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Field Equations and

Conservation Laws
INTRODUCTION :

[.ln.Chapter l and 3 we have summarised the mathematical
descx:npuon of static electric and magnetic fields. We now wish to
consider the more general situation in which the field quantities
may depend upon time. Under such conditions there is an
mterdependence of the field quantities and it is no longer possible
to discuss separately the electric and magnetic fields and we are

forced to consider the general concept of an electromagnetic field.
The time dependent electromagnetic field equation are called
Maxwell’s equations. These equations are mathematical abstrac-
tions of experemental results. |

In this chapter we seek to establish the formation of the field
equations, to show that their solutions are unique, to discuss the
scalar and vector potentials of the field and to consider the law of
conservations of charge, energy and momentum].

§ 41. Egquation of Continuity . |

Under steady-state conditions the charge density in any given
region will remain constant. We now relax the requirement of
steady-state conditions and allow the charge density to become
a function of time. It is experimentally verified that the net
amount of electric charge in a closed system remains constant.

Therefore if the net charge within a certain region decreases with
time, this implies thata like amount of charge must appear in
some other region.. This transport of charge constitutes a current

f.&,

— _(dg/dt) (1)
—ive sign here indicates that charge contained in 2 specified
volume decreases with time.

However by definition of current density

1=§ Jeods | i
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172 Electromagnetic Theory

So from equation (1) and (2) we have—

@ Jeds= ~——g

ie. @ J-ds—~a;[ p dr [as o Lpdr ] ..(2)

If we hold the surface
S fixed in space, the time
variation of the volume inte-
gral must be solely due to
the time variation of p. Thus

op
@S JodS—- 87 dT. (3)
But from Gauss’s theorem
@ Jeadse ~~j (div J) dr

S T
Fig. 4'1 (4)

So comparing expressions (3) and (4) we get
§ div J) dr=— ] P 4
T 70

o L( div J+~- )df—O ()

Since equations (5) is true for any arbitrary finite volume, the
integrand must vanish i.e.

div 3+ 22 =0,
ot - a(A)
Equation (A) is called the equation of continuity and is an
expression of the experimental fact that electric charge is conserved.
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§4'2. Displacement Current,
‘We know that Ampere’s circuital law in its most general form
is given by

ﬁc H.dl= S % J«ds [see equation ¢ of § 3-10 (a)]

ie. Js curl Heds= (sJeds '

or curl H=J 541)
Let us now examine the validity of this equation in the event

that the fields are allowed to vary with time. If we take the

divergence of both sides of equation (1) then

div (curl H)=div J, k2
Now as div of curl of any vector is zero, we get from equa-
tion (2) div J=0 i+ A9)

*In note (1i) of application (d) in § 2'3 we have shown that for electro-
static effects a conductor acts like a material of infinite dielectric constant.
However in case of steady current as polarisation effects are completely
overshadowed by dispersion cf metals this result does not\hold good, For

purpose of estlmatlfm, in case of conduction through metal we usaally take
¢,—1 as discusssd in § 7-9 : |
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Now the continuity equation in general states

v g 0P |
div J= g Sl

and will therefore vanish only in the special case that the charge
density is static. Consequently we must conclude that Ampere’s
Jaw as stated in equation (1) is valid only for steady state condi-
tions and is insufficient for the case of time-dependent fields.
Because of this Maxwell assumed that equation (1) is not comp-
lete but should have something else to it. Let this ‘something’ be
denoted be Ja, then equation (1) can be rewritten as |

cur H=J+J,. .(5)
In order to identify J,, we calculate the divergence of equa-
tion (2) again and get
div curl H=div (J+J4)

ie. div J+J2)=0 . (as div curl H=0)

or div J+div J;=0

or div Jy=—div J

ie, div J =—L§I—P [from equation (4)]

: | e ) |

i.e. div Jd*-gt- (div D) Ty
) div( Ja—%)):-O . (6)

As equation (6) is true for any arbitrary volume
oD
Jd’-‘g‘- . (A)

And so the modified form of Ampere’s circuital law becomes
oD
curl H=J+é-l;—. ..{B)

The term which Maxwell added to Ampere’s law viz. (0D/ot)
is called the displacement current to distinguish it from J, the
conduction current. By adding this term to Ampere’s law,
Maxwell assumed that the time rate of change of displacement pro-
duces a magnetic field just as a conduction current does.

Regarding displacement current it is worthy to note that :

(i) Displacement current is a current only in the sense that
it produces a magnetic field. It has none of the other pmperne_s
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of current.  For example displacement current can have g finite
value in perfect vacuum where there are no charges of any type

(.ii) The magnitude of the displacement current is equal tg
the time rate of change of electric displacement vector D.

.(m) Displacement current serves to make the total current
continuous across discontinuties in conduction current. (See
example 2 and problem 4).

' (iv)  The displacement curtent in a good conductor is negli-
gible as compared to the condition current at any frequency lower
than the optical frequencies (~10® Hertz). (See example 3).

(v) The addition of displacement current i.e. (9D/ot) to
Ampere’s law i.e. curl H=J results in

curl H—-—-J—I—g;12

i.e. displacement current relates the electric field vector E
(as D=¢E) to the magnetic field vector H. Thisin turn implies
that in case of time dependent fields it is not possible to deal with
electric and magnetic fields separately, but the two fields are inter-
linked and give rise to what are know as electromagnetic fields
ie. The addition of displacement current to” Ampere’s law result,
in the unification of electric and magnetic phenomena.

It must be emphasized here that the ultimate justiﬁcatic?n for
Maxwell’s assumption of displacement current is in the experimen-
Indeed the effects of the displacement current are

diflicult to observe directly except at very high frequencies. How-

indirect verification is afforded by predictions of many effectg
. eory of light which are confirme
I’s form

tal verification.

ever .
articularly in electromagnetic th i
gy experiments. = We may therefore consider that Maxwel

of Ampere’s law has been subjected to. experimental tests and has
been found to be generally valid. e

i —
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§ 4'3. Maxwell’s equations.

(A) The equation :
These are four fundamental equation of electromagnetism and
corresponds to a generalisation of certain experimental observa.

tions-regarding electricity and magnetism. The following four
laws of electricity and magnetism constitutes the so called ‘differen.
tlal form®> of Maxwell’s equations :
(i) Gauss® law for the electric field of charge yields
div D=V .D=p
where D is electric displacement in coulombs/m* and P is the free
charge density in coul/m3.
(i) Gauss® law for magnetic field yields
div B=VY.B=0
where B is the magnetic induction in web/m3.
(iii) Ampere’s law in circuital form for the magnetic field
accompanying a current when modifield by Maxwell yields

curl H=YV ~><H=J+%)
where H is the magnetic field intensity in amperes/m and J is the

_current density in amp/m?2,

(iv) Faraday’s law in circuital form for the induced electro-
motive force produced by the rate of change of magnetic fiux
linked with the path yields

oB

curl E= v XE=-——a't—

where E is the electric field 'intensity in volts/m.
(B) Derivations :

(i) Let us consider a surface S bounding a volume r within
a dielectric. Originally the volume rcontains no net charge but

we allow the dielectric to be polarised say by placing it in an
electric field. We also deliberately place some charge on the die-
electric body. Thus we have two type of charges :

(a) real charge of density p  (b) bound charge density p'.
Gauss’ law then can be written as

P e
§ Ea=L]ete o

i.e. €, ésE'ds= S" p d+1§_ p’ dr. ...(1)
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But as t
he bound charge density p is defined as p’= -div p

and
~§J8E-ds=- L div E dr

Fig. 4°3

So equation (1) becowes

€ L divE df=§_rp df—ST div P dr

ie. S"’ div (e,E+P) dr= L_ p dr
or STdiv D dr= S"' pdr (as D=¢E+P)
or ST (div D—p) dr=0.

Since this equation is true for all volumes, the integrand must

vanish. Thus we have

div D=Y/ D=p.

(ii) Experiments to-date
have shown that magnetic

monopoles do not exist. This in
turn implies that the magunetic
Jines of force are either close

group or go off to infinity.
Hence the number of magnetic

lines of force entering any
arbitrary closed surface 1S

exactly the same leaving it.
Therefore the flux of mag-
netic induction B across any
closed surface is always zero

ie.

.(A)

Fig, 44
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é B.ds=:=0.
s

Transforming this suiface integral into volume integral by
Gauss’ theorem, we get

S div B dr=0.
K

But as the surface bounding the volume is quite arb‘itrary.the
above equation will be true only when the integrand vanishes i.e.

div B= +B=0. (B)

————

——

Note : For alternative methods of proving div B=0 sce example 1
in chapter 3,

(ii) From Ampere’s circuital law the work done in carrying

unit magnetic pole once round a closed arbitrary path linked with
the current I is expressed by

ﬁc Hedl—1

i) 95 Redl— e as T Teds
C S

where S is the surface boun-

ded by the closed path C.
Now changing the line

integral into surface inte-

gral by Stoke’s theorem, we
get

E curl H-ds=S Jeods
S S

ie. curl H=J. 1 {2)

But Maxwell found it
to be incomplete for chan-

ging electric fields and assu-

med that a quantity
Fig. 4'5. J,___:ap
Ry,
called displacement current must also be included in it so that it
may satisfy the continuity equation i.e. J must be replaced in
equation (2) by J-+Ju so that the law becomes
ceurl H=J-+J,

G1))
e curl H_J+at o)
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Field Equations and Conservation Laws 183

(iv) According to Fara-
day’s law of electromagne-
tic induction we know that
the induced e.m.f. is pro-
portional to the rate of
change of flux i.e.

dgéy

S e 3)

Now if E be the electric
intensity at a point the work
done in moving a unit
charge through a small djs-
tance dl is E«dl. So the

Fig. 4-6,
work done in moving the unit charge once round the circuit is

ﬁ 2 E«dl. Now as e.m.f. is defined as the amount of work done
in moving a unit charge once round the electric circuit.

E =ﬁCE.dl | “‘(4)

So comparing equation (3) and (4), we get
dgp*

P E-di=— )
But as

953=§ B'dS

S
Eedl= o SB-d

So 9§c S.

Transformating the line mtegrdl by Stoke’s theorem into sur-
tace integral we get ;
S curi Eeds= ——- SB'dS.
S dt

Assuming that surface S ic fixed in space and oaly B changes
with time, above equation yields

S (curlE+ g—) ods=
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As the above integral is true [or any arbitrary surface the
integrand must vanish,
le. curl E=——%¥- ...(D)
(C) Particular Cases :

(i) In a conducting medium of relative permitivity ¢ and
permeability p, as

D=eE=qrE
And B==pH=p, 1 H.
Maxwell’s equatuion reduce to
(i) VeE=pleg (if) VoH=0

¢H
(iii) V x H=J+4¢, %lti: (iv) V XE=—Ik T

(ii) In a non-conducting media of relative permitive ¢, and
permeability p, as

p=g=0
sO . J=0E=0
and hence Maxwell’s’'equations become
(i) VE=0 (ify V+H=0
(i1 V xH=e¢, g? (v) VXE=- p, g?
(ii1) In free space as
e =p=1
p=0=0;
Maxwell’s equations become
() “7+.E=0 (i) V+H=0
(iif) xH::,,%? (") VXE=—p, g_‘

(D) Discussion :

1. These equations are based on experimental observations.
The equations : (A) and (C) correspond to electricity * while (B)
and (D) to magnetism .

2. These equations are general and apply to all electromag-
netic phenomena in media which are at rest w.r.t. the coordinate
system.

3. These equation are not independent of each other as
from equati_on- (D) we can .derive (B) and from (C), (A) (see exam-
ple-4). This is why equations (B) and (D) are called the first pair
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of Maxwell’s equations while (A) and (C) are called the second
pair.

4: The equation (A) represents Coulomb’s law while (C) the
law of conservation of charge i.e. continuity equation (see exam-
ple 5).

5. If we compare equation (A) with (B) and (C) with (D) we
find that left hand sides are identical while right hand sides are
not. This in turn implies that electric and magnetic phenomena

are, assymmetric and this asymmetry arises due to the non-existauce
of monopoles.

e g ———— ——

Note : This asymmetry of electro-magnetism suggests that monogpoles
(a particle having either north or south magnetic charge) should eXist as
the concept of magnetic monopoles would bring tc electrici'y and magne-
tism a symmetry to which nature loves and is lacking in our present
picture. Dirac has also proved on theoretical grounds that monopole should
exist and predicted their properties. But $o far the magnetic monopole has
frustated all its investigators, The experiments have failed to find any
sign of these. The theorists on the other hand have faiied to find any good
reason why monopoles should not exist.

Recently, American Institute of Physics ard the University of
California at Berkley jointly announced that monopoie has been observed
by a group of physists. If confirmed, the detection of monopoles will have
a major impaqt on Physics and Technology.

s P—

(6) The correspondance of B and H with E and D through
Maxwell equations (D) and (C) respectively implies that in case
of time dependent ficids the electric and magnetic fields are inse-
parably linked with each other giving rise to what is known as
electromagnetic field and it is not possible to deal separately with
electric and magnetic fields in this situation.

(E) Physical Significance (or Integral Form)

By means of Gauss’ and Stoke’s Theorems we can write the
Maxwell’s field equations in integral form and hence obtain their
physical significance.

~

(i) Integrating Maxwell’s first equation div D=p overaf
arbitrary volume 7 ve gel

S 7 D dT::S P dr
< T
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changing the vol. integral of L. H. S. into sufface integral by
Gauss’ divergence theorem and keeping In mind that [ p dr=gq
we get

@ Deds=q o (Ay)

So Maxwell’s first equation signifies that the total flux of
electric displacement linked with a closed surface is equal to the
total charge enclosed by the closed surfuce.

(ii) Integrating Maxwell’s second equation div B=0 over an
arbitrary vol. = we get

; \7eB dr=0.
3

Converting the vol. integral into surface integral with the
help of Gauss’ theorem we get

@B-ds=0 : | ...(B)

So Maxwell’s II equation signifies that the total flux of
magnetic induction linked with a closed surface is zero.

(iii) Integrating Maxwell’s I1I equation curl H=J-(0D/ot)
over a surlace S bounded by the loop C we get

oD
S curl Heds= S ( J+E§_) ods

Converting the surface integral of L. H. S. into line integral
with the help of stoke’s theorem we get

oD
Od — - ).
which signifies that magnetomotive force around a closed path

[ Bﬁ H.a’l] is equal to the conduction current plus displacement
current linked with that rath,

(iv) Integrating Maxwell’s IV equation curl E== —(2B/d?)
over a surface S bounded by the loop C we get
jcurl Eeds=— j -Gl}.ds
ot
Converting the surface integral of L. H. S. into line integral
with the help of stoke’s Theorem we get
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§f Edi= —gt- ‘ B.ds D3

which signifies that the electromotive Jorce i.e. line in‘egral of elec-

tric intensity around a closed path is equal to the negative rate of
change of magretic flux linked with the path.
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§ 4'4. Energy in Electromagnetic fields. (Poynting’s theorem)

From Maxwell’s equations ‘it is possible to derive an impor-

tant expression which we shall recognise at the energy principle in
an electromagnetic field.

For this consider Maxwell’s equations (C) and (D) i.e.
Ampere’s and Faraday’s laws in differential forms

oD
curl H=J+5_t— \ - ...(])
B ‘ ‘
and curl E= — - Li2)

If we take the scalar product of eauaiion (1) with E and of
equation (2) with (—H) we get

E-cur]H==E-J+E-aD we(3)
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and ~-Hecurl Eea - ".81)_

. ot . (4)
adding equations (3) and (4) we pet

—~Hecurl E+Eecurl He=J. [E | u-""]

But by the vector identity
Hecurl E—Eecurl H=dijv (K x H)
The above equation reduces to

—div (F sz TR L .QQ aB ’
iv (E X H)=JoE-+ [E gl
oD
Now as E.at ""'Er‘oE i‘r"n 51 (EoE)= i (E D)
0

and  He g a“ =i bo 5 (HeH)=] 2 (H-B)

So equation (5) reduccs to

0 ;
J+E+} =(E+D+H¢B)--div (E x H)=0. ()

Each term in the above equation can be given some physical
meaning if it is multiplied by an element of volume dr and
integrated over a volume = whose enclosing surface is §. Thus

the result is
@B a4 [, 4 5 D+HB) drt | div @xH) dr=0
T

~ But as ! div (Ex H) dr...@ (E x H)eds

o |, @B ar+|, 4 5 E-D+H-B) ari-§. (Ex H)odsm0
o (A)
To understand what equation (A) means, let us now interpret
various term in it— J
(A) Inter pretation of L J.E dr :

The current distribution represented by the vector J can be
considered as made up of various changes ¢ moving with velocity

Vv, s0 that |
S JoE df=s Idl'E [as J d‘fﬂ-{dll

Scanned by CamScanner



= (dg VoE [as 1 d1=(dg/dr) di=dq v]

=2q; (vi°E)) - (7)
where E; denotes the electric field at the position of charge 4.
Now electromagnetic force on the ith charged par;icle is
given by the Lorentz expression
Fi=q: (Ei+vixXB).
So the work done per unit time on the charge ¢; by the field

will be
oW, dW F.dl ]
Sk | [d“‘d =
=qi (Ei+viXBy)ev; (as Fi=gq; (E;+vixXB)
ie. 2?, q.v,-E; [as vie(viX B)=(viX v;)eB;=0]

So the rate at which the work is done by the field on the

charges is
- W oW

57—2 7—2 qiVie oE;. (8)
Comparing equation (7) and (8) we find that
dw
j JoE dr—dt .9

i.e. the first term [ (JoE) dr represents the rate at which work is
done by the field on the charges
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the quantity U may be considered to be a kind of potential
energy, One need not ascribe this potential energy to the charged
particles and must consider this term as a field energy. A concept
such as energy stored in the field itself rather than residing with
the particles is a basic concept of the theoryof etectromagnetism,

S — e = e e e e e

Note : If we write equation (10) as

i S all space §
where =2 (E+D-I{«B) may be thought of as the energy density of the
electromagnetic field.
Further as
—1E.D+} HB
first term on R.H S.contains only electrical quantities while the second, one
magnetic, we can have

i U=u, + Um
with u,—=3E e D=e,¢;E?=energy density of clectric field
ane Um=2H e B= 231, 1 H2=-energy density of magnetic field

(C) Interpretation of @s (E X H)sds,

Instead of taking the volume integral in equations (A) over
all space, let us now consider a finite volume. In this case the
surface integral of (E x H) will not in general vanish and so this
term must be retained., Let us construct the surface S in such a
way that in the interval of time under consideration, none of the
charged particles will cross this surface. Then for the conser-
vation of energy

oU ow :
TRt ot @S (E x H)+ds (1)
The left hand side is the time rate of change of the energy

of the field and of the particles contained within the volume 7.
Thus the surface intergral és (E x H)+ds must be considered as the

energy flowing out of the volume bounded by the surface S per sec.
But by hypothc?sm no pnrticles are crossing the surface, so the
vector (ExH) 15 to be i“tﬂpfeted ‘as the amount of the field

Scanned by CamScanner



energy passing through unit area of the surface in unit time which

is normal to the dizection of energy flow. The vector (EXH) is
called poynting vector* and is represented by Si.e. |

S::':(EXH). ’ "(]2)
Interpretation of the Energy Equation.

In the light of above, equation (6) in differential form can be

written as | '
ou

In the event that the medium has zero ‘conductivity i.e.
J=0¢E=0, the above equation becomes exactly of the same form as
the continuity equation which expresses the law of conservation of
charge. We are led by this analogy that the physical meaning of
equation 13, 11 or (A) ‘s to represent t@w-of conservation of
energy for clectromagnetic phenomena. According to ‘equation
(11) the time rate of change of electromagnetic energy within a cer-
tain volume plus the rate at which the work is done by the field on

the charges is equal to the energy flowing into the system through
its bounding surface per unit time.
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§ 4'5. Poynting Vector.
In § 44 we have seen that according to the law of conser-
vation of energy in an electromagnetic field

U, W, (.
oy é‘t“+] (div S) dr=0 (D)
'. with S=E xH. (2)
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The vector S is known as Poynting vector. It is interpreted as
the amount of the field energy passing through unit area of the sur-
face in a direction perpendicular to the plane containing E and H
per unit time. For example as in a plane electro-magnetic wave
E and H are perpendicular to each other and also to the direction
of wave propagation, S has a magnitude EH sin 90=EH and
pomts_ in the direction of wave propagation. The dimensions of
Poynting vector are (energy/area x time) so the units will be Joule/
m?2 X sec or watt/m?,

?‘E

e

o )
m

Fig 4'9
Regarding Poynting vector it is worthy to note that—

(i) Poynting vector at any arbitrary point in the field varies in-
versely as the square of the distance from the point sburce of radia-
tion. To understand it consider a
source L. of electromagnetic radia-
tions which is emitting radiations
at the rate of P watts and imagine
two concentric spherical surface A
and B of radii r, and rp respecti-
vely with source being at their
common centre. If S; and S, are
the Poynting vector at any point

‘on A and B respectively then
Sy % 4mryi=S2 X 4r =P
i.c. S,=(P[4rr,?)
and Sy==(P/dmwrs?). -

So in general S;X (1/r®.

(if) The definition of Poynting vector is not a mandatory.
Since this vector has been introduced only by way of its diver-
gence, the curl of any arbitrary vector can be added to it without
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altering the physical facts of the case i.e. it is a:rbitrary to the
extent that curl or any vector field can be added to 1t i.e.

. S=ExH-+G
where - =curl M
M=any arbitrary field vector.

However on various grounds, such an additional term has no
physical consequence and the definition of S is retained as such,
This definition is also found to be convenient particularly in
electromagnetic theory.

(iii) If Poynting vector is zero then no electromagnetic energy
can flow across a closed surface but if no net field energy is flowing
across a closed surface the Poynting vector may or may not be zero,
For example in case of the field due to a point charge in the
presence of a magnet at rest as shown in fig. 4-11 (a) or a charged
capacitor placed between the poles of a permanent magnet if E is
not parallel to H, the Poynting vector is not zero as

| S| = | EXH | =EH sin §:40.

@) Fig. 4 11. ‘b)

For stcady fields S0 i.e. Seds#0 but

there is no flow of energy i.e. &Sods:—-(}
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While the flow of energy across any closed surface is zero as
@s Seds= S'_ VS dr= L_ V +(E xH) dr

i.c. @S Seds= L (Hecurl E—Escurl H) dz=0

(as E and H are constant for stéady fields).

This is because, S does not determine the rate of flow through
small element ds ata point but implies that only the flux of S
across a closed surface is significant.

(i) In case of time varying fields S=E x H gives the instanta-
neous value of the Poynting vector and the average valueis defined
as the average over one complete period i.e.

<s>=L\" @xH) a.
T)e .

For example in the case of sinusoidally varying fields i.e.

E=E, sin ¢ and H=H, sin ot

1 T - .
<S>= T& (E, sin wt) X (H, sin wt) dt
o 5 .

1 2w/o |
ie. <S>= T(EOXHG) So sin2 ‘.0t dt*
. H, .
i.ec <S> =% (on H0)= vzx voz —Eav XHaV'

The importance of Poynting vector lies in the fact that with
its help we can interpret various optical phenomena such as reflec-
tion, refraction, dispersion, scattering, differaction, etc.,

b

electromagnetically.
(v) We know that
B=KH
dixr _ Ko (MdIxx )
ie. :——;\I——;g‘ﬂl"o“, (asB A AT
1 dIXr
or H=E] 155

TR e
; 27/o (1—cos 2wt)
.—ITSZ'I sin? ! dt=—%‘- ‘o 5 dt

el

e sin 20t P*° @ 2 1
o[t T
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or

and -

i.e.
So

i.e.

[A1L] L]

(H)= [ Lﬁé']" = [AL1]

--—=([FA/;1)T 2 ‘
5 LT
El= [AT] J=[MLS!’“'3 A7
S]=[E] [H]=[MT-?] |
ST [ML2T-% = Energy  Power
g LT — areaxtime ~ area
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§ 4'7. Electromagnetic Potentials A and ¢.

The analysis of an electromagnetic field is often facilitated by
the use of auxilary functions known as electromagnetic potentials.
At every point of space the field vectors satisfy the equations

div D=p | SRR

div B=0 ...(B)
oD

curl H=J+é_t_ o (O
B -

curl E= o (D)

According to equation (B) the field of vector B is always
solenoidal, consequently B can be represented as the curl of another

yector say A i.e,
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B=curl A ' (1)
where A is a vector which is function of space (x, », z) and time
(t) both.

Now substituting the value of B in equation (D) from (1), we
get :

0
curl E= — a7 (curl A)

or ~curl (E+%§§\=O

/
i.e. the field of the vector E+?—,—?— is irrotational and must be equal
to the gradient of some scalar function i.e.

0A
E+ﬁ == —grad, ¢

or Lo s T . (2)

Thus we have introduced a vector A and a scalar ¢ both
being’ functions of position and time. These are called electro-

magnetic potentials. The scalar ¢ is called the scalar potential
and the vector A, vector potential. Regarding electromagnetic

potentials it is worth noting that

(i) These are mathematical functions which are not physi-
cally measurable. :

(i) These are not independent of each other.

(iii) These define the field vector E and B uniquely but them-
selves are nonunique (See § 4°7).

(iv) These play an important role in relativistic electro-
dynamics (See chapter 10).
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§ 4'8. Maxwell equations in terms of Electrpmagnetnc Potentials.
Now consider the Maxwell’s equation (C) z,e,

oD
7 curl H=pJ+p Fre

0
or curl B=pJ +ep ;:

substituting B and E from equations (1) and (2) of§ 47 in abovc
we get
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a e B
&, grad div A ——VzA——‘—‘MJ"PG‘é; (grad ¢)— pe 012

. | o4
02A S e T
ie. VA —pe -é—t—z——grad ( div A+ Mat) ® .3)
Similarly if we consider equation (A) i.e.
| div D=p
ie. ¢ div E=p
0A\ P
ie. div ( —grad ¢——-)=-€-~
P
i.e. v2¢+a (div A)—...._.
2
Adding and substracting yeg-t—z—- it becomes
o gb ¢)_ # p
V2h—e YD +at ( div A—I—u«e % o

Equation (3) and (4) are field equations in terms of electro-
magnetic potentials, as equations (B) and (D) are satisfied in
defining the scalar and vector potentials. So Maxwell equations
are reduced from four to two by electromagnetlc potentials,

however these are coupled.
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§ 49. Non-nniqueness of Electromagnetic Potentials and concept
of Gauge :

In terms of electromagnetic potentials field vectors are
given by

B=curl A (1)
Bod; E= —grad 95—-%? ¥)

From equations (1) and (2) it is clear that for a given A and
¢, each of the field vectors B and E has only one value i.e. A and
¢ determine B and E unig:‘elﬂ However the converse is not true
i.e. field vectors do not ermine the potentials A and ¢ com-
pletely. This in turn implies that for a given A and ¢ there/will
be only one E and B while for a given E and B there can be an
infinite number of A’s and ¢’s. This is because @e curl of the
gradient of any scalar vanishes identically and hence we may add
to A the gradient of a scalar A without affecting B. Thatis A

may be replaced by

=A-grad A. ()

But if this is done, equation (2) becomes

0 3 ‘

= —grad 96"“5? (A’—grad A)

‘ ARy A
ie. E=-grad( ¢—"a‘t'“)-——g;'
So if we make the transformatlon given by eqn. (3) we must

also replace ¢ by
fl G O
i e )
‘The expressions for field vectors E and B remain unchanged

under transformations (3) and (4) i.e.
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B=curl A=curl (A'——grad A)=curl A

, o OAN @ iy
aA=——grad( ¢ +é_f)—-al (A’—grad A)

and E=--grad ¢35
oA
_—=grad ¢ -——é—t_

i.e. we get the same field vectors whether we use t;he ;:Itd(A’ $) or
(;A: ¢). So electromagnetic potentials define the field vectoy,
uni&uely though they themselves are non-unique.

The transformations given by equations (3) and (4) are ca!led
gauge transformations and the arbitrary scalar A gauge function,
From the above it is also clear that even though we .add the gra.
dient of a scalar function, the field vectors remain unchanged
Now it is the field quantities and not the potentials that possess

'physical meaningfulness. We therefore say that the ﬁe.ld vectors
are invarient to gauge transformations i.e. they are gauge invarient,

Because of the arbitrariness in the choice of gauge i.e. non-
uniqueness of potentials, we are free to imposeé an anditional con-
dition on A. We may state this in other terms : @ vector is not
completely specified by giving only its curl but if both the curl and
the divergence of a vector are specified the vector is uniquely deter-
mined. Clearly it is to our advantage to make a choice for div A
in any convenient manner that will provide a simplification for the
particular problem under consideration, Generally div A is chosen
in two ways (described in following articles) according as the field
contains charge or not.

§4'10. Lorentz Gauge ;

Tl.ae Maxwell’s field equations in terms of electromagnetic
potentials are

- 02A |
VQA_F.GBT{ — grad ( div A—|-p.¢g-?)-:: —ud (1‘}

ot
A casua.] glance at equationg (1) and (2) reveals  that these
equations will be much more simplified (i, e. will become identic?
and uncoupled) if we choose

\ —

V%‘Hcaji o B dg P
ot? +az div A+ pe )-—-—---‘— &)

—f
/

: 3 |
div A -£= /
PR T )
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This requirement is called the Lorentz condition and when
the vector and scalar potential satisfy it, the gaugeis known as
Lorentz gauge.

So w1th}o_1j¢ntz condition field equation reduce to

‘a3
’A— —— R
Vol =i (@)
and V22— a2
he ala =—”P/‘- .“(5)
But as pe=1/**. V
So equations (4) and (5) can be writtet as
D2A=—}LJ ...(6)
2= —rle o(7)
: R0
with P=V2— s 52

Equations (6) and (7) are inhomogeneous wave equations and
are known as D’ Alembertian equations and can be solved in gene-
ral by a method similar to that we use to solve Poisson’s equation.
The potentials obtained by solving these equations are called

retarted potentials and are discussed in § 8°1.
In order tc determine the requirement that Lorentz condition
places on A, We substitute A’ and ¢’ from equations (3) and (4) of

§ 4-8 in eqn. (3) i-e: ‘
HATE Sl B RS
div (A’—grad A)+kex ( $tia, )_

i e GO 02
i.e. div A +"“£=VEA—€F’ a—ﬁA_
So A’ and ¢’ will also satisfy equation (3) i.e. Lorentz condi-

tion provided that
0% A
Vv 2 Nz e 5};" =0 |
ie. 2A=0. ..(8)
i.e., Lorentz condition is invariant under those gauge tranforma-
tions for which the gauge functions are solutions of the homogeneous
wave equations. ‘
The advantages of this particular gauge are :
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(i) It makes the equations for A and ¢ pendent of &
other. |
(i) It leads to the wave equations

equivalent footings.
(iii) It is a concept which is independent of the Co-0Ordinate

system chosen and so fits naturally into the considerations of

which treat ¢ ang -

special theory of relativity.
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§4'11. Coulomb Gauge :

Ar.l inspection of field equations in terms of electromagnetic
potentials i.e,

"\2 :
V2A" i‘egt-?”—gard (dlv A+[1¢€ ?é)z'-—-y".

ot o
i 0% 0 H 0¢ p
And 2 e Ly 2 i ol TR -
Vg —pe atz—{-at(dlvA—}—ye = )_ -
: i d : p |
aly Rl fd il
ie. V2P o (div A)= 5 Q)
shows that if we assume
div A=0. 9
equation (2) reduces to Poisson’s equation
P«
( W, 2 ()
whose solution is
g5 ] P (r’, !)* __r”
4’(0')"‘47“ S R d: ...(5)
/

i.e.(the scalar potential is just the jnstantaneousCoulombian
potential due to chargep v's v’y 2's n. This is the origin of the

name Coulomb gaugc?

Equation (1) in the light of (3) reduced to
1 0%A ¢

V2A--— -——-—-=-—#J+p»ei7(a—[) (6
' s equation (6) in more convenient way we use
PoissI:)gY: tc(:quz,:?orgs(zi)qwhich with the help of (5) can be written

ds '
& 1 P(” 7) sig ¥ P(f's_l_)
x.‘/ 2{&._1—‘-‘ ‘ —-R—- dT }._ - . '“(7)

————— g e o S ——— &

*Eor the solution of Poisson’s equation see Appendix —1L.
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Now as Poisson’s equation holds good '
for scalar and vectors both, replacing p¢ “y

by J’ we get $
l '_]_’_ d‘f, ____.l_
Vel JIE S O i)

Now from the vector identity
VXV XG=V (V+6)—V*C

ST V6=V (V+6)—V XV xG
Fig. 4'14
Taking G=S (J/R) d+’, we get
i e i 3y
72 = d- =v(v. S-R— dr )—VXVX‘R dr

which in the light of equation (8) reduces to’ |
e res{o o) o
: Sk Wil up g ol e
fies i 3= 4w‘7[v°SR_dT J+Z{=‘VXVXSR dv ...(9)
- Now asV e f (J’/R) d=*

=K[-1E-v..]'+,]'.\7(%-)][as V(SV)=SV-V+V-AS]

=[J’e\/(1/R) d=*  [as I’ is not a function x, y and z]
=— IV’ (1/R) dr’ [as V(1/R)=—V" (1/R)]

vI.JI ’ JI ;
[ v ()]
810 i B Ve LS )
[ V(& )=(z) v r+v ()]
. vI.JI 1 JI
_S R d’t.' _§S (-R-).ds
» AL Qs I
[ |v (F)d“"{?s'ﬁ"ds]
As J’ is confined to the vol 7’, the surface contribution will
vanish so :
Jl VI'JI > 5
(o=
R Rk ...(10)
And V X f (J’/R) dv’

TR e 1 ,
_S[ R —dJ XV(F)]d‘r
[2s curl SV=S curl V— ¥ x grad S]

Scanned by CamScanner




I

—J I’ X V(1/R)] dr’
[as ¥ is not a function of x, y and z]
JI'XV’ (1/R) d+’ las ¥ (1/R)y=~ V" (1/R)]

S[v X¥ (.11{ )]df
‘ [ as 7 x('; )—-lR—v'xJ'—J'x_V' (;—{)]

(S @— X ds
[ As S VvV xV dr'=——§ des*]
: S
As Y’ is confined to vol 7/, surface cqntribu_tion will vanish so
J’ iy v ><J’ ;
vx|(x) dr=|Tgd

I

..(11)
So eqn. (9) becomes
— v J’ ’ vJXJ’ ’
J’ _"'_"‘ v "‘"’_’ dr +4 V X ‘ " R dr
i.e. J’1+J' | -(12)
. L el hegid o g0
with J I~ i V S T —4nv % s dr
w.(13)
Now as :
2 patd] _1_ VV'.J’ l-\
VXJt—VX[—.%VS o]
i.e. V' XJd= (as curl grad ¢=0) we(14)
: | Woinediay
and V-JT=V7°[V\< z dr]
i.e. Ved'r=0 (as div curl V=0) 15

the first term on R.H.S. of equation (12) is irrotational and
second is solenoidal. The first term 1s called longitudinal current
aud the other transverse current.
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So in the light of equation (12), (6) can be written as

p 0
V’A——}— (izé= —pw(J1+d7)+peV (a“’gs)

vt ort
. I B0A ERan
[substituting ¢ from equation (5)]
, 1 02A 1 A7 R el
£ Viaraap = thsidae s ] i Py

e 0P’
[as from continuity eqn. —e—%;—i’= VAL | ]

1 22 -
or va-—ga— §?=,——MT—-ILJ,+;LJ1 [From equation (13)]

! 1 52A

1.e. vz‘A_;f_éTf Z—FJT

i.e- D2A=_FJT0 -00(16)
i.e. the equation for A can be expressed entirely in terms of the
transverse current.  So this gauge sometimes is also cajled trans-
Verse gauge.

The Coulomb gauge has a certaih advantage, In it the scalar
potential is exactly the electrostatic potential '
electric field y et
oA
ot
is separable into an electrostatic field V=¢ and a wave field given
by —(dA/ot).

Tl?is gauge is ‘often used when no sources are present. Then
according to equation (5) $=0 and A satisfies the homogeneous
wave equation (16). The fields are given by

0A

E=— a—i- and BEVXA,

E=—grad ¢ —
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Plane Electromagnetic Wav%

and their Pmpagaﬁﬁn

INTRODUCTION :

[In this chapter we shall show that the ngwe]l’s field o
tions, predict the existence of el§ctr0magnetlc waves and 4
the propagation of these waves In free space, non-condy;
conducting and jonized media. We shall also investigat the
energy flow associated with their propagation.]

§ 5-1. Electromagnetic Waves in free space.*

We know that Maxwell’s equations are

e )
ol  (I=E
V- H= +'5t_ N with =p-H‘ Al
v xE—_ 1B LN
ot o J
and in free space i.e. vacuum
P=0 =1
o=0 Kr=1
So Maxwell’s equations reduce to
-, VE=0 7 ,"('a)
Voo o g
we ..-(c) |
AXE=-g :—I.{ S
R

Now if
“(I)_ _WL Wl_'cilf‘e‘_tfe?furl of equation 2 (c) then

Scanned by CamScanner



VX(VXH)=¢ ¥V x (%tg)
0

; Vv eH)— —e —
ie. [V(V «H)— V2H]=¢, 57 (V xE). . (3)
But from equations 2 (b) and 2 (d)

Ved=0 and VY xE=—y, g?
So eqn. (3) reduces to

1 o*H : 1

V2H—z§ —a—t—z-=0 with }‘0@0:25' ...(A)

(II) We take the curl of equation 2 (d), then

. | oH!
¥V X(V XE)=V x(—-#o aT')

e, [V(VE)—VEl=—t & (VXH). (4)

But from equation 2 (a) and 2 (c)
E
VeE=0 and ¥ xH=¢ o

So equation (4) reduces to

1 2E : 4
ie. sz'—‘EE —a—t—z—=0 with F’o.o'::.cz

...(B)

A glance at differential equations (A) and (B reveals that
these are indential in form to the equation

Vi Jap (5)
i i dard wave equation represent-
However equation (3) 18 u stan
ing unattenuated wave {ravelling at a speed v*. So we conclude
t'hit field vector E and H are pr opagated in fréee space as waves at a
speed
____L_..:J(_ff'———)-:\/w x 10%) X 4/(107)
=ty N \Ameoko
=3 x 10® m/s
i.e. the velocity of light . **

o —————

2. LK
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Further as equation (A) and (B) are ve;;(;r i‘:,l:tv ; equations
their solution can be obtained in many formz,vc Fronts oa;lce ?ither
stationary or progressive waves or havm.g VlV RN %artlcular
types such as plane, cylindrical or spherica .l i : Ounday
conditions are imposed, as in this chapter, plan¢ progressive o)
tions are most appropriate. S0 a8 the plane PIOZIESSIVE solatjy,

of equation (5) is

i) Lwi (wt—ker)
- 0 ) :
 the solutions of equations (A) and (B) will be of the form
E—E e——i (wt—ker) )
H”"" i (wt—ker) +(C)
TR0

where k is the so called wave vector given by

2t 2nf @
k:: ’n::'—/\—— n_--—c— n——c n

with n as a unit vector in the direction of wave propagation.

The form of field vectors E and H given by eqn. (C) suggets
that in case of field vectors operator / is equivalent to i k while
2/ot to (—iw).* So Maxwell’s equations in free space i.e. eqn. (2)
in terms of operator (I k) and (—iw) can be written as

k-E=0 (@)

k-H=0 () ]
—k X H=we, E () i)

kX E=wpH ...(d) I

Regarding plane electromagnetic waves in free space itis
worthy to note that :

(/) As according to eqn. 4 (a) the vector E is perpendicular
to the direction of propagation while according to eqn. 4 (b) the
vector H is perpendicular to the direction of propagation (i.e. i
an electromagnetic wave both the vectors E and H are perpendi-

cular to the dl.rectlon of wave Propagation), electrom agnetic WOVeS
are transverse in nature,

Further 2s according to eqn. 4 (d) s perpendicular to both
E e according to eqn 4 (ay g perpendicular to k. TH®
all in turn implies that /» ¢ plane electromagnetic waves veclors >
H and k are orthogonal as shown in fig. 5]
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(i) As according to equation 4 (d)
k X E= —-(l)l"'oH
e, H=

(an) (as ! =nk)

i

Fig. 51
K- H=an=(‘e (nX E) (as k=% anc ‘€ylb =1)
1.€. Clr € C %o \6'2
; n><E ‘
- (D)
R o
o Bk s (e

As the ratio | E/H | is real and positive, the vectors E and H
are in phase.* i.e. when E has its maximum value H has also its
maximum value. This is shown in fig. 5:2. From the above it is

also clear that in an electromagnetic wave the amplitude of electric

vector E is Z, times that of the magnetic vector H.

-

E

5

x4

I

Fig. 52
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F, case of propagation E. M. W, in free space.

| (Y The wave propagates with a speed equal to that of light

,' in free space.

(if) The electromagnetic waves are iransverse in nature.

(ii1) The wave vectors E and H are mutually perpendicular.

(iv) The vector E and H are in phase.

(v) The electrostatic energy density is equal to the magneto-
static energy density.

(vi) The electromagnetic encrgy is transmitted in the direo-
tion of wave propagation at speed c.

a———- - —

!

[—

§5 2  Propagation of EM. W, in Isotropic Diclectrics.*
We know that Maxwell’s field equations are

v.nn’ 1
VeB=0 - :"'Csh
v XHuJ+a‘" } with D:':! (1)
- ‘B
VxB=-g )
and 1n 1sotropic dielectrics
o=0 and p==0,
So Maxwell’s equations reducc to
JeE=0 .(a) )
V ‘H= (D) ‘& |
o it
V xH=ex Ao | crekd)
*E ‘3_".' ‘
VAE=—¥% -0 )}

Now if
(I) We take the curl of equation 2 (¢) then

| °E
7 &V xR)=¢ V X ( ot l
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v (VeH)—VH=e5¢ (V XE).

or
"
But from equations 2 (b) and 2 (d) s )
JeH=0 and V ><E=-PaT-
So equation (3) reduces to
7 2H 8211 =0
\ — € atz
: atH L s L1t
l.e. V?H--—UZ Y =0 with pe / "
(II) We take the curl of eqn. 2 (d) then
oH
V X(VE)=V x(—u 57)
; 0
ie. V (V+E)—VE=—=p - (V XH) 4
But from equations 2 (a) and 2 (c)
VeE=0 and V xH=:¢ g%
So equation (4) reduces to
02E
sz_l-"C é"t—é-zo
; 1 o%E .
ie. VZE—-;)-éa—tz— =0 with pe=1/s2 (B

A glance at equation (A) and (B) reveals that these are ident
cal in form to the equation

1 0%

Sl = —ir

W v? or2 0. wd)
: However equation (5) is a standard wave equation represel”
Ing an unattenuvated wave travelling at a speed v. So we concluc®
that field vectors E and H propagate in isotropic dielectric *

waves given by

E : En '--i(wtmk-.r
i }"-{Ho}e : (0
at a speed
V= : — ! ; = “0)
V(‘l“')—‘\/(‘r"’rtoﬁo (as e=e,¢ and p=F
: Ry 6
S Ve ) < C s eby=l/c2; o and p, > 1] o
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Plane Electromagnetic Waves and Their Propagation 237

L pe the speed of electromagnetic wave in isotropic dielectrics is

" less than the speed of electromagnetic waves in free space.

-_f Further as index of refraction is defined as

5 n={(c/v)

i So in this particular case

; : n=1/(e,i+,) [as v=c/+/ (e,;1+/]

~ and as in a non-magnetic medium p,=1

: n=4/(s,) i.e. n?=e, kD

- Equation (7) is called Maxwell’s relation and has been actually

~ confirmed by experiments for long waves i.e. radio frequency and

- slow infrared oscillations. In visible region of the spectrum this

' relation is also fairly well satisfied for some substances such as H,,

" CO,, N, and O,. But for many other substances it fails, when as

* a rule the substance shows infrared selective absorption. With

~ water the failure is especially marked. For water a1, ¢,x81 so
that n~9. But it is well known that the index of refraction of

water for light is very closely given by 4/3 i.e. 1'33. The solution

of this appearent contradiction lies in the fact that our macroscopic

formulation of electromagnetic theory gives no indication of the

values to be expected for e, and i, and we must rely on experiment

to obtain them. It turns out that these quantitites are not really

constant for a given material but usually have a strong depen-

dence on frequency due to dispersion®.
It is also worthy to note here that ¢, > 1 the velocity of light

in an isotropic dielectric medium.

U AR D
: 55 n _‘\/ ¢r) _
Uis always less then ¢ as ¢, > 1. ~ . (8)

It is therefore possible for high energy particles to have velocities
in excess of ». When such particles pass through a dielectric a
bluish light known as Cerenkov-radition is emitted due to the

nteraction of uniformly moving charged particles with the
medium.

‘ Further as the form
tion (C) suggests that

7 —ik and 5;—»——1'«»

of field vector E and H given by equa-

e ————
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So in terms of these operators eqn: (2) reduces to
kE=0 . ..(@)
keH=0 ...(b) (O
—kxH=weE ..(C)
{ =wuH (d J e ;
From thils: >(kfgrm 5f Maxwe)]l’s equation'nt is self evndleflt that
in a plane electromagnetic wave propagatinog through 1SO0top,

dielectric — DAy
(/) The vectors E, H and k are orthogonal i.e. the electy,,

magnetic wave is transverse in nature and in fl‘ .111; electric gng
magnetic vectors are also mutually orthogonal. This is because
accordingto 9 (a) Eis | tok

according to 9 (b) His L tok
according to 9 (¢) E is L to both k and H
and according to 9 (d) His 1 to both k and E
(it) The vectors E and H are in phase and their magnitudes qgre

related to each other by the relation.

E| E ("_l; i
IH_,*H;.ma/ e, ) Li4

where Z is called the impendence of the medium.
This is because according to equation 9 (d).

H= L (XE)—L (axE) (ase=2)
ie. Hzm/(#i) (n VE):(E‘;—F’) ( o s o \/:!‘G))
witl, 7~ J (‘-fe-)z J (:-‘- 2—‘0—) _Eo. (’?=\/(F'r¢r))
or g- :‘}%’:Z:teal quantity. ..(10)

(ﬁf) The direction of flow Ofenergy is the di"é’Cinﬂ Vi suich
the wave propagates and the Poyating vector i Gl i esof e
poyating vector if the same wave pr opagates, through free space.
It is because

S=E><H=EX(“§E)

(] 1 I
ie. 5= - [(E.E) n—(E+n)E]

* In this case
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S=- E*
ie 7 £°n [as Een—=0 because E is | 1o nj
1
ie S'—=—‘Z En="__ [‘06E2] n (as .l_.__,.’__ 1.._ n
g SRR M L )
1 n

oL, <S>=_ e
l 7 rms M= ’-L: [GgCEﬂrms] n

E (v) The electromagne

.~ static energy density and

- energy density if the sq
This is because

‘ vinCL1)
tic energy density is equal to the magneto-
the total energy density is e, times of the
me wave propagates through free space.

Ue %eEz € (E? €
=3 ) = (B9= 2 e (s mii=7)
and u=ue‘1’“um=EE2=er (GOEB)
n
il 2
<SsopieEel
Further AL — n
<Uu> [5 r€p E 2rms] H.e, i
. ne
.e. e :
i <S>=.5 <t>n [(as n=1/{p,e,)]

1.0 <S>=v<u>n (as ¢/n=r)
i.e. electromagnetic energy is transmitted with the same velocity
with which the fields do. ;

- §5'3. Propagation of E.M.W. in Anisotropic Dielectric*.

In anistropic medium the relative permitivity is no longer a
scalar and to deal with wave propagation we refer all fields to
the principal axes so that ‘

Dy=¢€€yEx ; Dx=E & E, and D,=e¢5FE,; sl

Further since the medium is non conducting i.e.

J=0; p=0 and p,=1
So Maxwell’s equation in an anisotropic dielectric medium

reduce to
div D=0 (@
div H=0 @w
oD 12)
curl H=;37 (€) ‘>
cH )

curl E= —HFo 51~ () J

Scanned by CamScanner



It is important to note that in this case though
div D=0, div E£0
because D in general is not in the directiox.l of E,
Now consider a plane wave advancing with phage Velog;
along the direction of wave normal n (i.e. wave vector k). Let lttyb:

{II_:I }":{F}%}e —1i (wt—ker)

Dk %
So the operator V and é?wﬂl be

Vv —ik and . - (—iw).

ot

And in terms of these operations equations (2) can be
written as

keD=0 (a)‘
keH=0 (b) '
—kXH=wD (c)
kX E=pwH (d)‘ )

From this form of Maxwell’s eqns. it is clear that

() The EM.W. are transverse it nature w.r.t D and H (and
not w.r.t. E and Has in a isotropic media). It is because accor-

ding to 4 (a) k is | to D whilc according to 4 (bykis L toHi¢
kis | to both H and D a5 shown in fig. 5-5.

(i) The vectors D, H and k are orthogonal because accordit?

oeqn, 4 (b) kis | to I while according to eqn. 4 (c) D is L ¢
oth k and H.

Gl The vectors D, Eandk gpe co-planer. This is becd"
cPording to equation 4 (c)

D= —(kxH)a : (5)
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: while according to 4 (d) ‘
g Hz(kXE)/#ow ...(6)
| So from ¢quations (5) and (6)
D="—[kX kxE)]/uw?
e. D= —[k+E) k—k2 E]/py? i)
(iv) In an anisotropic medium energy is not propagated in general
in the direction of wave propagation (i.e. the direction of k and S are
not same) and the Poyntiizg vector is coplaner with D,E and k. This
is because the Poynting vector is given by
S=ExH
i.e. S is normal to the plane of E and H and not to the plane of D
and H (which is the direction of k).

Scanned by CamScanner



TT T A AWW N W AANS AN WA ¥

6'2. Reflection and refraction of E.M.W.

. We now rfeed to consider that what happens when plane
electromagnetic waves which are travelling in one medium are
incident upon an infinite plane surface separating this medium
from another with different electromagnetic properties.

When an electric wave is travelling through space thereis an
oxact balance between the electric and magnetic fields, Half of
the energy of wave as a matter
of fact is in electric field and half in ||
the magnetic.* If the wave enters
some different medium, there must
be a ncw distribution of energy
(due to the change in field vectors).
Whether the new medium is a
dielectric, a2 magnetic, a conducting
or an ionised region, there will have
to be a readjustment of energy rela-

tions as the wave reaches its surface. ; Fig. 6°3.
Since no energy can be added to the wave as it pass¢s through the

boundary surface, the only way that a new balance can be achie-
ved is for some of the incident energy to be reflected. ‘ This i3
what actually happens. The transmitted energy constitutes the

refracted wave and the reflected one ¢he reflected wave.
. The reflection and refraction of lig.h’i at a p!ane.: S“ff?ce t;ee:;
een two media of different dielectric properties is 2 amill

xample of efracti agnetic waves.
i action of electromagne

3 le of reflection and T e P
The various aspects of the phenomenon divide themselves into two

classes :

— . ——————— ISR

B kL e ——

e
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(A) Kinematic Properties :
Following are the kinematic properties of reflect jop

refraction :
(i) Law of Frequency : The frequency of the waye rema,
3

unchanged by reflection or refraction.
(i7) The reflected and refracted waves are in the same plg,, :

the incident wave and the normal to the boundary surface.

(fii) Law of Reflection : In case of reflection the angle of
reflection is equal to the angle of incidence 1 e.

0;i=0r

(iv) Snell’s Law ; In case of refraction the ratio of the sj, of
the angle of refraction to the sin of angle of incidence is equq] to
the ratio of the refractive indices of the two media i.e.

n, sin ;=n, sin Ot

(B) Dynamic Properties :

These properties are concerned with the :—

(i) Intensities of reflected and refracted waves.

(if) Phase changes and polarisation of waves.

The kinematic properties follow immediately from the wave
nature of phenomenon and the fact that there are boundany
condition to be satisfied. But they do not depend on the natur
of the waves or the boundary conditions. On the other hand the
dynamic properties depend entirely on the specific nature of
electromagnetic fields and the boundary conditions. Kinemati
properties are proved in example —1 while dynamic properties ar
discussed in details in forth-coming articles.
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§ 6"7. Propagation of Electromagnetic Waves between parallel and
perfectly conducting planes.*

We know that in a good conductor the field penetrates only to
a small distance comparable with the skin depth, which reduces to
zero in the limit of perfect conductivity. Thus, a perfect conduc-
tor behaves as a perfect reflector and hence allows no field to
penetrate it. Consequently, the electric and magnetic fields are
gero within the conducting plane and our boundary conditions

“becomes —
(i) The tangential component of E at the surface of the con-
ducting plane is zero, since it must be zero within the plane and

we know that the tangential component is continuous.
(iiy The normal component of B at the surfac> of the conduct-
ing plane is zero, since it must be zero within the plane and the

normal component of B is continuous.
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Let the planes be in the x

. ~Z pla i

0 at y=d as
ectromagnetic wave is incj

K multiple reflect; e
gate in a direction paralle] to i ¢clions the wave will propa-

W 3 ; ' Since in fig. 6°17 the x and

.'zfdlrectml?:l are physically Indistinguishable, no generality is lost

i -We c?nsol er only Waves with wave vector k, in y-z plane making

chixlllci?fge suv:tl':llcl:ey-aiﬂs. ‘Siuch wave will strike on prefectly con-
al v=d and will be re d

propaselin A flected as waves whose

bt " makes the angle § with the minus v-axis
(as :=0;). When these waves are reflected again by the surface

el

8
A\ TS

= _/

Fig. 617

at y—0. They become waves of initial type again and have
propagation vector K. Thus the propagation between t»yo
conducting planes can bs described in terms of exponential
factors.

e;i (a;t.,1(9.1-)____e-—imteik0 (y cos 8+z sin 6)
[for incident wave]

: p —iwt ika (—y cos 8-z sin 6)
and —i(wt ~K'oeT) _, ’wrelko e

[for reflected wave]
i the free space
Where | ko |=| ko' | =| 27/Ag) = (w/C) and A, is called the, |
wavelength,
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M.W.E, H and k are orthogonal, ip Zene.

Now since in an E. ; -
pagation viz,

ral there are three possible mOGCS of PT.O : .

(A) TE Waves (or Mode) : Th.lS IS. charrfictcrls.ed by i
E.M.W. having an electric field E which 18 _entlrely I a plap,
transverse to the assumed axis of propagation (Which is z-ayj
here). Only the magnetic field H has a f;omponent alOI:lg the
assumed axis of propagation and hence this type of wave is ajs,
known as H-wave. This is shown in fig. 6'18 (a) For TE way,
it is possible to express all field components in terms of the axia|
magnetic field component H..

(B) TM wave (or Mode): This is characterised by ap
E.M.W. having magnetic field H which is entirely in a plane
transverse to the assumed axis of propagation (which is z-axis
here). Only the electric field E has a component along the assumed
axis of propagation and hence this type of wave is also known

78
=] i 8 i i ﬂ
i Bl 5
I 1
| ! ‘
e EoiE _—'D e e 00 @
ol | y . i
oc : \
) - - - by -
E-ALONG x AXIS H-ALONG 20 AXIS H-ALONG x AXIS
TE WAVE TM WAVE TEM WAVE
(a) (b) (¢)
Fig. 6:18

as E-wave. This is shown infig. 6'18 (b). For TM wave it is
possible to express all field components in terms of the axial
electric field components E, '

(C) TEM wave (or Mode) : It is characterial by an E.M.W-
having both the electric and magnetic fields entirely in a plane
transverse to the assumed axis of propagation j.e it is an electro-
magnetic wave in which the direction of wave motion is along the
assumed axis of propagation. This s shown in fig. 618 (¢) (In
coaxial cables usually EMW are propagated in this mode].

_As an example here we shall discyss only TE wave. The el ectric
fiel ds for incident and reflected waves in T£ case will be

Ey=i Ee '@ ko (¥ cos 04z sin )
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[nteraction of I .M, W,

e Vi .

LN (0 o € ot ‘_,”‘u(
So by principle of Sl
the region between the plag

Y CO8 0} 2 8in ¢)

I poxi
\ ' . I,If’i‘ the resultant electri: field in
O8N TE will be

l',@-’uﬁl‘:‘l | lg:J‘!-‘.ﬁI“ [l [l':" (y”(" (.\’ Cos ¢ l*: sin U)

| by’ (,II(‘. (v eos 0z sin 0)
Now as by boumlury cond it
- F must vanishes at the surface

‘inn that tangential component of
| oF the conducting plane i.c.
L0 at Vs ()

ot (o M lkeg 2 8l ke 2 8in §°
We get i ¢ [ho MU N N E,,’clk“ Z sin U} 0

: 1.C. i .l.':" | E’o‘-'-’-'!() or lj'or:.: 'Eu
.l"hn.s condftlon simply indicates that the reflection at the con-
ducting plane involves a  phase change of m and no change in
amplitude

And so E=i [, [e”"oy Cos Uv frisg ikoy cos 0] oot —ky z sin 6)

- or E=1i E, [2i sin (ko) cos 0)] ¢ @i e Z8100)
or E =i 2iE, sin (k) e W) adl)
with k.=k, cos @ and k =k, sin @ ()

This is the required result and from this it is clear that

(I) The resultant disturbance is propagating as a wave along
z-axis with a wave length

27 27 - : i
e, — e as kg=1/k, Sin ¢
"'“'—k,, ko in 0 (as Ag=/o )
A\ Py
Ag:sm (as ko Ao .(3)
A, is called the guide wavelength and is>Ag as sin @ is< 1.
And so the velocity of the wave will be
_ Y (as kg=kq sin 0)
=k, kosind
b w
S (ee?)
9= 5in 9 ¢

' ' ' than ¢ a8
‘ ity i Jocity and is greater :
is called phase ve is gr LR
- sin alhlls V:]?(;il::t oslance this appears tu be' l;l d:)rccsti C;fa?ﬁl:an
- Special t‘heory of r;latively according to which n gA
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“je. A is the largest wavelength or o, js the lowest fregeuncy

"which can be propagated. This 18 why A, is called cut off wave

i?jength and the given problem acts ag high pass filter.
©  (IV) The velocity with which energy is propagated along

j;the axis is called group velocity and is given by

E . _Oat
& Rl
g But from equation (7) :
ko=v (kl+ke?) or a=cy/ (kl+kg? [as ko= (w/c)]
for  w= 52 = (ethhg o2k,
|-
B o= ® [as ko= (ket+ k]
0
E ie. v;=csing [as ky=Fkosin d] =)

From expression (9) it is clear that the group velocity », with
‘which energy. is propagated along the axis is lesser than ¢ as
"sind < 1. Further multiplying equation.(4) and (9) we get
N=—CF

{ a result which is expected but by no means apparent.

§ 6'8. Wave Guide (Rectangular) e g J
B ioliow conducting metallic tube of uniform " cross seclion
" usually filled with air, for transmilting electromagnelic wave ”

* Sucessive reflections from inner walls of the tube is called a wave

guide. If the cross section

S . . . d

is rectangular 1t 18 calle :
' i gt
| rectangular wave guide and l

if the cross section 15 €I /
" cular it is called cylinderital
* wave guide.

lar Cylindrical

: : -~ and Rectangu ;
It is used in UHF.a : i Wave Guide
. ion such as WS Guldc.

| <10

O'MHZOr D\ - -
rad)ar (f= 3:10 45 anes ission lines as at these frequencies
~ cm) as an alternati

] trans-
BB .\ hanile more power yith 1estel Josses as compared to
1t can handle m
~ mission lines.
Propagation of Eﬂl\ﬂ/IW

: , 4
in wave guides can be considered as

Scanned by CamScanner



Scanned by CamScanner



35

"'-"-'r-v o N A -

.(2)

Similarly taking curl of eqn. 1 {c) and using 1 (b) and (d)

...(3)

fwe get
1
z V*B— e T?“O
r As equations (2) and (3) are of the form
| a0
l V& - 5 ;?—0

\as waves in the guide 4t a speed c.

We come to the conclusion that fields E and B are prO,"agaff"i

Now as the solation of above wave equation when itis pro-

fpagating along z-axis is

s& ¢ e—-i {=r=kZ)

fso if k, is the wave vector OT propagation consiaii along z-axis
i.e. axis of guide the solution of eguations (2) and (3) will be

{E(r: l)}z{E(xf) ]_e
B¢, I} By |

i (wf —k;2z)

()

To determine how Ex, »; and By, » vary withx and y we start

with Maxwell’s equations

curl B—-—— —IE and curl E———Z—?
which in terms of componcnts can be written as
8B, ¢By_1 ¢E. ff_:__éf,z_féx
oy 2z & ey -Ez -Et
E—B". B‘Bz-‘—!_ JE} and E_li"mcg-'z __g_B_I 3
e e oz ox et .(3)
EB,, aB,;___ 1 a_—E.: E_E_y__;:E':: __i'qz
x .aF e ex oy at

But from equati

E_. — gkg aﬂd

on (4) it is apparent that 5
— — i "7‘_'lk. l.aSk.——- —J

0z
So equation (5), reducc> fo
2,-4’—1‘@3_, ’i‘" i A
ik Bx— ff'—-f%—? SR (1) & 48
2B, B._ g (i) s
ox i aF
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o o
and g—li‘-m ikoEy=ikocBx () |
) ol i |
S D Y
ik g 5 ikocBy l B
0By OBy op,  ..(iii) |
ox oy el el J

If we substitute the value of By from equation 7 (i) in 6 (i)
we get

LI (’f& g aEz)_______z_lgu g,

oy kqc ikoe 03X g
aBz kg OE‘Z::(E!C-&:J——-&Q) Ex
s 5 Tkedx  \ck, ¢
i 0E: a__B_z] '
or Ex"'—"[koz___kgz] [kﬁ’ oOx +kbc ay "-(A)
And if we substitute the value of Ex from 6 (i) in 7 (ii), we
get
Ll Ty 0L OB,
By—[lcuz—-kgﬂ [E— ox 7% oy ] ..(B)

Similarly eliminating By and E, in turn, from 6 (ii) and 7 (j
we get

LR o S QB g0 OB

E,= e [kg 3 koc = ] .0
0 e el

nd B | o e | (D)

Examination of equations (A), (B), (C) and (D) shows that:

(i) If a electromagnetic wave is to be propagated along 2 axls
then as E.=B.=0, the equations (A), (B), (C) and (D) vanish.
Theretore there is no non-zero component of E or B. This in tu®
implies that T E M waves cannot be propagated along the axis ¢
a wave guide. |

(@) If we set k®- k,2=k.2 ie., k2=k2—k?2 We find tbat
for ko<<ke, kg is imaginary which in turn results in the attenués”
of E and H given by eqn. (4). This in turn means that we cand®
propagate waves for which kg <k, (or f, =) i.e; a guide acls as
short of high pass filter in the sense that one can propagete "
along it whose frequencies are greater than cut off frequency:
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The equation

koz—k32=k62 i.e. kﬂ'akla"i"k g
: 1o :
.. YRR S (as  k=2m/))

It relates the free Space wave lengtn A,

~to cut off wave length A, and guide waye length A,. According to it

Ay

Agiss Loy e
-G -

(iii) The phase velocity in the guide will be given by

U=(—l-, =0 k.._o_ 4 o
kg kg [as kozé’]
"01' el ¢ k, s c
: N TR o o el T i Y
| ¢ - 2m
0 V= ce———r = —
4 VIT— (/407 [as Ansd ] ()
" This result clearly shows that » > ¢ and for A;=A,
filos |
i.c. phase velocity becomes infinite exactly at cut off.
(iv) As /

kk 2tk ie. w=c (k2-+k2)1? [as  ko=w]c]
‘ The group velocity with which energy is propagated along the
axis of the guide will be given by

_e_(g. =.—a—- [C (kg2_|_ kc2)112]

- 0=k, kg

ie. —c b (kg2tkA) T2 kg

ki e K g gy Tl (ol [as k=K k]
1 ' : 1‘0 : :

or v,=c /|1 —(Ag/Ae)?] [as k=2m/A] ()

L
on it is clear that vz < € and vo.=c2.

the fields i.e. Ex, Ey, Bx and B,
ndent of one another and depend only

tudinal components E. or B; of the
terms of a linear
for which E:=0
electric waves

From this equati

(v) Transverse components of

of a guided wave are indepe :
Lon the values of the longl :
| Buided wave, so it IS possible to express tljcgzl;n
Superposition of two independent so'lutlon’sli e
,"(TE) and one for which B, =0 (RN TIAns
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are sometimes known as H wave and transverse magnetic Waveg a

F-waves.

T E Waves
For these as F,=0and kZ2=ke'—ks', equations (4) (B)

(C) and (D) reduce to

§

koo OB, . _ikg 0B:
U R
ik.cOB, . _ikg0B: .
E_y= n I_(:"; a; ..-(ll) B_l"'“kcz ay .(IV) (8)

Thus in TE mode all the transverse components of E and B can
be expressed in terms of longitudinal component of magnetic vectoy
B:. Inorder to compute B, we use equation (3) ze.

1 o°B

B
which in the light of eqn, (4) i.e.
' —1 (wt —kg2)

B(rs ;)-::.B(x, y) €

ie. with g-z—» (i kg) and g;-" (—fw) becomes
g;% _i_-g;)l—:——i—(j kg)* B— :;2-» (—iw)? B=0
ie. 22—))2-!2;13 (‘f«;“kgz ) B
L g;g - iv?_ +kB=0 [as kgy=w/c and kg2=k 2k}

As above equation is a vector equation so must be satisfied for
each component of B. For z-component of B it reduces to

0*B, 02B,
o -kc2 z—
0x? +ay"' —i. B ”.(a)

with boundary condition | ¢B,/onl,=0 i _e.

TzO at x=0 and x—q.

X
0B,
and oy =0 at  y=0" land y—bn
Such a solution is
e e (’L’“‘.’f Y |
D a ) s\ =~ . o
with el M S
o The (0
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~ [Interact

ion of E.M,W. with
. Matter on Macroscopic Scaje 301
\where the indices m andp e
i SPecify the mode. The cut of
: 'L e me  p2 e
(Ac )""l ‘—i &T-_}-EF] (as kzz__:)
- ARIREERE gie?
| ['1'_ by ]
3 a | +[5] +(J)
whlle cut off frequency will be |
; o m?2 n® J12 : 2nc
Wpnn WC[F‘I‘bT] ‘ [as w=_,\—] -(K)
The modes

,_ corresponding to m and n are designated as TE,,,
mode.  The case m=n=0 gives a static field which do not repre-
sent a wave propagtion. 8o TE,, mode does not exist. Ifa < &
the Jowest cut off frequency result for m=0 end n=1 Tie

ne

(w)01= b or kc=?‘.E

b

The TE, niode is called the principal or dominant mode.
- The fields in the guide for TE mode will be obtained from
eqn. (8) by substituting the solution for B, which is

-;—'l (wt-—k Z)
Bie, n=:Bzx, yy € 3

; HTT —lan—k
:‘e' B:(r, t)=Bo COS ['11‘&75‘{-] COS [-——-—Z)}-)-—] e ! ((‘u 8'2)

Thus we have

Ex=-—%"30 cos [’_’Ef_] sin"_"b?f._i (w! —ky2)

E,= in":;; ko B, sinm:x cosn";y ot (0t—k,2)

By= -—im:::z(gBo Sinm;wc cosm:)y 5 Gty

By= -"i,’:’gzg B, cos [’-’E]sin[lﬂby—] e_i(“’t_kgz)
Waves : A 1

For there as B,=0 and as kg® ~kg?=Kk* equations A, B, C
Nd D redyce to

f iko O
Ex:i’%?f} (1) B.r-“-**(:;;c! o .. (iii) i
c C s
iky BE; oot Ea .
e
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can be expressed in (erms of longiiu -:lnath«e egn'(‘h i s electric |
field E.. E. may be computed by uSing ' mponent
: B i (wt—Ked)

i‘::(rql):E:(.\'p_)') e

i.e.
qn. (2) (for z component) i.e.

so that it satisfies e

1 0%,
B o
)3
asEz aqEZ . __(—lw) EZ=0
I.e. 5;7“}—5}5 ‘.L(Ikg)2 E: c2

2
@+?j§i+kcﬂ E.=0 ( as;”—z—-k’g:k?o—kﬁ,:ksc)

or
ox2  ogy?

with boundary conditions E.[s=0 7.e.
E,—=0 at x=0 and x=¢@

and E.=0 at y=0 and y=b
Such a solution is

E.=E, sin ('—’%E}) sin (@EJJ—) ' 4
ith ki=1c? in—-z—i-’f (
w1 U PR (M)

which corresponds to a cut off wavelength ‘ |
1 ms Sntea
(;—)m =1 [d,— +5;] [as k=2a/)]
and a cut off frequency
me np2ur :
= [aT _'L;Bi] [as k=a/c]

Comparing eqn. (M) with (I) we find that in a rectangular
waveguide TE and TM modes have the same set of cut off frequen-
cies. However the cases m=0and n=1 or m=1 and n=0 which
were dominant in TE mode do not exist for TM wave because the
field vanishes or m or n=0,

The value of the fields for TM mode w: i m
e e will ined fr0
eqn. (10) by substituting the solution for E.l ngchoizta

EZ(I’ l)=Ez(x’ },)e-—-l (wt*ng)

I..e- Ez(r, z)=Eg Siﬂ ("%C;’C) Siﬂ (’ﬂ_)e‘“i (wt-—ng)
b ?
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Thus we have
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9. Cavity Resonator :

A cav.ity resonator is an energy storing device, similarto a
sonant circuit at low frequencies. Virtually any metallic enclo-
te, when properly excited will function as a cavity resonator or
ctromagnetic cavity, For certain specific frequencies electro-
ignetic field oscillations can be sustained within the enclosure
th a very small expenditure of power loss in the cavity walls.
vity resonators have the advantages of reasonable dimeasions,
simplicity, remarkable high @ and very high impedence.

A cavity resonator is usually superior to conventional L-C cir-
t by a factor of about 20. i.e. the fraction of the stored energy
sipated per cycle in a cavity resonator is about (1/20) the
ction dissipated per cy:le in an L-C circuit. An additional
jantage is that cavity resonators of practical size have resonant
quencies which range upward from a few hundred maga cycles
t the rezion where it is almost impossible to construct a L-C

uit,

avity resonator
es such as Klystron,
measure frequency.
Theory : Consider a rectangtl

h the assumptions. .
(i) The walls are perfectly conducting.

_ (ii) The interior of cavity is free-space.
(iiiy The cavity is rectangular.
' (iv) The wave is advancing along z-

s are used as resonant circuit in high frequency
for band pass filters and for wave meters

lar cavity as shown in fig 621,

axis.
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R 11 (~] § [ Theory

As there are two  possible
modes of propagation TE or Tj
in the cavity, we shall deal thep
separately.

Case ]. TE Mode. In thj
‘mode E,=0 so that the electric
field propagating along +ive 2.
| direction may be expressed as

Fig 621 BivsiniEone i (wt—kg2)

The electric field of reflected wave propagating along z-axis

will therefore be

Er(r,t) =E(x,y) €

— i (wt+kg2)

So the resultant electric field

E,n=E’ y)e_i (wt—k’z)—!-E'cx » e—i stk

The boundary condition that tangential component of E j
zero at the boundary z=0 (for all values of x, y and #) requires
E+E'=0 ie. E'=—E
so that

E(,,,)’:Ex,y) e —lat [eikgz_e — ikgz]

i.e. ,E(m)=2i E(x,y) sin kgz e—.-‘w,t

the boundary condition E,y=0 at z=d implies that
sin k,[d=0 or kgd=p=n
ks=(pr/d) (1)

. Etron=2i '/E(x,yj sin (p_%z_) e—i"'t
65mponents will be

i ;E""‘”” sin (%)e—fwt
y0y) Sin (m—d—-) Tl
e E, and E, we write Maxwell’s equations
d curl E=--(gB/ot) in terms of comp®

B ke 0B, .0
Ey"" -—_kc' ax :
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Now B; will be obtained b

: Y solvj
equation for B i.e. 1ng the z-component of waye

1 o2
( V.-E"a‘;:) B.==(

: *B, 0B, 0B, 1 9B
- o THT T —ame=0

But as f;or a Wflve Propagating along z -axis
(0/02) > ik and (0/3t) > (—iw)

a’Bz B’B, 4 2
0*B, 0%B,;

2 B
or 33 +8y= +ke B;.'___o

[with w/c=k, and k2 —k 2=k 2|.. (4
The boundary conditions | 8B/on |3=(;’ ie. Y
oB; o
% e ~at x=0 and x=a

and ——==0 at y=0 and y=b

when applied to equation (4) yields
—B, cos (™™ cos (™.
B.=B, cos( = ) cos( b )

2 2
with ki=mn? [Z% +Z—2]

So substituting the value of B; from (5) in (3) we get

ikyc [nw mnx \ . [(nwy
Ex(x,y)=“ﬁ§'(—5') Bo COS (T) Slll(-——-b )
ik mm ‘ mnx) (mry_)
Ey(x,y)=-—ko§ ( :2_) B, sin ( s ol e

The above equation when substituted in eqns. (2) results
mnXx : nwy . [Pz \ iwt
ma 2 (%) mo (%) 50 () 0 (F)-

()
0.(6)

2 a )
: (A
g — et
VR T fd W (m__-u_x) cos ("—TZ—y) sin (p—’—‘;—) E
s ka) e | (B)
- With g, =0 as wave is TE ' 1 ()

The components of magaetic field in this case will be obtained

T s
P
WXy
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by using the Maxwell’s curl E=(—0B/0r) in terms of componentg

i.e.

oE, 0B, 0B —0E, 1
)by ot 5 A |
0By 9E. _ 0By _ LR |
PR Rt R 7 e
0Ey, 0E: __ 9B, 0Ey 0Ex _, |

and == TEp A gh T R H J

[as E,=0 and (3/31) — —iu]
So eqn (7) in the light of (A) and (B) gives |

B.‘-=—Tl‘; gfy ="‘l:‘(2—:"§ (’%‘)(%ﬁ) B, sin (’ﬁ?) cos(’—z%z—)
cos (.’L’;i) AL (D) |
B_v":::; gfr =-—ii, (l%)(p_;) B, cos(m——g—)—c)_ sin (-’-’—%Z)
cos (p_v‘_;g) Pl ®
R I
cos (?—%}3—) sin (p_:;z) ¥ s
which in the light of condition given by eqn. (6) becomes
B,=2iB, cos (r_n__:)_c) CcoS (@5)—’—) sin (I—’%Z—) SFaLr )

Discussion :

(1) Equation (A) to (F) express components of fields in the
resonant cavity for TE mode. From these it is evident thal
TEpy0s TEoors TEo10 ©F TE1c0 modes do not exist in the cavity. The

physically possible lowest modes are TEyp1, TEgu, O TEse.
(2) To calcuate the resonant frequency of the cavity, we use

the fact that in equation (4) k. is defined as
k02=kg_z+kc2.
Above equation in the light of eqns. (1) and (6) reduce 10
7 2 mw® 2 nw 2
we=(F)+ [(%)+ (5)
et me ne ps 1/2
£ i [E? +I?+ﬁ] [as kg=2/c]
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~: Case II.. TM Mode : In this mode B,=0 and E, can be compuy-
by solving the z component of wave equation for E j.e. :

1 02

Y o s
(V c? Bt') e,

Proceeding as, in Case | we get

0%E, O,
axt Tgym Tk E=0

:jected to the boundary conditions | E/|s=0 i.e.

E,=( at x=0 and x=a
E;=0 at y=0 and y=b
Such a solution will be
| E:(xy yy=E,4 sin (f’:‘_x) sin ("__E_)L) :(8)
'~ 2 (1m)? ("_")’
ith k=) +(3 (9)

In order to calculate Ex (x, » and E, (x, y) We write Maxwell
quations curl B=(1/c?) (¢E/dr) and curl E==(—0B/dr) in terms of

omponents and solve to get

1k, OEx kg OB,
E,:.-_-rc:-é-; and Ey—;;:s" oy +(10)

Substituting the value of E: from eqn. (9) in (10) we get
i ky (T '"__’fi‘) - (m.)
B y,s_ﬁ‘-}(;—) E, cos( — ) 8in {3
i kg (N : rgg{) (m:y )
Ey (xs NT "f";%' (7) Eo sm( a ek &

| Re ht of equation (2) gives |
h in the ligh i mx\ (% gin pﬂ)emmt
2 k,(__) Eo cos(-—'-) sin 3~ d

Exnn=""TF3\a i ..(H)
ﬂﬂy X p-uz — fwt
o ) o) ) )
Ey(r, 0 "2 \b srikD)

By(r ) and Ez_(r, 1) will be ObtaiHCd

ents Bxe 9 "0 B—(1/c%) (@E/0r) in terms of

n
The compO ation

by using Maxwell 2
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8B, 9B, 10E. 0B, iw 1‘
dy "0z o ot 2z o |
2B, 0B, 1 0E, 0B: iw |
— r I

l

“ e T sk
oz ox _c® ot 0z c? y. (11)
3B, OB, 10E, 0By 0B  i» p
ox oy ¢ ot ox  ox c

[as B.=0 and (8)0t)—> —iw]
So equation (11) in the light of (H) and (I) and with mp/d=kg
 yields

| —iw
2iw Eg (N .. [MTX nny) (pnz )e
122 (F) s () () 57 )

g
. g e i
2iw Ey (M) oo ('—'}E) sin ('3-@—) cos (p—%z—)e g
i R -c_f( a s\ b
- ' ...(K)
-' mnx . nwy 174 —iwt
and Ez=2Eo Slﬂ(——g—‘) sin (——E—) COoSs (T )e ...(L)

Equations (H) to (L) represen'ts the components of field vectors

and from these it is evident that modes TMgq0, TMoo1, TMi0s5 TM“‘."
TMa, TMio1 do not eaist. The physically possible lowest mode 1S
011> .

TM 0 Al i
The resonant frequency will be given by the condition

k02=k82+k02

e (R

e P e

—_— —— — . S ma Gae GLNS 3 S
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