivalent nodes), the Sparse Topology
and Energy Management (STEM) protocol [733, 737] – described from a MAC layer perspective in
Section 5.2 – can be added. GAF turns off nodes but maintains the network’s forwarding capacity;
STEMs mechanism of a virtual wakeup channel increases path setup delay in return for an increase
in energy efficiency. Schurgers et al. [737] suggest to combine these two approaches by applying
STEM to a set of nodes equivalent from the GAF perspective.

GAF has also been extended and amended by Xu et al. [902] by removing its dependence
on actual location information. The protocol proposed in this reference works directly on radio
connectivity information but follows otherwise similar design goals in determining redundancy
among nodes.

10.6.2 Adaptive Self-Configuring sEnsor Networks’ Topologies
(ASCENT)

The Adaptive Self-Configuring sEnsor Networks Topologies (ASCENT) approach [127] advocates
a slightly different take on the topology-control problem. Rather than trying to construct a backbone
or a clustering structure, the network tries to adapt itself to the needs of ongoing communications.
This adaption takes place by incorporating nodes that are normally passive into a link (turning a
one-hop into a multihop communication); it is triggered by communications that are undertaken
over long distances, at high energy costs, with high error rates.

In such a situation, the receiver can send out “help” messages to the network. A node receiving
such a help message will test out whether its joining the network will actually be beneficial. It
does so by temporarily participating in packet forwarding and observing whether its own assistance
improves network performance. If so, it becomes active; if not, it becomes passive again. Nodes
can also switch themselves off but have to periodically enter the passive state again to monitor for
pleas for help.

This probing of the network’s performance, depending on the topology-control decisions, dis-
tinguishes ASCENT from most other protocols. However, it has a large number of parameters that
have to be carefully optimized.

288 Topology control

10.6.3 Turning off nodes on the basis of sensing coverage
Unlike “traditional” ad hoc networks consisting of laptops or PDAs, merely ensuring connectivity
of the network is not sufficient for a WSN. Rather, a primary task of a WSN is to sense and measure
something about its environment. To do so, the observed area has to be covered by a sufficient
number of nodes, irrespective of (possibly lower) connectivity needs. In general, the problem of
sensing coverage provided by a WSN is a difficult one. One example approach should suffice here.

Tian and Georganas [816] point out that to turn off nodes, it has to be assured that the area
for which a certain node provides sensing coverage is taken care of by some other nodes. Only
then is a node “eligible” for going to sleep for some time.

The protocol described in reference [816] assumes, in its basic form (some extensions are
described in the paper), that nodes know their position and their sensing ranges. After exchanging
this information with their neighbors (e.g. at the beginning of a round), it is a simple geometric
problem for a node to decide whether its own sensing area is covered by its neighbors. If that is
the case, a node declares itself eligible for sleeping, announces this fact to its neighbors, and goes
to sleep.

If all the eligible nodes did sleep simultaneously and turned themselves off at once, there is a
danger of “blind spots” forming. This can happen if two neighboring nodes are both eligible, based
on the assumption that the respective other node were to stay active (the remaining coverage at
the opposite side would have to be provided by some further nodes). To avoid such a case, the
eligibility announcements are randomly delayed, using common random backoff approaches. Once
a node receives such a message, it removes this soon-to-be-sleeping node from its neighbor list
and reevaluates its own eligibility status. Repeating this process periodically at the beginning of
a round will tend to distribute sleeping possibility over multiple nodes by virtue of the random
backoff.

The protocol rests upon the fact that nodes are redundantly deployed; otherwise there is no
possibility to sleep in the first place. It is a simple yet effective approach that takes the actual WSN
characteristics into account.

10.7 Conclusions
Topology control – namely, power control, backbones, and clustering – is a powerful means to
change the appearance and properties of a network for other protocol layers: MAC layers see reduced
contention, routing protocols work on a different graph, changes in neighborhood relationships
can be hidden. Judicious use of topology control can significantly improve operational aspects of
a network, such as lifetime. However, determining an optimal topology is usually prohibitively
expensive and appropriate approximations and heuristics have to be used instead.

11
Routing protocols

Objectives of this Chapter
In a multihop network, intermediate nodes have to relay packets from the source to the destination
node. Such an intermediate node has to decide to which neighbor to forward an incoming packet
not destined for itself. Typically, routing tables that list the most appropriate neighbor for any given
packet destination are used. The construction and maintenance of these routing tables is the crucial
task of a distributed routing protocol.

This chapter discusses mechanisms for routing and forwarding when the destination of a packet
is identified by a unique node identifier, by a set of such identifiers, or when all the nodes in the
network shall receive a packet. One particular type of identifier will be position information, which
can identify both individual nodes and groups of nodes.

This chapter does not consider the dissemination or collection of data in the general sense.
These tasks are crucial for WSNs and are also clearly routing problems. To give them due credit,
they are treated separately in Chapter 12.

Chapter Outline
11.1 The many faces of forwarding and routing 289
11.2 Gossiping and agent-based unicast forwarding 292
11.3 Energy-efficient unicast 295
11.4 Broadcast and multicast 305
11.5 Geographic routing 316
11.6 Mobile nodes 328
11.7 Conclusions 329

11.1 The many faces of forwarding and routing
Whenever a source node cannot send its packets directly to its destination node but has to rely
on the assistance of intermediate nodes to forward these packets on its behalf, a multihop network

Protocols and Architectures for Wireless Sensor Networks. Holger Karl and Andreas Willig
Copyright 2005 John Wiley & Sons, Ltd. ISBN: 0-470-09510-5

290 Routing protocols

AA
SS

EE

DD

CCBB

Figure 11.1 A simple example of routing in a multihop network – node S sends packets to node D

results – an example is shown in Figure 11.1. In such a network, an intermediate node (as well as
the source node) has to decide to which neighboring node an incoming packet should be passed on
so that it eventually reaches the destination – for example, node S sending to node A would not
do. This act of passing on is called forwarding, and several different options exist how to organize
this forwarding process.

The simplest forwarding rule is to flood the network: Send an incoming packet to all neighbors.
As long as source and destination node are in the same connected component of the network, the
packet is sure to arrive at the destination. To avoid packets circulating endlessly, a node should
only forward packets it has not yet seen (necessitating, for example, unique source identifier and
sequence numbers in the packet). Also, packets usually carry some form of expiration date (time to
live, maximum number of hops) to avoid needless propagation of the packet (e.g. if the destination
node is not reachable at all).

An alternative to forwarding the packet to all neighbors is to forward it to an arbitrary one. Such
gossiping results in the packet randomly traversing the network in the hope of eventually finding
the destination node. Clearly, the packet delay can be substantially larger. Flooding and gossiping
are two extreme ends of a design spectrum; alternatively, the source could send out more than a
single packet on a random walk or each node could forward an incoming packet to a subset of its
neighbors – for example, as determined by a topology-control algorithm, equivalent to flooding on
a reduced topology. This last option is sometimes called controlled flooding.

While these forwarding rules are simple, their performance in terms of number of sent packets
or delay, . for example, is likely poor. These shortcomings are due to ignoring the network’s
topology. In the example of Figure 11.1, without knowing that node A is even further away from
the destination node D, the source node S has no means of avoiding it when forwarding its own
packet. Hence, some information about the suitability of a neighbor in the forwarding process
would be required. A neighbor’s suitability is captured by the cost it incurs to send a packet
to its destination via this particular neighbor. These costs can be measured in various metrics, for
example, the minimal number of hops or the minimal total energy it requires to reach the destination
via the given neighbor. Each node collects these costs in routing tables; Table 11.1 shows two
examples.

Table 11.1 Routing tables for some nodes from Figure 11.1, using
hop count as cost metric

Destination Next-hop Cost
neighbor

A A 1
D A 3
D B 3
D E 2
E E 2

(a) Node S’s routing table

Destination Next-hop Cost
neighbor

A S 2
D C 2
D S 3
E A 2
E C 3

(b) Node B’s routing table

The many faces of forwarding and routing 291

Determining these routing tables is the task of the routing algorithm with the help of the
routing protocol. In wired networks, these protocols are usually based on link state or distance
vector algorithms (Dijkstra’s or Bellman–Ford). In a wireless, possibly mobile, multihop network,
different approaches are required. Routing protocols here should be distributed, have low overhead,
be self-configuring, and be able to cope with frequently changing network topologies. This question
of ad hoc routing has received a considerable amount of attention in the research literature and a
large number of ad hoc routing protocols have been developed. A commonly used taxonomy [707]
classifies these protocols as either (i) table-driven or proactive protocols, which are “conservative”
protocols in that they do try to keep accurate information in their routing tables, or (ii) on-demand
protocols, which do not attempt to maintain routing tables at all times but only construct them
when a packet is to be sent to a destination for which no routing information is available. As usual,
the borders are not sharp between these classes and there are some ideas for hybrid solutions.
Examples for table-driven protocols are Destination-Sequenced Distance Vector (DSDV) [633],
Clusterhead Gateway Switch Routing (CGSR) [149], and Wireless Routing Protocol (WRP) [673].
Popular on-demand protocols are, among others, Dynamic Source Routing (DSR) [536], AODV
[634], Temporally Ordered Routing Algorithm (TORA) [619], Associativity-Based Routing (ABR)
[825], and Signal Stability Routing (SSR) [212]. Overviews of this topic can be found in various
books on ad hoc networks [373, 635, 827] and survey papers [356, 680, 707]. A common problem
for many of these ad hoc routing protocols is that they require flooding of control messages to
explore the network topology and to find destination nodes.

The full range of ad hoc networking is too broad to be covered here in full detail and not all
the research in this context is relevant to the case of wireless sensor networks (e.g. routing of
multimedia traffic in ad hoc networks). Rather, the exposition in this chapter will concentrate on
the most crucial aspect: energy efficiency. This pertains both to the selection of energy-efficient
routes as well as to the overhead imposed by the construction of the routing tables themselves.
Secondary aspects that are briefly touched upon are stability and dependability of the routes as well
as routing table size (nodes with limited memory cannot store large routing tables). In particular,
the issues related to mobile ad hoc networks where all nodes move around will be considered at
best superficially; the case of a mobile sink is briefly discussed at the end of this chapter. Energy-
efficient unicast without and with the help of routing tables is described in Sections 11.2 and 11.3;
overviews can be found, for example, in references [17, 273, 298, 385, 639].

In addition to energy efficiency, resiliency also can be an important consideration for WSNs [276].
For example, when nodes rely on energy scavenging for their operation, they might have to power
off at unforeseeable points in time until enough energy has been harvested again. Consequently,
it may be desirable to use not only a single path between a sender and receiver but to at least
explore multiple paths. Such multiple paths provide not only redundancy in the path selection but
can also be used for load balancing, for example, to evenly spread the energy consumption required
for forwarding. Multipath routing schemes have been considered in the ad hoc literature as well
[585, 618, 641, 837]; they are treated in Sections 11.2 and 11.3 where appropriate.

Apart from the unicast case, where one node sends packets to another, uniquely identified node,
both broadcasting (sending to all nodes in a network)1 and multicasting (sending to a specified
group of nodes) are important tasks in WSNs. Both these tasks are treated in Section 11.4. One
special way to define such a group is by specifying a geographic region such that all nodes
in the region should receive the packet. This requires nodes to know about their positions, and
once such knowledge is available, it can be used both to assist conventional routing and as a
definition for target groups in a multicast sense. Section 11.5 describes such geographic routing
approaches.

1 The difference to flooding, as the terms are used in this book, is that broadcasting intentionally distributes a packet to all
nodes, whereas flooding – every nodes forwards every new, incoming message – is often only used for lack of better options
to distribute a message. Evidently, flooding is one implementation option for broadcasting, but not the only one.

292 Routing protocols

All these options discussed so far are in a sense node-centric in that certain nodes are addressed
by source nodes and packets should be delivered to these nodes. An alternative view on routing
is enabled by data-centric network where the set of target nodes is only implicitly described
by providing certain attributes that these nodes have to fulfill (geographic routing can indeed be
conceived of as data-centric routing in this sense). These routing approaches are very important
in WSNs as they reflect natural usage cases – in particular, collection of data and dissemination
of events to interested nodes. These approaches are treated separately in Chapter 12 along with
in-network processing schemes for aggregating information in the network.

11.2 Gossiping and agent-based unicast forwarding
11.2.1 Basic idea
This section deals with forwarding schemes that attempt to work without routing tables, either
because the overhead to create these tables is deemed prohibitive (when a node only issues a
command, for example, and does not expect any answers) or because these tables are to be
constructed in the first place. The simplest option is flooding – forwarding each new, incoming mes-
sage – but more efficient schemes are desirable. The topology-control discussion in Chapter 10 has
already shown that reducing the forwarding set can considerably improve efficiency. The approaches
taken here try to find a forwarding set without recurring to topology-control mechanisms but try to
solve it strictly locally.

The perhaps earliest paper [201] along these lines draws a parallel between the distribution of
data in a replicated database system and epidemics occurring in human populations. Various options
are described; one is “rumor mongering”: Once a site receives an update, it periodically, randomly
chooses another site to propagate this update to; it stops doing so after the update has already been
received by a sufficient number of sites (supposedly similar to the way rumors or epidemics are
propagating in a population). The goal is to spread updates to all nodes as fast as possible while
minimizing the message overhead. The question is to select neighbors for gossiping the rumor at
hand (how often, which neighbors, etc.).

This same idea of randomly choosing forwarding nodes can also be applied to wireless sensor
networks. There is, in fact, one advantage of wireless communication over wired communication
that comes to bear in this context: a single transmission can be received by all neighboring nodes
in radio ranges, thus incurring transmission costs only once for many neighbors. This property has
been called the wireless multicast advantage [874]. Evidently, whether this advantage is actually
relevant heavily depends on the deployed MAC protocol and on the relative costs of sending and
receiving.

11.2.2 Randomized forwarding
On the basis of this consideration, Haas et al. [320] look at the question how information spreads
in a wireless network by such a gossiping mechanism. The key parameter of their mechanism is
the probability with which a node retransmits a newly incoming message. In the simplest case,
this probability is constant. They show that there is a critical probability value below which the
gossip – typically – dies out quickly and reaches only a small number of nodes. If, on the other
hand, nodes use a probability larger than the critical threshold to retransmit messages, then most of
the gossips reach (almost) all of the nodes in the network. Typical value for the critical threshold
are about 65 to 75 %. The existence of this threshold shows that gossiping exhibits a typical
phase transition behavior, in accordance with what can be expected from a percolation-theoretical
treatment of the problem.

Gossiping and agent-based unicast forwarding 293

Haas et al. [320] also point out that nodes near the boundary of the sensor network’s deployment
region are critical as they have, on average, a smaller number of neighbors than nodes in the center
of the region. They discuss various possible remedies, for example, (i) to have the neighbors of a
node with few neighbors retransmit with higher probability, (ii) to prevent a gossip from dying out
too fast by retransmitting messages over the first few hops with probability 1, or (iii) to retransmit
a message (despite having decided not to do so) if the node does not overhear the message repeated
from at least one of its neighbors (the actual minimum number is an optimization problem). Using
such enhancements, the ratio of nodes that receive a gossip is considerably increased.

Ni et al. [595, 596], Tseng et al. [833] also look at a similar problem, under the perspective
of implementing broadcasting. They propose a couple of heuristics that let a node decide when
to repeat a received or overheard packet. They look at rules that are based on counters (do not
retransmit when a message has been overheard a certain number of times), distance based (do
not retransmit if the distance to the sender is small), or location based (determine the additional
coverage that could be obtained by retransmitting, based on the location of the nodes that have
already sent the message).

11.2.3 Random walks
Limiting flooding by only probabilistically forwarding a packet is only one option. Another approach
is to think of a data packet as an “agent” that wanders through the network in search of its destina-
tion. In the simplest form, this is a purely random walk, where a packet is randomly forwarded to
an arbitrary neighbor. Hence, the agents are sent via unicast, not via local broadcast, to their next
hop. Instead of a single “agent”, several of them can be injected into the network by the source to
shorten the time to arrival by parallelism.2 The probabilistic properties of random walks have been
extensively studied, but without any additional measures, a purely random walk is too inefficient to
be useful for WSNs. Two examples of such extensions to random walks shall be briefly discussed.

Rumor routing

Braginsky and Estrin [99] consider this approach in the context of event notification: Assume
some sensors are interested in certain events (e.g. temperature exceeding a given value) and a sensor
can observe it. Classical options are to flood either the query for the event or the notifications that
an event has occurred through the entire network. The “rumor routing” approach proposed here
does not flood the network with information about an event occurrence but only installs a few
paths in the network by sending out one or several agents. Each of these agents propagates from
node to node and installs routing information about the event in each node that it visited. This is
illustrated in Figure 11.2(a) where the node in the middle detects an event and installs two event
paths in the network (shaded areas). Once a node tries to query an event (or to detect whether
an event actually exists), it also sends out one or more agents. Such a search agent is forwarded
through the network until it intersects with a preinstalled event path and then knows how to find an
event. In Figure 11.2(b), the node in the lower left corner sends out such a search, which happens
to propagate upward until it intersects with one event path. All these agent propagations are limited
to avoid endless circling of data.

The rationale behind this technique is the relatively high probability that two random lines in a
square intersect each other; Braginsky and Estrin [99] state a probability of about 69 %. While
neither the event paths nor the search paths will in reality be straight lines, the approximation is
claimed to be good enough. Using five instead of one event paths increases this probability to about

2 In a sense, gossiping is a form of random walk where each node has the additional option to copy the agent arbitrarily
often; flooding corresponds to copying the agent to all neighbors.

294 Routing protocols

(a) Setting up two event paths from the event source
in the middle

?

(b) Node starts a query (in the lower left corner,
marked with “?”), propagating until it meets a pre-
installed event path

Figure 11.2 Rumor routing example

99.7 %. In effect, rumor routing allows to trade off effort in path creation and/or search against
probability of detecting an event.

There are a few more functionalities included in rumor routing. For example, agents spread
information about more than one event if they have crossed an event path for another event. Also,
an agent uses opportunities to shorten existing event paths if they know about shorter paths. Please
refer to reference [99] for more details.

Random walks with known destination

A different perspective on random walks is taken by Servetto and Barrenechea [750]. They
consider the problem of a WSN where lots of nodes are redundantly deployed but some of these
nodes are randomly turned off and later on again (e.g. due to energy scavenging), giving rise to a
dynamic graph. The idea is to use random walks to ensure that all possible paths in the network
are used with equal probability, spreading the forwarding burden over all nodes. To do so, only
local computations should be required for each node.

The concrete scenario under investigation in reference [750] is a rectangular grid of nodes where
the source is in the upper left corner and the destination in the lower right corner; nodes in between
are randomly active. For such a situation, formulas are developed to compute the probability of
passing an incoming packet either down or to the right, based on a distributed computation of the
number of paths from the source to an intermediate node and from the intermediate node to the
destination. Compared to assigning both the lower node and the node to the right a probability of
50 % each, the random walks based on these formulas indeed result in a much more uniform traffic
density in the network.

11.2.4 Further reading
• The basic ideas of random walks are related to biologically inspired algorithms, for example,

based on the behavior of ants or other swarm insects. Eberhart and Kennedy [220] or
Bonabeau et al. [86] give overviews of these topics.

Energy-efficient unicast 295

• The idea of mobile agents originally contains the idea of sending code, through the network, that
is executed at each node (active networks). Borcea et al. [90] present an example of this idea
in the context of pervasive computing.

• Barrett et al. [56] describe another example for a multipath approach where an intermedi-
ate node makes a probabilistic decision about whether to forward a packet. This probability
depends on, for example, distance between sensor and destination or number of hops that a
packet has already traveled. They provide a fairly extensive comparison with other gossiping-type
approaches.

11.3 Energy-efficient unicast

11.3.1 Overview

At a first glance, energy-efficient unicast routing appears to be a simple problem: take the network
graph, assign to each link a cost value that reflects the energy consumption across this link, and
pick any algorithm that computes least-cost paths in a graph. An early paper along these lines is
reference [747], which modified Dijkstra’s shortest path algorithm to obtain routes with minimal
total transmission power. What qualifies as a good cost metric in general is, however, anything but
clear and depends on the precise intention of energy-efficient unicast routing.

In fact, there are various aspects how energy or power efficiency can be conceived of in a
routing context. The presentation here mostly follows reference [768]; acronyms are taken from
reference [826]. Figure 11.3 shows an example scenario for a communication between nodes A
and H including link energy costs and available battery capacity per node.

Minimize energy per packet (or per bit) The most straightforward formulation is to look at the
total energy required to transport a packet over a multihop path from source to destination
(including all overheads). The goal is then to minimize, for each packet, this total amount
of energy by selecting a good route.

Minimizing the hop count will typically not achieve this goal as routes with few hops
might include hops with large transmission power to cover large distances – but be aware of
distance-independent, constant offsets in the energy-consumption model. Nonetheless, this
cost metric can be easily included in standard routing algorithms. It can lead to widely
differing energy consumption on different nodes.

C
1

CC
11

4
A

44
AA

2
G

22
GG

3
D

33
DD

4
H

44
HH

4
F

44
FF

2
E

22
EE

2
B

22
BB

1

1

1

2

2

2
2

2

3

3

Figure 11.3 Various example routes for communication between nodes A and H, showing energy costs per
packet for each link and available battery capacity for each node (adapted from reference [17])

296 Routing protocols

In the example of Figure 11.3, the minimum energy route is A-B-E-H, requiring 3 units of
energy. The minimum hop count route would be A-D-H, requiring 6 units of energy.

Maximize network lifetime A WSN’s task is not to transport data, but to observe (and possibly
control). Hence, energy-efficient transmission is at best a means to an end and the actual end
should be the optimization goal: the network should be able to fulfill its duty for as long as
possible.

Which event to use to demarcate the end of a network’s lifetime is, however, not clear either.
Several options exist (already discussed at length in Section 3.2.2):

• Time until the first node fails.
• Time until there is a spot that is not covered by the network (loss of coverage, a useful

metric only for redundantly deployed networks).
• Time until network partition (when there are two nodes that can no longer communicate

with each other) [136, 768].

While these aspects are related, they require different solutions. For the network partition,
for example, nodes in the graph’s minimal cut set should have equal energy consumption
(or rather, supplies) to ensure maximum time to partition. Also, their solutions can be infea-
sible – for example, maximizing the time to network partition is reported as NP-complete
[768]. Moreover, Li et al. [489] state that maximizing the time until the first node runs out
of energy does not have a constant competitive ratio with the optimal off-line algorithm that
knows the arrivals of future packets (when optimizing the number of messages the network
can successfully carry, a competitive ratio logarithmic in the number of nodes can be shown
[402]). Because of these theoretical limitations, only approximative solutions are practically
relevant.

Routing considering available battery energy While maximizing the network lifetime is clearly
a useful goal, it is not immediately obvious how to reach this goal using observable param-
eters of an actual network. As the finite energy supply in nodes’ batteries is the limiting
factor to network lifetime, it stands to reason to use information about battery status in
routing decisions. Some of the possibilities are:

Maximum Total Available Battery Capacity Choose that route where the sum of the avail-
able battery capacity is maximized, without taking needless detours (called, slightly
incorrectly, “maximum available power” in reference [17]).

Looking only at the intermediate nodes in Figure 11.3, route A-B-E-G-H has a total
available capacity of 6 units, but that is only because of the extra node G that is not
really needed – such detours can of course arbitrarily increase this metric. Hence, A-
B-E-G-H should be discarded as it contains A-B-E-H as a proper subset. Eventually,
route A-C-F-H is selected.

Minimum Battery Cost Routing (MBCR) Instead of looking directly at the sum of avail-
able battery capacities along a given path, MBCR instead looks at the “reluctance” of
a node to route traffic [768, 826]. This reluctance increases as its battery is drained; for
example, reluctance or routing cost can be measured as the reciprocal of the battery
capacity. Then, the cost of a path is the sum of this reciprocals and the rule is to pick
that path with the smallest cost. Since the reciprocal function assigns high costs to
nodes with low battery capacity, this will automatically shift traffic away from routes
with nodes about to run out of energy.

Energy-efficient unicast 297

In the example of Figure 11.3, route A-C-F-H is assigned a cost of 1/1 + 1/4 = 1.25,
but route A-D-H only has cost 1/3. Consequently, this route is chosen, protecting node
C from needless effort.

Min–Max Battery Cost Routing (MMBCR) This scheme [768, 826] follows a similar
intention, to protect nodes with low energy battery resources. Instead of using the
sum of reciprocal battery levels, simply the largest reciprocal level of all nodes along
a path is used as the cost for this path. Then, again the path with the smallest cost is
used. In this sense, the optimal path is chosen by minimizing over a maximum.

The same effect is achieved by using the smallest battery level along a path and then
maximizing over these path values [17]. This is then a maximum/minimum formulation
of the problem.
In the example of Figure 11.3, route A-D-H will be selected.

Conditional Max–Min Battery Capacity Routing (CMMBCR) Another option is to con-
ditionalize upon the actual battery power levels available [826]. If there are routes along
which all nodes have a battery level exceeding a given threshold, then select the route
that requires the lowest energy per bit. If there is no such route, then pick that route
which maximizes the minimum battery level.

Minimize variance in power levels To ensure a long network lifetime, one strategy is to
use up all the batteries uniformly to avoid some nodes prematurely running out of
energy and disrupting the network.3 Hence, routes should be chosen such that the
variance in battery levels between different routes is reduced.

Minimum Total Transmission Power Routing (MTPR) Without actually considering routing as
such, Bambos [47] looked at the situation of several nodes transmitting directly to their
destination, mutually causing interference with each other. A given transmission is successful
if its SINR exceeds a given threshold. The goal is to find an assignment of transmission power
values for each transmitter (given the channel attenuation metric) such that all transmissions
are successful and that the sum of all power values is minimized.

MTPR is of course also applicable to multihop networks.

A direct performance comparison between these concepts is difficult as they are trying to fulfill
different objectives. Moreover, while these objectives are fairly easy to formulate, it is not trivial to
implement them in a distributed protocol that judiciously balances the overhead necessary to collect
routing information with the performance gained by clever routing choices. The following section
describes some concrete protocols that tackle this challenge; a good overview is also included in
reference [916]. Care has to be taken about the details here – Safwat et al. [715] show that a
non-power-aware protocol can actually have (in many circumstances) a better energy-consumption
behavior than some straightforward power-aware solutions (although it is not clear to what degree
this conclusion is owing to the use of an IEEE 802.11-type MAC protocol in the paper).

11.3.2 Some example unicast protocols

Attracting routes by redirecting

An early proposal by Gomez et al. [300] uses the idea that nodes can overhear packet exchanges
between other nodes. If, in these packets, information about the energy required to communicate

3 It is by no means obvious that this in fact maximizes network lifetime; other factors like deployment pattern, event patterns,
and battery discharge/recharge mechanisms also have to be considered.

298 Routing protocols

between two adjacent nodes X and Z is included, a third node Y can decide whether it can offer a
more energy-efficient route by breaking the direct communication X-Z into a two-hop communica-
tion X–Y–Z. If so, Y can “attract” this route by sending route redirect messages to X, Z, or both.

The advantage of this scheme is that its administrative overhead regarding explicit message
exchanges is small. The need to overhear traffic is, however, not quite as appealing and makes this
scheme not particularly suitable for WSNs. Further details can be found in reference [301].

Distance vector routing on top of topology control

The relay regions concept described in Section 10.2.3 also lends itself to a formulation of an
energy-efficient routing problem. In reference [697], a Bellmann–Ford–type algorithm is used to
find paths with minimal power consumption in the enclosure graph.

Maximizing time to first node outage as a flow problem

Chang and Tassiulas [137] attempt to maximize the time until the first node runs out of energy. To
do so, they use a centralized, flow-based modeling approach. Given is a directed graph to represent
the network annotated with the initial battery capacity of each node and, for each link, the energy
costs to transmit a fixed-size packet. Moreover, the rates of data flows coming from certain nodes
in the network, and their destination nodes are known. The goal is to find assignments of flows to
forwarding nodes such the time until the first node runs out of energy is maximized.

This problem can be formulated as a linear programming problem with certain conditions on
flow conservation. As the forwarding energy differs at each node, the normal maximum flow algo-
rithms are actually not applicable to solve this problem. Therefore, two approximation algorithms
are proposed.

The core idea of the first algorithm is to find a generalized description of the “costs” of a link.
The observation is that both the actual energy cost eij of a link from node i to j as well as the initial
and residual battery capacity Ei and E′

i of node i should be taken into account. Hence, a generalized
link cost cij = eα

ijE
β

i /E′
i
γ is used, where α, β, and γ are nonnegative weighting factors. Setting

some of these factors to 0 and computing the “lowest cost” paths results in the routing strategies
described above; it also allows to generalize these diverse approaches into a single metric.

The second algorithm is a flow redirection algorithm. Both of them are distributed and base
on locally available information. The core result is that system lifetime can be extended up to
60 % in the scenarios investigated here in comparison to simple minimum energy routing when
battery capacity also is taken into account. Further information on this approach can be found
in references [136, 138]; Zussman and Segall [948] discuss an extension of the same basic
techniques to an anycast routing problem.

Maximizing time to first node outage by a max–min optimization

Li et al. [489] approach the network lifetime maximization problem as a max–min optimization
problem. They propose two algorithms. One of them has to know the battery power level of each
node in the network and the other can work without this information at only slightly reduced
performance.

The max min zPmin approximation
This heuristic starts out from the intuition to use paths that have a large residual energy, that is, that
path where the minimal remaining power in all nodes is the largest. This heuristic, however, can
result in arbitrarily bad performance (compare Fig. 3 in reference [489]). Moreover, this approach

Energy-efficient unicast 299

does not take into account the total power consumption of a given path, possibly giving preference
to very expensive paths (in absolute terms). Hence, a proper compromise must be found.

The idea is to use a max–min path but limit its maximum power consumption. This limit cannot
be chosen in absolute terms but is best defined as a ratio to the path with the smallest possible
power consumption. Thus, the path to be chosen should have at most a power consumption of a
factor z times the power consumption along the most efficient path, Pmin; among the paths that
fulfill these constraints, the max–min path with respect to battery power will be selected as the
actual path to be used.

Evidently, proper choosing of 1 < z < ∞ will determine the efficiency of this approximation.
In fact, z should adapt itself to the residual power levels in the network. This adaptation can be
based on estimates of the shortest remaining lifetime of all nodes in the network, estimated over
some period T . Parameter z will be additively increased or decreased after each period and the
sign of the change depends on whether the estimated shortest lifetime has increased or decreased
compared to the previous period. The magnitude of the adaption is reduced over time.

This heuristic is shown to have good performance by both simulations and analysis.

The zone routing approximation
The disadvantage of max min zPmin is that knowledge of battery power levels is required. The
“zone routing” heuristic removes this need. This is done by partitioning the network in geographi-
cal zones where nodes within the zones are responsible for routing in the zone. Routing among
zones is organized hierarchically. The reader is referred to reference [489] for a full description.
The main point is that the resulting performance loss is relatively small, showing that the approxi-
mative maximum lifetime routing can be implemented on the basis of locally available information
(assuming location information is available).

Maximizing number of messages

A slightly different optimization goal is to maximize the number of messages that can be sent over
a network before it runs out of energy. In practice, this can be more important than maximizing the
time until the first node runs out of energy, depending on what can be assumed about the actual
data sensing process and energy consumption.

Kar et al. [402] consider this problem. Interestingly enough, they can prove a competitive ratio
that is logarithmic in the network size if admission control (the routing algorithm is allowed to
reject messages although there would be a path to carry the message) is assumed. What is more,
the constructed “CMAX” routing algorithm does not depend in practice on admission control but
performs well nonetheless (even when using network lifetime as figure of merit, for which the
algorithm is not actually designed).

The crucial insight for this property is the choice of the link weights. Given an edge between
nodes i and j with energy costs eij to transmit a message of unit size, the weight wij is chosen
as wij = eij (λ

αi − 1), where λ is a constant and αi is the fraction of battery capacity that node i

has already used up when the present routing decision is to be made. Admission control is then
formulated as disregarding paths the total weight of which exceeds a given threshold. In practice,
this path weight threshold can be ignored. Using any standard algorithm, the lowest cost path (based
on these link weights) is then selected to transmit the packet.

The information needed for this heuristic and the max min zPmin heuristic are identical. In fact,
the same zone-based variant should apply to this heuristic as well. An obvious improvement over
the max min zPmin heuristic is that only a single shortest path computation is necessary.

Reference [402] discusses performance properties of the CMAX routing algorithm in detail. In
short, it performs well with respect to maximum number of messages and, with respect to network
lifetime, outperforms even specialized algorithms like the max min zPmin heuristic.

300 Routing protocols

Note that both this and the previous scheme – and similarly all other schemes that depend on
battery capacity – have to recompute routing tables relatively frequently to mirror the change in
available capacity. This can be a considerable burden.

Bounding the difference between routing protocols

The previous sections have discussed several possible approaches to energy-efficient unicast routing.
It seems like the choice of the routing has a considerable impact on the chosen energy efficiency
metric. But the remaining question is: What is the maximal improvement that can be gained from an
improved routing protocol? What is the biggest possible difference between a stupid and a perfect
routing protocol?

Alonso et al. [19] answer this question (Figure 11.4). They consider a class of networks where
a all nodes transmit with identical power and all nodes continuously have data to deliver to a base
station (possibly over multiple hops). Apart from these assumptions, their results apply to a wide
range of real networks, irrespective, for example, of the concrete topology; data aggregation is not
considered. The key question is the energy consumption of nodes during the data exchange, not
the overhead of the routing protocol itself.

To approach this problem, the graph is partitioned into “spheres” Si that include all the nodes
that are reachable from the base station in at most i hops. The interesting case is then networks
where “most” nodes are more than a single hop away from the base station (otherwise, the network
is not particularly interesting anyway). Then, all traffic has to go through the nodes of sphere S1,
and because there are relatively few of these nodes, they limit the lifetime of the network.

For such networks, the authors show that no routing will have an energy efficiency worse than
a factor of 2|S1| − 1 than the best possible one – and |S1| is a small constant compared to the
network size. Put the other way around, unless the number of direct neighbors of the base station is
large, the possible impact of routing is limited. For example, for a base station with four neighbors,
even the worst possible routing protocol will only reduce the energy efficiency of data delivery

S1

S2

S3

S4

Figure 11.4 Spheres and balls as used by Alonso et al. [19]

Energy-efficient unicast 301

by a factor of seven compared to the optimal routing. Nonetheless, while such factors may not be
impressive theoretically, they obviously have a large practical relevance.4

11.3.3 Further reading
The range of possible alternatives is large. The reader is particularly encouraged to check the general
literature on mobile ad hoc networking that can provide, despite some fundamental differences,
valuable inspiration. An example for a proposal that is related to an ad hoc networking protocol is
the cost-field-based approach described in reference [910]: The cost field is a “height” assigned to
a node, measuring the smallest possible energy to get to the source. This idea is clearly related to
the older TORA ad hoc routing protocol [619], which assigns heights in hop counts. An interesting
aspect of the cost field is that it is updated by randomly delaying the rebroadcasting of advertisement
messages.

11.3.4 Multipath unicast routing

Overview

The unicast routing protocols discussed so far tried to construct a single energy-efficient path
(with whatever interpretation of this term) between a sink and a receiver, typically by giving a
clever meaning to the “cost” of a link. These costs try to balance, for example, energy required
for communication across this link against the battery capacity of the nodes involved. Focusing
on choosing the best possible path, however, limits the opportunities for making such trade-offs.
Extending the focus to multiple paths and trying to balance, for example, energy consumption
across multiple path is therefore an option worthwhile exploring. Moreover, multiple paths provide
redundancy in that they can serve as “hot standbys” to quickly switch to when a node or a link on
a primary path fails.

Such multipath routing protocols construct several paths between a given sender and receiver.
The basic goal is to find k paths that do not have either links or nodes in common (apart from
source and destination node, of course). Some basic references on finding multiple paths in general
networks are [475, 604, 765]. Once the paths have been established by the routing protocol, the
forwarding phase can then dynamically decide which path (or even paths) to choose to transmit a
packet. This can increase the robustness of the forwarding process toward link or node failures.

Applying multipath routing to wireless networks, both general ad hoc and sensor networks, is
a well-studied problem; some example references include [32, 50, 473, 584, 585, 612, 627, 929].
Some of the more WSN-relevant papers are briefly described here. But even some routing schemes
discussed in other chapters, for example, directed diffusion, have multipath characteristics, even
though it might not be their most prominent feature.

Sequential Assignment Routing (SAR)

As a basic rule of thumb, computing such k-disjoint paths requires about k times more overhead
than a single-path routing protocol [778]. Sohrabi et al. [778] try to reduce the multipath-induced
overhead by focusing the disjointness requirements to that part of a network where they truly
matter – near the data sink, as the nodes close to the sink are (often) those that likely are going
to fail first because of depleted battery resources. Hence, they only require paths to use different
neighbors of the sink. The Sequential Assignment Routing (SAR) algorithm achieves this objective

4 In addition, the MAC protocol is likely to impose a background load onto each node that can be considerably more
important than the additional small fluctuations caused by different routing protocols.

302 Routing protocols

by constructing trees outward from each sink neighbor; in the end, most nodes will then be part of
several such trees. A packet’s actual path is then selected by the source on the basis of information
about the available battery resources along the path and the performance metrics (e.g. delay) of a
given path.

Constructing energy-efficient secondary paths

When using multiple paths as standby paths to quickly switch to when the primary path fails, an
obvious concern is that of the energy efficiency of these secondary paths compared to the (hopefully)
optimal primary path. Ganesan et al. [276] consider the question how to construct the secondary
paths from this perspective, without worrying about battery capacity or similar metrics along the
various paths.

Their first observation is that strictly requiring node disjointness between the various paths tends
to produce rather inefficient secondary paths as large detours can be necessary. To overcome this
problem and yet retain the robustness advantages of multiple paths, they suggest the construction of
so-called “braided” paths (sometimes also called “meshed” multipaths [195]). These braided paths
are only required to leave out some (even only one) node(s) of the primary path but are free to
use other nodes on the primary path. This relaxed disjointness requirement results in paths that can
“stay close” to the primary path and are therefore likely to have a similar, close to optimal energy
efficiency as the primary path. Figure 11.5 illustrates these two redundant paths’ concepts.

Constructing these two different types of redundant paths is simple in a centralized fashion;
a distributed construction is described in reference [276] as a modification to the reinforcement
mechanism (popularized by directed diffusion, Section 12.2.2). For disjoint paths, the data sink not
only reinforces the primary path via its best neighbor toward the data source but also sends out an
“alternate path” reinforcement to its second-best neighbor (or several such neighbors, for multiple
standby paths). This alternate path reinforcement is then forwarded toward the best neighbor that
is not already on the primary path. For braided paths, each node on the primary path (including the

Source Sink

Disjoint paths

Primary path

Secondary path

Source Sink

Braided paths

Primary path

Figure 11.5 Disjoint and braided paths around a primary path

Energy-efficient unicast 303

sink) sends out such an alternate path reinforcement, which only has to avoid the next upstream
node on the primary path but is then free to use nodes on the primary path.

Which of these two schemes is advantageous clearly depends on the node failure patterns. The
authors look at both independent node failures and so-called “patterned” failures (all nodes within
a circle of known radius around randomly selected points fail; the appearance of points follows a
Poisson distribution). The main figure of merit is the “resilience”, the percentage of cases where the
failure of the primary path is compensated for by an alternative path. Reference [276] discusses the
relative performance in detail; in summary, braided paths tend to have a better overall resilience.

Simultaneous transmissions over multiple paths

When using multiple paths as a standby for the primary path, failover times might be improved
compared to strictly single-path solutions. Nevertheless, there is some delay in detecting the need
to use a secondary path. Depending on which node makes this decision – only the source node or
any node on the primary path – there can be more or less overhead involved.

To further shorten the time to delivery and to increase the delivery ratio of a given packet, it is
also conceivable to use all or several of the multiple paths simultaneously. The simplest idea is to
assume node-disjoint paths and to send several copies of a given packet over these different paths
to the destination. Clearly, this trades off resource consumption against packet error rates. De et al.
[195] provide a performance comparison of such a packet replication scheme with other multipath
schemes, for example, one that uses additional FEC to protect against packet errors. Dulmann
et al. [214] combine the basic idea of sending packet replicas with FEC by proposing to split a
packet and its error correction redundancy over several paths, to be recombined at the receiver.
The degree of redundancy and the number of paths can be tuned to the expected error behavior,
trading off overhead against residual packet error rate.

Randomly choosing one of several paths

When maintaining multiple paths, it actually makes sense also to use paths that are less energy
efficient than the optimal one. One reason to do so is to share the load among all nodes in order
to use the available battery capacity in the network better.

A relatively straightforward way of doing so is described by Shah and Rabaey [752]. Each
node maintains an energy cost estimate for each of its neighbors (toward the destination, packets
are not routed “away” from their destination). When forwarding a packet, the next hop is randomly
chosen proportional to the energy consumption of the path over this neighbor. To the upstream
node, the appropriately weighted average of these costs (i.e., the harmonic mean of the costs) is
reported.

More formally: suppose node v has neighbors v1 to vn that advertise cost c1, . . . , cn, respectively.
Node v will advertise c = n/

∑n
i=1 ci as its own cost and will forward an incoming packet to

neighbor i with probability (1/ci)/(1/
∑n

i=1 ci).
This routing approach is extended by Willig et al. [877] by introducing the notion of altru-

ists. An altruistic node is one that is willing to do more work on behalf of its neighbors, for
example, because it has a tethered power supply. Willig et al. show that such asymmetric nodes
can be efficiently exploited by the routing protocol, simply by occasionally broadcasting “altruistic
announcements” into the network.

Trade-off analysis

Clearly, supporting such multiple paths in a network implies a trade-off between robustness (the
probability that paths are available even after node failure) and energy efficiency (as both the

304 Routing protocols

management of these paths and the nonoptimal choices made for packet forwarding decisions imply
increased energy expenditure) – irrespective of the concrete routing protocol in use. This tradeoff
is analyzed by Krishnamachari et al. [440], who compare the robustness gained by multiple paths
with those owing to simply increasing transmission power.

Their basic observation, made in a simplified scenario of five nodes, is that it is not possible to
simultaneously optimize both robustness and energy efficiency of a given set of paths, but rather
that only the notion of Pareto optimality can be applied.5 They do observe, however, that single-
path solutions that require a larger transmission power tend to dominate multipath solutions with
low transmission power.

To test these basic observations, the authors conducted a set of simulation experiments, comparing
various degrees of redundancy via braided multipaths. As one might expect, for low failure rates,
the robustness of even two paths is perfectly sufficient. The two controlled parameters are the degree
of redundancy via additional paths and the maximum transmission power, enabling the system to
bridge across failed nodes if necessary. Using these two factors to influence Pareto optimality with
respect to the robustness and energy efficiency objectives shows, interestingly, that the single-path
schemes actually perform “best”. Overall, the results of this paper highlight the need to carefully
choose between various sources of redundancy.

11.3.5 Further reading

Section 11.3 could only provide a tiny glimpse – unicast routing is perhaps the broadest and most
widely investigated research topic in the context of ad hoc and wireless sensor networks. Some
further interesting aspects are briefly mentioned here.

Routing and topology control Chapter 10 has discussed topology control in a wireless network.
In a clustered network or in a network where the topology is based on a dominating set,
the routing problem has to be solved as well. Superficially, the problem is simple owing to
a reduced network topology. However, it is not clear how, for example, information about
battery capacity can be taken into account. A few references dealing with this topic are
[150, 150, 356, 488, 628, 771]; LEACH [344, 346], for example, also belongs to this class
of approaches.

Maximizing data flow for multiple source/destination pairs In reference [781], the authors
look at a situation where several sources of data are distributed in the network, each one
trying to send as much energy to a dedicated sink, possibly using multiple routes, each one
equipped with a utility function. The optimization is to select routes such that the total utility
of the network is maximized before the first node runs out of energy. The authors derive a
flow control algorithm; the techniques used here are interesting and should be applicable to
similar problems as well.

5 Given an optimization problem with two objectives A and B, it is usually not possible to find “the” optimum. Rather,
among the set of possible solutions, one can talk about “dominance” of one solution over another solution. S1 dominates S2

if either

• S1’s value in objective A is at least as good as that achieved by solution S2 and S1 performs strictly better with respect to
objective B than does solution S2,

• or vice versa, S1 is strictly better with respect to objective A and at least as good as S2 with respect to objective B.

In other words, A improves in one objective without loosing in the other one. The set of Pareto-optimal solutions is that set
of solutions that is not dominated by any other solution. Usually, this set contains more than one element (as dominance is
only a partial order on the set of solutions).

Broadcast and multicast 305

Consider all costs Some of the previously discussed papers have tried to find minimum (energy)
cost paths but did not necessarily take into account all possible sources of energy consump-
tion. Banerjee and Misra [51] argue, for example, that costs for retransmissions have to
be taken into account as well (normally, residual error rates over wireless links cannot be
neglected) and compare paths resulting from local retransmission schemes with end-to-end
retransmission schemes.

Integrate scheduling and power control To obtain optimal solutions, Cruz and Santhanam
[185] describe a scheme that takes into account link scheduling and power control jointly
with the computation of routes. The result is a relatively complicated optimization problem
that minimizes total average power consumption, based on traffic requirements for all links.
The resulting scheme has some strong assumptions, though.

A similar approach is taken by Bergamo et al. [65], who use the results of a power control
algorithm as an input to classical routing algorithms.

Routing and link quality A related issue is the quality of the underlying links. While most routing
protocols are formulated in a graph-theoretical manner, it is often by no means clear which
nodes are connected by a link. Links fluctuate in reliability and can have relatively high packet
error rates. Using flooding-based protocols over such links can result in rather convoluted
routing tables where nodes are considered to be neighbors only because a flooding packet
happened to go through despite actually bad link quality. To overcome these problems,
Wang et al. [859] advocate a careful selection of actual neighbors (in their case, parents for
a routing tree toward a data sink), using information that the link layer can provide.

Routing and lifetime guarantees The determined routes evidently influence the lifetime of the
network and several of the discussed protocols address this issue. References [716, 717] go
a step further in that they attempt to provide guarantees on the lifetime of the network.

Routing for one-shot queries In WSN, a typical routing problem is that of a query that is to be
routed to the place where it can be evaluated and then the routing of the answer back to the
place where the query originated. Depending on the dynamics of the network, such a query
can be regarded as a “one-shot” event if the structure of the network has changed sufficiently
by the next query so that any topology information that the first query might have acquired
is already outdated.

In such a situation it is not clear how to route a query and the answer. A typical assumption
is that the location of the target is known and that geographical routing can be used or
some form of data-centric routing comes into play. Helmy [348] proposes a scheme that
handles such one-shot queries without recurring to location knowledge. The intuition behind
it is that nodes know about their R-hop neighborhood; for queries outside this immediate
neighborhood, so-called contact nodes are involved. These nodes are selected by nodes at
the border of a given vicinity when the query has not been satisfied locally.

11.4 Broadcast and multicast
11.4.1 Overview
The protocols described in Sections 11.2 and 11.3 were trying to find efficient means to transmit
data from one node to another one, possibly over multiple hops. In doing so, some of them had
to collect or distribute information to all nodes in the network; they had to perform a broadcast
operation. In fact, broadcasting can be a common operation in many wireless network applications.

306 Routing protocols

Similarly, it is often necessary to distribute some data to a given, typically known, subset of all
nodes in the network; this is called multicast.

The question of broadcasting has been treated rather extensively in Chapter 10 already. Essen-
tially, the question is how to restrict the set of forwarding nodes as much as possible while still
ensuring that all nodes receive the data. Multicast bases on the same principal ideas but both these
tasks deserve some specific treatment from the routing perspective.

The multicast problem in a graph G = (V , E) can be described by a set of sources S =
(s1, . . . , sn) and, for each source, a set of destinations Di = (di1, . . . , dimi

), for each i = 1, . . . , n.
In general, Di ⊂ V . A frequent simplification is to assume that all destination sets are identical.
Also, the edges of the graph are annotated with communication costs. There are several possibil-
ities how to construct routing structures for multicast (overviews can be found, for example, in
references [147, 474, 706, 827, 876, 917]).

Source-based tree The first idea is to construct, for each source, a tree, rooted at the given source,
that contains all the destinations for this source and, if necessary, additional nodes of V to
ensure that the tree can be constructed.

Which tree to select (out of, in general, many possible ones) is determined by the optimization
goal, which reflects the link costs:

For each source, minimize the total cost Try to find a tree for which the sum of all link
costs is minimal (over all possible trees rooted at the source). This is the Steiner tree
problem6 and matches best the intuitive expectation how a multicast routing structure
should look like. It is, however, NP-complete (yet approximable within 1 + (ln 3)/2 ≈
1.55 [182]). Note that the minimal cost broadcast problem is equivalent to the minimal
cost spanning tree problem (unless “wireless advantage” is assumed, see below), which
is in fact solvable in polynomial time.

For each source, minimize the maximum cost to each destination Owing to the com-
plexity of the previous optimization problem, a different optimization goal can be
considered: Instead of trying to minimize the total cost of the tree, one can minimize
the costs to each individual destination separately. In effect, this maps the multicast
problem to repeated unicast shortest path problems, which can be solved by any routing
algorithm, for example, Dijkstra’s [147, 874].

Figure 11.6 illustrates the difference between these two optimization problems and the result-
ing trees.

Steiner tree

Source

Destination 1

Destination 2

2

2

1

Shortest-path tree

Source

Destination 1

Destination 2

2

2

1

Figure 11.6 Difference between Steiner tree and shortest-path tree (thick lines indicate links that are part of
the tree)

6 In fact, Fermat was the first to ask a related problem: Given three points in the plane, how to find a point that minimizes
the sum of the distance to the three given points. This is today known as the Euclidean Steiner problem; Steiner only later
worked on the general problem of n nodes in a graph.

Broadcast and multicast 307

Shared, core-based tree Constructing and maintaining a dedicated tree for each source incurs
considerable overhead. This overhead can be reduced if only a single tree is main-
tained – typically, this is promising when the destination sets for all sources are identical.
The obvious downside is that for a given source the paths to its destinations can, in general,
no longer be as short as with a dedicated, source-based tree.

To share a tree among several sources, a representative node in the network (not necessarily
a source or a destination node) is selected and, from this node, a tree is constructed to
contain all destination nodes; this tree is shared among all the sources. Selecting this core
node is again NP-complete and optimization goals similar to the source-based trees can be
considered.

In such a shared tree concept, the core node evidently becomes a single point of failure. To
overcome this shortcoming, multicore shared trees are also considered in the literature.

Mesh While trees represent the overhead-optimal routing structures, they are not redun-
dant – failure of even a single link will disconnect the tree. Adding additional links to
the tree to obtain redundancy, however, will alter its essential properties, in particular the
absence of cycles. The resulting routing structure will be a mesh [283] and requires more
complicated forwarding structures than does a simple tree.

Orthogonal to the resulting structure of the routing tables is the assumption about the forwarding
behavior of a node. Does a node use local unicast or can it actually, by virtue of the broadcast
nature of the wireless channel, reach several or all of its neighbors with a single transmission?
The first option directly maps to the standard graph model (separate transmissions are required to
reach each neighbor). The second option is attractive since only a single transmission can spread
information to many neighbors, but whether this is realistic depends on the assumptions made
about hardware, MAC protocol, and, in particular, sleeping cycles of nodes. Ultimately, the ratio
between transmission power and idle power consumption comes into play here. When this wireless
multicast advantage [874] is assumed, the design of protocols (and of the resulting trees or meshes)
changes considerably as now not the sum of the costs of outgoing links has to be considered but
only the cost of the most expensive link that has to be invested in to transmit data to all neighbors.
In practice, when a link is activated in the course of a routing protocol, all the cheaper links of that
node are implicitly contained in the routing graph as well. Clementi et al. [171] and also Cagalj
et al. [113] show that even under this assumption the problem of computing the optimal multicast
graph is still NP-complete; some approximation results are proved in references [852, 853] – the
best known, provable approximation factor is 12, making this a harder problem than the Steiner
tree construction, for example.

It is interesting to note that other broadcast optimization problems are NP-hard as well. Gandhi
et al. [270], for example, show that minimizing the broadcast latency (finding a broadcast tree
such that the time until the latest node has received the message is minimized) is NP-hard, as
is the problem of minimizing the number of retransmissions (they also provide heuristics with a
constant approximation factor). Ferreira and Jarry [256] consider the problem in the context
of evolving graphs (graphs where the set of available links changes over time) and show that
computing minimum spanning trees in a planar, mobile network is NP-complete.

Figure 11.7 summarizes these principal options how to organize multicasting in a wireless net-
work. The following sections will discuss typical representatives of these categories in some more
detail.

For completeness, it should be pointed out that flooding the network is also a means to implement
broadcast and/or multicast. Efficient flooding structures (minimum connected dominating sets) have
been discussed in Chapter 10. References [287, 610] are some examples where this concept is
investigated further. Also, some of the gossiping techniques from Section 11.2 can also be amenable
to implement a (probabilistic) broadcast.

308 Routing protocols

Broadcas Multicast

MeshShared tree
(core-based tree)

Single
core

Multiple
core

One tree
per source

Minimize
total cost

(Steiner tree)

Minimize
cost to each node

Broadcast

MeshShared tree
(core-based tree)

Single
core

Multiple
core

One tree
per source

Minimize
total cost

(Steiner tree)

Minimize
cost to each node

MeshShared tree
(core-based tree)

Single
core

Multiple
core

One tree
per source

Minimize
total cost

(Steiner tree)

Minimize
cost to each node

(e.g. Dijkstra)

Figure 11.7 Overview of possible multicast approaches

11.4.2 Source-based tree protocols
Source-based trees can be constructed in a number of different ways. First, a simple heuristic is
explained that (“simplifyingly”) maps the tree construction onto the problem of finding shortest
paths. Then, an essential algorithm for broadcast trees is introduced and the multicast problem is
solved by various Steiner tree approximations.

These approaches work on a basic graph interpretation of the network. Solutions that exploit the
wireless multicast advantage – in particular, BIP – are described later.

A greedy heuristic – Shortest Path Tree

A trivial heuristic for broadcasting and/or multicasting is to compute, to each destination, the
shortest (or rather, cheapest) path and overlay all these paths onto a tree (described, for example,
as Shortest Path Tree (SPT) in reference [874]). Wan et al. [852] show that this greedy heuristic
does not have a good approximation ratio. Consider a network with the source node at the center, m

nodes p1, . . . , pm distributed on the unit circle, and another m nodes q1, . . . , qm each placed on the
line connecting the origin with node pi at distance ε from the origin. SPT will send one broadcast
packet (using the wireless multicast advantage) to the inner ring at cost ε2 (assuming quadratic path
loss), and each node qi forwards at cost (1 − ε)2. The total cost is thus ε2 + m(1 − ε)2. Having
the source node send at power 1 will, on the other hand, distributed the information to all nodes.
Thus, the approximation ratio is (ε2 + m(1 − ε)2)/1, which converges to m as ε → 0.

Wan et al. [852] also describe another greedy heuristic, broadcast average incremental power,
which has an unsatisfying approximation ratio. The heuristics described below actually have con-
stant ratios, outperforming greedy heuristics.

Broadcasting using minimum cost spanning tree – Prim’s algorithm

A simple broadcasting algorithm can be based on a minimum cost spanning tree. One possible
algorithm to compute it is due to Prim [657].7 It starts with a tree consisting of the source node,
and in |V | − 1 steps adds one node per step to the tree. The node that is added is the one that has
the lowest-cost link to any node already in the tree (evidently, this is not an immediately distributed
algorithm).

7 Kruskal’s algorithm is of course also applicable. Prim’s algorithm is described here as a later discussed one is structurally
similar.

Broadcast and multicast 309

More formally, given a graph G = (V , E) with edge weights W : E → R (for example, energy
cost for the edge), the algorithm maintains the tree (VT ,ET) itself and a set of candidate nodes
VC along with one candidate edge per candidate node. Listing 11.1 shows this algorithm in more
detail.

Listing 11.1: Prim’s minimum-cost spanning tree algorithm

VT = ET = ∅
VC = source node
while (VT �= V) {

Select v ∈ VC with smallest candidate edge weight
Add v to VT

foreach neighbor u of v in V \ {VT ∪ VC} {
// new candidate u found
add u to VC

add (v, u) as candidate edge
}
foreach neighbor u of v in VC {

if (W(v, u) < weight of u’s existing candidate edge) {
 replace u’s candidate edge with edge (v, u)

}
}

}

An important newer algorithm is a randomized one with linear-time complexity [403].

Some Steiner tree approximations for multicasting

A simple approximation
As computing the optimal Steiner tree is an NP-complete problem, quick approximations are
required (references [371, 607] provide overviews). One simple approximation arbitrarily orders
all the destination nodes as well as the source and then successively adds these nodes to the tree:
For the first two nodes, a shortest path between these two nodes is constructed. Then, for every
node, construct the shortest path to any node already on the Steiner tree (where it is not a trivial
task to determine what the best connection point on the tree is). The result will be a tree including
all the required nodes; the quality of the approximation depends on the order in which nodes are
added to the tree. In practice, this approximation tends to perform reasonably well.

Takahashi Matsuyama
Instead of fixing the order in which nodes are to be added to the tree a priori, it stands to reason
to let the algorithm find the next best node to be added. Thus, start with the source node. In each
step, determine the next so-far-unconnected destination that has the shortest distance to the already
existing tree; add this node via a shortest path to the tree. Repeat for all destination nodes. This is
the Takahashi–Matsuyama heuristic [806].

KMB heuristic
The KMB heuristic (after Kou et al. [434]), on the other hand, maps the Steiner tree construction
in the original graph G to the finding of a minimum spanning tree in another graph. Let D be
the set of all nodes to be connected by the Steiner tree (including the source node). Construct the
complete graph K (all nodes are directly connected) with D as the node set; assign edge weights
in K as the cost of the shortest path between the respective nodes in the original graph. Construct

310 Routing protocols

a minimum spanning tree in K . Then, transform back this spanning tree to the original graph, that
is, replace the artificial links in K with the (in general) multihop paths in G, obtaining another
graph T ′. This graph T ′ need not necessarily be a tree, so compute another minimum spanning tree
on T ′, obtaining T ′′. This is almost the sought-after Steiner tree; it remains now only to remove
any possibly unnecessary leaves. KMS is attractive since its competitive ratio is at most 2 and in
practice KMS often comes within 5 % of the best possible solution [607].

A heuristic for multiple rates
The Steiner tree is well suited for a situation where a data source periodically sends data updates
to multiple sinks. The problem becomes slightly different if these sinks require data more or less
frequently. In such a situation, branching points in the tree only forward data with the necessary
maximum rate per child to cover all the sinks in the respective subtree. Adding a source to such
a tree can then require an increase in the sending rate of a branching point and will thus have an
impact on the energy consumption.

Kim et al. [416] suggest a heuristic to handle this case, exploiting knowledge about location of
nodes. When adding a new sink, they perform a recursive computation of the required additional
power when using a given node as a branching point, taking into account possible needs to increase
rates in a branch of the tree. As a result, paths might be used that are not strictly the most energy
efficient ones but are those paths that already carry a high rate anyway. In addition, the tree can
be locally modified to merge existing branches that run in parallel, pushing the branching point
deeper toward the sinks.

Another heuristic that uses node locations is a modification of the Takahashi–Matsuyama heuris-
tic and is described in reference [144].

Broadcasting/multicasting with a finite set of power levels

The Steiner tree is also amenable to solve the broadcast or multicast problem when each node
only has a finite set of k different power levels at its disposal. A simple helper graph construction
[498] can solve this problem: Replace each node v in the original graph G = (V , E) with a small
subgraph, consisting of v itself and k nodes uv1, . . . , uvk . Add an edge (v, uvi) and annotate it with
a weight representing the transmission costs at power level i, i = 1, . . . , k. The helper graph is
then the union of all these replacement graphs for each v, with the additional edges (uvi , w) (with
w ∈ V an original node) if and only if node v can communicate with node w using transmission
power level i (for each v and each i = 1, . . . , k). On this helper graph, solve a Steiner tree problem,
with all or some of the original nodes as destinations. Further optimizations are possible if all nodes
use the same transmission power levels.

Exploiting wireless multicast advantage for broadcast:
Broadcast incremental power

In all the algorithms described so far, a node that wants to transmit to multiple neighbors (because
it has multiple children in the tree, for example) experiences a proportional cost. The Broadcast
Incremental Power (BIP) algorithm [874] differs here in that it exploits the wireless multicast
advantage to compute a heuristic for a broadcast tree. The core idea is that a node that is already
transmitting to some other node would only have to raise its transmission power in order provide
data also to further nodes, without incurring cost for another transmission. Hence, the additional
cost for a node to supply a further node with data is only the difference between the current and
the needed (higher) transmission power.

On the basis of this idea, a modification of Prim’s algorithm is possible. Like in Prim’s algorithm,
one node is added to the tree per round and each as-yet-not-added node maintains a “candidate

Broadcast and multicast 311

edge” that represents its current best option to be added to the tree (updated each round). In each
round, the node with the lowest-cost candidate edge is chosen. The difference lies mainly in the
computation of the cost assigned to the candidate edge of a node and, since each node is reachable
from each other node with sufficiently high power, there is no notion of a set of “candidate”
nodes representing the fringe of the growing tree (alternatively, all nodes are in the fringe since
the underlying graph is complete). An obvious modification of the algorithm assumes maximum
transmission power per node, thus reintroducing possible candidates for transmission and speeding
up the computing; this and other improvements are left out here for simplicity. The interesting
part is the candidate edge weight computation: Unlike in Prim’s algorithm, the currently used
transmission power of a node is subtracted from the actual edge weight to reflect the fact that only
additional costs are incurred if the wireless multicast advantage can be exploited.

Listing 11.2 shows the raw form of this algorithm (without possible efficiency improvements)
and Figure 11.8 illustrates one example execution – black and gray nodes are nodes part of the tree,
black nodes are transmitting themselves, dotted lines show the candidate edge with the candidate
edge weight (note how this weight is reduced when the source nodes, for example, increases its
transmission power), thick lines are the edges in the final tree. In the example, node A’s candidate
edge switches from S to B in round 2 and then, in round 3, back to S as source node S increases
its transmission power to 3 to cover node C, making it cheaper to add A directly from S at an
additional cost of 2 instead of having node B transmit at an additional cost of 3.

Listing 11.2: The broadcast incremental power algorithm for exploiting the wireless multicast
advantage

// Initialize
VT = {source node}
P(source node) = 0 // transmission power assigned to a node
foreach (v in V \ VT) {

Set candidate edge to (source node, v)

Set candidate edge weight to transmission power to
reach v from source node

}
// Compute tree
while (VT �= V) {

Select v ∈ V \ VT with smallest candidate edge weight
Add v to VT using its candidate edge (u, v)

Increase P(u) to smallest power that reaches v

// Recompute candidate edges and their weights
foreach (v in V \ VT) {

Select u which minimizes P ′(u) − P(u)

// where P ′(u) ≥ P(u) is smallest power to reach v from u

Set candidate edge to (u, v)

Set candidate edge weight to P ′(u) − P(u)

}
}

This algorithm tends to produce good broadcast graphs. In some situations, however, it can
unnecessarily assign high transmission power levels to nodes to cover neighbors that are already
covered by some third node. Figure 11.9 shows such an example where nodes are placed at coor-
dinates A = (0, 0), B = (3, 0), S = (4, 0), and C = (6, 0), the node at (4, 0) is the source, and the
transmission costs between two nodes are assumed to be proportional to the square of the distance
(path loss coefficient of 2). Since B has to use transmission power 9 anyway to cover node A, it

312 Routing protocols

S (3)

A

B

C (1)
D

2 3

6
7

Round 4:

S (5)

A

B

C (1)
D

3

7
10

Round 5:

S

A

B

C
D

1

5 3

73

1

10

Round 1:

S (1)

A

B

C
D

4 3

72

1

9

Round 2:

S (3)

A

B

C
D

2 3

7

1

7

Round 3:

Figure 11.8 Illustration of the BIP algorithms’s operation (in parentheses, the currently used transmission
power is shown)

9 1 4

P = 9 P = 4

16 9

A B S C

Figure 11.9 Example of opportunity for “sweeping” in the BIP algorithm

also implicitly supplies node C, avoiding the need for S to send at more than transmission power
1. Detecting such opportunities to reduce transmission power is called a sweep operation [874].
Such sweeping is of course applicable to other broadcast/multicast algorithms as well.

Not only does this algorithm work well in practice, but also its approximation ratio is provably
better than that of the Minimum Spanning Tree (MST): Wan et al. [852, 853] show that the MST
has an approximation ratio between 6 and 12, and BIP has one between 13/3 and 12.

Exploiting wireless multicast advantage for multicast: Pruning broadcast trees
by Multicast Incremental Power (MIP)

On the basis of the computation of a broadcast tree, one simple heuristic for the multicast case is
evident. Given a broadcast tree, prune it by removing all nodes from the tree that have no members
of the destination set as “downstream” nodes; in addition, the sweep operation can be applied to
reduce transmission power further if high power is only needed to supply subtrees without any
destination nodes. Wieselthier et al. [874] study this pruning heuristic on the basis of several
broadcast tree heuristics, in particular their BIP algorithm.

Embedded wireless multicast advantage – Transforming existing graphs

A different approach to leverage the wireless multicast advantage is followed by Cagalj et al.
[113]. They start from a “traditional”, link-oriented broadcast tree, for example, the minimum-cost

Broadcast and multicast 313

spanning tree. From such a starting point, they look for opportunities to increase transmission
power levels of certain trees such that the additionally covered nodes can stop transmitting and the
resulting, modified tree consumes less energy than the original one that did not take into account
the wireless multicast advantage.

The algorithm proceeds in rounds, building up the final broadcast tree along the lines of the
preliminary, MST-based tree. The first round starts from the source node. In each round, nodes
are added as covered nodes to the final tree and one node is selected as a transmitting tree; some
nodes that were transmitting in the preliminary tree can be demoted to normal, nontransmitting
nodes (they are “excluded”). The decision of which node to select as a transmitting node and at
which power to operate it depends on the possible gain that such a decision incurs. The gain is
computed with respect to the possibility to exclude certain nodes, thus saving energy: For a potential
transmission candidate u and a to-be-excluded node v, the transmission power for u is computed
as that power required to cover both v itself and all of its children. This requires more energy on
behalf of u but saves energy in v and also in potentially other transmitting nodes (which will then
also be excluded). Eventually, the node that results in the biggest gain is chosen as transmission
node. This algorithm is repeated until all nodes are covered.

Cagalj et al. [113] also describe a distributed version of this heuristic. It is also based on a
preliminary, distributed determination of a minimum spanning tree. The final tree’s computation
is again divided into rounds, which are moreover structured into three phases. In these phases,
information about neighboring nodes and the structure of the transmission chain from the source
to a given node is used to modify the original tree – the details are somewhat involved and the
reader is referred to reference [113].

Marks et al. [541] follow similar lines as Cagalj et al. [113] in that they also are interested in
transforming existing trees to obtain ones with better energy consumption. Marks et al., however,
start from stochastically generated trees (rather than MIPs) and their search operations are different
as well. They base their heuristics on the viability lemma.

A distributed, position-based approach to the wireless multicast advantage

Another construction [120] for energy-efficient broadcasts does not start from the minimum
spanning tree but starts from the Relative Neighborhood Graph (RNG) (already introduced in
Section 10.2.3). The RNG is defined as that subgraph of the original graph where two nodes u and
v are only connected if there is no third node w that would be closer to each of u and v. While the
RNG typically has a higher degree than the MST, it is easily constructed using locally available
information about positions of neighboring nodes or distances between neighbors’ neighbors.

The RNG as such is a unicast graph as it does not take into account the wireless multicast
advantage. To correct this, the proposed heuristic first determines, for each node v, the transmission
range as the smallest range that connects v to all of its neighbors in the RNG. Then, the RNG∗ is
defined as the subgraph induced by these (local broadcast) transmission ranges. Neighbors in this
graph can know about joint neighbors in the underlying RNG.

A broadcast is then performed on the RNG∗, using a “neighbor elimination” procedure. The
source node s broadcasts a message using its assigned transmission range. A receiving neighbor
v of the source can then decide which of its neighbors in the RNG have already been covered
by the first broadcast, eliminates them from its list, and, if this list is nonempty, rebroadcasts the
received message. Nodes that redundantly receive a message can still extract information about
which neighboring nodes have already been supplied with the message and can eliminate them
from their neighbor list. To take advantage of this information from other nodes’ forwarding, the
rebroadcasting of a received message is randomly delayed for some time. Reference [120] describes
the procedure in more detail. It also compares this schemes with others, in particular, with BIP.
The authors show that this RNG-based scheme is advantageous, especially in dense networks.

314 Routing protocols

11.4.3 Shared, core-based tree protocols

The challenge in core-based tree multicast protocols lies in finding a good core node. Once this
node is determined, essentially the problem can be reformulated as a source-based tree protocol
with the core node as the source (although better optimization is possible). An overview of such
protocols and a performance comparison can be found in reference [474]; further examples are
contained in references [147, 917].

To give an idea how such a core search could work, the “merge point formation” from refer-
ence [564] is briefly described here. Assume there are a few sinks in a network to which data shall
be distributed via a core-based multicast tree. A “merge point” for this tree is to be found. To do
so, each sink broadcasts advertisement messages indicating its presence; each node in the network
collects these advertisements along with sink identifier and number of hops that the advertisement
took. After a certain time, each node that has received more than one sink advertisement broad-
casts merge advertisement messages. These messages are only forwarded by nodes that have heard
from fewer sinks or whose cumulative distance to all sinks is larger. Eventually, only one node
(depending on network topology and timer values) will not have heard other merge advertisements
overruling its own and will declare itself the merge point. This leader election result is then spread
through the network.

When dropping the assumption that the broadcast or multicast tree is actually rooted in and
constructed from the actual source of the broadcast, optimality is evidently sacrificed. On the other
hand, having to maintain only a single tree for all sources instead of one tree per source is attractive
as well. The question is thus how big the performance penalty is that has to be paid by using only
a single (e.g. core-based) tree for all multicast operations.

This question is answered by Papadimitriou and Georgiadis [613]. They show that, given a
tree and exploiting the wireless multicast advantage, the difference in total power consumption
between any two sources on this tree is at most a factor of two. Moreover, they give a construction
for a single broadcasting tree (SBT) such that the total power using this tree from any arbitrary
source s is at most 2H(|V | − 1) times that of the optimal tree for the given source (where H(·) is
the harmonic function).

11.4.4 Mesh-based protocols

To overcome scalability (in number of sources) and robustness issues of tree-based protocols, a
structure with higher connectivity is necessary that can connect multiple sources to their destinations.
The first proposal in this sense was the Core-Assisted Mesh Protocol (CAMP) [283]. The mesh,
a subgraph of the original graph, has to contain all sources and destinations and provide at least
one path from each source to each destination. The redundancy of the mesh can actually enable
shorter paths in the mesh than would be possible in a core-based tree; it is, however, up to the
forwarding procedure to actually be able to exploit these shortcuts without resorting to flooding the
entire mesh with data. Reference [917] summarizes several mesh-based protocols, mostly from an
ad hoc background, and compares them against tree-based protocols. The energy consumption of
mesh-based protocols is, on the average, (f + 1)/2 times larger than that of tree-based multicast
protocols (where f ≤ 2 is the node connectivity, analyzed for nodes laid out in a grid pattern).
Hence, their use in sensor networks requires careful deliberation.

As an example of a (in a sense) mesh-based protocol, let us consider the Two-Tier Data
Dissemination (TTDD) described by Ye et al. [911] (Figure 11.10). Here, source nodes detect
certain events that have to be forwarded to several mobile sinks. To do so, each source node, after
detecting an event, starts to build a regularly spaced mesh of “dissemination points”, resulting in
rectangular cells of known size l (geographical unicast routing is assumed to be available). Sinks,

Broadcast and multicast 315

Event

Sink

Figure 11.10 Two-tier data dissemination as an example of a mesh-based protocol

on the other hand, flood their queries in their local vicinity with a bounded radius to live (signifi-
cantly more efficient than unrestricted flooding). This radius is selected large enough so that at least
one dissemination point must be found within it. In this sense, two tiers of forwarding functionality
are deployed – global multicasting on a mesh and local query broadcasting. Once a dissemination
node receives a query, it forwards it upstream to the source of the data via the multicast mesh; it
does not repeat that for multiple queries, reducing the query overhead. Dissemination nodes keep
on forwarding (aggregated) queries toward the source and store information from where the queries
arrived. This information is used to then send the actual data back to the sinks, implicitly setting
up a multicast tree on top of the multicast mesh.

11.4.5 Further reading on broadcast and multicast
Gossiping for multicast Gossiping can be used for multicast and broadcast as well. Chandra

et al. [131], for example, describe a scheme where gossiping is used to improve the reliability
of multicasting. Reference [523] is a similar example.

Directed antennas for multicasting When directed antennas are available, robustness and traffic-
carrying capacity of a network should improve considerably (given a fixed amount of
available power). Wieselthier et al. [875], for example, extend their BIP/MIP protocols
to take advantage of such antennas, assuming that directed antennas can be used to concen-
trate power to the neighbors in the multicast tree and thus reduce power consumption. This
results in considerable improvements in network lifetime and total delivered traffic.

Relationship to topology control There is clearly a tight relationship to topology-control proto-
cols. A difference is often the source-based nature of multicast/broadcast protocols, whereas
topology-control protocols try to optimize the network as a whole. There are also some
papers that explicitly combine these aspects, for example, references [629, 796].

Optimal solutions by linear programming An optimization technique that has not been discussed
so far is linear programming where the problem is cast as a linear equation that is to be maxi-
mized (or minimized) subject to certain constraints. While this modeling approach obviously
does not change the complexity of the problem (integer linear programming is NP-hard),
it can often lead to good approximations of the optimal solutions by standard relaxation
techniques. Das et al. [191] describe three different integer linear programming problems to
capture the minimum power broadcast problem. The solution to these problems can act as
benchmarks for practical algorithms. Reference [20] is another example of this concept.

Optimal solution for tree networks How to optimally collect and distribute data in a tree network
is considered in reference [261].

316 Routing protocols

Time to complete a multicast So far, mostly the energy required for a multicast or broadcast has
been considered. But the time necessary to do so can also be important. Reference [261]
gives an example of how this problem can be approached.

Data placement A further variant of Steiner tree approximations is investigated by Bhattar-
charya et al. [77]. They are interested in placing data caches in a network, which boils
down to choosing good Steiner points.

Cooperative multihop broadcast In a broadcast flood, a node can overhear the same packet trans-
mitted by several different senders. Using advanced signal processing, a node might be able to
reconstruct the correct packet even if each individual reception is erroneous. Such cooperative
broadcasting is described in reference [540].

11.5 Geographic routing
The idea behind the relatively large class of geographic routing protocols is twofold:

• For many applications, it is necessary to address physical locations, for example, as “any node
in a given region” or “the node at/closest to a given point”. When such requirements exist, they
have to be supported by a proper routing scheme.

• When the position of source and destination is known as are the positions of intermediate nodes,
this information can be used to assist in the routing process. To do so, the destination node has to
be specified either geographically (as above) or as some form of mapping – a location service
[483] – between an otherwise specified destination (e.g. by its identifier) and its (conjectured)
current position is necessary.
The possible advantage is a much simplified routing protocol with significantly smaller or even
nonexisting routing tables as physical location carries implicit information to which neighbor to
forward a packet to.

The first aspect – sending data to arbitrary nodes in a given region – is usually referred to as
geocasting. It was originally introduced in an Internet context [589]; a survey can be found in
reference [533]. The second aspect is called position-based routing (in particular in combination
with a location service); it was probably first introduced by Finn [258] as “Cartesian routing”.
Mauve et al. [543] provide an overview. The necessary techniques to make nodes aware of their
position have been described in Chapter 9.

In wireless sensor networks, usually the geocasting aspect of geographic routing is considerably
more important. Since nodes are considered as interchangeable and are only distinguished by
external aspects, in particular their position, a location service is usually not necessary. Hence, this
chapter concentrates on the geocasting aspect, with position-based routing aspects treated where
necessary, and are briefly surveyed in Section 11.5.1. The presentation given here partially follows,
in its broad structure, the survey papers [533, 543]

11.5.1 Basics of position-based routing

Some simple forwarding strategies

Most forward within r
Assume a node wants to send a data packet to a node at known position and assume also that every
node in the network knows its own position and that of its neighbors. In a simple greedy forwarding
approach, the packet is forwarded to that neighbor that is located closest to the destination (the

Geographic routing 317

Figure 11.11 Simple greedy geographic forwarding

destination’s position is included in the packet), minimizing the remaining distance that the packet
has to travel.8 Formally, the next hop of node v toward destination d is chosen as

next hop(v) = argminu∈N(v){|ud|},

where |ud| indicates the distance between nodes u and d and N(v) is the set of neighbors of node v.
This scheme is called most forward within r [804], where r indicates the maximum transmission
range and thus the neighborhood. As Stojmenovic and Lin [794] show, this method is necessarily
loop free.

Figure 11.11 illustrates this scheme and immediately shows one principal shortcoming: by ignor-
ing topology information, geographic routing is, in general, not able to find the shortest possible
path (in hop count). This trade-off between simplified routing scheme and reduced efficiency is, in
general, unavoidable.

Nearest with forward progress
An alternative to the greedy forwarding is to choose the nearest neighbor that still results in some
progress toward the destination [357]. The rationale is to reduce the collision rate and thus to
maximize the expected progress per hop; it is not clear how this scheme would interact with an
actual MAC layer.

Directional routing
Yet another possibility is to forward to nodes that are closer in direction rather than closer in
distance. Compass routing [437] is an example, where that neighbor is chosen that is closest to
the direct line between transmitter or destination. (A variation would be to choose the angularly
closest node; this is not identical.)

Distance Routing Effect Algorithm for Mobility (DREAM) [61] is another example of this idea.
Unlike the most progress within r scheme, however, a direction-based scheme like DREAM is not
necessarily loop free; Stojmenovic and Lin [794] give an example. To ensure loop freeness in
direction-based algorithm, memory about which nodes have already been forwarded by a node has
to be used in the nodes.

The problem of dead ends
What is more, these simple strategies also cannot deal with dead ends. Figure 11.12 illustrates how
an obstacle that blocks the direct path between source S and destination D interrupts communication
even though S and D are actually connected by the network.

An apparently simple fix for a situation where no forward progress can be made is to use the
“least unappealing” node, that is, the neighboring node that loses the least progress [804]. However,

8 A common misconception is to use the node farthest away from the sender.

318 Routing protocols

Figure 11.12 Simple greedy geographic forwarding fails in presence of obstacles

as Figure 11.12 shows, this heuristic can lead to packets looping back and forth between the nodes
near the obstacle.

The obstacle problem is also not solved by randomly choosing a node that is closer to the
destination than the transmitter is, as proposed in reference [590] (randomly forwarding to any
node results in random walks). Hence, improvements over these simple schemes are required.

Restricted flooding
Figure 11.12 also shows that even an extended greedy forwarding where a source forwards to some
or all of the nodes that are closer to the destination than itself (so-called geographically restricted
flooding) will not remedy the shortcoming – the scheme will not be able to find detours.

Restricted flooding is, on the other hand, quite suited to compensate for mobility of the des-
tination. Assume that the destination moves at a given speed v and that the distance between
transmitting node and destination is known, it is a question of simple trigonometry to find an angle
α such that D will receive the packet (with given probability) when all neighbors in this angle,
centered around the line between transmitter and destination, will receive the packet. Basagni et al.
[61], for example, provide the required formulas.

Right-hand rule to recover greedy routing – GPSR

Figure 11.12 not only illustrates the problem of greedy forwarding in dead ends but also gives an
intuition about a possible solution. When being stuck in a dead end, or even in a labyrinth, one
certain way of escaping from the labyrinth is to keep the right hand to the wall and keep walking.
This way, all the walls of the labyrinth will be eventually visited [87]. The practical consequence is
to backtrack the packet out of the dead end, counterclockwise around the obstacle; it will eventually
find a node closer to the destination.

This intuition has been turned into various protocols, for example, Compass Routing II [437],
“face-2” [93], or, later, the Greedy Perimeter Stateless Routing (GPSR) protocol [409]. GPSR
forwards a packet as long as possible using greedy forwarding with the “most forward” rule. If a
packet cannot make any more progress, the packet is switched to another routing mode: perimeter
routing. A perimeter is a set of nodes defining a face (the largest possible region of the plane that
is not cut by any edge of the graph; faces can be exterior or interior). Perimeter routing essentially
consists of sending the packet around the face using the right-hand rule. To do so, the packet carries

Geographic routing 319

A
Z

D

C

B

E

F

G

I

H

J

K

L

Figure 11.13 Example for GPSR

information where it entered a given face. This node v and the connecting line between v and the
destination are used to decide whether the packet should leave the face and proceed to the next
one (when the edge from the current node to the next node on the face intersects the connecting
line between v and the destination node). Also, the packet can return to greedy forwarding if the
distance of the current node to the destination and node v has been effectively reduced (but see the
next section regarding performance guarantees of such fallback heuristics).

Figure 11.13 illustrates how a packet would be routed from node A to node Z. While at node
A, the packet can be greedily forwarded to node D. At node D, greedy forwarding fails (both B

and C are further away from Z than D itself), so the packet has to be routed around the perimeter
of the interior face defined by BFGCD. That is, it is forwarded to B and from there to F . Here,
edge FG intersects line DZ and routing can proceed to the next face (note that greedy forwarding
to G would not help here). The packet proceeds around the perimeter of the exterior face via E

and I to H , from there via K to J and thence to L and Z (the last steps via greedy forwarding).
Since this face-based procedure is based on properties of the plane, it only applies to pla-

nar graphs. In general, wireless network graphs are not planar, requiring the construction of a
planar subgraph first. Reference [93] suggests to use a Gabriel graph; reference [409] discusses
both Relative Neighborhood Graph (RNG) and Gabriel graph. Both these subgraphs can be con-
structed in a distributed fashion assuming that node positions are known and have been discussed
in Section 10.2.3 already.

Performance guarantees of combined greedy/face routing

When combining face routing and greedy routing, face routing is tasked with routing around obsta-
cles or out of dead ends while greedy routing tries to make quick progress toward the destination.
One would thus like to switch to greedy routing as soon as possible once the obstacle has been
cleared. It is, however, nontrivial to select this face-to-greedy switching point correctly or even to
provide performance guarantees about the behavior of such an algorithm. A simple heuristic for
such a fallback like switching to greedy mode whenever a node has been found that is closer to
the destination than the node where face routing started is in fact not worst-case optimal [452].

In fact, the first combined greedy/face routing algorithm that is provably worst-case optimal was
described in reference [452], but in order to show the worst-case optimality, quickly switching back
to greedy routing could not be used. The proved performance bound was that face routing reaches
the destination in O(c2) steps, where c is the cost of the optimal path from source to destination.
The idea here is to adaptively grow an area in which next hops are searched. This performance

320 Routing protocols

is worst-case optimal since a graph can be constructed on which no geometric algorithm (without
routing tables) can do any better.

The result from reference [452] has been improved by the same authors in reference [451] by
presenting the Greedy and (Other Adaptive) Face Routing (GOAFR)+ algorithm that is worst-case
optimal and at the same time efficient in the average case. The crucial point is when to fall back
to greedy mode – too soon loses worst-case optimality, too late wastes average-case performance.
Two techniques realize this behavior:

• The algorithm maintains a bounding circle, centered at the destination node, that prevents the
face search from needlessly exploring in the wrong direction. This circle is reduced at every step
in the greedy forwarding phase and can be enlarged in face routing if, with the current circle
restrictions, no progress toward the destination can be made.

• A packet maintains two counters, p and q. When switching to face-based forwarding, both
counters are set to 0. Counter p contains the number of nodes on the face perimeter that are
closer to the destination than is the node where face search started; q counts nodes farther away.
The algorithm falls back to greedy search if p > σq (for some properly chosen constant σ), that
is, when substantially more nodes are closer to the destination on this face than are further away.

As shown in reference [451], this algorithm is worst-case optimal. It is also efficient in the
average case as shown by simulation-based comparison against other algorithms, notably GPSR.
An interesting observation is that the difference between these algorithms is largest in the phase
transition from a barely connected to a very dense network (where it is either trivial or impossible
to find good paths).

Reference [451] also explores the consequences of different cost metrics; the reader is referred
to the paper for details.

Combination with ID-based routing, hierarchies

Purely position-based routing can be problematic in the immediate vicinity of the destination node,
for example, when the destination has moved around or the location information is not very accu-
rate. Identity-based routing protocols solve this issues relatively smoothly but have difficulties
maintaining state information over long distances. Hence, a natural combination would use (even
coarse-grained) position information to forward a packet into the vicinity of the destination where
then an identity-based protocol (like any mobile ad hoc networking protocol) would take over. An
example for such a hybrid, hierarchical approach is the “Terminodes” project’s routing protocol [81].

Randomized forwarding and adaptive node activity – GeRaF

Zorzi and Rao [940, 941] investigate the combination of position-informed, random forwarding
and nodes that switch on and off to save energy. Their scenario for investigation is the following:
Assume nodes are uniformly distributed over the plane, each node knows its position, and each
node turns on or off at arbitrary times; nodes also know their position and that of their neighbors.
The goal is to transmit a message, usually over multiple hops, to a destination node the position
of which is also known; the challenge is the constantly changing topology.

Their basic idea is then to use receiver-initiated forwarding: A node S forwarding a message
simply broadcasts it without specifying – in the packet or otherwise – which node shall forward
it. Ideally, the node closest to the destination node T and in range of S will pick up the mes-
sage and forward it onward. However, since the neighbors of S do not know which of the other
nodes is currently asleep, a deterministic rule to pick the forwarder would be difficult. Hence,
the problem is solved by a position-informed randomization. Define N annuli with inner radius

Geographic routing 321

1 D - 1

D

A1

A2

A3

A4

Figure 11.14 Contention regions for selecting the next hop node in GeRaF [941]

D − 1 + (i − 1)/N , i = 1, . . . , N and width 1/N (where D = |ST | is the distance between nodes
S and T and the radio range is normalized to 1); let Ai be the intersection of these annuli with the
radio range of S (Figure 11.14).

After S broadcasts its packet, nodes in A1 contend for forwarding (treating all nodes in A1 as
equivalent from the point of view of distance to T). If one node forwards the packet, the forwarding
problem is solved. If several nodes attempt forwarding, the collision has to be resolved using a
standard resolution algorithm (backoff or similar). If no node answers, then, in a next time slot,
nodes in A2 should attempt to forward the packet, and so on. If there is not even a node in AN

that is awake, node S simply can wait for some time and reattempt transmission, hoping that some
nodes have woken up in the meantime.

In this scheme, a larger N will better approximate the geographically closest node but increases
latency of the forwarding. Interestingly enough, Zorzi and Rao [941] show that even N = 3
achieves an average number of hops to the destination that is close to the optimal one. Hence, the
scheme is feasible. Moreover, references [940, 941] contain a detailed analysis of multihop, energy,
and latency performance, deriving bounds for the most important metrics.

It is also interesting to compare this scheme to GAF, discussed in Section 10.6.1. GeRaF is
similar in spirit but since it does not require all nodes to be identical from a routing perspective,
it need not artificially restrict the range of the nodes and can thus achieve a substantially reduced
average number of hops to the destination.

Geographic routing without positions – GEM

What seems like a contradiction – using principles of geographic routing without position infor-
mation – is actually a rather ingenious idea. Newsome and Song [593] describe a method that
uses virtual instead of actual physical coordinates of nodes to facilitate routing (Figure 11.15).
The method has two essential parts: Routing using a polar coordinate system (given in radius and
angle from a center, as opposed to the usual Cartesian coordinates) and an efficient, distributed
construction of such virtual polar coordinates that does not depend upon actual physical coordinates.

322 Routing protocols

Figure 11.15 Geographic routing with positions [593]

To start with, let us construct the Virtual Polar Coordinate Space (VPCS). Pick a node in the
center of the network and construct a standard spanning tree with that node as the route. The
spanning tree immediately defines the radius of a node – it is simply the number of hops between
a node and the root node in that spanning tree. The angle is more complicated. First, each node is
assigned an angle range, which it can use to assign angles to nodes in its subtree; the root node
has the angle range [0, 2π]. Larger subtrees need a bigger angular range so that the given range is
split up onto child nodes, proportional to the size of the subtree of each child. Formally: If node
v has n children v1, . . . , vn, each with a subtree size of s1, . . . , sn, and node v is assigned range
[α, β], then child vi is assigned a range of size (β − α)si/(s1 + · · · + sn). The remaining challenge
is which child is assigned which particular range.

Intuitively, if child nodes knew their position, they could be easily sorted in ascending angles
and proper ranges could be assigned to them (child vi would be assigned angle range [α +
(β − α)(s1 + · · · + si−1)/(s1 + · · · + sn), α + (β − α)(s1 + · · · + si)/(s1 + · · · + sn)]). Such posi-
tion information could be determined using any of the methods described in Chapter 9. The authors
show, however, that the resulting accuracy tends to be insufficient for a virtual coordinate system.
Instead, they propose a method based purely on hop count, working without any physical location
information.

Determining angular information using hop counts works as follows. Choose two nodes in addi-
tion to the original root; the three nodes should be far apart and not collinear. Determine, for each
node in the network, the hop count of the shortest path between each of these three nodes (using
two additional spanning trees rooted at the two additional nodes, for example). In addition, each
node in the network has to know the distances (in hops) between the three reference nodes. On
the basis of this information, each node can triangulate its own position in the hop count metric.
So far, this method is similar to the DV-Hop method discussed in Section 9.5.2. Using the angular
information resulting from these positions would still be fairly inaccurate. Hence, for each subtree,
its center of mass, the average position of all nodes in a subtree, is computed and propagated to
the root of the respective subtree. As it turns out, determining the ordering of child nodes using
this center of mass of their subtrees results in a fairly accurate virtual polar coordinate system.

As a result, a tree has been computed and nodes have been labeled with virtual coordinates that
correspond well to the topological situation of the network. This tree is embedded in the original
graph, whence the name Graph EMbedding (GEM) for this approach.

Geographic routing 323

Routing in a tree from one node to another, both identified by their virtual polar coordinates,
is actually trivial – route up in the tree until a node has been found that is a common parent of
both source and destination (which is easily decidable via the angular range for which a node is
responsible) and then route down to the destination node.

This simple scheme is rather inefficient as it does not exploit possible “shortcuts” between
physical neighbors (in radio range) belonging to different subtrees, in particular, when far away
from the root. To remove this inefficiency, Newsome and Song [593] propose a suitable routing
algorithm, Virtual Polar Coordinate Routing (VPCR), that can take advantage of “circular” links
(connecting nodes of same or similar radius but of different angle) in the network. Instead of always
routing up the tree, VPCR checks to see if there is a neighboring node that is angularly closer to the
destination than the current node. If so, that node is given preference; if not, the packet is routed
up the tree. Once an ancestor of the destination is reached, the packet is routed downward just like
in the simple routing scheme.

Overall, the procedure is remarkably simple once the virtual coordinates have been constructed
and even their construction in a stable network can be done with acceptable overhead. Newsome and
Song [593] also discuss options to repair the graph embedding when nodes fail or move around. This
scheme works especially well when geographic information is not available or imprecise or when
geographic and topological proximity do not coincide. Moreover, it lends itself to implementing
data-centric routing and storage, as discussed in Section 12.4.

11.5.2 Geocasting
Geocasting – sending data to a subset of nodes that are located in an indicated region – is evidently
an example of multicasting and thus would not require any further attention. Similar to the case
of position-based routing, position information of the designated region and the intermediate nodes
can be exploited to increase efficiency. Thus, a few dedicated geocasting protocols shall be briefly
described in the following.

A broad classification can be made into protocols that are essentially based on some form of
geographically restricted flooding even outside the destination region and protocols that are based
on some unicast routing protocol to transport a packet into the destination region. Within that
region, clearly some form of flooding is required as all nodes in that region are supposed to receive
the data. Most of the examples discussed here are based on restricted flooding; GeoTORA is one
example based on unicast routing.

Location Based Multicast

A simple way to implement geocasting is to base it on flooding but somehow restrict the area
where packets are forwarded. The Location-Based Multicast (LBM) protocol [425] does just that.
There is a forwarding zone such that only nodes within the forwarding zone forward a received
data packet. This zone can be defined in various ways:

Static zone The smallest rectangle that contains both the source and the entire destination region,
with its sides parallel to the axes of the coordinate system. (Alternative geometric definitions
are of course possible as well, for example, the destination region and two tangents to it
defined by the source node’s location [423].)

Adaptive zone Each forwarding node recalculates the zone definition, using its own position as the
source. This way, nodes that would be included in the static zone but would represent a detour
once the intermediate node has been reached are excluded from forwarding. Since this can,
however, again lead to dead end situations, this rule is only applied if an intermediate node

324 Routing protocols

actually has neighbors within its newly calculated forwarding zone; otherwise it forwards
the packet to all neighbors.

Adaptive distances While the previous two schemes contained the forwarding zone explicitly in
each packet, this scheme recomputes it in each step, on the basis of information about the
destination region and coordinates of the previous hop (or the source). The idea here is that
a node u forwards a packet to its neighbors if its distance to the center of the destination
region is smaller than the distance of the previous hop v to the center (the packet has made
progress). If not, the packet is only forwarded if the node is actually within the destination
region (to ensure that all destinations receive the packet).

Ko and Vaidya [425] point out the importance of not only looking at the overhead caused by a
geocasting protocol but also at its accuracy, defined as the ratio of the nodes in the geocast region
that actually received the packet. The adaptive algorithms, in fact, achieve a good trade-off between
reduced overhead and maintained accuracy.

Finding the right direction: Voronoi diagrams and convex hulls

To correctly decide which neighbors of a forwarding node are the “right” direction is not an imme-
diately obvious task for directional routing approaches like Compass routing or LBM. Stojmenovic
et al. [795] suggest to use Voronoi diagrams:9 Given a node S that has to forward a message, the
destination region D (or the region of uncertainty where the destination node is located), and the set
N(S) of neighbors of S. Construct the Voronoi diagram for N(S) (not including S itself). Then, a
given neighbor A ∈ N(S) is closest to some node in D if and only if its Voronoi polygon intersects
D. Hence, these neighbors should be selected as next hops. Figure 11.16 shows an example.

Since Voronoi diagrams can be constructed in |N(S)| log |N(S)| time and |N(S)| is likely to
be relatively small, the overhead is acceptable. Reference [795] also proposes some approximation
constructions. The advantage of this construction is that it will also find nodes that deviate from
the immediate direction if they are necessary to forward the packet, improving upon the heuristics
given in the LBM protocol.

S

A

B

C

D

Figure 11.16 Illustration of the Voronoi diagram-based neighbor selection scheme [795] – node S uses the
Voronoi cells to decide which neighbor to use for a given destination area

9 A Voronoi diagram of a set N of nodes is a tessellation of the plane into |N | convex polygons, one for each node, such
that the polygon associated with node v contains all the points that are closest to node v ∈ N than to any other node in N . It
has been discussed in the context of the Delaunay triangulation in Section 10.2.3.

Geographic routing 325

A similar rule can be developed to improve the “most forward within r” rule [795]. The problem
is to find those neighbors that make most progress toward some point in the destination region D.
To this end, construct the two tangents from S to the region D. Call the intersection points of the
tangents with D U and V . For U and V , determine those neighbors of S on the convex hull of
N(S) that represent the biggest progress toward U and V ; call them U ′ and V ′, respectively. The
set of next hop nodes is then all the nodes in the convex hull of N(V) between and including U ′
and V ′. The convex hull is used to ensure maximum progress; it also can be efficiently constructed.

Tessellating the plane

Apart from locally computed Voronoi diagrams, other, perhaps simpler, tessellations of the plane
can also be considered. The biggest simplification would be to use a fixed tessellation into regions
where each point in space is uniquely mapped to one region.

Chang et al. [135] propose one such scheme. They use a fixed tessellation of the plane into
hexagons where each hexagon either has a “manager” in charge of it or is classified as an obstacle to
be rooted around. They describe rules on how to back out of dead ends in this simplified geometric
structure.

Similarly, Liao [499] describe the GeoGRID protocol. Here, the plane is divided into square
grids where each grid has an elected gateway in charge of it. Only those gateway nodes propagate
packets among different grids, resulting in a need to control the size of such a grid.

Mesh-based geocasting

Geocast Adaptive Mesh Environment for Routing (GAMER), a mesh-based protocol for geocasting,
has been proposed by Camp and Liu [118]. It improves upon other mesh-based geocasting protocols
by adapting the density of the created mesh according to the mobility of the nodes in the network.
Since mobility, however, is not the core focus of the present discussion, the reader is referred to
reference [118] for details and for references to other mesh-based geocast approaches.

Geocasting using a unicast protocol – GeoTORA

As a last example of standard geocast, let us consider how to modify a unicast protocol to obtain a
geocast protocol. The starting point is the Temporally Ordered Routing Algorithm (TORA) unicast
ad hoc routing protocol [619]. The intuition behind TORA is to conceive of the graph as a “land-
scape” where different nodes have different heights above ground. If the destination of a unicast
routing protocol is the lowest point in this landscape (e.g. at height zero) and if there are no local
minima, then the forwarding process is trivial: simply pass on the packet downward. Formally,
this intuition is captured by imposing a Directed Acyclic Graph (DAG) onto the original graph by
orienting its edges. This DAG only has a single sink (a node without outgoing edges), which is the
destination node. The essence of the TORA protocol is then in ensuring that this DAG structure is
maintained despite link failures or node mobility.

On this basis, Ko and Vaidya [424] first show how to modify TORA to support anycasting
(sending a packet to any arbitrary member of a given group). This can be achieved by simply
assigning height 0 to all nodes in this anycast group. The DAG can still be constructed, using
essentially the same rules as in TORA (the devil is, of course, in the details).

Once anycasting is in place, the extension to geocasting is also relatively simple: any node in the
destination region joins the anycast group and, in addition, locally floods a received packet within
the destination region, similar to other flooding protocols. It is also necessary to handle the case
of an empty geocast region or of an empty geocast region with a node moving into it. These cases
are described in reference [424].

326 Routing protocols

Figure 11.17 Trajectory-based forwarding

Trajectory-based forwarding (TBF)

In the previous approaches, the destination region was – intuitively – conceived of as a more or less
convex region somewhere “far away”. But this is not the only possible interpretation of geocast-
ing as the somewhat different approach of Trajectory-Based Forwarding (TBF) [587, 600] shows
(Figure 11.17). Instead of trying to send a packet to some region far away, the region of interest can
actually be a path in the network. This path, or trajectory of the packet, can be embedded into the
packet as a parametric description of the curve that the packet is supposed to follow; the parameter
could be time or, preferably, the length of the path that the packet has followed. In this sense,
trajectory-based routing combines aspects from source routing (as the trajectory is defined by the
source) and geocasting. Different forms of such trajectories can be useful for different purposes,
for example, a tree form for broadcasting or a “boomerang” (where the packet visits all nodes in
the network and returns to the source node) for management of a network.

Given such a parametric description of a trajectory, the forwarding of a packet can follow different
rules. For example, a node could forward a packet to its neighbor that minimizes the distance from
the prescribed trajectory or to the one that results in the most advance on the trajectory (without
deviating too much from it). Selecting the best forwarding policy depends on the actual application
requirements.

11.5.3 Further reading on geographic routing

Impact of localization errors In a real system, it is unrealistic to expect that all nodes know their
correct positions. Rather, they will only have approximately correct positions about their
own and their neighbors’ position. Several papers investigate the impact of such localization
errors on, among other aspects, geographic routing protocols. He et al. [339] show that, for
one exemplary routing protocol, delivery ratio and path length overhead are acceptable as
long as the localization error is within about 40 % of the communication range. For face
routing protocols, however, Seada et al. [748] report a higher susceptibility to imprecise
localization information. They claim that the construction of a planar graph (e.g. a Gabriel
graph) that is necessary for face routing is often to blame and suggest to allow edge removal
between two nodes only if both these nodes intend to remove the edge because of the same
witness. Kim et al. [419] provide further results.

Location services A location service maps from node identifier to (likely or last known) location
of the node. This service is important for ad hoc or Internet-based geographic information

Geographic routing 327

but rarely needed in WSNs. Such “position databases” or “location tables” can be organized
centrally or the information can be kept distributed in structures akin to routing tables.

Basagni et al. [61] suggest, in the DREAM protocol, to spread location updates information
less frequently to distant nodes, exploiting the effect that the same absolute position change
maps to a smaller angular change the further away an observer is (distance effect). Moreover,
nodes trigger updates based on their own mobility. In a follow-up paper, Basagni et al. [60]
point out that this mechanism results in relatively high accuracy of the distributed position
tables.

Li et al. [483] describe a scalable, distributed position database. A node only updates a few
dedicated location servers (which are implemented by normal nodes) with new information
about its location; in queries these servers are used as well. The decision of which nodes
uses which other nodes as location servers is based on so-called consistent hashing.

Finally, Grossglauser and Vetterli [306] describe a scheme where location information is
updated by the mobility of the nodes themselves. This removes any additional communication
overhead and relies on implicit diffusion of information.

Location-Aided Routing (LAR) This protocol [423] uses location information to assist in the
flooding phases of standard ad hoc routing protocols; the protocol is similar in many respects
to the LBM described above. It assumes that a node, which tries to find a route to the
destination node, has some notion of where the destination is likely going to be (the “expected
zone”). Route requests are then addressed to the expected zone and intermediate nodes
form – explicitly or implicitly – a “request zone” where only nodes in this request zone
forward request packets. Several shapes of request zones are possible; the simplest one is
perhaps the smallest rectangle that encompasses both the source node and the expected zone.

Making geocasting energy aware The previously discussed geocasting schemes paid no heed to
the energy reserves of the wireless nodes. Geographic and Energy Aware Routing (GEAR)
[919] is a geocasting scheme that introduces load-splitting among neighbors when forwarding
toward the target region, trying to equalize the energy consumption of all nodes. As a result,
extended network lifetime and better connectivity after partition are claimed.

Geographic routing without geographic coordinates As the results about imprecise information
has shown, geographic routing does not depend on the actual location to work correctly, but
some sufficiently close representation of the network layout will do. The question is how
close this information really has to be. Rao et al. [681] introduce an interesting approach
where the coordinates used for geographic routing are purely virtual ones and are constructed
without actually recurring to the physical location of nodes at all (quite different in detail
from the virtual polar coordinates described above).

The simplest case of virtual coordinates is when nodes at the edge of the network know
their actual coordinates. Then, nodes iteratively try to estimate their real coordinates by
computing their virtual coordinates as the average of the coordinates of their neighbors;
initially, all nonperimeter nodes set their virtual coordinates to the center of the network.
While this iterative relaxation does not produce good estimates of the real coordinates, it is
rather surprising to note that the information in these virtual coordinates suffices to be used
in geographic routing protocols, achieving good accuracy and path length. Rao et al. [681]
also describe schemes where perimeter nodes do not know their location and show that, even
then, virtual coordinates are still useful for geographic routing protocols.

Link asymmetry Zhou et al. [934] show that geographic routing fails miserably in the presence
of link asymmetry.

328 Routing protocols

11.6 Mobile nodes
As discussed in Section 3.1.4, there are three essential sources of mobility in a WSN: mobility of
the sensor nodes, mobility of data sinks, and mobility of the observed event. All of these three
types of mobility are to a smaller or larger degree treated by the mechanisms already discussed
and, even more so, by the mechanisms to be discussed in the chapter on data-centric networking.
In addition, handling mobility is the core focus of mobile ad hoc networks research in the first
place. Nevertheless, a few pointers to some specific approaches deserve some brief mention here.

11.6.1 Mobile sinks
The first case with special requirements is that of mobile sinks. One possible approach – two-tiered
networking where data sources use a geographic mesh to broadcast their data and sinks subscribe
to the data at their nearest mesh point [911] – has already been described in Section 11.4.4.

Another option [416] is based on explicit construction of a multicast tree. A mobile sink associates
itself with a fixed sensor node, which will join on its behalf a multicast tree from the data source
and acts as its proxy in this tree (if there are multiple sources, there are separate trees for each
source); the tree will, in general, contain one such proxy node for every sink. This multicast tree
can be constructed using any of the Steiner tree approximations described in Section 11.4.2; the
authors themselves suggest the rate-based heuristic also described in that section.

Once this multicast tree has been constructed, it has to be maintained when a sink moves around
and leaves the range of its current proxy, associating with a new proxy. There are two options:
The sink moves in such a way that the previous proxy node is no longer a good choice in the
multicast tree. In this case, the new proxy joins the tree and the old one is relieved of the duty
to serve this node (it might still remain in the tree as it might have to supply other nodes with
data). In the second case, the old proxy is still acceptable but now a multihop (unicast) connection
between the old proxy and the sensor node currently closest to the mobile sink has to be set up;
the old proxy uses it to forward data to the sink. Such a multihop extension of the tree must not
exceed a given threshold; otherwise a new branch is constructed from scratch to the then-closest
sensor node. These two cases are shown in Figure 11.18. This scheme trades off overhead in the
tree maintenance against possibly longer paths due to the extension of the multicast tree by unicast
branches.

Finally, the SINA architecture [758] also considers this problem. The idea here is to update the
location of a mobile sink with a dedicated resolver node in the network, which is in charge of
making sure that the query results are correctly delivered despite the mobile sink having moved
away from the place where it issued the query.

11.6.2 Mobile data collectors
Sometimes, it is not possible or desirable to move the actual data sinks around but using multihop
communication might also not be useful, for example, in rather sparse networks where commu-
nication distance between nodes and thus the energy required for communication are high. If the
collection of data from sensor nodes is purely the objective and if this collection task can tolerate
delays, then the concept of Mobile Ubiquitous LAN extensions (MULEs) [753] is applicable. A
MULE is a mobile device, equipped with radio front ends to communicate with sensor nodes, that
moves around between the sensor nodes, collects and buffers their data, and occasionally visits the
actual data sink to off-load that data. Examples for MULEs can be autonomous robots but also
animals or even humans are conceivable.

The interesting question pertaining to MULEs is the interdependence between movement pattern
of the MULEs, time between visits to sensor nodes, data collection rate at the sensors, buffer space
at sensors and MULEs, communication speed between MULE and sensor, and the resulting delay

Conclusions 329

SourceSource

SourceSource

SourceSource

Sink moves
downward

Sink
moves
upward

Figure 11.18 Multiple mobile sinks connected to a multicast tree (tree edges modified upon movement are
dashed)

and data delivery rate at the actual data sink. These questions are analyzed in references [382,
753]. The authors claim that such MULEs are considerably more energy efficient than multihop
communication and can increase lifetime of the network without impeding data collection quality
too much.

11.6.3 Mobile regions
The geocast destination regions so far considered were static (the forwarding zones were sometimes
dynamically adapted). For some applications like tracking mobile events, it would be useful to be
able to specify a destination zone that changes its location (and possibly shape) over time. For such
a moving zone, data should be delivered at time t to all nodes that are covered by the destination
zone at time t . This service model is called mobicast [368, 369]. The challenge here is to come
up with a protocol that ensures that data is delivered in time to the right nodes; the core technique
is to send data to a forwarding zone that precedes the movement of the actual destination zone.

11.7 Conclusions
Supporting energy-efficient unicast and multicast communication in a wireless sensor network is a
crucial optimization task and its solution draws upon insights from many different disciplines. Both
the design of algorithms and their evaluation is a challenging task, requiring great care in selecting
the proper assumptions and algorithmic principles, but they also pay off handsomely in extended
capacity of lifetime of the network.

The mechanisms and schemes described in this chapter were mostly based on the assumption
that nodes have a clearly defined address or at least location that could be used to designate the
target of the communication. For wireless sensor networks, these mechanisms are important but they
are complemented by mechanism that deal with the collection and dissemination of data directly.
These concepts are described separately in Chapter 12 but cannot really be separated for a practical
development of such a system.

12
Data-centric and content-based
networking

Objectives of this Chapter
This chapter provides a different perspective on networking: Instead of addressing individual nodes
as it is done in traditional routing, here data is the focus of attention. Abstractions and protocols that
allow data to be routed as such are treated as is the combination with simple in-network processing
techniques, namely aggregation. Moreover, storing data in the network itself is treated.

Chapter Outline

12.1 Introduction 331
12.2 Data-centric routing 335
12.3 Data aggregation 341
12.4 Data-centric storage 355
12.5 Conclusions 357

12.1 Introduction
12.1.1 The publish/subscribe interaction paradigm
The basic ideas of data-centric networking have been described already in Section 3.3.4. To reca-
pitulate briefly: In a wireless sensor network, it is often the case that a node is interested in some
information (for example, about the presence or absence of certain events) but does not care about
the source of this information. This indifference to the information source is strengthened by the
interchangeability of redundantly deployed sensor nodes, all observing the same or similar areas – it
matters not which of these essentially identical nodes observes an event and reports it while the
other nodes are sleeping (or are kept sleeping in the sense of intentional sampling [758]). Vice

Protocols and Architectures for Wireless Sensor Networks. Holger Karl and Andreas Willig
Copyright 2005 John Wiley & Sons, Ltd. ISBN: 0-470-09510-5

332 Data-centric and content-based networking

versa, a node reporting an event also does not care about the identity or even the number of sinks
for the data that it provides. Moreover, both data source and data sink themselves can be switched
off to save energy and are not immediately able to learn about the data request once it is made or
about the data once it is available. And lastly, all these nodes can be, at any time, engaged in other
activities so that data should be sent and made available in an asynchronous fashion.

In this view, the interaction in the network is data-centric as the identities of the nodes are
irrelevant and as the other degrees of separation are required as well. To quote reference [123]:

Flow of information – from sender to receiver – is determined by the specific
interests of the receiver rather than by an explicit address assigned by the sender.
With this communication pattern, receivers subscribe to information that is of interest
to them without regard to any specific source (unless that is one of the selection
criteria), while senders simply publish information without address it to any specific
destination.

There are many options to realize such an interaction pattern. As the previous quotation already
indicates, the most suitable and naturally matched paradigm here is publish/subscribe. The concep-
tual idea is essentially very simple: All nodes are connected to a “software bus” [251]. On this bus,
data is made publicly available via a publish action; those nodes that have previously announced
their interest in that particular kind of data by an appropriate subscribe action are then notified
about the availability of this data. Figure 12.1 illustrates this concept; note how several publishers
can publish data of the same kind and how notifications can be delivered to various subscribers.

This concept of publication and subscription matches the requirement for a data-centric wireless
sensor network remarkably well. The publish/subscribe interaction pattern provides three essential
properties concerning the relationship between providers and subscribers of information [251]:

Decoupling in space Publishers and subscribers need not to be aware of each other, they can be
oblivious of their mutual identities and numbers.

Decoupling in time Publishing and notification of data can happen at different times; the “software
bus” provides intermediate storage.

Decoupling in flows Interactions with the software bus can happen asynchronously without
blocking.

Hence, precisely the properties required for data-centric networking in WSNs are fulfilled.

12.1.2 Addressing data
When subscribing to data or when publishing it, the question is how to refer to this data. The sim-
plest case is the so-called topic-based published/subscribe variants [251]. Here, a set of keywords

Software bus

Publisher 1 Publisher 2

Subscriber 1 Subscriber 2 Subscriber 3

Figure 12.1 Software bus as abstraction of the logical interaction pattern of a publish/subscribe system (dif-
ferent arrows shapes indicate different publications/subscriptions)

Introduction 333

exist into which the set of all data is grouped and publications and subscriptions happen using a
chosen keyword. A typical example for topics are names of stocks traded at a stock exchange;
when the price of a given stock changes, a notification for the corresponding topic is generated. As
an extension, topics can be arranged hierarchically, akin to topic hierarchies found in newsgroup
systems.

While the topic abstraction is simple, it lacks flexibility. A more expressive concept is to evaluate
arbitrary predicates on the content of the entire data as such [123]. An example for such a predicate
would be “Is temperature reported in the events larger than 25 ◦C?”. Primitive predicates can be
combined into more complex ones with standard logical operators (and, or, not) with the usual
semantics; they can also be scoped in time (“only provide notifications within a certain time”) or in
space (“only provide notifications originating from a certain room”). Consequently, the abstraction
used here is named data. In the parlance of the software bus, these predicates constitute filters
describing which events/notifications shall be delivered to each individual subscriber. In the ter-
minology of reference [343], the resulting names are external to the network topology (as they
reflect data and not topological relationship) and immediately relevant to the application; they also
remove the need for mapping between different naming abstractions.

To evaluate such a predicate, the data contained in the events need to follow a certain format
(called “datagram model” in reference [123]). Heidemann et al. [343] introduce an attribute-based
naming scheme to this end. For the discussion at hand, the precise structure of this datagram model
is not important; it can be free text or some predefined format.

Thus, there is no need for explicit keyword selection during publication and subscribers can
flexibly describe their interests in particular subsets of all possibly published data. The content-
based address of a node is then this very predicate (or its equivalent set of matching data), resulting
in the notion of content-based networking. Section 7.5 has described content-based addresses
already in more detail.

Because of the expressive power and the flexibility of content-based networking, it will be the
main focus of this chapter. It is the most important variant of publish/subscribe to capture the notion
of data-centric networking.

12.1.3 Implementation options
The most trivial implementation option for a software bus (regardless of the particular variant of
publish/subscribe to be used) is a centralized solution: All subscriptions and publications are sent
to a central node that evaluates the data-centric addresses (e.g. the content-based predicates) to
decide to which node which publication has to be sent. Clearly, this is inadequate – but what other
options exist?

Topic-based publish/subscribe is closely related to group communication. One idea is thus to
form one topic per group and to use (energy-efficient) multicasting to distribute publications to
their subscribers in the respective group.

While it might be conceivable to accordingly construct multicast groups even for a content-based
networking scheme, this is fraught with numerous problems [123]: (i) The number of multicast
groups would be highly dynamic and even difficult to determine as the content-determining predi-
cates change. (ii) Using a smaller number of “summarizing” groups to distribute notifications would
result in needless network traffic. (iii) Using, on the other hand, a large number of predetermined
groups, reflecting the finest granularity of data that the predicates could resolve, would necessitate
publishing to many groups; moreover, managing such a large number of groups would result in
large administrative overhead.

Therefore, content-based networking cannot easily be mapped to the usual, identity-based multi-
cast groups. Instead, content-based forwarding and routing are required. Each node has to store,

334 Data-centric and content-based networking

t < 10

t > 20

t < 10

t < 10 or
t > 20

t > 20

t > 30

t > 20

t < 10 or
t > 20

t = 35!

t = 35!

t = 35!

t = 35!

t =
 35!

Figure 12.2 Content-based networking and forwarding, with subscriptions to temperature values as example

for each of its neighbors, a predicate describing the set of predicates that nodes in that subnet-
work have subscribed to. For an incoming datagram containing a notification, a node then simply
forwards this datagram to all of its neighbors where this predicate matches (Figure 12.2).

The challenge is then to keep this content-based forwarding table up to date with little overhead,
to keep it small (as illustrated by merging the two subscriptions to t > 20 and t > 30 to a single
subscription t > 20), and to organize it such that predicates can be easily and quickly evaluated. In
some form or another, many of the approaches described in the remainder of this chapter address this
problem, often without explicitly casting their contribution in this particular framework. Mühl et al.
[576] give an overview of various approaches, for example,flooding the subscriptions or exploiting
information contained in the content-based filters to limit propagation of messages [121, 122, 575].

12.1.4 Distribution versus gathering of data – In-network processing
As publish/subscribe decouples publishers and subscribers in space, their respective numbers are
no longer important. Hence, it would make little difference in principle whether the distribution of
data from a small set of data sources to many or all nodes in the network is considered or vice
versa the gathering of data from many or all sources to a single or a few sinks – performing a
so-called convergecast – is considered. The notion of convergecast is shown in Figure 12.3 – note
the correlation between temperature readings with one outlier. Evidently, a convergecast tree is
closely related to a multicast tree. This figure also highlights one of the major problems of data
gathering: there is a lot of traffic converging at the root node of the tree, yielding the implosion
problem [374]; this effect is particularly annoying if redundant data is reported to the sink via
multiple roots.

With respect to performance and to actual protocol implementations, there can be, however,
different trade-offs involved depending on which of the two cases is considered. Thus, a loose
categorization of protocols along these two cases is possible and different protocols for these

t = 5

t = 9
t = 5,8,9

t = 4

t = 7

t = 4,7,7

Figure 12.3 Using convergecast to collect temperature data from the sensor network

Data-centric routing 335

special cases can be developed, all implementing the same service interface but optimized for
different cases [341].

Moreover, gathering data admits an additional optimization. Often, it is not necessary that all data
from all nodes arrives at the sink. Frequently, an aggregate of the data – maximum, average, or
minimum, for example, – is to be computed anyway. In such a case, performing these aggregation
operations within the network is a viable option to reduce the amount of data that has to be
transported. This option is obvious in the convergecast example of Figure 12.3 when, for example,
the highest temperature reading is the relevant information to be extracted from the network. Data
aggregation is the most prominent but not the only example of in-network processing. In some
situations, in-network processing can also be profitably applied to data distribution tasks.

Strictly speaking, data aggregation and in-network processing in general are not tied to data-
centric networking. A traditional convergecast can be formulated in a similar fashion. Nonetheless,
data-centric networking and data aggregation are a good match in that they both emphasize the
dependence of a wireless sensor network on data. For this reason, simple approaches to in-network
processing – namely, aggregation – are treated in this chapter. More advanced techniques are sum-
marized later. A further variant of in-network processing is storing of data in the network. It is
also briefly summarized in an own section here.

12.2 Data-centric routing
Concrete protocol solutions to data-centric networking can be roughly categorized by the intended
frequency of interaction. One group contains protocols that target repeated interactions – periodically
reading a set of values from a sensor network, for example. Another group is so-called one-shot
queries, where only a single request for data is to be answered by the network. Naturally, the first class
of interactions admits solutions that invest certain effort in setting up a routing structure that typically
cannot be amortized for one-short queries. Section 12.2.2 describes several solutions for repeated
interactions; Section 12.2.1 deals with one-shot queries. Moreover, Section 12.2 in its entirety does
not handle aggregation or other in-network processing aspects; these are treated in Section 12.3.

12.2.1 One-shot interactions

Disseminating big data sets via SPIN

One of the first data-centric dissemination protocols for wireless networks is Sensor Protocol for
Information via Negotiation (SPIN) [345] (Figure 12.4). The target scenario is a network where
one, several, or possibly all nodes have data that should be disseminated to the entire network.
Moreover, the data per node is relatively large such that a unique name for each piece of data that
a node holds can be easily created and is of small size relative to the data itself.

When applying, for example, simple flooding to such a scenario, the network will suffer from
implosion and from overlap – the same area is observed by different nodes, each independently
and needlessly reporting that data. Moreover, simple flooding is unaware of resource limitations in
different nodes. To overcome these problems, Heinzelman et al. [345] suggest to use the names
of the data to negotiate which nodes should forward which data.

This negotiation replaces the simple sending of data in a flooding protocol by a three-step pro-
cess. First, a node that has obtained new data – either by local measurements or from some other
node – advertises the name of this data to its neighbors. The receiver of an advertisement can com-
pare it with its local knowledge and, if the advertised data is as yet unknown, the receiver can request
the actual data. If the advertisements describe already known data (for example, because it has been
received via another path or another node has already reported data about the same area), the adver-
tisement is simply ignored. Only once a request for data is received, the actual data is transmitted.

336 Data-centric and content-based networking

ADV REQ
DATA

(1) (2) (3)

(4) (5) (6)ADV

ADV

A
D

V

REQ

R
E

Q

DATA
D

A
TA

Figure 12.4 The basic operation of the SPIN protocol

The savings in this approach rest on the small size of the data description compared to the
data itself. Once description of the data becomes comparable to data itself, it is not useful to first
announce the data instead of simply sending it. The advantage is a relatively simple rule how to
constrain, on the basis of the actual data, the flooding of data within the network. It is actually
more powerful than the broadcasting constructions undertaken in Chapters 10 and 11 since it can
take into account which data is actually missing and not only which node has not yet reported
(possibly redundant) data.

This basic protocol idea is made more concrete by developing protocols for point-to-point net-
works and networks that enjoy a wireless multicast advantage (depending on the MAC, a WSN
can be regarded as either of these two cases). Moreover, variants of the protocols that adapt node
behavior to the remaining battery capacity are presented; nodes with low reserves reduce their
participation in the protocol. While details differ, these protocols are claimed to be able to transmit
60 and 80 % more data for a given amount of energy than conventional protocols.

Active query forwarding

While SPIN is concerned with disseminating data to the entire network and is essentially a
data-centric version of flooding, the ACtive QUery forwarding In sensoR nEtworks (ACQUIRE)
mechanism [712] targets the collection of data from a network and is more comparable to gossiping
and rumor routing (Section 11.2).

The target of the paper is the support of one-shot queries (which are likely not going to be
repeated) that are complex (i.e. consist of several subqueries) and that pertain to replicated data
where several nodes have sufficient information to answer the query (a typical example is the
occurrence of an event that has been observed by multiple sensor nodes).

ACQUIRE leverages the ideas of gossiping and mobile code. A query is sent into the network,
is partially resolved as far as possible at an intermediate node, and then forwarded onward (along
with accumulated intermediate results) as long as the query has not yet been fully answered. Once
this is the case, the query has turned itself into a response, which is then routed back to the node
that has issued the query.

To assist in the (partial) resolution of the query at intermediate nodes, the node currently working
on the query is allowed to draw upon data from its local vicinity, for example, the nodes at most
d hops away (where d is a parameter). This local information can be updated if it is outdated.
Moreover, such information can be used to guide the forwarding of the query to the next node;
alternatively, the query could also be simply handed on to a randomly selected neighbor.

Data-centric routing 337

While ACQUIRE has a number of parameters that have to be selected – d , the time until local
information is considered outdated – the authors show that it can achieve considerable savings.

12.2.2 Repeated interactions
The optimization space for one-shot queries or one-shot dissemination of data is somewhat limited,
in particular, when no aggregation of data should be used. Hence, let us focus more on the case of
repeated interactions where the exploration of the network topology might pay off.

Directed diffusion – Two-phase pull

The first example protocol to be discussed here is directed diffusion [378]. It is one possible
realization of publish/subscribe for a wireless sensor network; it is mostly concerned with scalability
issues and tries to find solutions that do not depend upon network-wide properties like globally
unique node identifiers; rather, the goal is to find solutions that purely rest on local interactions.
The most prevalent – albeit not the only – service pattern is subscription to data sources that will
publish data at a selectable rate over a selectable duration.

Directed diffusion is actually more a design philosophy than a concrete protocol and there are
a number of protocol variants that are optimized for different situations. We start here with the
original and basic variant (the “two phase pull”), postponing issues like aggregation, geographical
support, and so on, to later sections.

In this scheme, data distribution starts by nodes announcing their interests in certain kinds of
named data, specifying their interests by a set of attribute-value pairs (see Section 7.5 and refer-
ences [343, 378] for details); in the publish/subscribe parlance, this corresponds to a subscription
to data. These interest messages are distributed through the network; in the simplest case they
are flooded.

Given such an interest flood, it would be trivial to set up a convergecast tree with each node
remembering the node from which it has first received the interest message from a given sink
(reference [933] discusses alternative choices for the parent node in the tree); interests to different
data and/or from different sinks would result in separate trees being constructed. But such a simple
tree construction is faced with a serious impediment: In the absence of globally unique node
identifiers, a node in the network cannot distinguish whether different interest messages originated
at different data sinks and would thus require the construction of separate convergecast trees to
inform all sinks of published data or whether these packets are owing to the same sink and have
simply traveled via different paths. This predicament is highlighted by Figure 12.5.

For a node X in the example of Figure 12.5, there is, at first, only a single option – remember
all neighbors from which an interest message has been received to, later on once data has been
published, forward the actual data to all these neighbors. In the directed diffusion terminology,
this is the setup of a gradient toward the sender of an interest. Each node stores, for each type
of data received in an interest, in a gradient cache a separate set of gradients, potentially one for

Sink 1

Sink 2

Sink 3
Source

Sink

Source

Figure 12.5 Inability of network node X to distinguish interest messages from a single or multiple sinks

338 Data-centric and content-based networking

each neighbor. Unlike the simple parent–child relationship in a tree, gradients will often be set up
bidirectionally between two neighbors as both neighbors forward interest messages. In addition, a
gradient is not simply a direction, but it also contains a value. This value represents, in a sense,
the importance or usefulness of a given link. It can constitute different semantics depending on the
concrete application that directed diffusion is supporting; a typical example is the rate with which
data is transmitted over a given link (recall that directed diffusion is geared toward the support of
periodic publications of data). Initially, these gradient values are the same for each neighbor; they
are modified in the course of the protocol execution. Also, these gradients are initialized to low
values, which are used to explore the network.

Once the gradients are set up, even with only preliminary values, data can be propagated. A node
that can contribute actual data from local measurements becomes a source and starts to send data.
It uses the highest rate of all its outgoing gradients to sample and send data. An intermediate node,
in the simplest case, would forward all incoming data messages over all its outgoing gradients,
potentially suppressing some of the data messages to adapt to the rate of each gradient. This simple
scheme, however, results in unnecessary overhead in networks like the one shown in Figure 12.6,
where data messages are needlessly repeated (due to the presence of loops in the gradient graph).
Just checking the originator of these data messages is again not feasible because of the lack of
globally unique identifiers. Hence, the data cache is introduced: Each node stores, for each known
interest, the recently received data messages. If the same message comes in again – irrespective of
from the same or different originators – it is silently discarded.

The data cache notwithstanding, Figure 12.6 also shows that two copies of the same data message
would be delivered to the sink, constituting nonnegligible overhead. The gradient values, or more
specifically the rates associated with the gradients, provide a lever to solve this problem. One idea
is to try to limit redundancy in the received data. A neighboring node that contributes new data
messages (which cannot be found in the data cache) should be preferred over neighbors that only
provide stale copies, or rarely provide new data, or appear to have high error rates, or are otherwise
unattractive. This “preference” of a neighbor can simply be mapped onto the rate of a gradient. A
node can reinforce a neighbor by simply sending a new interest message to that neighbor asking
for a higher rate of data transmission. If this new, required rate is higher that the data rate that
an intermediate node is currently receiving, it in turn can reinforce its best neighbor with this
higher rate. In the end, the reinforcement will percolate to the source(s) of the data messages. The
nonreinforced gradients can be maintained as backups, they can be actively suppressed, or they can
be left to die out in the sense of soft state information.

These two phases – first flooding the interest messages to explore the network and then again
having information flow from the sink toward the sources during reinforcement – along with the
fact that the sinks initiate the “pulling” of data explain this variant’s classification as a “two-phase
pull” procedure.

These mechanisms of interests, gradients, and reinforcements constitute the pivotal mechanisms
in directed diffusion. It is worthwhile to reiterate that all of them are indeed strictly local, dispensing
with the need for globally unique identifiers. Reference [378] contains further details how these
mechanisms result in loop-free operation and how paths can be maintained in the presence of node
or link failure (essentially, the reinforcement mechanism automatically adapts to the new topology).
It should also be emphasized that, in principle, directed diffusion in the form described here can

SinkSource

Figure 12.6 Multiple intersecting paths necessity a data cache in directed diffusion

Data-centric routing 339

handle both multiple sources and multiple sinks of data; the local rules result in a correct but not
necessarily optimal flow of data messages.

Publish/subscribe assisted by geographic scoping

For many wireless service network interactions, specifying the region of interest is a natural desire.
Hence, interests should be able to express this information and data-centric routing protocols should
take it into account.

Geographic scoping in the original directed diffusion
In the original directed diffusion proposal [378], interest messages may contain information about
the geographical region from where information is requested. When an interest is thus scoped, it
is evidently superfluous to distribute it to nodes that are outside the given region of interest. The
interest flooding can then be replaced by a geocasting of the interest message.1 One specific option
to do so is the GEAR protocol [341, 919], a geocasting protocol with support for routing around
holes.

Content-based multicast
This approach [935] explicitly incorporates knowledge about the movement direction and speed of
devices and environmental entities into the protocol. One example is fire fighters in a large chemical
plant. Suppose that sensor nodes are capable not only of detecting the presence of dangerous vapors
but can also measure wind speed and direction and thus predict the mostly likely movement of
such dangers. On the basis of this information about movement of persons and dangers, persons
should be warned if they are going to move into a dangerous area.

The challenge here is that the set of receivers for a given warning does not depend on the
identities but rather on the movement data; it is in this sense data-centric. Zhou and Singh [935]
propose a mixed “sensor push/receiver pull” approach to solve the problem. Sensor nodes geocast
their warnings into a computed region of the network; receivers can pull such information looking
ahead in their movement path.

To this end, the area in question is divided into “blocks” or “regions” with one lead node each (in
this sense, it predates the later TTDD protocol [911] that uses somewhat similar ideas). This leader
node collects all pushed warning messages; it also answers to pulled inquiries. Data exchange is
supported by a simple geographic routing protocol.

Push diffusion – supporting few senders and many receivers

As directed diffusion represents both an interface/naming concept [343] and a concrete routing
implementation (the one described above), it stands to reason that different routing protocols sup-
porting the same interface have been developed. One such alternative routing protocol is push
diffusion [341], which is intended for many receivers and only a few senders. A typical example is
an application where sensor nodes cross-subscribe to each other to be informed about local events
but where the amount of actual events is quite low. In such a situation, two-phase pull would
perform purely as the sinks would generate a lot of traffic trying to set up (exploratory) gradients.

This problem is solved by reversing the roles: Instead of the sinks sending out interests, sources
send out exploratory data (i.e. flood it since no gradients exist yet). Once data arrives at interested
sinks, they will reinforce these gradients, and then, data at higher rate will only follow these
reinforced paths. The flooding overhead is justified since the event detection rate of sources is quite
small to begin with.

1 Intanagonwiwat et al. [378] also mention that semantical information and “historical evidence” can be used for such
more efficient distribution of the interest floods but this is not explored in detail.

340 Data-centric and content-based networking

One-phase pull – supporting many senders and few receivers

Similar to the above-described push diffusion, pull diffusion [341] is a specific routing protocol
for the directed diffusion interface; this one is geared toward many senders and a small number of
receivers.

As the name indicates, one-phase pull eliminates one of the flooding phases of two-phase pull,
which constitute its major overhead. More precisely, interest messages are still flooded in the
network (in the absence of geocasting options) but the interest messages set up direct parent–child
relationships in the network between a node and the node from which it first receives an interest
message – in effect, a tree is formed in the network. This is only possible using (e.g. randomized)
flow identifiers in the interest messages, which is feasible only for a small number of messages.
Moreover, one-phase pull more strongly depends on link symmetry than does two-phase pull.

Directed diffusion assisted by topology control

Reducing the flooding overhead inherent in two-phase pull is a promising means for improvement.
The clustering discussion in Chapter 10 has introduced a variety of techniques for efficient broad-
casting of information. In particular, passive clustering fits well with directed diffusion. Handziski
et al. [331] show how this combination works in detail. In particular, the passive clustering structure
is constructed on the fly with the distribution of interest floods. This results not only in better energy
efficiency but, in particular, the percentage of actually delivered events is considerably improved,
mostly because of easing the contention on the MAC layer. In this sense, this work highlights the
need for a careful adjustment of at least three different protocol layers – MAC, topology control,
and data-centric routing – for an efficient wireless sensor network.

Increasing robustness by multiple forwarding paths

The previous approaches all attempted to confine forwarding to a single, hopefully optimal path
from a given source to a given sink. Faced with node failures and unreliable links, it can be
appropriate to increase the data forwarding’s robustness by using multiple paths.

Several such schemes exist and many of them leverage multipath techniques as described in
Section 11.3.4. One such approach, for example, is GRAdient Broadcast (GRAB) [912]. It does
use a notion of gradients that differs from directed diffusion and is actually more similar to gradients
in the sensor of ad hoc routing protocols like TORA [619], where distance (or rather, energy cost)
to a given sink is expressed as the “height” of a node. Packets are given a credit and flow down
these height gradients toward nodes with smaller cost than the credit remaining in the packet.

In such a context, robustness can be relatively easily achieved by giving a packet a larger credit,
enabling it to also travel via additional paths. The larger the additional credit given by the source, the
more (less optimal) paths become available, resulting in a wider mesh of paths. As a consequence,
energy efficiency is traded off against additional robustness.

12.2.3 Further reading
There are a few additional aspects and concepts that deserve a brief mentioning:

Scheduling The question on when to send data within a convergecast tree is considered by Centin-
ternel et al. [125]. They describe a scheme where a root node sends out a scheduling control
packet that is passed on in the tree. Time slots are then assigned at each layer of the tree
to make sure that data can flow through the tree with low delay due to MAC contention.
Moreover, there is a scheme for speculatively assigning time slots for nodes that do not
always have data to send.

Data aggregation 341

Hierarchical dissemination The TTDD scheme [911] described in Section 11.4.4 can be regarded
as an example of a hierarchical data-centric routing scheme.

Further rules for choosing neighbors in directed diffusion Schurgers and Srivastava [736]
describe various rules how to select the next hop in directed diffusion, in particular, when
the gradient information is ambiguous. Possible choices include a random selection or a
selection based upon residual energy or to push away traffic from other flows.

Variations on Steiner tree approximations A relatively straightforward variation of the Taka-
hashi Matsuyama heuristic (see Section 11.4.2) and its application to building up trees in
data-centric routing is explored by Kim et al. [418]. This heuristic also incorporates some
rate adaptation ideas similar to those described in reference [416].

Disseminating information non-uniformly Tilak et al. [818] introduce a notion of nonuniform
data dissemination. The essential idea is that, for some applications, the farther away infor-
mation is disseminated, the less accurate is has to be.

12.3 Data aggregation
12.3.1 Overview
When looking at data-centric networking in isolation, all messages still have to be delivered to all
sinks. The real power of concentrating on data lies in the ability to operate on the data while it is
transported in the network. The simplest example of such in-network processing is aggregation of
data – computing a smaller representation of a number of messages that is equivalent (or at least
suitably represents) in its content to all the individual messages – and only forwarding such aggre-
gates through the network. Computing a mean or the maximum of the measured values of all sensors
is a typical case in point. More advanced examples of aggregation might include approximating
contours of regions of equivalent values (measured from the environment or node parameters like
remaining battery capacity) or approximating lines or polygons that separate different regions [95].

The actual benefits of such aggregation depend on the location of the data sources, relative to the
data sink. Intuitively, when all data sources are spread out, the paths to the sinks do not intersect,
and there is little if any opportunity to aggregate data at some intermediate nodes. If, on the other
hand, the data sources are all nearby – for example, when they all observe an event at a certain
place – and they are located far away from the sink and their paths to the sink merge early on, the
expected benefits of aggregation are large (Figure 12.7). This is in fact often the case [626] and
the intuition about resulting benefits is confirmed by results [439].

The principal mechanics of data aggregation are thus relatively straightforward: Data flows from
sources to a sink along a tree. Intermediate nodes in the tree apply some form of aggregation function
to data they have collected from some or all of their children. This aggregated value, possibly along
with additional administrative values (for example, the number of nodes that have contributed to a

Figure 12.7 Different cases where data aggregation is pointless or promising

342 Data-centric and content-based networking

mean value) is then forwarded. Apart from the tree formulation, data aggregation can also be used
in the context of gossiping data throughout the network; examples are discussed below.

The efficacy of data aggregation can be judged using different metrics (see, for example, refer-
ence [933]).

Accuracy Perhaps the most important metric is accuracy [95] – the difference between the result-
ing value at the sink and the true value – since not all data is delivered to the sink any
longer; accuracy can be expressed as differences, ratios, statistics, or other values depending
on the particular case.

Completeness Potentially an operational approximation of accuracy is completeness [314], the
percentage of all readings that are included in the computation of the final aggregate at
the sink.

Latency Aggregation can also increase the latency of reporting as intermediate nodes might have
to wait for data.

Message overhead The main advantage of aggregation lies, of course, in the reduced message
overhead, which should result in an improved energy efficiency and network lifetime. Aggre-
gation protocols can often deliberately trade off between accuracy, message overhead, and
latency and only provide estimates of the actual aggregated value.

The main open questions are thus:

• Which aggregation functions can be used, what categories exist?
• How can the tree be formed, where (and how) should aggregation points be placed?
• How long should a node wait for data from its children/neighbors?
• How should an interface look like that allows to easily express aggregation actions?

These questions will be answered in the remainder of this section, along with example protocols.

12.3.2 A database interface to describe aggregation operations
To cast the issues for aggregation protocols in a concrete context, it appears best to start with a
specific interface description. One popular example for an interface that can express aggregation
needs is inspired by database query languages, specifically, SQL. Madden et al. [531] describe how
an SQL-like syntax (“Tiny Aggregation” or TAG for short) is suitable for wireless sensor networks.
They imagine the WSN as a whole to represent a (virtual) relational database table called sensors
against which queries can be executed. The syntax of such a query is defined in Listing 12.1.

Listing 12.1: Syntax of an SQL query to aggregate data from a sensor network [531]

SELECT {agg(expr), attributes } FROM sensors
WHERE {selectionPredicates}
GROUP BY {attributes}
HAVING {havingPredicates }
EPOCH DURATION i

In such a query, the phrase agg(expr) denotes the aggregation function, applied to a given
expression; an example would be AVG(temperature) denoting that the average of all tempera-
ture readings is to be determined. The WHERE clause acts as a filter on the measured values before

Data aggregation 343

they enter the aggregation process; usually, these predicates are intended to be locally evaluated by
each node (WHERE predicates requiring distributed evaluation are rarely considered and constitute
an at least partially unsolved problem). The GROUP BY clause partitions the data into subsets and
the HAVING clause further filters these groups. An example would be to compute average tem-
perature values (SELECT AVG(temperature)) separately for each floor in a building (GROUP
BY floor) but only from the fifth floor upward (HAVING floor > 5); the floor number for
each temperature average can be obtained by SELECT AVG(temperature), floor.

The EPOCH DURATION indicates repeated interactions. Nodes periodically measure, transmit,
and aggregate information and the epoch duration marks the period for these repetitions. Only data
that belongs to the same epoch can be justifiably aggregated. The result is a periodic stream of
data, representing the biggest difference to the usual SQL semantics.

Other database-inspired queries models for wireless sensor networks exist (e.g. COUGAR [269])
and have different models for interactions with the sensor network. The database abstraction for
wireless sensor networks has attracted considerable research effort; some additional references are
[88, 202, 253, 269, 347, 513, 527, 528, 529, 530, 711, 711, 713, 908, 909]. Execution plans are
treated in references [30, 313, 712, 887].

12.3.3 Categories of aggregation operations
A basic differentiation of aggregation operations is between one-shot aggregations, where only a
single request is to be answered, and continuous or periodic requests. This differentiation is akin
to one-shot or repeated interactions discussed above and the resulting trade-offs are similar.

Moreover, aggregation operations can be distinguished according to the representation of inter-
mediate results and according to the properties of the actual aggregation function.

Representation of intermediate results

When computing aggregates in an intermediate node, it is, in general, insufficient to only com-
municate the result of the actual aggregation function between nodes. An evident example is the
computation of an average: A node that receives two averages from its children (assuming a tree
structure) has no way of knowing how these two values should be processed unless it also knows
how many readings have contributed to each average – these two numbers are necessary to prop-
erly weigh the individual averages. Hence, to compute an average, a tuple < average, count > or,
briefly, < a, c > should be exchanged between nodes; Madden et al. [531], for example, call these
tuples partial state records. A new partial state record can be computed in an intermediate node as

< anew, cnew >=< a1c1 + a2c2)/(c1 + c2), c1 + c2 >.

The computation becomes even simpler if only sum s and count c are exchanged between nodes;
the update rule is then simply < s, c >=< s1 + s2, c1 + c2 >. The actual average is then only
computed at the ultimate sink. In either case, a – usually trivial – function is necessary to extract
the actual aggregate out of the partial state once it has been fully computed at the sink.

Such multivalued partial state records are, however, not always necessary. Aggregation functions
like minimum or maximum can easily use a single value – the sofar determined minimum or
maximum – to represent the partial state at each aggregation step. The nature of the aggregation
function thus determines the precise form of the intermediate state record.

Aggregation functions

Given two partial state records < x > and < y >, either received from a neighboring node or locally
measured, an aggregation function f computes a new state record < z >= f (< x >,< y >).

344 Data-centric and content-based networking

Which properties should f have to be usable as an aggregation function? Madden et al. [531]
provide a taxonomy, partially based on previous work on data cubes and extended here by the
composability definition of reference [314].

Duplicate sensitive Is the aggregation result changed if the measured value of a particular device
(or some intermediate aggregate) is used in the computation more than once? If yes, the
aggregation structure should be acyclic; otherwise, a wider range of topologies can be prof-
itably used.

Examples for duplicate-sensitive aggregations are the sum of measured values (SUM), count-
ing the number of certain instances (e.g. number of sensors that have raised an alarm, COUNT
for short), as are the average (AVG), the median of a set of values (MEDIAN), and computing
the histogram of values (HISTOGRAM). Minimum and maximum (MIN and MAX), on the
other hand, are not sensitive to duplicates.

Summary or exemplary An exemplary aggregate is a single, in some sense representative, value
out of a set of values. A summary aggregate is a function of the entire set and, typically,
does not strongly depend on individual values.

MAX and MEDIAN are typical exemplary aggregates; SUM is, as expected, a summary
aggregate.

Composable [314] An aggregation function f is said to be composable if the result of f applied to
a set W of measurements can be computed by applying f to some partition of W = W1 ∪ W2

(usually with W1 ∩ W2 = ∅), using a known helper function g. Formally,

f (W) = g(f (W1), f (W2)).

Using this definition alone, practically any function is composable as no restriction is made
on the partial state records. For example, even the median would be composable (con-
tradicting intuition) by setting f (W) =< median(W), W > and g(< median(W1), W1 >,<

median(W2), W2 >) =< median(W1 ∪ W2), W1 ∪ W2 >. Evidently, this makes little sense
and composability has to be considered in junction with the behavior and size of the partial
state records. The following definition classifies this behavior.

Behavior of partial state records The partial state necessary to compute the aggregated value
varies for different aggregation functions. The most important cases are:

Distributive The partial state is the aggregated value of a set of partial measurements. No
additional function has to be applied at the sink. The partial state is of constant size.
MIN is a typical distributive aggregate.

Algebraic In this case, the partial state is of constant size, often with the actual aggregate
a part of it or a simple function. AVG is a typical example.

Content-sensitive For content-sensitive aggregates, the size and structure of the partial state
depends on the values that have been actually measured. An example is the computation
of a histogram of the measured values.

Holistic For holistic aggregation functions, the partial state needs to reflect all measured
values, like in the median example above.

Unique These functions are similar to holistic ones except that here the partial state size
is only proportional to the number of distinct values that have been observed (rather
than to all of the observed values).

Data aggregation 345

In a practical sense, aggregation functions with distributive and algebraic partial state are well
amenable to in-network aggregation; content-sensitive functions may or may not be. Holis-
tic aggregation functions, however, cannot practically be aggregated; for unique functions,
aggregation might be applicable depending on the behavior of the values to be observed.

Monotonic Monotonic aggregation is coupled with the notion of the “magnitude” of a partial
state record s, given by a function m(s). An aggregation function is monotonic if it only
increases the magnitude of the partial states it operates upon (or, equivalently, decreases).
Formally, f is monotonic if and if ∀ s1, s2 : m(f (s1, s2)) ≥ max{m(s1),m(s2)} (or, alter-
natively, ∀ s1, s2 : m(f (s1, s2)) ≤ min{m(s1), m(s2)}). Monotonic aggregation functions are
relevant in the context of optimized execution of HAVING clauses; see below for details.

Timing aspects A further, orthogonal aspect concerns the timing aspects of aggregation. Is it done
early or late, is in a one-short aggregation or does it concern periodic interactions? Is it
aggregation in time (regarding, e.g. correlated data) or is it aggregation in space?

In most of the protocols considered in the literature, simple aggregation functions like minimum/
maximum or summing and averaging are considered. In rarer cases, more complicated application
examples like finding iso-barometric lines in a plane [531] are considered.

12.3.4 Placement of aggregation points
When collecting data toward a sink along a tree or along a routing structure such as the one
resulting from directed diffusion, the aggregation points have to be well placed for maximum
benefit. Intuitively (compare Figure 12.7), aggregation should happen close to the sources and
many sinks should be aggregated as early as possible – the tree should have, figuratively, long
trunks and bushy leaves. Directed diffusion does not necessarily result in a tree, but it is well suited
to aggregation and, similar to the tree case, aggregation should happen as early as possible.

If the routing structure is grown without regard to the later aggregation, the resulting structure is
not necessarily optimal (in fact, this is again a Steiner tree problem in disguise). The aggregation
is, in a sense, opportunistic. Intanagonwiwat et al. [376, 377] consider how to influence the
directed diffusion routing structure so as to optimize the aggregation benefits.

To ensure that aggregation points are placed near the sources, a simple variation of the Taka-
hashi–Matsuyama heuristic is used. Initially, an energy-efficient path between a source and a sink
is constructed, using the usual exploration and reinforcement rules of directed diffusion. Additional
sources join this tree by searching for the shortest path to this tree. This scheme is implemented
using local interactions.

Implicitly constructing good aggregation trees is also considered by Zhou and Krishnamachari
[933]. They look at the consequences of different rules concerning which node is chosen as a parent
in the convergecast tree out of the set of neighboring nodes that have issued invitations to join the
tree. The simplest rule is to use the first such node from which an invitation has been received
(resulting in a breadth-first-search-like tree), to randomly pick one, the nearest node first, or a
weighted randomization. As the tree construction immediately determines the placement of the
aggregation points, these rules can make a considerable difference. Indeed, the authors show that
none of these rules simultaneously achieves good network reliability, latency, and data aggregation
ability and that a compromise has to be struck.

12.3.5 When to stop waiting for more data
When aggregating data, an intermediate node, as well as the sink, has to decide how long to
wait for data from each of its children in a convergecast tree. In the simplest case, a node knows

346 Data-centric and content-based networking

which of its neighbors are its children (by means of an acknowledgment of the invitation messages
during tree formation) and waits for answers from all of them. This can, however, take a long time
because of fluctuations in the radio channel with ensuing high error rates, temporary node failures,
or simply because of a very imbalanced tree. Waiting a long time will result in more data entering
the computation of the aggregate and thus to higher accuracy but it will also increase delay and,
potentially, energy consumption because of the required idling of the radio receiver. A compromise
has to be found.

A relatively simple scheme, where the times for each hop are essentially regarded as a constant,
is described in reference [920]. Here, rules to set timer values based on a maximum waiting time
of the source are described.

More challenging is the case when the time it takes a node to deliver its local measurement
or its own aggregate to its parent in the tree is a random variable. When there is also some cost
involved in waiting, this problem becomes an instance of the more general problem of optimal
stopping rules. It is investigated in detail by Broder and Mitzenmacher [100]. While they
consider an Internet context, the mathematical treatment is independent of the motivating example
and applicable to WSNs as it is.

Formally, an aggregating node sends requests for data to its n children at time 0. Later, at
time t it will decide to return an aggregate of the k answers received up to time t to collect
a reward Rk(t). This reward is, in general, a function increasing in k and decreasing in t – one
example would be exponential decay: Rk(t) = ke−γ t for some constant γ . More generally, Rk(t) =
rk(1 − Z(t)) where the constants rk are the “undiscounted” rewards for k collected answers (which
would be incurred at t = 0) and 1 − Z(t) is the discount factor that approaches 0 as t → ∞.
The return times for the n children are assumed to be identically distributed, independent random
variables with a distribution F that is known to the aggregating node. The goal is then to develop
simple rules for the aggregating node to decide when to forward the sofar collected values to the
parent node.

The key result of reference [100] is that optimal behavior of an aggregating node depends on
the “shape” of the answer time distribution F and on the reward functions. More specifically, the
failure rate of the distribution function F and of the discount function Z (assuming that Z is given
by a distribution-like function) are the crucial properties.2 Distributions of random variables like
F and distribution-like functions like Z can be categorized as having increasing (or decreasing)
failure rate if r(t) is increasing (decreasing).

On this basis, Broder and Mitzenmacher [100] show that for certain combinations of failure
rates of F and Z, one of two possible strategies applies.

• In case 1, F has increasing failure rate, Z has decreasing failure rate, and the sum of the failure
rates of F0 and Z is decreasing. Here, the aggregating node should, upon receiving the kth
response, either propagate the result to the parent node immediately or wait for the next child’s
results, no matter how long it takes.

• In case 2, F has decreasing failure rate, Z has increasing failure rate, and the sum of the failure
rates of F0 and Z is increasing. In this case, with k responses, the aggregating node should wait
for a fixed time tk before propagating the aggregated value to the parent.

In either case, answers arriving after propagation to the parent are ignored.
While this is not an all-encompassing answer as not all possible combinations are covered, it is

an important guideline for practical system design.

2 The failure rate r(t) of a (nonnegative) random variable X with distribution function F with density f is defined as
r(t) = f (t)/(1 − F(t)). The name failure rate comes from reliability theory; it describes the probability that an event is about

to occur at time t provided it has not occurred already
(
r(t) = lim�t→0

Pr(t<X≤t+�t |X>t)

�t

)
.

Data aggregation 347

12.3.6 Aggregation as an optimization problem
Before looking at some concrete protocol examples, it is instructive to look at data aggregation as an
optimization protocol. As is commonly the case, the optimization formulation is not directly appli-
cable as a protocol but gives upper bounds and general insights into the structure of the problem.

Kalpakis et al. [395] considered the benefits of data aggregation by using a linear programming
formulation. As a starting point, a sensor network with known position and energy supplies of all
nodes is given, along with the cost to communicate between any two nodes. The network operates
in rounds; in each round a node generates a data packet of unit size. The goal is to construct a
“schedule” – an assignment of transmit/receive pairs for each round – such that the time until the
first node runs out of energy is maximized.

This problem is translated into one of finding a flow network. Without aggregation, this is rel-
atively straightforward. The integer program contains the flows from all nodes to the base station
as decision variables and it can be solved by a linear relaxation. With data aggregation, the flow
network has a similar integer program but it has a more complicated backward translation into a
schedule.

The interesting result is the comparison of resulting network lifetimes with and without aggre-
gation. Using of aggregation can improve network lifetime by factors of about 19–22, depending on
network density. This large improvement rests on strong assumptions about network-wide knowl-
edge about node positions that is employed in the optimization problem.

Moreover, the formulation as an integer program with a linear relaxation has a large computa-
tional overhead (even though it is still polynomial). In a follow-up paper, Dasgupta et al. [193]
consider a heuristic with reduced overhead to arrive at a practical but still centralized solution. The
idea is simply to first cluster nodes together and then to execute the data gathering algorithm only
for the clusters. The data aggregation within a cluster is then solved separately. While this divide
et impera approach sacrifices optimality, the authors show that for practical cases the result is still
within about 10 % of the (nearly) optimal solution. Reference [396] provides some more details.

This work is further extended in reference [194] by including coverage constraints. Nodes can
act as either sensors or relays and a distributed protocol is proposed to decide this role assignment.
The reader is referred to the paper for details.

12.3.7 Broadcasting an aggregated value
So far, attention was implicitly focused on using aggregation along a convergecast tree. Aggregation
can also profitably be applied to broadcasting an aggregated value of all sensor readings within the
entire WSN – for example, to inform all nodes of the currently highest measured temperature. Two
examples are described here.

A gossiping-based solution

Gupta et al. [314] discuss the case of providing an estimate of a composable, algebraic aggregation
function to all nodes in the network. The task is complicated by potential failures of both links
and nodes.

A naive fully distributed solution – every node sends its measurement to every other node in the
network – is robust but does not scale. The core idea to realize scalability with acceptable message
overhead is to introduce a hierarchy. The nodes are partitioned into groups with K members on
average, where K is a known constant. Then, K of these groups are again collected into a group of
the next hierarchy level and so on until only a single group remains. In each group at each hierarchy
level, a leader is elected. Using such a hierarchy, the aggregate is computed bottom-up by group
members sending their measured values/their computed estimates to their respective group leader.

348 Data-centric and content-based networking

At the end, the leader of the top-most group knows the aggregated value (because the aggregation
function is assumed to be composable) and can redistribute it downward.

Building such a hierarchy in a sensor network should exploit geographic or, even better, radio
proximity. In effect, this is a multilevel clustering problem. Alternative solutions in reference [314]
include the use of hash functions; ideally, topology-aware hash functions combine these two aspects.

This hierarchy can also be used for a gossip-based approach, circumventing the inherent reliability
problems of a leader-election-based solution. This gossiping approach proceeds in logK N rounds,
which is the height of the hierarchy. In round i = 1 . . . logK N , a node randomly selects other nodes
that are in the same group as itself at hierarchy level i. To each selected node, it will send its own
node identifier and its current best estimate (obtained from local measurement at the beginning
or as the result of the previous round). This gossiping happens K log N times per round. At the
end of a round, a node applies the aggregation function to the received values and proceeds to
the next round (details are slightly more involved, please refer to reference [314]). At the end of
the last round, each node has an estimate of the global aggregated value. The interesting aspect is
that this algorithm is only poly-logarithmically suboptimal; its application to WSNs, however, is
challenging because of the need for multihop gossiping.

Another interesting aspect of this paper is the relationship between broadcasting aggregate values
and the consensus problem. As the consensus problem is not solvable under the present error model,
neither is the aggregation broadcast task. The authors relate it to the Byzantine agreement and
randomized consensus protocols.

Continuous, exemplary aggregation with adaptive accuracy

In many respects similar to the previous approach is a scheme proposed by Boulis et al. [95]. It
also targets the distribution of an estimated aggregated value to all nodes in a WSN, it is intended
for doing so continuously, and it is essentially based on an intelligent form of gossiping. Unlike
the previous one, however, it is suitable only for exemplary aggregation functions (like minimum
or maximum) and it does not need the construction of some form of hierarchical grouping.

In this distributed estimation algorithm, each node not only maintains an estimate of the current
aggregated value, it also stores an estimate of the confidence a node puts into this value (even
better, probability density functions are used, but this is usually impractical). This confidence for
an aggregated scalar value A could be the variance of A.

The intelligence in this scheme lies in the fusing of the local estimate with new information either
from local measurement or received from a neighboring node; in addition, rules are described to
regulate when such a new local estimate is to be sent to neighbors. Since different fusing rules are
required for the local and remote case, three different rules are required (Figure 12.8).

Fusing local estimate with local measurement Suppose a sensor node has some local estimate
of the global aggregation function and it performs some local measurement, contributing to
this aggregated value. A heuristic is needed to update the local estimate, taking into account
the concrete aggregation function to be computed.

Both the local estimate and the local measurement suffer from uncertainty, expressed by the
variance of these values. It is one option to approximate the true, but in general unknown,
distribution function by a Gaussian distribution, to compare these distributions, and to derive
a new estimated value and a new variance from this comparison. The details are slightly
involved, but essentially a new distribution function is determined that is a representation of
the new information.

Fusing local estimate with remote information Fusing a local and a remotely obtained estimate
can be performed using the theory of covariance interaction (a generalization of Kalman

Data aggregation 349

Module A:
local fuse

Module B:
remote fuse

Module C:
decide on
propagation

Current
estimate

New estimate

Transmit new
estimate to neighbor

Do not transmit new
estimate to neighbor

Local
measurement

New estimate
from neighbor

Figure 12.8 Rules required for a distributed estimation algorithm [95]

filters). Reference [95] discusses the formulas for the general case; for the maximum aggre-
gation, the new variance is the smaller of the two old variances and the new estimated value
is the one that corresponded to that particular variance.

Deciding whether to transmit local estimate after update Once a node has updated its local
estimate, the question arises whether to distribute this new estimate to its neighbors. The
intuition is to only distribute estimates if they would bring about “significant” changes in
the neighbors’ estimates in turn.

To decide this, every node X keeps track of the last estimates it has heard from each of
its neighbors. Node X combines its own, new estimate with each of these remembered
neighbor estimates, calculating the new value that the neighboring node would obtain if it
were informed about the update at node X. Node X can determine the results that the other
nodes would compute since all nodes use the same fusing algorithm.

Once the new result at a given neighbor Y is determined, node X computes the difference
between node Y ’s current and its prospective, new estimate. Only if this difference, either
in value or in confidence, is larger than a predefined threshold (e.g. in percent) will node X

transmit its new estimate to node Y . The justification here is that these speculative calculations
on behalf of the neighboring nodes consume much less energy than simply transmitting the
packet.

This percentage threshold ultimately determines the best possible accuracy that the algorithm
is able to achieve; it trades off energy consumption (fewer messages) against accuracy.

Reference [95] describes a further optimization when two-hop neighborhood information is
available.

The resulting interaction is fully localized and does not need a routing structure (like a con-
vergecast tree) in the network. It does, however, assume that indeed all nodes require an estimate
of the global aggregate. In practice, the resulting accuracy is even better than the worst-case one
determined by the propagation threshold and the energy consumption is quite good.

350 Data-centric and content-based networking

12.3.8 Information-directed routing and aggregation
A different take on the aggregation problem is possible by coming back to the ideas of gossiping
and rumor routing. A query that is injected into the network travels around and collects information
as it is forwarded from one node to the next. The pivotal question is to which node to forward
a query. Ideally, that node should be chosen that can contribute most information to answer the
query or that lies in the direction of the largest amount of information. Such an information-driven
routing (also called information-directed routing), including information aggregation, is described
in references [167, 513]. It is, in a sense, the most thorough incarnation of the idea of data-centric
networking.

The application under consideration is target tracking; the goal is to provide an estimate of an
event source as accurately as possible with as little energy as possible. Think of sensor nodes
as microphones, for example, that can detect the sounds created by a moving object. Ideally, the
query would be send to nodes that have the most information about the target – but the obvious
predicament is that in order to know that and to avoid needless communication a node would have
to communicate with its neighbors to find out which node has information. This riddle is solved
by using methods of estimation theory.

Some background on estimation theory

Some background on the notions and notations of estimation theory as used here appear in order;
the presentation follows, in a simplified manner, reference [167].

In target tracking and similar applications, the position x(t) of a – possibly moving – object
shall be determined by a set of N sensors (let us assume for the moment that all sensors know
the position xi of all other sensors). It is futile, however, to attempt to obtain the precise position;
at best, estimates can be obtained. Such an estimate is represented by the belief, an a posteriori
probability distribution of the (conjectured) target position x, given the measurements z1, . . . , zN

from N sensors: Pr(x|z1, . . . , zN). The actual estimate as such is then the expected value of this
probability distribution, x = ∫

x Pr(x|z1, . . . , zN) dx.
In addition to the estimate, the belief, as a probability distribution, also expresses the uncertainty

of the currently available information. It can be approximated by the covariance of the distribution,

� =
∫

(x − x)(x − x)T Pr(x|z1, . . . , zN) dx.

Intuitively, the belief is less uncertain if the corresponding distribution is tightly centered. This
intuition can be formalized by introducing different information utility measures ψ , mapping the
class of probability distributions to the real numbers. By convention, a large value ψ(fX), where
fX(·) is the density of the random variable X, indicates high certainty.

Such information utility measures can be based, for example, on the covariance � of a given
distribution. The determinant det(�) of the covariance is proportional to the volume of the covari-
ance ellipsoid;3 the trace trace(ψ) is proportional to its circumference. Covariance-based infor-
mation utility measures are suitable for distributions that can be well approximated by a Gaus-
sian distribution (and are, in particular, unimodal). For multimodal, non-Gaussian distribution,
the Shannon entropy h(X) of a random variable X with support in S can serve as a measure,
h(X) = − ∫

S
fX(x) log fX(x) dx. To make sure that large values correspond to high certainty, take

the negative of these functions. Reference [167] discusses some additional measures, in particu-
lar, the geometric measure ψ(fX) = (xj − x)T�−1(xj − x), that uses the so-called Mahalanobis

3 An ellipsoid centered around the mean of the multivariate distribution such that there is a predefined random mass contained
in it.

Data aggregation 351

distance, is suited for target tracking using sensors that measure amplitudes of signals emanating
from the tracked target; it expresses the conjectured reduction of uncertainty that sensor j can
contribute, based on the current estimate x and its covariance matrix �.

Once such an information utility measure has been selected, it can be used to concisely compare
distribution functions. It is clear that adding more observations will improve the estimate and its
information utility. Thus, the information utility can be used to select the next sensor from which
measurements should be incorporated. This selection is based, on the one hand, on the current
estimate and its uncertainty, and on the other hand, on a candidate sensor’s position and probability
distribution of its measured value. On the basis of these facts, the probability distribution of the
information utility measure after incorporating the measurements from a particular sensor node can
be computed without having to know the concrete measured value. To reemphasize: not the actual
information utility, only its probability distribution can be determined!

Nonetheless, the new information utility’s probability distribution suffices. Computing it for
various candidate sensors allows to select the next sensor according to one of several rules. Options
include:

Best average case Choose that candidate sensor that has the highest expected information utility
measure after its measured value has been incorporated.

Maximize the worst case Suppose each candidate sensor has measured a value that contributes
the least information to the estimate. Pick then that sensor that still maximizes the obtained
information utility.

Maximize best case Suppose, to the contrary, that each sensor has the most valuable possible
measured value. Pick then that sensor that maximizes the obtained information utility.

A concrete routing algorithm has then two different metrics at its disposal. One metric is the
classical energy cost required to communicate with a neighboring node. The other is the information
utility that would – likely – result if that node would be asked to contribute its measured value to
the query. How a concrete routing algorithm balances these two sources of information is the topic
of the following paragraphs.

Information-Driven Sensor Query

Assume a clustered sensor network where the clusterhead initiates queries and only asks nodes
within its own cluster for information. The Information-Driven Sensor Querying (IDSQ) algorithm
deals with this case. A normal cluster member simply waits for a request and delivers its local
measurement when asked to do so. The clusterhead successively polls cluster members until the
estimate is good enough (i.e. the uncertainty small enough).

The selection regarding which sensor node to poll for information is based upon the current
belief and the position of the neighboring nodes. On the basis of any rule discussed above, the
clusterhead selects that node that promises the biggest improvement in uncertainty. Once the answer
from that node has been received, the clusterhead updates its belief.

Note that this scheme is purely based upon information; energy efficiency considerations play
no role here.

Constrained Anisotropic Diffusion Routing

The IDSQ scheme is relatively restricted, yet simple. More interesting is the case when a query
cannot be answered from a set of nodes within a cluster. This case is solved by the Constrained
Anisotropic Diffusion Routing (CADR) scheme. Here, a query is assumed to float through the

352 Data-centric and content-based networking

network, akin to active query schemes described in Section 12.2.1. When choosing the next node
to forward the query to, however, the prospective improvement of the information utility measure
as well as energy cost to communicate with a neighbor are taken into account. The simplest way
for balancing it is a fixed factor between 0 and 1, computing a weighted sum of energy and
information impact. The node that maximizes this weighted, composite objective function will be
the one that receives the query. Reference [167] discusses the consequences of different choices of
this parameter.

Moreover, a node, upon receiving a query, can update it with its own measured values, in this
sense aggregating information into the query. The selection of the next node then takes place based
upon the updated estimate and the updated uncertainty estimate.

So far, global knowledge about sensor node positions has been assumed. It is also possible
to work without this assumption. Nodes then route either only on the basis of position of their
immediate neighbors, along the gradient of the weighted objective function composed of energy
and information components, or biased toward the estimated current position of the target (to avoid
slowly iterating along the gradient).

Avoiding dead ends

The CADR scheme is greedy; as a consequence, it can be stuck in dead ends (local maxima).
Reference [513] repairs this shortcoming and also generalizes the set of supported scenarios (routing
from a query starting point to a prespecified exit node). It is instructive to note that the problematic
cases are similar to those that are encountered in geographic routing but solutions like GPSR are
not necessarily applicable. The idea is to introduce a look-ahead mechanism, extracting information
from several (possibly all) M hop paths before deciding which one of them to use. The details are
beyond the scope of the presentation here; the reader is referred to reference [513].

Overall, these information-driven routing schemes manage to combine the notion of data-centric
routing – send the query where the action is, using information observed by the network itself – with
concepts of energy-efficient routing – weigh possible information gain against the cost to obtain it.
The results achieved in tracking accuracy and energy efficiency are rather impressive.

12.3.9 Some further examples

Tiny Aggregation (TAG)

The Tiny Aggregation (TAG) scheme [530, 531] is currently perhaps the most popular aggregation
scheme for wireless sensor networks; it popularized the use of SQL as an interface abstraction.
Its current acclaim is in no small part due to the fact that a TAG implementation is available for
TinyOS.

The basic operation is based on a convergecast tree where nodes send data upstream toward
sink(s) according to the EPOCH DURATION specification in the query. Some consideration is given
to the scheduling of data flows in this tree to enable long sleeping periods or to use pipelining
[530]; however, much of these considerations depend on the concrete MAC layer in use.

TAG also includes support for grouping predicates. In the simplest case, each node maintains
separate partial state records for each group (dynamically allocating them if a reply from a child
node with a hitherto unheard-of group arrives); incoming replies are only aggregated with state
records of their own group. If many groups exist, memory can become scarce and nodes can evict
partial state records from their local memory by sending them to their parent, akin to caching
strategies. This strategy is called partial preaggregation.

What is more, TAG also supports the in-network evaluation of HAVING predicates to reduce
network traffic. One such applicable HAVING predicate would be MAX(temperature) < 100.

Data aggregation 353

First of all, it is a monotonic predicate: Once the maximum temperature exceeds a given value,
it will not be reduced by aggregating temperate values from other nodes. Moreover, it can be
locally decided: Once a node sees a temperature value in a given group that violates the HAVING
predicate, it knows that this predicate cannot possibly be repaired. It can then inform other nodes in
the network of this violation for a given group or at least suppress it locally. Note that a predicate
like MAX(temperature)>100 is not useful for in-network curtailing of messages despite its
being monotonic. A node cannot conclude, just because its own local value/aggregate is smaller
than 100, that other nodes might not still report values that would make the group fulfill this
HAVING predicate.

Reference [531] discusses some further optimizations like taking advantage of a shared channel,
that is, snooping on the messages other nodes are transmitting and hypothesis testing. This latter
technique is best explained for monotonic and exemplary aggregation functions. The idea is that
along with a query a hypothesis of a possible result is communicated – when searching for the
minimum sensor reading, the initiating data sink could include a hypothesis obtained from its local
neighborhood in the query. This way, many nodes know that their value is not going to influence the
result of the query and abstain from providing answers. The concrete savings in message overhead
for this example depend on the network topology and on the spatial correlation of the observed
values.

It comes as no surprise that the message savings realized by TAG largely depend on the particular
aggregation function. For noncomposable aggregations like median, there is no benefit at all; for
count and minimum only about 10 % of the bytes transmitted by a simple, centralized aggregation
scheme are required.

Data funneling and coding by ordering

The scenario considered in reference [640] is that of a data sink requesting all sensors in a given
geographical region to periodically send their measured values. The data sink is interested in
obtaining all values of each, uniquely identified node. Under such circumstances, the aggregation
techniques described above are not immediately applicable.

Two ideas are brought forward to tackle this scenario. The first idea is data funneling. After
the request (or interest) has been flooded (in principle, using any geocasting method), the nodes
in the region of interest can send their data to a node on the border of that very region. This
node will act as an aggregation point and forward the readings to the data sink. To protect this
border node from exhausting its energy resources, its role is rotated occasionally among all bor-
der nodes that face the data sink. To achieve this load balancing, all interior nodes must know
when to send their data to which border node. This is possible by having all the border nodes
flood the interest packet, along with their own identifiers, into the region. Then, all interior nodes
know about all eligible border nodes and can apply a selection function to this record of infor-
mation. Since all interior nodes apply the same function to the same data (assuming no border
node announcements are lost in the region), at a given time all data will be sent to the same
border node.

It is, however, not immediately obvious how a border node can actually perform data aggre-
gation – after all, all readings have to be sent to the data sink. The simplest improvement can
be made by concatenating all values into a single long packet, saving on the medium access
overhead for many small packets. In addition, reference [640] describes a cleverer method called
coding by ordering. This method leverages the fact that the order in which individual measure-
ments are put into a larger packet is irrelevant and can be arbitrarily chosen. Thus, this choice
can actually convey information! For example, if a value can only assume one of six values,
the 3! orderings of three readings can encode this particular value and thus convey a fourth
reading.

354 Data-centric and content-based networking

PEGASIS – Energy/delay metric

A further dimension is added to the data aggregation problem when looking not only at the con-
sumed energy but also at the resulting delay before data is available at the sink. One approach
that explicitly addresses these two aspects is Power-Efficient GAthering in Sensor Information
Systems (PEGASIS) [507] (actually, a slight misnomer since the main focus is on being energy
efficient, not so much on power efficient). The considered scenario is a homogeneous network of
sensor nodes where all the nodes have to transmit their local measurement to a known sink, once
per given round (rounds are somehow synchronized, for example, by high-powered beacon signals
from the data sink). Measurements can be aggregated in intermediate nodes using any algebraic
aggregation function, all nodes have global knowledge about sensor positions, all nodes have power
control with in principle arbitrary range, and nodes may or may not have CDMA-capable radio
transceivers.

The goal is to find a convergecast structure that has good energy consumption and delay behavior
and that balances energy consumption among the sensor nodes. The proposed figure of merit is the
product of the energy times the delay needed per round of data gathering.

An interesting aspect about PEGASIS is its convergecast structure. Unlike in most cases, it is
not a general tree but a chain. This chain is constructed starting from the node farthest away
from the data sink. The chain grows from one end only and the next node to be added is
the as-yet unselected node closest to the current end node. One node in the chain is elected
as leader; it will transmit the aggregated data to the data sink. This leader role is shifted one
position in the chain with each round – in effect, the leader node can be arbitrarily far away
from the data sink and potentially has to use high transmission power to deliver data to the
data sink.

The actual data collection also takes place along the chain; various alternatives are possible here.
The simplest option is to have the current leader node send a token out into the chain, have it
propagate until the end, and return the data, aggregating it along the way. Once data arrives at the
leader, the token is sent into the other part of the chain and the process repeats. Once data from
both halves has arrived, it is forwarded to the data sink. Clearly, this approach leads to high delay
as it does not exploit possible parallelism of transmissions in the network.

This parallelism is naturally achieved by a tree (and the help of a MAC protocol) but it is also
possible on a chain. Assume that all nodes have CDMA transceivers such that parallel transmissions
can go on without interfering with each other at all. Then a simple parallel transmission strategy
is to first have direct neighbors send data to each other, for example, odd-numbered nodes send to
even-numbered nodes. Then, in a second step, only those nodes that were receiving data (and have
aggregated it) in the previous step remain active and one half of them sends their aggregated data
to their neighbors. These steps repeat until, after O(log n) steps, the aggregated data has arrived,
as a single transmission, at the current leader. In effect, a tree has been overlaid over the chain.
After the leader has moved, the tree organization has to move also, but this is straightforward to
compute – perhaps the biggest advantage of the chain construction.

When CDMA is not available, it is not possible to have arbitrarily close transmissions in parallel.
The suggestion is then to only use three levels of such an aggregation hierarchy as opposed to
O(log n) levels. The n nodes are divided into G groups (sequentially along the chain); within each
group, a simple sequential aggregation takes place. Then, the leaders of these G groups form two
subsets and aggregate within. Eventually, data is transmitted from one subset leader to the other,
which transmits to the data sink. Of course, the starts of these groups and their respective leaders
have to be rotated appropriately.

Both these latter schemes are compared to direct communication and to LEACH, using the
product of energy and delay. The authors show a considerable improvement, particularly for the
CDMA-based scheme.

Data-centric storage 355

12.3.10 Further reading on data aggregation
Clustering and aggregation Several of the clustering schemes discussed in Chapter 10 lend them-

selves easily to aggregating data in the clusterhead. LEACH, for example, uses the cluster-
heads to collect data from the cluster members and then forwards the aggregated values
directly to the data sink (see Sections 5.4.1 and 10.4.5 for details on LEACH).

Application-independent aggregation The aggregation functions discussed so far all relied on
manipulating data to some extent, needing semantic information on what the actual aggre-
gation function is (a minimum requires different operations than a mean). In this sense,
these are all application-dependent aggregation operations. The Application-Independent
Data Aggregation (AIDA) approach [338] takes a different perspective: What can be gained
by aggregation without manipulating data, without application knowledge? The set of possi-
ble operations to aggregate is thus small; essentially, it boils down to concatenating packets
to be forwarded, exploiting queuing delays in a node to find opportunities for such oper-
ations. Nonetheless, reference [338] shows that considerable benefits can be obtained even
using this simple operation.

Impact of link imperfections Zhao et al. [927] point out the impact of real-world communica-
tion artifacts on aggregation structures. They show errors up to 50 % when using arbitrary
links and recommend to discard links with high loss rate and asymmetric links from the
construction of the aggregation structure. It deserves particular emphasis that their results
are backed by real experiments.

Mobile devices Data dissemination between mobile devices, not all of which are connected to the
Internet, is considered in reference [614].

Statistical accuracy Okino and Corr [606] look at the question of how to collect data such that
the results are statistically accurate.

Aggregation and game theory A game-theoretic approach to data collection is proposed in refer-
ence [397]. The set of routing paths is considered as the outcome of a game and the optimal
solution is shown to be the Nash equilibrium.

Aggregation and security Security aspects of data aggregation are discussed, for example, in
reference [662].

12.4 Data-centric storage
Accompanying the data-centric networking development are some considerations on storing data
within the network. Data-centric storage comes back to the basic question of which entity needs to
know which data. If nothing is known about this question, data could be distributed in the entire
network (perhaps with the help of aggregation to make it more efficient) or nodes that produce data
by measuring could locally store it and wait for a query to arrive. But the querier has to resort to
flooding the network if it has no information where the data is (which would allow geographically
scoping the flood) or which specific node has the data (so that traditional routing schemes could
be applied). Neither of these options is convincing in the end.

The idea of Dynamic Code Scaling (DCS) [684] is to let the data itself describe where it is stored.
More specifically, the name of the data (which is necessary for any data-centric approach anyway)
is used to represent a key under which the data can be looked up. Under this key (under the node
that is identified by the key), the actual data is then stored, much like in peer-to-peer networking

356 Data-centric and content-based networking

Key
location

Timeout

New key
location

Figure 12.9 Operation of geographic hash tables: Selecting a new key location once a node storing some
keys fails

and distributed hash tables. A query can then be routed directly to the node corresponding to the
name of the data and directly retrieved. This concept saves on cost to distribute either data or
queries in the entire network, replacing a flood by a unicast communication.

The precise role of a key can be defined in several ways. A natural match with wireless sensor
networks and the one proposed in reference [684] is to use a geographic interpretation of the key:
The name of data corresponds to a particular location and the mapping rule is known to all nodes.
Then, both producer and querier of data can easily compute the storage location of a given data
item and route their packets toward it, using some geographic routing protocol. This geographic
key interpretation is the essence of a Geographic Hash Table (GHT) (Figure 12.9).

If for every so-computed location there were a node available at precisely this position, if nodes
did not fail, and if nodes had infinite amount of storage, then there would be nothing more to add.
Handling these imperfections, however, requires some further considerations.

Nodes not available at the hashed location When no node is available at precisely the location
to which the key matches, it will not be possible to deliver the packet to such a node.
Instead, the closest node to the computed position should represent an acceptable proxy. How
this proxy or “home node” can be determined depends on the geographic routing protocol;
reference [684] describes one scheme based on GPSR (see Section 11.5.1). In GPSR, once
a packet has reached a node from which there is no other node closer to the destination, the
packet will enter perimeter routing mode, traveling around the “hole” in the network where
the hoped-for node at the destination does not exist. Eventually, the packet will return to
the node where it started perimeter mode – this state can be detected and this node can be
declared the home node for the given key value. Fortunately, it works for both putting data
into storage and for queries.

Handling failing and new nodes When a node fails, all the key-value pairs stored in it would be
lost. To protect against such data loss, the data should be replicated – ideally, to neighbor
nodes. Here again, the perimeter mechanism lends itself to a simple solution. All nodes on
the perimeter of a node become replicas to store the data. To detect a failed node and to
keep the replicas consistent, all nodes occasionally send refresh packets around the perimeter,
distributing new data and checking for the presence of a home node. If none is found, the
node then closest to the key’s virtual location assumes the role of the home node.

The same mechanism can be used to integrate new nodes. A new node would be integrated
by GPSR and learn, via the refresh packets, of existing key-value pairs. It could also assume
the home node role for appropriate locations. Alternatively, new nodes can be explicitly
integrated without having to wait for refresh timeouts.

Handling limited storage per node It can easily be the case that too much data ends up at a
single node, either from a single key or from different keys. Reference [684] proposed the
use of mirror nodes in the vicinity of the home node to store such data, trading off storage
space against some additional local communication.

Conclusions 357

These characteristics make GHT suitable for scenarios with stable and static nodes. One quite
appealing property of GHT is that it not only reduces the average number of messages but also
ameliorates hotspots in the network (details depend on particular variants of GHT). The most
benefits are reaped in large networks with many detected events, but where only some of these
events are actually queried for.

The ideas of data-centric storage are relatively new and are still explored. One interesting direc-
tion is, for example, the graph embedding procedure GEM [593] described in Section 11.5.1, which
lends itself to the support of data-centric storage.

Distributed data storage is a relatively new part of WSN research. A few pointers to further
relevant literature are [197, 274, 275, 305, 493, 713, 760, 782]. Most of these references also have
a tight connection to a database abstraction.

12.5 Conclusions
Putting the data to be collected or disseminated in the focus of communication protocol design
considerably changes the design paradigms. It is no longer possible or sensible to try to construct
some form of routing structure in the network that is based on the identifiers of the nodes. Rather,
the data as such has to guide the interaction of separate nodes in the network. This chapter has
shown a couple of possible approaches. Many of them rest, in some form or another, on the notion
of publishing named data and subscribing to certain names. This paradigm, in combination with
data aggregation or other, advanced forms of in-network processing, admits crucial optimizations
for wireless sensor networks.

13
Transport layer and quality
of service

Objectives of this Chapter
The service obtained from “classical” networks like the Internet and from sensor networks differ.
The Internet is supposed to transport independent byte streams, and intermediate nodes do not know
more. In a sensor network, the nodes collaborate and interact with the environment; the nodes know
the data they carry.

A key requirement is reliability. In sensor networks, reliability refers not only to the eventual
delivery of data packets (transport reliability) but also to the ability to detect physical phenomena
in the first place. The coverage of a sensor network is thus an important consideration.

This chapter discusses protocols and approaches to deal with reliability in a sensor network; we
refer to these somewhat sloppily as transport protocols. These protocols are not “cleanly” placed
on top of some network layer protocol. Instead, the unique constraints of sensor networks call for
careful cross-layer design.

Chapter Outline
13.1 The transport layer and QoS in wireless sensor networks 359
13.2 Coverage and deployment 362
13.3 Reliable data transport 376
13.4 Single packet delivery 378
13.5 Block delivery 389
13.6 Congestion control and rate control 400

13.1 The transport layer and QoS in wireless
sensor networks

In the Internet, a large number of independent users runs a multitude of applications and each
user judges its QoS individually. The Internet is largely seen as a vehicle for moving streams of

Protocols and Architectures for Wireless Sensor Networks. Holger Karl and Andreas Willig
Copyright 2005 John Wiley & Sons, Ltd. ISBN: 0-470-09510-5

360 Transport layer and quality of service

bytes over multiple hops from one place to another, and from the users perspective it is transport
protocols (TCP, UDP) which provide this service. Consequently, the measures used for judging the
quality of this service are related to the protocols, not to any application. Typical measures include
delay, jitter, throughput/goodput, packet loss rate, and many more.

Things are different in sensor networks. A sensor network is not seen as a mere infrastructure
for transporting data, but the nodes are tasked with collaboratively monitoring and controlling the
physical environment. They have to process each other’s data locally or while in transit toward
some sink nodes and thus have to know the data they forward. Thus, users expect another service
than they get from the Internet and the networks ability to support these application-dependent
tasks is an important cornerstone of sensor network QoS besides the traditional network-oriented
quality measures.

This chapter focuses on reliability as one of the key QoS measures. Reliability has many
facets and encompasses more than reliable packet delivery. These different facets are described
in Section 13.1.1.

In the Internet, the network layer and the transport layer play an important role in achieving
data transport reliability. The network layer offers a best-effort service and the transport layer is
responsible for achieving reliable and in-sequence delivery, congestion and flow control, and other
things. This principle of pushing everything into the transport-layer protocols at the end nodes is
coherent with the Internet’s end-to-end principle [719]. Anything below the network layer is taken
as a black box.

In sensor networks, this perspective is not optimal. In fact, there are good reasons to not think of
reliability as something that is only provided by a protocol on top of a networking layer. One of the
reasons is the unique constraints in sensor networks regarding energy, memory, and computational
power. A second reason is provided by the observation that a sensor network as a whole has
a specific task, and thus it is possible – and also advisable, given the constraints – to design all
protocols jointly, allowing one protocol to explicitly make assumptions about the behavior of other
protocols or even control them.

Accordingly, transport protocols in wireless sensor networks are conceived in this chapter as
collections of mechanisms to provide certain services in an end-to-end fashion, without requiring
these mechanisms to run entirely on top of a networking layer.

13.1.1 Quality of service/reliability
One of the most important qualities is reliability. In sensor networks, the notion of reliability has
several facets:

• In the problem of detection reliability, the main question is whether the events the network is
supposed to detect actually can be be detected. A necessary prerequisite is that possible event
locations are covered by the sensing ranges of a number of sensors. The required node density
depends on the sensor’s sensing ranges, the shape of the sensing regions, and environmental
conditions like, for example, the presence of obstacles. The coverage problem is discussed in
Section 13.2.

• For cheap sensors, single sensor readings can be inaccurate. The user, however, wants to have
credible information he can count on. Thus, to achieve information accuracy, multiple read-
ings – obtained either over time or over space – should be combined to smooth out noise and
detect outliers. On the other hand, too many similar sensor readings are a waste of energy. This
issue, however, is closely tied to the application domain and to the specific sensor technology
and is beyond the scope of this chapter.

• Given that an event has indeed been detected, this information must be reported reliably from
the event location (or the sensors around it) to sink nodes, which are often several hops away.
Conversely, applications like distribution of application code to the sensors require reliable data

The transport layer and QoS in wireless sensor networks 361

delivery from sink nodes to individual or groups of sensors. We thus have the reliable data
transport problem, discussed in more detail in Section 13.3.

Some applications require not only reliable but also timely delivery of data. This refers to time
bounds between the time of occurrence or detection of an event and the time where the sink or the
user knows about the event.

Most of the available literature is focused on reliability; the issue of timely delivery is only rarely
addressed. And from the first sight, there seems to be an “impedance mismatch” between the goals
of timely and quick delivery on the one hand, and some of the pertinent characteristics of sensor
networks like small energy budgets, low duty cycles, spending time in sleep states, node failures,
and multihop communication on the other hand. In this chapter, we concentrate on reliability and
point only briefly to some of the work concerning delays in Section 13.5.4.

13.1.2 Transport protocols
Let us first examine the different tasks commonly attributed to transport protocols:

• Reliable data transport: This task requires the ability to detect and repair losses of packets in
a multihop wireless network; appropriate mechanisms working on different layers are discussed
in more detail in Section 13.3.

• Flow control: The receiver of a data stream might temporarily be unable to process incoming
packets because of lack of memory or processor power. Flow control has so far not been a
research issue in sensor networks; some of the reasons have been discussed in Section 6.1 in the
context of the link layer.

• Congestion control: Congestion occurs when more packets are created than the network can carry
and the network starts to drop packets. Dropping packets is a waste of energy and counteracts
any efforts to achieve reliability or information accuracy. Congestion-control schemes try either
to avoid this situation or to react to it in a reasonable manner. One important way to avoid
congestion is to control the rate at which sensor nodes generate packets. Congestion control and
rate control are discussed in Section 13.6.1

• Network abstraction: The transport layer offers a programming interface to applications, shield-
ing the latter from the many complexities and vagaries of data transport. Since there is yet no
standard transport protocol in sensor networks, there is no consensus on such an interface.

As stated in the introduction and will be exemplified in the course of this chapter, it is beneficial to
implement reliability, flow control, and so on not in a single protocol running on top of a network
layer, but to combine several mechanisms working on different layers.

Transport protocols in sensor networks are faced with other kinds of environments than “tradi-
tional” transport layers like the ubiquitous TCP are designed for. Some of the particular challenges
for transport protocols in wireless sensor networks are the following:

• Wireless sensor networks are multihop wireless networks of homogeneous nodes. This is not
an easy environment as the different problems of TCP over wireless channels illustrate (see
Section 13.5.3).

• Any transport protocol must comply with the stringent energy constraints, memory constraints,
or computational constraints of sensor nodes. Significant engineering efforts would be required
to run heavyweight protocols like TCP on such nodes.

• Transport protocols are faced with variable topologies.

1 Discussing congestion control in the context of transport protocols instead of the networking layer is somewhat artificial,
but is at least inspired by an important role model, namely the Internet approach of keeping IP simple and putting everything
into TCP.

362 Transport layer and quality of service

13.2 Coverage and deployment
Many wireless sensor networks are tasked with surveillance of certain geographical areas, for
example, to detect intruders, wildfires, or rare animals in a habitat. Putting all communication
aspects aside, such an event can only be detected if there are sensors close enough that can actually
sense the event. Two important questions arise:

• We are given a sensor deployment, that is a particular placement of sensors over a certain
geographical area. Which points of this area are close enough to sensors such that an event
taking place at this point can be sensed. Asked differently: which points are covered? Coverage
is thus an important aspect of QoS in sensor networks.

• Given an area to be observed and some coverage requirements, what number of sensors is needed
and where should they be placed? This question, henceforth labeled as the deployment problem,
can be posed under several interesting constraints, for example, cost constraints, presence of
obstacles, availability of different types of sensors, and so forth.

Coverage and deployment have a second important implication besides QoS. If there is some
overprovision of sensors, it might be possible to switch some sensors into sleep mode without
compromising coverage. This allows to save energy and to prolong the lifetime of the overall
network.

The larger part of this section is devoted to the coverage problem, which is the more important
one in many practical situations. For example, in applications like wildfire detection or habitat
monitoring, large areas have to be observed with large numbers of sensors, and in such a situation,
sensor deployment will often only be a loosely controlled process. Most of the presentation (and
of the available literature) concentrates on coverage and deployment in two dimensions but many
concepts carry easily over to the three-dimensional case. References to protocols dealing with
three-dimensional coverage problems are given where appropriate.

After introducing some simple models for the sensing ability of sensors in the next Section 13.2.1,
we discuss different measures for coverage in Section 13.2.2. An often-used theoretical deploy-
ment model, the “independent deployment”, which is in fact a Poisson point process, is explained
in Section 13.2.3. After this, we discuss coverage issues for independent deployments under two
sensing models: For the Boolean sensing model, in Section 13.2.4 and for a more general sensing
model in Section 13.2.5. The question how certain coverage measures can be determined a poste-
riori in a sensor field with unknown deployment characteristics is treated in Section 13.2.6. Some
brief comments about coverage measures in sensor grids are made in Section 13.2.7. The issue of
deployment is not discussed in detail, but some references to start with are given.

Many of the algorithms described in this section require knowledge of the number of sensors and
their geographical positions. This knowledge can be obtained from running locationing algorithms,
see Chapter 9.

13.2.1 Sensing models
A sensor transforms environmental stimuli into electrical signals. The quality (signal strength, noise)
of the resulting signal depends, among other factors, on the distance between the sensor and the
actual event. For example, the amplitude of sound waves decreases quadratically (more general:
according to a power law) with increasing distance to the location of the sound-producing event.
When an acoustic sensor node has a very large distance to the sound event, the sensor readings
become indistinguishable from the case of no sound event occurring at all.

A second aspect of sensing quality is directionality. In an idealized scenario, a sensor has the
same sensitivity in all directions; however, in practice, often certain directions are preferred. This

Coverage and deployment 363

can be either by construction (for example, video cameras) or as a result of sensor deployment,
when, for example, a node’s acoustic sensor is obstructed by other node components.

A third aspect is constituted by the possibility that the same sensor can generate different outputs
for the same environmental stimulus at different times, for example, due to temperature variations
the sensing circuitry is exposed to. Generalizing this observation, the signal delivered by a sensor
for an external event at a certain distance is not a fixed value, but a distance-dependent random
variable. One simple assumption here would be to model such a random variable as a constant plus
some zero-mean Gaussian noise with either constant or distance-dependent variance (compare for
example, [924, Sec. 2]).

Most sensing models used in the literature focus on the first aspect and assume omnidirectional
sensing and no random variations (for example, [496, 510, 547]). In [510] two sensing models are
introduced:

• In the Boolean sensing model, all sensors of the same sensor modality (temperature, humidity,
. . .) have a common sensing range r . Events within this sensing range are detected reliably,
and events outside this range are not detected at all. Accordingly, the sensor output signal for a
sensor node at position p observing an event at position q has strength:

S(p, q) =
{

α : ‖p − q‖2 ≤ r

0 : otherwise
(13.1)

where ‖·‖2 is the Euclidean distance between points and α is the constant sensor value.2 Tian
and Georganas [816] even assume that sensors can have different sensing ranges, for example,
depending on their residual energy.

• In the general sensing model, the sensor also possesses a certain maximal sensing range but
within this range the sensor output obeys a power law instead of being uniform:

S(p, q) =

α

‖p − q‖β

2

: r0 ≤ ‖p − q‖2 ≤ r

0 : otherwise
(13.2)

where r0 is a certain minimum distance (to avoid division by zero) and β is a positive real number
depending on the sensing modality and sensor technology. Example: For acoustic signals, the
relationship between the source signal power and the sensed signal power can be modeled with
β = 2 ([924, Sec. 1.2.2]).

It is pointed out by Meguerdichian et al. [547] that the sensing quality may also well depend
on the time that the sensor is exposed to the external event. An example for this is a film for
a photo camera. It is also worth noting that under the general sensing model knowledge of the
decay exponent β and of S(p, q) allows node p to estimate its distance to q. This is, for example,
interesting in detection and event localization applications (compare Section 14.3) or in acoustic
ranging (Chapter 9).

There is another important type of sensors to which coverage considerations do not directly
apply. These point sensors detect a phenomenon only upon having direct contact with it. Sav-
vides et al. [727] name chemical sensors as an example: These can sense toxics only by direct
measurements. When the phenomenon of interest – say, a toxic plum – is known to have reason-
ably smooth boundaries and minimum extension, then it is possible to derive conditions for the
sensor deployment ensuring detection of the plum with sufficiently high probability.

2 The event to be sensed, for example, a sound event, is assumed to have “unit loudness”. Otherwise S(·, ·) would have to
be normalized with the loudness of the sound event.

364 Transport layer and quality of service

13.2.2 Coverage measures
The notion of coverage has different meanings in the literature. In general, coverage measures refer
to a sensor network deployed to monitor some specified terrain A having area |A|. Most often, this
terrain is assumed to be two dimensional. Some of the introduced measures are the following:

• The area coverage fa specifies the percentage of |A| being covered [510]. If fa = 1, we say that
full area coverage is achieved. In the general case for a point q ∈ A to be covered, we require

C(q) =
∑
s∈S

S(ps , q) ≥ θ (13.3)

where S is the set of all sensors, ps is the position of sensor s ∈ S , and θ is a certain application-
dependent threshold. The quantity C(q) is also called sensor field intensity [547]. To express the
requirement that under the Boolean sensing model at least one sensor covers q, we can simply
choose θ = α. Sometimes it is for reasons of fault tolerance required that an event is sensed by
k > 1 sensors. Under the Boolean sensing model, this requirement is also denoted as k-coverage
[364, 365] and it can be expressed by choosing θ = 3α. Clearly, such a formulation carries over
to the general sensing model.

• The node coverage fn describes the percentage of nodes whose sensing range can be fully
covered by the sensing ranges of other nodes. When the overlapping neighbors are awake, such
a node can be safely switched into sleep mode without reducing the area coverage.

The next set of coverage-related measures considers paths between two chosen points q0 (the source
point) and q1 (the destination point), which may be inside or outside of A. Clearly, the latter case
is only interesting when the paths under consideration cross the terrain A. Before defining the next
measures, it is useful to introduce the notion of the distance between a point and a point set: Be V

a set of points, for example, the locations of a sensor network, that is V = {ps : s ∈ S}, and be p

another point.3 Then:

dist(p, V) = inf
{‖p − q‖2 : q ∈ V

}

Using this notion, the following coverage-related measures can be defined:

• The detectability Pd represents the probability that an object (for example, an intruder) moving
from q0 to q1 is sensed [510]. When the intruder knows the network topology - that is, all nodes and
their positions – and is always able to choose optimal paths, the detectability gives the probability
that there exists no path between q0 and q1 such that for all points p of this path dist(p,S) > r

holds. To detect the intruder, there must be at least one point with dist(p,S) ≤ r .4 When the
network topology is unknown to the intruder it can choose some path (for example, a straight line)
and the intruder remains undetected when for all points p on this path dist(p,S) > r holds.

• The maximum breach path or worst-case coverage between q0 and q1 is defined as follows
[496, 546]: be �(q0, q1) the set of all paths between q0 and q1; the maximum breach distance
is then given by:

max
π∈�(q0,q1)

min
p∈π

dist(p,S).

3 It is assumed throughout this chapter that location information is available to the sensor nodes, that is each node knows
at least its own location and the location of its neighbors. How this information can be obtained is the subject of Chapter 9.

4 An alternative formulation is that for all points p on such a path C(p) < θ holds.

Coverage and deployment 365

Intuitively, the maximum breach path is a path through a sensor network having the largest
minimum distance to any sensor node. Such a path would be chosen by an intruder wishing to
keep an as-large-as-possible distance between himself and the sensors when moving between
two points.

• The maximal support path or best-case coverage path between q0 and q1 is defined as [496,
546]:

min
π∈�(q0,q1)

max
p∈π

dist(p,S).

Intuitively, the maximal support path is the path having the smallest maximal distance to the
sensor set. This would be a path preferred by someone wishing to stay under best possible
observation.

• Consider an object traveling during time interval [t1, t2] on a certain path from q0 to q1 such
that the position of the object at time t is given by p(t). The exposure [547] for this object
is the integral of the sensor field intensity C(p(t)) over the path p(t). Assuming that p(t) is
continuously differentiable, the exposure can be represented as:

E(p(t), t1, t2) =
∫ t2

t1

C(p(t))

∥∥∥∥dp(t)

dt

∥∥∥∥
2

dt

The exposure can be regarded as the average observability of the object. A variation is to not
integrate over C(p(t)) but to always consider only the closest sensor, that is, integrating over
C∗(p(t)) = sups∈S S(ps , p(t)). The exposure problem is discussed in more detail in [547], [840],
and [175].

13.2.3 Uniform random deployments: Poisson point processes
Some of the coverage measures have been investigated for random deployments in several refer-
ences, for example, [509, 510]. The most common assumption for a random deployment is that of
a Poisson point process, defined as follows (see [404, Sec. 1.3] and [405, Chap. 16]): Be U ⊂ Rn

a subset of the n-dimensional space and be A a nonempty family of subsets of U . Each element
A ∈ A is assumed to have a volume µ(A). Furthermore, let us assume that a number of “points”
are scattered over U . We are essentially interested in counting the number of those points belonging
to some A ∈ A; this quantity is denoted as N(A). In a Poisson point process with intensity λ > 0,
the following properties hold:

• For each A ∈ A, the number N(A) is a random variable having a Poisson distribution with
parameter λ · µ(A), that is,

Pr [N(A) = k] = e−λ·µ(A) · (λ · µ(A))k

k!
k ∈ N0.

• When A1, . . . , An ∈ A are disjoint, the random variables N(A1), . . . , N(An) are independent.

Poisson point processes are popular, for example, for modeling the number of stars in a certain
space area or the number of bacteria cultures on a Petri dish. The striking feature of such a Poisson
point process is that it matches the intuitive notion most people have of “random deployments”: It
is shown in [405, Chap. 16] for Poisson point processes that under the assumptions µ(U) > 0 and
N(U) = k the k points are independent and uniformly distributed in U .5

5 In the given reference, the Poisson point process is introduced in a more axiomatic way than we did here.

366 Transport layer and quality of service

We can now start to answer questions regarding certain coverage measures for sensor networks
under such a random deployment. The presentation in the Sections 13.2.4 and 13.2.5 is largely
based on [509, 510].

13.2.4 Coverage of random deployments: Boolean sensing model
We first discuss the case of an infinite sensor network in the two-dimensional plane (i.e. U = R2)
to avoid any boundary effects.

It is straightforward to find the area coverage fa for a Poisson point process of intensity λ > 0
under the Boolean sensing model.6 Be q a randomly chosen point in the sensor field. What we
are asking for is the probability that there is at least one sensor s with ‖ps − q‖2 being smaller
than the common sensing radius r . Consider the situation shown in Figure 13.1, where a number
of sensors and a selected point q are shown. This point is covered when there is at least one sensor
present in the circle A of radius r around q. This circle has area πr2 and the probability to find at
least one sensor in it is:

fa = Pr [N(A) ≥ 1] = 1 − Pr [N(A) = 0] = 1 − e−λπr2

To satisfy a prescribed area coverage fa , this equation can be solved to determine the required
intensity λ of the Poisson point process:

λ(fa) = − log(1 − fa)

πr2

As a numerical example, let us assume that r = 1 m and the desired coverage is fa = 0.99. In this
case, a sensor intensity of λ ≈ 1.47 sensors per m2 is needed. To achieve an even better coverage
of fa = 0.999, this number grows to λ ≈ 2.2.

The node coverage fn has been obtained in [510] through simulation. In Figure 13.2, area
coverage and node coverage are compared for a large sensor network with varying Poisson process
intensity λ. The important point to observe here is that area coverage increases faster than node
coverage; from the figure, to achieve a node coverage of 50 %, the area coverage must have reached
a value of ≈95 %; another data point is that with an area coverage of 47 % a node coverage of
only ≈1 % is reached. An important conclusion is that simply achieving a desired area coverage
is not sufficient when energy and lifetime constraints come into play, but the network must be
significantly overprovisioned to achieve a useful node coverage.

The detectability along a path through the sensor network depends on the knowledge that the
intruder has about the sensor network. When the intruder does not know the sensor locations and

q

Figure 13.1 Determining area coverage fa for Poisson point process

6 Here is a small subtlety, since the area coverage can be understood in two ways. The first way is: We are given a fixed
realization of a Poisson point process and pick a random point whose coverage probability we are interested in. The second
way is: Given a fixed point in the area, in which fraction of the realizations of a Poisson point process is this point covered?

Coverage and deployment 367

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.005 0.01 0.015 0.02 0.025

Sensor density (number of nodes / spuare pixel)

A
re

a
(n

od
e)

 c
ov

er
ag

e

Area coverage

Node coverage

Figure 13.2 Comparison of area coverage and node coverage for varying intensity λ. Reproduced from [510,
Fig. 1] by permission of IEEE

q1

q0

Figure 13.3 Minimum detectability path through a network for unknown node locations

chooses some arbitrary path between q0 and q1, it can be detected when there is at least one sensor
in the tube of half width r around the path; compare Figure 13.3. The area of this tube can be
minimized by choosing the most direct path between q0 and q1, that is, a straight line. Since the
area of this tube is given by µ(A) = 2r ‖q0 − q1‖2 + πr2, the probability of finding at least one
sensor in this area, and thus to detect the intruder, can be computed as:

Pd = Pr [N(A) ≥ 1] = 1 − Pr [N(A) = 0] = 1 − e−λ2r‖q0−q1‖2+πr2

Clearly, the larger the distance between q0 and q1, the more likely a detection becomes.

368 Transport layer and quality of service

The second interesting case is when the intruder has perfect knowledge of the network - specifi-
cally, the positions of all sensor nodes – and can choose optimal paths. It is shown in [510] that for
asymptotically large distances between q0 and q1 there exists a critical intensity λc such that for
λ < λc there exists almost surely a path which the intruder can use without being detected, whereas
for λ ≥ λc the intruder is almost always detected.7 This behavior can be attributed to the creation of
clusters. Here, a cluster is a maximal set of sensors whose coverage regions form a connected area
in the plane. It can be shown that for λ < λc almost surely all clusters are of finite size, whereas
for λ ≥ λc there exists almost surely at least one cluster of infinite size, which an intruder cannot
cross without being detected. This critical intensity depends on the sensing range of the sensors.

Liu and Towsley [510] discuss these three coverage measures also for the case of a strip-shaped
sensor field having infinite extension in one direction but a finite width h. The most surprising result
is that an intruder knowing the sensor positions can with probability one pass undetected from one
side of the strip to the other. The reason for this is as follows: when the node positions within the
strip are projected onto one of the strips side lines, the resulting node placement process is one-
dimensional Poisson point process of finite density. With probability one, there are gaps between
the projected sensing ranges of the nodes, which the intruder can use.

13.2.5 Coverage of random deployments: general sensing model
Liu and Towsley [510] also discuss coverage measures for the generalized sensing model, that is,
where the sensor output depends according to a power law on the distance between intruder and
sensor (compare Equation 13.2).

Consider the situation where the sensors are placed according to a Poisson point process and
the intruder has chosen some point q. The sensor field intensity at q is given by (compare
Equation 13.3):

C(q) =
∑
s∈S

S(ps , q) =
∑
s∈S

α

‖p − q‖β

2

,

not considering any bound r in the moment. C(q) is actually a random variable, which depends
on the sensor locations. A random variable of this kind is also known as Poisson shot noise (see,
for example, [615, Sec. 10.2] and [518]) and the question of area coverage is closely related to the
probability distribution function F(·) of C(q).8 In fact, since we denote a point q as covered if
C(q) ≥ θ holds for some given threshold θ , q is covered with probability 1 − F(θ). Closed-form
expressions for the distribution function for the case of one and two dimensions are presented in
[518] and [510], respectively. For the special case, of α = 1 and β = 4 and for two different values
of λ, the area coverage is plotted against the threshold value in Figure 13.4. Clearly, given a fixed
threshold value θ , the higher area coverage can be achieved with a higher node density λ.

It is a somewhat surprising finding that under the power-law sensing model the node coverage
is zero, that is it is not possible to remove or turn off a sensor without reducing the area coverage.9

With respect to detectability, it is demonstrated in [510] that there exists a threshold density λc,
such that an intruder wishing to move from q0 to q1 is almost surely detected when the distance
between q0 and q1 is large and λ > λc holds. This is shown by turning the general sensing model
into a Boolean one, such that the coverage area of the Boolean sensing model is a subset of the

7 Such critical densities or critical thresholds occur in many places in wireless networks, see for example, [443], [442].
8 This distribution function is the same for all q because of the homogeneity of the Poisson point process.
9 Essentially, it can be shown that there exist points q in the network with C(q) < θ , and when there are other points

with C(q) > θ , there must be, according to the mean value theorem for continuous functions (and C(·) is easily seen to be
continuous for a fixed deployment), points with C(q) = θ . Removing a positive term from C(·) by switching off a sensor
turns a (covered) point q with C(q) = θ into an uncovered point with C(q) < θ .

Coverage and deployment 369

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0001 0.001 0.01 0.1 1

Threshold q

λ = 0.01
λ = 0.001

A
re

a
co

ve
ra

ge

Figure 13.4 Area coverage versus threshold value θ with the general sensing model for two different λ, α = 1
and β = 4 (from: [510, Fig. 6])

area covered under the general sensing model. Since there exists a threshold density λc under the
Boolean sensing model such that for λ > λc detection is almost sure, this must carry over to the
general sensing model with its even larger area covered. It is not yet clear, however, what happens
under the general sensing model when λ is below the threshold λc.

13.2.6 Coverage determination

The results discussed in the previous sections were theoretical in that coverage measures have been
derived under given knowledge of the stochastic process governing node deployment.

In many practical situations, however, the actual deployment’s underlying stochastic process as
well as its parameters are unknown.10 Instead, one is often faced with an arbitrary deployment and
it is an important task now to judge the actual coverage measures. If protocols and algorithms are
available to accomplish this, areas with reduced coverage can be identified and additional sensors
can be deployed there.

Determining k-coverage

In [364, 365], a distributed protocol is proposed that checks whether a certain area is k-covered
under the Boolean sensing model. Using the terminology introduced in Sections 13.2.1 and 13.2.2,
this amounts to the question whether the sensor field intensity at all points is at least k times
the fixed value α from Equation 13.1. The proposed protocol works for both uniform sensing

10 It will often be a purely practical problem to achieve a deployment conforming to a Poisson point process with some
prescribed density λ when the area to be covered is large. Just imagine sitting in a plane with a pile of sensors to be distributed
over a forest: which flight path shall the pilot follow and when do you have to spread out sensors?

370 Transport layer and quality of service

Figure 13.5 Example setup for perimeter coverage. Reproduced by permission of IEEE

ranges – all sensors have the same sensing range – as well as for nonuniform ones. Its key feature
is that it avoids to check k-coverage separately for each point of the observed area.

We first discuss the general idea for the uniform case. Let us assume that a number of sensors
s1, . . . , sn are spread over a two-dimensional area A. All sensors have the common sensing range
r . Consider a fixed sensor si . A point qi on the perimeter of si’s sensing range is said to be
perimeter-covered by sj if qi is within sj ’s sensing range. The sensor si is said to be k-perimeter-
covered when all points qi on the perimeter of si are in the range of at least k other sensors,
not including si itself. Consider for example the setup shown in Figure 13.5. Sensors are marked
by black bullets, their sensing ranges as circles around them. One can see that all points on the
perimeter of the highlighted sensor si in the center are covered by at least two other sensors. It
is also important to note that there are points in the interior of si’s sensing range that are only
covered by si itself and which would not be covered at all when si fails. The key observation is
that it can be shown that under mild assumptions the whole area is k-covered if and only if all
sensors are k-perimeter-covered.11 To turn this observation into a protocol, each sensor si has to
check the coverage of its perimeter, which can be done locally. The word “locally” is defined here
with respect to the sensing radius: it suffices for a node si to consider all neighbors sj for which
the distance

∥∥psi − psj

∥∥
2

is at most 2r .12

Node si can determine the perimeter segment covered by another node sj (more specifically: the
angles φj,1, φj,2 in radians, which bound the covered perimeter segment) with the help of a simple
geometric computation requiring only the node’s positions; compare Figure 13.6. By collecting the
perimeter angles covered by all neighbors, the node gets a picture of overall perimeter coverage,
visualized in Figure 13.7. A simple way to determine whether node si is k-perimeter-covered is to
go through this list, starting at an angle of 0 and ending with angle 2π . While traversing this list, a
counter variable is incremented each time a segment starts and decremented when a segment ends.
Clearly, it suffices to restrict this procedure to the angles 0, 2π , and all the particular angles φj,1

and φj,2 obtained from the previous step. When the counter always has a value of at least k, then
indeed node si is k-perimeter-covered. For a static network, this computation has to be executed
only occasionally to accommodate new nodes or dying nodes.

When a user at a sink node wants to check for k-coverage in a sensor network, an appropriate
request can be flooded into the network, causing each node si to determine its perimeter coverage.

11 For sensors, at the boundary of the target area it is impossible to have all points on their perimeter be covered by other
sensors. It is reasonable to reduce to perimeter points inside the target area.

12 Clearly, if r is in the same order of magnitude as the overall network diameter, the notion “local” loses a bit of its
meaning.

Coverage and deployment 371

Figure 13.6 Example perimeter segment (adapted from: [364, Fig. 2a])

Figure 13.7 Overlapping multiple perimeter segments (adapted from: [364, Fig. 2b])

When si has perimeter coverage smaller than k, it can generate an appropriate report, for example,
including details about the insufficiently covered segments. This information can guide placement
of additional sensors.

It is shown in [364, 365] that this algorithm can also be used for the case of nonuniform or
even noncircular sensing ranges; only the computation of node si’s perimeter segment covered
by another node sj becomes slightly more complicated. A generalization to three dimensions is
presented in [366].

Determining worst-case coverage

Meguerdichian et al. [546] investigate determination of the actual worst-case coverage for a
random sensor field under the fairly general assumption that the sensing quality decreases with
distance. Please remember that the worst-case coverage problem asks for a path through a network
that an intruder would take to minimize risk of detection, that is, a path having the largest possible
distance to the sensors. In [546], a centralized algorithm with polynomial time complexity is
presented for this problem. The algorithm assumes availability of perfect location information. It is
based on the construction of a Voronoi diagram (see Section 10.2.3, Section 11.5.2, and [29]) of the
sensor network. In the two-dimensional case, such a diagram partitions the plane into a number of
convex polygons such that: (i) exactly one sensor is contained in each polygon, and (ii) this sensor
is the closest sensor to all other points lying truly within the respective polygon. The points on the

372 Transport layer and quality of service

q0

q1

Figure 13.8 Example Voronoi diagram for the sensor network deployment of Figure 13.3

edges of a polygon have the same distance to the two neighboring sensors, except points on the
boundary of the target region. Please refer to Figure 13.8 for an example of a Voronoi diagram. It is
intuitively clear that an intruder wishing to minimize its visibility to sensors should choose a path
exactly along the edges of the Voronoi polygons. In [546], an algorithm for finding a worst-case
coverage path between two points q0 and q1 inside or outside the sensor field is devised, displayed
in Listing 13.1. Essentially, this algorithm proceeds in three steps. The first is the construction of
the (bounded) Voronoi diagram, that is, of a graph (U, L) whose vertex set U contains just the
end points of the edges of the Voronoi polygons, and L is the set of edges. This graph is turned
into a weighted graph (U, L′). The weight of each edge is the minimum distance of all points on
this edge to the neighboring sensors. Be m the minimum weight and M is the maximum weight of
the edges in L′. For a certain weight w ∈ [m, M], a graph (U, Lw) is constructed containing only
those edges from L′ with weights larger than w. A breadth-first search is applied to (U, Lw) to
check whether q1 can be reached from q0 using edges of weight larger than w. The maximum w

for which such a path exists is obtained with a binary-search procedure. The path corresponding
having this maximal value is the maximal breach path.

Meguerdichian et al. [546] investigate by simulation properties of the worst-case coverage/
maximum breach path for varying numbers of sensor nodes. Specifically, the following question is
addressed: Given a certain sensor network one can determine the worst-case coverage w according
to the previously discussed algorithm. Which improvement/reduction in worst-case coverage can be
achieved by placing additional sensors at “good” locations? A good location would be an additional
sensor along the edge of the found worst-case coverage path having the minimum weight. The
reduction is determined by running the algorithm again after placing the additional sensor. In
Figure 13.9, the average reduction after adding one, two, three, or four additional sensors is shown
for varying initial sizes of the sensor network; each average is taken over 100 random deployments
of the same initial number of nodes. It is an interesting result that already addition of only a single
sensor can give significant improvements in the range between 10 and 25 %, whereas for further
additional sensors the gains become smaller and smaller. In a second series of experiments, the
worst-case coverage has been determined for random deployments of a variable number of sensors
in unit area, but without opportunity to add further sensors at good positions. The results are shown
in Figure 13.10. It can be seen that beyond a certain node density/number of nodes (here: around
100) any further increase in density gives less and less improvement in worst-case/breach coverage.

The determination of the best-case coverage path is based on Delaunay triangulations [496, 546],
for which a distributed scheme has been presented in [496]. The reader should consult the given
references for details.

Coverage and deployment 373

Listing 13.1: Algorithm for finding the worst-case coverage path through a sensor network (para-
phrased from [546])

// Initialize
Generate bounded Voronoi diagram V0 = (U,L)

// U = vertex set , L = edge set
// this graph includes q0 and q1

// Create weighted graph
Initialize graph V1 = (U,∅)

foreach edge l in L {
assign min distance of l to sensor field as weight of l

add l to the edge set of V1

}
m := min{l.weight | l ∈ edges ofV1}
M := max{l.weight | l ∈ edges ofV1}

while (M − m ≥ ε) {

w := M+m
2

Initialize graph Vw = (U,∅)

add all edges l from V1 to Vw for which l.weight > w

if breadth -first -search in Vw from q0 to q1 succeeds
then

m := w

else
M := w

end
return w

}

0%

10%

20%

30%

40%

50%

60%

5 10 15 25 30 65 100

Number of sensors

B
re

ac
h

im
pr

ov
em

en
t

Add 1

Add 2

Add 3

Add 4

Figure 13.9 Effect of adding sensors on the worst-case coverage/maximal breach path. Reproduced from
[546, Fig. 6] by permission of IEEE

374 Transport layer and quality of service

0.0

0.2

0.4

0.6

0.8

1.0

C
ov

er
ag

e

0 20 40 60 80 100

Number of sensor nodes

Breach

Support

Figure 13.10 Worst-case coverage/maximal breach and best-coverage for random deployments in a unit area.
Reproduced from [546, Fig. 8] by permission of the IEEE

13.2.7 Coverage of grid deployments
A few publications have also discussed coverage in grid deployments [509, 754]. In such a deploy-
ment, the whole sensor field is divided into an array of squares of side length D, and sensors are
placed only at the centers of these squares. An example grid is shown in Figure 13.11.

Liu and Towsley [509] consider the special case of sensors with homogeneous sensing range
r under a Boolean sensing model. The sensor placement follows a spatial Bernoulli process, that
is for each square center an independent Bernoulli experiment with success probability p tells
whether this square is occupied by a sensor or not. Two cases have been considered in [509]; we

start with the case r < D/2. In such a setup, the area coverage is clearly given by fa = pπr2

D2 , the
node coverage is zero, and the probability of detection of an intelligent intruder is also zero, since
he can always choose a path along edges of the square without ever being sensed. In the second
case, it is assumed that r = D/2 holds. Here, area and node coverage remain the same, but the
situation with respect to detectability in an infinite grid changes. Two squares are called neighbors
when they are both occupied and have an edge in common. A group of occupied squares in which
all squares are direct or indirect neighbors is called a cluster. It can now be shown that there exists
a critical probability pc, such that if p > pc there exists almost surely an unbounded cluster, which
cannot be avoided by an intruder; accordingly, the detection probability is one. When the node
density p is below pc, all clusters are almost surely of finite size, and an intelligent intruder can
find a way through the network, leading to a detection probability of zero. This “phase transition”
behavior is similar to the case of random deployments discussed in Sections 13.2.4 and 13.2.5. The
critical value pc is given in [509] as pc = 0.5928.

Figure 13.11 An example sensor grid

Coverage and deployment 375

A different situation is considered in Shakkotai et al. [754]. Here, the grid does not have
infinite extension but is confined to a unit square. In this square, a number of n nodes are placed.
Consequently, each square of the grid has a side length of 1/

√
n. For simplicity, it is assumed that

for each node the communication range and the sensing range (under the Boolean sensing model)
are the same, being r(n). Furthermore, all nodes have the same sensing range. Each node is active
(i.e. not failed or sleeping) with probability p(n), the nodes being independent of each other. Both
full area coverage and connectivity are considered, with connectivity being defined as the ability of
any active node to communicate directly or indirectly with any other active node. Shakkotai et al.
[754] have investigated asymptotic results, that is they consider large values for n. The following
results are interesting:

• A necessary and sufficient condition for achieving both connectivity and full area coverage is
that p(n) and r(n) obey

p(n) · r2(n) ∼ log n

n

saying that for large n both a high degree of unreliability and small sensing radii can be used
and still connectivity and coverage are maintained.13

• When D(n) is the maximum number of hops required for communication between arbitrary
active nodes, it can be shown that with probability one the following holds:

√
2 < r(n) · D(n) <

2

1 − 2√
πc

,

given that the relationship p(n) · r2(n) ≥ c · log n

n
is satisfied for some c > 4

π
.

• It can be shown for small values of the success probability p(n) that connectivity can be achieved
without necessarily achieving full area coverage.

13.2.8 Further reading
• Closely related to the problem of coverage determination is the problem of local node density

estimation. In [692], the density inference protocol (DIP) is presented, which estimates local
density on the basis of observed collision rates at the MAC layer during dedicated time periods.

• The node coverage measure provides some indication of which fraction of nodes can be switched
into sleep mode (thus saving energy) without compromising coverage. Knowing this number does
not tell which sensors are good candidates for being switched off and how to coordinate multiple
good candidates covering a given point so as not to switch off simultaneously. This requires local
coordination. Some approaches and protocols for this are described in [816], [913], and [364].

• Koskinen [432] investigates the expected area coverage under a Boolean sensing model for a
finite region, thus explicitly including boundary effects. Two scenarios are investigated. In the
first one, all sensors as well as the point q of interest are confined to lie inside a disk. In the
second scenario, the unit disk D is embedded into a larger region D′ such that between each
point in D and the boundary of D′ there is a distance of at least r . The n sensors are spread
in D′ but the point of interest q is confined to D. In the first scenario points q close to the
disk boundary have a reduced coverage, as becomes apparent from Figure 13.12: For point q1,
there is a full circle within which a sensor can detect the intruder at q1; however, at q0, the

13 A function f (·) behaves asymptotically as a function g(·), written as f (x) ∼ g(x), if there exists some c ∈ R, c �= 0 such
that limx→∞ f (x)

g(x)
= c holds (clearly, g(x) �= 0 is required).

376 Transport layer and quality of service

q0

q1

Figure 13.12 Boundary effects for area coverage

“detection area” is reduced. The expected area coverage can then be obtained by “averaging”
over all possible q0, and in [432] a closed-form expression is given. One result presented in
[432] is that in the second scenario slightly more nodes are needed to ensure an average area
coverage of 99 %. Furthermore, Koskinen [432] investigates the required node density and/or
sensing range r required to achieve full area coverage of some target domain.

• In Perillo and Heinzelman [631], [632], the scheduling of node’s sleep mode of nodes is
jointly optimized with route selection between regions of interest and sink nodes to optimize
sensor network lifetime while keeping a sufficient number of sensors awake to not compromise
sensing quality. The problem is formulated as a generalized maximum flow problem with certain
constraints, which in turn is solved as a linear programming problem in polynomial time.

• In a nutshell, the problem of deployment is concerned with finding the required number of sensors
and their positions to fulfill some coverage goal, for example, to achieve full area coverage. This
problem can be posed under several additional constraints like cost minimization, the need to
cover some parts better than others, the availability of different types of sensors having different
costs and sensing abilities, and so forth. Similar questions come up in the area of cellular network
planning; see for example [565]. A related problem is known from the area of computational
geometry; it is called the art gallery problem [609]. In this problem, an art gallery (for example,
described by a polygon) has to be covered with the minimum number of sensors such that all
points in the gallery are covered. This problem can be solved in two dimensions, but becomes
NP-hard in three dimensions [365]. In Chakrabarty et al. [129], the deployment problem in
three dimensions with two types of sensors (cheap and small range vs. costly and large range)
is posed as a linear programming problem with the goal of minimizing overall costs. Dhillon
et al. [204] consider a similar problem but assume imprecise sensors. With such sensors, an
event at distance d from the sensor is not detected reliably, but only with a certain probability,
which in general depends on d . They propose an algorithm for sensor placement that strives to
achieve a given minimum detection probability for all points of a given area. Further references
are [358], [945], and [173, 174].

• In Byers and Nasser [112] it is proposed to schedule the activities (sensing, transmitting/
receiving, aggregating) of a number of nodes such that a utility function is maximized. One
part of this function captures the subset of sensors tasked with sensing and the achieved sens-
ing quality. A utility function measures the utility to a user (for example, information quality)
provided by different partitions of the set of sensors into the three different activities.

13.3 Reliable data transport
The problem of reliable data transport over wireless multihop networks like wireless sensor networks
is not an easy one. There are three main sources of packet losses:

Reliable data transport 377

• The wireless channel can introduce (lots of) transmission errors, the packets of different nodes
can collide, or nodes can lose packets because of other failures.

• Packets can be dropped in the network because of congestion, that is, overload of intermediate
nodes.

• The receiver might drop packets because they arrive too quickly.

The focus of this section is on the first issue, that is, on error recovery. The second issue, congestion
control, is discussed in Section 13.6. Solutions to the third problem are often called flow control;
Section 6.1 explains why flow control is not of big importance in sensor networks.

In Section 13.3.1, we discuss the different reliability requirements encountered in the realm of
sensor networks. Section 13.4 discusses the problem of reliable delivery of single packets, using
techniques like acknowledgments, packet duplications, and so forth. Section 13.5 describes two
block delivery protocols, namely PSFQ (Section 13.5.1) and RMST (Section 13.5.2). This section
includes also a discussion of why or why not proven solutions from the IP world (most notably
TCP) are useful in sensor networks (Section 13.5.3). Stream delivery is discussed in the context
of congestion control (Section 13.6) because the main reliability-related control knob for stream
delivery, the rate by which sensors generate packets, must be controlled to avoid congestion and
adverse effects on the desired reliability.

Several physical layer mechanisms have been developed to increase transmission robustness,
for example, FEC, choice of modulation schemes and transmit power, diversity mechanisms, and
several more (see Chapter 4). With such mechanisms, a packet is more likely to make a single
hop but they cannot eliminate all losses. The additional mechanisms needed to achieve end-to-end
reliability are the focus of this chapter.

13.3.1 Reliability requirements in sensor networks
What are the requirements for reliable data transport in wireless sensor networks? A first glance
toward this question can be gained by comparing sensor networks with other networks.

In traditional networks like the Internet, the transport protocols (TCP, UDP) and the underlying
network layer protocols have essentially no clue which kind of data they transport. In fact, a
key design requirement for these protocols is data transparency. Such a protocol must strive to
deliver every single bit to the receiver(s), since nothing is known about the relative importance
of the different data bits. On the other hand, sensor networks are not designed with the goal
of transporting multiple independent data streams. Sensor networks are data-centric and rely on
in-network processing. The reliability requirements are pretty much application specific and the
protocols can take advantage of this; they know the data they carry.

Several data transport tasks for wireless sensor networks have been discussed in the literature.
These can be roughly classified into the following orthogonal axes:

Single packet versus block versus stream delivery: The cases of delivering only a single packet
on the one hand and of delivering a number or even an infinite stream of packets on the
other hand differ substantially in the protocol mechanisms usable in either case. In the single
packet delivery problem, a single packet must be reliably transported between two nodes.
It may be argued that such a requirement will not occur in dense wireless sensor networks
where many nodes observe the same phenomenon and report highly correlated data. However,
there are arguments against this claim. The first one is that not all sensor networks will be
dense. Secondly, data aggregation is an important strategy in wireless sensor networks to
condense many redundant or correlated measurements into a small piece of data. Aggregation
drastically reduces the amount of data that must be transmitted to distant sink nodes, but
on the other hand, the reliability requirements for the summary packet are much higher

378 Transport layer and quality of service

than for any of the individual sensor readings. In the block delivery problem, a finite data
block comprising multiple packets must be delivered to a sensor or a set of sensors. Some
application examples for this are the retasking of a sensor network (i.e. the distribution of
new application code to a set of sensor nodes) or the injection of user queries [849]. Finally,
in the stream delivery problem, a theoretically unbounded number of packets has to be
transported between two nodes. An example for this is periodic measurement reports.

Sink-to-sensors versus sensors-to-sink versus local sensor-to-sensor: It can be assumed that
most communications in sensor networks are not between arbitrary peer nodes, but infor-
mation flows either from sensor nodes toward a single or a few sink/gateway nodes or in
the opposite direction, from sinks to sensors. In the latter case, the groups of sensors can
be geographically specified (“all sensors in the conference room”) or by other attributes
(“all temperature sensors with less than 50 % battery capacity”). Other applications like, for
example, target tracking (see Section 14.3.1 require reliable handover of target state (e.g.
estimated position, speed) between neighboring nodes close to the target’s trajectory.

Guaranteed versus stochastic delivery: In the case of guaranteed delivery, it is expected that all
transmitted packets reach the destination; anything else is considered a failure. For example,
when a block of application code is distributed to a set of sensors, losing any packet renders
the code block useless. In general, guaranteed delivery is challenging and costly in terms
of energy and bandwidth expenditure, specifically over links with sometimes high error
rates like wireless ones. Furthermore, many applications can live with some losses, provided
that there are not too many of them. The concept of stochastic delivery guarantees allows
a limited amount of losses. There are several ways to specify stochastic guarantees. For
example, one might specify that for periodic data delivery within every k subsequent packets
at least m packets must reach the destination; any number below m is considered a failure.
Such a specification has similarities to the concept of (m, k)-firm deadlines [328, 862]. It is
applicable when subsequent sensor readings are highly correlated, for example, because a
slowly varying physical process is monitored. A similar specification requires that at least m

out of k sensors detecting an event must deliver a packet to the sink or to a local clusterhead
for proper detection/aggregation. A third approach to deal with stochastic guarantees is
to specify a delivery probability simply as the long-term fraction of arriving packets. In
general, the higher the desired delivery probability, the higher are the energy costs needed
to achieve this.

As the reliability requirements are application dependent, several works have focused on devel-
oping transport protocols for “single points” or “small point sets” in the “space” spanned by the
previous three axes. Generally applicable transport protocols that are lightweight enough to run on
constrained sensor nodes seem not to have appeared yet. Even in the Internet world, there is no
single protocol: TCP is used for unicast applications, whereas for reliable multicast, other protocols
like, for example, Scalable Reliable Multicast (SRM) [263] have been developed.

However, even for more specialized protocols, it is a design challenge to achieve a small footprint
in terms of code size, size of runtime data, and computational complexity.

13.4 Single packet delivery
The problem is to deliver a single packet from a source to a sink node over multiple hops. As
pointed out in Chapter 6 for the single-hop case, there is a trade-off between achievable reliability
and energy costs. It is thus appropriate to consider stochastic guarantees and to measure reliability
in this case as a packet delivery probability.

Single packet delivery 379

The following discussion is structured according to the number of assumed network paths
between source and sink. In multipath solutions, the presence of multiple paths is taken for
granted and can be exploited. In single-path solutions, this assumption is not made.

13.4.1 Using a single path
Taking all the single-hop physical-layer mechanisms like FEC or transmit power variation for
granted, the prime mechanism to improve packet delivery probability are retransmissions and usage
of multiple packets.

In a retransmission scheme, in general three issues have to be resolved: (i) Who detects losses
and what are the indicators used? (ii) Who requests retransmissions? and (iii) Who carries out these
retransmissions? In single packet delivery, the data packet can get lost. Only the transmitting node
has a chance to detect this and the canonical way is to use timeouts for acknowledgment packets. It
is also the transmitting node who requests and performs retransmissions. To convince the transmitter
about successful packet delivery, the receiver has to send a positive acknowledgment, that is the
receiver has to confirm that indeed a packet has been received.

There is more flexibility in case of block or stream delivery. For example, it is possible to
let the receiver detect losses (e.g. by checking for holes in the received sequence numbers) and
request retransmission of missing packets by using negative acknowledgment (NACK) packets.
A NACK indicates packets that failed for some reason. If additionally NACKs carry implicit
acknowledgments of other packets, then there is no necessity to send positive acknowledgments
for every packet, thus saving lots of energy.

For single-hop delivery in wireless multihop networks, two standard approaches using positive
acknowledgments are the following:

• MAC-layer retransmissions: when a node on the path forwards the data packet, it expects to
receive a MAC-layer acknowledgment. Typically, the transmitter makes a bounded number of
trials to successfully forward the packet and drops it after this number has been exhausted.
However, for small data packets, the acknowledgments create significant overhead, which is
invariably expended even on exceptionally good channels.

• End-to-end retransmissions: the source node needs to buffer the packet until an acknowledgment
from the sink node arrives. Again, the number of trials made by the source node is typically
bounded. End-to-end retransmissions can be combined with MAC-layer retransmissions.

Hence, one of the first questions is whether to rely entirely on end-to-end acknowledgments or
to additionally use MAC-layer/link-layer acknowledgments and retransmissions. We discuss this
choice with an example.

Example 13.1 (Is it efficient to use only end-to-end acknowledgments?) Let us consider the sit-
uation where a single data packet of length ld bits has to be transmitted from a sensor node
(source) over a fixed path to some sink node n hops away. The sink node always generates
an acknowledgment packet of size la bits called sink acknowledgment, which travels back
to the source. When the source does not receive the sink acknowledgment within a certain
time, it retransmits the data packet. The number of retransmissions is not bounded, since in
this example we are interested in the energy needed until the packet is eventually delivered.

We investigate two cases. In the first case, all packets (data or acknowledgment packets) are
transmitted without any per-hop ARQ protocol, that is there are no MAC-layer acknowledg-
ments. In the second case, the MAC layer or link layer performs a bounded number k of

380 Transport layer and quality of service

trials to deliver a packet. The required MAC-layer acknowledgments have a size of lm bits.
We do not consider the problem of correct timer settings in this example.

To keep things easy, the error behavior of all the wireless channels is modeled as a simple
Binary Symmetric Channel (BSC) with bit-error probability p (see Section 4.2.4). For a
BSC, the probability that a packet of l bits length can be transmitted successfully is given
by P(l) = (1 − p)l . The expected number of trials a packet needs to pass one hop is given
by 1

P(l)
. Similar to the Example 6.3, we model the energy costs for transmitting/receiving a

packet of size l bits as:

et (l) = et,0 + et · l er (l) = er,0 + er · l,

where et,0 and er,0 are fixed energy costs spent each time transmitting/receiving a packet.
Parameters et , er are the energy spent on transmitting/receiving a single bit. We assume that
the costs for receiving a packet are incurred independent of whether reception is successful
or not.

In the pure end-to-end case without MAC-layer acknowledgments, a successful trial requires
that the data packet reaches the sink (taking all n hops successfully) and the sink acknowledg-
ment reaches the source afterward, again over n hops. The overall energy costs are composed
of two components: a number of failed trials and a final successful trial. The probability of
a successful trial is P(ld)

n · P(la)
n and the associated energy costs are n(et (ld) + er (ld)) +

n(et (la) + er (la)). The probabilities of the different failure outcomes and their associated
energy costs are displayed in Table 13.1; it is straightforward to compute the average costs of
a failed trial from this. Taking all this together, one immediately obtains the overall expected
energy Ee,− needed to eventually deliver the packet and to get the sink acknowledgment
back to the source.

The analysis for the case where the MAC layer is allowed to make a number k of trials
to deliver a packet is slightly more complex, since different per-trial and per-hop outcomes
must be considered for an accurate determination of the average energy costs. For a single
trial to transmit a packet of size l bits on the MAC layer, three cases can occur:

• The packet does not make it and consequently the receiver does not receive anything; the
probability for this is 1 − P(l) and the costs are et (l) + er (l);

• The packet is successfully received, the receiver generates a MAC-layer ack but this ack
does not reach the original transmitter; the probability for this is P(l) · (1 − P(lm)) and
the cost is et (l) + er (l) + et (lm) + er (lm).

Table 13.1 Outcomes and energy costs for the pure end-to-end case

Outcome Probability Energy costs

data makes 0 hops 1 − P(ld) et (ld) + er (d)

data: 1 hop P(ld) · (1 − P(ld)) 2(et (ld) + er (ld))

.

data: n − 1 hops P(ld)n−1 · (1 − P(ld)) n(et (ld) + er (ld))

data: n hops, ack: 0 hops P(ld)n · (1 − P(la)) n(et (ld) + er (ld)) + et (la) + er (la)

data: n hops, ack: 1 hops P(ld)n · P(la) · (1 − P(la)) n(et (ld) + er (ld)) + 2(et (la) + er (la))

.

data: n hops, ack: n − 1 hops P(ld)n · P(la)
n−1 · (1 − P(la)) n(et (ld) + er (ld)) + n(et (la) + er (la))

data: n hops, ack: n hops 1 − ∑
other = P(ld)

n · P(la)
n n(et (ld) + er (ld)) + n(et (la) + er (la))

Single packet delivery 381

1000

10000

100000

1e+06

1e+07

1e-06 1e-05 0.0001 0.001 0.01

Bit error probability

Pure end-to-end
MAC[2]
MAC[5]

MAC[10]

Figure 13.13 Comparing expected costs (in energy units) for pure end-to-end acknowledgments versus end-
to-end acknowledgments plus k trials at the MAC layer for varying bit-error rate p and n = 10 hops

• Both the packet and MAC-layer acknowledgment are successfully transmitted; this happens
with probability 1 − (1 − P(l)) − (P (l) · (1 − P(lm))) = P(l) · P(lm) and again the costs
are et (l) + er (l) + et (lm) + er (lm).

By extending this analysis to take k trials per hop into account, one can compute the over-
all expected energy Ee,k needed to eventually deliver the data packet and get the sink
acknowledgment back to the source node.

In Figure 13.13, we compare the average costs Ee,− for the case of end-to-end acknowl-
edgments without MAC-layer acks with the average costs Ee,k for the case including k

MAC-layer trials. The parameter varied is the bit-error rate p. The assumed parameter set-
tings are et = er = 1, et,0 = er,0 = 50 of energy units, a data packet length of ld = 100 bits,
a sink acknowledgment length of la = 50 bits, and a MAC-layer acknowledgment length of
lm = 20 bits. The number of hops is n = 10 and k has been chosen as k ∈ {2, 5, 10}. There
are two regimes: For low bit error rates, the pure end-to-end scheme is more energy efficient
since most packets arrive successfully and MAC-layer acknowledgments are wasted. On the
other hand, when the bit-error rate is higher than a certain threshold, MAC-layer acknowl-
edgments can keep the energy costs within reasonable bounds whereas the costs for the case
without MAC-layer acknowledgments explode. It is beneficial to allow more trials k as the
BER increases.

It is also instructive to compare both approaches for varying number of hops n while all
other parameters including the bit-error rate p are kept fixed. In Figure 13.14, the average
energy costs are shown for p = 0.001. Again, there is a threshold below which MAC-layer

382 Transport layer and quality of service

1000

10000

100000

1e+06

1e+07

0 5 10 15 20 25
Number of hops

Pure end-to-end
MAC[2]
MAC[5]

MAC[10]

Figure 13.14 Comparing expected costs (in energy units) for pure end-to-end acknowledgments versus a
combination of end-to-end and k MAC layer trials for fixed bit-error rate p = 0.001 and varying number n

of hops

acknowledgments are a waste of energy, but for larger numbers of hops, they outperform
the pure end-to-end case significantly. The energy costs for the pure end-to-end scheme
increase exponentially with the number of hops. For bounded k, the scheme with MAC
retransmissions has a similar behavior, but curves start to diverge at significantly higher
BER values. It can be shown that for unbounded k the average energy costs are linear in
the number of hops.

There is another advantage of using MAC-layer acknowledgments, not shown in the figures.
Both approaches (with/without MAC) differ not only in the overall amount of energy spent
but also in the distribution of energy expenditure over nodes. When MAC-layer acknowl-
edgments without any restrictions regarding the number of retransmissions are used, each
node spends on average the same amount of energy to forward the packet. In all other cases,
the source node and likely the first hops are involved in every retransmission, even when
the packet failed many hops away of them just before the sink. The distribution of energy
expenditure over the nodes becomes more even as the number k of MAC trials increases.

One important issue has not been addressed in this example: the problem of setting timers. When
positive acknowledgments are used, the transmitter has to start a timer for each packet. If the timer
expires, the transmitter infers that the packet is lost and a retransmission is initiated. Setting timers
for MAC-layer acknowledgments is fairly easy because the scope is only a single hop plus some
small delays due to MAC and node processing. Setting timers for end-to-end transmissions over
multiple hops is much more tricky. If no end-to-end round-trip time estimates are available from
previous packets, the source node needs some global information to come up with a reasonable

Single packet delivery 383

guess for the timeout value. At minimum, the source node needs to know the hop distance to
the sink or some bound on the maximum number of hops in the overall network (the network
diameter) as well as an estimate on the expected time needed to make one hop. However, these
numbers are variable, although on different timescales. On longer timescales, the number of hops
in a stationary network can change because of deployment of new nodes or death of existing
nodes. On the other hand, the time needed to make one hop depends on the current state of the
wireless channel, the allowed number of MAC retransmissions, the MAC protocol overheads, the
node’s buffer occupancy, the amount of local congestion, and so forth. In short, this delay can be
highly variable. Another issue not to be underestimated in sensor networks is that with end-to-end
acknowledgments the source node has to buffer all packets in transit for possible retransmission.

In Deb et al. [198], a method called Hop-by-Hop Reliability (HHR) has been proposed, which
does not use MAC-layer acknowledgments but sends the same packet to the next forwarder (or
upstream node) multiple times. The desired end-to-end delivery probability r is translated into
a number of hop-by-hop delivery probabilities ri , such that

∏n
i=1 ri = r holds. A node i knows

its local packet error probability Pi toward the upstream neighbor j and chooses the number of
packets Ni such that j receives at least one of the packets correctly with probability ri . Under the
assumption of a BSC, the probability that j receives at least one packet is given as 1 − P

Ni

i . The
number Ni can be computed from this by solving ri = 1 − P

Ni

i for Ni . A variation of the HHR
approach is the Hop-by-Hop Reliability with Acknowledgments (HHRA) scheme, in which a node
i sends up to Ni packets, but after each packet, it waits for an acknowledgment and aborts further
transmission if an ack indeed arrives. For both protocols, the overhead, that is, the average overall
number of packets needed to transmit a data packet over n hops, has been compared in [198]
under the following assumptions: (i) acknowledgments are perfectly reliable and do not contribute
to the packet count, and (ii) ri = r1/n, that is all hops require the same reliability. In Figure 13.15,
the overhead is shown for n = 10, r = 0.7, and varying packet loss rate e common for all hops.
There are some similarities to the results obtained in Example 13.1: for low error rates, MAC
acknowledgments are wasted, and for higher error rates, they are beneficial.

It must be noted, though, that the idea of sending the same packet multiple times to the same
upstream neighbor loses a bit of its charm when considering bursty channel errors. As long as a

0

5

10

15

20

25

30

35

40

45

P
ac

ke
t o

ve
rh

ea
d

0.02 0.06 0.1 0.14 0.16 0.22 0.26 0.3 0.34 0.36 0.42 0.46 0.5

Channel error

HHRA

HHR

Figure 13.15 Overhead comparison of HHR and HHRA for n = 10, r = 0.7, and varying packet error rate
e. Reproduced from [198, Fig. 3] by permission of ACM

384 Transport layer and quality of service

channel is in a deep fade, all subsequent packets are likely erroneous and thus wasted. When delay
is not an issue, postponing schemes can be interesting here (see Section 6.2.2).

13.4.2 Using multiple paths

The existence of multiple paths between a source and a sink node can be exploited in several ways.

Providing alternative routes

A first possibility is to set up multiple routes, to choose a preferred route from these, and to
switch to another one when the preferred route fails [276]. These routes can be either pairwise
node-disjoint and nonintersecting paths or the paths can be braided paths. In Ganesan et al.
[276], localized protocols for setting up both types of paths are discussed and investigated for
their resilience (the probability that there exists an alternative path when the current one fails) as
well as their maintenance overhead. It is beneficial to choose “good” routes in the first place, that
is, energetically feasible routes that have low per-hop error rates. The per-hop error rates can be
estimated from physical-layer attributes like signal strength or from counting acknowledgments and
retransmission from underlying MAC-layer and link-layer protocols [787]; see also Section 6.4.2.
Instead of switching to another path in case of problems, it is also viable to repair a failed path
by rerouting it locally around failed hops [817].

Instead of transmitting a single packet over one of these paths, it is also an option to send
multiple packets over multiple paths, like, for example, the ReInForM approach discussed below.
ReInForM sends multiple copies of the same packet. Dulmann et al. [214] present a variation
of this approach that tries to reduce the overhead. They adopt the concept of parity packets as,
for example, used in multimedia applications [119]. Specifically, the source node adds a number
of redundancy bits to its data packet, and the resulting larger packet is fragmented into smaller
ones. Each of these fragments is transmitted on a separate path. The coding scheme is chosen such
that not all fragments must be present at the receiver to successfully decode the packet and some
fragment losses are therefore tolerable.

ReInForM

The ReInForM approach developed by Deb et al. [199] is based on the idea of sending multiple
copies of the same packet over multiple, randomly chosen routes. Packet duplication occurs not only
at the source node but also on intermediate nodes. All nodes decide on the number of duplicates
to be created on the basis of local error rates, the hop distance to the sink node, and the required
reliability.

The protocol works as follows. Each node i knows its hop distance ni to the sink and furthermore
knows all its neighbors j and their respective hop distance nj . Node i classifies its neighbors into
three sets H−

i , H 0
i and H+

i . The set H−
i contains all neighbors j with nj = ni − 1, H 0

i contains
the neighbors j with nj = ni and H+

i contains those for which nj = ni + 1 holds. Furthermore,
node i possesses an estimate of its local packet error rate ei .

The protocol operation starts at the source s and the goal is to deliver a packet with reliability
rs . To decide about the number of paths P , the source uses its locally estimated error rate es and
the assumptions of a BSC and independent paths. The probability that a single packet fails over a
path with ns hops is given by 1 − (1 − e)ns . If P packets are sent over P paths, the probability
that none of these copies reaches the sink is (1 − (1 − e)ns)P and thus the probability that at least
one packet reaches the sink is 1 − (1 − (1 − e)ns)P . This probability shall at minimum be rs and

Single packet delivery 385

the required number of paths P can be obtained as:

P = log(1 − rs)

log (1 − (1 − e)ns)
. (13.4)

Which of s’s neighbors are selected as starting points of these paths? First, the source selects a
distinguished next-hop neighbor t from H−

s ; this is guaranteed to exist in a connected network. The
next-hop neighbor forwards the packet unconditionally, all other neighbors do not. The probability
that t really receives its copy and becomes a forwarder is just 1 − es and thus the number of paths
to be distributed over the remaining neighbors of s is given as P ′ = P − (1 − es). These paths
are allocated to the nodes in H−

s , H 0
s , and H+

s such that H−
s has precedence over H 0

s , which in
turn has precedence over H+

s . The source computes the values P −
s , P 0

s , and P +
s determining the

number of paths that shall be created from each of s’s neighbors in the sets H−
s , H 0

s , and H+
s ,

respectively. Finally, the source prepares a packet containing its hop distance ns , its local error rate
es , the next-hop neighbor t , and the three values P −

s , P 0
s , and P +

s . Finally, this packet is broadcast.
When the next-hop node t receives the packet, it accepts the role of a (new) source and behaves

in almost exactly the same way the source has; t became a forwarder. Any other node u receiving
the packet first determines the value Pu ∈ {P −

s , P −
s , P −

s } according to the class to which u belongs;
for example, if nu = ns − 1, then Pu = P −

s . Node u decides to become a forwarder when Pu ≥ 1.
If Pu < 1 node, u becomes a forwarder only with probability Pu. Before forwarding the packet,
however, any forwarder u computes its local required reliability as

ru = 1 − (
1 − (1 − es)

ns−1)Pu
.

In Figure 13.16, the forwarding behavior of this algorithm in a random sensor network of 300
nodes spread out in a square area of 100 m side length and having a transmission range of 20 m
is illustrated. The source is in the lower left corner, and the sink in the upper right corner of the
field. The desired reliability rs is 70 % and the packet error rate is uniformly 30 %. The upper half
shows the paths taken for a single packet issued by the source, and the lower half displays the case
of 10 packets. The following points are remarkable:

• The random choice of the next-hop neighbor provides some load balancing across nodes; different
paths are chosen instead of always favoring a single path or a small number of paths.

• The algorithm has a tendency to create most of the duplicates close to the source; later on packet
duplications are more rare. This is a direct result from Equation 13.4 because the number of
hops ni to consider becomes smaller.

In Figure 13.17, the achieved packet delivery probability (taken over 200 packets issued by the
source) for ReInForM with 40 and 70 % reliability target is compared with two other schemes:
(i) flooding, and (ii) sending only a single packet over a single path. The number of packets created
in the network for the different schemes is displayed in Figure 13.18; both figures belong to the
same experiment. The parameter varied is the (uniform) packet error rate. It can be observed that
flooding is always a safe but expensive bet, the single packet approach breaks down quickly (as
expected), and ReInForM is able to maintain the desired reliability target. It can also be seen that
a higher reliability target or an increased packet error rate incurs a higher energy cost.

HHB and HHBA

In Deb et al. [198], two further protocols besides HHR and HHRA are presented, the Hop-by-Hop
Broadcast (HHB) and Hop-by-Hop Broadcast with Acknowledgments (HHBA) protocols.

386 Transport layer and quality of service

(a)

(c) (d)

(b)

Figure 13.16 Illustration of ReInForM’s forwarding behavior for target delivery probability of 70 %. Upper
row: Single packet issued by the source with packet error rate of 0 % (left part) and 30 % (right part). Lower
row: Source issues 10 packets . Reproduced from [199, Fig. 3] by permission of IEEE

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5 10 15 20 25 30 35 40 45 50

Channel error (%)

Single path
Flooding
MP-reliability 40
MP-reliability 70

D
el

iv
er

y
pr

ob
ab

ili
ty

Figure 13.17 Achieved delivery probability for flooding, single packet delivery, and ReInForM with reliability
levels of 40 and 70 % respectively for varying packet loss rate. Reproduced from [199] by permission of IEEE

Single packet delivery 387

0

1

2

3

4

5

6

7

0 5 10 15 20 25 30 35 40 45 50 55

Channel error [%]

Single Path
Flooding
MP-reliability40
MP-reliability70

×104

O
ve

rh
ea

d
(#

 o
f p

ac
ke

ts
)

Figure 13.18 Required overhead for flooding, single packet delivery, and ReInForM with reliability levels of
40 and 70 % respectively for varying packet loss rate. Reproduced from [199, Fig. 5] by permission of IEEE

S

N hops N - 1 hops N - 2 hops

Figure 13.19 HHR and HHB

We first explain the difference between HHR and HHB; please refer also to Figure 13.19. In
HHR, the source picks one neighbor and sends the same packet in unicast mode to this neighbor
N times, hoping that at least one packet gets through. This is illustrated in Figure 13.19 by having
N = 4 packets on each arc. If instead the source would broadcast the packets, it would suffice
if any of the k = 3 neighbors having a n − 1-hop distance to the sink receives any of the packet
copies correctly. By using the mediums broadcast property, one can reduce the number N of copies
generated in each hop, sending only N ′ < N packets. With a packet error rate of es , the delivery
probability is given by 1 − ekN ′

s . Given a required delivery probability rs , this can be solved for
N ′ and one gets N ′ = N/k. Hence, the source needs to send much less packets.

388 Transport layer and quality of service

0

10

20

30

40

50

60

70

80

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Hops

P
ac

ke
t o

ve
rh

ea
d

HHB

HHBA

HHR

HHRA

Comparison of schemes

Figure 13.20 Comparison of the overhead induced by the HHR, HHRA, HHB and HHBA protocols for 50 %
packet loss rate, 70 % desired delivery probability and varying number of hops. Reproduced from [198, Fig. 5]
by permission of ACM

However, another problem occurs. The number k of n − 1-hop neighbors that decide to forward
the packet must be controlled; otherwise such a scheme is hardly distinguishable from flooding. A
deterministic control like, for example, running a leader election protocol between these k nodes,
involves signaling overhead, which may easily eat up all energy savings. Accordingly, a stochastic
control is desirable that on average lets one of the k nodes forward the packet. The average number
of n − 1 hop neighbors receiving the packet is given by k(1 − eN ′

s), and if any of these forwards
with probability 1

k(1−eN ′
s)

, then indeed there is, on average, one forwarder. However, this requires

all these nodes to know the number k. This number is therefore included into the packet. Any
intermediate node receiving the packet filters out duplicates (i.e. packets having a sequence number
recently seen) and forwards the packet at most once. When the intermediate node has decided to
forward the packet, it behaves pretty much as a new source node.

In the HHBA protocol, the source node also sends N ′ packets, but with a larger spacing than
with HHB. The larger spacing is sufficient to accommodate acknowledgment packets. Specifically,
only a node that has decided to become a forwarder sends back an acknowledgment. After receiving
the acknowledgment, the source stops to transmit duplicates. Hence, it may happen that the source
needs to send fewer than N ′ packets.

In Figure 13.20, the four schemes HHR, HHRA, HHB, and HHBA are compared for their
overhead, that is, the overall number of generated packets required to deliver a packet with 70 %
probability over a random sensor network with uniform packet loss rates of 50 % and varying
number of hops. It can be seen that the overhead increases linearly with the number of hops and
that the broadcast-based schemes have significant advantages.

13.4.3 Multiple receivers
The approaches discussed so far are all targeted to deliver a single packet to a single receiver. The
task to transmit a single packet reliably to multiple receivers is more tricky and to our knowledge
not yet addressed in full detail. One problem is that using positive acknowledgments would lead
to the ack implosion problem.

An obvious solution is clearly flooding/reliable broadcast [811] or directed flooding, when geo-
graphic information is available and the nodes to be reached are confined to a geographic region.

Block delivery 389

When the set of nodes to be reached is a large fraction of the overall number of nodes, flooding
can be a reasonable choice.

13.4.4 Summary
We summarize some of the main lessons that can be learned from the results and protocols discussed
so far:

• Pure end-to-end recovery is only advantageous when the single hops show virtually no errors.
For “real-life” error rates like those found on wireless channels, local error recovery based on
MAC-layer acknowledgments is advisable. The MAC-layer behavior can also support selection
of feasible routes [787]: when many trials are needed for a certain link it is likely a bad link and
should be avoided.

• Higher desired delivery probability or a larger number of hops leads to increased energy con-
sumption.

• Flooding is a simple scheme achieving excellent delivery probability, but at a high price.
• Positive acknowledgments are needed to ensure reliability levels. However, these have some

problems: (i) they are even sent when the channel is good, and (ii) there is the ack implosion
problem when a packet is to be delivered to multiple receivers.

13.5 Block delivery
The delivery of large data items is required, for example, when time series data has to be transported
from sensors to a sink or when the sink sends out new application code or new user queries to
retask the whole network. To keep the packet error rates reasonably low (see Section 6.3) and to
comply with packet-size limitations of the transceiver, it is often mandatory to split up the data
block into multiple packets/segments/fragments. One important feature of such a block transfer is
that NACKs can be used. As explained in Section 13.4.1 this potentially reduces the number of
acknowledgment packets.

A NACK can be regarded as a retransmission request issued by the receiver. When intermediate
nodes cache the segments, they can serve such a request as well as the original source node could,
but with the benefit that the NACK and the following retransmitted segment do not need to travel
the whole distance between source and sink node. Such a node is also called a recovery server
[617]. In an extreme case, all nodes in the network spend some buffer for caching.

We discuss two schemes incorporating these ideas.

13.5.1 PSFQ: block delivery in the sink-to-sensors case
The Pump Slowly Fetch Quickly (PSFQ) protocol presented by Wan et al. [849] addresses the
case where an ordered block of packets is to be delivered from one sink node (for example, a user
terminal) to a set of sensor nodes. Some major applications of such a protocol are the distribution
of new application or protocol code for retasking the sensor network or the injection of complex
queries. Clearly, a sensor node has to receive the entire code block before it can start to work with
it; losses are not tolerable.14

There is a need to distribute packet blocks to individual sensors, groups of sensors, or even the
whole sensor network. For the purposes of the present discussion, it is assumed that the underlying
network layer offers appropriate services and addressing mechanisms.

The basic idea of the PSFQ protocol can be described as follows. The data source pumps
the packets making up the code block one after another into the network, using a large period

14 Another problem of such a retasking operation not considered here is how a single sensor decides when to activate the
new code – in many cases, such an activation makes sense only when all other sensors are ready to run the new code, too.

390 Transport layer and quality of service

and a broadcast or directed broadcast mechanism. Nodes receiving those packets store them into
an internal buffer and, when they are received in-sequence, forward them to downstream nodes.
An intermediate node receiving an out-of-sequence segment does not forward it immediately, but
quickly requests the missing segments from the upstream neighbor. This operation is called a
fetch operation and corresponds to a NACK. Between two pumps, multiple fetch trials can be
made. Therefore: Pumping is slow and fetching is quick. As soon as the missing packets arrive,
the intermediate node continues to pump the packets in-sequence into the network, again using a
broadcast operation. The recovery is thus local, not end-to-end. The protocol assumes that losses
are entirely due to channel errors and not due to congestion, and PSFQ contains no mechanisms to
deal with congestion.15

How does the sink know that all packets are distributed and the new code block can be enabled?
If the time between pumps is large enough to accommodate sufficient numbers of fetches/retrans-
missions and if furthermore the network diameter is known, it can be estimated when the packet
stream will be delivered successfully.

In the next few sections, the protocol operation is sketched in some more detail.

Behavior of the data source

The data source splits the available code block or file into a series of packets or segments. Besides
the code, each packet (also called inject message) contains four additional fields: (i) a file id
identifies code blocks, (ii) a file length indicates the length of the code block, (iii) the sequence
number identifies particular segments/packets within a code block, and (iv) a Time To Live (TTL)
field allows to restrict the scope of the code distribution operation to those nodes that are at most
k hops away from the data source.

The data source broadcasts the packets one after another with a spacing of Tmin seconds. The
choice of Tmin is subject to a number of considerations. First, it must be large enough to accommo-
date some number of fetch operations; Wan et al. [849] suggest a number of five fetch operations.
Secondly, by choosing a larger interval, the intermediate and end nodes have sufficient time to
process the incoming segments and one has a simplistic kind of flow control. Third, there must be
sufficient time for downstream nodes to repump the segments.

All intermediate nodes have a cache for incoming segments. To keep discussion simple, it is
assumed that this cache is large enough to accommodate all program fragments. Please refer to
Wan et al. [849] for a discussion of the protocol behavior in case of smaller cache sizes.

Handling a duplicate packet

Any intermediate node receiving a segment checks whether the segment has already been received
in the past by looking it up in the cache, using file id and segment number as key. If the segment
is found, it is silently dropped. This is a convenient way to prevent forwarding loops.

If the packet has not yet been received, its TTL field is decremented. If this field is zero, afterward
the node stops forwarding the packet. Otherwise, it starts the forwarding process by looking at the
packet’s sequence number. Two cases can be distinguished.

Handling an in-sequence packet

A new packet is received in-sequence when all packets belonging to the same code block with
lower sequence numbers have been received. In this case, the packet is scheduled for repumping.
This operation is handled by the following rules:

15 In standard TCP, just the opposite assumption is made, leading to serious performance problems of TCP over wireless
links [41].

Block delivery 391

• The node picks a random time from the interval [Tmin, Tmax] and starts an appropriate timer.
• During this waiting time, the node listens on the channel to check whether other nodes broadcast

the same segment. If four other packets have been received, the node cancels the timer and
abandons the repumping operation.16

• If the timer expires, the packet is rebroadcast/repumped. The random delay is useful in reducing
the probability of hidden-terminal situations, since for broadcast packets no prevention measures
on the MAC level (like for example, RTS/CTS dialogues) are applied.

Handling an out-of-order packet

The behavior in case of receiving an out-of-order packet is more complex. The general strategy
followed by PSFQ is to not repump the packet, but instead the node tries to request (fetch) the
missing segments as quickly as possible. When this is successful, the node continues pumping the
packets in their correct order.

The decision to suppress the pump operation for the time being can best be explained by an
example, shown in Figure 13.21. The loss of packet 3 triggers a fetch operation at node A as soon
as A receives packet 4. When A would forward packet 4, nodes B and C would detect the same
loss event and start fetch operations for packet 3 themselves. In this case, three nodes start fetch
operations for a single loss event. Furthermore, the fetch operations of B and C are likely useless as
long as A does not have the missing segment. Therefore, suppressing the pump operation prevents
loss propagation.

Upon detecting the out-of-order packet, node A prepares a NACK message (negative acknowl-
edgment) that includes the file id, the file length, as well as a list of missing segments (a node can
have multiple outstanding segments, for example, due to bursty losses).17 The node broadcasts such
NACK messages every Tr seconds (with some randomization to avoid collisions with other node’s
NACKs) as long as there are missing segments and the maximum number of trials is not exhausted.
The value of Tr is smaller than Tmax; actually, their ratio defines how many fetch operations a node
can execute before the next pump.

When A receives NACK messages from other nodes requesting the same segments, it suppresses
its own NACK for a while. In the meantime, A listens on the medium whether the answer packet
with the right segment can be picked up. When A does not receive an answer (for example, because
the answering node is out of A’s range), node A resumes transmission of NACK packets.

The NACK packets are broadcast. In dense sensor networks, they may reach several neighbors
and possibly different neighbors have different portions of the missing segments in their cache. To
avoid collisions of all these answer packets, the following procedure is applied. Suppose that node
A’s NACK indicates segments 3, 6, 7, and 9 as missing and the NACK is heard by other nodes B

and C. Node B has only the segments up to and including 6, but node C has all segments. Both
nodes B and C – which cannot necessarily hear each other – start a timer with a random value
between 0 and Tr. When this timer expires, either node sends a single packet containing segment

16 The rationale for this is the following [849]: The goal of node A’s repump operation is to reach neighbors of A not
having the packet yet. If, however, A has already received the segment k times from other neighbors, significant fractions of
A’s neighborhood are already covered by these “foreign” broadcasts. It is shown in Ni et al. [596] for randomly deployed
nodes that the additional coverage that can be gained by A rebroadcasting the packet diminishes as k increases. For example,
for k ≥ 4, the expected additional coverage is ≤ 0.05 %. The decision to avoid rebroadcasting for k ≥ 4 has the advantage
of avoiding collisions. Furthermore, if receiving is significantly cheaper than transmitting, there is also an energy advantage
gained by not sending the packet.

17 The choice of negative acknowledgments over positive ones has two advantages. First, positive acknowledgments are
always transmitted, in good as well as bad channel states. In contrast, negative acknowledgments occur only during bad channel
states; during good times there is no overhead. Secondly, there is the problem of acknowledgment implosion: Just imagine a
node has 10 neighbors and each one would send a positive ack. This involves not only lots of packets, but also requires the
sender to keep track of which of its neighbors has not sent an ack and thus needs a retransmission.

392 Transport layer and quality of service

1

1

1
2

2

2
3

4

4

4

Data source Node A Node B Node C

Figure 13.21 Propagation of loss events (adapted from [849, Fig. 3])

3. If B receives a packet with segment 3 before its timer expires, the timer is canceled and B

keeps quiet (clearly, C behaves the same way). After Tr seconds have passed, the same procedure
starts over, but now for the packet with segment number 6. When 2 · Tr seconds have passed, node
B ends its activities, since it has no segments beyond 6 in its cache. However, node C continues
in the same manner as before. This way, there is only one eligible segment number in each time
interval of Tr seconds. The randomization strives to reduce collisions.

The PSFQ protocol contains provisions for upstream nodes to propagate A’s NACK packets
further toward the sink, when they have been received multiple times and the requested segments
are not present. However, this behavior is assumed to be the rare exception and thus the recovery
is only local.

Proactive fetch

The recovery method described so far works only when a node A has a chance to detect loss of
segment n by successfully receiving any segment with a higher sequence number than n. It fails

Block delivery 393

when the last segment or the k last segments of a file are missing. However, given that a node has
received at least one of the segments, it can derive the overall number of segments comprising the
code block (from the file length parameter) as well as a coarse estimate of the time when it should
have received the missing segments. This estimate is based on the knowledge of Tmax.

A node A sets a timer to the value Tpro each time it receives a new packet. Upon expiration of
this timer node, A enters the fetch mode and requests all the missing segments from its upstream
neighbors; this is called proactive fetch. Choosing Tpro too small might cause premature fetch
operations, choosing it too large induces longer file delivery delays. Another consideration is the
assumed cache size: when Tpro is too large, the missing segments may already have disappeared
from the caches of upstream nodes and the NACK messages must be propagated further. The choice
proposed in [849] makes Tpro dependent on the difference between the last received segment number
and the maximum segment number. The rationale is to fetch a single missing segment quickly, but
to be patient when more segments are missing because of a persistently bad channel. Specifically,
it is proposed Tpro = α · (Smax − Slast) · Tmax for some α ≥ 1 describing the “eagerness” of the
proactive fetch operation.

Report operation

The PSFQ protocol also specifies a report facility, which allows the data source to assess how many
nodes have already received the complete code block and can thus switch to the new software.
The sink node requests reporting by setting a reserved bit in the TTL field of an inject message.
Essentially, report messages are generated by the most distant nodes (those that receive packets
with a TTL of one) and travel back to the data source. All intermediate nodes piggyback their own
data onto these packets. If this would exceed the maximum packet size, the incoming report packet
is simply forwarded and the intermediate node creates a new one.

The data generated by an end node or an intermediate node contains the node’s own address and
a summary of the already received segments. When a node receives a report packet having a record
with its own node address (for example, due to a routing loop), the packet is dropped silently.
Intermediate nodes receiving packets with the report request bit set, but which do not receive any
actual report packets for some time, start generation of report packets by their own.

Performance results

The performance of PSFQ has been investigated by simulation and in an experimental test bed.
PSFQ is compared with a reliable multicast protocol from the IP world, namely an idealized
version of the Scalable Reliable Multicast (SRM) protocol presented by Floyd et al. [263] within
the context of a distributed whiteboard implementation. Reliable multicast protocols offer services
similar to PSFQ. SRM also uses the concept of local recovery, but there are some differences
compared to PSFQ:

• in-sequence delivery is not enforced, and
• each node transmits its last received sequence number periodically to the multicast group to

detect losses of the last segment of a code block.

Therefore, SRM involves more signaling traffic than PSFQ, which sends NACK packets only upon
a (proactive) fetch operation.

The investigated SRM version is somewhat idealized, since all operations concerning construction
and maintenance of the multicast tree are not taken into account and the resulting tree is an ideal
shortest-path tree to all receiving nodes.

394 Transport layer and quality of service

0

20 m 25 m

1 2 3 4 5

6

789101112

Figure 13.22 Network deployment scenario for comparison of PSFQ and SRM. Reproduced from [849, Fig.
4] by permission of ACM

0.00
0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00

0.20

0.40

0.60

0.80

1.00

1.20

Number of hops

A
vg

 d
el

iv
er

y
ra

tio

SRM-0.3 error rate
SRM-0.5 error rate
SRM-0.7 error rate
PSFQ-0.3 error rate
PSFQ-0.5 error rate
PSFQ-0.7 error rate

Figure 13.23 Average delivery ratio of PSFQ and SRM for varying hop distance and different packet loss
rates. Reproduced from [849, Fig. 5] by permission of ACM

The investigated network scenario is depicted in Figure 13.22. It consists of 13 nodes with a
spacing of 20 m between nodes and a transmission radius of 25 m. The nodes use simple MAC-layer
broadcasts for PSFQ, whereas for SRM a CSMA-CA variant with RTS/CTS handshake and up to
four link-layer retransmissions is used. Hence, SRM should suffer less from collisions than does
PSFQ. The channel loses packets according to a BSC model with some packet loss probability. The
data source (node 0) wishes to deploy a code block of 2.5 kB, segmented into 50 packets carrying
50 bytes of user data each. The chosen parameters for PSFQ are Tmin = 50 ms, Tmax = 100 ms and
Tr = 20 ms.

In Figure 13.23, the average delivery ratio at the different sensor nodes (taken over 10 replica-
tions) is shown for different values of the packet loss rate and for varying maximal hop distance.
The average delivery ratio simply counts how many of the packets issued by the data source have
reached the respective node 100 s after the data source has sent the last packet. It can be seen that
the delivery ratio decreases with increasing packet loss rate and with increasing number of hops.
Furthermore, both schemes have problems in delivering the file to all nodes when the packet loss
rate is 50 % or more. However, SRM has much bigger problems than does PSFQ in delivering the
file over very lossy channels.

Block delivery 395

Further results presented by Wan et al. [849] indicate that PSFQ is not only more reliable but
delivers code blocks faster in a regime of high packet loss rate (≥50 %). On the other hand, SRM
is faster for packet loss rates below 40 %. These results are obtained in a scenario covering only
the first three hops where both schemes are able to deliver all packets even when faced with a high
packet loss rate.

A third interesting performance measure is the communication cost, defined as the ratio of the
number of data packets delivered at nodes to the total number of packets involved in the whole
code block transfer. These costs have also been investigated for a three-hop scenario and it turns out
that PSFQ consistently needs about half the energy of SRM, even after disregarding all of SRM’s
costs involved at the MAC and link layer (RTS, CTS packets, MAC-layer acknowledgments).

To summarize, PSFQ is well adapted to the problem of reliably distributing code blocks from
a data source to a number of sensor nodes. An implementation of PSFQ under TinyOS requires 2
kB of code, which is acceptable for sensor nodes. One problem of PSFQ is that it requires nodes
to be awake constantly and to overhear the channel during the file transfer. However, these costs
are acceptable when code downloads are a rare operation.

13.5.2 RMST: block delivery in the sensors-to-sink case
The Reliable Multisegment Transport (RMST) protocol described by Stann and Heidemann [787]
is designed toward guaranteed delivery of large blocks of data from sensors to sinks. It is tightly
integrated with directed diffusion [378], described in Section 12.2.2. The large data block is frag-
mented by source nodes into a number of fragments and these are transmitted. On the other end,
the sink node collects all incoming fragments and delivers the whole block as soon as all fragments
have arrived. RMST is not designed to include explicit congestion control, to guarantee in-sequence
delivery of fragments at the sink, or to obey any time bounds.

Design of RMST mechanisms

The design of RMST combines repair mechanisms on different layers:

• It exploits MAC-layer retransmissions to increase the chance of data packets to make it over a
single hop. Specifically, the IEEE 802.11 MAC layer is taken as a basis. For unicast frames like
data frames, the whole machinery of MAC-layer acknowledgments and the virtual carrier-sense
operation (involving RTS/CTS frames) is used. For broadcast operations like, for example, in
interest dissemination, neither of these mechanisms is applied. Stann and Heidemann [787]
suggest to use at least three trials on the MAC layer.

• In RMSTs cached mode, all nodes in the network and specifically those on a reinforced path
between source and sink cache the fragments and check for missing ones. When directed diffusion
constructs the reinforced path from a source to a subscribing sink, the nodes on this path learn also
about the identity of their upstream neighbors, that is, those neighbors on the reinforced path that
are closer to the source. Accordingly, a back channel is associated with a reinforced path, and is
just the same path but in reverse direction, from the sink to the sensor(s). Intermediate nodes in
cached mode are required to check periodically for missing fragments, which can be either holes
in their local fragment list or the fragment list is truncated at the end of the block. If there are
any missing fragments, a NACK packet indicating the missing fragments is sent along the back
channel as MAC-layer unicast packet. When an upstream node has the missing fragments in its
cache, it retransmits these along the reinforced path. Otherwise it forwards the NACK packet
further on the back channel. However, NACK forwarding should happen rarely when nodes
have enough memory and the path does not change in the meantime. It is important to note that
the fragments as well as the NACK packets are represented as attributes on the diffusion layer.

396 Transport layer and quality of service

Furthermore, the NACK mechanism works independent of the behavior of underlying MAC
protocols. Hence, this mechanism can be regarded as a transport-layer mechanism.

• There is also a noncached mode in which intermediate nodes maintain no caches, only the
subscribing sink has one to collect fragments. In this mode, it is entirely up to the sink to detect
losses and issue NACK packets.

• On the application layer, the source regularly sends out all fragments comprising the block and
does so until the sink explicitly unsubscribes.

• The diffusion routing mechanism keeps track of node failures and of using good routes: the source
node send out exploratory messages regularly, leading to establishment of a new reinforced path
(along with its back channel).

These mechanisms have been investigated in different combinations, with the goal to minimize the
costs associated with repair actions.

A set of additional attributes is used to integrate RMST into directed diffusion. A data block
is uniquely identified by an attribute RmstNo, a fragment within a data block is identified by its
FragNo attribute, and the total number of fragments making up the data block is given by the
MaxFrag attribute. The NACK packet is also defined by a special attribute.

Evaluation

We discuss some of the results presented in Stann and Heidemann [787]. The investigated scenario
consists of 21 nodes arranged in a 3 × 7 grid such that each node reaches only its immediate
neighbors. There is a single source and a single sink node, both placed at opposite places in the
grid. Packets from the source to the sink have to take at least six hops. The MAC layer of the
nodes is IEEE 802.11. The block size is 5 kB, fragmented into 50 fragments of 100 bytes size.
Three variants are considered for the behavior of the MAC layer:

• In the no-ARQ variant, all packets use the broadcast-MAC address and consequently no RTS,
CTS, or acknowledgment packets are used.

• In the all-ARQ variant, all MAC packets are targeted toward a single node and include all the
RTS-/CTS-ACK machinery. Broadcasts are implemented by sending a separate unicast packet to
every neighbor.

• In the selective-ARQ variant, data and NACK packets use the unicast machinery, and other types
of packets like interest packets are disseminated by MAC-layer broadcasts.

The wireless channels follow a simple BSC error model with varying packet error rates.
The evaluation investigates the repair costs of different combinations of the above mechanisms.

These costs are measured by counting the overall number of bytes transmitted in the network to
deliver the data block, including any RTS, CTS, and MAC-layer acknowledgment packets. This
number is normalized to the byte count needed by a baseline scheme, which runs over a perfect
channel and uses no-ARQ on the MAC layer. Included in all byte counts are the costs associated with
directed diffusion, like, for example, the costs of interest dissemination. In Figure 13.24, a number
of different schemes (X, Y) are compared: Y denotes the MAC-layer mode (no-ARQ, all-ARQ,
selective-ARQ), whereas X denotes the scheme used on the application and transport layer:

• A hyphen indicates that no transport layer is used at all; instead the source transmits all blocks
periodically until the sink unsubscribes.

• An N indicates the noncached mode, that is only the sink issues NACK packets.
• A C indicates the cached mode, that is all nodes have caches and the ability to issue NACK

packets.

Block delivery 397

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

0 0.02 0.04 0.06 0.08 0.1 0.12

N
or

m
al

iz
ed

 b
yt

e
co

un
t

Error rate

(-,no-ARQ)
(-,all-ARQ)

(-,selective-ARQ)
(C,no-ARQ)
(C,all-ARQ)

(C,selective-ARQ)

Figure 13.24 Normalized overhead of different combinations of mechanisms for varying packet loss rate
(Figure based on data from [787])

In Figure 13.24, the results for no transport layer at all versus the cached mode are compared. The
following points are important:

• For zero errors, the schemes employing no-ARQ on the MAC layer are the cheapest ones, as
could be expected. For the other error rates (1 to 10 %), using either MAC-layer or transport-layer
repairs gives significant energy savings.

• The selective-ARQ schemes are always cheaper than their all-ARQ counterparts because of their
lower overhead for broadcasts.

• The difference between (-, all-ARQ) and (C, all-ARQ) is rather small; the same holds true for
the difference between (-, selective-ARQ) and (C, selective-ARQ). Hence, combining transport-
and MAC-layer recovery brings little additional benefit.

• Interestingly, hop-by-hop recovery on the transport layer (i.e. the cached mode) with no-ARQ
is cheaper than any other scheme. Reliability is provided here by the transport layer without
incurring the various MAC-layer costs.

Furthermore, it is shown that for all-ARQ and selective-ARQ, the two transport-layer schemes
(cached, noncached) exhibit almost the same performance, whereas for no-ARQ, the noncached
scheme did not manage to deliver the data block within the simulation time. A major reason is loss
of the sinks NACK packets.

13.5.3 What about TCP?
When starting to think about reliability over multihop networks, immediately TCP comes to mind
[790, 893]. And this is not without reason: TCP is mature, pretty well understood, and tons of

398 Transport layer and quality of service

publications watching TCP under any imaginable circumstances or designing more or less useful
variations of TCP are available.

When the goal is to connect a sensor network through some gateway or sink node to the outside
world, it is clearly an obvious choice to run a TCP stack and maybe an HTTP server on top in
the gateway node. This way, arbitrary Internet hosts can access the data collected in the sensor
network by connecting to the gateway. This is even possible when the gateway node is also resource
constrained, since several lightweight TCP implementations exist, some with full functionalities and
others with reduced functionalities; see for example, Dunkels [217], Ramakrishnan [675], and
Lin et al. [506]. In Riihijärvi et al. [693], even an FPGA implementation of subsets of HTTP,
TCP, and IPv6 within 10 kgates is described.18

Another option would be to use TCP within the network as a means to provide reliable end-to-
end communication, for example, between sensor nodes and sink/gateway nodes or between peer
sensor nodes. Although there are some efforts toward this goal [215, 218, 219], there seems to be
some “impedance mismatch” between TCP and many sensor network concepts:

• TCP relies on the concept of individually addressable stations with globally unique addresses
or networkwide unique addresses. Wireless sensor networks, however, are data-centric and the
individual nodes are unimportant. As we have seen in Chapter 7, this paradigm is served more
efficiently by using only locally unique node addresses, geographic addresses or data-centric
addressing schemes.

• TCP connects two distant nodes and treats all intermediate nodes (routers) as “dumb” entities,
which merely forward blocks of bits having no particular meaning to them. In contrast, in sensor
networks, intermediate nodes perform in-network processing or aggregation of data.

• TCP carries lots of per-segment overhead, each TCP segment has a minimum header of 20 bytes
for port numbers, sequence numbers, checksum, window size, and more. Additionally, address
fields are needed, which in the Internet are part of a 20 bytes IP header [790]. On the other hand,
most data packets in a sensor network will be small, just a few bits of sensor data. It is possible to
reduce header sizes by header compression techniques like RObust Header Compression (ROHC)
[92], [380]. However, these techniques require a preliminary setup of contexts between nodes.

• TCP also has some runtime overhead. Most notably, TCP requires separate checksums for each
TCP segment.

• TCP strives for perfect reliability and accepts no losses. In sensor networks, this attitude is not
only costly in terms of energy, but also not required in many applications. For example:
– Given that most data in sensor networks flows from the sensors toward a single sink or a

few sinks, the TCP flows will be essentially unidirectional. The TCP receiver (here: the sink)
has the habit of sending extra acknowledgment segments when there is no data flowing into
the reverse direction to which it can piggyback the acknowledgment. Therefore, lots of extra
packets carrying TCP acknowledgments are created and travel to the source nodes.

– TCP is application blind and cannot know that a sensor measurement missing from a particu-
lar node can be replaced by a correlated measurement from a nearby node. So, retransmissions
are requested even when the data is essentially available.

• TCP does not match well the load patterns of many sensor network applications. Consider, for
example, a large sensor network tasked with wildfire detection. For long times nothing happens,
but once a fire starts, many sensors wake up and start to periodically transmit data. Setting up
a TCP connection requires a three-way-handshake between transmitter and receiver. So, at the
beginning of a wildfire many nodes initiate three-way-handshakes at the same time, leading to

18 Just to give an idea of the code complexity of a full TCP implementation: The TCP code in a recent Linux distribution
(Debian unstable, third quarter of 2004) is well beyond 200 kB of C code with well over 7000 lines of code, not counting
any code belonging to the IP or lower layers.

Block delivery 399

significant congestion at the few sink nodes and delaying connection setup. Setting up all the
connections in advance, say, at network configuration time, would require that the TCP contexts
in the sink have to exist for very long times and the sink must not have any reboot during
that time.

An additional problem is that TCP is not exactly famous for squeezing the best throughput perfor-
mance out of wireless links [41, 361] or to work particularly well in wireless multihop environments
[267, 289, 800]. This is in parts due to TCP’s congestion-control algorithm, which reduces the
transmission rate upon packet losses. TCP’s standard assumption is that losses are due to net-
work congestion – in which case it is wise to reduce the transmission rate – and not due to link
errors.

13.5.4 Further reading
• We point very briefly to some work on keeping end-to-end delay bounds. This is a very chal-

lenging problem [786] and is not only a transport but also a routing issue [340]. In Okino and
Corr [606], a concept of statistical delay bounds is introduced, called (α, β)-currency. Specif-
ically, a node i in the network transmitting packets to a sink is said to be (α, β)-current if for
the packet delays δ(i), taken as a random variable, the following holds: Pr [δ(i) ≤ β] ≥ α. The
whole network is said to be (α, β)-current if all of its nodes are so. Okino and Corr [606]
discuss an algorithm for determining the fractions of time that a node transmits packets and the
time that a node receives packets for forwarding purposes. Currentness results for grid deploy-
ments are derived analytically and in a test bed. Lu et al. [519] devise the RAP protocol stack
composed of a prioritized MAC protocol, a packet scheduling policy, geographic forwarding,
and a transport-layer protocol called location-addressed protocol.

• Park and Sivakumar [617] propose an intermediary solution between letting all intermediate
nodes cache segments and letting only the end nodes cache segments. They propose to use
dedicated recovery servers to which all retransmission requests are forwarded. When there are
enough servers, retransmission requests and answers travel only a small number of hops. This
research is part of the GARUDA project19 at Georgia Tech. This project considers the case of
reliable block delivery from sink to sensors.

• Reason and Rabaey [688] present experimental results of radio energy consumption and reli-
ability in a network of 25 PicoRadio nodes [667] arranged in a grid. On the MAC layer they
investigate CSMA with preamble sampling ([227, 228]; see also Section 5.2.5). Reliability is
targeted only at the link layer by using per-hop acknowledgments and retransmissions; there is
no end-to-end scheme. When looking at the achieved packet loss rates for every single node,
it shows up that (unsurprisingly) nodes having a higher hop distance to the central node have
higher loss rates. Furthermore, with lower radio duty cycles of the proposed on-demand spatial
TDMA technique, more collisions are provoked, which have an adverse effect on reliability,
because any collision eats up one trial on the MAC layer and fewer trials remain to combat
channel errors.

• Agrawal et al. [12] propose the Simple Wireless Sensor Protocol (SWSP), which is inspired
by Transmission Control Protocol (TCP) but with some differences: (i) There is no congestion-
control component, (ii) the window size is always small, (iii) a node supports only a single
connection, for example, to the sink node, and (iv) the sink node can use a single acknowledgment
packet to issue acknowledgment information to all connections at the same time. Nodes are
supposed to set up their connections early and keepalive messages are used to maintain the
connection.

19 http://www.ece.gatech.edu/research/GNAN/work/garuda.html

400 Transport layer and quality of service

• The problem of reliable group communications/multicast has received some attention in the
context of ad hoc networks, but mostly without considering energy aspects. Some references to
start with are Luo et al. [524], Wu and Bonnet [896], and Tang et al. [812].

13.6 Congestion control and rate control
Congestion occurs when over a prolonged period of time more packets are generated than the
network (as a whole or locally) can actually carry. Usually, nodes have some buffer space available,
which can handle transient overloads. Any packet in excess of the available buffer space is dropped,
wasting all the energy spent on this packet so far. Clearly, the larger this buffer space is, the more
overload can be carried and packet dropping occurs later. On the other hand, longer queues impose
longer end-to-end delays and the protocols need longer time to react on congestion states.

13.6.1 Congestion situations in sensor networks
In sensor networks, there are some typical situations that are amenable to congestion. Consider, for
example, applications where sensors are quiet most of the time but start periodic packet generation
upon some external event. When many sensors recognize this event simultaneously, a traffic hot
spot around the event location is created. On the other hand, when the network has a structure in
which many sensors report to a few sink nodes, the area around the sinks can become a hot spot
even if the traffic around the single event locations is bearable. Clearly, in such hot spots, we have
not only packet drops due to buffer overflows, but in case CSMA-type protocols or ALOHA-type
MAC protocols are used, we also have an increased collision rate and longer access delays, costing
energy at the MAC layer (see Chapter 5) and causing locally generated packets to pile up.

Some of the implications of congestion in sensor networks have been investigated by Tilak
et al. [819] using simulations. They considered among others a scenario where a varying number
of nodes is randomly deployed over an 800 × 800 m2 area. A physical phenomenon moves through
this area toward a randomly chosen destination at a randomly chosen speed between 1 and 2 meters
per second. Each node has a sensing range of 200 m and measures its distance to the phenomenon;
the accuracy of these measurements is within 5 % of the sensed distance. As soon as a sensor detects
the phenomenon, it starts to transmit packets at a given reporting period; when the phenomenon
moves out of the sensing range, the sensor stops. The sensors report their readings to a sink node.
The sink node works with slotted time and produces a position estimate for every time-slot, based
on the packets received during that slot. The sensor nodes run an IEEE 802.11 MAC protocol and
DSR as routing protocol; each node is able to buffer five packets.20

In Figure 13.25, the achieved goodput is displayed for three different numbers of nodes and
varying reporting rate. The goodput is defined here as the ratio of packets reaching the sink to the
overall number of packets transmitted throughout the network. The following points are noteworthy:

• For all numbers of nodes, the goodput decreases as the reporting rate increases. Furthermore, the
goodput decays rather quickly.

• The larger the number of nodes, the stronger the decrease in goodput. Hence, for a given reporting
rate, increasing the number of nodes in the network/the node density actually decreases goodput,
wasting more energy. It is even shown that on average individual sensors run out of energy more
quickly as the node density increases. Therefore: Increasing node density shortens node/network
lifetime as long as no additional mechanisms are devised.

20 The choice of IEEE 802.11 MAC here and in other sections of this chapter has to do with the fact that the ubiquitous
ns-2 simulation tool (see http://www.isi.edu/nsnam/ns/) has models for this and for many other protocols (DSR,
directed diffusion, . . .) used in the domains of ad hoc and sensor networking.

Congestion control and rate control 401

10

20

30

40

50

60

70

80

90

100

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Reporting period

Effect of reporting period on goodput at various deviations in random deployment

G
oo

dp
ut

 (
%

)

100 randon
144 randon
225 randon

Figure 13.25 Goodput versus reporting period for three different numbers of nodes. Reproduced from [819,
Fig. 6] by permission of ACM

0
1

1.5

2

2.5

3

3.5

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Reporting period in seconds

Effect of reportingperiod on accuracy at various deviations in random deployment

A
vg

. s
td

de
v

100 randon
144 randon
225 randon

Figure 13.26 Accuracy versus reporting period for three different numbers of nodes. Reproduced from [819,
Fig. 9] by permission of ACM

• Similar results hold true for a grid deployment.
• It is also shown that sink nodes should be close to phenomenon; larger distances provoke con-

gestion as more packets are created

The achieved accuracy is shown for the same setup in Figure 13.26. The accuracy is defined as the
average (taken over all time-slots) standard deviation between estimated and true position of the
node phenomenon. It can be observed that for all numbers of sensors there is a reporting period
giving the best accuracy. For smaller reporting periods, accuracy decreases quickly because more

402 Transport layer and quality of service

and more packets are lost because of congestion.21 On the other hand, for lower reporting rates,
the fewer number of readings makes estimates more inaccurate. To summarize:

Congestion can decrease network/node lifetime and reduce information
accuracy.

13.6.2 Mechanisms for congestion detection and handling

Congestion detection

Sensor nodes can use different approaches to detect congestion; however, these methods are all
local in the sense that a node can only judge the situation in its immediate neighborhood.

The detection methods proposed so far in the context of sensor networks rely on two fundamental
indicators: The occupancy of a nodes buffer and the channel utilization. The simplest method is
to compare the instantaneous buffer occupancy against some threshold value. If the threshold is
exceeded, a congestion state is diagnosed. However, when the threshold makes up for a large
fraction of the total buffer size, congestion states are detected (too) late. An improved method,
like, for example, used in ESRT (see Section 13.6.3), takes the “growth trend” into account: The
buffer occupation is sampled regularly and congestion is diagnosed when the instantaneous buffer
level is above some threshold and additionally the buffer size has grown in the immediate past.
An above-threshold occupancy level combined with negative growth is a sign that congestion is
resolved.

It is shown by Wan et al. [850] that buffer occupancy alone is not a reliable congestion indicator,
specifically when packets can get lost already on the channel because of collisions or hidden-
terminal situations and have no chance to actually reach a buffer. Only the situations of a full
buffer and an empty buffer are reasonable indicators of (non)congestion. Consequently, the CODA
framework [850] discussed in Section 13.6.4 uses a second congestion indicator, namely channel
sampling.

The goal of channel sampling is to obtain an estimate of the current channel utilization U .
This estimate is in turn used as congestion indication [850]. However, the relationship between
the utilization and the congestion level depends on the MAC protocol: For example, with TDMA
the channel can be almost saturated without harming throughput, while CSMA variants have a
certain maximum channel utilization Umax < 1 beyond which the rate of collisions increases and
the goodput actually decreases [68]. Congestion is diagnosed when the channel utilization is within
some neighborhood of Umax.

How to do channel sampling? In the method proposed by Wan et al. [850], the channel sampling
algorithm is triggered when the node’s packet queue becomes nonempty. This is the moment
where the node wants to start packet transmission and when the question of whether the channel is
congested or not becomes relevant. The time after starting the sampling operation is subdivided into
sampling epochs, with the duration of one epoch spanning multiple packets. Within an epoch, the
channel is periodically sampled, say N times. Between the sampling instants, the node can switch
off its transceiver to conserve energy. When in epoch n a number M out of N samples indicate a
busy channel, this epoch’s utilization is
n = M/N . The estimates for K consecutive epochs can
be combined, for example, with exponential weighting. The weighting factor and the number K

can be used to tune the estimator.

21 The packets are dropped indiscriminately without taking into consideration their sensor data precision, which directly
depends on the distance between sensor and phenomenon. It would be interesting to investigate the resulting accuracy when
the dropping policy tries to keep more accurate readings and drop the more imprecise ones.

Congestion control and rate control 403

Congestion handling

Some of the mechanisms proposed in the context of wireless sensor networks to avoid congestion
in the first place or to react on it are the following:

• Rate control: The rate by which sensor nodes transmit their own sensor readings can be con-
trolled. Alternatively, when this rate is fixed for certain applications, the number of nodes
generating at this rate can be controlled. This control can be executed in an end-to-end fashion or
locally. In the end-to-end case, the ultimate receiver, for example, a sink node, causes the trans-
mitting nodes to reduce their rate. The sink uses some feedback mechanism like, for example,
acknowledgments or dedicated signaling packets. In the local case, a node A might be signaled
by its next-hop forwarder B that B’s buffers are full. Node A can reduce its rate or propagate the
overflow signal further backward [850]. The actual desired target rate depends on the accuracy
requirements of the user and the general trade-off is that relaxing these requirements tends to
reduce the frequency and duration of congestion states. Examples for rate control approaches are
discussed in Sections 13.6.3 and 13.6.4.

• Packet dropping: When a forwarding node having full buffers receives a new packet, it clearly
must drop the new packet or an old one from the buffer.22 A node can make a better-informed
dropping decision when it has some information at hand about the importance of the packet. One
option is to label each packet with an explicit priority value and to let the forwarder drop the
packet of lowest priority, either new or already buffered.

• In-network processing and aggregation: Since a sensor network is deployed toward specific
applications, forwarders know the data they forward and can compress, drop, or aggregate it
accordingly. This is the option truly distinguishing sensor networks from other types of networks.

Clearly, other types of networks allow further mechanisms. For example, in ATM networks [196],
a combination of admission control, careful route selection, and resource reservation in interme-
diate nodes is used to avoid congestion in the first place. However, such a mechanism requires
a reasonably stable network, per-connection state in intermediate nodes, and significant signaling
and, in general, seems too heavyweight for wireless sensor networks.

13.6.3 Protocols with rate control

ESRT

The Event-to-Sink Reliable Transport (ESRT) protocol developed by Sankarasubramaniam et al.
[720] considers the situation where a number of sensors observing an event report periodically to
a single sink node. The sink node does not care which nodes send packets; it is only interested in
receiving a sufficient number of packets to present reliable and credible information to the user.
This is called event-to-sink reliability. ESRT works by carefully adjusting the sensor’s reporting
rate to achieve two goals:

• a sufficient number of packets is received, and
• not many more packets than needed are received to avoid congestion and save energy.

22 In the Internet, often an alternative strategy called random early drop [262] is followed, explicitly designed for TCP:
Routers start to drop packets randomly already before their buffer is full. A TCP connection hit by such a loss automatically
reduces its rate, hopefully avoiding full buffers in routers. Given that really something similar to TCP runs in a sensor network,
this strategy must be accompanied by using highly reliable link layers to avoid losses through channel errors and to keep
TCP’s assumption that losses are a sign of congestion working.

404 Transport layer and quality of service

Most of the protocol operation is carried out at the sink. The protocol is round based. A single
round is called a decision period and has a fixed duration τ . The sink counts the number of packets
ri received during round i and compares this with the nominal/desired number of packets R, which
is needed to achieve sufficient information fidelity. The ratio ηi = ri

R
is the normalized measure of

reliability, and the goal of the protocol is to keep ηi in the interval [1 − ε, 1 + ε] with ε as usual
being arbitrary, positive, and small. This ε-corridor allows for stable protocol behavior despite small
variations. The main control knob of the protocol is the sensor node’s reporting frequency f . The
frequency fi+1 to be used in round i + 1 is computed by the sink at the end of round i and broadcast
to all sensors. It is assumed that the sink is not power constrained and can transmit sufficiently
strong signals to reach all nodes. The sensors adopt the new reporting frequency immediately.

The precise operation of the protocol can be motivated with the help of Figure 13.27, which
displays the observed reliability η for varying reporting frequency f in a random deployment (see
Section 13.2.3). In this deployment, 200 nodes are spread over a field of 100 × 100 m2. The nodes
have a radio range of 40 m and n = 81 nodes sense a given event. One of the nodes is the sink
node. The curve is representative in the sense that similar shapes are obtained for other numbers
of reporting sensors, n, too. The following things are noteworthy:

• In the first phase, the achieved normalized reliability increases linearly (observe the logarithmic
axis scale!) with increasing reporting frequency until a maximal normalized reliability is achieved
at f = fmax. Below and up to fmax, the network shows no signs of congestion.

• After this point, the reliability drops and starts to fluctuate. This can be attributed to the increasing
influence of congestion, since too many packets are generated and nodes start to drop packets.
The fluctuations are random effects.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Optimal operating point

Required reliability

OOR

(C,LR)

(NC,LR)

(N
C

,H
R

)

(C
,H

R
)

P1 = (1,f*)

1 + e
1 – e

P2

fmax

10–1 100 101 102 103

Reporting freaquency (f)

N
or

m
al

iz
ed

 r
el

ia
bi

lit
y

(η
)

Figure 13.27 Achieved normalized reliability η versus reporting frequency f . Reproduced from [720, Fig.
4] by permission of ACM

Congestion control and rate control 405

Please note that the curve hits the desired reliability η = 1 two times: from below (point P1) and
from above (point P2).

In round i, the protocol uses the frequency fi . At the end of this round, the sink determines
the reliability ηi and knows also whether congestion has occurred in round i. This information is
used to determine frequency fi+1, which is then broadcast. Congestion is detected by the sensor
nodes by inspecting their local packet buffers. Briefly, when the estimated rate of buffer growth and
knowledge of the current buffer contents indicate that the buffer will overflow in the next round, a
node sets a congestion indication bit in outgoing packets. When the sink receives such a packet, it
infers a congestion indication.

The protocol distinguishes five different regimes, indicated in Figure 13.27.

1. In the leftmost part, the reliability is below 1 − ε and there is no congestion. This part is called
(NC, LR) for No Congestion, Low Reliability. The protocol increases the reporting frequency
fi+1 for the next round as fi+1 = fi

ηi
, motivated by the linearity of the curve in this part.

2. For a small frequency window, the reliability is in [1 − ε, 1 + ε], there are no signs of congestion,
and the protocol operates close to P1. This is the optimal operating region (OOR) and the
protocol chooses fi+1 = fi to stay in this region.

3. For frequencies between the OOR and fmax, there is more reliability than needed but still no
congestion. A reduction of reliability is feasible and also useful to save energy. ESRT performs
a moderate reduction of the reporting frequency:

fi+1 = fi

2

(
1 + 1

ηi

)
.

4. For frequencies between fmax and the frequency at P2, there is congestion and high reliability
(C, HR). Again, it is a good idea to reduce the frequency, but now a bit more aggressively:
fi+1 = fi

ηi
.

5. Beyond the frequency at P2, there is congestion and low reliability (C, LR). This region is to
be left even quicker, with fi+1 = f

ηi/k

i , where k is the number of times that the network was
in (C, LR) consecutively.

It becomes clear from this behavior description that the protocol tries to move to the optimal
operating region. It can be shown analytically that the protocol indeed converges to the optimal
operating point when in the noncongested regime, indeed, the reliability increases linearly with the
frequency. However, the speed of convergence depends on ε, with smaller values of ε having a
longer convergence time. The convergence behavior of ESRT is illustrated in Figure 13.28, where
for the above described setup with n = 81 transmitting nodes both the convergence toward the
optimal operating point and the associated energy consumption in every round of duration τ = 10 s
is displayed.

This protocol has some advantages: The sink does not need to know global network properties
like the number of nodes, and most of the protocol complexity is in the sink. The sensor nodes just
need to be able to capture the sink’s commands to set new reporting frequencies. A disadvantage
of this protocol is that the reporting rate is the only control knob of the protocol and that there
is no way to accommodate different node densities. If in a sparsely populated area the rate is
reduced, then the information about this area becomes more noisy. On the other hand, if the rate
is increased in an area with high node density, local congestion can occur, reducing the rate of
packets arriving at the sink and causing the latter to increase packet generation rates further. A
second disadvantage is the assumption that sink broadcasts are heard everywhere, which may often
not be true.

406 Transport layer and quality of service

22

24

26

28

30

32

34

38

0 5 10 15 20 25 30 35 40 45 50

Time (s)

A
ve

ra
ge

 e
ne

rg
y

co
ns

um
pt

io
n

(J
)

Figure 13.28 Average energy consumption versus time for ESRT protocol, starting in state (NC, HR). Repro-
duced from [720, Fig. 13] by permission of ACM

An algorithm based on the Gur game

The algorithm proposed in Iyer and Kleinrock [381] also relies on networkwide broadcasts; how-
ever, it does not control the reporting frequency but lets sensors choose randomly and independently
between sleeping and being awake for the next round (thus avoiding any local coordination among
sensors). A sensor being awake sends a report, but a sleeping sensor sends nothing. At the end of
a round, the process starts over.

The sink node controls the probability by which individual sensors make their decision. It follows
the goal to receive a desired number k∗ of packets in every round. Using probabilities as control
knob to achieve a desired number of incoming packets NP would be easy, if the sink knows the
number N of living nodes in the network. It can just send the probability NP /N to the sensors
and each sensor carries out an independent Bernoulli experiment to decide whether to sleep or not.
However, N is hard to obtain and also time variable because of node death or deployment. Another
option would be to use an algorithm similar in spirit to ESRT: the sink could start with some initial
guess p0 and adjust this probability on the basis of the number of number of packets received.

The algorithm presented by Iyer and Kleinrock [381] is another option. It is based on the Gur
game: There are a number of independent players not aware of each other, and a referee. In each
round, a player decides among two given alternatives, say: “yes” and “no”. The referee counts the
number k of yes-votes, determines a reward probability r = r(k) from this, and announces this to
all players. Each player makes an independent random experiment: The player is rewarded with
probability r; with probability 1 − r the player is penalized. The reward function r(k) is fixed and
assumes a maximum for the value k∗ of desired “yes” votes. Now the question is: How should the
players behave to maximize their rewards, given that they have no knowledge about the number of
other players, about their behavior, the reward function r(k), the optimal value k∗, and the values
ki observed by the referee in round i?

The surprising answer is that it is possible to find a finite-state machine, which runs independently
in every player and which changes state every time a reward or penalty is incurred. There are 2M

states, from −M to −1 and further from 1 to M . The states and their possible transitions along
with their associated probabilities are displayed in Figure 13.29. The parameter M is also called
memory parameter. State changes happen when the referee announces r; when the automaton is in a

Congestion control and rate control 407

–3 321–1–2

Sleep Stay awake

Figure 13.29 Example automaton with memory M = 3

negative state −i, it moves with probability r to state −i − 1 (in case i = −M the automaton stays
there) and with probability 1 − r it moves one step to the right. For positive states, the behavior is
symmetric: upon rewards the state is increased (state i becomes min{M, i + 1}) and upon penalties
the state is decreased. Hence, when the automaton experiences subsequent penalties, it moves to
the center, and with subsequent rewards it moves to the fringes. When the player is in a positive
state it votes with “yes”; otherwise it votes with “no”. The important thing is: It can be shown that
under this construction the number of yes-votes ki received by the referee in round i converges to
k∗, except for random fluctuations. However, as discussed in Frolik [266], convergence depends
on the start states of the players. An example with M = 3 is provided in which the network fails
to converge when all nodes start in state 3.

This algorithm can be adapted for the situation in a sensor network. Each sensor node runs an
instance of this automaton, all sensors and the sink are time synchronized, and all sensors are ready
to receive the sink’s feedback r at the end of round i, whether or not they were sleeping during
the round. When a sensor’s automaton is in a positive state, it remains awake in the next round
i + 1 and transmits a packet; otherwise, the sensor goes to sleep mode. The sink node can obtain
ki simply by counting the packets arriving in round i. A key design decision is the sink node’s
reward function; Iyer and Kleinrock [381] have the particular shape r(ki) ∼ a + b · e−c(ki−k∗)2

with a, b ∈ (0, 1) and a + b = 1, c can be any positive number. This function has its maximum
at the desired value k∗, and each sensor is rewarded when ki = k∗, since r(k∗) = 1 holds. Once
this has been reached, all automatons move more and more to the fringe and no sensor changes its
behavior (sleeping, keeping awake) anymore.

Distortions to this behavior can occur when packets can get lost or new nodes are added/old ones
die. Further distortions are introduced by packet delays, that is, the times needed for packets to
travel from sensors to the sink. These times can be random and furthermore they can be larger than
the duration of a round (Iyer and Kleinrock [381] have used a round of 1 s length). One example
evolution of ki over time is shown in Figure 13.30 for a scenario with initially 100 sensors, a
memory size of M = 1, and random initial states for the sensors, a desired rate of k∗ = 35 packets
per second, a = 0.2, b = 0.8 and c = −0.002. The duration of a round is 1 s and the packet delays
are randomly chosen between 0 and 5 s. New sensors are created every 100 s in the mean and they
live 101 s on average. Under these random distortions, the ki vary significantly but always come
back to the target value k∗.

This scheme is especially interesting for cluster-based sensor networks (like, for example,
LEACH [344]), where the clusterhead assumes the role of the sink node [266]. This would relax
two problems of this scheme when applied to a whole multihop sensor network. One problem is
that sensors need not only be awake for sensing but often also for purposes of forwarding with-
out having an explicit sensing task. Another problem is that this algorithm is insensitive against
variations in node density. Areas with low density are treated the same way as areas with high

408 Transport layer and quality of service

0
0

18
00

34
00

56
00

70
00

90
00

99
87

42
34

10
20
30
40
50
60
70

Time

Packets received vs time

P
ac

ke
ts

 r
ec

ei
ve

d

Num packets

Optimal

Figure 13.30 Evolution of ki over time. Reproduced from [381, Fig. 4] by permission of IEEE

density, but any sensor missing in a low density area is more valuable than a sensor in a high
density area.

13.6.4 The CODA congestion-control framework
The COngestion Detection and Avoidance (CODA) approach described by Wan et al. [850] com-
bines a congestion-detection mechanism with two congestion-control mechanisms working on
different timescales. These mechanisms are targeted toward different congestion scenarios. An
open-loop hop-by-hop backpressure mechanism aims to resolve transient congestion situations like,
for example, hot spots around the sensor nodes first observing an external event. Secondly, the
acknowledgment-based closed-loop mechanism addresses resolution of persistent congestion states
through the use of acknowledgments and a self-clocking mechanism.

Open-loop hop-by-hop backpressure mechanism

The basic idea is simple: When a node detects a congestion situation, it regularly broadcasts
backpressure messages as long as the congestion situation persists. Additionally, it invokes some
application-dependent policy to deal with the congestion situation: The node might decide to drop
some of the packets it is supposed to forward, it can reduce the rate of its own measurement reports,
or it can simply stop forwarding for a while and continue later on.

A node B receiving a backpressure message from another node A also has several options.
For example, B can also start to drop packets or reduce its rate, since A is not willing to accept
packets anyway. Node B can also decide to forward the backpressure message further toward the
data source.23 If node B is itself congested, it can increment a counter in the backpressure message
before forwarding it. As soon as the message reaches a noncongested node, the size of the congested
area can be roughly inferred from the counter value. This can be used on longer timescales as a
hint for routing protocols to avoid the whole area.

CODA’s backpressure messages can also indicate a chosen node. This node is allowed to
continue its transmissions upon hearing a backpressure message; all other nodes have to apply their
backpressure policy.

This method is open-loop because the node issuing the backpressure message receives no direct
feedback.

Closed-loop regulation mechanism

A sink node might receive data from multiple sources. This may potentially create a persistent
hot spot close to the sink or in other regions of the network. This situation requires a mechanism

23 How the next upstream neighbor toward the data source is identified is outside the scope of CODA.

Congestion control and rate control 409

to reduce the packet generation rates of the source nodes persistently. Relying entirely on the
previously discussed backpressure mechanism is not sufficient: when nodes receive no backpressure
messages anymore, they continue to forward packets and to send at their regular rates, this way
quickly creating the next congestion state. Secondly, these backpressure messages would have to
travel several hops from the sink to the source nodes, creating additional network load.

The closed-loop regulation mechanism is requested by the sources when their packet generation
rate exceeds a given fraction r of the locally available channel capacity. Specifically, the sources set
a specific bit in their data packets, which triggers the generation of acknowledgment packets in the
sink. The rate of acknowledgment packets is application specific; the sink can, for example, generate
one acknowledgment per 100 data packets it receives from the source. How the acknowledgments
are disseminated to the source nodes is not within the scope of CODA, but is requested from other
protocols like directed diffusion. This opens the possibility to restrict the acknowledgments only to
sources observing a certain phenomenon while other sources remain unregulated.

A source requesting acknowledgments expects to receive a minimum number of acks over a
certain time period. If less acknowledgments are received, the source slows down its own local
packet generation according to some policy.

A regulating effect can be achieved in several ways:

• The sink can decrease its acknowledgment rate or even stop sending acknowledgments when it
diagnoses its own neighborhood as busy or if the desired minimum number of packets needed
to achieve a certain information accuracy is not reached because of congestion losses.

• The sink issues acknowledgments at their nominal rate and trusts that these get lost in the hot
spots, slowing down the sources “beyond” these hot spots.

The sources stop to request further regulation as soon as their generation rate drops below the
threshold value r .

Some results

Wan et al. [850] have investigated the performance of CODA both in a test bed (including some
initial parameter tuning) and by simulation. The simulation model considers both the open-loop and
closed-loop congestion-control methods. The source nodes implement a simple reduction policy,
applied whenever a backpressure message is received or when the number of acknowledgments
is insufficient: They simply halve their generation rate. Intermediate nodes stop any transmission
for some random number of packet times before continuing, except when they are the chosen
nodes. An IEEE 802.11 MAC is used, however, without MAC-layer acknowledgments or RTS/CTS
exchanges. The radio range of a node is 40 m. Suppression messages are generated when the
estimated channel utilization is beyond 80 % of Umax. The sink node generates acknowledgment
packets in the closed-loop mechanism every 100 packets. Directed diffusion is employed for routing
purposes.

In one of the investigated scenarios, 30 nodes are deployed randomly in a rectangular area. Three
of these nodes are sink nodes and another six are source nodes, the selection being made randomly.
A sink requests data from two of the sources. The sources generate event data packets of 64 bytes
size, but they have different packet rates of at maximum 20 packets per second. Four of the sources
are switched on and off at random times between 10 and 20 s simulated time.

In Figure 13.31, the evolution over time of the number of received packets at the sink nodes is
displayed. This number serves as an indicator for the achieved information accuracy. Three different
schemes are compared: (i) A scheme without any congestion control (labeled noCC), (ii) a scheme
with open-loop control only (OCC), and (iii) a scheme with combined open-loop and closed-loop
schemes (CCC). In Figure 13.32, the evolution of the number of dropped packets over time is
shown for the same setup. The following points are remarkable:

410 Transport layer and quality of service

0
0 5 10 15 20 25 30

10

20

40

50

60

70

80

90

30

Time (s)

N
um

be
r

of
 p

ac
ke

ts
pkt–delivery–OCC
pkt–delivery–CCC

pkt–delivery–noCC

Figure 13.31 Evolution over time of the number of received packets at the sinks for three variants: Without
congestion control (noCC), with open-loop congestion control only (OCC) and with combined open-loop and
closed-loop congestion control (CCC). Reproduced from [850, Fig. 11a] by permission of ACM

0
0 5 10 15 20 25 30

50

100

150

200

250

300

Time (s)

N
um

be
r

of
 p

ac
ke

ts

pkt–drop–OCC
pkt–drop–CCC

pkt–drop–noCC

Figure 13.32 Evolution over time of the number of dropped packets for three variants: Without congestion
control (noCC), with open-loop congestion control only (OCC) and with combined open-loop and closed-loop
congestion control (CCC). Reproduced from [850, Fig. 11b] by permission of ACM

• There is a phase around 20 s where the number of packets delivered by OCC is much lower than
for the other schemes. This is around the same time where the packet drop rate of OCC reaches
the same order as the noCC scheme; in all other situations, OCC drops less packets.

• The combined scheme CCC achieves a good portion of noCC’s delivery rates, but drops much
less packets during the congested time period between 10 and 20 s.

Congestion control and rate control 411

A general trend observed in different scenarios is that the congestion-control algorithms tend to
achieve not the highest possible delivery rate, but the small price paid here is compensated by
significant reductions in the number of dropped packets.

13.6.5 Further reading
• In Frolik [266], the ,Gur game strategy is modified by making the reward probability r(k)

dependent on the lifetime of the network and the expected lifetime of the individual nodes. As
lifetime increases, the reward probability decreases too, and the sensors tend to move away from
the fringe states toward the middle states, thus changing their behavior (sleep, awake) frequently.
Otherwise, once the desired number of packets has been reached, the automatons move to the
fringe and stay there forever. This, however, means that a sensor deciding once to stay awake
does so forever, while the other sensors sleep forever.

• In [477], an overload management policy for a specific distributed control system is derived,
having optimal control system performance.

• In Woo and Culler [888], a CSMA-based MAC-layer mechanism is proposed by which a node
regulates its local packet generation rate with the objective of distributing bandwidth fairly over
nodes.

• Hull et al. [370] discuss a method of explicit bandwidth allocation for different data streams.
This is achieved by mapping data attributes to traffic classes. Each node classifies packets and
runs a scheduler, which selects packets for transmission according to their class. The scheduler
also controls the outgoing rate per class. A second ingredient of the proposal is a hop-by-hop
congestion-control scheme. In this scheme, nodes send overflow messages as soon as their buffer
occupancy exceeds a threshold; upstream nodes reduce their rate. A third ingredient is to avoid
hot spots around sink nodes by deploying more sink nodes and to let source nodes decide about
good/nearby sink nodes.

• Congestion control has been already been considered for wireless multihop ad hoc networks,
mostly in the context of TCP; see for example, [16] and [622].

14
Advanced application support

Objectives of this Chapter
The objective of this chapter is to complement the techniques introduced so far with advanced
techniques to support applications. In particular, in-network processing in various forms is discussed,
detailing techniques that are both clearly related to a specific application and generally applicable.
Next, security questions for wireless sensor networks are highlighted. Finally, examples for some
concrete applications are given and the techniques used for their realization are analyzed and
presented.

Chapter Outline

14.1 Advanced in-network processing 413
14.2 Security 422
14.3 Application-specific support 425

14.1 Advanced in-network processing
14.1.1 Going beyond mere aggregation of data
The most energy-efficient communication is the one that is not required in the first place. Aggre-
gation as a relatively simple scheme for avoiding transmission has already been discussed in
Section 12.3. In that context, however, the aggregation functions have been, for the most part, rela-
tively simple – averaging, maximum, or minimum, for example. In this section, more sophisticated
means for reducing the number of messages or the length of messages that have to be send by WSN
nodes are discussed. This section discusses basic algorithms and protocols; it is complemented by
the Section 14.3, which goes in more detail of several exemplary applications.

The crucial consideration that can be exploited for many advanced in-network processing schemes
is the following. In most networks, sensor nodes are relatively close by each other. When they

Protocols and Architectures for Wireless Sensor Networks. Holger Karl and Andreas Willig
Copyright 2005 John Wiley & Sons, Ltd. ISBN: 0-470-09510-5

414 Advanced application support

observe a function of the physical environment (such as temperature, humidity, etc.), the changes
of this function over a given distance are likely to be small in most cases. Hence, the measurements
taken by nearby sensors are correlated in space. Moreover, since physical processes do not usually
change abruptly, the measurements from a given sensor are also going to be correlated in time. This
correlation in time and space is the main lever exploited by many in-network processing schemes.
In the presence of correlation, some very simple things change: For example, the optimal tree for col-
lecting all data from the network is no longer a shortest-path tree but rather tends toward a traveling-
salesperson structure [183]. Most of the work focuses on using proper distributed coding schemes
to exploit the correlation among sources; the Slepian–Wolf theorem [774] is a basic result here.

Such a correlation structure opens the door for sophisticated compression schemes, reducing the
number of bits to be transmitted. On the other hand, if an expected correlation structure is actually
not present – if a “surprising” event happens – a lot of information can be extracted [295] and has
to be reported at high priority.

Another aspect is distributed signal processing (some papers also use the term Collaborative
Signal and Information Processing (CSIP) to emphasize the collaborative aspect): Making use of the
processing power of the sensor nodes to preprocess the measured data, obtaining a different, more
compact form of representation of the observed data, or a reduction to relevant aspects. A typical
example here is distributed tracking of vehicles [142, 925]: Each sensor can observe some partial
information – for example, a distance estimate to a moving object – but only taken together does
this information allow to compute and update a position estimate. The trivial solution to send all
values to a central processing site is inefficient regarding energy spent for communication. Rather,
preprocessing in the field is advisable. Depending on the type of processing to be done and on
whether processing or communication constitutes the efficiency bottleneck, Sohrabi et al. [778]
distinguish between coherent and noncoherent cooperative functions. A few remarks on this field
are given in Section 14.1.2; it is treated in more depth for some examples in Section 14.3.

A counterpart to data collection, possibly using clever aggregation schemes, is the distribution
of data (broadcasting). This issue has been extensively studied in Section 11.4, but there only sim-
ple store-and-forward functionality and independence among transmissions had been assumed. But
proximity among sensors can also be used in aiding in the broadcasting of data by cleverly encod-
ing which sensor transmits which data. This relatively new field of network coding is surveyed
regarding basic ideas and fundamental results in Section 14.1.4.

There are some additional aspects that would fit to this topic. One important consideration is
sensor fusion: How can measurements taken from different types of sensors be combined? Sensor
fusion has been briefly discussed in the context of localization and positioning in Chapter 9; further
examples can be found in references [102, 326, 854]. But as these topics are not a characteristic
of wireless sensor networks, their treatment is left to specialized textbooks.

14.1.2 Distributed signal processing
Performing signal processing already within the network itself can be done for many different
application examples. A generic discussion of these concepts is relatively difficult as the techniques
are often closely tied to a specific application such as tracking or beamforming. Therefore, only a
few ideas are highlighted here; more details and aspects can be found in Section 14.3.

Parallel algorithms in a WSN – FFT

A first idea to perform distributed signal processing in a WSN is to use a standard algorithm used
for signal processing that is amenable to a parallel implementation. For such an algorithm, it stands
to reason to investigate whether and how it can be used in a WSN and what the consequences

Advanced in-network processing 415

for the energy efficiency of the WSN are, in particular, how communication overhead trades off
against computation complexity (owing to, e.g., the need to perform computations redundantly).

One algorithm that meets these conditions is Fast Fourier Transform. Its distributed execution
in a WSN context has been investigated by Chiasserini and Rao [152]. They use the standard
“butterfly” structure of a parallel FFT computation and map it onto WSN nodes. In addition, a
careful inspection of the algorithmic structure shows that some redundant computations can be
removed by introducing asymmetric computations (one node uses intermediate results of another
node instead of raw data) without increasing the amount of data that has to be communicated. The
paper characterizes how normalized energy consumption and computation time relate to each other,
depending on the number of sensors used for the distributed computation.

Applying MPEG encoding to sensor networks

Goel and Imielinski [295] point out a fetching analogy between encoding a movie and optimizing
data transmission in a WSN. Suppose a set of sensors is placed in the field, each sensor with its own
(x, y) coordinates and periodically reporting its measured value. Equate the set of readings from
all sensors per one measurement period with a single frame of a movie – each senor contributes
one “pixel” to this virtual image, and the measured value corresponds to the brightness or color of
a pixel. Successive measurement periods correspond to successive frames in the movie.

Depending on the particular application scenario of the WSN, this analogy is more or less close.
For a WSN monitoring moving objects, for example, there is a spatiotemporal correlation between
successive measurement periods that is very similar to that of a movie and, hence, some of the
basic coding and compression ideas of MPEG coding should be applicable.

MPEG, in particular, exploits predictions of future pixel values to reduce the data rate that has to
be transmitted. Such prediction-based monitoring is also proposed by Goel and Imielinski [295].
They assume a clustered organization of the sensor network. Initially, each sensor node reports all
its measurements to its clusterhead. The clusterhead computes, using MPEG-inspired algorithms,
predictions for the likely future measurements of each sensor and returns a prediction model to
each sensor. The sensor, upon receiving this model, need only transmit data to the clusterhead in
the future if it is considerably different from the predicted value (“It is not news if we can predict
it” [295]). As it is unlikely to be able to exactly predict future values, certain error margins have
to be allowed for. If, on the other hand, a measured value does not match the predicted value, the
sensor transmits to the clusterhead to correct this prediction error; the clusterhead can then also
adapt its prediction model for such a sensor.

Computing confidence in mobile agent results

The mobile agent concept has been described in Section 11.2: An “agent” wanders through the
network, collecting information from each node. Such a simple collection task can be extended by
more sophisticated in-network processing when nodes are not necessarily fully confident that their
measured results are correct or when nodes provide only interval measurements (because of faulty
equipment, e.g.). In the first case, a node might announce a confidence interval describing the
measured yes/no reading to a mobile agent (“I am between 40 and 70 % certain that I just saw a
truck go by”). This scenario is investigated by Qi et al. [666].

The core idea is to associate a random distribution of confidence with the boundaries announced
by a node – Gaussian, uniform, or some other distribution. A mobile agent arriving at a node
collects this distribution and continues to the next node. There, the already-collected description of
the confidence distribution has to be merged with the local confidence distribution.

The merging algorithm rests on previous work by Prasad et al. [655]. In that paper, a simple
interval description for the values that a single sensor considers plausible is used. These intervals are

416 Advanced application support

overlapped, counting how many sensors consider a certain value plausible. Then, this overlapped
function is analyzed at different levels of granularity (resolution) to derive a final interval, describing
the belief of all sensors.

This algorithm is modified and extended by Qi et al. [666]. In particular, a measure of “inter-
mediate accuracy” is introduced (based on the width and height of the confidence intervals – if the
probability mass is well centered, the accuracy of this interval description is likely high) that allows
the mobile agent to determine when it has computed a result of sufficient accuracy. Then, the mobile
agent can return to the base station and deliver its (estimated) result. In some aspects, this scheme
is similar to a localization scheme described in Section 9.5.4; it also bears some resemblance with
a data broadcasting scheme described in Section 12.3.7.

14.1.3 Distributed source coding
In a sensor network, a common situation is that multiple sensors make periodic measurements and
transmit them to a central point where data is collected. In order to reduce energy consumption,
the rate with which these data transmissions should take place should be as low as possible but
high enough to allow the data collector to learn about the measured data with high probability.

In information-theoretic terms, the sensors are distributed information sources and the question
is which rates should be used to encode their data. Since the sources are distributed, a distributed
source coding problem has to be solved. The problem is also closely related to compression of
data before transmission.

When the measurements of different sensors are statistically independent, there is little that can
be done to reduce the required minimum data rates. In practice, however, the likely presence of
correlation between readings (owing to similarity of measurements of a physical process in close
proximity) admits some surprising solutions. These are described here – but first, some background
on source coding appears necessary.

Source coding

Suppose an information source is given that periodically sends one of A symbols of the alphabet
A = {1, . . . , A}; let X be the random variable describing which symbol is chosen by the source and
let P(X = x) = pX(x), x ∈ A denote the random variables for the probability that the source picks
symbol x.1 Let X = (X1, . . . , Xn) denote a sequence of n symbols successively generated by the
source; the individual realizations Xi are assumed to be independent of each other and identically
distributed. The probability of a particular sequence x = (x1, . . . , xn) occurring is given by

PX(x) =
n∏

i=1

pX(xi),

owing to the independence assumption.
A sequence (x1, . . . , xn) can be regarded as a block of n successive characters. Which kinds of

blocks do appear? For sufficiently large n, it can be expected that the character “1” appears npX(1)

times, character “2” appears npX(2) times, and so on. Put the other way around, blocks where there
are noticeably different numbers of characters present are highly unlikely and blocks essentially
only differ in the order in which characters are sent. This approximation only holds, however, if
n is sufficiently large, that is, if the block length is long enough. The encoding and decoding of
entire blocks – block coding – is thus a technique that cannot work on single characters produced
by a source but only on entire sequences of such characters.

1 The presentation here follows [774]. Introductions to this topic are available via any good textbook on information theory
[180].

Advanced in-network processing 417

One such block T of length n appears with probability

pT = pX(1)npX(1) · · · pX(A)npX(A)

= eln pX(1)npX(1) · · · eln pX(A)npX(A)

= enpX(1) ln pX(1) · · · enpX(A) ln pX(A)

= e
∑n

i=0 npX(i) ln pX(i)

= en
∑n

i=0 pX(i) ln pX(i)

= e−nH(X)

where

H(X) = −
n∑

i=0

pX(i) ln pX(i)

is called the entropy of the random variable X (or of the source described by X).
As each ordering of characters in such a block is equally likely (because of independence between

repetitions), their probabilities pT are all the same. Thus, there are NT = 1/pT = enH(X) different
blocks than can occur with nonnegligible probability. To represent NT (encoding which block
actually has occurred), O(log NT) bits are necessary. Since n characters should be encoded in the
given block, effectively

R = 1/n log NT = 1/n log enH(X) = H(X)

bits have to be transmitted per character generated by the source. R is called the rate of the source
(or of the random variable). This means that, for some η > 0, an encoder/decoder pair can be
found that works at block length n and rate H(X) + η and that transmits the source characters at
arbitrarily small (but not negligible) decoding error. Such a pair does not exist at any rate H(X) − η

(for any pair working at this rate, the decoding error cannot be made arbitrarily small).

Correlated sources – the Slepian–Wolf theorem

What happens when more than a single source is present? Consider two sources described by
their random variables X and Y with entropy H(X) and H(Y), respectively, and both transmitting
to a common sink. Obviously, the information of both sources can be transmitted at a total rate
H(X) + H(Y). When the sources are independent (and unaware of each other), there is little that
can be done at a source coding level to reduce this rate.

There is, however, a possibility for correlated sources. Suppose X and Y are two correlated
sources, that is they have a joint probability density pX,Y (x, y) that is not the product of the
marginal densities pX and pY . It is easy to imagine that two encoders would be able to exploit
this correlation if both encoders had access to both sources (Figure 14.1). The argument uses the
conditional probability pX|Y (x|y) = pXY (x, y)/pY (y) and its associated entropy

H(X|Y) = −
∑

y

pY (y)
∑

x

pX|Y (x|y) log pX|Y (x|y);

the intuition is that H(X|Y) expresses the remaining uncertainty in X once Y is known. The
procedure is then to encode source Y with rate H(Y) + εY for some small, positive εY . At this

418 Advanced application support

Source X

Source Y

Encoder X

Encoder Y

Decoder

C
or

re
la

tio
n

Figure 14.1 Coding two correlated sources with knowledge about the other source

Source X

Source Y

Encoder X

Encoder Y

Decoder

C
or

re
la

tio
n

Figure 14.2 Separately coding two correlated sources

rate, the information from Y can be decoded with small decoding error, giving the decoder access
to Y ’s data. It then suffices to encode source X with rate H(X|Y) + εX (for some small, positive
εX). Hence, the total rate to encode X and Y is only H(Y) + H(X|Y) + εX + εY . Obviously, there
is asymmetry between X and Y as one source is the “primary” one but they can switch roles
arbitrarily.

But granting X’s encoder access to Y’s data would require, in a WSN, additional traffic to
transport Y’s data to X – but reducing the amount of data traffic is the very objective here. The
realistic scenario is thus illustrated by Figure 14.2: Two correlated, but separate sources with two
separate encoders. The question is whether it is possible, in such a situation, to reduce the total
rate compared to the obvious solution H(X) + H(Y) by exploiting correlation between X and Y .

The answer is, somewhat surprisingly, yes! In fact, the very same rates can be achieved as if X

and Y were mutually known. This is the main theorem proven by Slepian and Wolf [774] and
published in 1973. The nonintuitive part is that it suffices for the encoder of X to know the joint
distribution of X and Y but it does not need to have access to the actual realizations of Y . The
proof of this theorem is somewhat involved and, moreover, nonconstructive: It does not allow the
immediate construction of such encoders or decoders. It is also an asymptotic argument that holds
strictly only if the block length goes to infinity. The reader is referred to reference [774] for details.

Nonetheless, it is a seminal result, opening the door for a lot of research with many variations.
Some of the early work includes references [898, 899, 900], dealing, for example, with lossy source
coding and the availability of side information. The extension to continuous sources (as opposed to
the discrete sources described here) has also been undertaken. It took some time, however, before
a practical construction for such codes appeared. Before describing the first such scheme next, let
us examine a short example.

Example 14.1 (Correlation via Hamming distance [651, 652]) Suppose two sources X and Y

are given, both of which are 7-bit, binary random variables (i.e. they can assume values
0, . . . , 127). They are correlated in such a way that the realizations of X and Y will always
have a Hamming distance of at most 1 (i.e. at most a single bit will differ).

Here, the rate per source is H(X) = H(Y) = 7 bits. The rate to transmit both sources is
H(X, Y) = H(Y) + H(X|Y) = 10 bits, which is smaller than the simple sum of H(X) +
H(Y) = 14 bits. The Slepian–Wolf theorem guarantees the existence of encoder and decoder
as long as the rates are chosen such that RX > 3, RY > 3, and RX + RY > 10. Hence,
distributed source coding does promise a considerable gain.

Advanced in-network processing 419

Syndrome coding – DISCUS

Pradhan and Ramchandran [651] present the first approach for construction of actual codes that
achieve the Slepian–Wolf performance (see also references [653, 901] as surveys/tutorials). The
idea is perhaps best explained using the example just discussed; for simplicity of illustration, let us
assume only 3-bit-long sources X and Y .

The Slepian–Wolf theorem suggests (as one option) that source Y is completely transmitted to
the decoder. How can X be encoded such that the decoder can deduce its original value, using
the known value of Y ? When a certain value of Y is given, the correlation structure assumed here
restricts the possible values of X. For example, when y = 000, x can only be 000, 001, 010, or 100;
all other combinations are not possible (Figure 14.3). Symmetrically, when x is 000, the encoder of
X knows that y can be only one of these values. It also knows that the decoder, upon receiving any
of these values from Y , can limit the set of possible values of X to all those bit combinations that
have Hamming distance of at most 1 from this set of four values. Specifically, the only possible
values that the decoder could speculate about are 000, 001, 010, 100, 011, 101, and 110 – 111, on
the other hand, is not possible and the encoder at X knows that the decoder will know that as well!

Therefore, it is obvious to the encoder at X that the decoder can use the value of Y to distinguish
between 000 and 111. The encoder therefore does not need to waste bandwidth to communicate
this distinction to the decoder.

An analogous argument shows that the encoder of X does not have to bother with distinguishing
between the two elements of the following pairs: {001, 110}, {010, 101}, and {100, 011}. These
pairs are called cosets. Hence, X’s encoder only has to transmit enough information to allow the
decoder to distinguish between these four cosets, requiring two instead of three bits!

Example 14.2 (Coset-based distributed source coding) Consider the following example:
x = 101, y = 100. Upon receiving y, the decoder knows that the only possible values of x

are 100, 000, 110, and 101 owing to the correlation structure. The encoder of X tells the
decoder that x belongs to the coset {010, 101}, using two bits to do so. Since only 101 is
consistent with both these facts, the decoder knows that x = 101.

The terminology of “cosets” hints at some channel-coding background of this scheme. With each
coset, a unique syndrome is associated via a channel code’s parity matrix (the details are beyond
the scope of this presentation; please refer to reference [651] or some literature on channel coding).
This syndrome can be communicated to the decoder. Thus, derives the name Distributed Source
Coding Using Syndromes (DISCUS) for this scheme.

Reference [651] goes beyond this presentation. It also discusses how to apply these basic ideas
to encoding with a fidelity criterion, admitting continuous-valued random variables X and Y . The

000 100

010

001

110

101

111011

000 100

010

001

110

101

111011

000 100

010

001

110

101

111011

y = 000 y = 111

Figure 14.3 Possible values of x for a given y for a Hamming–distance-based correlation structure

420 Advanced application support

correlation in this case is expressed by Yi = Xi + Ni , where the Ni are a sequence of independent
and identically distributed random variables independent of Xi .

Some extensions

In this scheme, there is again an asymmetry between the two sources: One of them has to send
at the full rate, and the other at reduced rate. While it is possible to switch roles between sources
periodically to smooth out this asymmetry, it might be desirable to find a scheme that allows both
sources to have the same data rate at the same total rate (this is admissible by the Slepian–Wolf
theorem). Such a symmetric version of the DISCUS scheme is presented in reference [652].

References [164, 165] describes a recursive codebook construction scheme and appropriate
encoder and decoder mechanisms.

Additional references on the topic are [1, 37, 282, 459, 732, 928].

14.1.4 Network coding
A rather innovative way of using network resources is opened up by network coding [15, 492]. In
a traditional network, a router essentially only receives packets on incoming links and redistributes
them to its outgoing links. In the spirit of in-network processing, what happens when a router is
allowed to also modify data and redistribute the result of coding over already received packets
to its outgoing links? This is the essential question of network coding and it does provide some
surprising insights.

To illustrate the concept, consider the example shown in Figure 14.4: Node S is trying to multicast
information to nodes T and U , each intermediate link has a capacity of 1 unit of data per unit of
time, and each node can send and/or receive different data units at the same time over different
links. Using simple store-and-forward networking, node S can transmit one data unit per unit time
to T and U ; the additional links via nodes C and D are of no avail here.2 At best, node S could
transmit data x to node A and data y to node B. These nodes broadcast their received data; node
C forwards, say, x to D and from there to U . It is not possible, however, to transport two units of
data to both receivers in one unit of time.

This result changes, however, when node C is allowed to process the received data and to forward
the results of such processing. In particular, let node C not just forward one of the received data
units, but the result of computing the logical XOR of x and y (Figure 14.5). Node D then broadcasts
this data to both T and U who can then use x or y to compute their missing data unit. Thus, two
units of data can be transmitted in one unit of time.

S

T UT U

D

BA BA

C

Figure 14.4 Example network for network coding [15]

2 Delays are ignored here or pipelining is assumed.

Advanced in-network processing 421

S

T UT U

D

BA BA

C

x y

x

x y

yx + y

x + y

Figure 14.5 Example network when actually using network coding [15]

This fundamental idea can be generalized to the theory of network coding – applying ideas
from coding theory to the processing and forwarding of data in a network. As a fundamental result,
Ahlswede et al. [15] have established a theorem that corresponds to the max-flow/min-cut theorem.
They consider a graph G with limited edge capacities, a single source s and several destinations
t1, . . . , tn to which the data from the source should be transmitted at rate h. They show that this
data distribution task is solvable if and only if for each destination ti a maximum flow exists that is
larger than h. The proof is somewhat complicated and requires the explicit constructions of codes
that realize the in-network processing task.

In another basic paper on network coding, Li et al. [492] have shown that linear coding is a
simple coding scheme that nevertheless achieves the optimal performance as formulated by the
max-flow theorem. In linear coding, the only allowed transformations that an intermediate node
may perform are linear transformations on blocks of data, perceived as vectors in a suitably defined
vector space. Koetter and Medard [428] extend this work by considering how coding can be used
to make a network robust against permanent errors (where usually, rerouting had to be employed).

In these papers, transmissions are not restricted by any costs incurred by the nodes but only
limited by the link capacities. In this sense, these papers fit better to a wired network. Two references
that approach the application of network coding to wireless networks are [522, 897]. Lun et al.
[522] cast network coding for wireless networks as a linear optimization problem. The interesting
(and surprising) consequence is that with network coding not only is the performance of the network
improved beyond that of traditional multicast routing but the optimization problem also becomes
simpler than the (NP-complete) Steiner tree problem usually used to model this case. Wu et al.
[897] explicitly take the wireless multicast advantage into account when using network coding in
a cross-layer approach to improve multicasting in wireless networks.

Overall, the field of network coding is, at the time of this writing, still relatively young and full of
vigor. It is also, sadly, still relatively little known in the networking research community. Interesting
results from a cross-pollination of wireless sensor network research and the more information-
theoretic network coding research are still to be expected.

14.1.5 Further issues
A few more research issues and approaches should be briefly mentioned:

Cleaning “noisy” sensor readings Elnahrawy and Nath [232] present a plausible approach to
the problem of noisy sensor readings. It is based on Bayesian estimation theory.

Beamforming Beamforming – trying to track a mobile source – is a prime example of in-network
processing and described in more detail in the following section on specific applications. Two

422 Advanced application support

further references are [142, 907]. Reference [457] also considers heterogeneous networks (i.e.
networks with more powerful nodes added) for such an application.

Compression and routing Reference [728] combines the concepts of network coding and routing.
They characterize conditions for the rate/distortion function to be applied so that all nodes
can broadcast their readings in the entire network, given a prescribed quantization error.

In a somewhat similar context, Pattem et al. [623] look at the performance of routing
in combination with compression ad aggregation in presence of spatial correlation of the
observed data. They claim a static clustering scheme achieves near-optimal performance.

Transport capacity and measurement accuracy Marco et al. [538] address the principal ques-
tion how much data needs to be extracted from a measurement field to attain a given
measurement error and how this number relates to the measurement accuracy of the sensor
network. Moreover, they study how the number of sensors influences these results.

14.2 Security
Network security [729, 731, 785] is one of the most pressing concerns in all wireless networks,
including wireless sensor networks. In this section, we briefly introduce the security problem and
explain some of the specifics of wireless sensor networks. The discussion is in parts based on
Schäfer [729, 730].

14.2.1 Fundamentals
Network designers have to be aware of and decide about suitable mechanisms to implement one
or more of the following general security goals [729, Sec. 1.2]:

Confidentiality Information should only be revealed to authorized entities; any other entity should
not be able to discover the information from eavesdropping or from reading memories.

Data integrity The receiver of information wants to be sure that it is not modified in transit,
either intentionally or by accident. To distinguish unmodified “wanted” information from
unmodified bogus information, the originator must be identifiable uniquely.

Accountability The entity requesting a service, triggering an action, or sending a packet must be
uniquely identifiable.

Availability Legitimate entities should be able to access a certain service/information and to enjoy
proper operation.

Controlled access A service or information access should only be granted to authorized entities.

Any security analysis must start with stating the desired security goals, followed by an assessment
of the possible risks or security threats posed by an attacker. Some common threats are eaves-
dropping, masquerading (i.e. pretending to have another entity’s identity), authorization violation
(using services without being allowed to use them), provoking loss or modification of information,
forgery (i.e. creating new information), repudiation, and sabotage.

When considering networking, some of the common attacks are eavesdropping as a purely passive
attack, and insertion, deletion, or replaying of packets as an active attack. Attacks can be placed
on all the layers of a given protocol stack.

Many countermeasures have been developed against these threats. These mechanisms frequently
rely on symmetric or asymmetric cryptographic algorithms [731], [548]. These algorithms can

Security 423

be used to encrypt data packets, to sign these with almost unique hash/cryptographic check values,
or to create certificates. Cryptographic algorithms essentially work by applying certain operations
on combinations of the user data and specific key values, which optimally are only known to the
sender and the receiver of a packet. Distributing these keys to the users and taking care of their
lifecycle are essential parts of key management protocols. In practice, key management turns out
to be the most complex part of security protocols; the raw encryption and decryption procedures
are small but important building blocks.

14.2.2 Security considerations in wireless sensor networks
Can security measures and cryptographic protocols in wireless sensor networks be considered in
the same way as for other types of networks? There is some consensus that the answer seems to
be “no”, for the following reasons:

• The network infrastructure of a WSN is made up of small, cheap nodes spread over a possibly
hostile area. Unlike other types of networks, it is often impossible to prevent the sensor nodes
from being physically accessed by attackers. This is also referred to as node capture. It is
reasonable to assume that an attacker can achieve full control over a captured node, that is he
can read its memory or influence the operation of the node software. Special secure memory
devices would be needed to prevent the attacker from reading the memory; however, these will
only rarely be present in cheap sensor nodes.

• The constraints regarding memory and computational capabilities are a serious obstacle for
implementing cryptographic algorithms. Especially asymmetric key cryptography is considered
too heavyweight for small processors, let alone the key management involved. The usage of
several cryptographic block ciphers in sensor networks has been investigated in reference [471].

• When in-network processing is to be performed, intermediate nodes need to access and modify
the information contained in packets; hence, a larger number of parties is involved in end-to-end
information transfers.

• The finite energy budget of sensor nodes opens up a particularly attractive line of attacks: to
force victim sensor nodes to exhaust their energy budget quickly and to die.

An additional challenge pointed out by Schäfer [730] is that attackers can have much more energy
at their disposal than the sensor nodes. All security measures carried out by a sensor node require
extra energy and stressing the node by attacks can cause premature depletion. This amounts to one
particular kind of a denial-of-service attack (DoS). In the following, some of these DoS attacks
are briefly described.

14.2.3 Denial-of-service attacks
Wood and Stankovic [891] consider a number of different denial-of-service attacks in sensor
networks, working at different levels. Denial-of-service attacks in general can try to [730] (i) disable
services, or (ii) to deplete service providers, for example, by overusing the service. To disable a
sensor network’s service, an attacker might simply destroy nodes. Although sensor networks have
some resilience to node failures, the attacker can distort the network by destroying a large number
of nodes or by focusing on especially important nodes, for example, sensor nodes in the vicinity of
sinks that are needed for forwarding. In the following, however, we discuss protocol-related attacks.

Physical-layer and link-layer attacks

With physical-layer jamming, an attacker simply distorts radio communication. One way to achieve
this is to place attacker nodes somewhere into the network and let them continuously send radio

424 Advanced application support

signals in the sensor network’s frequency band. Especially effective is such an attack when the
attacker nodes are close to sink nodes, effectively reducing a user’s ability to control the net-
work or to acquire data from it. A single attacker node can distort many neighbors at once
and, by strategical placement of a number of attacker nodes, the whole sensor network can be
disabled.

One possible countermeasure is the use of modulation schemes with some robustness against
interference, for example, frequency-hopping or direct-sequence spread-spectrum techniques ([293,
297, 557]; see also Section 4.2.5). A second possible countermeasure is that the uncompromised
sensor nodes reduce their duty cycle upon detecting such an attack. If the attacker has itself only a
finite energy budget, it can persevere only for a limited time. A third countermeasure can be taken
by routing protocols: If the attacker jams only a limited area, packets may be routed around. In
protocols like directed diffusion, frequent interest dissemination can find working routes. Finally,
sensor nodes with different physical layers can switch between these (for example, between a radio
and an infrared transceiver).

A cleverer attacker can take knowledge about the protocols into account to save energy, giving
rise to link-layer jamming. Especially, the MAC protocol is a good candidate. Let us consider,
for example, protocols based on exchange of RTS/CTS packets (see Section 5.1.2) like PAMAS
(Section 5.3.2) or S-MAC (Section 5.2.2). Whenever an attacker node a receives an RTS packet
issued by some node x, it can answer with a jamming signal, interfering with any CTS packet sent
to x. As a consequence, x has no transmit opportunity, backs off and tries again later with another
RTS packet. According to Wood and Stankovic [891] no effective countermeasure against such
an attack exists. The attacker might exploit the MAC protocol further to save energy. For example,
in S-MAC the attacker can adapt its activity periods to the schedules of its neighbors.

Another ugly attack exploits MAC protocols using immediate acknowledgments and retransmis-
sions. Upon receiving a data frame from node x, the attacker node can jam the acknowledgement
frame destined to x. This causes x to back off, retransmit the same packet and to waste energy.
Another way of depleting a node x is to continuously send RTS packets to this node, causing him
to answer with CTS packets.

Network-layer attacks

Several types of attacks can be executed on the network layer. First, attacker nodes can behave
similar to normal nodes; specifically, they can participate in routing protocols or dissemination
of interests with the goal of directing routes to itself and to drop packets later on. This attack is
called black hole attack. For example, in distance-vector protocols, the attacker can pretend to have
particularly good routes to the sink. Dropping of packets destroys information, and furthermore, the
forged route advertisements attract lots of traffic around the attacker, causing increased congestion
levels and contention.

In a similar kind of attack, so-called misdirections, the adversary creates wrong routes, for
example, by sending wrong route advertisement packets or by falsely answering route request
packets. A wrong route can, for example, contain a loop and cause waste of energy. Another
possible effect is that traffic does not reach the intended sink nodes. Instead of creating wrong
routes, an adversary can also cause creation of unnecessary routes, for example, by issuing route
lookup requests. All nodes participating in route selection waste their energy.

Even without actively trying to be included as a forwarder into routes, an attacker node can
drop other nodes’ packets and forward only its own packets. Such an attack is called neglect and
greed. The attacker node can drop packets in a random fashion or all of them. Routing or data
dissemination protocols that cache routes (like DSR or directed diffusion) are vulnerable to this
attack. The attacker node participates in route setup and distorts, later on, the forwarding of data

Application-specific support 425

packets. When this behavior has been detected, the network may set up alternate routes or a source
node can send multiple copies of a packet over node-disjoint routes from the beginning.

All these attacks have their source in adversary nodes participating in routing protocols. To
prevent this, authentication and/or authorization mechanisms are needed to restrict routing protocols
only to trustworthy nodes. Protocols for this purpose are beyond the scope of this chapter.

An attack called homing seeks to determine the geographic locations of certain important nodes
in the network, for example clusterhead nodes. This information can be obtained from eavesdrop-
ping location-centric protocols. Once this information has been determined, the adversary can direct
other attacks to these nodes. Clearly, a good way to prevent this attack is encryption of location
information.

Transport layer and application attacks

If the transport layer uses explicit connections between identifiable nodes, either end of the con-
nection needs to maintain some form of connection control block (CCB). Similar to TCP syn flood
attacks, an attacker can issue a large number of connection setup requests and cause exhaustion of
memory at the end nodes because of large numbers of unneeded CCBs.

Another kind of attack identified by Wood and Stankovic [891] is desynchronization, which
can be applied to transport protocols resting on sequence numbers. By issuing forged packets
with wrong sequence numbers, the attacker can cause wasteful retransmissions or even cause the
participants to end the connection.

In sensor networks deployed to detect certain environmental events, an attacker node can generate
sensor data indicating this event, causing nodes in the vicinity or even the whole network to wake
up and to start various activities. Possible countermeasures can be developed starting from outlier
detection techniques.

14.2.4 Further reading

• Reference [730] is a survey article on sensor network security. It discusses some key management
protocols in further detail. Key management issues in sensor networks are also discussed by
Eschenauer and Gligor [244] and Zhu et al. [937].

• Karlof and Wagner [406] consider secure routing and network-layer attacks in sensor networks
in some more detail and discuss also a number of countermeasures.

• Perrig et al. [638] consider among others the problem of secure broadcast; see also [637].
• The ACM Conference on Computer and Communication Security (CCS) and the IEEE Symposium

on Security and Privacy regularly present papers on sensor network security issues.

14.3 Application-specific support
In this section, we briefly describe three different tasks that sensor networks might be tasked with
and which likely are important building blocks of sensor network applications. The first one is
detection and tracking of (mobile) targets, for example, intruders into some site, the second one is
detection of edges or of contours/isolines in the level of a continuous physical phenomenon, and
the third is to obtain an estimate of a physical field. We also sketch some ideas of how these tasks
can be approached with sensor networks.

All these applications are good showcases for geographic forwarding and geographic addressing
since they make heavy use of position information and incorporate this into forwarding and routing
decisions; this is especially true for tracking.

426 Advanced application support

14.3.1 Target detection and tracking
The goal is to detect targets entering the area observed by a sensor network (for example, an
elephant entering a habitat), to estimate their initial position and to update/“track” the position
estimate as the target moves (tracking). Sometimes it is also required to classify the target, that
is, to assign it to one of a finite number of possible target classes (for example, elephant versus
giraffe versus ice bears).

Tracking a single target is already a challenging task, and tracking multiple targets has additional
complexities. Consider, as an example, that the sensor network has detected two elephants entering
the network at different places A and B. The elephants meet, spend some time together, and later
on either elephant goes its own way, leaving the sensor field at locations C and D. Now, which
elephant has left the field at location C? The one coming in from A or the other one? In a similar
scenario but with one elephant replaced by a giraffe, classification can help with deciding this
question. In general, however, it is necessary to associate sensor readings or position estimates to
tracks. For example, a position estimate q can be associated to the single track whose estimated
current position is closest to q.

Networking Requirements

Let us have a brief look at the networking and signal processing requirements of the different tasks
(compare Li et al. [482] and Brooks et al. [101]):

Detection Typically, a node can autonomously detect the target’s presence by comparing its own
sensor readings against some application-specific threshold, possibly after averaging multiple
readings over a certain time window.

Target localization Depending on the sensing model (compare Section 13.2.1), the readings of a
certain minimum number of nodes have to be combined. For example, to detect an acoustic
event under the general sensing model, three noncollinear sensors are needed when sound
intensity at the source is known, whereas four sensors are needed when this intensity is not
known.

Classification An individual node can classify a target, for example, by looking at its spectral
properties. Such classification algorithms work typically on time series of sensor readings.
The classification result (or decision) is then communicated to other nodes. In a collaborative
classification approach, some central node can either collect time series or decisions from
individual nodes. Time series have a larger volume and thus require larger bandwidth, but
in general provide more information to the central node. On the other hand, communication
of decisions requires less bandwidth but information is lost. The trade-offs depend on the
application and the accuracy/failure rate targets. Brooks et al. [101] explores these trade-offs
further.

Tracking tracking involves several nodes, specifically those close to the target’s trajectory. Track-
ing is discussed in more detail next.

A tracking approach

Let us consider the situation shown in Figure 14.6. There are at least two options:

Centralized processing All nodes sensing the target report their (timestamped) readings to the
sink node, which combines them to obtain the desired estimates. For example, in the directed
diffusion framework, the sink can issue corresponding interests.

Application-specific support 427

Sink

Figure 14.6 Example tracking scenario

Localized processing A manager node in the vicinity of the target collects local sensor readings
and estimates the target position. By considering the current position as well as past positions
and their timestamps, the manager node can also estimate the speed and heading of the target.
As the target moves away, the manager hands off the whole target state (history of positions
including the current one, speed, and heading estimate) to a new manager node. This new
node is chosen such that its location is close to the projected target position at the time of
handoff; the choice is thus geography based. This way, the estimated state follows the target
in space and time. Additionally, manager nodes send target position reports to the sink from
time to time.

The first approach imposes significant communication overhead when the target is far away from
the sink. Another drawback is that in the presence of multiple targets the sink has to associate every
position estimate with a target track, which requires significant computational efforts [101, 326].
On the other hand, in the second approach, the sensor nodes are mostly faced to only a single or a
few targets simultaneously and can thus keep the amount of computation for association of position
estimates to targets at reasonable levels. The second approach can also be combined with sleeping,
since only nodes in the neighborhood of the target need to be awake and sensors can go back to
sleep mode as soon as the target moves away. Different schemes for selecting the next manager
node have been proposed.

In the work presented by Brooks et al. [101], the sensor network is subdivided dynamically into
smaller units, called spatial cells (Figure 14.7). Cells can be in three different states:

Alerted cell An alerted cell has not yet detected the target, but expects it to enter the cell soon.
One approach to become an alerted cell is to put cells from the network fringe a priori into
the alerted state. A second way to enter this state is when the cell receives a target state
packet from a neighbor cell’s manager node; see below.

Active cell An active cell has detected the target and possesses an estimate of its state. This
estimate is freshly created (for example, when a target enters the observed region) or is an
updated version of the state received from a neighbor cell. The manager node predicts future
positions of the target and alerts neighboring cells accordingly by transmitting the updated
target state into that cell. As illustrated in Figure 14.7, it might well happen that a manager
node alerts two or more neighboring cells, for example, cell 2 alerts the two cells 3a and 3b.

Sleeping cell A sleeping cell is neither alerted nor active, but ready to accept target state packets
and to enter the alerted state.

428 Advanced application support

Sink

Cell 1
Cell 2

Cell 3a

Cell 3b

Figure 14.7 Example tracking scenario (adapted from: [101])

It is important to note that in this framework all decisions are purely local and involve only local
communications. However, some important issues have to be resolved (i) How are cells constituted?
(ii) How should packets be routed from cell to cell? and (iii) How are manager nodes within a cell
determined? For the routing part, a reactive location-centric routing scheme called UW-routing is
used. Route requests (RREQ) are directed toward cells and the first node in the target cell receiving
an RREQ answers with a route reply packet. For computing the cell size, the current manager node
takes, for example, the target speed and the sensing capabilities into account. For finding the next
manager nodes, two promising techniques have been investigated in Brooks et al. [101]:

• The manager node predicts the track from an extended Kalman filter and hands the target state
over to nodes close to this track.

• In the lateral inhibition scheme, a potential new manager node A sends a packet indicating its
interest to continue the track when it has detected the target. A delays the packet according to
its estimated “goodness of fit” derived from its own sensor readings. For example, node A can
take a signal amplitude as an estimate of its distance to the target. The shorter the distance (i.e.
the better its goodness of fit), the shorter the waiting time. If another potential manager node B

announces its interest earlier than A, then node A defers.

Further references

The IDSQ approach for selecting the next manager node is presented by Zhao et al. [926] as well
as by Zhao and Guibas [924] (it is also discussed in more detail in Section 12.3.8). In a nutshell,
in this information-driven approach, a manager node requests sensing values according to their
anticipated information-utility, that is, in their projected ability to reduce the uncertainty in the
position estimate. The next manager node is chosen according to a similar criterion.

A specific sensor network application for tracking the position of zebras is presented in refer-
ence [388]. Here, a box with a GPS receiver and some memory is attached to a zebra. The box
records the zebra positions with a certain sampling rate. Since typical zebras cannot be expected to
appear regularly at some data exchange point, a different approach has been chosen. Whenever two
zebras meet, they exchange parts of their trajectories. This way, any zebra carries also information
about the trajectory of those zebras it has met so far. Scientists can now drive through the habitat
and try to meet as many zebras as possible, downloading their data.

Two further references dealing with detection, localization, or tracking algorithms are [310] and
[925].

Application-specific support 429

14.3.2 Contour/edge detection
Some sensor network applications require detection of contours or edges. Consider, as an example,
a large field of chemical sensors. In case of an accident, it is important to get an idea of the
position, extent, and shape of a toxic plum. We discuss the problem and some solutions in more
detail, mostly for the case of static sensor fields.

Problem description

A slightly more abstract formulation of such a task assumes that the sensor network has to observe
some scalar field and the user is interested in the isolines of this field.3

An even more abstract setting is to assume that each sensor is able to evaluate a Boolean event
predicate [156] and the goal of an edge detection algorithm is to find the boundaries between areas
where the predicate, evaluated by perfect sensors without any measurement errors, evaluates to true
or false, respectively. The interior of a phenomenon is then defined as the area U ⊂ R2 for which
the event predicate yields true, and the exterior is the complement of the interior. In calculus, the
edge would correspond to the boundary of the interior, that is within every ε-neighborhood of an
edge point (x, y), points from both the exterior and interior are contained. With this definition,
with probability one no single sensor of a set of randomly deployed sensors would lie directly on
an edge. As a more practical definition, a sensor is considered to be on the edge if (i) the sensor
is in the interior and (ii) it has a distance smaller than some prescribed r to at least one point on
the edge. The number r is called tolerance radius.

The difference between contour and edge detection is characterized by Chintalapudi and
Govindan [156]. In edge detection, there is an explicit notion of interior and exterior points;
in contour detection, this is not the case.

We can also distinguish different tasks in edge/contour detection:

• A single sensor wants to determine whether it is an interior, exterior, or edge sensor but there
is no immediate need to communicate this result further to any other node. For example, an
exterior sensor might choose longer sleep periods than an interior sensor.

• A user wants obtain an explicit geometric description of the edge/contour. Accordingly, this
shape must be determined and communicated to the user. The complexity of a shape description
relates directly to the communication overhead, as the following examples illustrate:
– If the network designer assumes beforehand that all contours have circular shape, three

parameters suffice to describe a contour in the plane – the center point (x and y coordinates)
and the radius of the circle determined by the protocol. Accordingly, the whole description
can be encapsulated into a single small packet.

– If the contour is described by a polygon with n points, a number of 2n values must be
transported to the sink node. The number n depends on the number of sensor nodes in the
vicinity of the contour and on the number of individual points each node contributes.

The edge/contour detection problem has some similarities to edge or contour detection in the
computer vision/image processing field [265]. However, there are also important differences:

• Image processing algorithms work on pixels that are nicely arranged in a grid. They can therefore
rely on techniques that require this regularity, for example, Fourier transform techniques. It is,

3 An isoline in a scalar field is an open or closed path such that all points on this path have (approximately) the same
amplitude. In a continuously differentiable scalar field with nonvanishing gradients, the isolines are also locally continuous
[264, Chap. 8].

430 Advanced application support

however, reasonable to assume that such a grid placement is not the dominant case in sensor
networks. Instead, the edges/contours have to be estimated from irregularly placed points.

• The sensor readings can be noisy.

Localized edge detection

Chintalapudi and Govindan [156] discuss three different schemes by which a node can locally
decide whether it is within some radius r > 0 of an edge or not. All these schemes base their
decision on locally obtained information. Specifically, a node s collects from all other nodes t

within some radius R > r of s their respective positions (xt , yt) and the value et of t’s event
predicate. This information is combined with s’s own event predicate. The radius R is called
probing radius and is a measure of the size of the neighborhood s considers and thus a measure
of the communication overhead, which scales roughly as O(R2) for a sensor field of homogeneous
density. The three schemes are as follows.

• A statistical scheme: node s collects the neighbors’s positions and event predicates and computes
some statistics of these values. As an example, s could count the number NT of neighbors
(including s) for which the event predicate evaluates to true and the number NF of neighbors
with value false. Node s decides to be an edge node if

1 − |NT − NF|
NT + NF

≥ γ0

holds for some threshold value γ0 ∈ [0, 1]. The choice of this threshold value depends on the
sensor density, on the ratio R/r , on the probability that an event predicate is erroneous, and on
the desired maximum rate of bogus edge decisions.

• A scheme inspired by image processing: a modified high-pass filter with weights considering the
arbitrary node placement is used and the resulting spatial variation in both x and y is compared
against a threshold value.

• A classifier-based approach: it is assumed that the edge/contour is “large” compared to R and
that it can locally be well approximated by a straight line. The classifier running in node s tries
to find a line such that the number of sensors having the same event predicate value on either
side of the line is maximized. If the resulting line has a point with distance <r to node s, then
s assumes to be on the edge; otherwise s is an interior or exterior node.

Some important performance parameters for these schemes are the percentage of missed detections
(i.e. where an edge sensor fails to detect this), the percentage of false detections (i.e. where a sensor
believes to be an edge node while it is in fact not), the communication overhead, and the “thickness”
of the determined edge (i.e. the average distance of edge nodes to the true edge). False detections
can result from two sources. The first one is “really false” induced by noise in the event predicates,
and the second source (called unwanted detections) is failure to distinguish edges passing within
distance r from s and edges passing at a distance between r and R. Some important observations
made by Chintalapudi and Govindan [156] are the following:

• There is an energy-accuracy trade-off. Increasing the probing radius R increases the accuracy
(increased detection probability and thinner edges for nonincreasing false detection rates) but the
communication overhead increases as well, since node s collects O(R2) event predicates.

• For R/r ≥ 2 and linear edges, all schemes perform comparably well; for elliptical edges, the
classifier-based scheme has an inferior detection capability.

Application-specific support 431

• The first two schemes have an increasing amount of false positives as the ratio R/r increases,
since the number of unwanted detections increases. On the other hand, for the classifier-based
scheme, the amount of false detections decreases with increasing R/r since unwanted detections
are almost ruled out a priori and really false detections become less likely with increasing number
of neighbors considered.

A global contour detection scheme

The algorithm described by Nowak and Mitra [601] considers a sensor field with randomly
deployed nodes. An edge partitions the field into two parts such that in each part the sensor
readings are equivalent. For ease of explanation, the field is assumed to be quadratic (Figure 14.8).

The algorithm essentially constructs a pruned quadtree in a bottom-up manner. In the first step,
the sensor field is subdivided into squares or clusters at the finest resolution, for example, by a
recursive dyadic partition algorithm. Within each square (i, j). a clusterhead collects the sensor
readings/event predicates from the other nodes within its cluster and computes the average value
θi,j and the sum of squared errors Ri,j between the sensor readings and the average value. In the
following step, the algorithm considers four neighboring clusters (arranged as a square of larger
size) and checks whether these should be combined into a single larger cluster, represented by a
new clusterhead. This check, based on a complexity penalized estimator, rests on two different
terms. First, the new clusterhead computes a new average value θ taking all sensor readings of the
new cluster into account. Then, the sum of squared errors R between θ and all the sensor readings
of the large cluster is computed.4 The second parameter relates to the number of leafs in the pruned
tree. A smaller number of leaves leads to a more compact representation of the overall edge and
thus less data must be sent to the user at the sink node. Ultimately, the decision of whether or not
the four clusters are combined into a single one balances the decrease (if any) of the sum of squared
errors R with respect to the sum of the Ri,j of the component clusters on the one hand and the
reduction in communication overhead on the other hand. This approach of combining (or not) four
neighboring clusters into a new one is repeated toward higher and higher levels of aggregation.

Figure 14.8 Example quadtree for contour determination [601]

4 It is not necessary to pass all the single sensor readings from the children clusterheads to the new clusterhead; it suffices
to send certain summary statistics.

432 Advanced application support

It is useful to think of the pruned tree as an approximation of the sensor field by a two-dimensional
step function, having a constant value in each of the surviving squares. After a certain number of
iterations, the tree does not change anymore and the clusterheads of all surviving clusters can send
their geographic coordinates and cluster sizes to the user who can derive the boundary from this
information. It is shown that under certain assumptions the resulting tree has on average a number
O(

√
n) of clusters.

Nowak and Mitra [601] characterize the mean-square error of this scheme. The mean-square
error is the sum over all sensors between the true sensor reading and the value of the step function
according to the pruned quadtree, divided by the number of sensors. The mean-square error depends,
among others, on the number of sensors and the “smoothness” of the boundary. For Lipschitz-

continuous boundaries, the mean-square error behaves asymptotically as ∼
√

log n

n
, that is it goes to

zero as n increases. By making even stronger assumptions about the boundary (for example, by
requiring it to be a straight line), the speed of convergence can be made even faster.

Summarizing, by increasing the number of nodes, the mean-square error decreases, but on the
other hand, the communication costs for constructing the pruned quadtree and for returning the
final information to the user increase.

Further reading

In Savvides et al. [727], an interesting scheme using mobile sensors is proposed. Once such a
sensor has detected an event of interest (e.g. a plum of toxic gases), the node tries to move along
the plum’s perimeter and determine its boundary. Each node decides locally about its movements
according to network connectivity requirements, the evolution of the plum perimeter, the terrain
in question, and the presence of other nodes. This task can be seen as an instantiation of search
problems for multiple mobile robots (see, for example, Hayes [336]).

In the setting considered by Dantu and Sukhatme [190], a static and randomly deployed
sensor field is assumed. Furthermore, there is a single mobile sensor that desires to drive along the
isolines of a scalar field. The mobile sensor communicates with neighboring static sensors, obtains
the highest and lowest amplitude, and determines a new direction from this. To make this work,
the scalar field is assumed to have a particularly simple shape, namely, concentric contours around
a single source, the height of which decreases with distance from the source.

Liu et al. [516] use geometric dual-spaces for edge detection problems.

14.3.3 Field sampling
Consider a situation where a set of point sensors (see Section 13.2.1) like chemical sensors is tasked
with drawing a “map” of the concentration of a certain chemical over the sensor field.

Problem description

Such a task can be formulated as estimating a scalar field, where a scalar field in two dimen-
sions is simply a mapping f : D ⊂ R2 �→ R. A similar definition holds for three-dimensional
space. In general, scalar fields coming from physical phenomena are time variable. However,
like most of the work on field sampling in sensor networks, we concentrate on a snapshot, that
is, the state of the field at a certain time. The contribution of a single sensor to field estima-
tion is a scalar measurement value associated with the sensors’ geographical position, which
must be known. This measurement value can be noisy. Furthermore, the measurement value
provided by the sensor is a quantized version of the true scalar value, creating additional quanti-
zation noise.

Application-specific support 433

What quality can such a reconstruction have and what is the associated communication overhead?
Disregarding noise and quantization in the sensor readings for the moment, the quality depends on
the smoothness or regularity of the sensor field. Some theoretical considerations are the following:

• A perfect reconstruction is only possible when the n sampled points delivered by the sensors
are sufficient to determine the parameters of simple functions like polynomials. When an infinite
number of sensors are available that additionally are evenly spaced, then according to Nyquist-
type theorems [180], a broader class of functions can be perfectly reconstructed, the band-limited
functions.5

• If the scalar field cannot be confined to simple functions, the n samples can only be used to derive
an approximation to the true field. Different measures can be used to judge the quality of the
approximation f̂ (·) to the scalar field f (·), for example, the maximal difference

∥∥f̂ (·) − f (·)∥∥∞
or the L2 distance

∥∥f̂ (·) − f (·)∥∥2 = ∫
(f̂ (x) − f (x))2 dx.

Given that sensor readings are noisy and quantized, it is appropriate to turn to other quality measures,
for example, the Mean Squared Error (MSE)

1

|F |
∫

F

E
[
(f̂ (·) − f (·))2] dµ

between the true field and the estimated field over the area F . Under particular assumptions on the
smoothness of the field, for certain types of approximating fields and for certain assumptions on
the stochastic process governing the measurement noise it is possible to find bounds for the MSE.
In general, these MSE bounds depend on the number n of sensor nodes such that increasing n

decreases the MSE. However, as pointed out by Nowak et al. [602], a lower bound for the MSE
is given by O(n−1), which is the decay rate achievable for the simplest possible field estimation,
a constant value.

An important problem for field estimation is the communication overhead. One obvious approach
is to let every sensor send its reading toward the sink node and, for quickly varying scalar fields,
one cannot hope to get away with significantly less transmissions when reasonable error bounds are
desired. On the other hand, for smooth sensor fields neighboring sensors will have correlated/very
similar sensor readings. In such a case, it is sufficient to locally compute some summary statistics
and to send the result to the sink without compromising MSE targets too much. Even if there is
additional local communication overhead, such a scheme will often pay out, since many sensor-to-
sink packets will be saved. Similar ideas are explored in concepts for distributed source coding
or distributed compression [34, 210, 539, 578, 653, 654, 809, 810].

A scheme using pruned trees of squares and platelets

Nowak et al. [602] propose to adapt the concept of pruned quadtrees (as already used for contour
detection) to field estimation as well, trying to find a good compromise between approximation
quality (as measured by the MSE) and the communication overhead, which relates directly to the
size of the tree. Besides, this approach preserves the possibility to find boundaries between different
regions of the field, this way being able to treat noncontinuous or bandwidth-unlimited fields.

The n point sensors are arranged in a
√

n × √
n regular grid in the square [0, 1]2. For convenience,

we assume that n is a power of two. Again, an initial dyadic partition of [0, 1]2 consisting of n

elementary squares hosting a single sensor is created, and each sensor makes a noisy measurement

5 Briefly, for a function f (·) to be band-limited, it is required that the spectrum of f (·) (given by its Fourier transform) has
bounded support.

434 Advanced application support

of the scalar field in its square. The noise is assumed to consist of iid zero-mean Gaussian random
variables with common variance for all sensors. Nowak et al. [602] propose two different methods
of estimating the field within a square:

• In the first method, the square is simply represented by a constant value having the smallest least
squares error with respect to the sensor readings within this square. This estimator is referred to
as the Haar estimator.

• The second method uses platelets. Specifically, the square is subdivided by a line that connects
two points on the square boundary. This line partitions the square and for each partition the
least squares error is determined. The line is chosen so as to minimize the sum of these errors.
The set of possible lines is discretized by restricting the possible boundary points to a finite set.
A platelet can be described by six points. One problem with platelets occurs when trying to
combine four squares represented by platelets into a larger one; without further considerations
the four child clusterheads would have to pass all the single sensor readings to the higher-level
clusterhead. Nowak et al. [602] propose a variation that comes reasonable close to the true
platelet scheme and that passes only summary statistics of constant size; this scheme is referred
to as constant-overhead platelet scheme in the following.

Nowak et al. [602] demonstrate that for such pruned trees it is possible to find MSE bounds under
certain regularity assumptions posed to the scalar field and for particular noise models. Specifically,
they investigate the case of Hölder-α regular regions with Hölder-α regular6 boundaries, assuming
values of α ∈ {1, 2}. The Hölder-2 regular fields are smoother than the Hölder-1 regular fields
and it indeed turns out that lower MSE values can be achieved. Nowak et al. [602] show for
complexity-penalized estimators using the Haar or platelet approaches that the following holds:

• For Hölder-1 regular regions with Hölder-1 regular boundaries, the best possible estimator accord-
ing to either the Haar or the platelet approach has an MSE performance bounded as follows:

O
(
n−1/2) ≤ MSE ≤ O

((
log n

n

)1/2
)

.

• For Hölder-2 regular regions with Hölder-2 regular boundaries and using the platelet approach,
these bounds improve:

O
(
n−2/3) ≤ MSE ≤ O

((
log n

n

)2/3
)

.

• The scheme with the Haar estimator and the constant-overhead platelet scheme have similar
communication costs when making the assumption that the costs of transmitting a packet are
linear with the distance:
– The in-network costs occur because of local communications of the clusterheads in the

pruning process. To combine four elementary clusters, the packets of the clusterheads have
to travel to an immediate neighbor. To combine four level-two clusters, the clusterheads
packets have to travel twice this distance and so forth. It is shown that these in-network
costs on average are given by:

O(
√

n).

6 A function f : D ⊂ R
2 �→ C is Hölder-α continuous with respect to a distance measure ‖·‖ if there exists a constant

c > 0 such that for all x, y ∈ D it is true that |f (x) − f (y)| ≤ c · ‖x − y‖α holds; according to http://cnx.rice.edu/
content/m11172/latest/ the function is Hölder-regular of order γ = α + q when the q-th derivative of f (·) exists
and is Hölder-α continuous.

Application-specific support 435

– The external communication costs refer to the transmission of the final pruned quadtree to a
sink node. Again, these costs behave as:

O(
√

n).

In summary, the scheme with pruned quadtrees has expected communication costs of O(
√

n).

Further Reading

Marco et al. [539] investigate field estimation from an information-theoretic perspective, trading
off the number of nodes n on the one hand and the number of bits bn making up a single quantized
sensor reading on the other hand, given that the field is to be reconstructed at a sink with some
prescribed MSE target. It is shown among others for stationary random fields with nonconstant
autocorrelation that bn → 0 as n → ∞. This is possible since, as the number of sensors increases
for fixed size of the region to be covered, the sensor readings become more and more correlated.
This can be exploited by sensors for reducing the number of bits used for representing values
even when sensors have to make their measurements independently and without direct knowledge
of neighboring sensors values. This is a consequence of Slepian–Wolf-type theorems [653, 774].
However, Marco et al. [539] show also that independent of the particular coding method bn · n →
∞ as n → ∞, that is the reduction in the number of bits needed by a single sensors decays not as
quickly as the number of sensors increases.

Kumar et al. [455, 456] consider sampling of band-limited as well as non-band-limited functions
with rapidly decaying spectra in one-dimensional sensor fields, exploring the trade-offs between
sensor quality (i.e. number of bits k used by a sensor to encode its reading) and sensor density
under a distortion criterion measuring the maximum difference ‖·‖∞ between true and estimated
field. Dong et al. [208] consider reconstruction of another type of scalar field, namely a Gauss
Markov field governed by a certain linear stochastic differential equation.

Bibliography

[1] A. Aaron and B. Girod. Compression with Side Information Using Turbo Codes. In Proceedings of the
IEEE Data Compression Conference, pages 252–261, Snowbird, UT, April 2002.

[2] T. Abdelzaher, B. Blum, Q. Cao, Y. Chen, D. Evans, J. George, S. George, L. Gu, T. He,
S. Krishnamurthy, L. Luo, S. Son, J. A. Stankovic, R. Stoleru, and A. Wood. EnviroTrack: Towards
an Environmental Computing Paradigm for Distributed Sensor Networks. In Proceedings of the IEEE
International Conference on Distributed Computing Systems (ICDCS), Tokyo, Japan, March 2004.

[3] A. A. Abidi, G. J. Pottie, and W. J. Kaiser. Power-Conscious Design of Wireless Circuits and Systems.
Proceedings of the IEEE, 88(10): 1528–1545, 2000.

[4] H. Abrach, J. Carlson, H. Dai, J. Rose, A. Sheth, B. Shucker, and R. Han. MANTIS: System Support
for MultimodAL NETworks of In-situ Sensors. In Proceedings of 2nd ACM International Workshop on
Wireless Sensor Networks and Applications (WSNA), San Diego, CA, September 2003.

[5] N. Abramson. Development of the ALOHANET. IEEE Transactions on Information Theory, 31(2):
119–123, 1985.

[6] N. Abramson, editor. Multiple Access Communications – Foundations for Emerging Technologies. IEEE
Press, New York, 1993.

[7] N. Abramson. Multiple Access in Wireless Digital Networks. Proceedings of the IEEE, 82(9):
1360–1370, 1994.

[8] ACPI – Advanced Configuration & Power Interface. http://www.acpi.info/, August 2003.

[9] S. Adireddy and L. Tong. Medium Access Control with Channel State Information for Large Sensor
Networks. In Proceedings of the 2002 IEEE International Workshop on Multimedia Signal Processing,
St. Thomas, Virgin Islands, December 2002.

[10] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley. The Design and Implementation of
an Intentional Naming System. In Proceedings of the 17th ACM Symposium on Operating Systems
Principles (SOSP’99), pages 186–201, Kiawah Island, SC, December 1999.

[11] S. Agarwal, S. V. Krishnamurthy, R. H. Katz, and S. K. Dao. Distributed Power Control in Ad-hoc
Wireless Networks. In Proceedings of the Personal Indoor Mobile Radio Conference (PIMRC), San
Diego, CA, 2001.

[12] P. Agrawal, T. S. Teck, and A. L. Ananda. A Lightweight Protocol for Wireless Sensor Networks.
In Proceedings of the 2003 IEEE Wireless Communications and Networking (WCNC 2003), pages
1280–1285, New Orleans, LA, March 2003.

[13] D. Aguayo, J. Bicket, S. Biswas, G. Judd, and R. Morris. Link-Level Measurements from an 802.11b
Mesh Network. In Proceedings of ACM SIGCOMM’2004 Conference, Portland, Oregon, DC, August
2004.

[14] L. Ahling and J. Zander. Principles of Wireless Communication. Studentlitteratur, 1997.

Protocols and Architectures for Wireless Sensor Networks. Holger Karl and Andreas Willig
Copyright 2005 John Wiley & Sons, Ltd. ISBN: 0-470-09510-5

438 Bibliography

[15] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung. Network Information Flow. IEEE Transaction on
Information Theory, 46(4): 1204–1216, 2000.

[16] G.-S. Ahn, A. T. Campbell, A. Veres, and L.-H. Sun. SWAN: Service Differentiation in Stateless
Wireless Ad Hoc Networks. In Proceedings of IEEE INFOCOM 2002, New York, June 2002.

[17] I. F. Akyildiz, W. Su, Y. Sankasubramaniam, and E. Cayirci. Wireless Sensor Networks: A Survey.
Computer Networks, 38: 393–422, 2002.

[18] I. F. Akyildiz, J. McNair, L.Carrasco, and R. Puigjaner. Medium Access Control Protocols for Multi-
media Traffic in Wireless Networks. IEEE Network Magazine, 13(4): 39–47, 1999.

[19] J. Alonso, A. Dunkels, and T. Voigt. Bounds on the Energy Consumption of Routings in Wireless Sensor
Networks. In Proceeding of the 2nd International. Workshop on Modeling and Optimization in Mobile,
Ad Hoc and Wireless Networks, pages 62–70, Cambridge, UK, March 2004.

[20] K. Altinkemer, F. S. Salman, and P. Bellur. Solving the Minimum Energy Broadcasting Problem in Ad
Hoc Wireless Networks by Integer Programming. In Proceedings of the 2nd International Workshop on
Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks, pages 48–54, Cambridge, UK,
March 2004.

[21] A. D. Amis and R. Prakash. Load-balancing clusters in wireless ad hoc networks. In Proceedings of
the 3rd IEEE Symposium on Application-Specific Systems and Software Engineering Technology, pages
25–32, Los Alamitos, CA, March 2000.

[22] A. D. Amis, R. Prakash, T. H. P. Vuong, and D. T. Huynh. Max-Min D-Cluster Formation in Wireless
Ad Hoc Networks. In Proceedings of INFOCOM, New York, NY, March 1999.

[23] G. Anastasi, L. Lenzini, E. Mingozzi, A. Hettich, and A. Krämling. MAC Protocols for Wideband Wire-
less Local Access: Evolution Towards Wireless ATM. IEEE Personal Communications, 5(5): 53–64,
1998.

[24] E. Anceaume and I. Puaut. A Taxonomy of Clock Synchronization Algorithms. IRISA Research Report
No. PI 1103, IRISA, 1997.

[25] A. Annamalai and V. K. Bhargava. Analysis and Optimization of Adaptive Multicopy Transmission
ARQ Protocols for Time-Varying Channels. IEEE Transactions on Communications, 46(10): 1356–1368,
1998.

[26] G. Asada, M. Dong, T. S. Lin, F. Newberg, G. Pottie, and W. J. Kaiser. Wireless Integrated Network
Sensors: Low Power Systems on a chip. In Proceedings of the 1998 European Solid State Circuits
Conference, The Hague, Netherlands, 1998.

[27] R. B. Ash. Information Theory. Dover Publications, New York, 1990.
[28] ATmega 128(L) Preliminary Complete. ATmel product documentation, 2004.
[29] F. Aurenhammer. Voronoi Diagrams - A Survey of a Fundamental Geometric Data Structure. ACM

Computing Surveys, 23(3): 345–405, 1991.
[30] R. Avnur and J. M. Hellerstein. Eddies: Continuously Adaptive Query Processing. In Proceedings of the

2000 ACM SIGMOD International Conference on Management of Data, pages 261–272, Dallas, TX,
May 2000.

[31] B. Awerbuch. Optimal Distributed Algorithms for Minimum Weight Spanning tree, Counting, Leader
Election and Related Problems. In Proceedings of the 19th Annual ACM Symposium on Theory of
Computing, New York, May 1987.

[32] E. Ayanoglu, I. Chih-Lin, R. D. Gitlin, and J. E. Mazo. Diversity Coding for Tansparent Self-healing and
Fault-tolerant Communication Networks. IEEE Transactions on Communications, 41(11): 1377–1386,
1993.

[33] E. Ayanoglu, S. Paul, T. F. LaPorta, K. K. Sabnani, and R. D. Gitlin. AIRMAIL: A Link-Layer Protocol
for Wireless Networks. Wireless Networks, 1(1): 47–60, 1995.

[34] S. Jun Baek, G. D Veciana, and X. Su. Minimizing Energy Consumption in Large-Scale Sensor Net-
works Through Distributed Data Compression and Hierarchical Aggregation. IEEE Journal on Selected
Areas in Communications, 22(6): 1130–1140, 2004.

[35] P. Bahl and V. N. Padmanabhan. RADAR: An In-Building RF-Based User Location and Tracking
System. In Proceedings of the IEEE INFOCOM, pages 775–784, Tel-Aviv, Israel, April 2000.

[36] H. Bai and M. Atiquzzaman. Error Modeling Schemes for Fading Channels in Wire-
less Communications: A Survey. IEEE Communications Surveys and Tutorials, 5(2), 2003.
http://www.comsoc.org/livepubs/surveys.

Bibliography 439

[37] J. Bajcsy and P. Mitran. Coding for the Slepian-Wolf Problem with Turbo-Codes. In Proceedings of the
IEEE Global Communications Conference (GLOBECOM), volume 2, pages 1400–1404, San Antonio,
TX, November 2001.

[38] D. J. Baker and A. Ephremides. The Architectural Organization of a Mobile Radio Network via a
Distributed Algorithm. IEEE Transactions on Communications, COM-29(11): 1694–1701, 1981.

[39] D. J. Baker and A. Ephremides. A Distributed Algorithm for Organizing Mobile Radio Telecommuni-
cation Networks. In Proceedings of the 2nd IEEE International Conference on Distributed Computing
Systems, pages 476–483, Paris, France, April 1981.

[40] D. J. Baker, A. Ephremides, and J. A. Flynn. The Design and Simulation of a Mobile Radio Network
with Distributed Control. IEEE Journal on Selected Areas in Communications, SAC-2(1): 226–237,
1984.

[41] H. Balakrishnan, V. Padmanabhan, S. Seshan, and R. H. Katz. A Comparison of Mechanisms for
Improving TCP Performance over Wireless Links. IEEE/ACM Transactions on Networking, 5(6): 756ff,
1997.

[42] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, M. Stemm, E. Amir, and R. H. Katz. TCP Improve-
ments for Heterogeneous Networks: The Daedalus Approach. In Proceedings of the 35th Annual Allerton
Conference on Communication, Control, and Computing, Urbana, IL, October 1997.

[43] H. Balakrishnan, C. L. Barrett, V. S. A. Kumar, M. V. Marathe, and S. Thite. The Distance-2 Matching
Problem and its Relationship to the MAC-Layer Capacity of Ad Hoc Wireless Networks. IEEE Journal
on Selected Areas in Communications, 22(6): 1069–1079, 2004.

[44] P. Baldi, L. De Nardis, and M.-G. Di Benedetto. Modeling and Optimization of UWB Communication
Networks Through a Flexible Cost Function. IEEE Journal on Selected Areas in Communications, 20(9):
1733–1744, 2002.

[45] H. Baldus, K. Klabunde, and G. Muesch. Reliable Set-up of Medical Body-Sensor Networks. In Pro-
ceedings of the Wireless Sensor Networks, First European Workshop (EWSN 2004), Berlin, Germany,
January 2004.

[46] P. G. M. Baltus and R. Dekker. Optimizing RF Front Ends for Low Power. Proceedings of the IEEE,
88(10): 1546–1559, 2000.

[47] N. Bambos. Toward Power-Sensitive Network Architectures in Wireless Communications: Concepts,
Issues, and Design Aspects. IEEE Personal Communications, 5: 50–59, 1998.

[48] N. Bambos and S. Kandukuri. Power Controlled Multiple Access (PCMA) in Wireless Communication
Networks. In Proceedings of the IEEE INFOCOM 2000, Tel-Aviv, Israel, March 2000.

[49] S. Bandyopadhyay and E. J. Coyle. An Energy Efficient Hierarchical Clustering Algorithm for Wireless
Sensor Networks. In Proceedings of the IEEE INFOCOM, San Francisco, CA, March 2003.

[50] A. Banerjea. Simulation Study of the Capacity Effects of Dispersity Routing for Fault Tolerant Real-
Time Channels. ACM SIGCOMM Computer Communication Review, 26: 194–205, 1996.

[51] S. Banerjee and A. Misra. Minimum Energy Paths for Reliable communication in Multi-hop Wireless
Networks. In Proceedings of the 3rd ACM International Symposium on Mobile Ad Hoc Networking and
Computing (MobiHoc), Lausanne, Switzerland, 2002.

[52] S. Bannerjee and S. Khuller. A Clustering Scheme for Hierarchical Control in Wireless Networks. In
Proceedings of the IEEE INFOCOM 2001, Anchorage, AK, April 2001.

[53] L. Bao and J. J. Garcia-Luna-Aceves. Topology Management in Ad Hoc Networks. In Proceedings
of the 4th ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc),
Annapolis, MD, 2003.

[54] L. Bao and J. J. Garcia-Luna-Aceves. A New Approach to Channel Access Scheduling for Ad Hoc
Networks. In Proceedings of the Seventh Annual International Conference on Mobile Computing and
Networking 2001 (MobiCom), Rome, Italy, July 2001.

[55] D. Barkai. Peer-to-Peer Computing: Technologies for Sharing and Collaborating on the Net. Intel Press,
2002.

[56] C.L. Barrett, S.J. Eidenbenz, and L. Kroc. Parametric Probabilistic Sensor Network Routing. In Proceed-
ings of the 2nd ACM International Workshop on Wireless Sensor Networks and Applications (WSNA),
San Diego, CA, September 2003.

[57] K.A. Bartlett, R.A. Scantlebury, and P.T. Wilkinson. A Note on Reliable Full-Duplex Transmission
over Half Duplex Lines. Communications of the ACM, 12(5): 260ff, 1969.

440 Bibliography

[58] S. Basagni. Distributed Clustering for Ad Hoc Networks. In A. Y. Zomaya, D. F. Hsu, O. Ibarra,
S. Origuchi, D. Nassimi, and M. Palis, editors, Proceedings of the International Symposium on Parallel
Architectures, Algorithms, and Networks (I-SPAN), pages 310–315. IEEE Computer Society, Perth/Fre-
mantle, Australia, June 1999.

[59] S. Basagni, I. Chlamtac, and A. Farago. A Generalized Clustering Algorithm for Peer-to-Peer Networks.
In Proceedings of the Workshop on Algorithmic Aspects of Communication (Satellite workshop of ICALP),
Bologna, Italy, July 1997. Invited paper.

[60] S. Basagni, I. Chlamtac, and V. R. Syrotiuk. Geographic Messaging in Wireless Ad Hoc Networks. In
Proceedings of the 48th IEEE Vehicular Technology Conference, pages 1957–1961, Houston, TX, May
1999.

[61] S. Basagni, I. Chlamtac, V. R. Syrotiuk, and B. A. Woodward. A Distance Routing Effect Algorithm
for Mobility (DREAM). In Proceedings of the 4th ACM/IEEE International Conference on Mobile
Computing and Networking (MOBICOM), pages 76–84, Dallas, TX, October 1998.

[62] L. Benini, A. Bogliolo, and G. De Micheli. A Survey of Design Techniques for System-Level Dynamic
Power Management. IEEE Transactions on VLSI Systems, 8(3): 299–316, 2000.

[63] L. Benini and G. De Micheli. Dynamic Power Management Design Techniques and CAD Tools. Kluwer,
1997.

[64] F. Bennett, D. Clarke, J. B. Evans, A. Hopper, A. Jones, and D. Leask. Piconet: Embedded Mobile
Networking. IEEE Personal Communications, 4(5): 8–15, 1997.

[65] P. Bergamo, D. Maniezzo, A. Travasoni, A. Giovanardi, G. Mazzini, and M. Zorzi. Distributed Power
Control for Energy Efficient Routing in Ad Hoc Networks. Wireless Networks, 10(1), 2004.

[66] C. Berrou. The Ten-Year-Old Turbo Codes are Entering into Service. IEEE Communications Magazine,
41(8): 110–116, 2003.

[67] C. Berrou and A. Glavieux. Near Optimum Error Correcting Coding and Decoding: Turbo-Codes. IEEE
Transactions on Communications, 44(10): 1261–1271, 1996.

[68] D. Bertsekas and R. Gallager. Data Networks. Prentice Hall, Englewood Cliffs, NJ, 1987.
[69] C. Bettstetter. On the Minimum Node Degree and Connectivity of a Wireless Multihop Network. In

Proceedings of the 3rd ACM International Symposium on Mobile Ad Hoc Networking and Computing
(MobiHoc), Lausanne, Switzerland, 2002.

[70] C. Bettstetter. Topology Properties of Ad Hoc Networks with Random Waypoint Mobility. In Proceed-
ings of the 4th ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc),
Annapolis, MD, 2003.

[71] C. Bettstetter and C. Hartmann. Connectivity of Wireless Multihop Networks in a Shadow Fading Envi-
ronment. In Proceedings of the 6th ACM International Workshop on Modeling, Analysis and Simulation
of Wireless and Mobile Systmes (MSWiM), San Diego, CA, September 2003.

[72] J. Beutel, O. Kasten, F. Mattern, K. Römer, F. Siegemund, and L. Thiele. Prototyping Wireless Sensor
Network Applications with BTNodes. In Proceedings of the Wireless Sensor Networks, First European
Workshop (EWSN 2004), Berlin, Germany, January 2004.

[73] P. Bhagwat, P. Bhattacharya, A. Krishna, and S. K. Tripathi. Using Channel State Dependent Packet
Scheduling to Improve TCP Throughput Over Wireless LANs. Wireless Networks, 3(1): 91–102, 1997.

[74] Vijay K. Bhargava and Ivan J. Fair. Forward Error Correction Coding. In Jerry D. Gibson, editor, The
Communications Handbook, pages 166–180. CRC Press/IEEE Press, Boca Raton, FL, 1996.

[75] V. Bharghavan. MACAW: A Media Access Protocol for Wireless LANs. In Proceedings of ACM
SIGCOMM’94 Conference, London, UK, 1994.

[76] V. Bharghavan. A Dynamic Addressing Scheme for Wireless Media Access. In Proceedings of IEEE
ICC 95, pages 756–760, Seattle, WA, June 1995.

[77] S. Bhattarcharya, H. Kim, S. Prabh, and T. Abdelzaher. Energy-Conserving Data Placement and Asyn-
chronous Multicast in Wireless Sensor Networks. In Proceedings of ACM/USENIX International Con-
ference on Mobile Systems, Applications, and Services (MobiSys), pages 173–186, San Francisco, CA,
May 2003.

[78] E. Biglieri. Digital Modulation Techniques. In Jerry D. Gibson, editor, The Communications Handbook,
pages 273–287. CRC Press / IEEE Press, Boca Raton, FL, 1996.

[79] E. Biglieri, G. Caire, and G. Taricco. Coding and Modulation under Power Constraints. IEEE Personal
Communications, 5(3): 32–38, 1998.

Bibliography 441

[80] E. Biglieri, J. Proakis, and S. Shamai. Fading Channels: Information-Theoretic and Communications
Aspects. IEEE Transactions on Information Theory, 44(6): 2619–2692, 1998.

[81] L. Blazevic, S. Giordano, and J.-Y. Le Boudec. Self-Organize Terminodes Routing. Journal of Cluster
Computing, 5(2): 205–218, 2002.

[82] N. Blefari-Melazzi, M.-G. Di Benedetto, M. Gerla, H. Luediger, M. Z. Win, and P. Withington, editors.
Ultra-Wideband Radio Communication in Multiaccess Wireless Communications. Journal on Selected
Areas in Communications, 20(9), 2002.

[83] D. Blough, M. Leoncini, G. Resta, and P. Santi. The K-Neigh Protocol for Symmetric Topology Control
in Ad Hoc Networks. In Proceedings of the 4th ACM International Symposium on Mobile Ad Hoc
Networking and Computing (MobiHoc), Annapolis, MD, 2003.

[84] P. Blum, L. Meier, and L. Thiele. Improved Interval-Based Clock Synchronization in Sensor Networks.
In Proceedings of the Symposium on Information Processing in Sensor Networks (IPSN ’04), Berkeley,
CA, April 2004.

[85] A. Bogliolo, L. Benini, E. Lattanzi, and G. De Micheli. Specification and Analysis of Power-Managed
Systems. Proceedings of the IEEE, 92(8): 1308–1346, 2004.

[86] E. Bonabeau, M. Doriga, and G. Theraulaz. Swarm Intelligence: From Natural to Artifical Systems.
Oxford University Press, 1999.

[87] J. A. Bondy and U. S. R. Murty. Graph Theory with Applications. Elsevier North-Holland, 1976.
[88] P. Bonnet, J. E. Gehrke, and P. Seshadri. Querying the Physical World. IEEE Personal Communications,

7(5): 10–15, 2000. http://lecs.cs.ucla.edu/Courses/CS213-Win02/Readings/PCM/
Querying.pdf.

[89] S. A. Borbash and M. J. McGlynn. Birthday Protocols for Low Energy Deployment and Flexible Neigh-
bour Discovery in Ad Hoc Wireless Networks. In Proceedings of the 2nd ACM International Symposium
on Mobile Ad Hoc Networking and Computing (MobiHoc) 2001, Long Beach, CA, 2001.

[90] C. Borcea, C. Intanagonwiwat, A. Saxena, and L. Iftode. Self-Routing in Pervasive Computing Envi-
ronments Using Smart Messages. Proceedings of the 1st IEEE International Conference on Pervasive
Computing and Communications, page 87. IEEE Computer Society, March 2003.

[91] G. Boriello and R. Want. Embedded Computation Meets the World Wide Web. Communications of the
ACM , 43(5): 59–66, 2000.

[92] C. Bormann, editor, C. Burmeister, M. Degermark, H. Fukushima, H. Hannu, L-E. Jonsson,
R. Hakenbeg, T. Koren, K. Le, Z. Liu, A. Martensson, A. Miyazaki, K. Svanbro, T. Wiebke,
T. Yoshimura, and H. Zheng. Network Working Group. RObust Header Compression (ROHC): Frame-
work and Four Profiles: RTP, UDP, ESP, and uncompressed. RFC 3095, 2001.

[93] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia. Routing with Guaranteed Delivery in Ad Hoc Wireless
Networks. In Proceedings of the 3rd International Workshop on Discrete Algorithms and Methods for
Mobile Computing and Communications, pages 48–55, Seattle, WA, 1999.

[94] A. Boukerche, X. Cheng, and J. Linus. Energy-Aware Data-Centric Routing in Microsensor Networks.
In Proceedings of the 6th ACM International Workshop on Modeling, Analysis and Simulation of Wireless
and Mobile Systems (MSWiM), San Diego, CA, September 2003.

[95] A. Boulis, S. Ganeriwal, and M. B. Srivastava. Aggregation in Sensor Networks: An Energy Accuracy
Trade-off. In Proceedings of the 1st IEEE International Workshop on Sensor Network Protocols and
Applications (SNPA), Anchorage, AK, May 2003.

[96] A. Boulis, C. C. Han, and M. B. Srivastava. Design and Implementation of a Framework for Pro-
grammable and Efficient Sensor Networks. In Proceedings of the ACM/USENIX International Conference
on Mobile Systems, Applications, and Services (MobiSys), San Francisco, CA, May 2003.

[97] R. Braden, T. Faber, and M. Handley. From Protocol Stack to Protocol Heap: Role-Based Architecture.
ACM SIGCOMM Computer Communication Review, 33(1): 17–22, 2003.

[98] J. Bradshaw, editor. Software Agents. AAAI Press/MIT Press, Menlo Park, CA, 1996.
[99] D. Braginsky and D. Estrin. Rumour Routing Algorithm for Sensor Networks. In Proceedings of the

1st Workshop on Sensor Networks and Applications, Atlanta, GA, September 2002.
[100] A. Broder and M. Mitzenmacher. Optimal Plans for Aggregation. Proceedings of the 21st Annual Sym-

posium on Principles of Distributed Computing, pages 144–152. ACM Press, 2002.
[101] R. R. Brooks, P. Ramanathan, and A. M. Sayeed. Distributed Target Classification and Tracking in

Sensor Networks. Proceedings of the IEEE, 91(8): 1163–1171, 2003.

442 Bibliography

[102] S. Brooks and S. Iyengar. Multi-Sensor Fusion. Prentice-Hall, 1998.
[103] BTnodes A Distributed Environment for Prototyping Ad Hoc Networks, October 2004. Website http:

//www.btnode.ethz.ch.
[104] N. Bulusu, D. Estrin, L. Girod, and J. Heidemann. Scalable Coordination for Wireless Sensor Networks:

Self-Configuring Localization Systems. In Proceedings of the Sixth International Symposium on Com-
muniation Theory and Applications, Ambleside, Lake District, UK, July 2001. http://www.isi.
edu/scadds/papers/iscta-2001.ps.

[105] N. Bulusu, J. Heidemann, V. Bychkovskiy, and D. Estrin. Density-Adaptive Beacon Placement Algo-
rithms for Localization in Ad Hoc Wireless Networks. In Proceedings of the INFOCOM, New York,
June 2002.

[106] N. Bulusu, J. Heidemann, and D. Estrin. GPS-Less Low Cost Outdoor Localization For Very Small
Devices. IEEE Personal Communications Magazine, 7(5): 28–34, 2000.

[107] N. Bulusu, J. Heidemann, and D. Estrin. Adaptive Beacon Placement. In Proceedings of the Interna-
tional Conference on Distributed Computing Systems (ICDCS), Mesa, AZ, 2001.

[108] N. Bulusu, J. Heidemann, D. Estrin, and T. Tran. Self-Configuring Localization Systems: Design and
Experimental Evaluation. ACM Transactions on Embedded Computing Systems, 3(1): 24–60, 2004.

[109] T. Burd, A. Pering, A. Stratakos, and R. Brodersen. A Dynamic Voltage Scaled Microprocessor System.
IEEE Journal of Solid-State Circuits, 35(11): 1571–1580, 2000.

[110] J. Burrell, T. Brooke, and R. Beckwith. Vineyard Computing: Sensor Networks in Agricultural Produc-
tion. IEEE Pervasive Computing, 3(1): 38–45, 2004.

[111] S. F. Bush and A. B. Kulkarni. Active Networks and Active Network Management: A Proactive Man-
agement Framework. Plenum, 2001.

[112] J. Byers and G. Nasser. Utility-Based Decision-Making in Wireless Sensor Networks. In Proceedings of
the First Annual Workshop on Mobile and Ad Hoc Networking and Computing (MobiHOC’00), Boston,
MA, August 2000.

[113] M. Cagalj, J.-P. Hubaux, and C. Enz. Minimum-Energy Broadcast in All-Wireless Networks: NP-
Completeness and Distribution Issues. In Proceedings of the 8th International Conference on Mobile
Computing and Networking (ACM Mobicom), Atlanta, GA, September 2002.

[114] E. Callaway, P. Gorday, L. Hester, J. A. Gutierrez, M. Naeve, B. Heile, and V. Bahl. Home Networking
with IEEE 802.15.4: A Developing Standard for Low-Rate Wireless Personal Area Networks. IEEE
Communications Magazine, 40(8): 70–77, 2002.

[115] E. H. Callaway. Wireless Sensor Networks – Architectures and Protocols. Auerbach, Boca Raton, FL,
2003.

[116] R. Cam and C. Leung. Multiplexed ARQ for Time-Varying Channels – Part I: System Model and
Throughput Analysis. IEEE Transactions on Communications, 46(1): 41–51, 1998.

[117] R. Cam and C. Leung. Multiplexed ARQ for Time-Varying Channels – Part II: Postponed Retrans-
mission Modification and Numerical Results. IEEE Transactions on Communications, 46(3): 314–326,
1998.

[118] T. Camp and Y. Liu. An Adaptive Mesh-Based Protocol for Geocast Routing. Journal of Parallel and
Distributed Computing, 62(2): 196–213, 2003.

[119] G. Carle and E. W. Biersack. Survey of Error Recovery Techniques for IP-Based Audio-Visual Multicast
Applications. IEEE Network Magazine, 11(6): 24–36, 1997.

[120] J. Cartigny, D. Simplot, and I. Stojmenovic. Localized Minimum-Energy Broadcasting in Ad-Hoc Net-
works. In Proceedings of the IEEE INFOCOM, San Francisco, CA, March 2003.

[121] A. Carzaniga. Architectures for an Event Notification Service Scalable to Wide-area Networks. PhD
thesis, Politecnico di Milano, Milano, Italy, December 1998.

[122] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and Evaluation of a Wide-Area Event Notifi-
cation Service. ACM Transactions on Computer Systems (TOCS), 19(3): 332–383, 2001.

[123] A. Carzaniga and A. L. Wolf. Content-Based Networking: A New Communication Infrastructure. In
Proceedings of the NSF Workshop on an Infrastructure for Mobile and Wireless Systems, Scottsdale, AZ,
October 2001.

[124] J. K. Cavers. Mobile Channel Characteristics. Kluwer Academic Publishers, Boston, MA, 2000.
[125] U. Centinternel, A. Flinders, and Y. Sun. Power-Efficient Data Dissemination in Wireless Sensor Net-

works. In Proceedings of the MobiDE, San Diego, CA, September 2003.

Bibliography 443

[126] A. Cerpa, J. Elson, D. Estrin, L. Girod, M. Hamilton, and J. Zhao. Habitat Monitoring: Application
Driver for Wireless Communications Technology. In Proceedings of the ACM SIGCOMM Workshop on
Data Communications in Latin America and the Caribbean, San Jose, Costa Rica, 2001.

[127] A. Cerpa and D. Estrin. ASCENT: Adaptive Self-Configuring Sensor Networks Topologies. In Proceed-
ings of the INFOCOM, New York, June 2002.

[128] K. Chakrabarty, S. S. Iyengar, H. Qi, and E. Cho. Coding Theory Framework for Target Location in
Distributed Sensor Networks. In Proceedings of the International Symposium on Information Technology:
Coding and Computing, pages 130–134, Las Vegas, NV, 2001.

[129] K. Chakrabarty, S. S. Iyengar, H. Qi, and E. Cho. Grid Coverage for Surveillance and Target Location
in Distributed Sensor Networks. IEEE Transactions on Computers, 51(12): 1448–1453, 2002.

[130] H. Chan and A. Perrig. ACE: An Emergent Algorithm for Highly Uniform Cluster Formation. In
H. Karl, A. Willig, and A. Wolisz, editors, Proceedings of 1st European Workshop on Wireless Sen-
sor Networks (EWSN), volume 2920 of LNCS, pages 154–171. Springer, Berlin, Germany, January
2004.

[131] R. Chandra, V. Ramasubramanian, and K. Birman. Anonymous Gossip: Improving Multicast Reliability
in Mobile Ad-Hoc Networks. In Proceedings of the International Conference on Distributed Computing
Systems (ICDCS), pages 275–283, Mesa, AZ, 2001.

[132] A. Chandrakasan, R. Amirtharajah, C. S. Cho, and J. Goodman. Design Considerations for Distributed
Microsensor Systems. In Custom Integrated Circuits Conference, pages 279–286, San Diego, CA, 1999.

[133] A. Chandrakasan, S. Sheng, and R. Brodersen. Low-Power CMOS Digital Design. IEEE Journal of
Solid-State Circuits, 27(4): 473–484, 1992.

[134] A. P. Chandrakasan, R. Min, M. Bhardwaj, S.-H. Cho, and A. Wang. Power Aware Wireless Microsensor
Systems. In Proceedings of the ESSCIRC 2002, Florence, Italy, September 2002.

[135] C.-Y. Chang, C.-T. Chang, and S.-C. Tu. Obstacle-Free Geocasting Protocols for Single/Multi-
Destination Short Message Services in Ad Hoc Networks. Wireless Networks, 9(2): 143–155, 2001.

[136] J. H. Chang and L. Tassiulas. Routing for Maximum System Lifetime in Wireless Ad-Hoc Networks.
In Proceedings of the 39th Annual Allerton Conference on Communication, Control, and Computing,
Allerton, NY, October 1999.

[137] J.-H. Chang and L. Tassiulas. Energy Conserving Routing in Wireless Ad-Hoc Networks. In Proceedings
of the IEEE INFOCOM, Tel-Aviv, Israel, March 2000.

[138] J. H. Chang and L. Tassiulas. Fast Approximate Algorithms for Maximum Lifetime Routing in Wireless
Ad-Hoc Networks. In Proceedings of the IFIP Networking, May 2000.

[139] D. Charkraborty, A. Joshi, T. Finin, and Y. Yesha. GSD: A Novel Groupbased Service Discovery Pro-
tocol for MANETs. In Proceedings of the 4th IEEE Conference on Mobile and Wireless Communication
Networks, Stockholm, Sweden, 2002.

[140] M. Chatterjee, S. Das, and D. Turgut. WCA: A Weighted Clustering Algorithm for Mobile Ad Hoc
Networks. Cluster Computing Journal, 5: 193–204, 2002.

[141] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris. Span: An Energy-Efficient Coordination Algo-
rithm for Topology Maintenance in Ad Hoc Wireless Networks. Wireless Networks, 8(5): 481–494,
2002.

[142] J. C. Chen, K. Yao, and R. E. Hudson. Source Localization and Beamforming. IEEE Signal Processing
Magazine, 19(2): 30–39, 2002.

[143] J.-C. Chen, K. M. Sivalingam, P. Agrawal, and S. Kishore. A Comparison of MAC Protocols for
Wireless Local Networks Based on Battery Power Consumption. In Proceedings of the INFOCOM
1998, San Francisco, CA, March 1998. .

[144] K. Chen and K. Nahrstedt. Effective Location-Guided Tree Construction Algorithms for Small Group
Multicast in MANET. In Proceedings of the INFOCOM, New York, June 2002.

[145] R. Chen, K. C. Chua, B. T. Tan, and C. S. Ng. Adaptive Error Coding Using Channel Prediction.
Wireless Networks, 5(1): 23–32, 1999.

[146] W. Chen and N. Huang. The Strongly Connecting Problem on Multihop Packet Radio Networks. IEEE
Transactions on Communications, 37: 293–295, 1989.

[147] X. Chen and J. Wu. Chapter Multicasting Techniques in Mobile Ad Hoc Networks. The Handbook of
Ad Hoc Wireless Networks, pages 2-1–2-16. CRC Press, 2003.

444 Bibliography

[148] Y. P. Chen and A. L. Liestman. Approximating Minimum Size Weakly-Connected Dominating Sets
for Clustering Mobile Ad Hoc Networks. In Proceedings of the 3rd ACM International Symposium on
Mobile Ad Hoc Networking and Computing (MobiHoc), Lausanne, Switzerland, 2002.

[149] C.-C. Chiang, H. Wu, W. Liu, and M. Gerla. Routing in Clustered Multihop, Mobile Wireless Networks.
In Proceedings of the IEEE Singapore International Conference on Networks, pages 197–211, Singapore,
Malaysia, 1997.

[150] C.-C. Chiang, H.-K. Wu, W. Liu, and M. Gerla. Routing in Clustered Multihop, Mobile Wireless Net-
works with Fading Channel. In Proceedings of the IEEE SICON, pages 197–211, Singapore, 1997.

[151] C. Chiasserini, I. Chlamtac, P. Monti, and A. Nucci. Energy-Efficient Design of Wireless ad Hoc Net-
works. In Proceedings of the IFIP Networking, Pisa, Italy, 2002.

[152] C.-F. Chiasserini and R. Rao. On the Concept of Distributed Digital Signal Processing in Wireless Sensor
Networks. In Proceedings of the. IEEE Military Communication Conference (MILCOM), Anaheim, CA,
October 2002.

[153] C. F. Chiasserini and R. R. Rao. Energy Efficient Battery Management. In Proceedings of the IEEE
INFOCOM, Tel-Aviv, Israel, March 2000.

[154] C.-F. Chiasserini and R. R. Rao. Coexistence Mechanisms for Interference Mitigation in the 2.4-GHz
ISM Band. IEEE Transactions on Wireless Communications, 2(5): 964–975, 2003.

[155] C. Chien, I. Elgorriaga, and C. McConaghy. Low-Power Direct-Sequence Spread-Spectrum Modem
Architecture for Distributed Wireless Sensor Networks. In Proceedings of the International Symposium
on Low Power Electronics and Design (ISLPED), Huntington Beach, CA, August 2001.

[156] K. K. Chintalapudi and R. Govindan. Localized Edge Detection in Wireless Sensor Networks. In Pro-
ceedings of the IEEE ICC Workshop on Sensor Network Protocols and Applications, Anchorage, AK,
April 2003.

[157] CC1000 Single Chip Very Low Power RF Transceiver. Chipcon Product Data Sheet. http://www.
chipcon.com/files/CC1000_Data_Sheet_2_1.pdf.

[158] CC2420 2.4 GHz IEEE 802.15.4 / Zigbee RF Transceiver. Chipcon Product Data Sheet. http://
www.chipcon.com/files/CC2420_Data_Sheet_1_0.pdf.

[159] I. Chlamtac and A. Farago. A New Approach to the Design and Analysis of Peer-to-Peer Mobile
Networks. Wireless Networks, 5(3): 149–156, 1999.

[160] I. Chlamtac and A. Farago. Making Transmission Schedules Immune to Topology Changes in Multi-Hop
Packet Radio Networks. IEEE/ACM Transactions on Networking, 2(1): 23–29, 1994.

[161] I. Chlamtac, A. Farago, and H. Zhang. Time-Spread Multiple-Access (TSMA) Protocols for Multihop
Mobile Radio Networks. IEEE/ACM Transactions on Networking, 5(6): 804–812, 1997.

[162] I. Chlamtac, C. Petrioli, and J. Redi. Energy-Conserving Selective Repeat ARQ Protocols for Wireless
Data Networks. In Proceedings of the IEEE Personal, Indoor and Mobile Radio Conference (PIMRC
’98), Boston, MA, September 1998.

[163] I. Chlamtac, C. Petrioli, and J. Redi. Energy-Conserving Access Protocols for Identification Networks.
IEEE/ACM Transactions on Networking, 7(1): 51–59, 1999.

[164] J. Chou, D. Petrovic, and K. Ramchandran. Tracking and Exploiting Correlations in Dense Sensor Net-
works. In Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, November
2002.

[165] J. Chou, D. Petrovic, and K. Ramchandran. A Distributed and Adaptive Signal Processing Approach
to Reducing Energy Consumption in Sensor Networks. In Proceedings of the IEEE INFOCOM, San
Francisco, CA, March 2003.

[166] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Service Description Language
(WSDL) 1.1. W2C Note, http://www.w3.org/TR/wsdl, March 2001.

[167] M. Chu, H. Haussecker, and F. Zhao. Scalable Information-Driven Sensor Querying and Routing for
Ad Hoc Heterogeneous Sensor Networks. International Journal of High Performance Computing Appli-
cations, 16(3): 293–313, 2002.

[168] P. B. Chu, N. R. Lo, E. C. Berg, and K. S. J. Pister. Optical Communication Using Micro Corner Cube
Reflectors. In Proceedings of IEEE MEMS Workshop, pages 350–355, Nagoya, Japan, 1997.

[169] I. Cidon and M. Sidi. Distributed Assignment Algorithms for Multihop Packet Radio Networks. IEEE
Transactions on Computers, 38: 1353–1361, October 1989.

Bibliography 445

[170] D. D. Clark and D. L. Tennenhouse. Architectural Consideration for a New Generation of Protocols. In
Proceedings of the SIGCOMM ’90, pages 200–208, Philadelphia, PA, September 1990.

[171] A. E. F. Clementi, P. Crescenzi, P. Penna, G. Rossi, and P. Vocca. On the Complexity of Computing
Minimum Energy Consumption Broadcast Subgraphs. In Proceedings of the 18th Annual Symposium on
Theoretical Aspects of Computer Science, pages 121–131, Dresden, Germany, February 2001.

[172] A. E. F. Clementi, P. Penna, and R. Silvestri. Hardness Results for the Power Range Assignment Prob-
lem in Packet Radio Networks. In Proceedings of the 2nd International Workshop on Approximation
Algorithms for Combinatorial Optimization Problems (APPROX), pages 197–208, Berkeley, CA, 1999.

[173] T. Clouqueur, V. Phipatanasuphorn, P. Ramanathan, and K. K. Saluja. Sensor Deployment Strategy for
Target Detection. In Proceedings of the First ACM International Workshop on Wireless Sensor Networks
and Applications (WSNA’02), pages 42–48, Atlanta, GA, 2002.

[174] T. Clouqueur, V. Phipatanasuphorn, P. Ramanathan, and K. K. Saluja. Sensor Deployment Strategy for
Detection of Targets Traversing a Region. MONET - Mobile Networks and Applications, 8(4): 453–461,
2003.

[175] T. Clouqueur, P. Ramanathan, and K. K. Saluja. Exposure of Variable Speed Targets through a Sensor
Field. In Proceedings of the 6th Annual Conference on Information Fusion, July 2003.

[176] W. R. Cockayne and M. Zyda. Mobile Agents. Prentice Hall, 1998.
[177] W. S. Conner, J. Chhabra, M. Yarvis, and L. Krishnamurthy. Experimental Evaluation of Synchroniza-

tion and Topology Control for In-building Sensor Network Applications. In Proceedings of the 2nd
ACM International Workshop on Wireless Sensor Networks and Applications (WSNA), San Diego, CA,
September 2003.

[178] D. J. Costello, J. Hagenauer, H. Imai, and S. B. Wicker. Applications of Error-Control Coding. IEEE
Transactions on Information Theory, 44(6): 2531–2560, 1998.

[179] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems – Concepts and Design. Addison-
Wesley, Harlow, England, third edition, 2001.

[180] T. M. Cover and J. A. Thomas. Elements of Information Theory. John Wiley & Sons, New York, 1991.
[181] J. M. Cramer, M. Z. Win, and R. A. Scholtz. Impulse Radio Multipath Characteristics and Diversity

Reception. In Proceedings of the IEEE International Conference on Communications (ICC), Atlanta,
GA, 1998.

[182] P. Crescenzi and V. Kann. A Compendium of NP Optimization Problems. http://www.nada.kth.
se/~viggo/wwwcompendium/wwwcompendium.html, February 2004.

[183] R. Cristescu and M. Vetterli. Power Efficient Gathering of Correlated Data: Optimization, NP-
Completeness and Heuristics. In Proceedings of the 4th ACM International Symposium on Mobile Ad
Hoc Networking and Computing (MobiHoc), Annapolis, MD, 2003.

[184] F. Cristian. Probabilistic Clock Synchronization. Distributed Computing, 3: 146–158, 1989.
[185] R. L. Cruz and A. V. Santhanam. Optimal Routing, Link Scheduling and Power Control in Multi-hop

Wireless Networks. In Proceedings of the IEEE INFOCOM, San Francisco, CA, March 2003.
[186] B. J. Culpepper, L. Dung, and M. Moh. Design and Analysis of Hybrid Indirect Transmission (HIT)

for Data Gathering in Wireless Micro Sensor Networks. ACM Mobile Computing and Communications
Review, 8(1): 61–83, 2004.

[187] F. Cuomo and C. Martello. MAC Principles for an Ultra Wide Band Wireless Access. In Proceedings of
the Global Telecommunications Conference (GLOBECOM), volume 6, pages 3548–3552, San Antonio,
TX, 2001.

[188] F. Dai and J. Wu. Distributed Dominant Pruning in Ad Hoc Networks. In Proceedings of the Interna-
tional . Conference on Communications (ICC), Anchorage, AK, May 2003.

[189] H. Dai and R. Han. TSync: A Lightweight Bidirectional Time Synchronization Service for Wireless
Sensor Networks. ACM SIGMOBILE Mobile Computing and Communications Review, 8(1): 125–139,
2004.

[190] K. Dantu and G. S. Sukhatme. Poster Abstract: Contour Detection Using Actuated Sensor Networks.
In Proceedings of the ACM SenSys 03, Los Angeles, CA, November 2003. Poster Abstract.

[191] A. K. Das, R. J. Marks, M. El-Sharkawi, P. Arabshabi, and A. Gray. Minimum Power Broadcast Trees
for Wireless Networks: Integer Programming Formulations. In Proceedings of the IEEE INFOCOM, San
Francisco, CA, March 2003.

446 Bibliography

[192] B. Das and V. Bharghavan. Routing in Ad-Hoc Networks Using Minimum Connected Dominating Sets.
In Proceedings of the International Conference on Communication (ICC), Montreal, Canada, June 1997.

[193] K. Dasgupta, K. Kalpakis, and P. Namjoshi. An Efficient Clustering-based Heuristic for Data Gather-
ing and Aggregation in Sensor Networks. In Proceedings of the IEEE Wireless Communications and
Networking Conference (WCNC), New Orleans, LA, March 2003.

[194] K. Dasguptta, M. Kukreja, and K. Kalpakis. Topology-Aware Placement and Role Assignment for
Energy-Efficient Information Gathering in Sensor Network. In Proceedings of the 8th IEEE Symposium
on Computers and Communications (ISCC), pages 341–348, Kemer, Turkey, July 2003.

[195] S. De, C. Qiao, and H. Wu. Meshed Multipath Routing: An Efficient Strategy in Sensor Networks. In
Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), New Orleans,
LA, March 2003.

[196] M. de Prycker. Asynchronous Transfer Mode – Solution for Broadband ISDN. Prentice Hall, 1995.
[197] B. Deb, S. Bhatnagar, and B. Nath. Multi-Resolution State Retrieval in Sensor Networks. In Proceed-

ings of the 1st IEEE International Workshop on Sensor Network Protocols and Applications (SNPA),
Anchorage, AK, May 2003.

[198] B. Deb, S. Bhatnagar, and B. Nath. Information Assurance in Sensor Networks. In Proceedings of the
2nd ACM International Workshop on Wireless Sensor Networks and Applications (WSNA), San Diego,
CA, September 2003.

[199] B. Deb, S. Bhatnagar, and B. Nath. ReInForM: Reliable Information Forwarding using Multiple Paths
in Sensor Networks. In Proceedings of the 28th Annual IEEE Conference on Local Computer Networks
(LCN 2003), Bonn, Germany, October 2003.

[200] J.-D. Decotignie. Wireless Fieldbusses – A Survey of Issues and Solutions. In Proceedings of the 15th
IFAC World Congress on Automatic Control (IFAC 2002), Barcelona, Spain, 2002.

[201] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis, D. Swinehart, and
D. Terry. Epidemic Algorithms for Replicated Database Maintenance. In Proceedings of the Annual
ACM Symposium on Principles of Distributed Computing (PODC), pages 1–12, Vancouver, BC, Canada,
1987.

[202] M. Demirbas and H. Ferhatosmanoglu. Peer-to-Peer Spatial Queries in Sensor Networks. In Proceedings
of the International Conference on Peer-to-Peer Computing, Linköping, Sweden, September 2003.

[203] J. Deng and Z. J. Haas. Dual Busy Tone Multiple Access (DBTMA): A New Medium Access Control
for Packet Radio Networks. In Proceedings of the IEEE ICUPC’98, Florence, Italy, October 1998.

[204] S. S. Dhillon, K. Chakrabarty, and S. S. Iyengar. Sensor Placement for Grid Coverage under Imprecise
Detections. In Proceedings of the International Conference on Information Fusion (FUSION 2002), pages
1581–1587, Annapolis, MD, 2002.

[205] J. Diaz, M. D. Penrose, J. Petit, and M. Serna. Convergence Theorems for Some Layout Measures
on Random Lattice and Random Geometric Graphs. Combinatorics, Probability, and Computing, 6:
489–511, 2000.

[206] L. Doherty, L. El Ghaoui, and K. S. J. Pister. Convex Position Estimation in Wireless Sensor Networks.
In Proceedings of the IEEE INFOCOM, pages 1655–1663, Anchorage, AK, April 2001.

[207] M. Dong, L. Tong, and B. M. Sadler. Source Reconstruction via Mobile Agents in Sensor Networks:
Throughput-Distortion Characteristics. In Proceedings of the IEEE Military Communication Conference
(Milcom), Boston, MA, October 2003.

[208] M. Dong, L. Tong, and B. M. Sadler. Optimal Reconstruction of Gauss Markov Field in Large Sensor
Networks. In Proceedings of First International Symposium on Control, Communications and Signal
Processing, Hammamet, Tunesia, March 2003.

[209] A. Doufexi, S. Armour, M. Butler, A. Nix, D. Bull, and J. McGeehan. A Comparison of the HIPER-
LAN/2 and IEEE 802.11a Wireless LAN Standards. IEEE Communications Magazine, 40(5): 172–180,
2002.

[210] S. C. Draper and G. W. Wornell. Side Information Aware Coding Strategies for Sensor Networks. IEEE
Journal on Selected Areas in Communications, 22 (6): 966–976, 2004.

[211] R. Droms. Dynamic Host Configuration Protocol. RFC 1541, 1993.
[212] R. Dube, C. D. Rais, K.-Y. Wang, and S. K. Tripathi. Signal Stability Based Adaptive Routing (SSA)

for Ad-Hoc Mobile Networks. IEEE Personal Communications Magazine, 4(1): 36–45, February 1997.

Bibliography 447

[213] D. Duchamp and N.F. Reynolds. Measured Performance of Wireless LAN. In Proceedings of 17th
Conference on Local Computer Networks, Minneapolis, Minneapolis, MN, 1992.

[214] S. Dulmann, T. Nieberg, J. Wu, and P. Havinga. Trade-Off between Traffic Overhead and Reliability in
Multipath Routing for Wireless Sensor Networks. In Proceedings of the IEEE Wireless Communications
and Networking Conference (WCNC), New Orleans, LA, March 2003.

[215] A. Dunkels, J. Alonso, and T. Voigt. Making TPC/IP Viable for Wireless Sensor Networks. In Pro-
ceedings of the Work-in-Progress Session of the 1st European Workshop on Wireless Sensor Networks
(EWSN), Technical Report TKN-04-001 of Technical University Berlin, Telecommunication Networks
Group, Berlin, Germany, January 2004.

[216] A. Dunkels, D. Grönvall, and T. Voigt. Contiki – a Lightweight and Flexible Operating System for
Tiny Networked Sensors. In Proceedings of the First IEEE Workshop on Embedded Networked Sensors
(EmNetS), Tampa, FL, November 2004.

[217] A. Dunkels. Full TCP/IP for 8-Bit Architectures. In Proceedings of the First International Conference
on Mobile Applications, Systems and Services (MOBISYS 2003), San Francisco, CA, May 2003.

[218] A. Dunkels, J. Alonso, T. Voigt, H. Ritter, and J. Schiller. Connecting Wireless Sensornets with TCP/IP
Networks. In Proceedings of the Second International Conference on Wired/Wireless Internet Communi-
cations (WWIC2004), Frankfurt, Germany, February 2004.

[219] A. Dunkels, T. Voigt, J. Alonso, and H. Ritter. Distributed TCP Caching for Wireless Sensor Networks.
In Proceedings of the Third Mediterranean ad Hoc Networking Conference (MedHocNet), June 2004.

[220] R. Eberhart and J. Kennedy. Swarm Intelligence. Morgan Kaufmann, 2001.

[221] J.-P. Ebert, B. Burns, and A. Wolisz. A Trace-Based Approach for Determining the Energy Consumption
of a WLAN Network Interface. In Proceedings of the European Wireless, pages 230–236, Florence,
Italy, February 2002.

[222] J.-P. Ebert and A. Wolisz. Combined Tuning of RF Power and Medium Access Control for WLANs.
MONET - Mobile Networks and Applications, 6(5): 417–426, 2000.

[223] D. A. Eckhardt and P. Steenkiste. A Trace-Based Evaluation of Adaptive Error Correction for a Wireless
Local Area Network. MONET - Mobile Networks and Applications, 4: 273–287, 1999.

[224] eCos. The eCos Operating System. http://www.redhat.com/ecos.

[225] K. Egevang and P. Francis. The IP Network Address Translator (NAT). RFC 1631, May 1994.

[226] A. El-Hoiydi, J.-D. Decotignie, C. Enz, and E. Le Roux. Poster Abstract: WiseMAC, an Ultra Low
Power MAC Protocol for the WiseNET Wireless Sensor Network. In Proceedings of the ACM SenSys
03, Los Angeles, CA, November 2003. Poster Abstract.

[227] A. El-Hoiydi. ALOHA with Preamble Sampling for Sporadic Traffic an Ad Hoc Wireless Sensor Net-
works. In Proceedings of the IEEE International Conference on Communications (ICC), New York,
April 2002.

[228] A. El-Hoiydi. Spatial TDMA and CSMA with Preamble Sampling for Low Power Ad Hoc Wireless
Sensor Networks. In Proceedings of the International Symposium on Computation and Communication,
2002.

[229] A. El-Rabbany. Introduction to GPS: The Global Positioning System. Artech House, 2002.

[230] M. Elaoud and P. Ramanathan. Adaptive Use of Error-Correcting Codes for Real-Time Communication
in Wireless Networks. In Proceedings of the INFOCOM 1998, San Francisco, March 1998.

[231] E. O. Elliot. Estimates of Error Rates for Codes on Burst-Noise Channels. Bell Systems Technical
Journal, 42: 1977–1997, 1963.

[232] E. Elnahrawy and B. Nath. Cleaning and Querying Noisy Sensors. In Proceedings of the 2nd ACM Inter-
national Workshop on Wireless Sensor Networks and Applications (WSNA), San Diego, CA, September
2003.

[233] J. Elson and D. Estrin. An Address-Free Architecture for Dynamic Sensor Networks. Technical Report
00-724, Computer Science Department USC, January 2000.

[234] J. Elson and D. Estrin. Random, Ephemeral Transaction Identifiers in Dynamic Sensor Networks. In Pro-
ceedings of the 21st International Conference on Distributed Computing Systems (ICDCS-21), Phoenix,
AZ, April 2001.

448 Bibliography

[235] J. Elson and D. Estrin. Time Synchronization for Wireless Sensor Networks. In Proceedings of the
2001 International Parallel and Distributed Processing Symposium (IPDPS), Workshop on Parallel and
Distributed Computing Issues in Wireless Networks and Mobile Computing, pages 1965–1970, San
Francisco, CA, April 2001.

[236] J. Elson, L. Girod, and D. Estrin. Fine-Grained Network Time Synchronization using Reference Broad-
casts. In Proceedings of the Fifth Symposium on Operating Systems Design and Implementation (OSDI
2002), Boston, MA, December 2002.

[237] J. Elson, L. Girod, and D. Estrin. Short Paper: A Wireless Time-Synchronized COTS Sensor Platform,
Part I: System Architecture. In Proceedings of the IEEE CAS Workshop on Wireless Communications
and Networking, Pasadena, CA, September 2002.

[238] J. Elson and K. Römer. Wireless Sensor Networks: A New Regime for Time Synchronization. In
Proceedings of the First Workshop on Hot Topics In Networks (HotNets-I), Princeton, NJ, October 2002.

[239] J. E. Elson. Time Synchronization in Wireless Sensor Networks. PhD dissertation, University of Califor-
nia, Los Angeles, CA, Department of Computer Science, 2003.

[240] R. F. Ember - Embedded. Design of an IEEE 802.15.4 Compliant, EmberNet Ready and ZigBee Ready
Communication Module using the EM2420 RF Transceiver, 2004.

[241] Y. Ephraim and N. Merhav. Hidden Markov Processes. IEEE Transactions on Information Theory,
48(6): 1518–1569, 2002.

[242] D. Eppstein. Chapter Spanning trees and Spanners, Handbook of Computational Geometry, pages
425–461. Elsevier, Amsterdam, NL, 2000.

[243] A. H. Epstein. Milimeter-Scale, MEMS Gas Turbine Engines. In Proceedings of the ASME Turbo Expo
2003 – Power for Land, Sea, and Air, Atlanta, GA, 2003.

[244] L. Eschenauer and V. D. Gligor. A Key-Management Scheme for Distributed Sensor Networks. In
Proceedings of the 9th ACM conference on Computer and Communication Security, CCS’02, Washington,
DC, 2003.

[245] D. Estrin, L. Girod, G. Pottie, and M. Srivastava. Instrumenting the World with Wireless Sensor Net-
works. In Proceedings of the International Conference on Acoustics, Speech and Signal Processing
(ICASSP 2001), Salt Lake City, UT, May 2001.

[246] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar. Next Century Challenges: Scalable Coordination
in Sensor Networks. In Proceedings of the Fifth Annual International Conference on Mobile Computing
and Networks (MobiCom 1999), Seattle, Washington, DC, 1999.

[247] ETSI. TR 101 683, HIPERLAN Type 2: System Overview. ETSI, February 2000.

[248] ETSI. TS 101 475, BRAN, HIPERLAN Type 2: Physical (PHY) Layer. ETSI, March 2000.

[249] ETSI. TS 101 761-1, BRAN, HIPERLAN Type 2: Data Link Control (DLC) Layer, Part 1: Basic Data
Transport Function. ETSI, March 2000.

[250] ETSI. TS 101 761-2, BRAN, HIPERLAN Type 2: Data Link Control (DLC) Layer, Part 2: Radio Link
Control Protocol Basic Functions. ETSI, March 2000.

[251] P. Th. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec. The Many Faces of Publish/Subscribe.
ACM Computing Surveys (CSUR), 35(2): 114–131, 2003.

[252] K. Fall. A Delay-Tolerant Network Architecture for Challenged Internets. In Proceedings of the ACM
SIGCOMM, pages 27–34, Karlsruhe, Germany, 2003.

[253] A. Faradjian, J. E. Gehrke, and P. Bonnet. GADT: A Probability Space ADT for Representing and
Querying the Physical World. In Proceedings of the 18th International Conference on Data Engineering
(ICDE), San Jose, CA, February 2002.

[254] L. M. Feeney and M. Nilsson. Investigating the Energy Consumption of a Wireless Network Interface in
an Ad Hoc Networking Environment. In Proceedings of the IEEE INFOCOM 2001, Anchorage, Alaska,
AK, April 2001.

[255] W. Feller. An Introduction to Probability Theory and Its Applications - Volume I. John Wiley, New York,
third edition, 1968.

[256] A. Ferreira and A. Jarry. Complexity of Minimum Spanning Tree in Evolving Graphs and the Minimum-
Energy Broadcast Routing Problem. In Proceedings of the 2nd International Workshop on Modeling and
Optimization in Mobile, Ad Hoc and Wireless Networks, pages 55–61, Cambridge, UK, March 2004.

Bibliography 449

[257] A. Festag. Optimization of Handover Performance by Link Layer Triggers in IP-Based Networks;
Parameters, Protocol Extensions, and APIs for Implementation. Technical Report TKN-02-014, Telecom-
munication Networks Group, Technische Universität Berlin, July 2002.

[258] G. Finn. Routing and Addressing Problems in Large Metropolitan-Scale Internetworks. ISI Research
Report ISI/RR-87-180, University of Southern California, March 1987.

[259] K. Flautner, S. Reinhardt, and T. Mudge. Automatic Performance-Setting for Dynamic Voltage Scaling.
In Proceedings of the 7th ACM Annual International Conference on Mobile Computing and Networking
(Mobicom), pages 260–271, Rome, Italy, July 2001.

[260] J. Flinn, S. Y. Park, and M. Satyanarayanan. Balancing Performance, Energy, and Quality in Perva-
sive Computing. In Proceedings of the IEEE 22nd International Conference on Distributed Computing
Systems (ICDCS), pages 217–226, Vienna, Austria, July 2002.

[261] C. Florens and R. McEliece. Packets Distribution Algorithms for Sensor Networks. In Proceedings of
the IEEE INFOCOM, San Francisco, CA, March 2003.

[262] S. Floyd and V. Jacobson. Random Early Detection Gateways for Congestion Avoidance. IEEE/ACM
Transactions on Networking, 1(4): 397–413, 1993.

[263] S. Floyd, V. Jacobson, C.-G. Liu, S. McCanne, and L. Zhang. A Reliable Multicast Framework for
Light-Weight Sessions and Application Level Framing. IEEE/ACM Transactions on Networking, 5(6):
784–803, 1997.

[264] O. Forster. Analysis 2 – Differentialrechnung Im Rn, Gewöhnliche Differentialgleichungen. Vieweg,
Braunschweig/Wiesbaden, 5th edition, 1977.

[265] D. A. Forsyth and J. Ponce. Computer Vision: A Modern Approach. Prentice Hall, Englewood Cliffs,
NJ, 2003.

[266] J. Frolik. QoS Control for Random Access Wireless Sensor Networks. In Proceedings of the 2004
Wireless Communication and Networking Conference (WCNC04), Atlanta, GA, March 2004.

[267] Z. Fu, P. Zerfos, H. Luo, S. Lu, L. Zhang, and M. Gerla. The Impact of Multihop Wireless Channel on
TCP Throughput and Loss. In Proceedings of the IEEE INFOCOM, San Francisco, CA, March 2003.

[268] C. L. Fullmer and J. J. Garcia-Luna-Aceves. Solutions to Hidden Terminal Problems in Wireless Net-
works. In Proceedings of ACM SIGCOMM’97 Conference, pages 39–49, Cannes, France, September
1997.

[269] W. F. Fung, D. Sun, and J. Gehrke. COUGAR: The Network is the Database. Proceedings of ACM
SIGMOD International Conference on Management of Data, pages 621–621. ACM Press, 2002.

[270] R. Gandhi, S. Parthasarathy, and A. Mishra. Minimizing Broadcast Latency and Redundancy in Ad Hoc
Networks. In Proceedings of the 4th ACM International Symposium on Mobile Ad Hoc Networking and
Computing (MobiHoc), Annapolis, MD, 2003.

[271] S. Ganeriwal, R. Kumar, S. Adlakha, and M. Srivastava. Network-Wide Time Synchronization in Sen-
sor Networks. Technical Report NESL 01-01-2003, Networked and Embedded Systems Lab (NESL),
University of California, Los Angeles (UCLA), 2003.

[272] S. Ganeriwal, R. Kumar, and M. B. Srivastava. Timing-Sync Protocol for Sensor Networks. In Pro-
ceedings of the 1st ACM International Conference on Embedded Networked Sensor Systems (SenSys),
pages 138–149, Los Angeles, CA, November 2003.

[273] D. Ganesan, A. Cerpa, W. Ye, Y. Yu, J. Zhao, and D. Estrin. Networking Issues in Wireless Sensor
Networks. Journal of Parallel and Distributed Computing (JPDC), 64(7): 799–814, 2004, Special issue
on Frontiers in Distributed Sensor Networks.

[274] D. Ganesan, D. Estrin, and J. Heidemann. DIMENSIONS: Why do we need a New Data Handling
Architecture for Sensor Networks? ACM SIGCOMM Computer Communication Review, 33(1): 143–148,
2003.

[275] D. Ganesan, B. Greenstein, D. Perelyubskiy, D. Estrin, and J. Heideman. An Evaluation of Multi-
resolution Storage for Sensor Networks. In Proceedings of the 1st ACM International Conference on
Embedded Networked Sensor Systems (SenSys), pages 89–102, Los Angeles, CA, November 2003.

[276] D. Ganesan, R. Govindan, S. Shenker, and D. Estrin. Highly-Resilient, Energy-Efficient Multipath
Routing in Wireless Sensor Networks. Mobile Computing and Communications Review (MC2R), 1(2):
28–36, 2002.

450 Bibliography

[277] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin, and S. Wicker. Complex Behavior at
Scale: An Experimental Study of Low-Power Wireless Sensor Networks. Technical Report UCLA/CSD-
TR 02-0013, Computer Science Department, University of California, Los Angeles (UCLA), CA, 2002.

[278] J. Gao, L. J. Guibas, J. Hershberger, L. Zhang, and A. Zhu. Discrete Mobile Centers. In Proceedings of
the 17th ACM Symposium on Computational Geometry (SoCG), pages 190–198, Medfords, MA, June
2001.

[279] J. Gao, L. J. Guibas, J. Hershberger, L. Zhang, and A. Zhu. Geometric Spanners for Routing in Mobile
Networks. In Proceedings of the 2nd ACM International Symposium on Mobile Ad Hoc Networking and
Computing (MobiHoc), Long Beach, CA, 2001.

[280] R. X. Gao and P. Hünerberg. Design of a CDMA-Based Wireless Data Transmitter for Embedded
Sensing. IEEE Transactions on Instrumentation and Measurement, 51(6): 1259–1265, 2002.

[281] R.X. Gao and P. Hunerberg. CDMA-Based Wireless Data Transmitter for Embedded Sensors. In Pro-
ceedings of the 18th IEEE Instrumentation and Measurement Technology Conference, volume 3, pages
1778 –1783, Budapest, Hungary, 2001.

[282] J. Garcia-Frias, W. Zhong, and Y. Zhao. Iterative Decoding Schemes for Source and Channel Coding of
Correlated Sources. In Proceedings of the 36th Asilomar Conference on Signals, Systems, and Computers,
Monterey, CA, November 2002.

[283] J. J. Garcia-Luna-Aceves and E. L. Madruga. The Core-Assisted Mesh Protocol. IEEE Journal on
Selected Areas in Communications, 17(8), 1999.

[284] M. S. Gast. 802.11 Wireless Networks – The Definitive Guide. O’Reilly, Sebastopol, CA, 2002.
[285] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler. The nesC Language: A Holistic

Approach to Networked Embedded Systems. Proceedings of ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pages 1–11. ACM Press, 2003.

[286] C. N. Georghiades. Synchronization. In Jerry D. Gibson, editor, The Communications Handbook, pages
255–272. CRC Press / IEEE Press, Boca Raton, FL, 1996.

[287] M. Gerla, T. J. Kwon, and G. Pei. On Demand Routing in Large Ad Hoc Wireless Networks with Pas-
sive Clustering. In Proceedings of the 2nd IEEE Wireless Communications and Networking Conference
(WCNC), Chicago, IL, September 2000.

[288] M. Gerla and J. T-C. Tsai. Multicluster, Mobile, Multimedia Radio Network. ACM/Baltzer Wireless
Networks, 1(3): 255–265, 1995.

[289] M. Gerla, K. Tang, and R. Bagrodia. TCP Performance in Wireless Multi-hop Networks. In Proceedings
of the Second IEEE Workshop on Mobile Computing Systems and Applications, 1999 (WMCSA ’99), pages
41–50, New Orleans, LA, February 1999.

[290] E. N. Gilbert. Capacity of a Burst-Noise Channel. Bell Systems Technical Journal, 39: 1253–1265.
[291] L. Girod and D. Estrin. Robust Range Estimation using Acoustic and Multimodal Sensing. In Proceed-

ings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Maui, HI,
October 2001.

[292] N. Glance, D. Snowdown, and J.-L. Meunier. Pollen: Using People as a Communication Medium.
Computer Networks, 35(4): 429–442, 2001.

[293] S. Glisic and B. Vucetic. Spread Spectrum CDMA Systems for Wireless Communications. Artech House,
Boston, MA, 1997.

[294] M. Goel and N. R. Shanbhag. Low-Power Channel Coding via Dynamic Reconfiguration. In Proceedings
of the International Conference on Acoustics, Speech and Signal Processing (ICASSP), Phoenix, Arizona,
March 1999.

[295] S. Goel and T. Imielinski. Prediction-based Monitoring in Sensor Networks: Taking Lessons from
MPEG. ACM SIGCOMM Computer Communinication Review, 31(5): 82–98, 2001.

[296] S. Goel, T. Imielinski, K. Ozbay, and B. Nath. Sensor on Wheels – Towards a Zero-Infrastructure Solu-
tion for Intelligent Transportation Systems. In Proceedings of the 1st ACM International Conference on
Embedded Networked Sensor Systems (SenSys), pages 338–339, Los Angeles, CA, November 2003.

[297] A. M. J. Goiser. Handbuch der Spread-Spectrum Technik. Springer Verlag, Wien, New York, 1998.
[298] A. Goldsmith and S. B. Wicker. Special Issue: Energy-Aware Ad Hoc Wireless Networks. IEEE Wireless

Communications, 9, 2002.
[299] A. J. Goldsmith and S. B. Wicker. Design Challenges for Energy-Constrained Ad Hoc Wireless Net-

works. IEEE Wireless Communications, 9(4): 8–27, 2002.

Bibliography 451

[300] J. Gomez, A. T. Campbell, M. Naghshineh, and C. Bisdikian. Power-Aware Routing in Wireless Packet
Radio. In Proceedings of the 6th IEEE International Workshop on Mobile Multimedia Communica-
tions (MoMuC), San Diego, CA, November 1999. http://comet.columbia.edu/~campbell/
andrew/publications/papers/momuc99c%.pdf.

[301] J. Gomez, A. T. Campbell, M. Nashineh, and C. Bisdikian. Conserving Transmission Power in Wireless
Ad Hoc Networks. Proceedings of the 9th Internationa Conference on Network Protocols (ICNP). PARO,
November 2001.

[302] K. Govil, E. Chan, and H. Wasserman. Comparing Algorithms for Dynamic Speed-Setting of a Low-
Power CPU. In Proceedings of the 1st Conference on Mobile Computing and Networking, pages 13–25,
Berkeley, CA, November 1995.

[303] R. Govindan, J. M. Hellerstein, W. Hong, S. Madden, M. Franklin, and S. Shenker. The Sensor Network
as a Database. Technical Report 02-771, USC/Information Sciences Institute, September 2002.

[304] R. Graybill and R. Melhem, editors. Power Aware Computing. Kluwer, 2002.
[305] B. Greenstein, D. Estrin, R. Govindan, S. Ratnasamy, and S. Shenker. DIFS: A Distributed Index for

Features in Sensor Networks. In Proceedings of the 1st IEEE International Workshop on Sensor Network
Protocols and Applications (SNPA), Anchorage, AK, May 2003.

[306] M. Grossglauser and M. Vetterli. Locating Nodes with EASE: Last Encounter Routing in Ad Hoc
Networks through Mobility Diffusion. In Proceedings of the IEEE INFOCOM, San Francisco, CA,
March 2003.

[307] F. Gruian. Hard Real-Time Scheduling for Low Energy using Stochastic Data and DVS Processor. In
Proceedings of the International Symposium on Low Power Electronics and Design (ISLPED), pages
46–51, Huntington Beach, CA, August 2001.

[308] M. Grünewald, T. Lukovszki, C. Schindelhauer, and K. Volbert. Distributed Maintenance of Resource
Efficient Wireless Network Topologies. In Proceedings of the 8th International Euro-Par Conference,
pages 935–946, Paderborn, Germany, 2002.

[309] S. Guha and S. Khuller. Approximation Algorithms for Connected Dominating Set. Algorithmica, 20:
374–387, 1998.

[310] L. J. Guibas. Sensing, Tracking and Reasoning with Relations. IEEE Signal Processing Magazine, pages
73–85, March 2002.

[311] A. Chandra V. Gummalla and John O. Limb. Wireless Medium Access Control Protocols. IEEE Com-
munications Surveys and Tutorials, 3(2): 2–15, 2000. http://www.comsoc.org/pubs/surveys.

[312] C. Guo, L. C. Zhong, and J. M. Rabaey. Low Power Distributed MAC for Ad Hoc Sensor Networks.
In Proceedings of the IEEE GlobeCom, San Antonio, AZ, November 2001. http://bwrc.eecs.
berkeley.edu/People/Grad_Students/czhong/documents/glo%becom2001.pdf.

[313] H. Gupta, S. Das, and Q. Gu. Connected Sensor Cover: Self-Organization of Sensor Networks for
Efficient Query Execution. In Proceedings of the 4th ACM International Symposium on Mobile Ad Hoc
Networking and Computing (MobiHoc), Annapolis, MD, 2003.

[314] I. Gupta, R. van Renesse, and K. P. Birman. Scalable Fault-Tolerant Aggregation in Large Process
Groups. In Proceedings of the International Conference on Dependable Systems and Networks, Goteborg,
Sweden, July 2001. http://www.cs.cornell.edu/gupta/gupta_aggregn_dsn01.ps.

[315] P. Gupta and P. R. Kumar. Critical Power for Asymptotic Connectivity in Wireless Networks. In W.M.
McEneany, G. Yin, and Q. Zhang, editors, Stochastic Analysis, Control, Optimization and Applications,
pages 547–566. Birkhauser, Boston, MA, 1998.

[316] P. Gupta and P. R. Kumar. The Capacity of Wireless Networks. IEEE Transactions on Information
Theory, 46(2): 388–404, 2000.

[317] J. A. Gutierrez, M. Naeve, E. Callaway, V. Mitter, and B. Heile. IEEE 802.15.4: A Developing Standard
for Low-Power Low-Cost Wireless Personal Area Networks. IEEE Network Magazine, 15(5): 12–19,
2001.

[318] J. C. Haartsen. The Bluetooth Radio System. IEEE Personal Communications, 7(1): 28–36, 2000.
[319] J. C. Haartsen and S. Mattisson. Bluetooth – A New Low-Power Radio Interface Providing Short-Range

Connectivity. Proceedings of the IEEE, 88(10): 1651–1661, 2000.
[320] Z. J. Haas, J. Y. Halpern, and L. Li. Gossip-Based Ad Hoc Routing. In Proceedings of the IEEE INFO-

COM, New York, June 2002.

452 Bibliography

[321] Z. J. Haas and J. Deng. Dual Busy Tone Multiple Access (DBTMA)-Performance Evaluation. In Pro-
ceedings of the IEEE Vehicular Technology Conference 1999 (VTC99), Houston, TX, May 1999.

[322] D. Haccoun and S. Pierre. Automatic Repeat Request. In Jerry D. Gibson, editor, The Communications
Handbook, pages 181–198. CRC Press/IEEE Press, Boca Raton, FL, 1996.

[323] E. Haines. Point in Polygon Strategies. In Paul S. Heckbert, editor, Graphics Gems IV, pages 24–46.
Academic Press, Boston, MA, 1994.

[324] M. Hajiaghayi, N. Immorlica, and V. S. Mirrokni. Power Optimization in Fault-Tolerant Topology
Control Algorithms for Wireless Multi-hop Networks. Proceedings of the 9th Annual International
Conference on Mobile Computing and Networking, pages 300–312. ACM Press, 2003.

[325] M. N. Halgamuge, S. M. Guru, and A. Jennings. Energy Efficient Cluster Formation in Wireless Sensor
Networks. In International Conference on Telecommunications (ICT), Papeete, Tahiti, 2003.

[326] D. L. Hall and J. Llinas. An Introduction to Multisensor Data Fusion. Proceedings of the IEEE, 85(1):
6–23, 1997.

[327] F. Halsall. Data Communications, Computer Networks and Open Systems. Addison-Wesley, Reading,
MA, 1996.

[328] M. Hamdaoui and P. Ramanathan. A Dynamic Priority Assignment Technique for Streams with (m, k)-
Firm Deadlines. IEEE Transactions on Computers, 44(12): 1443–1451, 1995.

[329] J. Handy. Energy Consumption Looms Large in Choosing Flash for Portable Applications. EEdesign,
July 2001. http://www.eedesign.com/isd/features/OEG20010711S0066.

[330] V. Handziski, H. Karl, A. Köpke, and A. Wolisz. A Common Wireless Sensor Network Architecture?
In H. Karl, editor, Proceedings 1. GI/ITG Fachgespräch “Sensornetze”. Technical Report TKN-03-
012 of the Telecommunications Networks Group, Technische Universität Berlin, pages 10–17, Berlin,
Germany, July 2003.

[331] V. Handziski, A. Köpke, H. Karl, C. Frank, and W. Drytkiewicz. Improving the Energy Efficiency of
Directed Diffusion Using Passive Clustering. In H. Karl, A. Willig, and A. Wolisz, editors, Proceedings
of the 1st European Workshop on Wireless Sensor Networks (EWSN), volume 2920 of LNCS, Springer,
pages 172–187, Berlin, Germany, January 2004.

[332] S. Hara, A. Ogino, M. Araki, M. Okada, and N. Morinaga. Throughput Performance of SAW-ARQ
Protocol with Adaptive Packet Length in Mobile Packet Data Transmission. IEEE Transactions on
Vehicular Technology, 45(3): 561–569, 1996.

[333] A. Harter and A. Hopper. A Distributed Location System for the Active Office. IEEE Network, 8(1):
62–70, January 1994.

[334] B. A. Harvey and S. B. Wicker. Packet Combining Systems Based on the Viterbi Decoder. IEEE
Transactions on Communications, 42(2): 1544–1557, 1994.

[335] H. Hashemi. The Indoor Radio Propagation Channel. Proceedings of the IEEE, 81(7): 943–968, 1993.

[336] A. T. Hayes. How Many Robots? Group Size and Efficiency in Collective Search Tasks. In 6th Interna-
tional Symposium on Distributed Autonomous Robotic Systems, pages 289–298, Fukuoka, Japan, June
2002.

[337] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater. Fundamentals of Domination in Graphs. Marcel
Dekker, 1998.

[338] T. He, B. M. Blum, J. A. Stankovic, and T. F. Abdelzaher. AIDA: Adaptive Application-Independent
Data Aggregation in Wireless Sensor Networks. ACM Transactions on Embedded Computing Systems,
3(2): 426–457, 2004.

[339] T. He, C. Huang, B. M. Blum, J. A. Stankovic, and T. Abdelzaher. Range-Free Localization Schemes
for Large Scale Sensor Networks. Proceedings of the 9th Annual International Conference on Mobile
Computing and Networking, pages 81–95. ACM Press, 2003.

[340] T. He, J. A. Stankovic, C. Lu, and T. Abdelzaher. SPEED: A Stateless Protocol for Real-Time Com-
munication in Sensor Networks. In Proceedings of the 23rd International Conference on Distributed
Computing Systems (ICDCS’03), Providence, Rhode Island, May 2003.

[341] J. Heidemann, F. Silva, and D. Estrin. Matching Data Dissemination Algorithms to Application Require-
ments. In Proceedings of the 1st ACM International Conference on Embedded Networked Sensor Systems
(SenSys), pages 218–230, Los Angeles, CA, November 2003.

Bibliography 453

[342] J. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan, D. Estrin, and D. Ganesan. Building Efficient
Wireless Sensor Networks with Low-Level Naming. In Proceedings of the Symposium on Operating
System Principles (SOSP 2001), pages 146–159, Lake Louise, Banff, Canada, October 2001.

[343] J. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan, D. Estrin, and D. Ganesan. Building Effi-
cient Wireless Sensor Networks with Low-Level Naming. Proceedings of the 18th ACM Symposium on
Operating Systems Principles, pages 146–159. ACM Press, 2001.

[344] W. B. Heinzelman, A. P. Chandrakasan, and H. Balakrishnan. An Application-Specific Protocol Archi-
tecture for Wireless Microsensor Networks. IEEE Transactions on Wireless Networking, 1(4): 660–670,
2002.

[345] W. R. Heinzelman, J. Kulik, and H. Balakrishnan. Adaptive Protocols for Information Dissemination in
Wireless Sensor Networks. Proceedings of the 5th Annual International Conference on Mobile Computing
and Networking, pages 174–185. ACM, Seattle, WA, August 1999. http://citeseer.nj.nec.
com/heinzelman99adaptive.html.

[346] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-Efficient Communication Protocol
for Wireless Microsensor Networks. In Proceedings of the 33rd Hawaii International Conference on
System Sciences, pages 174–185, Hawaii, HI, January 2000.

[347] J. M. Hellerstein, W. Hong, S. Madden, and K. Stanek. Beyond Average: Toward Sophisticated Sensing
with Queries. In Proceedings of the 2nd International Workshop on Information Processing in Sensor
Networks (IPSN), Palo Alto, CA, April 2003.

[348] A. Helmy. CAPTURE: Location-Free Contact-Assisted Power-Efficient Query Resolution for Sensor
Networks. ACM Mobile Computing and Communications Review, 8(1): 27–47, 2004.

[349] J. Hightower and G. Borriello. Location Systems for Ubiquitous Computing. IEEE Computer, 34(8):
57–66, 2001.

[350] J. Hightower and G. Borriello. A Survey and Taxonomy of Location Systems for Ubiquitous Computing.
Technical Report UW-CSE 01-08-03, University of Washington, Computer Science and Engineering,
Seattle, WA, August 2001.

[351] J. Hill and D. Culler. MICA: A Wireless Platform for Deeply Embedded Networks. IEEE Micro, 22(6):
12–24, 2002.

[352] J. Hill, M. Horton, R. Kling, and L. Krishnamurthy. The Platform Enabling Wireless Sensor Networks.
Communication of the ACM, 47(6): 41–46, 2004.

[353] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, and K. S. J. Pister. System Architecture Direc-
tions for Networked Sensors. In Proceedings of the 9th International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 93–104, Cambridge, MA, 2000.

[354] B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins. Global Positioning System: Theory and Prac-
tice. Springer, 4th edition, 1997.

[355] A. Honarbacht and A. Kummert. WSDP: Efficient, yet Reliable, Transmission of Real-Time Sensor
Data over Wireless Networks. In Proceedings of the Wireless Sensor Networks, First European Workshop
(EWSN 2004), Berlin, Germany, January 2004.

[356] X. Hong, K. Xu, and M. Gerla. Scalable Routing Protocols for Mobile Ad Hoc Networks. IEEE Network
Magazine, 16(4): 11–21, 2002.

[357] T. Hou and V. O. K. Li. Transmission Range Control in Multihop Radio Networks. IEEE Transactions
on Communications, 34(1): 38–44, 1986.

[358] A. Howard, M. J. Mataric, and G. S. Sukhatme. An Incremental Self-Deployment Algorithm for Mobile
Sensor Networks. Autonomous Robots, 13(2): 113–126, 2002.

[359] I. Howitt. Bluetooth Performance in the Presence of 802.11b WLAN. IEEE Transactions on Vehicular
Technology, 51(6): 1640–1651, 2002.

[360] I. Howitt and J. A. Gutierrez. IEEE 802.15.4 Low Rate - Wireless Personal Area Network Coexistence
Issues. In Proceedings of IEEE Wireless Communications and Networking Conference 2003 (WCNC
2003), pages 1481–1486, New Orleans, Louisiana, March 2003.

[361] H.-Y. Hsieh and R. Sivakumar. Transport over Wireless Networks. In I. Stojmenovic, editor, Handbook
of Wireless Networks and Mobile Computing, pages 289–308. John Wiley & Sons, New York, 2002.

[362] L. Hu. Topology Control for Multihop Packet Radio Networks. IEEE Transactions on Communications,
41: 1474–1481, 1993.

454 Bibliography

[363] C.-F. Huang, Y.-C. Tseng, S.-L. Wu, and J.-P. Sheu. Increasing the Throughput of Multihop Packet
Radio Networks with Power Adjustment. In Proceedings of the International Conference on Computer
Communications and Networks (ICCCN), Scottsdale, AZ, 2001.

[364] C.-F. Huang and Y.-C. Tseng. The Coverage Problem in a Wireless Sensor Network. In Proceedings
of the Second ACM International. Workshop on Wireless Sensor Networks and Applications (WSNA’03),
San Diego, CA, September 2003.

[365] C.-F. Huang and Y.-C. Tseng. The Coverage Problem in a Wireless Sensor Network. MONET-Mobile
Networks and Applications, 2004. to appear.

[366] C.-F. Huang, Y.-C. Tseng, and L.-C. Lo. The Coverage Problem in Three-Dimensional Wireless Sensor
Networks. In Proceedings of IEEE Globecom, Dallas, TX, 2004.

[367] G. T. Huang. Casting the Wireless Sensor Net. Technology Review, pages 51–56, July 2003. www.
technologyreview.com.

[368] Q. Huang, C. Lu, and G.-C. Roman. Mobicast: Just-In-Time Multicast for Sensor Networks und Spa-
tiotemporal Constraints. In Proceedings of the 2nd International Workshop on Information Processing
in Sensor Networks (IPSN), Palo Alto, CA, April 2003.

[369] Q. Huang, C. Lu, and G.-C. Romand. Spatiotemporal Multicast in Sensor Networks. Proceedings of the
1st International Conference on Embedded Networked Sensor Systems (SenSys), pages 205–217. ACM,
Los Angeles, CA, November 2003.

[370] B. Hull, K. Jamieson, and H. Balakrishnan. Poster Abstract: Bandwidth Management in Wireless Sensor
Networks. In Proceedings of the 1st International Conference on Embedded Networked Sensor Systems
(SenSys), pages 306–307, Los Angeles, CA, November 2003.

[371] R. Hwang, D. Richards, and P. Winter. The Steiner Tree Problem, volume 53 of Annals of Discrete
Mathematics. North-Holland, Amsterdam, The Netherlands, 1992.

[372] IEEE. 802.4 Token-passing Bus Access Method, 1985.
[373] M. Ilyas, editor. The Handbook of Ad Hoc Wireless Networks. CRC Press, 2003.
[374] T. Imielinski and S. Goel. DataSpace – Querying and Monitoring Deeply Networked Collections in

Physical Space. Proceedings of ACM International Workshop on Data Engineering for Wireless and
Mobile Access (MobiDE), pages 44–51. ACM Press, 1999.

[375] Wireless Components ASK/FSK 868 MHz Wireless Transceiver TDA 5250 D2 Version 1.6. Infineon
Product data sheet, July 2002.

[376] C. Intanagonwiwat, D. Estrin, R. Govindan, and J. Heideman. Impact of Network Density on Data
Aggregation in Wireless Sensor Networks. Technical Report 01-750, University of Southern California,
Computer Science Department, November 2001.

[377] C. Intanagonwiwat, D. Estrin, R. Govindan, and J. Heidemann. Impact of Network Density on Data
Aggregation in Wireless Sensor Networks. In Proceedings of IEEE 22nd International Conference on
Distributed Computing Systems (ICDCS), pages 457–458, Vienna, Austria, July 2002.

[378] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva. Directed Diffusion for Wireless
Sensor Networks. IEEE/ACM Transactions on Networking, 11(1): 2–16, 2003.

[379] Intel StrongARM SA-1100 Microprocessor Brief Data Sheet. intel product documentation, August 2000.
[380] J. Ishac. Survey of Header Compression Techniques. Technical Memorandum e-13010, NASA John H.

Glenn Research Center, September 2001.
[381] R. Iyer and L. Kleinrock. QoS Control for Sensor Networks. In Proceedings of ICC’03, pages 517–521,

Anchorage, AK, May 2003.
[382] S. Jain, R. Shah, W. Brunnette, G. Borriello, and S. Roy. Exploiting Mobility for Energy Efficient

Data Collection in Sensor Networks. In Proceedings of 2nd International. Workshop on Modeling and
Optimization in Mobile, Ad Hoc and Wireless Networks, pages 292–301, Cambridge, UK, March 2004.

[383] X. Ji and H. Zha. Multidimensional Scaling Based Sensor Positioning Algorithms in Wireless Sensor
Networks. In Proceedings of the 1st ACM International Conference on Embedded Networked Sensor
Systems (SenSys), pages 328–329, Los Angeles, CA, November 2003.

[384] G. Jiang, W. Chung, and G. Cybenko. Semantic Agent Technologies for Tactical Sensor Networks. In
Proceedings of SPIE Conference on AeroSense, Orlando, FL, April 2003.

[385] C. E. Jones, K. M. Sivalingam, P. Agrawal, and J.-C. Chen. A Survey of Energy Efficient Network
Protocols for Wireless Networks. Wireless Networks, 7(4): 343–358, 2001.

Bibliography 455

[386] J.-H. Ju and V. O. K. Li. An Optimal Topology-Transparent Scheduling Method in Multihop Packet
Radio Networks. IEEE/ACM Transactions on Networking, 6(3): 298–306, 1998.

[387] H. J. Moon, H. S. Park, S. C. Ahn, and W. H. Kwon. Performance Degradation of the IEEE 802.4
Token Bus Network in a Noisy Environment. Computer Communications, 21: 547–557, 1998.

[388] P. Juang, H. Oki, Y. Wang, M. Martonosi, L.-S. Peh, and D. Rubenstein. Energy-Efficient Computing for
Wildlife Tracking: Design Tradeoffs and Early Experiences with ZebraNet. In Proceedings of the 10th
International Conference on Architectural Support for Programming Languages and Operating Systems,
San Jose, CA, October 2002.

[389] E.-S. Jung and N. H. Vaidya. A Power Control MAC Protocol for Ad Hoc Networks. In Proceedings
of the Eighth Annual International Conference on Mobile Computing and Networking 2002 (MobiCom),
Atlanta, Georgia, September 2002.

[390] R. Jurdak, C. V. Lopes, and P. Baldi. A Survey, Classification and Comparative Analysis of Medium
Access Control Protocols for Ad Hoc Networks. IEEE Communications Surveys and Tutorials, 6(1),
2004. http://www.comsoc.org/livepubs/surveys.

[391] J. M. Kahn, R. H. Katz, and K. S. J. Pister. Emerging Challenges: Mobile Networking for Smart Dust.
Journal of Communications and Networks, 2(3): 188–196, 2000.

[392] J. M. Kahn, R. H. Katz, and K. S. J. Pister. Next Century Challenges: Mobile Networking for “Smart
Dust”. In Proceedings of ACM/IEEE International Conference on Mobile Computing and Networking
(MobiCom 99), Seattle, WA, August 1999.

[393] R. Kalidindi, L. Ray, R. Kannan, and S. Iyengar. Distributed Energy Aware MAC Layer Protocol for
Wireless Sensor Networks. In Proceedings of International Conference on Wireless Networks (ICWN03),
Las Vegas, NV, June 2003.

[394] S. Kallel. Analysis of a Type-II Hybrid ARQ Scheme with Code Combining. IEEE Transactions on
Communications, 38(8): 1133–1137, 1990.

[395] K. Kalpakis, K. Dasgupta, and P. Namjoshi. Maximum Lifetime Data Gathering and Aggregation in
Wireless Sensor Networks. In Proceedings of the IEEE International Conference on Networking (ICN),
pages 685–696, Atlanta, GA, August 2002.

[396] K. Kalpakis, K. Dasgupta, and P. Namjoshi. Efficient Algorithms for Maximum Lifetime Data Gathering
and Aggregation in Wireless Sensor Networks. Computer Networks, 42: 697.

[397] R. Kannan, S. Sarangi, S. S. Iyengar, and L. Ray. Sensor-Centric Quality of Routing in Sensor Net-
works. In Proceedings of IEEE INFOCOM, San Francisco, CA, March 2003.

[398] V. Kanodia, C. Li, A. Sabharwal, B. Sadeghi, and E. Knightly. Distributed Priority Scheduling and
Medium Access in Ad-Hoc Networks. Wireless Networks, 8(6): 455–466, 2002.

[399] A. Kansal and M.B. Srivastava. An Environmental Energy Harvesting Framework for Sensor Networks.
In Proceedings of the International Symposium on Low Power Electronics and Design (ISLPED), Seoul,
Korea, August 2003.

[400] E. Kaplan, editor. Understanding GPS: Principles & Applications. Artech House, 1996.
[401] E. Kaplan, editor. Understanding GPS: Principles and Applications. Artech House, Boston, MA, 1996.
[402] K. Kar, M. Kodialam, T. V. Lakshman, and L. Tassiulas. Routing for Network Capacity Maximization

in Energy-constrained Ad-hoc Networks. In Proceedings of IEEE INFOCOM, San Francisco, CA, March
2003.

[403] D. Karger, P. Klein, and R. Tarjan. A Randomized Linear-Time Algorithm to Find Minimum Spanning
Trees. Journal of the ACM, 42: 321–328, 1995.

[404] S. Karlin and H. M. Taylor. A First Course in Stochastic Processes. Academic Press, San Diego, CA,
second edition, 1975.

[405] S. Karlin and H. M. Taylor. A Second Course in Stochastic Processes. Academic Press, San Diego, CA,
1981.

[406] C. Karlof and D. Wagner. Secure Routing in Wireless Sensor Networks: Attacks and Countermeasures.
Ad Hoc Networks, 1: 293–315, 2003.

[407] P. Karn. A New Channel Access Method for Packet Radio. In Proceedings of the ARRL/CRRL Amateur
Radio 9th Computer Networking Conference, pages 134–140, September 1990.

[408] M. J. Karol, Z. Liu, and K. Y. Eng. An Efficient Demand-Assignment Multiple Access Protocol for
Wireless (ATM) Networks. Wireless Networks, 1(3): 269–279, 1995.

456 Bibliography

[409] B. Karp and H. T. Kung. GPSR: Greedy Perimeter Stateless Routing for Wireless Networks. In Pro-
ceedings of the 6th International Conference on Mobile Computing and Networking (ACM Mobicom),
Boston, MA, 2000.

[410] R. Karp, J. Elson, D. Estrin, and S. Shenker. Optimal and Global Time Synchronization in Sensornets.
CENS Technical Report Number 0012, Center for Embedded Networked Sensing (CENS), April 2003.

[411] H. Karvonen, Z. Shelby, and C. Pomalaza-Raez. Coding for Energy Efficient Wireless Embedded Net-
works. In Proceedings of the International Workshop on Wireless Ad Hoc Networks (IWWAN), Oulu,
Finland, June 2004.

[412] V. Kawadia and P. R. Kumar. A Cautionary Perspective on Cross Layer Design. http://
black.csl.uiuc.edu/~prkumar/ps_files/cross-layer-design.pdf, July 2003. In
IEEE Wireless Communication Magazine.

[413] V. Kawadia and P. R. Kumar. Power Control and Clustering in Ad Hoc Networks. In Proceedings of
IEEE INFOCOM, San Francisco, CA, March 2003.

[414] S. M. Kay. Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice-Hall, Upper
Saddle River, NJ, 1993.

[415] C. D. Kidd, R. J. Orr, G. D. Abowrd, C. G. Atkeson, I. A. Essa, B. MacIntyre, E. Mynatt, T. E. Starner,
and W. Newstetter. The Aware Home: A Living Laboratory for Ubiquitous Computing Research. In
Proceedings of the 2nd International Workshop on Cooperative Buildings, Pittsburgh, PA, 1999.

[416] H. S. Kim, T. F. Abdelzaher, and W. H. Kwon. Minimum-Energy Asynchronous Dissemination to
Mobile Sinks in Wireless Sensor Networks. In Proceedings of the 1st ACM International Conference on
Embedded Networked Sensor Systems (SenSys), pages 192–204, Los Angeles, CA, November 2003.

[417] M. Kim and B. Noble. Mobile Network Estimation. In Proceedings of the Seventh Annual International
Conference on Mobile Computing and Networking 2001 (MobiCom), Rome, GA July 2001.

[418] S. Kim, S. H. Son, J. A. Stankovic, S. Li, and Y. Choi. Safe: A Data Dissemination Protocol for Periodic
Updates in Sensor Networks. In Proceedings of the Workshop of IEEE International Conference on
Distributed Computing Systems (ICDCS), Providence, RI, May 2003.

[419] Y. Kim, J.-J. Lee, and A. Helmy. Modeling and Analyzing the Impact of Location Inconsistencies on
Geographic Routing in Wireless Networks. ACM Mobile Computing and Communications Review, 8(1):
48–60, 2004.

[420] M. Klein, B. Konig-Ries, and P. Obreiter. Lanes: A Lightweight Overlay for Service Discovery in
Mobile ad hoc Networks. Technical Report 2003-6, Technical University Karlsruhe, May 2003. http:
//citeseer.nj.nec.com/klein03lanes.html.

[421] L. Kleinrock and J. Silvester. Optimum Transmission Radii for Packet Radio Networks or Why Six is
a Magic Number. In Proceedings of the National Telecommunications Conference., Birmingham, AL,
December 1978.

[422] L. Kleinrock and F. A. Tobagi. Packet Switching in radio channels: Part I Carrier Sense Multiple
Access Models and their Throughput-/Delay-Characteristic. IEEE Transactions on Communications,
23(12): 1400–1416, 1975.

[423] Y.-B. Ko and N. H. Vaidya. Location-Aided Routing (LAR) in Mobile Ad Hoc Networks. In Proceedings
of the Mobile Computing and Networking (MOBICOM), 66–75, Dallas, TX, 1998.

[424] Y.-B. Ko and N. H. Vaidya. GeoTORA: A Protocol for Geocasting in Mobile Ad Hoc Networks. In
Proceedings of 8th International Conference on Network Protocols (ICNP), 240–250, Osaka, Japan,
November 2000.

[425] Y.-B. Ko and N. H. Vaidya. Flooding-Based Geocasting Protocols for Mobile Ad Hoc Networks. Mobile
Networks & Applications, 7(6): 471–480, 2002.

[426] J. Koberstein, F. Reuter, and N. Luttenberger. The XCast Approach for Content-based Flooding Control
in Distributed Virtual Shared Information Spaces – Design and Evaluation. In Proceedings of the First
European Workshop Wireless Sensor Networks, (EWSN 2004), Berlin, Germany, January 2004.

[427] M. Kochhal, L. Schwiebert, and S. Gupta. Role-Based Hierarchical Self-Organization for Wireless Ad
hoc Sensor Networks. In Proceedings of the 2nd ACM International Workshop on Wireless Sensor Net-
works and Applications (WSNA), San Diego, CA, September 2003.

[428] R. Koetter and M. Medard. Beyond Routing: An Algebraic Approach to Network Coding. In Proceed-
ings of INFOCOM, New York, June 2002.

Bibliography 457

[429] H. Kopetz. Real-Time Systems Design Principles for Distributed Embedded Applications. Kluwer Aca-
demic Publishers, Dordrecht, The Netherlands, 1997.

[430] H. Kopetz and W. Schwabl. Global time in distributed real-time systems. Technical Report 15/89,
Technical University Vienna, 1989.

[431] A. Köpke, V. Handziski, J.-H. Hauer, and H. Karl. Structuring the Information Flow in Component-
Based Protocol Implementations for Wireless Sensor Nodes. In Proceedings of the Work-in-Progress
Session of the 1st European Workshop on Wireless Sensor Networks (EWSN), Technical Report TKN-
04-001 of Technical University Berlin, Telecommunication Networks Group, 41–45, Berlin, January
2004.

[432] Henri Koskinen. On the Coverage of a Random Sensor Network in a bounded domain. In Proceedings
of 16th ITC Specialist Seminar, 11–18, Antwerp, Belgium, 2004.

[433] V. A. Kottapalli, A. S. Kiremidjian, J. P. Lynch E. Carryer T. W. Kenny K. H. Law, and Y. Lei. Two-
Tiered Wireless Sensor Network Architecture for Structural Health Monitoring. In Proceedings of SPIE
Annual International Symposium Smart Structures and Materials, San Diego, CA, March 2003.

[434] L. Kou, G. Markowsky, and L. Berman. A Fast Algorithm for Steiner Trees. Acta Informatica, 15:
141–145, 1981.

[435] U. C. Kozat and L. Tassiulas. Network Layer Support for Service Discovery in Mobile Ad Hoc Net-
works. In Proceedings of IEEE INFOCOM, San Francisco, CA, March 2003.

[436] A. Köpke, A. Willig, and H. Karl. Chaotic Maps as Parsimonious Bit Error Models of Wireless Channels.
In Proceedings of IEEE INFOCOM 2003, San Francisco, CA, 2003.

[437] E. Kranakis, H. Singh, and J. Urrutia. Compass Routing on Geometric Networks. In Proceedings of the
11th Canadian Conference on Computational Geometry, 51–54, Vancouver, BC, August 1999.

[438] P. Krishna, N. Vaidya, M. Chatterjee, and D. Pradhan. A Cluster-based Approach for Routing in
Dynamic Networks. ACM SIGCOMM Computer Communication Review, 2: 49–65, 1997.

[439] B. Krishnamachari, D. Estrin, and S. Wicker. The Impact of Data Aggregation in Wireless Sensor
Networks. In Proceedings of the Workshops of 22nd International Conference on Distributed Computing
Systems, 575–578, Vienna, Austria, July 2002. IEEE Computer Society.

[440] B. Krishnamachari, Y. Mourtada, and S. Wicker. The Energy-Robustness Tradeoff for Routing in Wire-
less Sensor Networks. In Proceedings of the International Conference on Communications (ICC),
Anchorage, AK, May 2003.

[441] B. Krishnamachari, S. Wicker, R. Bejar, and M. Pearlman. Advances in Coding and Information Theory,
chapter Critical Density Thresholds in Distributed Wireless Networks. Kluwer.

[442] Bhaskar Krishnamachari, Stephen B. Wicker, and Ramon Bejar. Phase Transition Phenomena in Wireless
Ad-Hoc Networks. In Proceedings of IEEE GlobeCom Symposium on Ad-Hoc Wireless Networks, San
Antonio, Texas, November 2001.

[443] B. Krishnamachari, S. B. Wicker, R. Bejar, and M. Pearlman. Critical Density Thresholds in Distributed
Wireless Networks. In H. Bhargava, H. V. Poor, V. Tarokh, and S. Yoon, editors, Communications,
Information and Network Security. Kluwer Publishers, 2002.

[444] R. Krishnan and D. Starobinski. Message-Efficient Self-Organization of Wireless Sensor Networks. In
Proceedings of IEEE Wireless Communications and Networking Conference (WCNC), New Orleans, LA,
March 2003.

[445] C. Krsihna and Y. Lee. Voltage-Clock-Scaling adaptive Scheduling Techniques for Low Power in Hard
Real-Time Systems. In Proceedings of the 6th IEEE Real Time Technology and Applications Symposium
(RTAS), 156–165, Washington, DC, 2000.

[446] M. Krunz, A. Muqattash, and S.-J. Lee. Transmission Power Control in Wireless Ad Hoc Networks:
Challenges, Solutions, and Open Issues. IEEE Network Magazine, 18(5): 8–14, 2004.

[447] M. Kubisch, H. Karl, and A. Wolisz. Are Classes of Nodes with Different Power Amplifiers Good
for Wireless Multi-hop Networks? In Proceedings of the Personal Wireless Communications (Work-in-
progresss session), Venice, Italy, September 2003.

[448] M. Kubisch, H. Karl, A. Wolisz, L. C. Zhong, and J. Rabaey. Distributed Algorithms for Transmission
Power Control in Wireless Sensor Networks. In Proceedings of IEEE Wireless Communications and
Networking Conference (WCNC), New Orleans, LA, March 2003.

458 Bibliography

[449] M. Kubisch, S. Mengesha, D. Hollos, H. Karl, and A. Wolisz. Applying ad-hoc relaying to improve
capacity, energy efficiency, and immission in infrastructure-based WLANs. In K. Irmscher, editor, Kom-
munikation in Verteilten Systemen (KiVS 2003),13. ITG/GI-Fachtagung, 195–206, Leipzig, Germany,
February 2003.

[450] F. Kuhn and R. Wattenhofer. Constant-Time Distributed Dominating Set Approximation. In Proceedings
of the 22th Annual ACM Symposium on Principles of Distributed Computing (PODC), Boston, MA, 2003.

[451] F. Kuhn, R. Wattenhofer, Y. Zhang, and A. Zollinger. Geometric Ad-Hoc Routing: Of Theory and
Practice. In Proceedings of the 22th Annual ACM Symposium on Principles of Distributed Computing
(PODC), Boston, MA, 2003.

[452] F. Kuhn, R. Wattenhofer, and A. Zollinger. Worst-Case Optimal and Average-Case Efficient Geometric
Ad-Hoc Routing. In Proceedings of the 4th ACM International Symposium on Mobile Ad Hoc Networking
and Computing (MobiHoc), Annapolis, MD, 2003.

[453] Joanna Kulik, Wendy Rabiner, and Hari Balakrishnan. Adaptive Protocols for Information Dissemination
in Wireless Sensor Networks. In Proceedings of the Fifth Annual International Conference on Mobile
Computing and Networks (MobiCom 1999), Seattle, WA, 1999.

[454] G. Kulkarni, C. Schurgers, and M. Srivastava. Dynamic Link Labels for Energy Efficient MAC Headers
in Wireless Sensor Networks. In Proceedings of IEEE International Conference on Sensors (Sensors’02),
1520–1525, Orlando, FL, June 2002.

[455] A. Kumar, P. Ishwar, and K. Ramchandran. On Distributed Sampling of Smooth Non-Bandlimited
Fields. In Proceedings of ICASSP 2004, Montreal, Canada, May 2004.

[456] A. Kumar, P. Ishwar, and K. Ramchandran. On Distributed Sampling of Smooth Non-Bandlimited
Fields. In Proceedings of the Information Processing in Sensor Networks, IPSN’04, Berkeley, CA, April
2004.

[457] R. Kumar, C. Tsiatsis, and M. Srivastava. Computation Hierarchy for In-network Processing. In Pro-
ceedings of the 2nd ACM International Workshop on Wireless Sensor Networks and Applications (WSNA),
San Diego, CA, September 2003.

[458] J. F. Kurose and K. W. Ross. Computer Networking – A Top-Down Approach Featuring the Internet.
Addison-Wesley, Boston, 2001.

[459] J. Kusuma, L. Doherty, and K. Ramchandran. Distributed Compression for Sensor Networks. In Pro-
ceedings of the International Conference on Image Processing (ICIP), Thessaloniki, Greece, October
2001.

[460] M. Kwon and S. Fahmy. Topology-aware overlay networks for group communication. In Proceedings
of the 12th International Workshop on Network and Operating Systems Support for Digital Audio and
Video, 127–136. ACM Press, 2002.

[461] T. J. Kwon and M. Gerla. Clustering with Power Control. In Proceedings of MILCOM, volume 2,
1424–1428, Atlantic City, NJ, November 1999.

[462] T. J. Kwon and M. Gerla. Efficient Flooding with Passive Clustering (PC) in Ad Hoc Networks. ACM
SIGCOMM Computer Communication Review, 32(1): 44–56, 2002.

[463] A. Lal and J. Blanchard. The Daintiest Dynamos. IEEE Spectrum Online, 2004.
[464] L. Lamport. Time, clocks and the ordering of events in a distributed system. Communications of the

ACM, 21(7): 558–565, 1978.
[465] K. Langendoen and N. Reijers. Distributed Localization in Wireless Sensor Networks: A Quantitative

Comparison. Computer Networks, 42, August 2003. Special Issue on Wireless Sensor Networks.
[466] LAN/MAN Standards Committee of the IEEE Computer Society. IEEE Standard for Information

Technology-Telecommunications and information exchange between systems-Local and Metropolitan
networks-Specific requirements-Part 11: Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) specifications: Higher speed Physical Layer (PHY) extension in the 2.4 Ghz band, 1999.

[467] LAN/MAN Standards Committee of the IEEE Computer Society. Information technol-
ogy – Telecommunications and Information Exchange between Systems – Local and Metropolitan
Area Networks – Specific Requirements – Part 11: Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications, 1999.

[468] LAN/MAN Standards Committee of the IEEE Computer Society. IEEE Standard for Information tech-
nology – Telecommunications and information exchange between systems – Local and metropolitan area
networks – Specific requirements – Part 15.4: Wireless Medium Access Control (MAC) and Physical
Layer (PHY) Specifications for Low Rate Wireless Personal Area Networks (LR-WPANs), October 2003.

Bibliography 459

[469] J. Lansford, A. Stephens, and R. Nevo. Wi-Fi (802.11b) and Bluetooth: enabling coexistence. IEEE
Network Magazine, 15(5): 20–27, 2001.

[470] L. E. Larson. Radio Frequency Integrated Circuit Technology for Low-Power Wireless Communications.
IEEE Personal Communications, 5(3): 11–19, 1998.

[471] Y. W. Law, J. Doumen, and P. Hartel. Survey and Benchmark of Block Ciphers for Wireless Sensor
Networks. Technical Report TR-CTIT-04-07, University of Twente, Computer Science Department,
2004.

[472] H. Lee, B. Han, Y. Shin, and S. Im. Multipath Characteristics of Impulse Radio Channels. In Proceed-
ings of Vehicular Technology Conference (VTC), 2487–2491, Tokyo, Japan, 2000.

[473] S.-J. Lee and M. Gerla. Split Multipath Routing with Maximally Disjoint Paths in Ad hoc Networks. In
Proceedings of the IEEE International Conference on Communications (ICC), St. Petersburg, VA, June
2001.

[474] S.-J. Lee, W. Su, J. Hsu, M. Gerla, and R. Bagrodia. A Performance Comparison Study of Ad Hoc
Wireless Multicast Protocols. In Proceedings of the IEEE Infocom, Tel-Aviv, Israel, March 2000. http:
//www.ieee-infocom.org/2000/papers/361.ps.

[475] S.-W. Lee and C.-S. Wu. A k-Best Paths Algorithm for Highly Reliable Communication Networks.
IEICE Transactions on Communications, E82-B: 586–590, 1999.

[476] P. H. Lehne and M. Pettersen. An Overview of Smart Antenna Technology for Mobile
Communications Systems. IEEE Communications Surveys and Tutorials, 2(4): 1999.
http://www.comsoc.org/livepubs/surveys.

[477] M. D. Lemmon, Q. Ling, and Y. Sun. Overload Management in Sensor-Actuator Networks Used for
Spatially-Distributed Control Systems. In Proceedings of the 1st International Conference on Embedded
Networked Sensor Systems (SenSys), pages 162–170, Los Angeles, CA, November 2003.

[478] P. Lettieri, C. Schurgers, and M. B. Srivastava. Adaptive Link Layer Strategies for Energy-Efficient
Wireless Networking. Wireless Networks, 5(5): 339–355, 1999.

[479] P. Lettieri and M. Srivastava. Adaptive Frame Length Control for Improving Wireless Link Throughput,
Range and Energy Efficiency. Proceedings of INFOCOM 1998, pages 564–571. IEEE, San Francisco,
CA, 1998. .

[480] B. Leuf. Peer to Peer: Collaboration and Sharing Over the Internet. Addison-Wesley, 2002.
[481] P. Levis and D. Culler. Maté: A Tiny Virtual Machine for Sensor Networks. In Proceedings of the 10th

International Conference on Architectural Support for Programming Languages and Operating Systems,
San Jose, CA, October 2002.

[482] D. Li, K. D. Wong, Y. H. Hu, and A. M. Sayeed. Detection, Classification, and Tracking of Targets.
IEEE Signal Processing Magazine, 19(2): 17–29, 2002.

[483] J. Li, J. Jannotti, D. S. J. De Couto, D. R. Karger, and R. Morris. A Scalable Location Service for Geo-
graphic Ad Hoc Routing. In Proceedings of the 6th ACM International Conference on Mobile Computing
and Networking, pages 120–130, Boston, MA, August 2000.

[484] L. Li and J. Y. Halpern. Minimum-Energy Mobile Wireless Networks Revisited. In Proceedings of IEEE
International Conference on Communication (ICC), pages 278–283, Helsinki, Finland, June 2001.

[485] L. Li, J. Y. Halpern, P. Bahl, Y. Wang, and R. Wattenhofer. Analysis of Cone-Based Distributed Topol-
ogy Control Algorithm for Wireless Multi-hop Networks. In Proceedings of the 20th Annual ACM
SIGACT-SIGOPS Symposium on Principles of Distributed Computing (PODC), Newport, RI, August
2001.

[486] L. Li and P. Sinha. Throughput and Energy Efficiency in Topology-Controlled Multi-hop Wireless Sen-
sor Networks. In Proceedings of the 2nd ACM International Workshop on Wireless Sensor Networks and
Applications (WSNA), San Diego, CA, September 2003.

[487] N. Li, J. C. Hou, and L. Sha. Design and Analysis of an MST-Based Topology Control Algorithm. In
Proceedings of IEEE INFOCOM, San Francisco, CA, March 2003.

[488] Q. Li, J. Aslam, and D. Rus. Hierarchical Power-Aware Routing in Sensor Networks. In Proceedings
of the DIMACS Workshop on Pervasive Networking, Piscataway, NJ, May 2001.

[489] Q. Li, J. Aslam, and D. Rus. Online Power-Aware Routing in Ad-Hoc Networks. Proceedings of the 7th
Annual International Conference on Mobile Computing and Networking, pages 97–107. ACM , Rome,
Italy, July 2001.

460 Bibliography

[490] S. Li, S. H. Son, and J. A. Stankovic. Event Detection Services Using Data Service Middleware in Dis-
tributed Sensor Networks. In Proceedings of the 2nd International Workshop on Information Processing
in Sensor Networks (IPSN), Palo Alto, CA, April 2003.

[491] S.-F. Li, R. Sutton, and J. Rabaey. Low Power Operating System for Heterogeneous Wireless Com-
munication Systems. In Proceedings of the 10th International Conference on Parallel Architectures and
Compilation Techniques (PACT 01), Barcelona, Spain, September 2001.

[492] S.-Y. R. Li, R. W. Yeung, and N. Cai. Linear Network Coding. IEEE Transactions on Information
Theory, 49(2): 371–381, 2003.

[493] X. Li, Y. J. Kim, R. Govindan, and W. Hong. Multi-dimensional Range Queries in Sensor Networks. In
Proceedings of the 1st ACM International Conference on Embedded Networked Sensor Systems (SenSys),
pages 63–75, Los Angeles, CA, November 2003.

[494] X.-Y. Li, G. Calinescu, and P.-J. Wan. Distributed Construction of a Planar Spanner and Routing for
Ad Hoc Wireless Networks. In Proceedings of IEEE INFOCOM, New York, 2002.

[495] X. Y. Li, P.-J. Wan, Y. Wang, and C. W. Yi. Fault Tolerant Deployment and Topology Control in Wire-
less Networks. In Proceedings of the 4th ACM International Symposium on Mobile Ad Hoc Networking
and Computing (MobiHoc), Annapolis, MD, 2003.

[496] X.-Y. Li, P.-J. Wan, and O. Frieder. Coverage in Wireless Ad Hoc Sensor Networks. IEEE Transactions
on Computers, 52(6), 2003.

[497] B. Liang and Z. J. Haas. Virtual Backbone Generation and Maintenance in Ad Hoc Network Mobility
Management. In Proceedings IEEE Infocom, Tel-Aviv, Israel, March 2000.

[498] W. Liang. Constructing Minimum-Energy Broadcast Trees in Wireless Ad Hoc Networks. In Proceed-
ings of 3rd ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc),
Lausanne, Switzerland, 2002.

[499] W.-H. Liao. GeoGRID: A Geocasting Protocol for Mobile Ad Hoc Networks Based on GRID. Journal
of Internet Technology, 1(2): 23–32, 2000.

[500] A. Lim. Distributed Services for Information Dissemination in Self-Organizing Sensor Networks. Spe-
cial Issue on Distributed Sensor Networks for Real-Time Systems with Adaptive Reconfiguration, Journal
of Franklin Institute, 388: 707–727, 2001.

[501] C. R. Lin and M. Gerla. Multimedia Transport in Multihop Dynamic Packet Radio Networks. In
Proceedings of the International Conference on Network Protocols, pages 209–216, Tokyo, Japan,
November 1995.

[502] C. R. Lin and M. Gerla. Adaptive Clustering for Mobile Wireless Networks. IEEE Journal on Selected
Areas in Communications, 15(7): 1265–1275, 1997.

[503] E.-Y. A. Lin, J. M. Rabaey, and A. Wolisz. Power-Efficient Rendez-vous Schemes for Dense Wireless
Sensor Networks. In Proceedings of IEEE International Conference on Communications (ICC’04), Paris,
France, June 2004.

[504] S. Lin and D. J. Costello. Error Control Coding – Fundamentals and Applications. Prentice-Hall, Engle-
wood Cliffs, NJ, 1983.

[505] S. Lin, D. J. Costello, and M. J. Miller. Automatic-Repeat-Request Error-Control Schemes. IEEE Com-
munications Magazine, 22(12): 5–17, 1984.

[506] T. Lin, H. Zhao, J. Wang, G. Han, and J. Wang. An Embedded Web Server for Equipments. In Pro-
ceedings of the 7th International Symposium on Parallel Architectures, Algorithms and Networks, pages
345–350, Hong Kong, China, May 2004.

[507] S. Lindsey and K. M. Sivalingam. Data Gathering Algorithms in Sensor Networks Using Energy Met-
rics. IEEE Transactions on Parallel and Distributed Systems, 13(9): 924–934, 2002.

[508] R. Liscano. Service Discovery in Sensor Networks: An Overview. http://www.site.uottawa.
ca/~rliscano/presentations/SDSensorNetworks.pdf%, 2003.

[509] B. Liu and D. Towsley. On the Coverage and Detectability of Large-Scale Wireless Sensor Networks.
In Proceedings of WiOpt’03: Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks,
Sophia-Antipolis, 2003.

[510] B. Liu and D. Towsley. A Study on the Coverage of Large-Scale Sensor Networks. In Proceedings of the
1st IEEE International Conference on Mobile Ad-hoc and Sensor Systems (MASS’04), Fort Lauderdale,
FL, 2004.

Bibliography 461

[511] H. Liu, H. Ma, M. E. Zarki, and S. Gupta. Error Control Schemes for Networks: An Overview.
MONET – Mobile Networks and Applications, 2(2): 167–182, 1997.

[512] J. Liu and B. Li. Distributed Topology Control in Wireless Sensor Networks with Asymmetric Links.
In Proceedings of IEEE Globecom Wireless Communications symposium, San Francisco, CA, December
2003.

[513] J. Liu, F. Zhao, and D. Petrovic. Information-Directed Routing in Ad Hoc Sensor Networks. In Proceed-
ings of the 2nd ACM International Workshop on Wireless Sensor Networks and Applications (WSNA),
San Diego, CA, September 2003.

[514] J. W. S. Liu. Real-Time Systems. Prentice Hall, 2000.
[515] J. W. S. Liu, W.-K. Shih, K.-W. Lin, R. Bettati, and J.-Y. Chung. Imprecise Computations. Proceedings

of the IEEE, 82(1): 83–94, 1994.
[516] J. Liu, P. Cheung, L. Guibas, and F. Zhao. A Dual-Space Approach to Tracking and Sensor Management

in Wireless Sensor Networks. In Proceedings of the First ACM International Workshop on Wireless
Sensor Networks and Applications (WSNA’02), pages 131–139, Atlanta, GA, 2002.

[517] E. Lloyd, R. Liu, M. V. Marathe, R. Ramanathan, and S. S. Ravi. Algorithmic Aspects of Topology
Control Problems for Ad Hoc Networks. In Proceedings of the 3rd ACM International symposium on
Mobile Ad Hoc Networking and Computing (MobiHoc), Lausanne, Switzerland, 2002.

[518] S. B. Lowen and M. C. Teich. Power-Law Shot Noise. IEEE Transactions on Information Theory, 36(6):
1302–1318, 1990.

[519] C. Lu, B. M. Blum, T. F. Abdelzaher, J. A. Stankovic, and T. He. RAP: A Real-Time Communication
Architecture for Large-Scale Wireless Sensor Networks. In Proceedings of the Eighth IEEE Real-Time
and Embedded Technology and Applications Symposium, 2002 (RTAS 2002), San Jose, CA, September
2002.

[520] G. Lu, B. Krishnamachari, and C. Raghavendra. An Adaptive Energy-Efficient and Low-Latency MAC
for Data Gathering in Sensor Networks. In Proceedings of the 4th International Workshop on Algorithms
for Wireless, Mobile, Ad Hoc and Sensor Networks (WMAN 04), Santa Fe, CA, April 2004.

[521] G. Lu, B. Krishnamachari, and C. S. Raghavendra. Performance Evaluation of the IEEE 802.15.4 MAC
for Low-Rate Low-Power Wireless Networks. In Proceedings of the 2004 IEEE International Conference
on Performance, Computing, and Communications, pages 701–706, Phoenix, AZ, April 2004.

[522] D. S. Lun, M. Medard, and T. H. R. Koetter. Network Coding with a Cost Criterion. In Proceedings of
the International symposium on Information Theory and its Applications (ISITA), Parma, Italy, October
2004.

[523] J. Luo, P. Th. Eugster, and J.-P. Hubaux. Route Driven Gossip: Probabilistic Reliable Multicast in Ad
Hoc Networks. In Proceedings of IEEE INFOCOM, San Francisco, CA, March 2003.

[524] J. Luo, P T. Eugster, and J.-P. Hubaux. Pilot: Probabilistic Lightweight Group Communication System
for Ad Hoc Networks. IEEE Transactions on Mobile Computing, 3(2): 164–179, 2004.

[525] C. Luschi, M. Sandell, P. Strauch, J.-J. Wu, C. Ilas, P.-W. Ong, R. Baeriswyl, F. Battaglia, S.
Karageorgis, and R.-H. Yan. Advanced Signal-Processing Algorithms for Energy-Efficient Wireless
Communications. Proceedings of the IEEE, 88(10): 1633–1649, 2000.

[526] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, San Francisco, CA, 1996.
[527] S. Madden and M. J. Franklin. Fjording the Stream: An Architecture for Queries over Streaming Sensor

Data. In Proceedings of the 18th International Conference on Data Engineering (ICDE), San Jose, CA,
February 2002.

[528] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TAG: A Tiny Aggregation Service for
Ad-Hoc Sensor Networks. ACM SIGOPS Operating Systems Review, 36(SI): 131–146, 2002.

[529] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. The Design of an Acquisitional Query
Processor For Sensor Networks. In Proceedings of SIGMOD, San Diego, CA, 2003.

[530] S. Madden, R. Szewczyk, M. J. Franklin, and D. Culler. Supporting Aggregate Queries Over Ad-Hoc
Wireless Sensor Networks. In Proceedings of the 4th IEEE Workshop on Mobile Computing Systems and
Applications, Callicoon, NY, June 2002.

[531] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TAG: a Tiny AGregation Service for
Ad-Hoc Sensor Networks. In Proceedings of OSDI, Boston, MA, December 2002.

[532] N. P. Mahalik, editor. Fieldbus Technology – Industrial Network Standards for Real-Time Distributed
Control. Springer, Berlin, Germany, 2003.

462 Bibliography

[533] C. Maihöfer. A Survey of Geocast Routing Protocols. IEEE Communications Surveys & Tutorials, 6(2):
32–42, 2004.

[534] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson. Wireless Sensor Networks for
Habitat Monitoring. In Proceedings of the 1st ACM Workshop on Wireless Sensor Networks and Appli-
cations, Atlanta, GA, September 2002.

[535] N. Malpani, Y. Chen, N. Vaidya, and J. Welch. Distributed Token Circulation on Mobile Ad Hoc
Networks. IEEE Transactions on Mobile Computing, 4(2): 154–165, 2004.

[536] D. Maltz. On-Demand Routing in Multi-Hop Wireless Ad Hoc Networks. PhD thesis, Carnegie Mellon
University, Pittsburgh, PA, 2001.

[537] A. Manzak and C. Chakrabarty. Variable Voltage Task Scheduling for Minimizing Energy or Minimizing
Power. In Proceedings of the IEEE International Conference on Acoustic, Speech, and Signal Processing
(ICASSP), pages 3239–3242, Istanbul, Turkey, June 2000.

[538] D. Marco, E. Duarte-Melo, M. Liu, and D. L. Neuhoff. On the Many-to-One Transport Capacity of
a Dense Wireless Sensor Network and the Compressibility of its Data. In Proceedings of the 2nd
International Workshop on Information Processing in Sensor Networks (IPSN), Palo Alto, CA, April
2003.

[539] D. Marco, E. J. Duarte-Melo, M. Liu, and D. L. Neuhoff. On the Many-to-One Transport Capacity
of a Dense Wireless Sensor Network and the Compressibility of its Data. In Proceedings of the 2nd
Symposium on Information Processing in Sensor Networks (IPSN ’03), Palo Alto, CA, April 2003.

[540] I. Maric and R. D. Yates. Cooperative Multihop Broadcast for Wireless Networks. IEEE Journal on
Selected Areas in Communications, 22(6): 1080–1088, 2004.

[541] R. J. Marks, A. K. Das, M. El-Sharkawi, P. Arabshahi, and A. Gray. Minimum Power Broadcast Trees
for Wireless Networks: Optimizing Using the Viability Lemma. In IEEE International Symposium on
Circuits and Systems (ISCAS), Scottsdale, AZ, 2002.

[542] J. L. Massey. Information Theory Aspects of Spread-Spectrum Communications. In Proceedings of the
IEEE ISSSTA ’94, pages 16–21, Oulu, Finland, July 1994.

[543] M. Mauve, J. Widmer, and H. Hartenstein. A Survey on Position-Based Routing in Mobile Ad-Hoc
Networks. IEEE Network, 15: 30–39, 2001.

[544] A. B. McDonald and T. Znati. A Mobility-Based Framework for Adaptive Clustering in Wireless AD-
Hoc Networks. IEEE Journal on Selected Areas in Communications, 17(8): 1466–1487, 1999. Special
Issue on Wireless Ad Hoc Networks.

[545] R. Meester and R. Roy. Continuum Percolation. Cambridge University Press, 1996.
[546] S. Meguerdichian, F. Koushanfar, M. Potkonjak, and M. B. Srivastava. Coverage Problems in Wireless

Ad-Hoc Sensor Networks. In Proceedings of IEEE INFOCOM 2001, pages 1380–1387, Anchorage,
AK, 2001.

[547] S. Meguerdichian, F. Koushanfar, G. Qu, and M. Potkonjak. Exposure in Wireless Ad-Hoc Sensor Net-
works. In Proceedings of the 7th Annual International Conference on Mobile Computing and Networking
(MobiCom ’01), pages 139–150, Rome, Italy, July 2001.

[548] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied Cryptography. CRC Press,
Boca Raton, FL, 1996.

[549] S. Meninger, J. O. Mur-Miranda, R. Amirtharajah, A. P. Chandrakasan, and J. H. Lang. Vibration-to-
Electric Energy Conversion. IEEE Transactions on VLSI Systems, 9(1): 64–76, 2001.

[550] V. Mhatre and C. Rosenberg. Design Guidelines for Wireless Sensor Networks Communication: Clus-
tering and Aggregation. Elsevier AdHoc Networks J. (Special Issue on Sensor Network Applications and
Protocols), 2(1): 45–63, 2003.

[551] A. M. Michelson and A. H. Levesque. Error-Control Techniques for Digital Communication. John Wiley
& Sons, New York, 1985.

[552] M. J. Miller and N. H. Vaidya. Minimizing Energy Consumption in Sensor Networks using a Wakeup
Radio. In Proceedings of IEEE WCNC 2004, Atlanta, Georgia, March 2004.

[553] D. L. Mills. Network Time Protocol (Version 3) Specification, Implementation and Analysis. RFC 1305,
1992.

[554] D. L. Mills. Improved Algorithms for Synchronizing Computer Network Clocks. IEEE/ACM Transac-
tions on Networking, 3(3): 245–254, 1995.

Bibliography 463

[555] D. L. Mills. Simple Network Time Protocol (SNTP) Version 4 for IPv4, IPv6 and OSI. RFC 2030, 1996.
[556] D. L. Mills. Adaptive Hybrid Clock Discipline Algorithm for the Network Time Protocol. IEEE/ACM

Transactions on Networking, 6(5): 505–514, 1998.
[557] L. B. Milstein and M. K. Simon. Spread Spectrum Communications. In J. D. Gibson, editor, The Com-

munications Handbook, pages 199–212. CRC Press/IEEE Press, Boca Raton, FL, 1996.
[558] R. Min, M. Bhardwaj, S.-H. Cho, E. Shih, A. Sinha, A. Wang, and A. Chandrakasan. Low-Power Wire-

less Sensor Networks. In Proceedings of the 14th International Conference on VLSI Design (VLSID ’01),
Bangalore, India, 2001.

[559] R. Min and A. Chandrakasan. A Framework for Energy-Scalable Communication in High-Density Wire-
less Networks. In Proceedings of the 2002 International Symposium on Low Power Electronics and
Design, pages 36–41. ACM Press, 2002.

[560] R. Min and A. Chandrakasan. MobiCom Poster: Top Five Myths About the Energy Consumption of
Wireless Communication. ACM SIGMOBILE Mobile Computing and Communications Review, 7(1):
65–67, 2003.

[561] R. Min, M. Bhardwaj, S.-H. Cho, N. Ickes, E. Shih, A. Sinha, A. Wang, and A. Chandrakasan. Energy-
Centric Enabling Technologies for Wireless Sensor Networks. IEEE Wireless Communications, 9(4):
28–39, 2002.

[562] R. Min and A. Chandrakasan. Energy-Efficient Communication for Ad-Hoc Wireless Sensor Networks.
In Proceedings of the 35th Asilomar Conference on Signals, Systems, and Computers, pages 139–143,
Pacific Grove, CA, November 2001.

[563] R. Min and A. Chandrakasan. A Framework for Energy-Scalable Communication in High-Density
Wireless Networks. In Proceedings of ISLPED ’02, pages 36–41, Monterey, CA, 2002.

[564] J. Mirkovic, G. P. Venkataramani, S. Lu, and L. Zhang. A Self-organizing approach to data forwarding
in large-scale sensor networks. In Proceedings of the IEEE International Conference on Communications
(ICC), 5: 1357–1361, 2001.

[565] A. R. Mishra. Fundamentals of Cellular Network Planning and Optimisation: 2G/2.5G/3G... Evolution
to 4G. John Wiley & Sons, 2004.

[566] T. Mitchell. Broad is the Way. IEE Review, 47(1): 35–39, 2001.
[567] S. Mitra and J. Rabek. Power Efficient Clustering for Clock Synchronization in Dynamic

Multi-Hop Sensor Networks. http://theory.lcs.mit.edu/~mitras/courses/6829/
project/project_main.htm%l, 2003.

[568] M. Mock, R. Frings, E. Nett, and S. Trikaliotis. Clock Synchronization in Wireless Local Area Networks.
In Proceedings of the 12th Euromicro Conference On Real Time Systems, Stockholm, Sweden, June 2000.

[569] M. Mock, R. Frings, E. Nett, and S. Trikaliotis. Continuous Clock Synchronization in Wireless Real-
Time Applications. In Proceedings of the 19th IEEE Symposium on Reliable Distributed Systems (SRDS),
Nuremberg, Germany, October 2000.

[570] E. Modiano. An Adaptive Algorithm for Optimizing the Packet Size Used in Wireless ARQ Protocols.
Wireless Networks, 5: 279–286, 1999.

[571] J. P. Monks, J.-P. Ebert, A. Wolisz, and W. W. Hwu. A Study of the Energy Saving and Capacity
Improvement Potential of Power Control in Multi-hop Wireless Networks. In Proceedings of Workshop
on Wireless Local Networks, Tampa, FL, November 2001. Held in conjunction with Conference of Local
Computer Networks (LCN).

[572] J. P. Monks, V. Bharghavan, and W.-M. Hwu. A Power Controlled Multiple Access Protocol for Wire-
less Packet Networks. Proceedings of the INFOCOM Conference 2001, pages 219–228. IEEE Press,
Anchorage, AL, April 2001.

[573] J. P. Monks, J.-P. Ebert, A. Wolisz, and W.-M. Hwu. A Study of the Energy Saving and Capacity
Improvement Potential of Power Control in Multi-Hop Wireless Networks. In Proceedings of Workshop
on Wireless Local Networks/Proceedings of Conference on Local Computer Networks (LCN), Berlin,
Germany, November 2001.

[574] D. Moore and J. Hebeler. Peer-to-Peer: Building Secure, Scalable, and Manageable Networks. McGraw-
Hill, 2001.

[575] G. Mühl, L. Fiege, and A. P. Buchmann. Filter Similarities in Content-Based Publish/Subscribe Sys-
tems. In H. Schmeck, T. Ungerer, and L. Wolf, editors, Proceedings of the International Conference on
Architecture of Computing Systems (ARCS), volume 2299 of Lecture Notes in Computer Science, pages
224–238. Springer-Verlag, Karlsruhe, Germany, 2002.

464 Bibliography

[576] G. Mühl, L. Fiege, F. C. Gartner, and A. Buchmann. Evaluating Advanced Routing Algorithms for
Content-Based Publish/Subscribe Systems. Proceedings of the 10th IEEE International symposium on
Modeling, Analysis and Simulation of Computer and Telecommunications Systems (MASCOTS), pages
167–176. IEEE Press, 2002.

[577] A. Muqattash and M. Krunz. Power Controlled Dual Channel (PCDC) Medium Access Protocol for
Wireless Ad Hoc Networks. In Proceedings of IEEE INFOCOM, San Francisco, CA, March 2003.

[578] A. D. Murugan, P. K. Gopala, and H. E. Gamal. Correlated Sources Over Wireless Channels: Coop-
erative Source-Channel Coding. IEEE Journal on Selected Areas in Communications, 22(6): 988–998,
2004.

[579] A. D. Myers and S. Basagni. Wireless Media Access Control. In I. Stojmenovic, editor, Handbook of
Wireless Networks and Mobile Computing, pages 119–143. John Wiley & Sons, New York, 2002.

[580] B. A. Myers, J. B. Willingham, P. Landy, M. A. Webster, P. Frogge, and M. Fischer. Design Consid-
erations for Minimal-Power Wireless Spread Spectrum Circuits and Systems. Proceedings of the IEEE,
88(10): 1598–1612, 2000.

[581] R. Nagpal, H. Shrobe, and J. Bachrach. Organizing a Global Coordinate System from Local Information
on an Ad Hoc Sensor Network. In Proceedings of the 2nd International Workshop on Information
Processing in Sensor Networks (IPSN), Palo Alto, CA, April 2003.

[582] S. Narayanswamy, V. Kawadia, R. S. Sreenivas, and P. R. Kumar. Power Control in Ad Hoc Networks
: Theory, Architecture, Algorithm and Implementation of the COMPOW Protocol. In Proceedings of
European Wireless 2002, Florence, Italy, February 2002.

[583] B. Narendran, J. Sienicki, S. Yajnik, and P. Agrawal. Evaluation of an Adaptive Power and Error Con-
trol Algorithm for Wireless Systems. In Proceedings of the International Conference on Communication
(ICC), Montreal, Canada, June 1997.

[584] A. Nasipuri, R. Castaneda, and S. R. Das. Performance of Multipath Routing for On-Demand Protocols
in Ad Hoc Networks. Mobile Networks and Applications (MONET), 6(4): 339–349, 2002.

[585] A. Nasipuri and S. R. Das. On-Demand Multipath Routing for Mobile Ad-Hoc Networks. In Proceedings
of the 8th International Conference on Computer Communications and Networks (ICCCN), Boston, MA,
1999.

[586] A. Nasipuri and K. Li. A Directionality Based Location Discovery Scheme for Wireless Sensor Net-
works. In Proceedings of the 1st ACM International Workshop on Sensor Networks and Applications
(WSNA), Atlanta, GA, September 2002.

[587] B. Nath and D. Niculescu. Routing on a Curve. ACM SIGCOMM Computer Communication Review,
33(1): 155–160, 2003.

[588] National Semiconductors. LMX 3162 – Single Chip Radio Transceiver, 2000.
[589] J. C. Navas and T. Imielinski. GeoCast – Geographic Addressing and Routing. In Proceedings of the 3rd

ACM/IEEE International Conference on Mobile Computing (MobiCom), Budapest, Hungary, September
1997.

[590] R. Nelson and L. Kleinrock. The Spatial Capacity of a Slotted Aloha Multihop Packet Radio Network
with Capture. IEEE Transactions on Communications, 32(6): 684–694, 1984.

[591] S. Nesargi and R. Prakash. MANETconf: Configuration of Hosts in a Mobile Ad Hoc Network. In
Proceedings of IEEE INFOCOM 2002, pages 1587–1596, New York, June 2002.

[592] A. Neskovic, N. Neskovic, and G. Paunovic. Modern Approaches in Modeling of Mobile
Radio Systems Propagation Environment. IEEE Communications Surveys and Tutorials, 3(3), 2000.
http://www.comsoc.org/livepubs/surveys.

[593] J. Newsome and D. Song. GEM: Graph Embedding for Routing and Data-Centric Storage in Sensor
Networks Without Geographic Information. In Proceedings of the 1st ACM Conference on Embedded
Networked Sensor Systems (SenSys), pages 76–88, Los Angeles, CA, November 2003.

[594] G. T. Nguyen, R. H. Katz, B. Noble, and M. Satyanarayanan. A Trace-Based Approach for Model-
ing Wireless Channel Behavior. In Proceedings of the Winter Simulation Conference, Coronado, CA,
December 1996.

[595] S. Y. Ni, Y. C. Tseng, and J. P. Sheu. Efficient Broadcasting in a Mobile Ad Hoc Network. In Pro-
ceedings of the IEEE International Conference on Distributed Computing and Systems, pages 16–19,
Phoenix, AZ, April 2001.

Bibliography 465

[596] S.-Y. Ni, Y.-C. Tseng, Y.-S. Chen, and J.-P. Sheu. The Broadcast Storm Problem in a Mobile Ad
Hoc Network. In Proceedings of the Fifth Annual International Conference on Mobile Computing and
Networks (MobiCom 1999), Seattle, WA, 1999.

[597] D. Niculescu and B. Nath. Ad Hoc Positioning System (APS). In Proceedings of IEEE GlobeCom, San
Antonio, AZ, November 2001.

[598] D. Niculescu and B. Nath. Ad Hoc Positioning System (APS) Using AOA. In Proceedings of IEEE
INFOCOM, San Francisco, CA, March 2003.

[599] D. Niculescu and B. Nath. Localized Positioning in Ad Hoc Networks. In Proceedings of the 1st IEEE
International Workshop on Sensor Network Protocols and Applications (SNPA), Anchorage, AK, May
2003.

[600] D. Niculescu and B. Nath. Trajectory Based Forwarding and Its Applications. In Proceedings of 9th
International Conference on Mobile Computing and Networking (ACM MobiCom), San Diego, CA,
2003.

[601] R. Nowak and U. Mitra. Boundary Estimation in Sensor Networks: Theory and Methods. In Proceedings
of the 2nd Symposium on Information Processing in Sensor Networks (IPSN ’03), Palo Alto, CA, April
2003.

[602] R. Nowak, U. Mitra, and R. Willett. Estimating Inhomogeneous Fields Using Wireless Sensor Networks.
IEEE Journal on Selected Areas in Communications, 22(6): 999–1006, 2004.

[603] I. D. O’Donnel, M. S. W. Chen, S. B. T. Wand, and R. W. Brodersen. An Integrated, Low Power, Ultra-
Wideband Transceiver Architecture for Low-Rate, Indoor Wireless Systems. In IEEE CAS Workshop on
Wireless Communications and Networking, Pasadena, CA, September 2002.

[604] R. Ogier and N. Shacham. A Distributed Algorithm for Finding Shortest Pairs of Disjoint Paths. In
Proceedings of IEEE INFOCOM, Ottawa, Canada, 1989.

[605] A. Okabe, B. Boots, and K. Sugihara. Spatial Tessellations: Concepts and Applications of Voronoi Dia-
grams. Wiley, 1992.

[606] C. M. Okino and M. G. Corr. Statistically Accurate Sensor Networking. In Proceedings of IEEE Wireless
Communications and Networking Conference (WCNC), Orlando, FL, March 2002.

[607] C. A. S. Oliveira and P. M. Pardalos. A Survey of Combinatorial Optimization Problems in Multicast
Routing. To appear in Computers and Operations Research, 32(8): 1953–1981, 2004.

[608] A. Oram. Peer-to-Peer: Harnessing the Power of Disruptive Technologies. O’Reilly & Associates, 2001.
[609] J. O’Rourke. Art Gallery Theorems and Algorithms. Oxford University Press, New York, 1987.
[610] E. Pagani and G. P. Rossi. On the Reduction of Broadcast Redundancy in Mobile Ad Hoc Networks.

Mobile Networks and Applications, 4: 172–192, 1999.
[611] G. A. Paleologo, L. Benini, A. Bogliolo, and G. De Micheli. Policy Optimization for Dynamic Power

Management. IEEE Transcations on CAD, 18(6): 813–833, 1999.
[612] P. Papadimitratos, Z. Haas, and E. G. Sirer. Path-Set Selection in Mobile Ad Hoc Networks. In Proceed-

ings of the 3rd ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc),
Lausanne, Switzerland, 2002.

[613] I. Papadimitriou and L. Georgiadis. Minimum-Energy Broadcasting in Wireless Networks Using a Sin-
gle Broadcast Tree. In Proceedings the 2nd International Workshop on Modeling and Optimization in
MObile, Ad Hoc and Wireless Networks, pages 38–47, Cambridge, UK, March 2004.

[614] M. Papadopouli and H. Schulzrinne. Effects of Power Conservation, Wireless Coverage and Cooperation
on Data Dissemination Among Mobile Devices. In Proceedings of the 2nd ACM International Symposium
on Mobile Ad Hoc Networking and Computing (MobiHoc), Long Beach, CA, 2001.

[615] A. Papoulis and S. Unnikrishna Pillai. Probability, Random Variables, and Stochastic Processes.
McGraw-Hill, Boston, MA, fourth edition, 2002.

[616] A. K. Parekh. Selecting Routers in Ad-Hoc Wireless Networks. In Proceedings of the SBT/IEEE Inter-
national Telecommunications Symposium, Rio de Janeiro, Brazil, August 1994.

[617] S.-J. Park and R. Sivakumar. Poster: Sink-to-Sensors Reliability in Sensor Networks. In Proceedings
of the 4th ACM International Symposium on Mobile Ad Hoc Networking and Computing (MOBIHOC),
Annapolis, MD, June 2003.

[618] V. D. Park and M. S. Corson. A Highly Adaptive Distributed Routing Algorithm for Mobile Wireless
Networks. In Proceedings of INFOCOM, Kobe, Japan, April 1997.

466 Bibliography

[619] V. D. Park and M. S. Corson. A Highly Adaptive Distributed Routing algorithm for Mobile Wireless
Networks. In Proceedings of INFOCOM, pages 1405–1413, Kobe, Japan, April 1997.

[620] J. D. Parsons. The Mobile Radio Propagation Channel. Pentech Press, London, 1992.
[621] N. Passas, S. Paskalis, D. Vali, and L. Merakos. Quality-of-Service-Oriented Medium Access Control

for Wireless ATM Networks. IEEE Communications Magazine, 35(11): 42–50, 1997.
[622] M. Patel, N. Tanna, P. Patel, and R. Banerjee. TCP over Wireless Networks: Issues, Challenges and

Survey of Solutions. citeseer.ist.psu.edu/489782.html.
[623] S. Pattem, B. Krishnamachari, and R. Govindan. The Impact of Spatial Correlation on Routing with

Compression in Wireless Sensor Networks. In Proceedings of the 3nd International Workshop on Infor-
mation Processing in Sensor Networks (IPSN), Berkeley, CA, April 2004.

[624] N. Patwari and A. Hero. Using Proximity and Quantized RSS for Sensor Localization in Wireless
Networks. In Proceedings of the 2nd ACM International Workshop on Wireless Sensor Networks and
Applications (WSNA), San Diego, CA, September 2003.

[625] A. Paulraj. Diversity Techniques. In J. D. Gibson, editor, The Communications Handbook, pages
213–223. CRC Press/IEEE Press, Boca Raton, FL, 1996.

[626] M. Pearlman and Z. Haas. Improving the Performance of Query-Based Routing Protocols through
“Diversity-Injection”. In Proceedings of the 1st IEEE Wireless Communications and Networking Con-
ference (WCNC), New Orleans, LO, September 1999.

[627] M. R. Pearlman, Z. J. Haas, P. Scholander, and S. S. Tabrizi. On the Impact of Alternate Path Routing
for Load Balancing in Mobile Ad Hoc Networks. In IEEE/ACM Workshop on Mobile Ad Hoc Networking
and Computing (MobiHOC), Boston, MA, August 2000.

[628] G. Pei, M. Gerla, X. Hong, and C.-C. Chiang. A Wireless Hierarchical Routing Protocol with Group
Mobility. In Proceedings of the 1st IEEE Wireless Communications and Networking Conference (WCNC),
New Orleans, LO, September 1999.

[629] W. Peng and X.-C. Lu. On the Reduction of Broadcast Redundancy in Mobile Ad Hoc Networks.
In Proceedings of the 1st Annual Workshop on Mobile and Ad Hoc Networking and Computing, pages
129–130, Boston, MA, August 2000.

[630] M. D. Penrose. On k-Connectivity for a Geometric Random Graph. Wiley Random Structures and Algo-
rithms, 15(2): 145–164, 1999.

[631] M. Perillo and W. B. Heinzelman. Providing Application QoS through Intelligent Sensor Managment.
In Proceedings of the 1st IEEE International Workshop on Sensor Network Protocols and Applications
(SNPA’03), Anchorage, AK, May 2003.

[632] M. A. Perillo and W. B. Heinzelman. Sensor Management Policies to Provide Application QoS. Else-
vier AdHoc Networks Journal (Special Issue on Sensor Network Applications and Protocols), 1(2–3):
235–246, 2003.

[633] C. Perkins and P. Bhagwat. Highly Dynamic Destination-Sequenced Distance-Vector Routing (DSDV)
for Mobile Computers. In Proceedings of the ACM SIGCOMM, pages 234–244, London, UK, 1994.

[634] C. E. Perkins and E. M. Royer. Ad-Hoc On-Demand Distance Vector Routing. In Proceedings of the
2nd IEEE Workshop on Mobile Computing Systems and Applications, pages 90–100, New Orleans, LA,
February 1999.

[635] C. E. Perkins, editor. Ad Hoc Networking. Addison-Wesley, Upper Saddle River, NJ, 2001.
[636] C. E. Perkins, J. T. Malinen, R. Wakikawa, E. M. Belding-Royer, and Y. Sun. IP

Address Autoconfiguration for Ad Hoc Networks. Internet draft, IETF, November 2001.
draft-ietf-manet-autoconf-01.txt.

[637] A. Perrig, R. Szewczyk, J. D. Tygar, V. Wen, and D. E. Culler. SPINS: Security Protocols for Sensor
Networks. Wireless Networks, 8: 521–534, 2002.

[638] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. D. Tygar. SPINS: Security Protocols for Sensor Net-
works. In Proceedings of the 7th Annual International Conference on Mobile Computing and Networking
(ACM MobiCom), pages 189–199, Rome, Italy, July 2001.

[639] C. Petrioli, R. R. Rao, and J. Redi. Special Issue: Energy Conserving Protocols. ACM-Baltzer Mobile
Networks and Applications Journal, 6, 2001.

[640] D. Petrovic, R. C. Shah, K. Ramchandran, and J. Rabaey. Data Funneling: Routing with Aggregation
and Compression for Sensor Networks. In Proceedings of the 1st IEEE International Workshop on Sensor
Network Protocols and Applications (SNPA), Anchorage, AK, May 2003.

Bibliography 467

[641] P. P. Pham and S. Perreau. Performance Analysis of Reactive Shortest Path and Multi-path Routing
Mechanism With Load Balance. In Proceedings of IEEE INFOCOM, San Francisco, CA, March 2003.

[642] T. K. Philips, S. S. Panwar, and A. N. Tantawi. Connectivity Properties of a Packet Radio Network
Model. IEEE Transactions on Information Theory, 35(5): 1044–1047, 1989.

[643] Physikalisch Technische Bundesanstalt, Braunschweig/Berlin, Germany. Die gesetzlichen Einheiten in
Deutschland, 2002.

[644] J. R. Pimentel. Communication Networks for Manufacturing. Prentice-Hall, 1990.
[645] P. Piret. On the Connectivity of Radio Networks. IEEE Transactions on Information Theory, 37:

1490–1492, 1991.
[646] D. Porcino and W. Hirt. Ultra-Wideband Radio Technology: Potential and Challenges Ahead. IEEE

Communications Magazine, 41(7): 66–74, 2003.
[647] A.-S. Porret, T. Melly, C. C. Enz, and E. A. Vittoz. A Low-Power Low-Voltage Transceiver Architecture

Suitable for Wireless Distributed Sensors Network. In IEEE International Symposium on Circuits and
Systems (ISCAS), volume I, pages 56–58, Geneva, Switzerland, May 2000.

[648] G. J. Pottie and W. J. Kaiser. Embedding the Internet: Wireless Integrated Network Sensors. Commu-
nications of the ACM, 43(5): 51–58, 2000.

[649] J. Pouwelse, K. Langendoen, and H. Sips. Dynamic Voltage Scaling on a Low-Power Microprocessor.
Proceedings of the 7th Annual International Conference on Mobile Computing and Networking, pages
251–259, ACM Press, Rome, Italy, July 2001.

[650] B. Prabhakar, E. Biyikoglu, and A. E. Gamal. Energy-Efficient Transmission Over a Wireless Link Via
Lazy Packet Scheduling. In Proceedings of IEEE INFOCOM, pages 386–394, Anchorage, AK, April
2001.

[651] S. S. Pradhan and K. Ramchandran. Distributed Source Coding Using Syndromes (DISCUS): Design
and Construction. In Proceedings of IEEE Data Compression Conference (DCC), Snowbird, UT, 1999.

[652] S. S. Pradhan and K. Ramchandran. Distributed Source Coding: Symmetric Rates and Applications to
Sensor Networks. In Proceedings of the IEEE Data Compression Conference (DCC), Snowbird, UT,
2000.

[653] S. S. Pradhan, J. Kusuma, and K. Ramchandran. Distributed Compression in a Dense Microsensor
Network. IEEE Signal Processing Magazine, 19(2): 51–60, 2002.

[654] S. S. Pradhan and K. Ramchandran. Distributed Source Coding Using Syndromes (DISCUS): Design
and Construction. IEEE Transactions on Information Theory, 49(3): 626–643, 2003.

[655] L. Prasad, S. S. Iyengar, and R. L. Rao. Fault-Tolerant Sensor Integrtion using Multiresolution Decom-
position. Physical Review E, 49(4): 3452–3461, 1994.

[656] J. Prätorius. Discovery and Interaction with Services in a WSN via Standard User Interfaces. Diplomar-
beit, Fachgebiet Telekommunikationsnetze, Technische Universität Berlin, September 2004.

[657] R. C. Prim. Shortest Connection Networks and Some Generalizations. Bell System Technical Journal,
36: 1389–1401, 1957.

[658] N. B. Priyantha, H. Balakrishnan, E. Demaine, and S. Teller. Anchor-Free Distributed Localization in
Sensor Networks. In Proceedings of the 1st International Conference on Embedded Networked Sensor
Systems (SenSys), pages 340–341, Los Angeles, CA, November 2003. ACM.

[659] N. B. Priyantha, A. Chakraborty, and H. Balakrishnan. The Cricket Location-Support System. In Pro-
ceedings of the 6th International Conference on Mobile Computing and Networking (ACM Mobicom),
Boston, MA, 2000.

[660] J. G. Proakis. Channel Equalization. In J. D. Gibson, editor, The Communications Handbook, pages
339–363. CRC Press/IEEE Press, Boca Raton, FL, 1996.

[661] J. G. Proakis. Digital Communications. McGraw-Hill, Boston, MA, fourth edition, 2001. International
edition.

[662] B. Przysdatek, D. Song, and A. Perrig. SIA: Secure Information Aggregation in Sensor Networks. Pro-
ceedings of the 1st International Conference on Embedded Networked Sensor Systems (SenSys), pages
255–265. ACM Press, Los Angeles, CA, November 2003.

[663] H. Qi, S. S. Iyengar, and K. Chakrabarty. Multiresolution Data Integration using Mobile Agents in Dis-
tributed Sensor Networks. IEEE Transactions on Systems, Man and Cybernetics (Part C): Applications
and Reviews, 31(3): 383–391, 2001.

468 Bibliography

[664] H. Qi and F. Wang. Optimal Itineracy Analysis for Mobile Agents in Ad Hoc Wireless Sensor Networks.
In Proceedings of the International Conference on Wireless Communications, pages 147–153, San Diego,
CA, 2001.

[665] H. Qi, X. Wang, S. S. Iyengar, and K. Chakrabarty. Multisensor Data Fusion in Distributed Sensor
Networks using Mobile Agents. In Proceedings of the International Conference Information Fusion,
pages 11–16, Montreal, Canada, August 2001.

[666] H. Qi, Y. Xu, and X. Wang. Mobile-Agent-Based Collaborative Signal and Information Processing in
Sensor Networks. Proceedings of the IEEE, 91(8): 1172–1183, 2003.

[667] J. M. Rabaey, M. J. Ammer, J. L. da Silva, D. Patel, and S. Roundy. PicoRadio Supports Ad Hoc
Ultra-Low Power Wireless Networking. IEEE Computer, 33(7): 42–48, 2000.

[668] C. S. Raghavendra and S. Singh. PAMAS – Power Aware Multi-Access Protocol with Signalling for
Ad Hoc Networks. ACM Computer Communication Review, 27: 5–26, 1998.

[669] V. Raghunathan, P. Spanos, and M. Srivastava. Adaptive Power-Fidelity in Energy-Aware Wireless
Embedded Systems. In Proceedings of IEEE Real Time Systems Symposium (RTSS), London, UK, 2001.

[670] V. Raghunathan, C. Schurgers, S. Park, and M. B. Srivastava. Energy-Aware Wireless Microsensor
Networks. IEEE Signal Processing Magazine, 19: 40–50, 2002.

[671] R. Rajaraman. Topology Control and Routing in Ad Hoc Networks: A Survey. ACM SIGACT News,
33(2): 60–73, 2002.

[672] V. Rajendran, K. Obraczka, and J. J. Garcia-Luna-Aceves. Energy-Efficient, Collision-Free Medium
Access Control for Wireless Sensor Networks. In Proceedings of ACM SenSys 03, Los Angeles, CA,
November 2003.

[673] J. Raju and J. J. Garcia-Luna-Aceves. A Comparison of On-Demand and Table Driven Routing for
Ad-Hoc Wireless Networks. In Proceedings of ICC, New Orleans, LA, June 2000.

[674] V. Ramadurai and M. L. Sichitiu. Localization in Wireless Sensor Networks: A Probabilistic Approach.
In Proceedings of 2003 International Conference on Wireless Networks (ICWN 2003), pages 300–305,
Las Vegas, NV, June 2003.

[675] A. Ramakrishnan. 16-bit embedded Web server. In Proceedings of ISA/IEEE Sensors for Industry Con-
ference, pages 187–193, New Orleans, LO, 2004.

[676] C. V. Ramamoorthy, A. Bhide, and J. Srivastava. Reliable Clustering Techniques for Large, Mobile
Packet Radio Networks. In Proceedings of Infocom, pages 218–226, San Francisco, CA, 1987.

[677] P. Ramanathan, K. G. Shin, and R. W. Butler. Fault-Tolerant Clock Synchronization in Distributed
Systems. IEEE Computer, 23(10): 33–42, 1990.

[678] R. Ramanathan and R. Rosales-Hain. Topology Control of Multihop Wireless Networks using Transmit
Power Adjustment. In Proceedings of IEEE Infocom, pages 404–413, Tel-Aviv, Israel, March 2000.

[679] R. Ramanathan and M. Steenstrup. Hierarchically-Organized, Multihop Mobile Wireless Networks for
Quality-of-Service Support. ACM/Baltzer Mobile Networks & Applications (MONET), 3(1): 101–119,
1998.

[680] S. Ramanathan and M. Steenstrup. A Survey of Routing Techniques for Mobile Communications Net-
works. ACM/Baltzer Mobile Networks and Applications, 1: 89–104, 1996.

[681] A. Rao, S. Ratnasamy, C. Papadimitriou, S. Shenker, and I. Stoica. Geographic Routing without Loca-
tion Information. In Proceedings of the 9th ACM International Conference on Mobile Computing and
Networking (MobiCom), San Diego, CA, 2003.

[682] T. S. Rappaport. Wireless Communications – Principles and Practice. Prentice Hall, Upper Saddle River,
NJ, 2002.

[683] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker. Topologically-Aware Overlay Construction and
Server Selection. In Proceedings of IEEE Infocom, pages 1190–1199, New York, 2002.

[684] S. Ratnasamy, B. Karp, S. Shenker, D. Estrin, R. Govindan, L. Yin, and F. Yu. Data-Centric Storage in
Sensornets with GHT, A Geographic Hash Table. Mobile Networks and Applications (MONET), 8(4):
427–442, 2003. Special Issue on Wireless Sensor Networks.

[685] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and S. Shenker. GHT: A Geographic
Hash Table for Data-Centric Storage. Proceedings of the 1st ACM International Workshop on Wireless
Sensor Networks and Applications, pages 78–87. ACM Press, 2002.

Bibliography 469

[686] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A Scalable Content-Addressable
Network. In Proceedings of ACM SIGCOMM’2001 Conference, pages 161–172, San Diego, CA, August
2001.

[687] L. Rauchhaupt. System and Device Architecture of a Radio-Based Fieldbus – The RFieldbus System.
In Proceedings of the Fourth IEEE Workshop on Factory Communication Systems 2002 (WFCS 2002),
Vasteras, Sweden, 2002.

[688] J. M. Reason and J. M. Rabaey. A Study of Energy Consumption and Reliability in a Multi-Hop Sensor
Network. ACM Mobile Computing and Communications Review, 8(1): 84–97, 2004.

[689] J. Redi, C. Petrioli, and I. Chlamtac. An Asymmetric, Dynamic, Energy-conserving ARQ Protocol. In
Proceedings of the 49th Annual Vehicular Technology Conference, Houston, Texas, July 1999.

[690] R. F. Monolithics. TR1000 916.50 MHz Hybrid Transceiver, 2000.
[691] C. Röhl, H. Woesner, and A. Wolisz. A Short Look on Power Saving Mechanisms in the Wireless LAN

Standard IEEE 802.11. In J. M. Holtzmann and M. Zorzi, editors, Advances in Wireless Communications,
pages 219–226. Kluwer Academic Publishers, April 1998.

[692] N. Riga, I. Matta, and A. Bestavros. DIP: Density Inference Protocol for Wireless Sensor Networks and
its Application to Density-Unbiased Statistics. In Proceedings of the Second International Workshop on
Sensor and Actuator Network Protocols and Applications (SANPA ’04), Boston, MA, August 2004.

[693] J. Riihijärvi, P. Mähönen, M. J. Saaranen, J. Roivainen, and J.-P. Soininen. Providing Network Connec-
tivity for Small Appliances: a Functionally Minimized Embedded Web Server. IEEE Communications
Magazine, 39(10): 74–79, 2001.

[694] H. Ritter. ScatterWeb. Website http://www.scatterweb.de/, October 2004.
[695] K. Römer. Time Synchronization in Ad Hoc Networks. In Proceedings of the 2nd ACM International

Symposium on Mobile Ad Hoc Networking and Computing, (MobiHoc), Long Beach, CA, 2001.
[696] M. Robert. Discovery and Its Discontents: Discovery Protocols for Ubiquitous Computing, 2000. http:

//portal.acm.org/citation.cfm?id=871253.
[697] V. Rodoplu and T. H. Meng. Minimum Energy Mobile Wireless Networks. IEEE Journal of Selected

Areas on Communication, 17(8): 1333–1344, 1999.
[698] K. Römer. The Lighthouse Location System for Smart Dust. In Proceedings of ACM/USENIX Interna-

tional Conference on Mobile Systems, Applications, and Services (MobiSys), pages 15–30, San Francisco,
CA, May 2003.

[699] K. Römer, O. Kasten, and F. Mattern. Middleware Challenges for Wireless Sensor Networks. ACM
Mobile Communication and Communications Review, 6(2): 59–61, 2002.

[700] A. H. M. Ross and K. S. Gilhausen. CDMA Technology and the IS-95 North American Standard. In
J. D. Gibson, editor, The Communications Handbook, pages 199–212. CRC Press/IEEE Press, Boca
Raton, FL, 1996.

[701] S. Roundy. Energy Scavenging for Wireless Sensor Networks. Kluwer Academic Publishers, 2003.
[702] S. Roundy, B. Otis, Y.-H. Chee, J. Rabaey, and P. K. Wright. A 1.9 GHz Transmit Beacon using

Environmentally Scavenged Energy. In Proceedings of the IEEE International Symposium on Low Power
Electronics and Devices, Seoul, Korea, August 2003.

[703] S. Roundy, D. Steingart, L. Frechette, P. Wright, and J. Rabaey. Power Sources for Wireless Sensor
Networks. In H. Karl, A. Willig, and A. Wolisz, editors, Proceedings of 1st European Workshop on
Wireless Sensor Networks (EWSN), pages 1-17. LNCS, Springer, Berlin, Germany, volume 2920, January
2004..

[704] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and routing for large-scale
peer-to-peer systems. In IFIP/ACM International Conference on Distributed Systems Platforms (Middle-
ware), pages 329–350, Heidelberg, Germany, November 2001.

[705] E. M. Royer, P. M. Melliar-Smith, and L. E. Moser. An analysis of the optimum node density for ad
hoc mobile networks. In Proceedings of the IEEE Intlernational Conference on Communications (ICC),
Helsinki, Finland, June 2001.

[706] E. M. Royer and C. E. Perkins. Multicast Using Ad Hoc On-Demand Distance Vector Routing. In
Proceedings of MobiCom, pages 207–218, Seattle, WA, August 1999.

[707] E. M. Royer and C.-K. Toh. A Review of Current Routing Protocols for Ad-Hoc Mobile Wireless
Networks. IEEE Prersonal Communications, 6(2): 46–55, 1999.

470 Bibliography

[708] I. Rubin. Access-Control Disciplines for Multi-Access Communication Channels: Reservation and
TDMA Schemes. IEEE Transactions on Information Theory, 25(5): 516–536, 1979.

[709] I. Rubin. Multiple Access Methods for Communications Networks. In J. D. Gibson, editor, The Com-
munications Handbook, pages 622–649. CRC Press/IEEE Press, Boca Raton, FL, 1996.

[710] S. Rührup, C. Schindelhauer, K. Volbert, and M. Grünewald. Performance of Distributed Algorithms
for Topology Control in Wireless Networks. In Proceedings of the 17th International Parallel and
Distributed Processing Symposium, Nice, France, 2002.

[711] N. Sadagopan, B. Krishnamachari, and A.Helmy. The ACQUIRE Mechanism for Efficient Querying in
Sensor Networks. In Proceedings of the 1st IEEE International Workshop on Sensor Network Protocols
and Applications (SNPA), Anchorage, AK, May 2003.

[712] N. Sadagopan, B. Krishnamachari, and A. Helmy. Active Query Forwarding in Sensor Networks
(ACQUIRE), AdHoc Networks Journal, 3(1): 91–113, 2005.

[713] N. Sadagopan, B. Krishnamachari, and A. Helmy. Active Query Forwarding in Sensor Networks
(ACQUIRE). In Proceedings of the 1st IEEE International Workshop on Sensor Network Protocols
and Applications (SNPA), Anchorage, AK, May 2003.

[714] A. Safwat, H. Hassanein, and H. Mouftah. Power-Aware Fair Infrastructure Formation for Wireless
Mobile Ad hoc Communications. In Proceedings of IEEE GlobeCom, pages 2832–2836, San Antonio,
AZ, November 2001.

[715] A. Safwat, H. Hassanein, and H. Mouftah. A MAC-based Performance Study of Energy-Aware Routing
Schemes in Wireless Ad Hoc Networks. In Proceedings of IEEE Globecom, Taipeh, China, 2002.

[716] A. Safwat, H. Hassanein, and H. Mouftah. A Framework for Wireless Ad Hoc Networks with a Quasi-
Guaranteed Minimum System Lifetime. In Proceedings of the 8th IEEE Symposium on Computers and
Communications (ISCC), pages 349–355, Kemer, Turkey, July 2003.

[717] A. Safwat, H. Hassanein, and H. Mouftah. Q-GSL: A Framework for Energy-Conserving Wireless
Multi-Hop Ad hoc Networks. In Proceedings of the International Conference on Communications (ICC),
Anchorage, AK, May 2003.

[718] J. H. Saltzer. Naming and Binding of Objects. In R. Bayer, R. M. Graham, and G. Seegmüller, editors,
Operating System – An Advanced Course, Lecture Notes in Computer Science, pages 99–208. Springer,
1978.

[719] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-End Arguments in System Design. ACM Transactions
on Computer Systems, 2(4): 277–288, 1984.

[720] Y. Sankarasubramaniam, O. B. Akan, and I. F. Akyildiz. ESRT: Event-to-Sink Reliable Transport in
Wireless Sensor Networks. In Proceedings of the 4th ACM International Symposium on Mobile Ad Hoc
Networking and Computing (MobiHoc). ACM Press, Annapolis, MD, June 2003.

[721] Y. Sankarasubramaniam, I. F. Akyildiz, and S. W. McLaughlin. Energy Efficiency Based Packet Size
Optimization in Wireless Sensor Networks. In Proceedings of the 1st IEEE International Workshop on
Sensor Network Protocols and Applications (SNPA), Anchorage, AK, May 2003.

[722] P. Santi and D. M. Blough. The Critical Transmitting Range for Connectivity in Sparse Wireless Ad
Hoc Networks. IEEE Transactions on Mobile Computing, 2: 25–39, 2003.

[723] C. Savarese, J. M. Rabaey, and J. Beutel. Locationing in Distributed Ad-Hoc Wireless Sensor Networks.
In Proceedings of the International Conference on Acoustics, Speech and Signal Processing (ICASSP
2001), Salt Lake City, Utah, May 2001.

[724] C. Savarese, J. Rabay, and K. Langendoen. Robust Positioning Algorithms for Distributed Ad-Hoc
Wireless Sensor Networks. In Proceedings of the Annual USENIX Technical Conference, Monterey, CA,
2002.

[725] A. Savvides, C.-C. Han, and M. Srivastava. Dynamic Fine-Grained Localization in Ad-Hoc Networks of
Sensors. Proceedings of the 7th Annual International Conference on Mobile Computing and Networking,
pages 166–179. ACM press, Rome, Italy, July 2001.

[726] A. Savvides, H. Park, and M. B. Srivastava. The Bits and Flops of the N-Hop Multilateration Primitive
for node Localization Problems. In Proceedings of the 1st ACM International Workshop on Sensor
Networks and Applications (WSNA), Atlanta, GA, September 2002.

[727] A. Savvides, J. Fang, and D. Lymberopoulos. Using Mobile Sensing Nodes for Dynamic Boundary
Estimation. In Proceedings of the MobiSys 2004 Workshop on Applications of Mobile Embedded Systems
(WAMES’04), Boston, MA, June 2004.

Bibliography 471

[728] A. Scaglione and S. D. Servetto. On the Interdependence of Routing and Data Compression in Multi-
Hop Sensor Networks. ACM/Kluwer Journal on Mobile Networks and Applications (MONET), 2002,
http://portal.acm.org/citation.cfm?id=570663.

[729] G. Schäfer. Security in Fixed and Wireless Networks – An Introduction to Securing Data Communica-
tions. John Wiley & Sons, Chichester, UK, 2003.

[730] G. Schäfer. Sensor Network Security. In R. Zurawski, editor, The Industrial Communication Technology
Handbook. CRC Press, 2004.

[731] B. Schneier. Applied Cryptography: Protocols, Algorithms and Source Code in C. John Wiley & Sons,
second edition, 1996.

[732] D. Schonberg, S. S. Pradhan, and K. Ramchandran. Distributed Code Constructions for the Entire
Slepian-Wolf Rate Region for Arbitrarily Correlated Sources. In Proceedings of the 37th Asilomar
Conference on Signals, Systems, and Computers, Monterey, CA, November 2003.

[733] C. Schrugers, V. Tsiatsis, S. Ganeriwal, and M. Srivastava. Topology Management for Sensor Networks:
Exploiting Latency and Density. In Proceedings of the 3rd ACM International Symposium on Mobile Ad
Hoc Networking and Computing (MobiHoc), Lausanne, Switzerland, 2002.

[734] C. Schurgers, G. Kulkarni, and M. B. Srivastava. Distributed Assignment of Encoded MAC Addresses
in Sensor Networks. In Proceedings of the Symposium on Mobile Ad Hoc Networking & Computing
(MobiHoc’01), Long Beach, CA, October 2001.

[735] C. Schurgers, V. Raghunathan, and M. B. Srivastava. Power Management for Energy-Aware Commu-
nication Systems. Transactions on Embedded Computing Systems, 2(3): 431–447, 2003.

[736] C. Schurgers and M. B. Srivastava. Energy Efficient Routing in Wireless Sensor Networks. In Proceed-
ings of IEEE Military Communication Conference (MILCOM), October 2001.

[737] C. Schurgers, V. Tsiatsis, S. Ganeriwal, and M. B. Srivastava. Optimizing Sensor Networks in the
Energy-Latency-Density Design Space. IEEE Transactions on Mobile Computing, 1(1): 70–80, 2002.

[738] C. Schurgers, O. Aberthorne, and M. B. Srivastava. Modulation Scaling for Energy Aware Communi-
cation Systems. In Proceedings of the International Symposium on Low Power Electronics and Design
(ISLPED’01), pages 96–99, Huntington Beach, CA, August 2001.

[739] C. Schurgers, G. Kulkarni, and M. B. Srivastava. Distributed On-Demand Address Assignment in Wire-
less Sensor Networks. IEEE Transactions on Parallel and Distributed Systems, 13(10): 1056–1065,
2002.

[740] C. Schurgers, V. Raghunathan, and M. B. Srivastava. Modulation Scaling for Real-Time Energy
Aware Packet Scheduling. In Proceedings of Global Communications Conference (GlobeCom’01), pages
3653–3657, San Antonio, TX, November 2001.

[741] C. Schurgers, V. Raghunathan, and M. B. Srivastava. Power Management for Energy-Aware Commu-
nication Systems. ACM Transactions on Embedded Computing Systems, 2(3): 431–447, 2003.

[742] C. Schurgers, V. Tsiatsis, S. Ganeriwal, and M. Srivastava. Optimizing Sensor Networks in the Energy-
Latency-Density Design Space. IEEE Transactions on Mobile Computing, 1(1): 70–80, 2002.

[743] M. Schwartz. Telecommunication Networks – Protocols, Modeling and Analysis. Addison-Wesley, Read-
ing, MA, 1988.

[744] M. Schwartz. Mobile Wireless Communications. Cambridge University Press, Cambridge, GB, 2005.
[745] L. Schwiebert, S. K. S. Gupta, and J. Weinmann. Research Challenges in Wireless Networks of Biomed-

ical Sensors. In Proceedings of the 7th International Conference on Mobile Computing and Networking
(ACM Mobicom), pages 151–165, Rome, Italy, July 2001.

[746] K. Schwieger, H. Nuszkowski, and G. Fettweis. Analysis of Node Energy Consumption in Sensor
Networks. In Proceedings Wireless Sensor Networks, First European Workshop (EWSN 2004), Berlin,
Germany, January 2004.

[747] K. Scott and N. Bambos. Routing and Channel Assignment for Low Power Transmission in PCS. In Pro-
ceedings International Conference on Universal Personal Communications, pages 469–502, Cambridge,
MA, September 1996.

[748] K. Seada, A. Helmy, and R. Govindan. On the Effect of Localization Errors on Geographic Face Routing
in Sensor Networks. Proceedings of the 1st International Conference on Embedded Networked Sensor
Systems (SenSys), pages 312–313. ACM Press, Los Angeles, CA, November 2003.

[749] Sensor Modeling Language (SensorML), 2004, http://stromboli.nsstc.uah.edu/
SensorML/.

472 Bibliography

[750] S. D. Servetto and G. Barrenechea. Constrained Random Walks on Random Graphs: Routing Algorithms
for Large Scale Wireless Sensor Networks. In Proceedings of the 1st ACM International Workshop on
Sensor Networks and Applications (WSNA), Atlanta, GA, September 2002.

[751] M. Sgroi, A. Wolisz, A. Sangiovanni-Vincentelli, and J. M. Rabaey. A Service-Based Universal Appli-
cation Interface for Ad-Hoc Wireless Sensor Networks. White paper, private communication, November
2003.

[752] R. C. Shah and J. M. Rabaey. Energy Aware Routing for Low Energy Ad Hoc Sensor Networks.
In Proceedings of IEEE Wireless Communications and Networking Conference (WCNC), Orlando, FL,
March 2002.

[753] R. C. Shah, S. Roy, S. Jain, and W. Brunette. Data Mules: Modeling a Three-tier Architecture for Sparse
Sensor Networks. In Proceedings of the 1st IEEE International Workshop on Sensor Network Protocols
and Applications (SNPA), Anchorage, AK, May 2003.

[754] S. Shakkotai, R. Srikant, and N. B. Shroff. Unreliable Sensor Grids: Coverage, Connectivity and Diam-
eter. In Proceedings of IEEE INFOCOM 2003, San Francisco, CA, 2003.

[755] Y. Shang, W. Ruml, Y. Zhang, and M. Fromherz. Localization from Mere Connectivity. In Proceedings
of the 4th ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc),
Annapolis, MD, 2003.

[756] C. E. Shannon. A Mathematical Theory of Communication. Bell Systems Technical Journal, 27:
379–423, 623–656, July, October 1948.

[757] O. Sharon and E. Altman. An Efficient Polling MAC for Wireless LANs. IEEE/ACM Transactions on
Networking, 9(4): 439–451, 2001.

[758] C.-C. Shen, C. Srisathapornphat, and C. Jaikaeo. Sensor Information Networking Architecture and
Applications. IEEE Personal Communications, 8(4): 52–59, 2001.

[759] N. S. Shenck and J. A. Paradiso. Energy Scavenging with Shoe-Mounted Piezolectrics. IEEE Micro,
21: 30–41, 2001.

[760] S. Shenker, S. Ratnasamy, B. Karp, R. Govindan, and D. Estrin. Data-Centric Storage in Sensornets.
ACM SIGCOMM Computer Communication Review, 33(1): 137–142, 2003.

[761] E. Shih, B. H. Calhoun, S.-H. Cho, and A. P. Chandrakasan. Energy-Efficient Link Layer for Wireless
Microsensor Networks. In Proceedings of Workshop on VLSI 2001 (WVLSI ’01), Orlando, FL, April
2001.

[762] E. Shih, S.-H. Cho, N. Ickes, R. Min, A. Sinha, A. Wang, and A. Chandrakasan. Physical Layer Driven
Protocol and Algorithm Design for Energy-Efficient Wireless Sensor Networks. In Proceedings of the
Seventh Annual International Conference on Mobile Computing and Networking 2001 (MobiCom), pages
272–286, Rome, Italy, July 2001.

[763] Y. Shin and K. Choi. Power Concious Fixed Priority Scheduling for Hard Real-Time Systems. In
Proceedings of Design Automation Conference (DAC), pages 134–139, New Orleans, LA, June 1999.

[764] M. L. Sichitiu and C. Veerarittiphan. Simple, Accurate time Synchronization for Wireless Sensor Net-
works. In Proceedings of Wireless Communications and Networking 2003 (WCNC), pages 1266–1273,
New Orleans, Louisiana, March 2003.

[765] D. Sidhu, R. Nair, and S. Abdallah. Finding Disjoint Paths in Networks. In Proceedings of SIGCOMM,
Zürich, Germany, 1991.

[766] C. K. Siew and D. J. Goodman. Packet Data Transmission over Mobile Radio Channels. IEEE Trans-
actions on Vehicular Technology, 38(2): 95–101, 1989.

[767] T. Simunic, L. Benini, P. Glynn, and G. De Micheli. Dynamic Power Management for Portable Sys-
tems. In Proceedings of the 6th International Conference on Mobile Computing and Networking (ACM
Mobicom), pages 11–19, Boston, MA, 2000.

[768] S. Singh, M. Woo, and C. S. Raghavendra. Power-Aware Routing in Mobile Ad Hoc Networks. In
Proceedings of the 4th ACM/IEEE International Conference on Mobile Computing and Networking
(MOBICOM’98), Dallas, TX, October 1998.

[769] A. Sinha and A. Chandrakasan. Dynamic Power Management in Wireless Sensor Networks. IEEE
Design and Test of Computers, 18(2): 62–74, 2001.

[770] A. Sinha, A. Wang, and A. Chandrakasan. Algorithmic Transforms for Efficient Energy Scalable Com-
putation. In Proceedings of IEEE International Symposium on Low Power Electronics and Design, pages
31–36, Rapallo, Italy, July 2000.

Bibliography 473

[771] R. Sivakumar, B. Das, and V. Bharghavan. The Clade Vertebrata: Spines and Routing in Ad Hoc Net-
works. In Proceedings of IEEE Symposium on Computer Communications (ISCC), Athens, Greece, June
1998.

[772] B. Sklar. Digital Communications – Fundamentals and Applications. Prentice Hall, Englewood Cliffs,
NJ, 1988.

[773] B. Sklar. A Primer on Turbo Code Concepts. IEEE Communications Magazine, 35(12): 94–102, 1997.
[774] D. Slepian and J. K. Wolf. Noiseless Coding of Correlated Information Sources. IEEE Transactions on

Information Theory, 19(4): 471–480, 1973.
[775] S. Slijepcevic, S. Megerian, and M. Potkonjak. Location Errors in Wireless Embedded Sensor Networks:

Sources, Models, and Effect on Applications. ACM Mobile Computing and Communications Review,
6(3): 67–78, 2002.

[776] D. Snoonian. Smart Buildings. IEEE Spectrum, 40(8): 18–23, 2003.
[777] J. So and N. H. Vaidya. A Distributed Self-Stabilizing Time Synchronization Protocol for Multi-Hop

Wireless Networks. Technical report, Department of Electrical and Computer Engineering and Coordi-
nated Science Laboratory, University of Illinois at Urbana-Champaign, January 2004.

[778] K. Sohrabi, J. Gao, V. Ailawadhi, and G. J. Pottie. Protocols for Self-Organization of a Wireless Sensor
Network. IEEE Personal Communications, 7(5): 16–27, 2000.

[779] K. Sohrabi, B. Manriquez, and G. J. Pottie. Near Ground Wideband Channel Measurement in 800-1000
MHz. Proceedings of IEEE Vehicular Technology Conference (VTC) ’99. IEEE Press, 1999.

[780] K. Sohrabi and G. J. Pottie. Performance of a Novel Self-Organization Protocol for Wireless Ad-
Hoc Sensor Networks. In Proceedings of IEEE 50th Vehicular Technology Conference (VTC), pages
1222–1226, Fall 1999.

[781] V. Srinivasan, C. F. Chiasserini, P. Nuggehalli, and R. R. Rao. Optimal Rate Allocation and Traffic
Splits for Energy Efficient Routing in Ad Hoc Networks. In Proceedings of IEEE Infocom, New York,
2002.

[782] K. Sripanidkulchai, B. Maggs, and H. Zhang. Efficient Content Location Using Interest-Based Locality
in Peer-to-Peer Systems. In Proceedings of IEEE INFOCOM, San Francisco, CA, March 2003.

[783] M. Srivastava, R. Muntz, and M. Potkonjak. Smart Kindergarten: Sensor-based Wireless Networks for
Smart Developmental Problem-solving Environments (Challenge Paper). Proceedings of the 7th Annunal
International Conference on Mobile Computing and Networking, pages 132–138. ACM Press, Rome,
Italy, July 2001. . http://www.acm.org/pubs/articles/proceedings/comm/381677/
p132-srivastav%a/p132-srivastava.pdf.

[784] M. B. Srivastava, A. P. Chandrakasan, and R. W. Brodersen. Predictive System Shutdown and Other
Architectural Techniques for Energy Efficient Programmable Computation. IEEE Transactions on VLSI
Systems, 4(1): 42–55, 1996.

[785] W. Stallings. Cryptography and Network Security: Principles and Practice. Prentice-Hall, second edition,
1998.

[786] J. A. Stankovic, T. F. Abdelzaher, C. Lu, L. Sha, and J. C. Hou. Real-Time Communication and Coor-
dination in Embedded Sensor Networks. Proceedings of the IEEE, 91(7): 1002–1022, 2003.

[787] Fred Stann and John Heidemann. RMST: Reliable Data Transport in Sensor Networks. In Proceedings of
the 1st IEEE International Workshop on Sensor Network Protocols and Applications (SNPA), Anchorage,
Alaska, May 2003.

[788] D. C. Steere, A. Baptista, D. McNamee, C. Pu, and J. Walpole. Research Challenges in Environmental
Observation and Forecasting Systems. In Proceedings of the 6th International Conference on Mobile
Computing and Networking (ACM Mobicom), Boston, MA, 2000.

[789] M. Stemm and R. H. Katz. Measuring and Reducing Energy Consumption of Network Interfaces in
Hand-Held Devices. IEICE Transactions on Communications, Special Issue on Mobile Computing, E80-
B(8): 1125-1131, 1997.

[790] W. R. Stevens. TCP/IP Illustrated Volume 1 – The Protocols. Addison-Wesley, Boston, MA, 1995.
[791] W. R. Stevens. Unix Network Programming, Volume 1. Prentice Hall, Upper Saddle River, NJ, second

edition, 1998.
[792] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A Scalable Peer-to-peer

Lookup Service for Internet Applications. In Proceedings of ACM SIGCOMM, pages 149–160, San
Diego, CA, August 2001.

474 Bibliography

[793] I. Stojmenovic, editor. Handbook of Wireless Networks and Mobile Computing. Wiley, 2002.
[794] I. Stojmenovic and X. Lin. Loop-Free Hybrid Single-path/Flooding Routing Algorithms with Guaran-

teed Delivery for Wireless Networks. IEEE Transactions on Parallel and Distributed Systems, 12(10):
1023–1032, 2001.

[795] I. Stojmenovic, A. P. Rzhil, and D. K. Lobiyal. Voronoi Diagram and Convex Hull-Based Geocasting
and Routing in Wireless Networks. In Proceedings of the 6th IEEE Symposium on Computers and
Communications (ISCC), pages 51–56, Antalya, Turkey, July 2001.

[796] I. Stojmenovic, M. Seddigh, and J. Zunic. Dominating Sets and Neighbor Elimination-Based Broadcast-
ing Algorithms in Wireless Networks. IEEE Transactions on Parallel and Distributed Systems, 13(1):
14–25, 2002.

[797] J. Stone, M. Greenwald, C. Partridge, and J. Hughes. Performance of Checksums and CRC’s Over Real
Data. IEEE/ACM Transactions on Networking, 6(5): 529–543, 1998.

[798] L. Subramanian and R. H. Katz. An Architecture for Building Self-Configurable Systems. In IEEE/ACM
Workshop on Mobile Ad Hoc Networking and Computing (MobiHOC 2000), Boston, MA, August 2002.

[799] Y. Sun, E. M. Belding-Royer, and C. E. Perkins. Internet Connectivity for Ad Hoc Mobile Networks.
International Journal of Wireless Information Networks (special Issue on Mobile Ad hoc Networks), 9(2),
2002.

[800] K. Sundaresan, V. Anantharaman, H.-Y. Hsieh, and R. Sivakumar. ATP: A Reliable Transport Protocol
for Ad-hoc Networks. In Proceedings of the 4th ACM International Symposium on Mobile Ad Hoc
Networking and Computing (MobiHoc) 2003, Annapolis, MD, June 2003.

[801] A. Hu and S. D. Servetto. Algorithmic Aspects of the Time Synchronization Problem in Large-Scale
Sensor Networks. MONET - Mobile Networks and Applications, 2003. Invited paper.

[802] A. Hu and S. D. Servetto. Asymptotically Optimal Time Synchronization in Dense Sensor Networks. In
Proceedings of the Second ACM International Workshop on Wireless Sensor Networks and Applications
(WSNA’03), San Diego, CA, September 2003.

[803] R. Szewczyk, E. Osterweil, J. Polastre, M. Hamilton, A. Mainwaring, and D. Estrin. Habitat Monitoring
with Sensor Networks. Communication of the ACM, 47(6): 34–40, 2004.

[804] H. Takagi and L. Kleinrock. Optimal Transmission Ranges for Randomly Distributed Packet Radio
Networks. IEEE Transactions on Communications, COM-32: 246–257, 1984.

[805] H. Takagi. Analysis of Polling Systems. MIT Press, Cambridge, MA, 1986.
[806] H. Takahashi and A. Matsuyama. An Approximate Solution for Steiner Problem in Graphs. Mathematica

Japonica, 24(6): 573–577, 1980.
[807] A. S. Tanenbaum and A. S. Woodhull. Operating Systems: Design and Implementation. Prentice Hall,

second edition, 1997.
[808] A. S. Tanenbaum. Computer Networks. Prentice-Hall, Englewood Cliffs, NJ, third edition, 1997.
[809] C. Tang and C. S. Raghavendra. Correlation Analysis and Applications in Wireless Microsensor Net-

works. In Proceedings of the First Annual International Conference on Mobile and Ubiquitous Systems:
Networking and Services, 2004. MOBIQUITOUS 2004, pages 184–193, Boston, MA, August 2004.

[810] C. Tang, C. S. Raghavendra, and V. K. Prasanna. An Energy Efficient Adaptive Distributed Source
Coding Scheme in Wireless Sensor Networks. In Proceedings of the IEEE International Conference on
Communications (ICC’03), pages 732–737, Anchorage, Alaska, May 2003.

[811] K. Tang and M. Gerla. MAC Reliable Broadcast in Ad Hoc Networks. In Proceedings of the IEEE
Military Communications Conference, 2001 (MILCOM 2001), pages 1008–1013, October 2001.

[812] K. Tang, K. Obraczka, S.-J. Lee, and M. Gerla. Reliable Adaptive Lightweight Multicast Protocol. In
Proceedings of IEEE ICC 2003, Anchorage, AK, May 2003.

[813] Y. C. Tay, K. Jamieson, and H. Balakrishnan. Collision-Minimizing CSMA and Its Applications to
Wireless Sensor Networks. IEEE Journal on Selected Areas in Communications, 22(6): 1048–1057,
2004.

[814] MSP430x1xx Family User’s Guide. Texas Instruments product documentation. 2004.
[815] The Editors of IEEE 802.11. IEEE Standard for Wireless LAN Medium Access Control (MAC) and

Physical Layer (PHY) specifications, November 1997.
[816] D. Tian and N. D. Georganas. A Coverage-Preserving Node Scheduling Scheme for Large Wireless

Sensor Networks. In Proceedings of the First ACM International Workshop on Wireless Sensor Networks
and Applications (WSNA), pages 32–41, Atlanta, GA, September 2002.

Bibliography 475

[817] D. Tian and N. D. Georganas. Energy Efficient Routing with Guaranteed Delivery in Wireless Sensor
Networks. Proceedings of IEEE Wireless Communications and Networking Conference 2003 (WCNC’03).
Institute of Electrical and Electronics Engineers, IEEE Press, New Orleans, LA, March 2003.

[818] S. Tilak, A. Murphy, and W. Heinzelman. Non-uniform Information Dissemination for Sensor Net-
works. In Proceedings of IEEE International Conference on Network Protocols (ICNP), Atlanta, GA,
November 2003.

[819] S. Tilak, N. B. Abu-Ghazaleh, and W. Heinzelman. Infrastructure Tradeoffs for Sensor Networks. In
Proceedings of the 1st ACM International Workshop on Sensor Networks and Applications (WSNA),
Atlanta, GA, September 2002.

[820] TinyOS Web Project. http://webs.cs.berkeley.edu/tos/, February 2004. (date of access).
[821] TinyOS On-line Tutorial. http://webs.cs.berkeley.edu/tos/tinyos-1.x/doc/

tutorial/index.html, February 2004. (date of access).
[822] Tiny OS Hardware Designs. http://webs.cs.berkeley.edu/tos/hardware/hardware.

html, January 2003. Date of access.
[823] F. A. Tobagi and L. Kleinrock. Packet Switching in Radio Channels: Part II The Hidden Terminal Prob-

lem in CSMA and Busy-Tone Solutions. IEEE Transactions on Communications, 23(12): 1417–1433,
1975.

[824] F. A. Tobagi and L. Kleinrock. Packet Switching in Radio Channels: Part III – Polling and (Dynamic)
Split-Channel Reservation Multiple Access. IEEE Transactions on Communications, 24(8): 832–845,
1976.

[825] C.-K. Toh. A Novel Distributed Routing Protocol to Support Ad Hoc Mobile Computing. In Proceedings
of IEEE 15th Annual International Conference on Computers and Communications, pages 460–486,
1996.

[826] C. K. Toh. Maximum Battery Life Routing to Support Ubiquitous Mobile Computing in Wireless Ad
Hoc Networks. IEEE Communications Magazine, 39: 138–147, 2001.

[827] C.-K. Toh. Ad Hoc Mobile Wireless Networks. Prentice Hall PTR, Upper Saddle River, NJ, 2002.
[828] S. Toner and D. O’Mahony. Self-Organising Node Address Management in Ad-hoc Networks. In Lecture

Notes in Computer Science 2775, pages 476–483. Springer, Berlin, Germany, 2003.
[829] L. Tong, Q. Zhao, and S. Adireddy. Sensor Networks with Mobile Agents. In Proceedings of IEEE

Military Communication Conference, Boston, MA, October 2003.
[830] G. Toussaint. The Relative Neighborhood Graph of a Finite Planar Set. Pattern Recognition, 12:

261–268, 1980.
[831] Y. Tseng, Y. Chang, and B. Tzeng. Energy-Efficient Topology Control for Wireless Ad Hoc Sensor

Networks. In Proceedings of the International Conference Parallel and Distributed Systems (ICPADS),
Chung-Li, 2002.

[832] Y.-C. Tseng, C.-S. Hsu, and T.-Y. Hsieh. Power-Saving Protocols for IEEE 802.11-Based Multi-Hop
Ad Hoc Networks. Proceedings of INFOCOM 2002. IEEE Press, New York, June 2002. .

[833] Y.-C. Tseng, S.-Y. Ni, Y.-S. Chen, and J.-P. Sheu. The Broadcast Storm Problem in a Mobile Ad Hoc
Network. Wireless Networks, 8: 153–167, 2002.

[834] W. Turin. Digital Transmission Systems – Performance Analysis and Modeling. McGraw-Hill Telecom-
munications. McGraw-Hill, New York, 1998.

[835] E. Uysal-Biyikoglu, B. Prabhakar, and A. E. Gamal. Energy-Efficient Packet Transmission Over a
Wireless Link. IEEE/ACM Transactions on Networking, 10(4): 487–499, 2002.

[836] N. H. Vaidya. Weak Duplicate Address Detection in Mobile Ad Hoc Networks. In Proceedings of
ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), Lausanne,
Switzerland, June 2002.

[837] A. Valera, W. K. G. Seah, and SV. Rao. Cooperative Packet Caching and Shortest Multipath Routing
in Mobile Ad hoc Networks. In Proceedings of IEEE INFOCOM, San Francisco, CA, March 2003.

[838] T. v. Dam and K. Langendoen. An Adaptive Energy-Efficient MAC Protocol for Wireless Sensor
Networks. Proceedings of the 1st International Conference on Embedded Networked Sensor Systems
(SenSys), pages 171–180. ACM Press, Los Angeles, CA, November 2003.

[839] J. v. Greunen and J. Rabaey. Lightweight Time Synchronization for Sensor Networks. In Proceedings
of the 2nd ACM International Workshop on Wireless Sensor Networks and Applications (WSNA), San
Diego, CA, September 2003.

476 Bibliography

[840] G. Veltri, Q. Huang, G. Qu, and M. Potkonjak. Minimal and Maximal Exposure Path Algorithms for
Wireless Embedded Sensor Networks. In Proceedings of ACM SenSys 03, Los Angeles, CA, November
2003.

[841] P. Verissimo, L. Rodrigues, and A. Casimiro. CESIUMSPRAY: A Precise and Accurate Global Time
Service for Large-scale Systems. Journal of Real-Time Systems, 12(3): 243–254, 1997.

[842] D. C. Verma. Legitimate Peer to Peer Network Applications: Beyond File and Music Swapping. Wiley,
2004.

[843] J. R. Vig. Introduction to Quartz Frequency Standards. Technical Report SLCET-TR-92-1 (Rev. 1),
Army Research Laboratory, October 1992.

[844] A. J. Viterbi. Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding Algo-
rithm. IEEE Transactions on Information Theory, 13(2): 260–269, 1967.

[845] A. J. Viterbi. Convolutional Codes and Their Performance in Communication Systems. IEEE Transac-
tions on Communication Technology, 19(5): 751–772, 1971.

[846] M. Waldvogel and R. Rinaldi. Efficient Topology-Aware Overlay Network. ACM SIGCOMM Computer
Communication Review, 33(1): 101–106, 2003.

[847] B. Walke, P. Seidenberg, and M. P. Althoff. UMTS – The Fundamentals. John Wiley & Sons, Chich-
ester, UK, 2003.

[848] B. Walke. Mobile Radio Networks – Networking, Protocols and Traffic Performance. John Wiley &
Sons, Chichester, UK, 2002.

[849] C.-Y. Wan, A. T. Campbell, and L. Krishnamurthy. PSFQ: A Reliable Transport Protocol for Wireless
Sensor Networks. In Proceedings of the First ACM International Workshop on Wireless Sensor Networks
and Applications (WSNA’02), Atlanta, GA, 2002.

[850] C.-Y. Wan, S. B. Eisenman, and A. T. Campbell. CODA: Congestion Detection and Avoidance in
Sensor Networks. In Proceedings of the First ACM Conference on Embedded Networked Sensor Systems
(SenSys 2003), pages 266–279, Los Angeles, CA, November 2003.

[851] P. Wan, K. Alzoubi, and O. Frieder. Distributed Construction of Connected Dominating Set in Wireless
Ad hoc Networks. In Proceedings of IEEE INFOCOM, New York, June 2002.

[852] P. Wan, G. Caliuescu, X. Li, and O. Frieder. Minimum-Energy Broadcast Routing in Static Ad Hoc
Wireless Networks. In Proceedings of IEEE Infocom, Anchorage, AK, April 2001.

[853] P. Wan, G. Caliuescu, X. Li, and O. Frieder. Minimum-Energy Broadcast Routing in Static Ad Hoc
Wireless Networks. Wireless Networks, 8(6): 607–617, 2002.

[854] A. Wang, W. R. Heinzelman, A. Sinha, and A. P. Chandrakasan. Energy-Scalable Protocols for Battery-
Operated MicroSensor Networks. Journals of VLSI Signal Processing, 29: 223–237, 2001.

[855] A. Wang, S.-H. Cho, C. G. Sodini, and A. P. Chandrakasan. Energy-Efficient Modulation and MAC
for Asymmetric Microsensor Systems. In Proceedings of ISLPED 2001, Huntington Beach, CA, August
2001.

[856] H. Wang, L. Yip, D. Maniezzo, J. C. Chen, R. E. Hudson, J. Elson, and K. Yao. A Wireless Time-
Synchronized COTS Sensor Platform: Applications to Beamforming. In Proceedings of IEEE CAS
Workshop on Wireless Communications and Networking, Pasadena, CA, September 2002.

[857] H. Wang, L. Yip, K. Yao, and D. Estrin. Lower Bounds of Localization Uncertainty in Sensor Networks.
In Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASP),
Montreal, Canada, May 2004.

[858] H.S. Wang and N. Moayeri. Finite State Markov Channel – A Useful Model for Radio Communication
Channels. IEEE Transactions on Vehicular Technology, 44(1): 163–171, 1995.

[859] X. Wang, G. Xing, Y. Zhang, C. Lu, R. Pless, and C. Gill. Integrated Coverage and Connectivity Con-
figuration in Wireless Sensor Networks. Proceedings of the 1st International Conference on Embedded
Networked Sensor Systems (SenSys), pages 28–39. ACM Press, Los Angeles, CA, November 2003.

[860] X. Wang and M. T. Orchard. On Reducing the Rate of Retransmission in Time-Varying Channels. IEEE
Transactions on Communications, 51(6): 900–910, 2003.

[861] Y. Wang, X.-Y. Li, P.-J. Wan, and P. Frieder. Sparse Power Efficient Topology for Wireless Net-
works. Journals of Parallel and Distributed Computing, 2002, http://csdl.computer.org/
comp/proceedings/hicss/2002/1435/09/14305296babs.htm.

Bibliography 477

[862] Z. Wang, Y. q. Song, E.-M. Poggi, and Y. Sun. Survey of Weakly-Hard Real Time Schedule Theory and
Its Application. In Proceedings of International Symposium on Distributed Computing and Applications
to Business. Engineering and Science (DCABES), Wuxi, Jiangsu, China, 2002.

[863] R. Want, A. Hopper, V. Falão, and J. Gibbons. The Active Badge Location System. ACM Transactions
on Information Systems, 10(1): 91–102, 1992.

[864] A. Ward, A. Jones, and A. Hopper. A New Location Technique for the Active Office. IEEE Personal
Communications, 4(5): 42–47, 1997.

[865] R. Wattenhofer, L. Li, P. Bahl, and Y.-M. Wang. Distributed Topology Control for Power Efficient
Operation in Multihop Wireless Ad Hoc Networks. In Proceedings of IEEE Infocom, Anchorage, AK,
April 2001.

[866] M. Weisenhorn and W. Hirt. Novel Rate-Division Multiple-Access Scheme for UWB-Radio-Based
Sensor Networks. In Proceedings of the 2004 International Zurich Seminar on Communications, pages
76–81, Zurich, Switzerland, February 2004.

[867] M. Weiser. The Computer for the 21st Century. Scientific American, 43(3): 66–75, 1991.
[868] M. Weiser. Hot topic: Ubiquitous Computing. IEEE Computer, pages 71–72, October 1993.
[869] M. Weiser, B. Welch, A. Demers, and B. Shenker. Scheduling for Reduced CPU Energy. In Proceedings

of USENIX Symposium on Operating Systems Desing and Implementation, pages 13–23, Monterey, CA,
November 1994.

[870] K. Weniger. Passive Duplicate Address Detection in Mobile Ad Hoc Networks. In Proceedings of IEEE
WCNC 2003, New Orleans, LA, March 2003.

[871] K. Weniger and M. Zitterbart. IPv6 Autoconfiguration in Large Scale Mobile Ad-Hoc Networks. In
Proceedings of European Wireless, Florence, Italy, February 2002.

[872] D. D. Wentzloff, B. H. Calhoun, R. Min, A. Wang, N. Ickes, and A. P. Chandrakasan. Design Con-
siderations for Next Generation Wireless Power-Aware Microsensor Nodes. In Proceedings of the 17th
International Conference on VLSI Design, pages 361–367, Mumbai, India, January 2004.

[873] K. Whitehouse and D. Culler. Calibration as Parameter Estimation in Sensor Networks. In Proceedints
of the 1st ACM International Workshop on Sensor Networks and Applications (WSNA), Atlanta, GA,
September 2002.

[874] J. E. Wieselthier, G. D. Nguyen, and A. Ephremides. On the Construction of Energy-Efficient Broadcast
and Multicast Trees in Wireless Networks. In Proceedings of IEEE Infocom, Tel-Aviv, Israel, March
2000.

[875] J. E. Wieselthier, G. D. Nguyen, and A. Ephremides. Resource Management in Energy-Limited,
Bandwidth-Limited, Transceiver-Limited Wireless Networks for Session-Based Multicasting. Computer
Networks, 39: 113–131, 2002.

[876] B. Williams and T. Camp. Comparison of Broadcasting Techniques for Mobile Ad Hoc Networks.
Proceedings of the 3rd ACM International Symposium on Mobile Ad Hoc Networking and Computing
(MobiHoc), pages 194–205. ACM Press, 2002.

[877] A. Willig, R. Shah, J. Rabaey, and A. Wolisz. Altruists in the PicoRadio Sensor Network. In Proceed-
ings of the 4th IEEE International Workshop on Factory Communication Systems, Vasteras, Sweden,
August 2002.

[878] A. Willig. Polling-Based MAC Protocols for Improving Realtime Performance in a Wireless PROFIBUS.
IEEE Transactions on Industrial Electronics, 50(4): 806 –817, 2003.

[879] A. Willig. Intermediate Checksums for Improving Goodput over Error-Prone Links. In Proceedings of
the IEEE Vehicular Technology Conference (VTC), Fall 04, Los Angeles, CA, September 2004.

[880] A. Willig. Some Simple Upper Bounds on the Throughput of IEEE 802.15.4 with 2.4 GHz. In Contri-
bution to the 3rd ESA Wireless Workgroup and Optical Onboard S/C Workshop, Noordwijk, Netherlands,
September 2004.

[881] A. Willig. Wireless LAN Technology for the Factory Floor: Challenges and Approaches. In R. Zurawski,
editor, Handbook on Industrial Communication Systems. CRC Press, 2004.

[882] A. Willig, M. Kubisch, C. Hoene, and A. Wolisz. Measurements of a Wireless Link in an Industrial Envi-
ronment Using an IEEE 802.11-Compliant Physical Layer. IEEE Transactions on Industrial Electronics,
49(6): 1265–1282, 2002.

[883] A. Willig and A. Wolisz. Ring Stability of the PROFIBUS Token Passing Protocol Over Error Prone
Links. IEEE Transactions on Industrial Electronics, 48(5): 1025–1033, 2001.

478 Bibliography

[884] M. Z. Win and R. A. Scholtz. Impulse Radio: How it Works. IEEE Communication Letters, 2: 10–12,
1998.

[885] M. Z. Win and R. A. Scholtz. Ultra-Wide Bandwidth Time-Hopping Spread-Spectrum Impulse Radio for
Wireless Multiple-Access Communications. IEEE Transactions on Communications, 48(4): 679–691,
2000.

[886] H. Woesner, J.-P. Ebert, M. Schlaeger, and A. Wolisz. Power-Saving Mechanisms in Emerging Standards
for Wireless LAN’s: The MAC-Level Perspective. IEEE Personal Communications, 5(3): 40–48, 1998.

[887] A. Woo, S. Madden, and R. Govindan. Networking Support for Query Processing in Sensor Networks.
Communications of the ACM, 47(6): 47–52, 2004.

[888] A. Woo and D. Culler. A Transmission Control Scheme for Media Access in Sensor Networks. In
Proceedings of the Seventh Annual International Conference on Mobile Computing and Networking
2001 (MobiCom), Rome, Italy, July 2001.

[889] A. Woo and D. Culler. Evaluation of Efficient Link Reliability Estimators for Low-Power Wireless
Networks. Technical Report UCB/CSD 03-1270, University of California, Berkeley, 2002.

[890] A. Woo, T. Tong, and D. Culler. Taming the Underlying Challenges of Reliable Multihop Routing in
Sensor Networks. In Proceedings of the ACM SenSys 03, Los Angeles, CA, November 2003.

[891] A. D. Wood and J. A. Stankovic. Denial of Service in Sensor Networks. IEEE Computer, 35(10): 54–62,
2002.

[892] M. Woolridge. Introduction to MultiAgent Systems. Wiley, 2002.

[893] G. R. Wright and W. R. Stevens. TCP/IP Illustrated Volume 2 – the Implementation. Addison-Wesley,
Reading, MA, 1995.

[894] J. Wu and H. Li. On Calculating Connected Dominating Set for Efficient Routing in Ad Hoc Wireless
Networks. In Proceedings of the 4th International Workshop on Discrete Algorithms and Methods for
Mobile Computing and Communications, Boston, MA, August 11, 2000.

[895] S.-L. Wu, Y.-C. Tseng, and J.-P. Sheu. Intelligent Medium Access for Mobiel Ad Hoc Networks with
Busy Tones and Power Control. IEEE Journal on Selected Areas in Communications, 18(9): 1647–1657,
2000.

[896] S. Wu and C. Bonnet. A Reliable Multicasting Protocol for Ad Hoc Networks. In Proceedings of the
World Wireless Congress (WWC2004), San Francisco, CA, 2004.

[897] Y. Wu, P. A. Chou, and S.-Y. Kung. Network Planning in Wireless Ad Hoc Networks: A Cross-layer
Approach. IEEE Journal on Selected Areas in Communications (JSAC), January 2005.

[898] A. D. Wyner. Recent Results in the Shanon Theory. IEEE Transactions on Information Theory, IT-20(1):
2–10, 1974.

[899] A. D. Wyner and J. Ziv. The Rate-Distortion Function for Source Coding with Side Information at the
Decoder. IEEE Transactions on Information Theory, IT-22: 1–10, 1976.

[900] A. D. Wyner. On Source Coding with Side Information at the Decoder. IEEE Transactions on Informa-
tion Theory, IT-21: 294–300, 1975.

[901] Z. Xiong, A. Liveris, and S. Cheng. Distributed Source Coding for Sensor Networks. IEEE Signal
Processing Magazine (Special Issue on Signal Processing for Networks), 21: 80–94.

[902] Y. Xu, S. Bien, Y. Mori, J. Heidemann, and D. Estrin. Topology Control Protocols to Conserve Energy
in Wireless Ad Hoc Networks. Technical Report CENS Technical Report 0006, University of California
at Los Angeles, CENS, January 2003.

[903] Y. Xu, J. Heidemann, and D. Estrin. Geography-Informed Energy Conservation for Ad Hoc Routing. In
Proceedings of the 7th Annual International Conference on Mobile Computing and Networking (Mobi-
Com), pages 70–84, Rome, Italy, July 2001. ACM.

[904] F. Xue and P. R. Kumar. The Number of Neighbors Needed for Connectivity of Wireless Networks.
Wireless Networks, 10(2): 169–181, 2004.

[905] A. Yao. On Constructing Minimum Spanning Trees in k-Dimensional Spaces and Related Problems.
SIAM Journal on Computing, 11(4): 721–736, 1982.

[906] F. Yao, A. Demers, and S. Shenker. A Scheduling Model for Reduced CPU Energy. In Proceedings of
the 36th Annual Symposium on Foundations of Computer Science (FOCS), pages 374–385, Milwaukee,
WI, October 1995.

Bibliography 479

[907] K. Yao, R. E. Hudson, C. W. Reed, D. Chen, and F. Lorenzelli. Blind Beamforming on a Randomly Dis-
tributed Sensor Array System. IEEE Journal on Selected Areas in Communications, 16(8): 1555–1567,
1998.

[908] Y. Yao and J. Gehrke. The COUGAR Approach to In-Network Query Processing in Sensor Networks.
ACM SIGMOD Record, 31(3): 9–18, 2002.

[909] Y. Yao and J. Gehrke. Query Processing for Sensor Networks. In First Biennial Conference on Innovative
Data Systems Research(CIDR 2003), Asilomar, January 2003.

[910] F. Ye, A. Chen, S. Lu, and L. Zhang. A Scalable Solution to Minimum Cost Forwarding in Large Scale
Sensor Networks. In Proceedings of the International Conference on Computer Communications and
Networks (ICCCN), Scottsdale, AZ, 2001.

[911] F. Ye, H. Luo, J. Cheng, S. Lu, and L. Zhang. A Two-Tier Data Dissemination Model for Large-Scale
Wireless Sensor Networks. Proceedings of the 8th ACM Annual International Conference on Mobile
Computing and Networking (MobiCom), pages 148–159. ACM Press, 2002.

[912] F. Ye, G. Zhong, S. Lu, and L. Zhang. A Robust Data Delivery Protocol for Large Scale Sensor Net-
works. In Proceedings of the 2nd International Workshop on Information Processing in Sensor Networks
(IPSN), Palo Alto, CA, April 2003.

[913] F. Ye, G. Zhong, S. Lu, and L. Zhang. PEAS: A Robust Energy Conserving Protocol for Long-lived
Sensor Networks. In Proceedings of the 23rd International Conference on Distributed Computing Systems
(IEEE ICDCS), Providence, RI, 2003.

[914] W. Ye, J. Heidemann, and D. Estrin. An Energy-Efficient MAC Protocol for Wireless Sensor Networks.
Proceedings of INFOCOM 2002. IEEE Press, New York, June 2002.

[915] W. Ye, J. Heidemann, and D. Estrin. Medium Access Control with Coordinated, Adaptive Sleeping for
Wireless Sensor Networks. IEEE/ACM Transactions on Networking, 2004. http://portal.acm.
org/citation.cfm?id=1008463.1008471.

[916] H. Y. Youn, C. Yu, and B. Lee. The Handbook of Ad Hoc Wireless Networks, chapter Routing Algorithms
for Balanced Energy Consumption in Ad Hoc Networks, pages 25-1–25-14. CRC Press, 2003.

[917] H. Y. Youn, C. Yu, B. Lee, and S. Moh. The Handbook of Ad Hoc Wireless Networks, chapter Energy
Efficient Multicast in Ad Hoc Networks, pages 23-1–23-12. CRC Press, 2003.

[918] O. Younis and S. Fahmy. Distributed Clustering in Ad-hoc Sensor Networks: A Hybrid, Energy-Efficient
Approach. In Proceedings of IEEE INFOCOM, Hong Kong, March 2004.

[919] Y. Yu, R. Govindan, and D. Estrin. Geographical and Energy Aware Routing: A Recursive Data Dissem-
ination Protocol for Wireless Sensor Networks. Technical Report UCLA/CSD-TR-01-0023, University
of California at Los Angeles, May 2001.

[920] W. Yuan, S. Krishnamurthy, and S. K. Tripathi. Synchronization of Multiple Levels of Data Fusion in
Wireless Sensor Networks. In Proceedings of IEEE Globecom, San Francisco, CA, December 2003.

[921] H. Zhang and A. Arora. GS3: Scalable Self-Configuration and Self-Healing in Wireless Networks. In
Proceedings of the 21st Annual Symposium on Principles of Distributed Computing, Monterey, CA,
2002.

[922] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: A Fault-Tolerant Wide-Area Application
Infrastructure. ACM SIGCOMM Computer Communication Review, 32(1): 81–81, 2002.

[923] F. Zhao, J. Shin, and J. Reich. Information-Driven Dynamic Sensor Collaboration for Tracking Appli-
cations. IEEE Signal Processing Magazine, 19(2): 61–72, 2002.

[924] F. Zhao and L. Guibas. Wireless Sensor Networks – An Information Processing Approach.
Elsevier/Morgan-Kaufman, Amsterdam, NY, 2004.

[925] F. Zhao, J. Liu, J. Liu, L. Guibas, and J. Reich. Collaborative Signal and Information Processing: An
Information Directed Approach. Proceedings of the IEEE, 91(8): 1199–1209, 2003.

[926] F. Zhao, J. Shin, and J. Reich. Information-Driven Dynamic Sensor Collaboration. IEEE Signal Pro-
cessing Magazine, 19(2): 61–72, 2002.

[927] J. Zhao, R. Govindan, and D. Estrin. Computing Aggregates for Monitoring Wireless Sensor Networks.
In Proceedings of the 1st IEEE International Workshop on Sensor Network Protocols and Applications
(SNPA), Anchorage, AK, May 2003.

[928] Q. Zhao and M. Effros. Optimal Code Design for Lossless and Near Lossless Source Coding in Multiple
Access Networks. In Proceedings of IEEE Data Compression Conference (DCC), Snowbird, UT, March
2001.

480 Bibliography

[929] J. Zheng and M. J. Lee. Will IEEE 802.15.4 Make Ubiquitous Networking a Reality?: A Discussion
on a Potential Low Power, Low Bit Rate Standard. IEEE Communications Magazine, 42(6): 140–146,
2004.

[930] L. C. Zhong, J. Rabaey, C. Guo, and R. Shah. Data Link Layer Design for Wireless Sensor Networks.
In Proceedings of IEEE MILCOM 2001, Washington, DC, October 2001.

[931] L. C. Zhong, R. C. Shah, C. Guo, and J. M. Rabaey. An Ultra-Low Power and Distributed Access
Protocol for Broadband Wireless Sensor Networks. In IEEE Broadband Wireless Summit, Las Vegas,
NV, May 2001.

[932] L. C. Zhong, J. M. Rabaey, and A. Wolisz. An Integrated Data-Link Energy Model for Wireless Sensor
Networks. In IEEE International Conference on Communications (ICC), Paris, France, June 2004.

[933] C. Zhou and B. Krishnamachari. Localized Topology Generation Mechanisms for Self-Configuring Sen-
sor Networks. In Proceedings of IEEE Globecom, San Francisco, CA, December 2003.

[934] G. Zhou, T. He, S. Krishnamurthy, and J. Stankovic. Impact of Radio Asymmetry on Wireless Sensor
Networks. In Proceedings of ACM/USENIX International Conference on Mobile Systems, Applications,
and Services (MobiSys), Boston, MA, June 2004.

[935] H. Zhou and S. Singh. Content-based Multicast CBM for Ad hoc Networks. In Proceedings of the 1st
ACM International Symposium on Mobile Ad Hoc Networking and Computing (MOBIHOC), Boston,
MA, June 2000.

[936] H. Zhou, L. M. Ni, and M. W. Mutka. Prophet Address Allocation for Large Scale MANETs. In
Proceedings of IEEE INFOCOM, San Francisco, CA, March 2003.

[937] S. Zhu, S. Setia, and S. Jajodia. LEAP: Efficient Security Mechanisms for Large-Scale Distributed Sensor
Networks. In Proceedings of the 10th ACM Conference on Computer and Communication Security,
CCS’03, pages 62–72, Washington, DC, 2003.

[938] R. E. Ziemer and W. H. Tranter. Principles of Communications. Wiley, 2002.
[939] R. Ziemer, M. Wickert, and T. Williams. A comparison between UWB and DSSS for use in a multiple

access secure wireless sensor network. In Proceedings of the 2003 IEEE Conference on Ultra Wideband
Systems and Technologies, pages 428 – 432, Reston, VA, November 2003.

[940] M. Zorzi and R. R. Rao. Geographic Random Forwarding (GeRaF) foR Ad Hoc and Sensor Networks:
Energy and Latency Performance. IEEE Transactions on Mobile Computing, 2: 337–347, 2003.

[941] M. Zorzi and R. R. Rao. Geographic Random Forwarding (GeRaF) for Ad Hoc and Sensor Networks:
Multihop Performance. IEEE Transactions on Mobile Computing, 2: 349–364, 2003.

[942] M. Zorzi and R. R. Rao. Error Control and Energy Consumption in Communications for Nomadic
Computing. IEEE Transactions on Computers, 46(3): 279–289, 1997.

[943] M. Zorzi and R. R. Rao. Coding Tradeoffs for Reduced Energy Consumption in Sensor Networks. In
Proceedings of PIMRC 04, Barcelona, Spain, 2004.

[944] Y. Zou and K. Charkrabarty. Sensor Deployment and Target Localization Based on Virtual Forces. In
Proceedings of IEEE INFOCOM, San Francisco, CA, March 2003.

[945] Y. Zou and K. Chakrabarty. Sensor Deployment and Target Localization in Distributed Sensor Net-
works. ACM Transaction on Embedded Computing Systems, 2003, http://portal.acm.org/
citation.cfm?id=972627.972631. accepted for publication.

[946] M. Zuniga and B. Krishnamachari. Integrating Future Large Scale Sensor Networks with the Internet.
Technical Report CS 03-792, University of Southern California, Department Computer Science, 2003.

[947] M. Zuniga and B. Krishnamachari. Optimal Transmission Radius for Flooding in Large Scale Sen-
sor Networks. In Proceedings of Workshop on Mobile and Wireless Networks (MWN), May 2003. In
conjunction with 23rd IEEE International Conference on Distributed Computing Systems (ICDCS).

[948] G. Zussman and Adrian Segall. Energy Efficient Routing Ad Hoc Disaster Recovery Networks. In
Proceedings of IEEE INFOCOM, San Francisco, CA, March 2003.

Index

k-connectivity, 258
k-coverage, 364, 370
k-perimeter-covered, 370
m-ary modulation, 88, 104–105

A priori, 76, 184, 205, 309, 427
ABR, see Associativity-based routing
Access delay, 112, 209, 214, 219
Accountability, 422
Accuracy, 3, 6, 10, 45, 49, 65, 70–72, 76–77,

203–206, 212, 217, 232, 236, 240–248,
322–324, 327, 342, 348–349, 352, 355,
422, 426, 430

Ack implosion, 388–389
Acknowledgment, 116–117, 153, 156, 346,

424
ACPI, see Advanced configuration and power

interface
ACQUIRE, see Active query forwarding in

sensor networks
Active badge, 240–241
Active link, 252
Active node, 146, 252, 274, 375
Active office, 240–241
Active query forwarding in sensor networks,

336
Activity, 11, 63, 73, 286, 320, 424
Actuator, 2, 32, 60
Ad hoc network design algorithm, 285
Ad hoc on-demand distance vector, 265,

291
Adaptive self-configuring sensor networks

topologies, 287
ADC, see Analog/Digital converter

Additive white gaussian noise, 94–99,
103–105, 109

Address-centric networking, 9–10
Addressing, 71, 80, 128, 181–183, 286, 332,

398, 425
address allocation, 175, 182–184, 193
address representation, 182–183, 189, 193,

199
content-based, 181, 186, 194–195, 198–199
data-centric, 71, 194, 333
distributed assignment, 183, 187–189
geographic, 194, 198
location-based, 71
MAC address, 122, 128, 182–191, 198
random assignment, 187–188
uniqueness, 182–184, 190, 289

Adjacent-channel interference, 94
Admission control, 299, 403
Advanced configuration and power interface,

37
Advertisement, 197, 301, 314, 335, 424
Agent-based networking, 69
Aggregation, 9, 44, 68–71, 74, 77, 134, 197,

274, 280, 335, 341–357, 377, 398,
413–414, 422, 431

coding by ordering, 353
function, 68, 76, 341–348, 353–355

AIDA, see Application-independent data
aggregation

ALOHA, 22, 116, 119, 129, 133, 257
Alternating bit protocol, 154–156, 163, 173
Altruist, 303
Ambient intelligence, 1–3
Amplitude shift keying, 22, 29–30, 89

Protocols and Architectures for Wireless Sensor Networks. Holger Karl and Andreas Willig
Copyright 2005 John Wiley & Sons, Ltd. ISBN: 0-470-09510-5

482 Index

Analog/Digital converter, 25
Anchor, 232–236, 241–249
ANDA, see Ad hoc network design algorithm
Angle of arrival, 202, 243
Angulation, 234, 237, 248
Antenna

directed, 91
efficiency, 41, 87, 108
gain, 93
omnidirectional, 91
radiated power, 23, 29–31, 40, 87, 93,

102–105
AODV, see Ad hoc on-demand distance vector
API, see Application programming interface
APIT, see Approximate point in triangle
Application, 1–7, 11–13, 20, 61, 71, 114, 140,

362, 425
classification, 50, 426
data-centric, 71
disaster relief, 3–4, 10
edge detection, 6, 60, 65, 429–432
environment control, 4
event classification, 6, 64
event detection, 6, 60, 63–64, 70, 231,

339
function approximation, 6, 60, 65, 70
periodic measurement, 6, 60, 68, 416
target tracking, 69, 350–351
tracking, 6, 12, 63–65, 70, 414, 425–428

Application programming interface, 47, 77
Application-independent data aggregation, 355
Application-specific integrated circuit, 20
Approximate point in triangle, 242
Approximation, 43, 50, 65, 70, 187, 256–258,

272–273, 285, 298–299, 307–309, 312,
324, 342, 416, 432–433

factor, 270–272, 307
quality, 8, 433

Architecture, 10–13, 17–19, 25, 40–44,
47–48, 59–60, 140, 328

ARQ, see Automatic repeat request, 48, 103,
151–154, 163

ack implosion, 388–389
alternating bit, 154–156, 163, 173
checksum, 103, 153, 174, 398
feedback, 152–154, 158, 166, 403, 407
fragmentation and reassembly, 170–172
Goback N, 154–158
hybrid schemes, 163, 167
implicit acknowledgment, 379

instantaneous feedback with selective
repeat, 157

intermediate checksums, 165, 172–174
negative acknowledgment, 153, 379, 389
packet combining, 165
packet formatting, 153
piggyback ack, 154–156
positive acknowledgment, 153, 379
postponing, 157
probing protocol, 158
recovery server, 389
retransmissions, 103, 149, 152–154, 157,

165, 172, 379
selective repeat, 153–158
semireliable, 155–157
sequence number, 153–154, 174, 178, 290,

390, 425
timer, 153–154, 382
windowed feedback with selective repeat,

156
Art gallery problem, 376
ASCENT, see Adaptive self-configuring sensor

networks topologies
ASIC, see Application-specific integrated

circuit, 19–20
ASK, see Amplitude shift keying, 22, 29–30,

89
Associativity-based routing, 291
Asymptotic stable throughput, 132
Atmel ATmega, 21, 38, 54
Attack, 422–425
Attenuation, 23, 61, 88, 91–94, 108, 151,

235–236, 297
Attribute value operation, 195–196
Auto-configuration, 9
Autocorrelation, 435
Automatic repeat request, 48
Availability, 285, 418, 422
AVO, see Attribute value operation
AWGN, see Additive white Gaussian noise

Backbone, 252–253, 266, 270–276, 279, 282,
285–287

Backoff algorithm, 116, 131
Baseband processor, 24, 31
Battery, 19, 32–34, 73, 119, 272, 296

capacity, 3, 33–36, 146, 159, 273, 295,
298–299, 303

BCH, see Bose–Chaudhuri–Hocquenghem
BCH codes, 159–161

Index 483

Beaconed mode, 140–141, 220
Belief, 350–351, 416
BER, see Bit error rate
Best-case coverage, 365, 372
Binary exponential backoff, 116, 131
Binary phase shift keying, 30, 89–90, 95, 98
Binary symmetric channel, 97, 150, 155–157,

161–163, 168–173, 380, 383,
394

Binding, 183, 194, 198
BIP, see Broadcast incremental power
Bit errors, 90, 95, 152
Bit-error rate, 23, 88, 95, 101–105, 155, 161,

381
Bit/symbol synchronization, 101
Black hole, 424
Block coding, 416
Block coding FEC, 159–161
Block delivery, 377–378, 389, 395
Bluetooth, 44, 54–55, 87, 99, 114, 145, 280
Boolean sensing model, 363, 366–369,

374–375
Boundary, 6, 25, 275, 293, 363, 415, 429,

432–434
BPSK, see Binary Phase Shift Keying, 30,

89–90, 95, 98
Broadcast, 112, 115, 153, 190, 262, 270–274,

284, 291–293, 303–316, 326–328, 336,
340, 347–348, 388, 414–416,
420–422

broadcast incremental power, 308–315
cooperative multihop, 316
tree, 307, 310–313

BSC, see Binary symmetric channel
Busy-tone solution, 116, 131

CADR, see Constrained anisotropic diffusion
routing

CAMP, see Core-assisted mesh protocol
CAP, see Contention access period
Capacity, 11–13, 86, 103, 109, 272, 287, 315,

420–422
Carrier frequency, 21–24, 86
Carrier sense, 23
Carrier sense multiple access, 22, 113, 116,

119, 129–131, 134, 138, 142, 145–147,
394, 399

Carrier synchronization, 100–101
Carrier to interference ratio, 166
CCK, see Complementary code keying

CDMA, see Code division multiple access
CDMA codes, 99, 115

CDMA codes, 99, 115
CDS, see Connected dominating set
Central processing unit, 19
CGSR, see Clusterhead gateway switch routing
Challenges, 7, 10, 201, 361
Channel, 22–23, 30, 42, 85–86, 96–97, 102,

287
adjacent channel, 23

Channel coding, 419
Channel estimation

active estimator, 178
passive estimator, 178

Checksum, 103, 153, 174, 398
checksum field, 153
header checksum, 152, 172

Chip sequence, 31, 98
CIR, see Carrier to interference ratio
Class, 196
Clear to send, 117–120, 125, 424
Client/server, 77
Clock adjustment, 203, 227
Clock correction block, 206
Clock skew, 204
Clock-update discipline, 205–207
Cluster, 124, 133–134, 223, 368, 374, 407,

431–432
Clusterhead, 133–135, 194, 253, 274,

277–286, 351, 355, 378, 415, 425, 431,
434

Clusterhead gateway switch routing, 291
Clustering, 223, 274–288, 340, 355,

422
distributed gateway, 276
multihop cluster, 276, 281–282
multilayer, 283
multilevel, 348
passive, 284, 340

CLUSTERPOW, 286
CMMBCR, see Conditional max–min battery

capacity routing
Co-channel interference, 94
CODA, see Congestion detection and

avoidance, 402, 408–409
backpressure message, 408–409
closed-loop regulation, 408–409
open-loop hop-by-hop backpressure, 408

Code, 42, 189, 418–421
Code division multiple access, 99, 115, 128,

135, 265, 354

484 Index

Code rate, 41, 159–161, 166
Codebook, 189–193, 420
Codeword, 159, 189–194
Coexistence, 87, 114
Coherence bandwidth, 92, 97
Collaboration, 2, 6, 9–10, 187
Collaborative signal and information

processing, 414
Collision, 112–120, 127–129, 188, 192, 241,

252, 317, 321, 375, 400
Collision avoidance, 119, 143
Command, 51, 74, 77, 292
Competitive ratio, 296, 299, 310
Complementary code keying, 104
Complexity, 40, 48, 66, 75, 78, 189, 256, 274,

282–284, 306, 309, 315, 415, 429
Complexity penalized estimator, 431
Component, 48–52, 74–75, 255, 258, 263,

270, 290, 431
Composable, 68, 344, 347–348
COMPOW, 263–264, 286
Compression, 69, 76, 398, 414–416, 422, 433
Concurrent programming, 45
Conditional max–min battery capacity routing,

297
Confidence, 246, 348–349, 415

interval, 415–416
Confidentiality, 422
Configuration, 51, 206
Congestion, 22
Congestion control, 361, 399–400, 408–411

bandwidth allocation, 411
CODA, 402, 408–409
detection, 402, 408
packet dropping, 403
rate control, 361, 400, 403

Congestion detection and avoidance, 402,
408–409

Connected dominating set, 272–273
Connectivity, 375
Consensus, 189, 199, 348
Constrained anisotropic diffusion routing,

351–352
Constraint length, 42, 160–161
Content, 72, 194, 197, 333–334, 339–341,

344–345
content-based networking, 331–334

Contention window, 116
Contour, 429–433
Controlled access, 422
Controller, 18–19, 36–38, 240

Convergecast, 282, 334–337, 340, 345–349,
352–354

Convolutional coding FEC, 160–161, 167
Coordinated universal time (UTC), 202–204,

207, 216
Coordinator, 140–145, 187, 272
Core-assisted mesh protocol, 314
Correlation, 12, 69, 249, 334, 345, 353,

414–422, 433–435
Coset, 419
Cost, 13, 18, 24, 27, 32, 231, 236, 290,

298–311, 320, 340, 346–347, 352,
356

energy, 41, 298, 303, 309, 340, 351–352,
385

COUGAR, 343
Covariance, 348–351
Coverage, 32, 66, 78, 241, 251, 255, 285, 288,

293, 296, 347
k-perimeter-covered, 370
critical intensity, 368
determination, 369
measures, 364–369
perimeter-covered, 370

Coverage measures
k-coverage, 364, 370
area coverage, 364–368, 374–375
best-case coverage, 365, 372
detectability, 364–368, 374
detection reliability, 360
exposure, 365
full area coverage, 364, 375–376
maximal support path, 365
maximum breach path, 364, 372
node coverage, 364–368, 374–375
sensor field intensity, 364–365, 368–369
worst-case coverage, 364, 371–372

CPM, see Code position modulation
CPU, see Central processing unit
CRC, see Cyclic redundancy check
Cricket, 241
Critical intensity, 368
Cross-layer, 13, 48, 74, 265, 359, 421
Cryptographic algorithms, 422–423
CSD, see Cumulative sensing degree
CSIP, see Collaborative signal and information

processing
CSMA, see Carrier sense multiple access, 22,

113, 116, 119, 124, 128–131, 134, 138,
142, 145–147, 394, 399

collision avoidance, 119, 143

Index 485

collision detection, 113–114
contention window, 116
nonpersistent CSMA, 116–117, 130,

146
persistent CSMA, 116

CTS, see Clear to send
Cumulative sensing degree, 273
Cycled receiver, 121, 129

listen period, 121–123, 126,
129

Cyclic redundancy check, 48

DAC, see Digital/Analog converter
DAD, see Duplicate address detection
DAG, see Directed acyclic graph
DAML, see DARPA agent markup language
DARPA agent markup language, 78
Data

advertisement, 197, 301, 335
cache, 338
collection, 282, 328–329, 345, 354–355,

414–415
dissemination, 314–315, 335–337, 341,

355, 424
distribution, 292, 335–337, 414, 421
funneling, 353
integrity, 422
named data, 72, 194, 197, 333–337
rate, 11, 21–22, 27–30, 73, 88, 103–104,

265, 338, 415–416, 420
sink, 6, 279–280, 284, 301–302, 305, 328,

332, 341, 353–354
source, 6, 71, 302, 310, 332, 389–390
storage, 357

Data-centric
addressing, 71, 194, 333
application, 71
networking, 10–12, 70–72, 80–81, 181,

186, 292, 305, 323, 331–336,
339–341, 350–352

interactions, 332
storage, 335, 355–357

Data-centric networking
directed diffusion, 194–197, 337–341, 345,

395–396, 424–426
information-driven routing, 350–352

pull diffusion, 340
push diffusion, 339–340

Data-centric storage, 355
Data link layer, 112, 149–153

Database, 53, 72–73, 77, 274, 292, 327,
342–343, 357

execution plan, 343
DBPSK, see Differential binary phase shift

keying
DC–DC conversion, 34
DCF, see Distributed coordination function,

116, 146
DCS, see Data-centric storage, see Dynamic

code scaling
Decoder, 42, 152, 162, 166, 170, 417–420

energy consumption, 42, 160, 167
Decoupling, 71, 332
Delaunay triangulation, 260, 324, 372
Delay spread, 92, 97–98
Delivery probability, 155, 378–379, 385, 389
Demand assignment protocols, 115, 119

central control protocols, 115
token-passing protocols, 115

Demodulation, 22, 85, 88, 100
Denial-of-service, 423
Density, 243, 251, 255, 258, 265, 274, 430,

435
probability density, 213, 235, 247, 348, 417

Dependability, 12
Deployment, 7–8, 12–13, 66, 185, 189, 248,

252, 273, 362, 369, 374–376
redundant, 8, 12–13, 66, 252, 273

Destination-sequenced distance vector, 291
Desynchronization, 425
Detectability, 364–368, 374
Detection, 4, 8, 32, 183, 242, 425–426

coherent, 95, 100
noncoherent, 95, 101

Detection reliability, 360
DHCP, see Dynamic host configuration

protocol
DHT, see Distributed hash table
Diffraction, 90–91, 151
Digital signal processor, 19–20
Digital/Analog converter, 25
Direct sequence spread spectrum, 28–31, 99,

109
Directed acyclic graph, 325
Directed antennas, 315
Directed diffusion, 194–197, 337–341, 345,

395–396, 424–426
pull diffusion, 340
push diffusion, 339–340

Directionality, 362

486 Index

DISCUS, see Distributed source coding using
syndromes

Disk graph model, 255–257
Distance routing effect algorithm for mobility,

317, 327
Distributed coordination function, 116, 146
Distributed hash tables, 71, 356
Distributed mobility-adaptive clustering, 128
Distributed multihop LTS, 211–212
Distributed signal processing, 414
Distributed source coding using syndromes,

419–420
Distributed system, 3, 203
Diversity, 102, 108, 377

explicit, 102
implicit, 102
receive, 102, 108

DLL, see Data link layer
DMAC, see Distributed mobility-adaptive

clustering
DMCS, see Dynamic modulation-code scaling
DMS, see Dynamic modulation scaling
Dominating set, 252–253, 266–276, 281–286,

304
Doppler fading, 90–91
DPM, see Dynamic power management
DQPSK, see Differential quaternary phase shift

keying
DREAM, see Distance routing effect algorithm

for mobility
Drift, 30
Drift rate, 203–205, 210, 221, 227
DSDV, see Destination-sequenced distance

vector
DSP, see Digital signal processor
DSR, see Dynamic source routing
DSSS, see Direct sequence spread spectrum,

28–31, 98–99, 109
DSWare, 77
Duplicate address detection, 184, 189
Duty cycle, 40, 57, 87, 120–121, 126, 424
DV-distance, 246
DV-hop, 246, 322
DVS, see Dynamic voltage scaling
Dynamic code scaling, 43
Dynamic hierarchies, 67
Dynamic host configuration protocol, 185
Dynamic modulation-code scaling, 43
Dynamic modulation scaling, 43, 108
Dynamic power management, 37, 48
Dynamic source routing, 291, 424

Dynamic synchronization, 126
Dynamic voltage scaling, 38–39, 42–45, 49

Edge effect, 258
EEPROM, see Electrically erasable

programmable read-only memory
EHF, see Extremely high frequency
Electrically erasable programmable read-only

memory, 21
Elephant, 63, 71–72, 122, 426
Embedded systems, 2, 19
Emergent algorithm, 281
Enclosures, 261
Encoder, 162, 417–420
Energy

consumption, 9, 19–20, 36–44, 49, 61, 65,
85, 103–107, 112, 119–120, 150,
155, 161, 173, 201, 236, 295,
303–305, 349, 354, 389, 399,
415–416

cost, 41, 298, 303, 309, 340, 351–352, 385
efficiency, 2–3, 9, 13, 22, 37, 44–45, 61,

65, 69, 81, 109–111, 119, 158,
161–163, 168, 173, 262, 274, 280,
285–287, 291, 295–296, 300–303,
310, 313, 340, 345, 352

scavenging, 13, 32–36, 291, 294
supply, 7, 34, 285, 296

Entropy, 187–191, 350, 417
EnviroTrack, 78
Equalization, 102, 152
Error control, 96, 112, 149–151, 163, 167, 173

ARQ, 48, 103, 151–154, 163
bit errors, 90, 95, 152
bit-error rate, 23, 88, 95, 101–105, 155,

161, 381
concealment, 166
FEC, 41, 103, 158–163, 167, 173–174,

377
hybrid FEC/ARQ schemes, 163, 167
packet loss, 152, 175–177, 360, 376
redundancy, 103, 149, 158, 384

Error recovery, 377, 389
ESRT, see Event-to-sink reliable transport

Decision period, 404
Estimation theory, 350, 421
Ethernet, 24, 182–185
Event, 114

asynchronous notification, 76
complex, 76–77

Index 487

handler, 46–47, 50
predicate, 429–430

Event-to-sink reliability, 403
Event-to-sink reliable transport, 402–406
Exposed-terminal problem, 113, 117

busy-tone solution, 116, 131
RTS/CTS handshake, 117–119, 124, 131,

146–147, 395
Exposure, 261, 365
Expressiveness, 72, 197
Extremely high frequency, 86

Failover, 303
Failure rate, 346, 426
Fast fading, 92, 151, 157, 170, 235
Fast Fourier transform, 69, 414–415
Fault tolerance, 8, 12, 205, 211, 227, 273, 364
FDMA, see Frequency division multiple

access, 22, 115, 128, 139
FEC, see Forward error correction, 41, 103,

158–163, 167, 173–174, 377
BCH codes, 159–161
block coding, 159–161
code rate, 41, 159–161, 166
constraint length, 42, 160–161
convolutional coding, 160–161, 167
hamming bound, 159
hamming distance, 159
hybrid schemes, 163, 167
interleaver, 162
interleaving, 103, 162–163
multihop FEC, 163
Reed–Solomon codes, 159–160

Feedback, 152–154, 158, 166, 403, 407
FFD, see Full function device
FFT, see Fast Fourier transform
FHSS, see Frequency hopping spread

spectrum, 99–100, 145
Fidelity, 49, 70, 81, 286, 419
Field-programmable gate array, 20, 31, 398
Field sampling, 432
Fieldbus, 3, 12–13
FIFO, see First in first out
Figure of merit, 3, 8, 66, 299, 303, 354
Filter, 22, 25, 72, 197, 333–334, 343, 349
Final acknowledgment, 172
First in first out, 50
Fixed assignment protocols, 114
Flat fading, 92, 109
Flat networks, 253, 256

Flooding, 72, 194, 245, 282–284, 290–291,
307, 334–340, 355, 388–389

controlled, 290
restricted, 318, 323

Flow control, 112, 150, 304, 360–361, 377
Forward error correction, 41–42, 48, 303
Forwarding, 289–294, 298, 301–307,

313–336, 340–341, 385, 421–425
content-based, 333–334
cooperative, 316
receiver-initiated, 320
zone, 323–324, 329

FPGA, see Field-programmable gate array
Fragmentation and reassembly, 170–172
Frame, 22, 50, 100–101, 152, 424
Frame synchronization, 101, 152
Framing, 29, 101, 150–152, 167–169, 174

frame header, 172–174
packet size, 169–173
start frame delimiter, 101–102, 152

Frequency allocation, 86–87
Frequency band, 24–25, 86–87, 94, 114
Frequency division multiple access, 22, 115,

128, 139
Frequency hopping spread spectrum, 99–100,

145
Frequency shift keying, 22, 30–31, 90,

105–106
Frequency synchronization, 100–101, 114,

117, 122
Friis free-space equation, 93
Frisbee model, 63
FSK, see Frequency shift keying, 22, 30–31,

90, 105–106
Full function device, 140

Gabriel graph, 260, 319, 326
GAF, see Geographic adaptive fidelity
Game theory, 355
GAMER, see Geocast Adaptive mesh

environment for routing
Gateway, 60, 78–81, 275–276, 283–284, 378,

398
Distributed, 276

GEAR, see Geographic and energy aware
routing

GEM, see Graph embedding
General sensing model, 363, 368, 426
Geocast adaptive mesh environment for

routing, 325

488 Index

Geographic adaptive fidelity, 286–287, 321
Geographic and energy aware routing, 327, 339
Geographic hash table, 356–357
GeRaF, 320–321
GHT, see Geographic hash table
Gilbert–Elliot model, 97
Global positioning system, 203–207, 231, 248,

428
GOAFR, see Greedy and (other adaptive) face

routing
Goback N, 154–158
GPS, see Global positioning system
GPSR, see Greedy perimeter stateless routing
GRAB, see Gradient broadcast
Gradient, 337–338, 341, 352

Cache, 337
Gradient broadcast, 340
Graph embedding, 321–322, 357
Greedy and (other adaptive) face routing, 320
Greedy perimeter stateless routing, 318–320,

352, 356
Group dispersion, 220–221
Growth budgets, 282
GTS, see Guaranteed time slot
Guaranteed delivery, 378, 395
Gur game, 406, 411

Hölder-α regular, 434
Haar estimator, 434
Half-duplex mode, 114
Hamming bound, 159
Hamming distance, 159, 418–419
Handoff, 427
Hardware clock, 203

oscillator, 25, 100, 203–204
Header checksum, 152, 172
HELLO, 190, 193
Heterogeneity, 57, 274, 283, 422
HHB, see Hop-by-hop broadcast
HHBA, see Hop-by-hop broadcast with

acknowledgments
HHR, see Hop-by-hop reliability
HHRA, see Hop-by-hop reliability with

acknowledgments
Hidden Markov model, 97
Hidden-terminal problem, 113, 116, 119, 124,

129, 133
busy-tone solution, 116, 131
RTS/CTS handshake, 117–119, 124, 131,

146–147, 395

Hierarchical networks, 253, 266, 274
Hierarchy, 67, 266, 274–276, 283, 347–348,

354
Hierarchy referencing time synchronization,

223–228
HMM, see Hidden Markov model
Homing, 425
Hop-by-hop broadcast, 385–388
Hop-by-hop broadcast with acknowledgments,

385, 388
Hop-by-hop reliability, 383–388
Hop-by-hop reliability with acknowledgments,

383–385, 388
Hotspots, 357
HRTS, 223–228

ITR, 224, 228
TSync protocol, 223

Humidity, ventilation, air conditioning, 4
HVAC, see Humidity, ventilation, air

conditioning

I2C, see Inter integrated circuit bus
Identifier, 264, 278–279, 282, 314, 326, 348

resource, 182
unique, 11, 24, 184, 240, 266, 271–272,

277, 338
unique node, 182, 190, 289

Idle listening, 111, 120–123, 131–133
IDSQ, see Information-driven sensor querying,

see Information-driven sensor query
IEEE, see Institute of Electrical and

Electronics Engineers
IEEE 802.11, 26, 41–42, 79, 87, 90, 99, 113,

117–119, 145, 265, 297
DCF, 116, 146
Point coordination function, 146

IEEE 802.15.4, 24, 28–30, 87, 100, 126, 139,
220

backoff periods, 143–145
beaconed mode, 140–141, 220
contention access period (CAP), 141–143
coordinator, 140–145
full function device, 140
guaranteed Time Slots (GTS), 141–142
nonbeaconed mode, 144
PAN coordinator, 140
PAN identifier, 140
reduced function device, 140
ZigBee, 140

IEEE 802.3, 183–185

Index 489

IF, see Intermediate frequency
IFS, see Inter frame space
Implicit acknowledgment, 379
Implosion, 334–335
Incomplete acknowledgment, 172
Independent set, 253, 275, 278–279
Industrial, scientific, and medical band, 25, 87,

114
Information accuracy, 360–361, 402, 409
Information-driven sensor querying, 351, 428
Information theory, 109, 132, 421, 435
Information utility measures, 350
In-network processing, 9–10, 44, 67–68, 71,

76–77, 81, 125, 194, 334–335, 341,
357, 398, 403, 413–415, 420, 423

Instantaneous feedback with selective repeat,
157

Intentional naming system, 198
Inter integrated circuit bus, 54
Inter symbol interference, 92, 97
Interaction patterns, 6, 60, 73
Interest, 70–72, 194–197, 284, 332, 337–340,

353, 424, 428
cache, 195–196
flood, 337

Interface, 10, 20–22, 47, 51–53, 70, 73–77,
81, 181–182, 335, 339–342, 352, 361

Interference, 23, 27, 42, 87–88, 92–95, 116,
151, 241, 252, 265, 272, 297, 424

Adjacent-channel, 94
Co-channel, 94

Interleaving, 103, 162–163
Intermediate checksums, 165, 172–174

final acknowledgment, 172
incomplete acknowledgment, 172

Intermediate frequency, 25
IP, 53, 71, 79–80, 181–183, 188, 194, 198,

377, 398
ISI, see Inter symbol interference
ISM, see Industrial, scientific and medical
Iterative multilateration, 245
ITR, 224, 228

Jamming, 423–424

Key management, 423–425
Key value, 423

LAR, see Location-aided routing
Latency, 7, 43, 69, 123–125, 209, 307, 321,

342, 345

Lateral inhibition, 428
Lateration, 234, 237
LBM, see Location-based multicast
LEACH, see Low-energy adaptive clustering

hierarchy
advertisement phase, 134
member nodes, 133–134
setup phase, 134

LED, see Light emitting diode
Lifetime, 8–10, 33, 36, 65, 248, 263, 285,

296–300, 305, 315, 327–329, 342, 347
Light emitting diode, 28
Lightweight time synchronization protocol,

207, 210–211, 214, 228
Line of sight, 91–92, 96–98
Link

quality, 174–175, 305
Link layer, 74, 149–151, 305

asymmetric links, 175, 189, 256, 264–265
channel estimation, 150, 170, 177
framing, 29, 101, 150–152, 167–169, 174
management, 150, 174
services, 150

duplicate-free, 151
error-free, 151
in-sequence, 151
loss-free, 151

Listen period, 121–123, 126, 129
LMST, see Local minimum spanning tree
LNA, see Low noise amplifier
Load, 279–282, 285, 291, 303, 327, 353
Local interaction, 337, 345
Locality, 10
Localization, 74, 231–233, 236, 240, 326, 414,

426
error, 326

Location, 3, 10, 65, 73, 76, 194, 198,
231–233, 237, 240–241, 247–248, 274,
287, 293, 299, 305, 310, 320–323,
327–329, 341, 356, 425–428

service, 316, 326
Location-aided routing, 327
Location-based addresses, 71
Location-based multicast, 323–324, 327
Log-distance model, 93–94
Logical time, 202–204
Lognormal fading, 93
LOS, see Line of sight
Loss propagation, 391
Low-energy adaptive clustering hierarchy,

133–135, 279–280, 304, 354–355, 407

490 Index

Low noise amplifier, 25, 42
LTS, 207, 210–211, 214, 228

distributed multihop LTS, 211–212
path diversification, 211–212

MAC, see Medium access control
preamble sampling, 129, 399

MAC layer protocol data unit, 151–152
MACA, 113, 117, 131
MACAW, 113, 117
Magic numbers, 257
Maintainability, 8–9
Maintenance, 2, 5–9, 13, 190, 274, 289, 328
Manager node, 427–428
MANET, see Mobile ad hoc network
Maximal support path, 365
Maximum breach path, 364, 372
Maximum independent set, 275–281, 284
Maximum likelihood estimation, 171
Maximum weight independent set, 278
MBCR, see Minimum battery cost routing
MCDS, see Minimum connected dominating

set
MDS, see Minimum dominating set, see

Multidimensional scaling
Mean square error, 239–240
Mean squared error, 433–435
Measurement, 31–32, 42, 72, 97, 176,

236–238, 247, 346–348, 351, 354, 415,
422, 429, 432–433

Mediation device, 126
Mediation device protocol, 126, 156

distributed mediation device protocol, 127
dynamic synchronization, 126
mediation device, 126
query beacon, 126–127

Medium access control, 22–24, 27, 111–114,
119–120, 182, 186, 274, 281, 292, 307,
336, 424

address, 122, 128, 182–191, 198
ALOHA, 22, 116, 119, 129, 133, 257
backoff algorithm, 116, 131
binary exponential backoff, 116, 131
CDMA, 99, 115, 128, 135, 265, 354
contention-based, 115, 120, 129, 139, 182,

185, 198
CSMA, 22, 113, 116, 119, 124, 128–131,

134, 138, 142, 145–147, 394, 399
collision avoidance, 119, 143
collision detection, 113–114

nonpersistent CSMA, 116–117, 130, 146
persistent CSMA, 116

cycled receiver, 121, 129
demand assignment protocols, 115, 119
FDMA, 22, 115, 128, 139
fixed assignment protocols, 114
idle listening, 111, 120–123, 131–133
IEEE 802.11, 26, 41–42, 79, 87, 90, 99,

113, 117–119, 145, 265, 297
IEEE 802.15.4, 24, 28–30, 87, 100, 126,

139, 220
IEEE 802.3, 183–185
LEACH, 133–135, 407
mediation device protocol, 126, 156
periodic wakeup, 121–123, 126–128
power-controlled MAC, 146
priority, 112
protocol overhead, 120
random access protocols, 114–115
schedule-based, 112, 120, 133, 140, 198
SDMA, 115
slotted ALOHA, 116
TDMA, 114–115, 119–120, 133–136, 139,

146–147, 202
TRAMA, 137–139, 147, 175

MEMS, see Microelectromechanical system
Message overhead, 342
Metadata, 197
Metric, 3, 8, 33, 39, 44, 50, 65–66, 70, 150,

157–159, 170, 205, 232, 254–255,
265–266, 273, 278, 290, 295–302,
321–322, 342, 351, 354

Microcontroller, 19–22, 36–38, 44
Microelectromechanical system, 34
Middleware, 81, 198
Min–Max battery cost routing, 297
Miniaturization, 13, 35
Minimum battery cost routing, 296
Minimum connected dominating set, 266
Minimum dominating set, 266
Minimum total transmission power routing, 297
MiniSync, 226–227
MIP, see Multicast incremental power
Misdirection, 424
Mission time, 7–8
MLE, see Maximum likelihood estimation
MMBCR, see Min–Max battery cost routing
Mobile ad hoc network, 10–12, 188–189
Mobile agents, 59, 70, 77, 248, 295, 415–416
Mobile code, 69–70, 77, 336
Mobile ubiquitous LAN extension, 328

Index 491

Mobility, 10–12, 62–63, 103, 175, 235, 254,
265, 278–280, 285, 318, 325–328

event mobility, 63
node mobility, 62, 279, 325
sink, 62

Modulation, 22–23, 30, 40–44, 48, 85, 88–89,
95, 102–104, 107, 424

m-ary, 88, 104–105
ASK, 22, 29–30, 89
bandpass modulation, 88
bandwidth efficiency, 40, 95, 105–106
binary, 88, 106
BPSK, 30, 89–90, 95, 98
demodulation, 22, 85, 88, 100
dynamic scaling, 108
FSK, 22, 30–31, 90, 105–106
OOK, 43, 89, 101
PPM, 27
PSK, 89, 95, 105
QAM, 90, 107
QPSK, 30, 89–90, 98
spread-spectrum, 27, 88, 98, 424
symbol error rate, 88, 93, 102
symbol rate, 22, 30, 88, 104
ultrawideband, 87

Module, 51
Monitor state, 122
Monotone property, 256–257
MPDU, see MAC layer protocol data unit
MPEG, 415
MSE, see Mean squared error
MSP 430, 20, 38
MST, see Minimum spanning tree
MTPR, see Minimum total transmission power

routing
MTSP, 228
MULE, see Mobile ubiquitous LAN extension
Multicast, 112, 291, 305–316, 328, 333–334,

339, 378, 393, 400, 420–421
core, 307, 314, 325
core-based tree, 307, 314
mesh-based protocol, 307, 314–315, 325
source-based tree, 306–308, 314

Multicast incremental power, 312, 315
Multidimensional scaling, 244
Multihop, 9–10, 41, 60–61, 68, 97, 121, 166,

204–206, 243–245, 254, 258, 283, 289,
295, 310, 361, 376

Multihop time synchronization protocol, 228
Multilateration, 234, 240, 244–246
Multipath fading, 92, 98

MWIS, see Maximum weight independent set
Myopic, 268

Named data, 72, 194, 197, 333–337
Naming, 72, 181–186, 194–198, 333

attribute-based, 194, 333
name resolution, 183

NAT, see Network address translation
NAV, see Network allocation vector, 117–118,

124–125, 146–147
Neglect and greed, 424
Neighborhood discovery, 135–137, 175, 190
Neighborhood table, 175
nesC, 50–52
Network abstraction, 361
Network address translation, 79
Network allocation vector, 117–118, 124–125,

146–147
Network coding, 414, 420–422
Network partition, 66, 183, 189, 296
Network time protocol (NTP), 206–207, 221,

228
Networking

address-centric, 9–10
agent-based, 69–70, 76, 292–294
content-based, 331–333

NLOS, see Non line of sight
Node capture, 423
Node-centric, 292
Node coverage, 364–368, 374–375
Node density, 8–10, 132, 191–193, 199

density inference protocol, 375
estimation, 375

Noise, 23, 40, 88–90, 94–98, 115
Non line of sight, 91, 152
Nonbeaconed mode, 144
Nonpersistent CSMA, 116–117, 130, 146
Normal equation, 239
NP-complete, 257, 270, 273–275, 282, 285,

296, 306–309, 421
NP-hard, 256–258, 266, 278, 307, 315, 376
Number of neighbors, 132, 191, 251–254,

257–259, 264–266, 293, 431

Objective function, 256, 352
On demand, 184, 206, 228
On-off keying, 43, 89, 101
OOK, see On off keying, 43, 89, 101
Operating system, 13, 45–54, 74–75
Operation time, 3

492 Index

Operator, 72, 195
Optical, 21, 28, 86
Optimal stopping rules, 346
Optimization, 48, 63–65, 74–75, 102, 173,

246, 254, 257, 276, 286, 293, 296–299,
304–307, 314, 335–337, 347, 421

decision variables, 286, 347
integer program, 347
linear program, 273, 298, 315, 347, 376

Oscillator, 25, 30, 34, 100, 203–204
Overhead, 37–38, 41–42, 100, 111–112,

118–120, 145, 159, 167, 185–186,
235–236, 254, 279, 291–292, 297, 303,
307, 334, 338–340, 379, 415

Overhearing, 111, 119, 123–124, 131–132,
182, 185–186, 198

Overlay networks, 71

PA, see Power amplifier
Packet

combining, 165
dropping, 403
formatting, 153
loss, 152, 175–177, 360, 376
size optimization, 169–173

PAMAS, 131–132, 147
Probing protocol, 132

PAN, see Personal area network
PAN coordinator, 140
PAN identifier, 140
Pareto optimality, 304
Partial state record, 343–344, 352
Path loss, 40, 61, 93–94, 97–98, 113, 235,

263, 286
Path-loss exponent, 93–94
PCF, see Point coordination function
PDA, see Personal digital assistant
Peer-to-peer, 59, 71, 126, 133, 140, 198, 355
PEGASIS, see Power-efficient gathering in

sensor information systems
PER, see Packet error rate
Percolation theory, 256, 265
Perimeter-covered, 370
Periodic wakeup, 121–123, 126–128
Persistent CSMA, 116

p-persistent CSMA, 116
Personal digital assistant, 4–6, 60–62, 78
Pervasive control, 3
Phase shift, 203–204, 221
Phase shift keying, 89, 95, 105

Phase transition, 255–256, 292, 320
PHY, see Physical layer
Physical layer, 103
Physical layer protocol data unit, 151
Physical time, 202–204
Piggyback ack, 154–156
Placement, 244, 247–248, 316, 345, 362, 424,

430
Planar graph, 319, 326
Platelets, 433–434
Point coordination function, 146
Point in triangle, 242
Point sensors, 363, 432–433
Point-in-polygon test, 198
Poisson point process, 365–368
Poisson shot noise, 368
Polynomial time approximation scheme, 266,

275
Positioning, 231–233, 236–237, 240–244,

247–248, 414
error, 241–243, 248

Post-facto synchronization, 205–206, 212, 217,
221, 228

Power
amplifier, 23

efficiency, 41
control, 22, 109, 146, 165, 252–256, 265,

285, 305, 354
level, 40, 166, 264–265, 286, 298, 310
management, 26, 48–49
supply, 2, 13, 19, 32

Power amplifier, 25, 41, 107
Power-efficient gathering in sensor information

systems, 354
Power spectral density, 94
PPDU, see Physical layer protocol data unit
PPM, see Pulse position modulation
Preamble, 100–102, 129, 151
Preamble sampling, 129, 399
Prediction, 171, 178, 415

prediction-based monitoring, 415
Price, 3, 233
Prim’s algorithm, 260, 308–311
Priority, 112
Probabilit density, 348
Probability density, 213, 235, 247, 417
Probing radius, 430
Programmability, 8, 20
Proximity, 233, 323, 348, 414–416
Proximity graphs, 259
PSD, see Power spectral density

Index 493

PSFQ, see Pump slowly fetch quickly,
389–395

fetch operation, 390–393
loss propagation, 391
NACK, 390–393
proactive fetch, 392–393
pump operation, 389–391
report operation, 393

PSK, see Phase shift keying, 89, 95, 105
PTAS, see Polynomial time approximation

scheme
Publish/subscribe, 48, 72, 331–334, 337–339

topic-based, 332
Pulse position modulation, 27
Pump slowly fetch quickly, 389–395

QAM, see Quadrature amplitude modulation,
90, 107

QoS, see Quality of service
QPSK, see Quaternary phase shift keying, 30,

89–90, 98
Quadrature amplitude modulation, 90, 107
Quadtree, 431–432, 435
Quality of information, 8
Quality of service, 7–9, 12, 64–67, 70,

359–362
Quaternary phase shift keying, 30, 89–90, 98
Query, 73, 265, 315, 336, 342, 350–355

manager, 77
nested, 197
one-shot, 305, 335–337

RADAR, 31, 240
Radiated power, 23, 29–31, 40–41, 87, 93,

102–105
Radio frequency, 21, 25, 40
Radio frequency frontend, 24–25, 42, 103
Radio frequency identifier, 5, 146
Radio frontends

chipcon CC1000, 29, 54
chipcon CC2420, 29–30
Ember EM2420, 30
infineon TDA 525x, 30
RFM TR1000, 29, 42, 101

Radio modems, 13, 37, 45
RAM, see Random access memory
Random access memory, 21
Random access protocols, 114–115
Random deployment, 7, 270, 365–366
Random walk, 290, 293

Range, 23, 103
Ranging, 234–236, 240, 243, 248
Rate control, 361, 400, 403

Gur game, 406, 411
Rayleigh fading, 96–97, 103, 107, 160, 169,

173
RBS, 216–223, 226–228

gateway nodes, 223
group dispersion, 220–221
pulse packet, 218
timestamp conversion, 221–222

Read-only memory, 21
Real-time, 8, 11–13, 59
Received signal strength indicator, 23–24, 30,

170, 235–236, 249, 265
Receiver sensitivity, 23
Reconstruction, 433
Recovery server, 389
Reduced function device, 140
Reduced instruction set computer, 20
Redundant, 65–66, 238, 262, 302, 307,

334–336, 415
Reed–Solomon codes, 159–160
Reference broadcast synchronization, 216–223,

226–228
Reflection, 28, 90, 151
Reinforcement, 302, 338–339, 345
ReInForM, 384
Relative neighborhood graph, 259–260, 313,

319
Relaxation, 33, 273, 315, 327, 347
Relay regions, 261, 298
Reliability, 149, 155, 161, 165–167, 315, 345,

348, 360, 378, 397
information accuracy, 360–361, 402, 409
reliable data transport, 361, 376–377
requirements, 8, 155, 162, 166, 377–378

Reliability requirement, 8
Reliable data transport, 361, 376–377

block delivery, 377–378, 389, 395
error recovery, 377, 389
ESRT, 402–406
event-to-sink, 403
guaranteed delivery, 378, 395
PSFQ, 389–395
ReInForM, 384
RMST, 395–396
single packet delivery, 377–379
stochastic delivery, 378
stream delivery, 377–379

Reliable multisegment transport,
395–396

494 Index

Remote clock estimation block, 206
remote clock reading, 206–208
time transmission technique, 206

Reprogramming, 53
Request to send, 117–120, 125, 146, 396, 424
Residual error rate, 153, 160–162
Resiliency, 291, 303, 384, 423
Resolution, 5–6, 236, 241, 274, 416, 431
Retransmission, 103, 149, 152–154, 157, 165,

172, 305–307, 379, 424–425
postponing, 157

RF, see Radio frequency
RFD, see Reduced function device
RFID, see Radio frequency identifier
Rice fading, 96
RISC, see Reduced instruction set computer
RMST, see Reliable multisegment transport,

395–396
back channel, 395–396
cached mode, 395–397
NACK, 395
noncached mode, 396

RNG, see Relative neighborhood graph
Robust header compression, 398
Robustness, 67, 254, 301–304, 314–315, 340,

377
ROHC, see Robust header compression
ROM, see Read-only memory
Routing

ad hoc, 265, 287, 291, 301, 325–327, 340
face, 318–320, 326
geocasting, 316, 323–327, 339–340, 353
geographic, 198, 291–292, 316–317, 321,

326–327, 339, 356
dead end, 317–319, 325, 352
GPSR, 318–320, 352, 356
mobicast, 329
perimeter, 318, 356

gossiping, 290–292, 295, 307, 315, 336,
347–350

information-driven, 350–352
multicast

location-based, 323
multiple paths

disjoint, 302–303
multiple paths, 291, 301–304, 340, 379,

384
braided, 302–304, 384
disjoint, 384, 425

position-based, 316, 320
rumor, 292–294, 350

table, 66, 264, 286, 290–291
unicast, 291–297, 301, 325, 356

RS, see Reed–Solomon
RSSI, see Received signal strength indicator
RTS, see Request to send
RTS/CTS, 265, 424
RTS/CTS handshake, 117–119, 124, 131,

146–147, 395
NAV, 117–118, 124–125, 146–147

Run to completion, 47, 50–51
Runtime environment, 13

S-MAC, 121–126, 138, 147, 175, 424
adaptive listening, 124
CTS phase, 124
RTS phase, 124
SYNCH phase, 124
virtual clusters, 124

SAR, see Sequential assignment routing
Scalability, 8, 66, 114, 119, 206, 314, 337, 347
Scalable reliable multicast, 378, 393–395
Scalar field, 429, 432–435
Scattering, 90–91, 94, 151
Scene analysis, 233, 237, 240
Scheduling, 26, 38, 138, 166, 280, 305, 340,

352, 376, 399
Scoping, 7, 10, 339, 355
SDMA, see Space division multiple access,

115
Security, 355, 422–425

exhaustion attack, 423
Selective reject, 153–156
Selective repeat, 154–158
Self configurability, 10
Self-discharge, 13, 33
Self-organization, 67
Self-organizing medium access control for

sensor networks, 135–136, 147, 185
Sensing models, 362–363

Boolean sensing model, 363, 366–369,
374–375

directionality, 362
general sensing model, 363, 368, 426
point sensors, 363, 432–433
sensing radius, 366, 370

Sensing radius, 366, 370
Sensing range, 32, 363–364
Sensor, 31, 44

fusion, 414
rich, 6
starved, 6

Index 495

Sensor field intensity, 364–365, 368–369
Sensor protocol for information via

negotiation, 197, 335–336
SensorML, 78
SensorWare, 77
Sequence number, 153–154, 174, 178, 290,

390, 425
Sequential assignment routing, 301
Serial peripheral interconnect, 54
SFD, see Start frame delimiter, 101–102, 152
Shortest path tree, 308
Signal stability routing, 291
Signal to interference and Noise Ratio, 23, 95,

297
Signal to noise ratio, 23, 61, 88, 95–96
Single packet delivery, 377–379
Sink, 6, 279–280, 284, 301–302, 305, 328,

332, 341, 353–354
SINR, see Signal to interference and noise ratio
Sleep

mode, 26, 37–38, 49, 104, 111, 121,
124–126, 182, 186, 362, 427

state, 19, 26, 37, 48–49, 63, 104, 112
Slepian–Wolf theorem, 69, 414, 417–420
Slotted ALOHA, 116
Slow fading, 94, 151, 157, 170
SMACS, see Self-organizing medium access

control for sensor networks
receive slot, 136
transmit slot, 136

Smoothness, 433
SNR, see Signal to noise ratio
Software bus, 332–333
Software clock, 203

clock adjustment, 203, 227
clock skew, 204
drift rate, 203–205, 210, 221, 227
phase shift, 203–204, 221

Source, 6, 71, 302, 310, 332, 389–390
Source coding, 69, 414–419, 433
Space division multiple access, 115
Span, 272
Spanner graphs, 257
Spanning tree, 207, 210, 260, 267–268,

282–283, 309–310, 322
local minimum spanning trees, 260
minimum cost spanning tree, 306–308, 312
minimum spanning tree, 263, 270, 312–313

Sparse networks, 258, 328
Sparse topology and energy management,

121–123, 128, 147, 287

Spatial cells, 427
SPI, see Serial peripheral interconnect
SPIN, see Sensor protocol for information via

negotiation
Split-phase programming, 51
Spread-spectrum, 27, 88, 98, 424
Spread-spectrum systems, 98

chip sequence, 31, 98
DSSS, 28–31, 98–99, 109
FHSS, 99–100, 145
spreading factor, 31, 98

Spreading factor, 31, 98
SPT, see Shortest path tree
SQL, see Standard query language
SRM, see Scalable reliable multicast
SSR, see Signal stability routing
Standard query language, 73, 342–343, 352
Start frame delimiter, 101–102, 152
Startup energy, 26, 104–105, 129
Steiner tree, 269–270, 276–279, 306–310,

316, 328, 341, 345, 421
STEM, see Sparse topology and energy

management, 121–123, 128, 147, 287
monitor state, 122
STEM-B, 122–123
STEM-T, 122–123
transfer state, 122

Stochastic delivery, 378
delivery probability, 155, 378–379, 385,

389
Storage, 21, 323, 332, 356

location, 356
Store and forward, 61
Stream delivery, 377–379
Stretch factors, 254
StrongARM, 20, 38
Superframe, 114, 135–137, 141–142
Swarm intelligence, 59, 70
Symbol error rate, 88, 93, 102
Symbol rate, 22, 30, 88, 104
Synchronization

bit/symbol, 101
carrier, 100–101
frame, 101, 152

Synchronization mesh, 206
Syndrome, 419

T-MAC, 126
TAG, see Tiny aggregation
TBF, see Trajectory-based forwarding

496 Index

TCP, see Transmission control protocol
TDMA, see Time division multiple access,

114–115, 119–120, 133–136, 139,
146–147, 202

Time slots, 114–115, 120, 124, 133, 185,
340

TDoA, see Time difference of arrival
Temporally ordered routing algorithm, 291,

301, 325, 340
Throughput, 44, 112, 254, 257, 264–265
Time difference of arrival, 236
Time division multiple access, 114–115,

119–120, 133–136, 139, 146–147, 202
Time of arrival, 236, 240, 243
Time resolution, 203
Time slots, 114–115, 120, 124, 133, 185, 340
Time synchronization, 114, 201–203

clock correction block, 206
clock-update discipline, 205–207
external, 203
hardware clock, 203
HRTS, 223–228
internal, 203–204
logical time, 202–204
LTS, 207, 210–211, 214, 228
MTSP, 228
physical time, 202–204
post-facto synchronization, 205–206, 212,

217, 221, 228
RBS, 216–223, 226–228
receiver uncertainty, 216–220
remote clock estimation block, 206
resynchronization event detection, 205
software clock, 203
synchronization mesh setup, 206
time resolution, 203
TPSN, 214–219, 225, 228
transmitter uncertainty, 216, 220
UTC, 202–204, 207, 216

Time to live, 390, 393
Timer, 153–154, 382
Timestamp conversion, 221–222
Timing-sync protocol for sensor networks,

214–219, 225, 228
Tiny aggregation, 342, 352–353
TinyOS, 48–52, 74
TinySync, 226–227
ToA, see Time of arrival
Token frame, 115
Token-passing protocols, 115
Tolerance radius, 429

Topology control, 251–256, 260–265, 272,
286–287, 290–292, 298, 304, 315, 340

cone-based, 262
TORA, see Temporally ordered routing

algorithm
TPSN, 214–219, 225, 228
Tradeoff, 8–10, 13, 17–20, 32–34, 43, 47–50,

57, 62, 65, 69, 75–79, 185–186, 198,
236, 248, 252, 317, 324, 343, 426, 430,
435

Traffic-adaptive medium access, 137–139, 147,
175

Trajectory-based forwarding, 326
TRAMA, see Traffic-adaptive medium access,

137–139, 147, 175
adaptive election algorithm, 138
neighborhood protocol, 138
random access periods, 137
schedule exchange protocol, 138
scheduled-access periods, 137

Transceiver, 21–26, 29, 40, 43–44, 85, 100,
103–104, 114

Transfer state, 122
Transmission control protocol, 48, 53, 361,

377–378, 397–399, 425
Transmission delay, 112, 119
Transmitter uncertainty, 216, 220
Transport protocols, 359–361, 377–378
Triangulation, 233–234, 238, 245
Trilateration, 233–234
TSync protocol, 223
TTDD, see Two-tier data dissemination
TTL, see Time to live
Tunneling, 81
Two-tier data dissemination, 314, 339–341
Type of service, 7, 64

Ubiquitous computing, 2
Ultrasound, 21, 28–29, 236, 240
Ultrawideband, 27–28, 87
UML, see Unified modeling language
Uncertainty, 209, 212–216, 324, 348–352,

428
Unguided medium, 86
Unified modeling language, 78
Unique identifier, 11, 24, 182–184, 190, 240,

266, 271–272, 277, 289, 338
Unit disk graph, 255
Universal transverse mercator, 232
UTC, 202–204, 207, 216

Index 497

UTM, see Universal transverse mercator
UWB, see Ultrawideband

VCO, see Voltage-controlled oscillator
Very low frequency, 86
VHF omnidirectional ranging, 248
Virtual polar coordinate routing, 323
Virtual polar coordinate space, 322
VLF, see Very low frequency
Voltage controlled oscillator, 31
VOR, see VHF omnidirectional ranging
Voronoi diagram, 260, 324–325, 371–372
VPCR, see Virtual polar coordinate routing
VPCS, see Virtual polar coordinate space

Wakeup radio, 26, 120–121, 127–128, 147
Wave propagation, 90, 236–237

attenuation, 23, 61, 88, 91–94, 108, 151,
235–236, 297

AWGN, 94–99, 103–105, 109
coherence bandwidth, 92, 97
delay spread, 92, 97–98
diffraction, 90–91, 151
doppler fading, 90–91
fast fading, 92, 151, 157, 170
flat fading, 92, 109
friis equation, 93
intersymbol interference, 92, 97
log-distance model, 93–94

lognormal fading, 93
multipath fading, 92, 98
noise, 88–90, 94–98, 115
path loss, 40, 61, 93–94, 97–98, 113
path-loss exponent, 93–94
rayleigh fading, 96–97, 103, 107, 160, 169,

173
reflection, 28, 90, 151
rice fading, 96
scattering, 90–91, 94, 151
slow fading, 94, 151, 157, 170

Web service description language, 80–81
Windowed feedback with selective repeat, 156
Wireless channel, 102, 233, 284, 377
Wireless communication, 2, 9–11, 21, 28
Wireless multicast advantage, 292, 307–314,

336, 421
Wireless personal area network, 30
Wireless routing protocol, 291
Wiring, 2, 48, 51
WLAN, see Wireless local area network
Worst-case coverage, 364, 371–372
WPAN, see Wireless personal area network
WRP, see Wireless routing protocol
WSDL, see Web service description language
WSN, see Wireless sensor network

Zebra, 428
ZigBee, 140

