

 ANNAI WOMEN'S COLLEGE

 (Arts and Science)

 Affiliated to Bharathidasan University-Tiruchirapalli.

 TNPL Road,Punnamchathram,Karur-639136.

DEPARTMENT OF COMPUTER SCIENCE,COMPUTER APPLICATIONS & IT

Faculty Name: Mrs. R.BARANI,MCA,M.Phil.,(Ph.D).,NET.,

Major : I B.Sc(Computer Science)

Paper Code : 16SCCCS2

Title of Paper: Programming in C++

UNIT TOPIC PAGENO

1 Basic concepts of OOP 1-27

2 Classes and Objects 28-52

3 Inheritance 53-70

4 Managing Console I/O operations 71-102

5 Standard Template Library 103-111

CORE COURSE II

PROGRAMMING IN C++

Objective: To impart basic knowledge of Programming Skills in C++ language.

Unit I

Basic Concepts of Object- Oriented Programming - Benefits of OOP - Object

Oriented Languages - Applications of OOP – Structure of C++ Program - Tokens,

Expressions and Control Structures – Functions in C++

Unit II

 Classes and Objects – Constructors and Destructors –Operator Overloading and

Type Conversions

 Unit III

Inheritance : Extending Classes – Pointers - Virtual Functions and Polymorphism

Unit IV

Managing Console I/O Operations – Working with Files – Templates – Exception

Handling

Unit V

Standard Template Library – Manipulating Strings – Object Oriented Systems

Development

 Text Book

Balagursamy E, Object Oriented Programming with C++, Tata McGraw Hill

Publications, Sixth Edition, 2013

 Reference Books

 Ashok Kamthane, Programming in C++, Pearson Education,2013.

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., Asst. Professor

 1

UNIT-I

INTRODUCTION TO C++

Overview of C++:
 C++ is a statically typed, compiled, general-purpose, case-

sensitive, free-form programming language that supports

procedural, object-oriented, and generic programming.

 C++ is regarded as a middle-level language, as it comprises a

combination of both high-level and low-level language

features.

 C++ was developed by Bjarne Stroustrup starting in 1979 at

Bell Labs in Murray Hill, New Jersey, as an enhancement to

the C language and originally named C with Classes but later

it was renamed C++ in 1983.

 C++ is a superset of C, and that virtually any legal C program

is a legal C++ program.

Note − A programming language is said to use static typing when

type checking is performed during compile-time as opposed to run-

time.

Procedural Oriented Programming Vs Object Oriented

Programming

 Divided

Into

In POP, program is

divided into small parts

called functions.

In OOP, program is

divided into parts

called objects.

Importance In POP,Importance is not

given to data but to

functions as well

as sequence of actions to

be done.

In OOP, Importance is

given to the data rather

than procedures or

functions because it works

as a real world.

Approach POP follows Top Down

approach.

OOP follows Bottom

Up approach.

Access

Specifiers

POP does not have any

access specifier.

OOP has access

specifiers named Public,

Private, Protected, etc.

Data

Moving

In POP, Data can move

freely from function to

function in the system.

In OOP, objects can

move and communicate

with each other through

member functions.

Expansion To add new data and

function in POP is not so

easy.

OOP provides an easy

way to add new data and

function.

Data Access In POP, Most function

uses Global data for

sharing that can be

accessed freely from

function to function in the

system.

In OOP, data can not

move easily from

function to function,it

can be kept public or

private so we can control

the access of data.

Data Hiding POP does not have any

proper way for hiding

data so it is less secure.

OOP provides Data

Hiding so provides more

security.

Overloading In POP, Overloading is

not possible.

In OOP, overloading is

possible in the form of

Function Overloading

and Operator

Overloading.

Examples Example of POP are : C,

VB, FORTRAN, Pascal.

Example of OOP are :

C++, JAVA, VB.NET,

C#.NET.

 Procedural Oriented

Programming

Object Oriented

Programming

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., Asst. Professor

 2

Basic Concepts of Object Oriented Programming

 It is necessary to understand some of the concepts used

extensively in object-oriented programming. These include:

• Objects

 • Classes

 • Data abstraction and encapsulation

 • Polymorphism

 • Inheritance

 • Dynamic binding

 • Message passing

1) Objects:

 Object is a basic unit of OOPS.

 It has unique name.

 An object represents a particular instance

of a class.

 We can create more than one objects of a

class.

 The size of class is size of total number of

data members of class.

2) Classes:

 Class is the template of an object.

 That logically encapsulates data members and member

functions into a single unit.

 Classes are data type based on which objects are created.

Eg:

Here we can take Human Being as a class. A class is a

blueprint for any functional entity which defines its properties and its

functions. Like Human Being, having body parts, and performing

various actions.

3) Data Abstraction and Encapsulation:
 Data abstraction specifies hiding the implementation detail for

simplicity. It increases the power of programming language by

creating user define data types.

 Data encapsulation combines data members and member

functions into a single unit that is called class. The advantage

of encapsulation is that data cannot access directly. It is only

accessible through the member functions of the class.

4) Polymorphism

 Polymorphism is basic and important concept of OOPS.

 Polymorphism specifies the ability to assume several forms.

 It allows routines to use variables of different types at different

times.

 In C++, an operator or function can be given different

meanings or functions.

 Polymorphism refers to a single function or multi-functioning

operator performing in different ways.

Fig: Polymorphism

5) Inheritance:
 Inheritance is the process of creating new class from existing

class or base class.

 By using the concept of Inheritance, we can use implemented

(existing) features of a class into another class.

 Base class is also known as parent class or super class.

 The new class that is formed is called derived class. It is also

known as sub class or child class.

 Inheritance is basically used for reducing the overall code size

of the program.

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., Asst. Professor

 3

6) Dynamic Binding:

 Binding refers to the linking of a procedure call to the code to

be executed in response to the call.

 Dynamic binding means that the code associated with a given

procedure call is not known until the time of the call at run

time. It is associated with polymorphism and inheritance.

 A function call associated with a polymorphic reference

depends on the dynamic type of that reference.

7) Message Passing:

 An object-oriented program consists of a set of objects that

communicate with each other.

 The process of programming in an object-oriented language,

involves the following basic steps:

1. Creating classes that define object and their behavior,

2. Creating objects from class definitions, and

3. Establishing communication among objects.

 Objects communicate with one another by sending and

receiving information much the same way as people pass

messages to one another. The concept of message passing

makes it easier to talk about building systems that directly

model or simulate their real-world counterparts.

 A Message for an object is a request for execution of a

procedure, and therefore will invoke a function (procedure) in

the receiving object that generates the desired results. Message

passing involves specifying the name of object, the name of the

function (message) and the information to be sent.

 Example:

Object Oriented Language:

 Object-oriented programming is not the right of any particular

languages. Like structured programming, OOP concepts can be

implemented using languages such as C and Pascal.

 However, programming becomes clumsy and may generate

confusion when the programs grow large. A language that is

specially id designed to support the OOP concepts makes it

easier to implement them.

 The languages should support several of the OOP concepts to

claim that they are object-oriented.

 Depending upon the features they support, they can be

classified into the following two categories:

1. Object-based programming languages, and

2. Object-oriented programming languages.

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., Asst. Professor

 4

Object-based programming is the style of programming that primarily

supports encapsulation and object identity. Major feature that are

required for object based programming are:

• Data encapsulation

• Data hiding and access mechanisms

• Automatic initialization and clear-up of objects

• Operator overloading

Object-oriented programming language incorporates all of object-

based programming features along with two additional features,

namely, inheritance and dynamic binding. Object-oriented

programming can therefore be characterized by the following

statements:

 Object-based features + inheritance + dynamic binding

Benefits of Object oriented Programming:

i. Simplicity: Software objects model real world objects, so the

complexity is reduced and the program structure is very clear.

ii. Modularity: Each object forms a separate entity whose

internal workings are decoupled from other parts of the system.

iii. Modifiability: It is easy to make minor changes in the data

representation or the procedures in an OO program. Changes

inside a class do not affect any other part of a program, since

the only public interface that the external world has to a class is

through the use of methods.

iv. Extensibility: adding new features or responding to changing

operating environments can be solved by introducing a few

new objects and modifying some existing ones.

v. Maintainability: objects can be maintained separately, making

locating and fixing problems easier.

vi. Re-usability: objects can be reused in different programs.

Applications of OOPS:

• Real-time system

• Simulation and modeling

• Object-oriented data bases

• Hypertext, Hypermedia, and expertext

• AI and expert systems

• Neural networks and parallel programming

• Decision support and office automation systems

• CIM/CAM/CAD systems

What is C++?

 “C++ is a statically-typed, free-form, (usually) compiled,

multi-paradigm, intermediate-level general-purpose middle-

level programming language.”

 In simple terms, C++ is a sophisticated, efficient and a general-

purpose programming language based on C. It was developed

by Bjarne Stroustrup in 1979.

 Many of today’s operating systems, system drivers, browsers

and games use C++ as their core language. This makes C++

one of the most popular languages today.

 Since it is an enhanced/extended version of C

programming language, C and C++ are often denoted together

as C/C++.

Applications of C++:

o C++ is a versatile language for handling very large programs. It

is suitable for virtually any programming task including

development of editors, compilers, databases, communication

systems and any complex real-life application systems.

o Since C++ allows us to create hierarchy-related objects,

we can build special object-oriented libraries which can

be used later by many programmers.

o While C++ is able to map the real-world problem

properly, the C part of C++ gives the language the

ability to get close to the machine-level details.

o C++ programs are easily maintainable and expandable.

o It is expected that C++ will replace C as a general-

purpose language in the near future.

http://www.stroustrup.com/
https://www.programiz.com/c-programming
https://www.programiz.com/c-programming

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., Asst. Professor

 5

Simple C++ Program

 Let us begin with a simple example of a C++ program that

prints a string on the screen.

Printing A String

#include<iostream>

Using namespace std;

int main()

{

cout<<” c++ is better than c \n”;

return 0;

}

Program 1.10.1

This simple program demonstrates several C++ features.

Program Features

 Like C, the C++ program is a collection of function.

 The above example contain only one function main().

 As usual execution begins at main(). Every C++ program must

have a main().

 C++ is a free form language. With a few exception, the

compiler ignore carriage return and white spaces.

 Like C, the C++ statements terminate with semicolons.

Comments

 C++ introduces a new comment symbol // (double slash).

 Comment start with a double slash symbol and terminate at the

end of the line.

 A comment may start anywhere in the line, and whatever

follows till the end of the line is ignored.

 Note that there is no closing symbol.

The double slash comment is basically a single line comment.

Multiline comments can be written as follows:

// This is an example of

// C++ program to illustrate

// some of its features

The C comment symbols /*,*/ are still valid and are more

suitable for multiline comments. The following comment is allowed:

/* This is an example of

C++ program to illustrate

some of its features

*/

Output operator

 The only statement in program 1.10.1 is an output statement.

The statement

Cout << “C++ is better than C.”;

 Causes the string in quotation marks to be displayed on the

screen.

 This statement introduces two new C++ features, cout and <<.

 The identifier cout(pronounced as C out) is a predefined object

that represents the standard output stream in C++.

 Here, the standard output stream represents the screen.

 It is also possible to redirect the output to other output devices.

 The operator << is called the insertion or put to operator.

The iostream File

 We have used the following #include directive in the program:

#include <iostream>

 The #include directive instructs the compiler to include the

contents of the file enclosed within angular brackets into the

source file.

 The header file iostream.h should be included at the beginning

of all programs that use input/output statements.

Namespace

 Namespace is a new concept introduced by the ANSI C++

standards committee.

 This defines a scope for the identifiers that are used in a

program.

 For using the identifier defined in the namespace scope we

must include the using directive, like

Using namespace std;

Here, std is the namespace where ANSI C++ standard class libraries

are defined. All ANSI C++ programs must include this directive. This

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., Asst. Professor

 6

will bring all the identifiers defined in std to the current global scope.

Using and namespace are the new keyword of C++.

Return Type of main()

 In C++, main () returns an integer value to the operating

system.

 Therefore, every main () in C++ should end with a return (0)

statement; otherwise a warning an error might occur. Since

main () returns an integer type for main () is explicitly

specified as int.

 Note that the default return type for all function in C++ is int.

 The following main without type and return will run with a

warning:

main ()

{

…………..

………….

}

More C++ Statements
Let us consider a slightly more complex C++ program. Assume that

we should like to read two numbers from the keyboard and display

their average on the screen. C++ statements to accomplish this is

shown in program.

AVERAGE OF TWO NUMBERS

#include<iostream.h> // include header file

using namespace std;

int main()

{

float number1, number2,sum, average;

cin >> number1>> number2; // read numbers from keyboard

sum = number1 + number2;

average = sum/2;

cout << ”sum = “ << sum << “\n” << “average = “ << average << “\n”;

return 0;

} //end of example

The output would be:
enter two numbers: 6.5 7.5

sum = 14

average = 7

An Example with Class

• One of the major features of C++ is classes. They provide a method of

binding together data and functions which operate on them. Like

structures in C, classes are user-defined data types.

Program shows the use of class in a C++ program.

USE OF CLASS

#include<iostream.h> // include header file

using namespace std;

class person

{

char name[30];

int age;

public:

void getdata(void);

void display(void);

};

void person :: getdata(void)

{

cout << “Enter name: “;

cin >> name;

cout << “Enter age: “;

cin >> age;

}

void person : : display(void)

{

cout << “\nNameame: “ << name;

cout << “\nAge: “ << age;

}

int main()

{

The output of program is:

Enter Name: Rithish

Enter age:20

Name:Rithish

Age: 20

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., Asst. Professor

 7

person p;

p.getdata();

p.display();

return 0;

} //end of example

Structure of C++ Program
 As it can be seen from program 1.12.1, a typical C++ program

would contain four sections as shown in fig. 1.9.

 This section may be placed in separate code files and then

compiled independently or jointly.

 It is a common practice to organize a program into three

separate files.

 The class declarations are placed in a header file and the

definitions of member functions go into another file.

 This approach enables the programmer to separate the abstract

specification of the interface from the implementation details

(member function definition).

 Finally, the main program that uses the class is places in a third

file which “includes” the previous two files as well as any

other file required.

 This approach is based on the concept of client-server model as

shown in fig. 1.10. The class definition including the member

functions constitute the server that provides services to the

main program known as client. The client uses the server

through the public interface of the class.

TOKENS:

 A token is a group of characters.

 It is the smallest element of a C++ program which is

meaningful to the compiler.

C++ uses the following types of Tokens:
1. Keywords

2. Identifiers

3. Constants

4. Strings

5. Operators

1. Keywords

 Keywords are the reserved identifiers that have special meanings.

 These reserved keywords cannot be used as identifiers in a

program.

 All keywords are written in lower case.

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., Asst. Professor

 8

Following are the keywords used in C++:

2. Identifiers

 Identifier is a sequence of characters used to define various

things like variables, constants, functions, classes, objects,

structures, unions etc.

It follows the rules for the formation of an identifier:

 An identifier consists of alphabets, digits or underscores.

 It cannot start with a digit. It can start either with an alphabet or

underscore.

 Identifier should not be a reserved word.

 C++ is case-sensitive. So, upper case and lower case letters are

considered different identifiers from each other.

 Blank spaces and special symbols are not allowed except

underscore.

3. Constants

 Constants are normally the variables.

 The only thing that differentiates Constants from Variables is

the fact that it is not allowed to modify the value of a constant

by the program after the constants have already been defined.

 Constants refer to fixed values.

 Constants are also sometimes referred as Literals.

 They may belong to any of the data types.

Constant types

 Integer constants: For example: 0, 5, 957, 12376 etc.

 Floating Point / Real constants:
 For example: 0.7, 8.65, 4587.05 etc.

 Octal and Hexadecimal constants:

For example:

Octal: (15)8 = (13)10

Hexadecimal: (015)16 = (21)10

 Character constants: For example: ‘a’, ‘A’, ‘x’, ‘Z’ etc.

 String constants: For example: “Programming in C++”

BASIC DATA TYPES:

 Data types define the type of data a variable can hold, for

example an integer variable can hold integer data, a character

type variable can hold character data etc.

 Data types in C++ are categorised in three groups: Built-

in, user-defined and Derived.

asm default Float Operator static_cast union

auto delete For Private struct unsigned

break do Friend Protected switch using

bool double Goto Public template virtual

case dynamic If Register this void

catch else Inline reinterpret_cast throw volatile

char enum Int Return true wchar_t

class explicit Long Short try while

const extern Mutable Signed typedef

const_cast export Namespace Sizeof typeid

continue false New Static typename

https://beginnersbook.com/2017/08/cpp-variables/

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., Asst. Professor

 9

1) Integral type : – The data types in this type are int and char. The

modifiers signed, unsigned, long & short may be applied to character

& integer basic data type. The size of int is 2 bytes and char is 1 byte.

2) Void – Void is used:

i) To specify the return type of a function when it is not returning any

value.

ii) To indicate an empty argument list to a function.

Ex- void function1(void)

iii)In the declaration of generic pointers.

Ex- void *gp
A generic pointer can be assigned a pointer value of any basic data

type.

Ex. int *ip // this is int pointer

gp = ip //assign int pointer to void.

A void pointer cannot be directly assigned to their type pointers in c++

we need to use cast operator.

Ex – void *ptr1;

char *ptr2;

ptr2 = ptr1; // is allowed in c but not in c++.

ptr2 = (char *)ptr1; // is the correct statement.

3)Floating type:

 The data types in this are float & double.

 The size of the float is 4 byte and double is 8 byte.

 The modifier long can be applied to double & the size of long

double is 10 byte.

USER DEFINED DATA TYPES:

 i) User-defined data type structure and union are same as that of C.

ii) Classes – Class is a user defined data type which can be used just

like any other basic type once declared. The class variables are known

as objects.

iii) Enumeration

 a) An enumerated data type is another user defined type which

provides a way of attaching names to numbers to increase simplicity

of the code.

b) It uses enum keyword which automatically enumerates a list of

words by assigning them values 0, 1, 2,…..etc.

Syntax:-

 enum shape { circle, square, triangle };

 enum color { black, blue, red };

Now shape becomes a new type name & we can declare new variables

of this type.

Ex . shape oval;
c) In C++, enumerated data type has its own separate type. Therefore

c++ does not permit an int value to be automatically converted to an

enum value.

Ex. shape shapes1 = triangle; // is allowed

 shape shape1 = 2; // Error in c++

 shape shape1 = (shape)2; // ok

 d) By default, enumerators are assigned integer values starting with 0,

but we can override the default value by assigning some other value.

 Ex.

enum colour {red, blue, pink = 3}; //it will assign red to 0,

blue to 1, & pink to 3 or

enum colour {red = 5, blue, green}; //it will assign red to 5,

blue to 6 & green to 7.

DERIVED DATA TYPES:

1) Arrays:

An array in c++ is similar to that in c, the only difference is the way

character arrays are initialized. In c++, the size should be one larger

than the number of character in the string where in c, it is exact same

as the length of string constant.

 Ex: char string1[3]= “ab”; // in c++

char string1[2] = “ab”; // in c.

2) Functions

Functions in c++ are different than in c there is lots of modification in

functions in c++ due to object orientated concepts in c++.

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., Asst. Professor

 10

 3) Pointers: Pointers are declared & initialized as in c.

Ex: int * ip; // int pointer

ip = &x; //address of x through indirection

c++ adds the concept of constant pointer & pointer to a constant

pointer.

char const *p2 = .HELLO.; // constant pointer

SYMBOLIC CONSTANT:

 Symbolic constant is a way of defining a variable constant

whose value cannot be changed.

 It is done by using the keyword const.

 An identifier that represents a constant value throughout the

life of the program is known as Symbolic Constants. It allows

programmers to attach meaningful names to data values and

hence enhances the readability of the programs.

 The named constants are just like variables except that their

values cannot be changed. C++ requires a cont to be initialized

but ANSI C does not require an initializer.

 If none is given, it initializes the const to 0. Constants are

visible even outside the file in which they are declared.

However , they can be made local by declaring them as static.

 To give a const value external linkage so that it can be

referenced from another file, we must explicitly define it as an

extern in C++.

 There are two ways of creating symbolic constants in C++ :-

 1. Using the qualifier const.

2. Defining a set of integer constants using enum keyword

Syntax:

const <Data_Type> <Variable_Name>;

For example:

const int c = 5;

 In C symbolic constant can be achieved by the use of #define.

For example:

#define PI = 3.142;

The general form of creating Symbolic constant Functions is :

 <Return type> <Funciton_Name> () const

Let us see an simple example of how to use const keyword with

variables and functions :-

#include <iostream>

using namespace std;

const int a = 100; // Const Variable

class TestConst

{

 public:

 void display() const // Const Function

 {

 cout << "Value of a in the const function is " << a;

 }

};

int main ()

{

 Test int1;

 int1.display();

 cout << a;

 return 0;

}

VARIABLE DECLARATION AND INITIALIZATION

 C++ is a strongly-typed language, and requires every variable

to be declared with its type before its first use.

 This informs the compiler the size to reserve in memory for the

variable and how to interpret its value.

 The syntax to declare a new variable in C++ is straightforward:

we simply write the type followed by the variable name (i.e.,

its identifier).

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., Asst. Professor

 11

Syntax:

char c; //character variable declaration.

int area; //integer variable declaration.

float num; //float variable declaration.

These are three valid declarations of variables.

o The first one declares a variable of type char with the

identifier c.

o The second is declares a variable of type int with the

identifier area.

o The third one declares a variable of type float with the

identifier num.

Once declared, the variables c, area and num can be used within the

rest of their scope in the program.

Declaring More than one Variable

 If declaring more than one variable of the same type, they can

all be declared in a single statement by separating their

identifiers with commas.

int a, b, c; //more than one variable declaration.

This declares three variables (a, b and c), all of them of type int, and

has exactly the same meaning as:

int a; //integer variable declaration.

int b; //integer variable declaration.

int c; //integer variable declaration.

Initialization of variables

 When the variables in the example above are declared, they

have an undetermined or garbage value until they are assigned

a value for the first time.

 But it is possible for a variable to have a specific value from

the moment it is declared. This is called the initialization of the

variable.

 In C++, there are same ways to initialize variables as in C

Language.

Syntax:

type identifier = initial_value;

Example:

int a = 10; //integer variable declaration & initialization.

Practical:

//Write a CPP program for declaration & initialization of variable

#include <iostream.h>

int main ()

{

 int sum; //Variable declaration

 int a = 10; //Variable declaration & initialization

 int b = 5; //Variable declaration & initialization

 ans = a + b;

 cout << "Addition is:" << ans << endl;

 return 0;

}

Output:

 Addition is : 15

C++ REFERENCE VARIABLE:

 C++ introduces a new kind of variable known as Reference

Variable. It provides an alias (alternative name) for a

previously defined variable.

 A reference variable must be initialized at the time of

declaration. This establishes the correspondences between the

reference and the data object which it name.

 When a reference is created, you must tell it which variable it

will become an alias for. After you create the reference,

whenever you use the variable, you can just treat it as though it

were a regular integer variable. But when you create it, you

must initialize it with another variable, whose address it will

keep around behind the scenes to allow you to use it to modify

that variable.

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., Asst. Professor

 12

Declaration:

 [data_type] & [reference_variable]=[regular_variable];

regular_variable is a variable that has already initialized, and

reference_variable is an alternative name (alias) to represent the

variable regular_variable.

Consider the example

#include <iostream.h>

int main()

{

 int student_age=10;

 int &age=student_age; // reference variable

 cout<< " value of student_age :"<< student_age << endl;

 cout<< " value of age :"<< age << endl;

 age=age+10;

 cout<<"\nAFTER ADDING 10 INTO REFERENCE

VARIABLE \n";

 cout<< " value of student_age :"<< student_age << endl;

 cout<< " value of age :"<< age << endl;

 return 0;

}

Output:

value of student age : 10

value of age : 10

AFTER ADDING 10 INTO REFERENCE VARIABLE

value of student age: 20

value of age : 20

OPERATORS IN C++

 C++ has a rich set of operators.

 All C operators are valid in C++ also. In addition, C++

introduces some new operators.

 We have already seen two such operators, namely, the insertion

operator <<, and the extraction operator >> .

 Other new operators are:

: : Scope resolution operator

: :* Pointer –to-member declarator

->* Pointer – to- member operator

.* Pointer – to- member operator

delete Member release operator

endl Line feed operator

new Memory allocation operator

setw Field width operator

 In addition, C++ also allows us to provide new definitions to

some of the built-in operators.

 That is, we can give several meanings to an operator,

depending upon the types of arguments used.

 This process is known as operator overloading.

SCOPE RESOLUTION OPERATOR

 C++ is also a Block-Structured Language.

 The Scope of a variable extends from the point of its

Declaration till the end of the code block, containing the

declarations.

 A Variable declared inside a code block is said to be local to

that code block.

 : : (Scope Resolution Operator) Operator allows access to the

global version of a Variable.

1) Global Scope Resolution Operator :
Let us see an program Example illustrating the use of Scope

Resolution Operator (::) used with the Gloal Variable is given

below :

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., Asst. Professor

 13

#include <iostream.h>

 char c = 'a'; // global variable

void main() {

char c = 'b'; //local variable

cout << "Local variable: " << c << "\n";

cout << "Global variable: " << ::c << "\n"; //using scope

resolution operator

}

2) Class Scope Resolution Operator :
In the below example we are using Scope Resolution Operator to

define the class functions outside the class :

#include <iostream.h>

 class programming

{

public:

void output (); //function declaration

};

// function definition outside the class

void programming::output()

{

cout << "Function defined outside the class.\n";

}

int main() {

programming x;

x.output();

return 0;

}

MEMBER DEREFERENCING OPERATORS

 As you know, C++ permits us to define a class containing

various types of data and functions as members.

 C++ also permits us to access the class members through

pointers.

 In order to achieve this, C++ provides a set of three pointer-to-

member operators.

 The below Table shows these operators and their functions.

 MEMORY MANAGEMENT OPERATORS

 Arrays can be used to store multiple homogenous data but

there are serious drawbacks of using arrays.

 Programmer should allocate the memory of an array when they

declare it but most of time, the exact memory needed cannot be

determined until runtime.

 The best thing to do in this situation is to declare the array with

maximum possible memory required (declare array with

maximum possible size expected) but this wastes memory.

 So, To avoid wastage of memory, you can dynamically

allocate the memory required during runtime

using new and delete operator.

What are memory management operators?

There are two types of memory management operators in C++:

 new

 delete

These two memory management operators are used for

allocating and freeing memory blocks in efficient and

convenient ways.

Output:

Local variable: b

Global variable: a

Output:

Function defined outside the class.

Operator Function

: : * To declare a pointer to a member of a class.

* To access a member using object name and a

pointer to that member.

->* To access a member using a pointer to the

object and a pointer to that member.

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., Asst. Professor

 14

New Operator:

 The new operator in C++ is used for dynamic storage

allocation. This operator can be used to create object of any

type.

Syntax:

 pointer variable = new datatype;

 In the above statement, new is a keyword and the pointer

variable is a variable of type data-type.

For example:

1. int *a = new int

2. *a = 20;

 or

3. int *a = new int(20);

 In the above example, the new operator allocates sufficient

memory to hold the object of datatype int and returns a pointer

to its starting point.

 the pointer variable a holds the address of memory space

allocated.

Delete Operator:

 The delete operator in C++ is used for releasing

memory space when the object is no longer needed.

 Once a new operator is used, it is efficient to use the

corresponding delete operator for release of memory.

Syntax:

 delete pointer-variable;

For example:

#include <iostream.h>

 void main()

{

//Allocates using new operator memory space

in memory for storing a integer datatype

int *a= new int;

*a=100;
cout << " The Output is:a= " << *a;

//Memory Released using delete operator

delete a;

}

Output:

The Output is : a = 100

In the above program, the statement:

int *a= new a;

Holds memory space in memory for storing a integer datatype.

C++ MANIPULATORS

 Manipulators are operators used in C++ for formatting

output. The data is manipulated by the programmer’s choice of

display.

 In this C++ tutorial, you will learn what a manipulator

is, endl manipulator, setw manipulator, setfill manipulator and

setprecision manipulator are all explained along with syntax

and examples.

endl Manipulator:

 This manipulator has the same functionality as the ‘n’ newline

character.

For example:

1. cout << "Welcome" << endl;

2. cout << " Girls";

setw Manipulator:

 This manipulator sets the minimum field width on output.

Syntax:

setw(x)

 Here setw causes the number or string that follows it to be

printed within a field of x characters wide and x is the

argument set in setw manipulator.

 The header file that must be included while using setw

manipulator is .

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., Asst. Professor

 15

 Example:

#include <iostream>

#include <iomanip>

 void main()

{

int x1=123,x2= 234,

x3=789;

cout << setw(8) << "Exforsys" << setw(20) << "Values" << endl

<< setw(8) << "test123" << setw(20)<< x1 << endl

<< setw(8) << "exam234" << setw(20)<< x2 << endl

<< setw(8) << "result789" << setw(20)<< x3 << endl;

}

setfill Manipulator:

 This is used after setw manipulator.

 If a value does not entirely fill a field, then the character

specified in the setfill argument of the manipulator is used for

filling the fields.

Example:

#include <iostream>

#include <iomanip>

void main()

{

cout << setw(15) << setfill('*') << 99 << 97 << endl;

}

setprecision Manipulator:

 The setprecision Manipulator is used with floating point

numbers.

 It is used to set the number of digits printed to the right of the

decimal point. This may be used in two forms:

1. fixed

2. scientific

 These two forms are used when the keywords fixed or

scientific are appropriately used before the setprecision

manipulator.

 The keyword fixed before the setprecision manipulator prints

the floating point number in fixed notation.

 The keyword scientific, before the setprecision manipulator,

prints the floating point number in scientific notation.

Example:

 T

h

e

f

i

r

s

t

c

o

u

 The first cout statement contains fixed notation and the

setprecision contains argument 3.

 This means that three digits after the decimal point and in fixed

notation will output the first cout statement as 0.100. The

second cout produces the output in scientific notation.

 The default value is used since no setprecision value is

provided.

C++ TYPE CASTING

 A cast is a special operator that forces one data type to

be converted into another.

 As an operator, a cast is unary and has the same precedence as

any other unary operator.

Syntax:

type-name (expression) //c++ notation

Output:

test 123

exam 234

result 789

Output:

***********9997

#include <iostream,h>

#include <iomanip.h>

void main()

{

float x = 0.1;

cout << fixed << setprecision(3) << x << endl;

cout << scientific << x << endl;

}

 Output:

 0.100

 1.000e-001

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., Asst. Professor

 16

Example:

#include <iostream>

main()

{

double a = 99.09399;

float b = 97.20;

int c ;

c = (int) a;

cout << "Line 1 - Value of (int)a is :" << c << endl ;

c = (int) b;

cout << "Line 2 - Value of (int)b is :" << c << endl ;

 return 0;

}

EXPRESSIONS AND THEIR TYPES

 A combination of variables, constants and operators that

represents a computation forms an expression.

 Depending upon the type of operands involved in an

expression or the result obtained after evaluating expression,

there are different categories of an expression.

 These categories of an expressions are:

Constant expressions: The expressions that comprise only

constant values are called constant expressions. Some examples of

constant expressions are 20, ‘ a‘ and 2/5+30 .

Integral expressions: The expressions that produce an integer

value as output after performing all types of conversions are

called integral expressions.

For example, x, 6*x-y and 10 + int (5.0) are integral expressions.

Here, x and y are variables of type float.

Float expressions: The expressions that produce floating-point

value as output after performing all types of conversions are

called float expressions.

For example, 9.25, x-y and 9+ float (7) are float expressions.

Here, x 'and yare variables of type float.

Relational or Boolean expressions: The expressions that produce

a bool type value, that is, either true or false are called relational

or Boolean expressions.

 For example, x + y<100, m + n==a-b and a>=b + c .are relational

expressions.

Logical expressions: The expressions that produce a bool type

value after combining two or more relational expressions are

called logical expressions.

For example, x==5 &&m==5 and y>x I I m<=n are logical

expressions.

Bitwise expressions: The expressions which manipulate data at bit

level are called bitwise expressions.

For example, a >> 4 and b<< 2 are bitwise expressions.

Pointer expressions: The expressions that give address values as

output are called pointer expressions.

 For example, &x, ptr and -ptr are pointer expressions. Here, x is a

variable of any type and ptr is a pointer.

SPECIAL ASSIGNMENT EXPRESSIONS:
An expression can be categorized further depending upon the way

the values are assigned to the variables.

Chained assignment: Chained assignment is an assignment

expression in which the same value is assigned to more than one

variable, using a single statement. For example, consider these

statements.

 a = (b=20); or a=b=20;

OUTPUT:

Line 1 - Value of (int)a is :99

Line 2 – Value of (int)b is :97

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., Asst. Professor

 17

In these statements, value 20 is assigned to variable b and then to

variable a. Note that variables cannot be initialized at the time of

declaration using chained assignment.

 For example, consider these statements.

 int a=b=30; // illegal

 int a=30, int b=30; //valid

 Embedded assignment: Embedded assignment is an assignment

expression, which is enclosed within another assignment expression.

For example, consider this statement

 a=20+(b=30); //equivalent to b=30; a=20+30;

In this statement, the value 30 is assigned to variable b and then the

result of (20+ 30) that is, 50 is assigned to variable a. Note that the

expression (b=30) is an embedded assignment.

Compound Assignment: Compound Assignment is an assignment

expression, which uses a compound assignment operator that is a

combination of the assignment operator with a binary arithmetic

operator. For example, consider this statement.

 a + =20; //equivalent to a=a+20;

In this statement, the operator += is a compound assignment operator,

also known as short-hand assignment operator.

TYPE CONVERSION

An expression may involve variables and constants either of

same data type or of different data types. However, when an

expression consists of mixed data types then they are converted to the

same type while evaluation, to avoid compatibility issues.

 This is accomplished by type conversion, which is defined as the

process of converting one predefined data type into another. Type

conversions are of two types,

namely, implicit conversions and explicit conversions also known

as typecasting.

Implicit Conversions

o Implicit conversion, also known as automatic type conversion

refers to the type conversion that is automatically performed by

the compiler. Whenever compiler confronts a mixed type

expression, first of all char and short int values are converted to

int. This conversion is known as integral promotion.

o After applying this conversion, all the other operands are

converted to the type of the largest operand and the result is of

the type of the largest operand. Table illustrates the implicit

conversion of data type starting from the smallest to largest

data type.

o For example, in expression 5 + 4.25, the compiler converts the

int into float as float is larger than int and then performs the

addition.

Typecasting

o Typecasting refers to the type conversion that is performed

explicitly using type cast operator. In C++, typecasting can be

performed by using two different forms which are given here.

 data_type (expression) //expression in parentheses

 (data_type)expression //data type in parentheses

where,

http://ecomputernotes.com/java/data-type-variable-and-array/explain-data-types-in-java
http://ecomputernotes.com/images/Order-of-Data-Type.jpg

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., Asst. Professor

 18

data_type = data type (also known as cast operator) to which the

expression is to be converted.

To understand typecasting, consider this example.

 float (num)+ 3.5; //num is of int type

In this example, float () acts as a conversion function which converts

int to float. However, this form of conversion cannot be used in some

situations. For example, consider this statement.

 ptr=int * (x) ;

In such cases, conversion can be done using the second form of

typecasting (which is basically C-style typecasting) as shown here.

 ptr=(int*)x;

OPERATORS PRECEDENCE IN C++

 Operator precedence determines the grouping of terms in an

expression.

 The associativity of an operator is a property that determines

how operators of the same precedence are grouped in the

absence of parentheses.

 This affects how an expression is evaluated.

 Certain operators have higher precedence than others;

 For Example, the multiplication operator has higher

precedence than the addition operator: x = 7 + 3 * 2; here, x

is assigned 13, not 20 because operator * has higher

precedence than +, so it first gets multiplied with 3*2 and then

adds into 7.

Here, operators with the highest precedence appear at the top of the

table, those with the lowest appear at the bottom. Within an

expression, higher precedence operators will be evaluated first.

Category Operator Associativity

 Postfix () [] -> . ++ - - Left to right

 Unary + - ! ~ ++ - - (type)* & sizeof Right to left

Multiplicative * / %
 Left to

right

Additive + - Left to right

 Shift << >> Left to right

Relational < <= > >= Left to right

Equality == != Left to right

Bitwise AND & Left to right

Bitwise XOR ^ Left to right

Bitwise OR | Left to right

Logical AND && Left to right

Logical OR || Left to right

Conditional ?: Right to left

Assignment
= += -= *= /= %=>>= <<= &= ^=

|=
Right to left

 Comma , Left to right

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., Asst. Professor

 19

CONTROL STRUCTURES IN C++

 In C++, a large number of function& are used that pass

messages, and process the data contained in objects.

 A function is set up to perform a task. When the task is

complex, many different algorithms can be designed to achieve

the same goal.

 The format should be such that it is easy to trace the flow of

execution of statements.

 This would help not only in debugging but also in the review

and maintenance of the program later.

All programs use control structures to implement the program logic.

There are three types of Control Structures

1. Sequence Structure (Straight line)

2. Selection Structure (Branching)

3. Loop Structure (Iteration or Repetition)

Figure 3.4 shows how these structures arc implemented using one-

entry, one-exit concept, a popular approach used in modular

programming.

 It is important to understand that all program processing can be

coded by using only these three logic structures.

 The approach of using one or more of these basic control

constructs in programming is known as structured

programming, an important technique in software

engineering.
 Like C, C++ also supports all the three basic control structures,

and implements them using various control statements as

shown in Fig. 3.6.

 This shows that C++ combines the power of structured

programming with the object-oriented paradigm.

The if statement

 The if statement is a powerful decision making statement and is

used to control the flow of execution of statements.

Syntax:

if(test expression)

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., Asst. Professor

 20

The if statement is implemented in two forms:

• Simple if statement

• if ••• else statement

Simple If Statement :

 The general form of simple if statement is

if(test expression)

 {

 statement-block;

 }

 statement-x;

 The ‘statement-block’ may be a single statement or a group of

statement.

 If the test expression is true the statement block will be

executed.

 Otherwise the statement -block will be skipped and the

execution will jump to the statement –x.

 If the condition is true both the statement–block and the

statement -x are executed in the sequence .

If –Else Statement :

 The If statement is an extension of the simple if statement.

Syntax:

if (test expression)

{

true-block statements;

}

else

{

false-block statements;

}

statement – x;

 If the test expression is true then true-block statement are

executed, otherwise the false –block statement are executed.

 In both cases either true-block or false-block will be executed

not both.

Switch Statement :

 This is a multiple branching statement where, based on a

condition, the control is transferred to one of the many possible

points.

Syntax:

 switch (expression)

{

case value1 :

 block1;

 break;

case value 2 :

 block 2;

 break;

default :

 default block;

 break;

 ……….

 ……….

}

statement – x;

The Do- While Statement:

 It is an exit – controlled loop.

 Based on a condition, the control is transferred back to a

particular point in the program.

Syntax:

do

{

body of the loop;

}

while (test condition);

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., Asst. Professor

 21

The While Statement:

 This is also a loop structure, but it is an entry-controlled one.

 In this the test condition is placed before the body of the loop.

Syntax:

The For Statement:

 It is an entry-controlled loop and is used when an action is to

be repeated for a predetermined number of times.

 Syntax:

FUNCTIONS

 C++ functions are a group of statements in a single logical unit

to perform some specific task.

 Along with the main function, a program can have multiple

functions that are designed for different operation.

 The results of functions can be used throughout the program

without concern about the process and the mechanism of the

function.

++ Functions

 In POP (Procedural Oriented Programming) language like C,

programs are divided into different functions but in OOP

(Object Oriented Programming) approach program is divided

into objects where functions are the components of the object.

 Generally, C++ function has three parts:

1. Function Prototype

2. Function Definition

3. Function Call

C++ Function Prototype

 While writing a program, we can’t use a function without

specifying its type or without telling the compiler about it.

 So before calling a function, we must either declare or define a

function.

 Thus, declaring a function before calling a function is called

function declaration or prototype which tells the compiler

that at some point of the program we will use the function of

the name specified in the prototype.

Syntax

 return_type function_name (parameter_list);

Note: function prototype must end with a semicolon.

 Here, return_type is the type of value that the function will

return. It can be int, float or any user-defined data type.

 function_name means any name that we give to the function.

However, it must not resemble any standard keyword of C++.

 Finally, parameter_list contains a total number of arguments

that need to be passed to the function.

C++ Function Call

 Function call means calling the function with a statement.

When the program encounters the function call statement the

specific function is invoked.

Syntax

 function_name (argument_list);

 Here, function_name is the name of the called function and

argument_list is the comma-separated list of expressions that

constitute the arguments.

 The syntax is similar to that of prototype except that

return_type is not used.

C++ Functions Definition

 Function definition is a part where we define the operation of

a function. It consists of the declarator followed by the function

body.

while (test condition)

{

body of the loop;

}

for (initialization; test – condition ; increment or decrement)

{

body of the loop;

}

http://www.trytoprogram.com/cplusplus-programming

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., Asst. Professor

 22

Syntax

return_type function_name(parameter_list)

{

 function body;

}

 Defining a function is a way of specifying how the operation is

to be done when the function is called.

Illustration of function call

 Whenever we declare a function a part of the memory is

reserved for that function and when we define the function is

stored in that memory block.

 Let’s suppose the function is stored at the address 0x111.

When we call the function in the main program compiler goes

to that memory location 0x111 where the code is executed as

defined.

 After the execution, the compiler returns the result to the

program without concerning any details how the result was

obtained.

 Though it takes time for execution, it becomes handy when

dealing with huge programs.

General structure of a function in C++ program

//Structure of C++ program

#include <iostream.h>

return_type function_name(parameter_list); //function prototype

void main()

{

 function_name(); //function call

}

return_type function_name(parameter_list) //function defintion

{

 function definition

}

CALL BY REFERENCE

 The call by reference method of passing arguments to a

function copies the reference of an argument into the formal

parameter. Inside the function, the reference is used to access

the actual argument used in the call. This means that changes

made to the parameter affect the passed argument.

 To pass the value by reference, argument reference is passed to

the functions just like any other value.

 So accordingly you need to declare the function parameters as

reference types as in the following function swap(), which

exchanges the values of the two integer variables pointed to by

its arguments.

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., Asst. Professor

 23

 // function definition to swap the values.

 void swap(int &x, int &y)

{

 int temp;

 temp = x; /* save the value at address x */

 x = y; /* put y into x */

 y = temp; /* put x into y */

 return;

}

For now, let us call the function swap() by passing values by

reference as in the following example −

#include <iostream.h>

void swap(int &x, int &y); // function declaration

void main ()

 {

 int a = 100 , b = 200; // local variable declaration:

 cout << "Before swap, value of a :" << a << endl;

 cout << "Before swap, value of b :" << b << endl;

 /* calling a function to swap the values using variable reference.*/

 swap(a, b);

 cout << "After swap, value of a :" << a << endl;

 cout << "After swap, value of b :" << b << endl;

}

When the above code is put together in a file, compiled and executed,

it produces the following result −

Before swap, value of a :100

Before swap, value of b :200

After swap, value of a :200

After swap, value of b :100

RETURN BY REFERENCE:

 We have studied the reference variable and it’s functioning.

 A reference allows creating alias for the pre-existing variable.

 A reference can also be returned by the function.

 A function that returns reference variable is in fact an alias for

referred variable.

 This technique of returning reference is used to establish

cascade of member functions calls in operator overloading.

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., Asst. Professor

 24

INLINE FUNCTIONS

 C++ inline function is powerful concept that is commonly

used with classes. If a function is inline, the compiler places a

copy of the code of that function at each point where the

function is called at compile time.

 Any change to an inline function could require all clients of

the function to be recompiled because compiler would need to

replace all the code once again otherwise it will continue with

old functionality.

 To inline a function, place the keyword inline before the

function name and define the function before any calls are

made to the function. The compiler can ignore the inline

qualifier in case defined function is more than a line.

 A function definition in a class definition is an inline function

definition, even without the use of the inline specifier.

Following is an example, which makes use of inline function to return

max of two numbers –

#include<iostream.h>

#include<conio.h>

inline int max (int x, int y)

{

return (x > y) ? x : y;

}

int main() // Main function for the program

{

cout << " max (20,10) : "<< max(20,10) << endl;

cout << " max (0,200) : "<< max(0,200) << endl;

cout << " max (100,1010) : "<< max(100,1010) << endl;

return 0;

}

When the above code is compiled and executed, it produces the

following result –

max (20,10) : 20

max (0,200) : 200

max (100,1010) : 1010

DEFAULT ARGUMENT

 A default argument is a function argument that has a default

value provided to it. If the user does not supply a value for this

argument, the default value will be used. If the user does

supply a value for the default argument, the user-supplied value

is used.

 Note : Only the trailing arguments can have default values

and therefore we must add default values form right-to-left.

Some examples of function declaration with default values are:

int Add(int x, int y, int z=30); //Valid

int Add(int x, int y=20, int z=30); //Valid

int Add(int x=10, int y=20, int z=30); //Valid

int Add(int x=10, int y, int z); //Invalid

int Add(int x=10, int y, int z=30); //Invalid

Example :

 #include<iostream.h>

 int Add(int x, int y=20, int z=30)

 {

 return x + y + z;

 }

 void main()

 {

 int rs;

 rs = Add(5);

 cout<<"\n\tThe sum is : "<<rs;

 rs = Add(4,8);

 cout<<"\n\tThe sum is : "<<rs;

 rs = Add(7,3,4);

 cout<<"\n\tThe sum is : "<<rs;

 }

Output :

The sum is : 55

The sum is : 42

The sum is : 14

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., Asst. Professor

 25

Working of default arguments

CONST ARGUMENTS

 The constant variable can be declared using const keyword.

 The const keyword makes variable value stable.

 The constant variable should be initialized while declaring.

Syntax:

a) const < variable name > = <value>

b) <function name > (const <type> * <variable name>;)

c) int const x // invalid

d) int const x =5 // valid

In statement (a) , the const modifier enables to assign an initial value

to a variable that cannot be changed later by the program.

Example:

 const age = 40;

Any attempt to change the contents of const variable age will produce

a compiler error. Using pointer one can indirectly modify a const

variable as per the following:

 *(int *) &age = 45;

Write a program to declare constant variable:

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., Asst. Professor

 26

RECURSION

 When function is called within the same function, it is known

as recursion in C++. The function which calls the same

function, is known as recursive function.

 A function that calls itself, and doesn't perform any task after

function call, is known as tail recursion. In tail recursion, we

generally call the same function with return statement.

Simple example of recursion.

recursionfunction()

{

recursionfunction(); //calling self function

}

Example to print factorial number using recursion :

#include<iostream.h>

void main()

{

int factorial(int);

int fact,value;

cout<<"Enter any number: ";

cin>>value;

fact=factorial(value);

cout<<"Factorial of a number is: "<<fact<<endl;

}

int factorial(int n)

{

if(n<0)

return(-1); /*Wrong value*/

if(n==0)

return(1); /*Terminating condition*/

else

{

return(n*factorial(n-1));

}

}

FUNCTION OVERLOADING

 Two or more functions having same name but different

argument(s) are known as overloaded functions.

 Function refers to a segment that groups code to perform a

specific task.

 In C++ programming, two functions can have same name if

number and/or type of arguments passed are different.

 These functions having different number or type (or both) of

parameters are known as overloaded functions.

For example:

int test() { }

int test(int a) { }

float test(double a) { }

int test(int a, double b) { }

 Here, all 4 functions are overloaded functions because

argument(s) passed to these functions are different.

 Notice that, the return type of all these 4 functions are not

same. Overloaded functions may or may not have different

return type but it should have different argument(s).

 // Error code

int test(int a) { }

double test(int b){ }

The number and type of arguments passed to these two functions are

same even though the return type is different. Hence, the compiler will

throw error.

Output:

Enter any number: 5

Factorial of a number is : 120

https://www.programiz.com/cpp-programming/function

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., Asst. Professor

 27

Example : Function Overloading

#include <iostream.h>

#include <conio.h>

void display(int);

void display(float);

void display(int, float);

void main()

{

 int a = 5;

 float b = 5.5;

 display(a);

 display(b);

 display(a, b);

}

void display(int var) {

 cout << "Integer number: " << var << endl;

}

void display(float var) {

 cout << "Float number: " << var << endl;

}

void display(int var1, float var2) {

 cout << "Integer number: " << var1;

 cout << " and float number:" << var2;

}

Output:

Integer number: 5

Float number: 5.5

Integer number: 5 and float number: 5.5

 Here, the display() function is called three times with different

type or number of arguments.

 The return type of all these functions are same but it's not

necessary.

UNIT-I COMPLETED

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., Asst. Professor

 28

UNIT-II

CLASSES AND OBJECTS

CLASSES:

 A class is a way to bind data and functions together in a single

data type. The variables and functions enclosed in a class are

called data members and member functions. Since classes by

default are private, class allows the data (and functions) to be

hidden if necessary from external use.

 This mechanism of binding data and functions that operate on

that data is call data encapsulation.

 This mechanism of hiding data of a class from the outside

world (other classes) so that any access to it either intentionally

or unintentionally can’t modify the data is called data hiding.

Class Declaration:

A class specification has two parts:

1. Class Declaration

2. Class Function definitions

The class declaration describes the type and scope of its member. The

class definitions describe how the class functions are implemented.

The syntax of a class definition is shown below :

class name_of _class

 {

 private: Variable declaration; // data member

 Function declaration; // Member Function

 protected: Variable declaration;

 Function declaration;

 public: Variable declaration;

 Function declaration;

};

Here, the keyword class specifies that we are using a new data type

and is followed by the class name.

Here, access-specifier is one of these three C++ keywords:

1. public

2. private

3. protected

By default, functions and data declared within a class are private.

Private data and functions can only be accessed from within the class

itself. Public data and functions are accessible outside the class also.

The protected access_specifier is needed only when inheritance is

involved.

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., Asst. Professor

 29

Example:

class student

{

int rollno;

float marks;

public:

void getdata ();

void display ();

};

Creating Object:

 An object is an instance of a class. In general a class is a user

defined data type, while an object is an instance of an class.

e.g. Let student be the name of class

student S1, S2;

creates variables S1, S2 of type student. Once the objects are

declared memory is allocated. Objects can also be created by placing

their names immediately after the closing brace.

e.g. class student

{

 .…..

 ……

} S1, S2, S3;

Accessing Class members

 After creating the object there is a need to access the class

member.

 This can be done by using a dot (.) operator.

Example: Function call statement

S1.getdata(129,704.5); //assign value 129 to rollno and

704.5 to marks of object S1.

S1.display(); //will display value of data members.

Similarly the statement

S1.roll = 129; is invalid because data member is private.

DEFINING MEMBER FUNCTIONS

 Member functions of a class can be defined either outside the

class definition or inside the class definition.

 In both the cases, the function body remains the same,

however, the function header is different.

 In C++, the member functions can be coded in two ways :

 (a) Inside class definition

 (b) Outside class definition using scope resolution

operator (::)

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., Asst. Professor

 30

Outside the Class:

 Defining a member function outside a class requires the

function declaration (function prototype) to be provided inside

the class definition. The member function is declared inside the

class like a normal function.

 This declaration informs the compiler that the function is a

member of the class and that it has been defined outside the

class. After a member function is declared inside the class, it

must be defined (outside the class) in the program.

 The definition of member function outside the class differs

from normal function definition, as the function name in the

function header is preceded by the class name and the scope

resolution operator (: :).

 The scope resolution operator informs the compiler what class

the member belongs to.

Syntax:

Return_type class_name :: function_name (parameter_list)

{

// body of the member function

}

 Example :

class book

 {

 body of the class

 } ;

void book :: getdata(char a[],float b)

{

// defining member function outside the class

strcpy(title, a):

price = b:

}

void book :: putdata ()

{

cout<<"\n Title of Book: "<<title;

cout<<"\n Price of Book: "<<price;

}

Inside the Class:

 A member function of a class can also be defined inside the

class. However, when a member function is defined inside the

class, the class name and the scope resolution operator are not

specified in the function header. Moreover, the member

functions defined inside a class definition are by default inline

functions.

 Example :

class book

{

char title[30];

float price;

public:

void getdata(char [],float); // declaration

void putdata() //definition inside the class

{

cout<<"\n Title of Book: "<<title;

cout<<"\n Price of Book: "<<price;

} ;

In this example, the member function putdata() is defined inside the

class book.

Hence, putdata() is by default an inline function.

Note that the functions defined outside the class can be explicitly made

inline by prefixing the keyword inline before the return type of the

function in the function header.

For example, consider the definition of the function getdata().

inline void book :: getdata (char a [], float b)

{

body of the function

}

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., Asst. Professor

 31

A SIMPLE C++ PROGRAM WITH CLASS

PROGRAM 1:

#include< iostream.h>

#include<conio.h>

class hello;

{

public:

 void sayhello()

 {

 cout<< “hello world”<< endl;

}

};

void main()

{

hello h;

h.sayhello();

}

PROGRAM 2:

#include<iostream.h>

#include<conio.h>

class student

{

 private:

 char name[20], regd[10], branch[10];

 int sem;

 public:

 void input();

 void display();

};

void student :: input()

{

 cout<<"Enter Name:";

 cin>>name;

 cout<<"Enter Regd no.:";

 cin>>regd;

 cout<<"Enter Branch:";

 cin>>branch;

 cout<<"Enter Sem:";

 cin>>sem;

}

void student :: display()

{

 cout<< "\n\nName:" <<name;

 cout<< "\nRegd no.:" <<regd;

 cout<<"\nBranch:"<<branch;

 cout<<"\nSem:"<<sem;

}

int main()

{

 student s;

 s.input();

 s.display();

}

 OUTPUT:

Enter Name : Varsha

Enter Regd no.: 123

Enter Branch: CS

Enter Sem: 2

Name: Varsha

Regd no. : 123

Brach: CS

Sem: 2

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., Asst. Professor

 32

MAKING AN OUTSIDE FUNCTION INLINE

 One of the objectives of OOP is to separate the details of

implementation from the class definition. It is therefore good

practice to define the member functions outside the class.

 We can define a member function outside the class definition

and still make it inline by just using the qualifier inline in the

header line of the function definition.

Example:

class item

{

......

......

public:

void getdata(int a, float b);

};

inline void item :: getdata(int a, float b)

{

number=a;

cost=b;

}

NESTING OF MEMBER FUNCTION

 A member function of a class can be called only by an object

of that class using a dot operator.

 However, there is an exception to this.

 A member function can be called by using its name inside

another member function of the same class.

Example:

#include <iostream.h>

class set

{

int m, n;

public:

void input(void);

void display(void);

void largest(void);

};

int set :: largest(void)

{

if(m >= n)

return(m);

else

return(n);

}

void set :: input(void)

{

cout << "Input value of m and n"<<"\n";

cin >> m>>n;

}

void set :: display(void)

{

cout << "largest value=" << largest() <<"\n";

}

int main()

{

set A;

A.input();

A.display();

return 0;

}

PRIVATE MEMBER FUNCTION

 Although it is normal practice to place all the data items in a

private section and all the function in public, some situations

may require certain function to be hidden from the outside

calls.

 Tasks such a deleting an account in a customer file, or

providing increment to an employee are event of serious

OUTPUT:
Input value of m and n

25 18

Largest value=25

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., Asst. Professor

 33

consequences and therefore the function handling such task

should have restricted access.

 We can place these function in the private section.

 A private member function can only be called by another

function that is a member of its class. Even an object cannot

invoke a private function using the dot operator.

class sample

{

int m;

void read(void);

public:

void update(void);

void write(void);

};

ARRAYS WITHIN A CLASS

 Arrays can be declared as the members of a class.

 The arrays can be declared as private, public or protected

members of the class.

Example:

 #include<iostream>

const int size=5;

class student

{

int roll_no;

int marks[size];

public:

void getdata ();

void tot_marks ();

} ;

void student :: getdata ()

{

cout<<"\nEnter roll no: ";
Cin>>roll_no;

for(int i=0; i<size; i++)

{

cout<<"Enter marks in subject"<<(i+1)<<": ";

cin>>marks[i] ;

}

void student :: tot_marks() //calculating total marks

{

int total=0;

for(int i=0; i<size; i++)

total+ = marks[i];

cout<<"\n\nTotal marks "<<total;

}

void main()

student stu;

stu.getdata() ;

stu.tot_marks() ;

getch();

}

STATIC DATA MEMBER

 It is a variable which is declared with the static keyword, it is

also known as class member, thus only single copy of the

variable creates for all objects.

 Any changes in the static data member through one member

function will reflect in all other object’s member functions.

Declaration

 static data_type member_name;

Defining the static data member

It should be defined outside of the class following this syntax:

data_type class_name :: member_name =value;

OUTPUT:

Enter roll no: 101

Enter marks in subject 1 : 67

Enter marks in subject 2 : 54

Enter marks in subject 3 : 68

Enter marks in subject 4 : 72

Enter marks in subject 5 : 82

Total marks = 343

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., Asst. Professor

 34

 If you are calling a static data member within a member

function, member function should be declared as static (i.e. a

static member function can access the static data members)

#include <iostream>

class Demo

{

 private:

 static int X;

 public:

 static void fun()

 {

 cout <<"Value of X: " << X << endl;

 }

};

int Demo :: X =10; //defining

int main()

{

 Demo X;

 X.fun();

 return 0;

}

Accessing static data member without static member function

 A static data member can also be accessed through the class

name without using the static member , here we need an Scope

Resolution Operator (SRO) :: to access the static data member

without static member function.

Syntax:

class_name :: static_data_member;

Example:

#include <iostream.h>

class Demo

{

 public:
 static int ABC;

};

int Demo :: ABC =10; //defining

int main()

{

 cout<<"\nValue of ABC: "<<Demo::ABC;

 return 0;

}

STATIC MEMBER FUNCTION IN C++

 A static member function is a special member function, which

is used to access only static data members, any other normal

data member cannot be accessed through static member

function. Just like static data member, static member function

is also a class function; it is not associated with any class

object.

 We can access a static member function with class name, by

using following syntax:

 class_name :: function_name(parameter);

Example:

#include <iostream>

class Demo

{

 private:

 //static data members

 static int X;

 static int Y;

 public:

 //static member function

 static void Print()

 {

 cout <<"Value of X: " << X << endl;

 cout <<"Value of Y: " << Y << endl;

Output:

Value of X : 10

Output:

Value of ABC : 10

https://www.includehelp.com/cpp-tutorial/cpp-operators-new-delete-insertion-cpp-programming-language-tutorials.aspx#sro
https://www.includehelp.com/cpp-tutorial/cpp-operators-new-delete-insertion-cpp-programming-language-tutorials.aspx#sro

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., Asst. Professor

 35

 }

};

//static data members initializations

int Demo :: X =10;

int Demo :: Y =20;

int main()

{

 Demo OB;

 //accessing class name with object name

 cout<<"Printing through object name:"<<endl;

 OB.Print();

 //accessing class name with class name

 cout<<"Printing through class name:"<<endl;

 Demo::Print();

 return 0;

}

Output:

Printing through object name:

Value of X : 10

Value of Y : 20

Printing through class name:

Value of X : 10

Value of Y : 20

ARRAY OF OBJECTS

 Like array of other user-defined data types, an array of type

class can also be created.

 The array of type class contains the objects of the class as its

individual elements. Thus, an array of a class type is also

known as an array of objects.

 An array of objects is declared in the same way as an array of

any built-in data type.

Syntax:

 class_name array_name [size] ;

Example : A program to demonstrate the concept of array of objects

#include<iostream>

class books

{

char tit1e [30];

float price ;

public:

void getdata ();

void putdata ();

} ;

void books :: getdata ()

{

cout<<"Title:”;

Cin>>title;

cout<<"Price:”;

cin>>price;

 }

void books :: putdata ()

{

cout<<"Title:"<<title<< "\n";

cout<<"Price:"<<price<< "\n”;

const int size=3 ;

http://ecomputernotes.com/java/data-type-variable-and-array/explain-data-types-in-java

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., Asst. Professor

 36

}

void main ()

{

books book[size] ;

for(int i=0;i<size;i++)

{

cout<<"Enter details o£ book "<<(i+1)<<"\n";

book[i].getdata();

}

for(int i=0;i<size;i++)

{

cout<<"\nBook "<<(i+l)<<"\n";

book[i].putdata() ;

}

}

The output of the program is

Enter details of book 1

Title: c++

Price: 325

Enter details of book 2

Title: DBMS

Price:. 455

Enter details of book 3

Title: Java

Price: 255

Book 1

Title: c++

Price: 325

Book 2

Title: DBMS

Price: 455

Book 3

Title: Java

Price: 255

OBJECT AS FUNCTION ARGUMENTS

http://ecomputernotes.com/fundamental/what-is-a-database/advantages-and-disadvantages-of-dbms

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., Asst. Professor

 37

C++ FRIEND FUNCTION

 If a function is defined as a friend function in C++, then the

protected and private data of a class can be accessed using the

function.

 By using the keyword friend compiler knows the given

function is a friend function.

 For accessing the data, the declaration of a friend function

should be done inside the body of a class starting with the

keyword friend.

Declaration of friend function in C++

class class_name

{

 // syntax of friend function.

 friend data_type function_name(argument/s);

 };

In the above declaration, the friend function is preceded by the

keyword friend. The function can be defined anywhere in the program

like a normal C++ function. The function definition does not use either

the keyword friend or scope resolution operator.

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., Asst. Professor

 38

Characteristics of a Friend function:

o The function is not in the scope of the class to which it has

been declared as a friend.

o It cannot be called using the object as it is not in the scope of

that class.

o It can be invoked like a normal function without using the

object.

o It cannot access the member names directly and has to use an

object name and dot membership operator with the member

name.

o It can be declared either in the private or the public part.

Example of C++ friend function used to print the length of a box.

#include <iostream>

class Box

{

 private:

 int length;

 public:

 Box(): length(0) { }

 friend int printLength(Box); //friend function

};

int printLength(Box b)

{

 b.length += 10;

 return b.length;

}

int main()

{

 Box b;

 cout<<"Length of box: "<< printLength(b)<<endl;

 return 0;

}

Let's see a simple example when the function is friendly to two

classes.

#include <iostream>

class B; // forward declarartion.

class A

{

 int x;

 public:

 void setdata(int i)

 {

 x=i;

 }

 friend void min(A,B); // friend function.

};

class B

{

 int y;

 public:

 void setdata(int i)

 {

 y=i;

 }

 friend void min(A,B); // friend function

};

void min(A a,B b)

{

 if(a.x<=b.y)

 std::cout << a.x << std::endl;

 else

 std::cout << b.y << std::endl;

}

Output:

Length of box : 10

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., Asst. Professor

 39

 int main()

{

 A a;

 B b;

 a.setdata(10);

 b.setdata(20);

 min(a,b);

 return 0;

 }

POINTERS TO MEMBERS:

 It is possible to take the address of a member of a class and

assign it to a pointer.

 The address of a member can be obtain by applying the

operator & to a "fully qualified" class member name.

 A class member pointer can be declared using the operator ::*

with the class name.

 For example, given the class

class A

{

private:

int m;

public:

void show();

};

We can define a pointer to the member m as follows:

 int A::* ip= &A :: m;

The ip pointer created thus acts like class member in that it must be

invoked with a class object.

 The phrase A::* means "pointer to member of a class".

The phrase &A::m means the "address of the m member of A

class".

Remember, the following statement is not valid:

 int *ip = &m;

CONST MEMBER FUNCTION:

If a member function does not alter any data in the class, then we may

declare it as a const member function as follows:

 void mul(int ,int) const;

 double get_balance() const;

The qualifier const is appended to the function prototype. The

compiler will generate an error message if such functions try to alter

the data values.

CONSTRUCTORS AND DESTRUCTORS

Constructor:

 Constructor is the special type of member function in C++

classes, which are automatically invoked when an object is

being created.

 It is special because its name is same as the class name.

Constructor is used for:

 To initialize data member of class: In the constructor

member function (which will be declared by the programmer)

we can initialize the default vales to the data members and they

can be used further for processing.

 To allocate memory for data member: Constructor can also

be used to declare run time memory (dynamic memory for the

data members).

There are following properties of constructor:

 Constructor has the same name as the class name. It is case

sensitive.

 Constructor does not have return type.

 We can overload constructor, it means we can create more than

one constructor of class.

 We can use default argument in constructor.

 It must be public type.

Why constructor created?

It cannot be initialize the class member.

E.g:

Output:

10

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., Asst. Professor

 40

 class m

 {

 int a=10; // illegal

 };

Example:

#include< iostream.h>

#include<conio.h>

class sample

{ // class declaration

 int m;

 public:

 sample(); //default constructor

{

 m=10;

 }

 void display ()

 {

 cout << " The value of m is " << m;

 }

 };

void main()

{

 sample ob;

 ob.display();

}

Types of Constructor:

 Default Constructor

 Parameterize Constructor

 Copy Constructor

Default Constructor:

 Default constructor is also known as zero argument

constructors.

 Default constructor does not have any parameters and is used

to set (initialize) class data members.

 Since, there is no argument used in it, it is called "Zero

Argument Constructor".

 In a class, if there is no default constructors defined, then the

compiler inserts a default constructor with an empty body in

the class in compiled code.

 Constructor can also be defined outside of the class; it does not

have any return type.

Syntax

class_name() {

}

Example of Default Constructor

Let us take the example of class Marks which contains the marks of

two subjects Maths and Science.

#include<iostream.h>

class Marks

{

public:

 int maths;

 int science;

 //Default Constructor

 Marks() {

 maths=60;

 science=80;

 }

 display() {

Output:

Maths : 0

Science : 0

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., Asst. Professor

 41

 cout << "Maths : " << maths <<endl;

 cout << "Science :" << science << endl;

 }

};

int main() {

 //invoke Default Constructor

 Marks m;

 m.display();

 return 0;

}

Parameterized Constructors:

 It may be necessary to initialize the various data elements of

different objects with different values when they are created.

 This is achieved by passing arguments to the constructor

function when the objects are created.

 The constructors that can take arguments are called

parameterized constructors.

Syntax

class_name(Argument_List)

{

}

Example of Parametrized Constructor
Let us take the example of class ‘Marks’ which contains the marks of

two subjects Maths and Science.

#include<iostream.h>

#include<conio.h>

class Marks

{

public:
 int maths;

 int science;

 Marks(int mark1,int mark2)

//Parametrized Constructor

{

 maths = mark1;

 science = mark2;

 }

 void display() {

 cout << "Maths : " << maths <<endl;

 cout << "Science :" << science << endl;

 }

};

int main() {

 Marks m(90,85); //invoke Parametrized Constructor

 m.display();

 return 0;

}

Copy Constructor:

 The copy constructor is a constructor which creates an object

by initializing it with an object of the same class, which has been

created previously.

The copy constructor is used to −

1. Initialize one object from another of the same type.

2. Copy an object to pass it as an argument to a function.

3. Copy an object to return it from a function.

 If a copy constructor is not defined in a class, the compiler itself

defines one.

Output:

Maths : 90

Science : 85

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., Asst. Professor

 42

 If the class has pointer variables and has some dynamic memory

allocations, then it is a must to have a copy constructor.

Syntax

class_name(class_name &object)

{

}

Example:

#include< iostream.h>

#include<conio.h>

class copy

{ // class declaration

 int m;

 public:

 copy(); //default constructor

 {

 }

 copy(int x); //parameterized constructor

 {

 m= x;

 }

 copy(copy &c); //copy constructor

 {

 m= c.m;

 }

 };

void main()

{

 copy c1(25);

 copy c2(c1);

 copy c3;

 c3 = c1;

cout<<c1.a<<endl;

cout<<c2.a<<endl;

cout<<c3.a<<endl;

}

MULTIPLE CONSTRUCTOR IN A CLASS (CONSTRUCTOR

OVERLOADING):

In C++, We can have more than one

constructor in a class with same name, as long

as each has a different list of arguments.

This concept is known as Constructor

Overloading and is quite similar to function

overloading.

 Overloaded constructors essentially have the same name (name

of the class) and different number of arguments.

 A constructor is called depending upon the number and type of

arguments passed.

 While creating the object, arguments must be passed to let

compiler know, which constructor needs to be called.

Example:

#include <iostream>

#include<conio.h>

class construct

{

public:

 float area;

 construct() // Constructor with no parameters

 {

 area = 0;

Output:

0

200

Output:

23

23

23

https://www.geeksforgeeks.org/function-overloading-c/
https://www.geeksforgeeks.org/function-overloading-c/

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., Asst. Professor

 43

 }

 construct(int a, int b) // Constructor with two parameters

 {

 area = a * b;

 }

 void disp()

 {

 cout<< area<< endl;

 }

};

int main()

{

 // Constructor Overloading

 // with two different constructors

 // of class name

 construct o;

 construct o2(10, 20);

 o.disp();

 o2.disp();

 return 1;

}

DYNAMIC CONSTRUCTOR

 Dynamic constructor is used to allocate the memory to the

objects at the run time.

 Memory is allocated at run time with the help of 'new' operator.

 By using this constructor, we can dynamically initialize the

objects.

Example:

#include <iostream.h>

#include <conio.h>

class dyncons

{

 int * p;

 public:

 dyncons()

 {

 p=new int;

 *p=10;

 }

 dyncons(int v)

 {

 p=new int;

 *p=v;

 }

 int dis()

 { return(*p);

 }

};

void main()

{

clrscr();

dyncons o, o1(9);

cout<<"The value of object o's p is:";

cout<<o.dis();

cout<<"\nThe value of object 01's p is:"<<o1.dis();

getch();

}

DESTRUCTOR

 Constructor allocates the memory for an object.

 Destructor deallocate the memory occupied by an object.

 Like constructor, destructor name and class name must be

same, preceded by a tilde(~) sign.

 Destructor take no

argument and have no

return value.

 Constructor is invoked

automatically when the

Output:

The value of object o’s p is :10

The value of object o1’s p is : 9

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., Asst. Professor

 44

object created.

 Destructor is invoked when the object goes out of scope.

 In other words, Destructor is invoked, when compiler comes

out form the function where an object is created.

Syntax:

class A

{

 public:

 ~A() // defining destructor for class

 {

 // statement

 }

};

C++ Destructor Program #1 : Simple Example

#include<iostream.h>

class Marks

{

public:

 int maths;

 int science;

 Marks() //constructor

{

 cout << "Inside Constructor"<<endl;

 cout << "C++ Object created"<<endl;

 }

 ~Marks() //Destructor

 {

 cout << "Inside Destructor"<<endl;

 cout << "C++ Object destructed"<<endl;

 }

};

void main()

{

 Marks m1;

 Marks m2;

}

Output

Inside Constructor

C++ Object created

Inside Constructor

C++ Object created

Inside Destructor

C++ Object destructed

Inside Destructor

C++ Object destructed

 OPERATOR OVERLOADING IN C++

 Operator overloading is an important concept in C++.

 It is a type of polymorphism in which an operator is overloaded

to give user defined meaning to it.

 Overloaded operator is used to perform operation on user-

defined data type.

 For example '+' operator can be overloaded to perform addition

on various data types, like for Integer, String(concatenation)

etc.

Almost any operator can be overloaded in C++. However there are few

operator which can not be overloaded. Operator that are not

overloaded are follows

 scope operator - ::

 sizeof

 member selector - .

 member pointer selector - *

 ternary operator - ?:

Operator Overloading Syntax

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., Asst. Professor

 45

Operator overloading is a way of providing new implementation of

existing operators to work with user-defined data types.

An operator can be overloaded by defining a function to it. The

function for operator is declared by using the operator keyword

followed by the operator.

There are two types of operator overloading in C++

 Binary Operator Overloading

 Unary Operator Overloading

Overloading Unary Operator

 Unary operator is an operator that takes single

operand(variable).

 Both increment(++) and decrement(--) operators are unary

operators.

Example of Unary Operator Overloading

 #include<iostream.h>

 #include<conio.h>

 class Rectangle

 {

 int L,B;

 public:

 Rectangle() //Default Constructor

 {

 L = 0;

 B = 0;

 }

 void operator++() // Unary operator overloading func.

 {

 L+=2;
 B+=2;

 }

 void Display()

 {

 cout<<"\n\tLength : "<<L;

 cout<<"\n\tBreadth : "<<B; }

 };

 void main()

 {

 Rectangle R; //Creating Object

 cout<<"\n\tLength Breadth before increment";

 R.Display();

 R++;

 cout<<"\n\n\tLength Breadth after increment";

 R.Display();

 }

Output :

 Length Breadth after increment

 L : 0

 B : 0

 Length Breadth after increment

 L : 2

 B : 2

Overloading Binary Operator

 Binary operator is an operator that takes two

operand(variable).

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., Asst. Professor

 46

 Binary operator overloading is similar to unary operator

overloading except that a binary operator overloading

requires an additional parameter.

Binary Operators

 Arithmetic operators (+, -, *, /, %)

 Arithmetic assignment operators (+=, -=, *=, /=, %=)

 Relational operators (>, <, >=, <=, !=, ==)

Example of Binary Operator Overloading

 #include<iostream.h>

 #include<conio.h>

 class Rectangle

 {

 int L, B;

 public:

 Rectangle() //Default Constructor

 {

 L = 0;

 B = 0;

 }

 Rectangle(int x,int y) //Parameterize Constructor

 {

 L = x;

 B = y;

 }
 //Binary operator overloading func.

 Rectangle operator+(Rectangle Rec) {

 Rectangle R;

 R.L = L + Rec.L;

 R.B = B + Rec.B;

 return R;

 }

 void Display()

 {

 cout<<"\n\tLength : "<<L;

 cout<<"\n\tBreadth : "<<B;

 }
 };

 void main()

 {

 Rectangle R1(2,5),R2(3,4),R3; //Creating Objects

 cout<<"\n\tRectangle 1 : ";

 R1.Display();

 cout<<"\n\n\tRectangle 2 : ";

 R2.Display();

 R3 = R1 + R2; // Statement 1

 cout<<"\n\n\tRectangle 3 : ";

 R3.Display();

 }

 Output :

 Rectangle 1 :

 L : 2

 B : 5

 Rectangle 2 :

 L : 3

 B : 4

 Rectangle 3 :

 L : 5

 B : 9

In statement 1, Left object R1 will invoke operator+() function and

right object R2 is passing as argument.

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., Asst. Professor

 47

Another way of calling binary operator overloading function is to

call like a normal member function as follows,

R3 = R1.operator+ (R2);

OVERLOAD BINARY OPERATOR USING FRIEND

FUNCTION

 If you define operator function as a friend function then it will

accept two arguments.

 Because friend functions is not a member function so it is not

invoked using object of the class.

 Thus we need to pass two objects as an argument explicitly.

 Consider following example to overload binary operator +

using friend function.

#include <iostream.h>

class demo

{

int x,y;

public:

demo()

{

x=0;

y=0;

}

demo(int a, int b)

{

x=a;

y=b;

}

friend demo operator + (demo &d1, demo &d2)

{

demo d3;

d3.x = d1.x + d2.x;

d3.y = d1.y + d2.y;

return d3;

}

void display()

{

cout<<"X="<<x<<endl;

cout<<"Y="<<y<<endl;

}

};

int main()

{

demo d1(2,3);

demo d2(4,5);

demo d3;

d3 = operator + (d1,d2);

cout<<"Object C1\n";

d1.display();

cout<<"Object C2\n";

d2.display();

cout<<"Object C3\n";

d3.display();

return 0;

}

STRING MANIPULATION USING

OPERATOR OVERLOADING

 C++ allows us the facility of

manipulate strings using the concept

of operator overloading.

For example we can overload + operator to concate two

strings. We can overload == operator to compare two strings.

 Consider Following Example in which we overload + operator

to concate two strings.

#include<iostream.h>

#include<string.h>

class string

Output:

Object C1

X=2

Y=3

Object C2

X=4

Y=5

Object C3

X=6

Y=8

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., Asst. Professor

 48

{

char *name;

int length;

public:

string()

{

length=0;

name = new char[length+1];

}

string(char *n)

{

length=strlen(n);

name= new char [length+1];

strcpy(name,n);

}

void display()

{

cout<<"String:"<<name;

}

string operator+(string s)

{

string temp;

strcpy(temp.name,name);

strcat(temp.name,s.name);

return temp;

}

};

int main()

{

string s1("Hello");

string s2("Welcome");

string s3;

s1.display();

s2.display();

s3=s1+s2;

s3.display();

return 0;

}

RULES OF OPERATOR OVERLOADING IN C++

Every programmer knows the concept of operation overloading in

C++. Although it looks simple to redefine the operators in operator

overloading, there are certain restrictions and limitation in overloading

the operators. Some of them are listed below:

1. Only existing operators can be overloaded. New operators cannot be

overloaded.

2. The overloaded operator must have at least one operand that is of

user defined type.

3. We cannot change the basic meaning of an operator. That is to say,

We cannot redefine the plus(+) operator to subtract one value from the

other.

4. Overloaded operators follow the syntax rules of the original

operators. They cannot be overridden.

5. There are some operators that cannot be overloaded like size of

operator(sizeof), membership operator(.), pointer to member

operator(.*), scope resolution operator(::), conditional operators(?:) etc

6. We cannot use “friend” functions to overload certain

operators.However, member function can be used to overload them.

Friend Functions can not be used with assignment operator(=),

function call operator(()), subscripting operator([]), class member

access operator(->) etc.

7. Unary operators, overloaded by means of a member function, take

no explicit arguments and return no explicit values, but, those

overloaded by means of a friend function, take one reference argument

(the object of the relevent class).

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., Asst. Professor

 49

8. Binary operators overloaded through a member function take one

explicit argument and those which are overloaded through a friend

function take two explicit arguments.

9. When using binary operators overloaded through a member

function, the left hand operand must be an object of the relevant class.

10. Binary arithmetic operators such as +,-,* and / must explicitly

return a value. They must not attempt to change their own arguments.

TYPE CONVERSION

WHAT IS TYPE CONVERSIONS?

 Converting data from one type into another type is called type

conversion.

 In other words converting an expression of a given type into

another is called type casting (by programmer).

 Eg.

 int m;

 float =3.14;

 m=x; // conversion of float type data into integer type

Types Of Type Conversion:

Four type of situation might arise in the data conversion.

1. Conversion from basic type to basic type

2. Conversion from basic type to class type

3. Conversion from class type to basic type

4. Conversion from class type to class type

1. Conversion from basic type to basic type

 There are two ways of achieving the type conversion namely:

 Automatic Conversion otherwise called as Implicit Conversion

 Type casting otherwise called as Explicit Conversion (by

programmer).

Implicit conversion:

 This is not done by any conversions or operators.

 In other words the value gets automatically converted to the

specific type to which it is assigned.

Example:

#include <iostream.h>

void main()

{

float x=60.68;

int y;

y=x; // implicit type conversion of float to integer

}

Explicit Conversion:

 Type casting otherwise called as Explicit Conversion

 Explicit conversion can be done using type cast operator.

Syntax:

datatype (expression);

Here in the above datatype is the type which the programmer wants the

expression to gets changed as.

In C++ the type casting can be done in either of the two ways

mentioned below namely:

 C-style casting : (type) expression

 C++-style casting : type (expression)

Example:

#include <iostream.h>

void main()

{

int a;

float b,c;

cout << "Enter the value of a:";

cin >> a;

cout << "Enter the value of b:";

cin >> b;

c = float(a)+b;

cout << "The value of c is:" << c;

}

http://www.exforsys.com/?s=include
http://www.exforsys.com/?s=include

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., Asst. Professor

 50

2. Basic type to class type:

 Convertion of basic type to class type can be done using constructor.

Eg.

#include <iostream.h>

class hours

{

 int hrs;

public:

 hours (int t)

{

 hrs = t/60;

 }

void show()

{

 cout<<hrs<<":hours"<<endl;

}

};

void main()

{

hours t1 = 85; // integer 85 is converted object of class

hours

t1.show(); // output 1 : hours

}

3. Class type to basic type:

 It can be done by using: overloaded casting operator

 It is also known as conversion function.

Syntax:

operator float()

{

 return(basic_type data);

}

The casting operator function should satisfy following conditions:

 It must be a class member

 It must not specify return type

 It must not have any argument.

Example:

class hours {

int hrs;

public:

hours (int t)

{

hrs = t/60;

}

operator float() // type conversion from class to basic

{

 return float (hrs)/2; // type conversion int to float (basic to basic)

}

void show ()

{

 cout<<hrs<<":hours"<<endl;

}

};

void main ()

{

float f;

hours t1 =85; // integer 85 is converted into objects of class hours

t1.show(); // output: 1: hours

f=t1; // type conversion from class objects “ t1” to float “ f”

cout<<"time:"<< f <<endl; // output: time: 0.5

}

4. Class Type To Class Type:

Obx=oby;

Here class y is source class and class X is destination class.

There are two ways to convert class type to class type conversion.

1. Using casting operator function in destination class. (or)

http://www.exforsys.com/?s=include

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., Asst. Professor

 51

2. Using constructor conversion in source class.

In this type of conversion both the type that is source type and the

destination type are of class type. Means the source type is of class

type and the destination type is also of the class type. In other words,

one class data type is converted into another class type.

For example we have two classes one for “computer” and another for

“mobile”. Suppose if we wish to assign “price” of

computer to mobile then it can be achieved by the statement below

which is the example of the conversion from one class to another class

type.

mob = comp ;

// where mob and comp are the objects of mobile and computer classes

respectively.

 Here the assignment will be done by converting “comp” object

which is of class type into the “mob” which is another class data type.

Example:

1.Class type using casting operator function in source class

// source class

class minutes

{

 int m;

public:

 minutes (int ms)

{

m=ms;

}

operator hours()

{

hours h1;

h1.h = m/60;

return(h1);

}

void show ()

//destination class

 class hours

{

int h;

public:

hours ()

{

h = 0;

}

void show ()

{

cout<<”hours =”<<h <<endl;

}

};

{

cout<<”minutes = “ << m << endl;

}

int getdata()

{

return m;

}

};

use of class type to class type conversion in main()

int main()

{

minutes min(60);

hours hr; // output : minutes = 60

hr=min; //class minutes to class hours

min.show(); // output : minutes = 60

hr.show (); // output: hours =1

getch();

}

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., Asst. Professor

 52

2. Class type to class type using constructor conversion in destination

class

class minutes

{

 int m;

public:

 minutes (int ms)

{

m=ms;

}

void show ()

{

 cout<<”minutes = “ << m

<< “\n”;

}

int getdata()

{

return m;

}

};

class hours

{

int h;

public:

hours ()

{

h = 0;

}

void show ()

{

cout<<”hours =”<<h <<endl;

}

hours h1;

{

h1.h = m/60;

return(h1);

}

};

Programming in C++ R.BARANI MCA., M.Phil.,(Ph.D).,NET., Asst. Professor

53

UNIT - III

INHERITANCE

 The capability of a class to derive properties and characteristics

from another class is called Inheritance. Inheritance is one of the

most important feature of Object Oriented Programming.

Sub Class: The class that inherits properties from another class is

called Sub class or Derived Class.

Super Class: The class whose properties are inherited by sub

class is called Base Class or Super class.

 The main advantages of inheritance are code

reusability and readability. When child class inherits the

properties and functionality of parent class, we need not to write

the same code again in child class. This makes it easier to reuse

the code, makes us write the less code and the code becomes

much more readable.

The general form of defining a derived class is:

class derived-class_name : visibility-mode base-class_name

{

 // members of the derived class

};

Modes of Inheritance

1. Public mode: If we derive a sub class from a public base

class. Then the public member of the base class will become

public in the derived class and protected members of the base

class will become protected in derived class.

2. Protected mode: If we derive a sub class from a Protected

base class. Then both public member and protected members of

the base class will become protected in derived class.

3. Private mode: If we derive a sub class from a Private base

class. Then both public member and protected members of the

base class will become Private in derived class.

Note : The private members in the base class cannot be directly

accessed in the derived class, while protected members can be directly

accessed.

Types of Inheritance:

C++ offers five types of Inheritance. They are:

 Single Inheritance

 Multiple Inheritance

 Hierarchical Inheritance

 Multilevel Inheritance

 Hybrid Inheritance (also known as Virtual Inheritance)

Single Inheritance:

 In single inheritance, there is only one base class and one

derived class.

 The Derived class gets inherited from its base class.

 This is the simplest form of inheritance.

Programming in C++ R.BARANI MCA., M.Phil.,(Ph.D).,NET., Asst. Professor

54

Syntax:

class base_class

{

};

class derived_ class : visibility-mode base_ class

{

};

#include <iostream>

 class Animal

{

 public:

 void eat()

 {

 cout<<"Eating..."<<endl;

 }

 };

 class Dog: public Animal

 {

 public:

 void bark(){

 cout<<"Barking...";

 }

 };

int main(void) {

 Dog d1;

 d1.eat();

 d1.bark();

 return 0;

}

 Ambiguity in single Inheritance

 Whenever a data member and member functions are defined

with the same name in both the base and derived class,

ambiguity occurs.

 The scope resolution operator must be used to refer to

particular class as: object_name.class_name :: class member.

 Multiple Inheritance:

 Multiple Inheritance is a feature of C++ where a class can

inherit from more than one classes. i.e one sub class is

inherited from more than one base classes.

 The process in which a derived class inherits its from several

base classes, is called multiple inheritance.

 In Multiple inheritance, there is only one derived class and

several base classes.

Syntax:

class base_class1{

};

class base_class2{

};

class derived_ class : visibility-mode base_ class1 , visibility-mode

base_ class2 {

};

Output:

Eating...

Barking...

Programming in C++ R.BARANI MCA., M.Phil.,(Ph.D).,NET., Asst. Professor

55

#include <iostream> class A

{ int a;

 public:

 void get_a(int n)

 {

 a = n;

 }

}; class B

{

 int b;

 public:

 void get_b(int n)

 {

 b = n;

 }

};

class C : public A,public B

{

 public:

 void display()

 {

 cout << "The value of a is : " <<a<< endl;

 cout << "The value of b is : " <<b<< endl;

 cout<<"Addition of a and b is : "<<a+b;

 }

};

int main()

{

 C c;

 c.get_a(10);

 c.get_b(20);

 c.display();

 return 0;

}

Multilevel Inheritance:

 The process in which a

derived class inherits traits

from another derived

class, is called Multilevel

Inheritance.

 A derived class with multilevel

inheritance is declared as :

Syntax:

class base_class {

};

class derived_ class1 : visibility-mode base_ class {

};

class derived_ class 2: visibility-mode derived_ class1 {

};

Here, derived_ class 2 inherits traits from derived_ class 1 which itself

inherits from base_class.

#include <iostream>

 class Animal {

 public:

 void eat() {

 cout<<"Eating..."<<endl;

 }

 };

 class Dog: public Animal

 {

 public:

 void bark(){

 cout<<"Barking..."<<endl;

 }

 };

 class BabyDog: public Dog

 {

 public:

Output:

 Eating...

 Barking...

 Weeping...

Programming in C++ R.BARANI MCA., M.Phil.,(Ph.D).,NET., Asst. Professor

56

 void weep() {

 cout<<"Weeping...";

 }

 };

void main(void) {

 BabyDog d1;

 d1.eat();

 d1.bark();

 d1.weep();

}

Hierarchical Inheritance:

 The process in which traits of one class can be inherited by

more than one class is known as Hierarchical inheritance.

 The base class will include all the features that are common to

the derived classes.

 A derived class can serve as a base class for lower level classes

and so on.

Syntax of Hierarchical inheritance:
class A

{

 // body of the class A.

}

class B : public A

{

 // body of class B.

}

class C : public A

{

 // body of class C.

}

class D : public A

{

 // body of class D.

}

Example:

#include <iostream>

class Shape // Declaration of base class.

{

 public:

 int a;

 int b;

 void get_data(int n,int m)

 {

 a= n;

 b = m;

 }

};

class Rectangle : public Shape // inheriting Shape class

{

 public:

 int rect_area()

 {

 int result = a*b;

 return result;

 }

};

class Triangle : public Shape // inheriting Shape class

{

 public:

 int triangle_area()

 {

 float result = 0.5*a*b;

 return result;

 }

};

Programming in C++ R.BARANI MCA., M.Phil.,(Ph.D).,NET., Asst. Professor

57

void main()

{

 Rectangle r;

 Triangle t;

 int length,breadth,base,height;

cout << "Enter the length and breadth of a rectangle: " << endl;

 cin>>length>>breadth;

 r.get_data(length,breadth);

 int m = r.rect_area();

 cout << "Area of the rectangle is : " <<m<< endl;

 cout << "Enter the base and height of the triangle: " << endl;

 cin>>base>>height;

 t.get_data(base,height);

 float n = t.triangle_area();

 cout <<"Area of the triangle is : " << n<< endl;

 }

Output:

Enter the length and breadth of a rectangle:

23

20

Area of the rectangle is : 460

Enter the base and height of the triangle:

2

5

Area of the triangle is : 5

Hybrid Inheritance

 The inheritance hierarchy that reflects any legal combination

of other types of inheritance is known as hybrid Inheritance.

 Hybrid inheritance is a combination of more than one type of

inheritance.

 For example, A child and parent class relationship that

follows multiple and hierarchical inheritance both can be

called hybrid inheritance.

Example:

#include <iostream>

class A

{

 protected:

 int a;

 public:

 void get_a()

 {

cout << "Enter the value of 'a' : " << endl;

 cin>>a;

 }

};

class B : public A

{

 protected:

 int b;

 public:

 void get_b()

 {

 cout << "Enter the value of 'b' : " << endl;

 cin>>b;

 }

};

class C

{

 protected:

 int c;

Programming in C++ R.BARANI MCA., M.Phil.,(Ph.D).,NET., Asst. Professor

58

 public:

 void get_c()

 {

cout << "Enter the value of c is : " << endl;

 cin>>c;

 }

};

class D : public B, public C

{

 protected:

 int d;

 public:

 void mul()

 {

 get_a();

 get_b();

 get_c();

 cout << "Multiplication of a,b,c is : " <<a*b*c<< endl;

 }

};

int main()

{

 D d;

 d.mul();

 return 0;

}

Output:

Enter the value of 'a' : 10

Enter the value of 'b' : 20

Enter the value of c is : 30

Multiplication of a,b,c is : 6000

VIRTUAL BASE CLASSES

 When two or more objects are derived from a common base

class, we can prevent multiple copies of the base class being

present in an object derived from those objects by declaring the

base class as virtual when it is being inherited. Such a base

class is known as virtual base class.

 This can be achieved by preceding the base class’ name with

the word virtual.

 Virtual base class is used in situation where a derived have

multiple copies of base class.

 Consider the following figure:

Syntax:

class A

{

……...

……...

 };

class B : public virtual A

{

……...

……...

};

class C : public virtual A

{

Programming in C++ R.BARANI MCA., M.Phil.,(Ph.D).,NET., Asst. Professor

59

……...

……...

};

class D : public B, public C

{

……...

……...

};

Example using virtual base class

 #include<iostream.h>

 #include<conio.h>

 class ClassA

 {

 public:

 int a;

 };

 class ClassB : virtual public ClassA

 {

 public:

 int b;

 };

 class ClassC : virtual public ClassA

 {

 public:

 int c;

 };

 class ClassD : public ClassB, public ClassC

 {

 public:

 int d;

 };

 void main()

 {

 ClassD obj;

 obj.a = 10; //Statement 1

 obj.a = 100; //Statement 2

 obj.b = 20;

 obj.c = 30;

 obj.d = 40;

 cout<< "\n A : "<< obj.a;

 cout<< "\n B : "<< obj.b;

 cout<< "\n C : "<< obj.c;

 cout<< "\n D : "<< obj.d;

 }

 Output :

 A : 100

 B : 20

 C : 30

 D : 40

According to the above example, ClassD have only one copy of

ClassA and statement 4 will overwrite the value of a, given in

statement 3.

C++ Abstract Class

 Abstract class is used in situation, when we have partial set of

implementation of methods in a class.

 For example, consider a class have four methods. Out of four

methods, we have an implementation of two methods and we

need derived class to implement other two methods. In these

kind of situations, we should use abstract class.

 A virtual function will become pure virtual function when you

append "=0" at the end of declaration of virtual function.

Programming in C++ R.BARANI MCA., M.Phil.,(Ph.D).,NET., Asst. Professor

60

 A class with at least one pure virtual function or abstract

function is called abstract class.

 Pure virtual function is also known as abstract function.

 We can't create an object of abstract class b'coz it has

partial implementation of methods.

 Abstract function doesn't have body

 We must implement all abstract functions in derived class.

C++ abstract class : syntax and structure

//declaring abstract base class

class base_class

 {

 virtual return_type func_name() = 0; //pure virtual function

 }

Example of C++ Abstract class

 #include<iostream.h>

 #include<conio.h>

 class BaseClass //Abstract class

 {

 public:

 virtual void Display1()=0; //Pure virtual func or abstract func

 virtual void Display2()=0; //Pure virtual func or abstract func

 void Display3()

 {

 cout<<"\n\tThis is Display3() method of Base Class";

 }

 };

 class DerivedClass : public BaseClass

 {

 public:

 void Display1()

 {

 cout<<"\n\tThis is Display1() method of Derived Class";

 }

 void Display2()

 {

 cout<<"\n\tThis is Display2() method of Derived Class";

 }

 };

 void main()

 {

 DerivedClass D;

 D.Display1(); // This will invoke Display1() method of Derived Class

 D.Display2(); // This will invoke Display2() method of Derived Class

 D.Display3(); // This will invoke Display3() method of Derived Class

 }

 Output :

 This is Display1() method of Derived Class

 This is Display2() method of Derived Class

 This is Display3() method of Base Class

CONSTRUCTORS IN DERIVED CLASS

When a class is declared, a constructor is also declared inside the class in

order to initialize data members. It is not possible to use a single constructor

for more classes. Every class has its own constructor and destructor with a
similar name as the class. When a class is derived from another class, it is

possible to define a constructor in the derived class, and the data members of

both base and derived classes can be initialized. It is not essential to declare a
constructor in a base class. Thus, the constructor of the derived class works

for its base class; such constructors are called constructors in the derived

class or common constructors.

Programming in C++ R.BARANI MCA., M.Phil.,(Ph.D).,NET., Asst. Professor

61

POLYMORPHISM IN C++

Polymorphism is the technique of using same thing for different

purpose.

There are two types of polymorphism:

(A) Compile time polymorphism

(B) Run time polymorphism

(A) Compile time polymorphism:

Compile time polymorphism is also known as static binding or

early binding.

Function overloading and Operator overloading are the

example of compile time polymorphism.

It is called compile time polymorphism because which version

of function to invoke is determined by the compiler at compile

time based on number and types of the argument.

Thus in compile time polymorphism which function to invoke

Programming in C++ R.BARANI MCA., M.Phil.,(Ph.D).,NET., Asst. Professor

62

is determined at compile time so it is called static or early

binding.

(B) Run time polymorphism:

Run time polymorphism is also known as dynamic binding or

late binding.

Virtual function is the example of run time polymorphism.

While inheriting derived class from base class if both classes

contain same function then we have to declare that function as

a virtual in the base class.

In order to invoke function from the appropriate class you need

to declare a pointer of base class and then invoke the function

using that pointer. If pointer contains the address of the base

class object then base class version is invoked and if pointer

contains the address of derive class object then derived class

version is invoked.

Thus in run time polymorphism which function to invoke is

determined at runtime so it is called dynamic binding or late

binding.

POINTERS

What are Pointers?

 A pointer is a variable whose value is the address of another

variable. Like any variable or constant, you must declare a

pointer before you can work with it.

 The general form of a pointer variable declaration is

type *var-name;

Here, type is the pointer's base type; it must be a valid C++ type

and var-name is the name of the pointer variable.

The asterisk you used to declare a pointer is the same asterisk that

you use for multiplication.

 However, in this statement the asterisk is being used to designate a

variable as a pointer.

Following are the valid pointer declaration −

int *ip; // pointer to an integer

double *dp; // pointer to a double

float *fp; // pointer to a float

char *ch // pointer to character

Declaration of Pointer variable:

General syntax of pointer declaration is,

datatype *pointer_name;

Data type of a pointer must be same as the data type of the variable to

which the pointer variable is pointing. void type pointer works with all

data types, but is not often used.

Here are a few examples:

int *ip // pointer to integer variable

float *fp; // pointer to float variable

double *dp; // pointer to double variable

char *cp; // pointer to char variable

Initialization of Pointer variable:

Pointer Initialization is the process of assigning address of a variable

to a pointer variable. Pointer variable can only contain address of a

variable of the same data type. In C language address operator & is

used to determine the address of a variable. The & (immediately

preceding a variable name) returns the address of the variable

associated with it.

#include<stdio.h>

void main() {

 int a = 10;

 int *ptr; //pointer declaration

Programming in C++ R.BARANI MCA., M.Phil.,(Ph.D).,NET., Asst. Professor

63

 ptr = &a; //pointer initialization

 }

Pointer variable a always point to variables of same datatype. Let's

have an example to showcase this:

#include<stdio.h>

void main()

{

 float a;

 int *ptr;

 ptr = &a; // ERROR, type mismatch

}

If you are not sure about which variable's address to assign to a pointer

variable while declaration, it is recommended to assign a NULL value

to your pointer variable. A pointer which is assigned a NULLvalue is

called a NULL pointer.

#include <stdio.h>

int main()

{

 int *ptr = NULL;

 return 0;

}

Using Pointers in C++

There are few important operations, which we will do with the

pointers very frequently. (a) We define a pointer variable. (b) Assign

the address of a variable to a pointer. (c) Finally access the value at

the address available in the pointer variable. This is done by using

unary operator * that returns the value of the variable located at the

address specified by its operand.

POINTERS TO OBJECTS

 A variable that holds an address value is called a pointer

variable or simply pointer.

 Pointer can point to objects as well as to simple data types and

arrays. sometimes we don’t know, at the time that we write the

program , how many objects we want to create.

 When this is the case we can use new to create objects while

the program is running. new returns a pointer to an unnamed

objects.

Example:

#include <iostream>

#include <string>

class student

{

private:

 int rollno;

 string name;

public:

 student():rollno(0),name("")

 {}

 student(int r, string n): rollno(r),name (n)

 {}

 void get()

 {

 cout<<"enter roll no";

 cin>>rollno;

 cout<<"enter name";

 cin>>name;

 }

 void print()

 {

Programming in C++ R.BARANI MCA., M.Phil.,(Ph.D).,NET., Asst. Professor

64

 cout<<"roll no is "<<rollno;

 cout<<"name is "<<name;

 }

};

void main ()

{

 student *ps=new student;

 (*ps).get();

 (*ps).print();

 delete ps;

}

C++ THIS POINTER

 C++ provides a keyword 'this', which represents the current

object and passed as a hidden argument to all member

functions.

 The this pointer is a constant pointer that holds the memory

address of the current object.

 The this pointer is not available in static member functions as

static member functions can be called without any object.

Static member functions can be called with class name.

Example of this pointer

 #include<iostream.h>

 #include<conio.h>

 #include<string.h>

 class Student

 {

 int Roll;

 char Name[25];

 float Marks;

 public:

 Student(int R,float Mks,char Nm[]) //Constructor 1

 {

 Roll = R;

 strcpy(Name,Nm);

 Marks = Mks;

 }

 Student(char Name[],float Marks,int Roll) //Constructor 2

 {

 Roll = Roll;

 strcpy(Name,Name);

 Marks = Marks;

 }

 Student(int Roll,char Name[],float Marks) //Constructor 3

 {

 this->Roll = Roll;

 strcpy(this->Name,Name);

 this->Marks = Marks;

 }

 void Display()

 {

 cout<<"\n\tRoll : "<<Roll;

 cout<<"\n\tName : "<<Name;

 cout<<"\n\tMarks : "<<Marks;

 }

 };

 void main()

 {

 Student S1(1,89.63,"Sumit");

 Student S2("Kumar",78.53,2);

 Student S3(3,"Gaurav",68.94);

 cout<<"\n\n\tDetails of Student 1 : ";

 S1.Display();

 cout<<"\n\n\tDetails of Student 2 : ";

 S2.Display();

Programming in C++ R.BARANI MCA., M.Phil.,(Ph.D).,NET., Asst. Professor

65

 cout<<"\n\n\tDetails of Student 3 : ";

 S3.Display();

 }

 Output :

 Details of Student 1 :

 Roll : 1

 Name : Sumit

 Marks : 89.63

 Details of Student 2 :

 Roll : 31883

 Name : ?&;6•#?#?6•#N$?%_5$?

 Marks : 1.07643e+24

 Details of Student 3 :

 Roll : 3

 Name : Gaurav

 Marks : 68.94

In constructor 1,variables declared in argument list different from

variables declared as class data members. When compiler doesn't find

Roll, Name, Marks as local variable, then, it will find Roll, Name,

Marks in class scope and assign values to them.

But Constructor 2 will not initialize class data members. When we

pass values to constructor 2, it will initialize values to itself local

variables b'coz variables declared in argument list and variable

declared as data members are of same name.

In this situation, we use 'this' pointer to differentiate local variable

and class data members as shown in constructor 3.

POINTER TO DERIVED CLASS OBJECT

 In C++ you can declare a pointer that contains the address of

the object of type class.

 Suppose we have created a class named base as shown below:

class Base {

public:

int x;

void display ()

{

cout<<”X=”<<x<<endl;

}

};

Now you can declare a pointer that contains address of the base class

object as shown below:

Base *ptr; // declare a pointer of base class

Base B1; // declare an object of base class

Ptr = &B1; // assign address of object to base class pointer

Using this pointer you can access members of the base class as shown

below:

ptr->x = 10;

ptr->display ();

Now derived a new class named Derive from base class as shown

below:

class Derive: public Base

{

public:

int y;

void display ();

{

Programming in C++ R.BARANI MCA., M.Phil.,(Ph.D).,NET., Asst. Professor

66

cout<<”X=”<<x<<endl;

cout<<”Y=”<<y<<endl;

}

};

C++ allows you to assign the address of the derived class object to the

base class pointer as shown below:

Derive D1; // declare an object of derived class

ptr = &D1; // assign address of derive class object to base class

pointer.

Now if you try to access the member of derived class using base class

pointer it will not allow you to access the member of derived class as

shown below:

ptr->y = 20; // It will generate an error

ptr->display (); // It will invoke the display() of base class

Thus to overcome this problem you have to declare a pointer of

derived class and then assign the address of derived class object to this

pointer as shown below:

Derive *ptr1;

Derive D1;

*ptr1 = &D1;

ptr1->y = 20;

ptr1->display (); // it will invoke the display () of derived class.

Thus in order to access member of particular class you need to create a

pointer of that class and then assign the address of that class object to

the pointer.

#include <iostream.h>

class Base {

 public:

 int x;

 void display ()

 {

 cout<<”X=”<<x<<endl;

 }

};

class Derive: public Base

{

 public:

 int y;

 void display ();

 {

 cout<<”X=”<<x<<endl;

 cout<<”Y=”<<y<<endl;

 }

};

int main ()

{

 Base B1;

 Base *ptr;

 ptr = &B1;

 ptr->x = 10;

 ptr->display();

 Derive D1;

 Derive *ptr1;

 ptr1 = &D1;

 ptr1->x = 10;

 ptr1->y = 20;

 ptr1->display ();

}

Programming in C++ R.BARANI MCA., M.Phil.,(Ph.D).,NET., Asst. Professor

67

Output:

X= 10

X = 10

Y = 20

C++ VIRTUAL FUNCTION

 A C++ virtual function is a member function in the base class

that you redefine in a derived class. It is declared using the

virtual keyword.

 It is used to tell the compiler to perform dynamic linkage or

late binding on the function.

 There is a necessity to use the single pointer to refer to all the

objects of the different classes. So, we create the pointer to the

base class that refers to all the derived objects. But, when base

class pointer contains the address of the derived class object,

always executes the base class function. This issue can only be

resolved by using the 'virtual' function.

 A 'virtual' is a keyword preceding the normal declaration of a

function.

 When the function is made virtual, C++ determines which

function is to be invoked at the runtime based on the type of

the object pointed by the base class pointer.

Late binding or Dynamic linkage:

In late binding function call is resolved during runtime.

Therefore compiler determines the type of object at runtime, and then

binds the function call.

Rules of Virtual Function

 Virtual functions must be members of some class.

 Virtual functions cannot be static members.

 They are accessed through object pointers.

 They can be a friend of another class.

 A virtual function must be defined in the base class, even

though it is not used.

 The prototypes of a virtual function of the base class and all the

derived classes must be identical. If the two functions with the

same name but different prototypes, C++ will consider them as

the overloaded functions.

 We cannot have a virtual constructor, but we can have a virtual

destructor

 Consider the situation when we don't use the virtual keyword.

Example of virtual function

 #include<iostream.h>

 #include<conio.h>

 class BaseClass

 {

 public:

 virtual void Display()

 {

 cout<<"\n\tThis is Display() method of Base Class";

 }

 void Show()

 {

 cout<<"\n\tThis is Show() method of Base Class";

 }

 };

 class DerivedClass : public BaseClass

 {

 public:

 void Display()

 {

 cout<<"\n\tThis is Display() method of Derived Class";

 }

Programming in C++ R.BARANI MCA., M.Phil.,(Ph.D).,NET., Asst. Professor

68

 void Show()

 {

 cout<<"\n\tThis is Show() method of Derived Class";

 }

 };

 void main()

 {

 DerivedClass D;

 BaseClass *B; //Creating Base Class Pointer

 B = new BaseClass;

 B->Display(); //This will invoke Display() method of Base Class

 B->Show(); //This will invoke Show() method of Base Class

 B=&D;

 B->Display(); //This will invoke Display() method of Derived Class

 //bcoz Display() method is virtual in Base Class

 B->Show(); //This will invoke Show() method of Base Class

 //bcoz Show() method is not virtual in Base Class

 }

 Output :

 This is Display() method of Base Class

 This is Show() method of Base Class

 This is Display() method of Derived Class

 This is Show() method of Base Class

PURE VIRTUAL FUNCTION IN C++

 A virtual function will become pure virtual function when you

append "=0" at the end of declaration of virtual function.

 Pure virtual function doesn't have body or implementation.

 We must implement all pure virtual functions in derived class.

 Pure virtual function is also known as abstract function.

 A class with at least one pure virtual function or abstract

function is called abstract class.

 We can't create an object of abstract class.

 Member functions of abstract class will be invoked by derived

class object.

Example of pure virtual function

 #include<iostream.h>

 #include<conio.h>

 class BaseClass //Abstract class

 {

 public:

 virtual void Display1()=0; //Pure virtual func or abstract func

 virtual void Display2()=0; //Pure virtual func or abstract func

 void Display3()

 {

 cout<<"\n\tThis is Display3() method of Base Class";

 }

 };

 class DerivedClass : public BaseClass

 {

 public:

 void Display1()

 {

 cout<<"\n\tThis is Display1() method of Derived Class";

 }

 void Display2()

 {

 cout<<"\n\tThis is Display2() method of Derived Class";

 }

 };

void main()

Programming in C++ R.BARANI MCA., M.Phil.,(Ph.D).,NET., Asst. Professor

69

 {

 DerivedClass D;

 D.Display1(); // This will invoke Display1() method of Derived Class

 D.Display2(); // This will invoke Display2() method of Derived Class

 D.Display3(); // This will invoke Display3() method of Derived Class

 }

 Output :

 This is Display1() method of Derived Class

 This is Display2() method of Derived Class

 This is Display3() method of Base Class

VIRTUAL CONSTRUCTORS / DESTRUCTORS

Virtual Destructor:

 The explicit destroying of object with the use of delete

operator to a base class pointer to the object is performed by

the destructor of the base-class is invoked on that object.

 The above process can be simplified by declaring a virtual

base class destructor.

 All the derived class destructors are made virtual in spite of

having the same name as the base class destructor.

 In case the object in the hierarchy is destroyed explicitly by

using delete operator to the base class pointer to a derived

object, the appropriate destructor will be invoked.

Virtual Constructor:

In C++, the constructor cannot be virtual, because when a
constructor of a class is executed there is no virtual table in the
memory, means no virtual pointer defined yet. So, the
constructor should always be non-virtual.

But virtual destructor is possible.

Example Code

#include<iostream>

using namespace std;

class b {

 public:

 b() {

 cout<<"Constructing base \n";

 }

 virtual ~b() {

 cout<<"Destructing base \n";

 }

};

class d: public b {

 public:

 d() {

 cout<<"Constructing derived \n";

 }

 ~d() {

 cout<<"Destructing derived \n";

 }

};

Programming in C++ R.BARANI MCA., M.Phil.,(Ph.D).,NET., Asst. Professor

70

int main(void) {

 d *derived = new d();

 b *bptr = derived;

 delete bptr;

 return 0;

}

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., NET.,Asst. Professor

71

UNIT - IV

MANAGING CONSOLE I/O OPERATIONS

STREAMS:

 A stream is an abstraction. It is a sequence of bytes.

 It represents a device on which input and output operations are

performed.

 It can be represented as a source or destination of characters of

indefinite length.

 A source from which the input data can be obtained or a

destination to which the output data can be sent.

 Input Stream: The source stream that provides data to the

program is called the input stream.

 Output Stream: The destination stream that receives output

from the program is called the output stream.

STREAM CLASSES:

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., NET.,Asst. Professor

72

There are mainly two types of consol I/O operations form:

1. Unformatted consol input output

2. Formatted consol input output

UNFORMATTED CONSOL INPUT OUTPUT OPERATIONS

 These input / output operations are in unformatted mode.

 The following are operations of unformatted consol input /

output operations:

A) get() functions:
It is a method of cin object used to input a single character from

keyboard. But its main property is that it allows wide spaces and

newline character.

Syntax:

 char c=cin.get();

Example:

#include<iostream>

int main()

{

 char c=cin.get();

 cout<<” C= ”<<c<<endl;

 return 0;

}

Output:

I

C= I

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., NET.,Asst. Professor

73

B) put() Function:

The function put() , a member of ostream class, can be used to output

a line of text, character by character.

It is a method of cout object and it is used to print the specified

character on the screen or monitor.

Syntax:

 cout.put(variable / character);

Example:

#include<iostream>

int main()

{

 char c=cin.get();

 cout.put(c); //Here it prints the value of variable c;

 cout.put('c'); //Here it prints the character 'c';

 return 0;

}

Output

I

Ic

C) getline() function:

the getline () function reads a whole line of text that ends with a

newline characters.

This is a method of cin object and it is used to input a string with

multiple spaces.

This function can be invoked by using the object cin as follows:

Syntax:

 cin.getline (line, size)

This function call invokes the function getline() which reads character

input into the variable line. The reading is terminated as soon as either

the newline character ‘\n’ is encountered or size-1 character are read(

whichever occurs first). The newline character is read but not saved.

Instead , it is replaced by the null character.

Eg: char x[30];

 cin.getline(x,30);

Example:

#include<iostream>

void main()

{

 cout<<"Enter name :";

 char c[10];

 cin.getline(c,10); //It takes 10 charcters as input;

 cout<<c<<endl;

}

Output

Enter name :varsha

varsha

D) write() function:

The write () function displays an entire line .

Syntax:

 cout.write(line, size)

It is a method of cout object. This method is used to read n character

from buffer variable.

Eg.

 cout.write(x,2);

Example:

#include<iostream>

void main()

{

 cout<<"Enter name : ";

 char c[10];

 cin.getline(c,10); //It takes 10 charcters as input;

 cout.write(c,9); //It reads only 9 character from buffer c;

}

Output

Enter name : Divyanshux

Divyanshu

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., NET.,Asst. Professor

74

Input/Output Streams

The iostream standard library provides cin and cout object.

Input stream uses cin object for reading the data from standard

input and Output stream uses coutobject for displaying the

data on the screen or writing to standard output.

The cin and cout are pre-defined streams for input and output

data.

Syntax:
cin>>variable_name;

cout<<variable_name;

The cin object uses extraction operator (>>) before a variable

name while the cout object uses insertion operator (<<) before a

variable name.

The cin object is used to read the data through the input device

like keyboard etc. while the cout object is used to perform console

write operation.

Example: Program demonstrating cin and cout statements

#include<iostream>

void main()

{

 char sname[15];

 cout<<"Enter Employee Name : "<<endl;

 cin>>sname;

 cout<<"Employee Name is : "<<sname;

}

Output:
Enter Employee Name : Prajakta

Employee Name is : Prajakta

In the above example, cout<<"Employee Name is :

"<<sname displays the contents of character array sname (student

name). The cout statement is like printf statement as used in C

language.

The cin statement cin>>sname reads the string through keyboard

and stores in the array sname[15]. The cin statement is like scanf

statement as used in C language. The endl is a manipulator that

breaks a line.

2) FORMATTED CONSOLE I/O OPERATIONS

C++ support avoid verity of feature to perform output in different

format. They include the following.

1. ios stream class member function and flags

2. Standard manipulator

3. User define manipulator

ios stream class member function and flag: – The stream class, ios

contents a large number of member function to assist in formatting the

output in a number of ways. The most important among these function

are width(), precision(), fill(), setf() and unsetf().

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., NET.,Asst. Professor

75

A) Defining Field Width: width()

This function is used to set width of the output.

Syntax:

 cout.width(w);

B) Setting Precision: precision()

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., NET.,Asst. Professor

76

C) Filling and Padding : fill()

The unused portion of field width are filled with white spaces, by

default. The fill() function can be used to fill the unused positions by

any desired character.

Syntax:

cout.fill (ch);

where ch represents the character which is used for filling the unused

positions.

 cout.fill (‘*’)

 cout.width(10);

 cout<<5250<<”\n”;

D) Formatting Flags, Bit-fields and setf():

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., NET.,Asst. Professor

77

What is a Manipulator?

Manipulators are operators used in C++ for formatting output. The

data is manipulated by the programmer’s choice of display.

The header file iomanip provides a set of functions called

manipulators which can be used to manipulate the output formats.

 #include<iomanip>

There are numerous manipulators available in C++. Some of the more

commonly used manipulators are provided here below:

endl Manipulator:

This manipulator has the same functionality as the ‘n’ newline

character.

For example:

1. cout << "Exforsys" << endl;

2. cout << "Training";

Output:

Exforsys

Training

setw Manipulator:

This manipulator sets the minimum field width on output.

The syntax is:

setw(x)

Here setw causes the number or string that follows it to be printed

within a field of x characters wide and x is the argument set in setw

manipulator. The header file that must be included while using setw

manipulator is .

 #include <iostream>

#include <iomanip>

void main()

{

int x1=12345,x2= 23456, x3=7892;

cout << setw(8) << "Exforsys" << setw(20) << "Values" <<

endl

 << setw(8) << "E1234567" << setw(20)<< x1 << endl

 << setw(8) << "S1234567" << setw(20)<< x2 << endl

 << setw(8) << "A1234567" << setw(20)<< x3 << endl;

}

The output of the above example is:

setfill Manipulator:

This is used after setw manipulator. If a value does not entirely fill a

field, then the character specified in the setfill argument of the

manipulator is used for filling the fields.

 #include <iostream>

#include <iomanip>

void main()

{

cout << setw(10) << setfill('$') << 50 << 33 << endl;

}

The output of the above example is:

This is because the setw sets 10 for the width of the field and the

number 50 has only 2 positions in it. So the remaining 8 positions are

filled with $ symbol which is specified in the setfill argument.

setprecision Manipulator:

The setprecision Manipulator is used with floating point numbers. It is

used to set the number of digits printed to the right of the decimal

point. This may be used in two forms:

 fixed

 scientific

http://www.exforsys.com/?s=include
http://www.exforsys.com/?s=include
http://www.exforsys.com/?s=include
http://www.exforsys.com/?s=include

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., NET.,Asst. Professor

78

These two forms are used when the keywords fixed or scientific are

appropriately used before the setprecision manipulator. The keyword

fixed before the setprecision manipulator prints the floating point

number in fixed notation. The keyword scientific, before the

setprecision manipulator, prints the floating point number in scientific

notation.

 #include <iostream>

#include <iomanip>

void main()

{

float x = 0.1;

cout << fixed << setprecision(3) << x << endl;

cout << scientific << x << endl;

}

The output of the above example is:

The first cout statement contains fixed notation and the setprecision

contains argument 3. This means that three digits after the decimal

point and in fixed notation will output the first cout statement as 0.100.

The second cout produces the output in scientific notation. The default

value is used since no setprecision value is provided.

WORKING WITH FILES

In C++, you open a file, you must first obtain a stream. There are the

following three types of streams:

 input

 output

 input/output

Create an Input Stream

To create an input stream, you must declare the stream to be of class

ifstream. Here is the syntax:

 ifstream fin;

Create an Output Stream

To create an output stream, you must declare it as class ofstream.

Here is an example:

 ofstream fout;

Create both Input/Output Streams

Streams that will be performing both input and output operations must

be declared as class fstream. Here is an example:

 fstream fio;

 Stream classes for file operations

Opening a File in C++

Once a stream has been created, next step is to associate a file with it.

And thereafter the file is available (opened) for processing.

Opening of files can be achieved in the following two ways :

1. Using the constructor function of the stream class.

2. Using the function open().

The first method is preferred when a single file is used with a stream.

However, for managing multiple files with the same stream, the

second method is preferred. Let's discuss each of these methods one by

one.

A) Opening File Using Constructors

We know that a constructor of class initializes an object of its class

when it (the object) is being created. Same way, the constructors of

http://www.exforsys.com/?s=include
http://www.exforsys.com/?s=include

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., NET.,Asst. Professor

79

stream classes (ifstream, ofstream, or fstream) are used to initialize file

stream objects with the filenames passed to them. This is carried out as

explained here:

To open a file named myfile as an input file (i.e., data will be need

from it and no other operation like writing or modifying would take

place on the file), we shall create a file stream object of input type i.e.,

ifstream type.

 Here is an example:

 ifstream fin("myfile", ios::in) ;

The above given statement creates an object, fin, of input file stream.

The object name is a user-defined name (i.e., any valid identifier name

can be given). After creating the ifstream object fin, the file myfile is

opened and attached to the input stream, fin. Now, both the data being

read from myfile has been channelised through the input stream object.

Now to read from this file, this stream object will be used using the

getfrom operator (">>").

Here is an example:

char ch;

fin >> ch ; // read a character from the file

float amt ;

fin >> amt ; // read a floating-point number form the file

Similarly, when you want a program to write a file i.e., to open an

output file (on which no operation can take place except writing only).

This will be accomplish by

1. creating ofstream object to manage the output stream

2. associating that object with a particular file

Here is an example,

ofstream fout("secret" ios::out) ; // create ofstream object named as

fout

This would create an output stream, object named as fout and attach

the file secret with it.

Now, to write something to it, you can use << (put to operator) in

familiar way. Here is an example,

int code = 2193 ;

fout << code << "xyz" ; /* will write value of code

 and "xyz" to fout's associated

 file namely "secret" here. */

The connections with a file are closed automatically when the input

and the output stream objects expires i.e., when they go out of scope.

(For example, a global object expires when the program terminates).

Also, you can close a connection with a file explicitly by using the

close() method :

fin.close() ; // close input connection to file

fout.close() ; // close output connection to file

Closing such a connection does not eliminate the stream; it just

disconnects it from the file. The stream still remains there. For

example, after the above statements, the streams fin and fout still exist

along with the buffers they manage. You can reconnect the stream to

the same file or to another file, if required. Closing a file flushes the

buffer which means the data remaining in the buffer (input or output

stream) is moved out of it in the direction it is ought to be.

 For example, when an input file's connection is closed, the data is

moved from the input buffer to the program and when an output file's

connection is closed, the data is moved from the output buffer to the

disk file.

B) Opening Files Using Open() Function

There may be situations requiring a program to open more than one

file. The strategy for opening multiple files depends upon how they

will be used. If the situation requires simultaneous processing of two

files, then you need to create a separate stream for each file. However,

if the situation demands sequential processing of files (i.e., processing

them one by one), then you can open a single stream and associate it

with each file in turn. To use this approach, declare a stream object

without initializing it, then use a second statement to associate the

stream with a file.

For example,

ifstream fin; // create an input stream

fin.open("Master.dat", ios::in); // associate fin stream with

file Master.dat

: // process Master.dat

fin.close(); // terminate association with

Master.dat

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., NET.,Asst. Professor

80

fin.open("Tran.dat", ios::in); // associate fin stream with file

Tran.dat

: // process Tran.dat

fin.close(); // terminate association

The above code lets you handle reading two files in succession. Note

that the first file is closed before opening the second one. This is

necessary because a stream can be connected to only one file at a time.

C) The Concept of File Modes

The file mode describes how a file is to be used : to read from it, to

write to it, to append it, and so on.

When you associate a stream with a file, either by initializing a file

stream object with a file name or by using the open() method, you can

provide a second argument specifying the file mode, as mentioned

below :

 stream_object.open("filename", (filemode)) ;

The second method argument of open(), the filemode, is of type int,

and you can choose one from several constants defined in the ios class.

List of File Modes in C++

Following table lists the filemodes available in C++ with their

meaning :

Constant Meaning
Stream

Type

ios :: in
It opens file for reading, i.e., in input

mode.
ifstream

ios :: out

It opens file for writing, i.e., in output

mode.

This also opens the file in ios :: trunc

mode, by default.

This means an existing file is truncated

when opened,

i.e., its previous contents are discarded.

ofstream

ios :: ate
This seeks to end-of-file upon opening of

the file.

ofstream

ifstream

I/O operations can still occur anywhere

within the file.

ios :: app

This causes all output to that file to be

appended to the end.

This value can be used only with files

capable of output.

ofstream

ios :: trunc

This value causes the contents of a pre-

existing file by the same name

to be destroyed and truncates the file to

zero length.

ofstream

ios ::

nocreate

This cause the open() function to fail if the

file does not already exist.

It will not create a new file with that name.

ofstream

ios ::

noreplace

This causes the open() function to fail if

the file already exists.

This is used when you want to create a

new file and at the same time.

ofstream

ios :: binary

This causes a file to be opened in binary

mode.

By default, files are opened in text mode.

When a file is opened in text mode,

various character translations may take

place,

such as the conversion of carriage-return

into newlines.

However, no such character translations

occur in file opened in binary mode.

ofstream

ifstream

If the ifstream and ofstream constructors and the open() methods take

two arguments each, how have we got by using just one in the

previous examples ? As you probably have guessed, the prototypes for

these class member functions provide default values for the second

argument (the filemode argument). For example, the ifstream open()

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., NET.,Asst. Professor

81

method and constructor use ios :: in (open for reading) as the default

value for the mode argument, while the ofstream open() method and

constructor use ios :: out (open for writing) as the default.

The fstream class does not provide a mode by default and, therefore,

one must specify the mode explicitly when using an object of fstream

class.

Both ios::ate and ios::app place you at the end of the file just opened.

The difference between the two is that the ios::app mode allows you to

add data to the end of the file only, when the ios::ate mode lets you

write data anywhere in the file, even over old data.

You can combine two or more filemode constants using the C++

bitwise OR operator (symbol |).

For example, the following statement :

ofstream fout;

fout.open("Master", ios :: app | ios :: nocreate);

will open a file in the append mode if the file exists and will abandon

the file opening operation if the file does not exist.

To open a binary file, you need to specify ios :: binary along with the

file mode, e.g.,

fout.open("Master", ios :: app | ios :: binary);

or,

fout.open("Main", ios :: out | ios :: nocreate | ios :: binary);

Closing a File in C++

As already mentioned, a file is closed by disconnecting it with the

stream it is associated with. The close() function accomplishes this

task and it takes the following general form :

stream_object.close();

For example, if a file Master is connected with an ofstream object fout,

its connections with the stream fout can be terminated by the following

statement :

fout.close() ;

C++ Opening and Closing a File Example

Here is an example given, for the complete understanding on:

 how to open a file in C++ ?

 how to close a file in C++ ?

Let's look at this program.

/* C++ Opening and Closing a File

 * This program demonstrates, how

 * to open a file to store or retrieve

 * information to/from it. And then how

 * to close that file after storing

 * or retrieving the information to/from it. */

#include<conio.h>

#include<string.h>

#include<stdio.h>

#include<fstream.h>

#include<stdlib.h>

void main()

{

 ofstream fout;

 ifstream fin;

 char fname[20];

 char rec[80], ch;

 clrscr();

 cout<<"Enter file name: ";

 cin.get(fname, 20);

 fout.open(fname, ios::out);

 if(!fout)

 {

 cout<<"Error in opening the file "<<fname;

 getch();

 exit(1);

 }

 cin.get(ch);

 cout<<"\nEnter a line to store in the file:\n";

 cin.get(rec, 80);

 fout<<rec<<"\n";

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., NET.,Asst. Professor

82

 cout<<"\nThe entered line stored in the file successfully..!!";

 cout<<"\nPress any key to see...\n";

 getch();

 fout.close();

 fin.open(fname, ios::in);

 if(!fin)

 {

 cout<<"Error in opening the file "<<fname;

 cout<<"\nPress any key to exit...";

 getch();

 exit(2);

 }

 cin.get(ch);

 fin.get(rec, 80);

 cout<<"\nThe file contains:\n";

 cout<<rec;

 cout<<"\n\nPress any key to exit...\n";

 fin.close();

 getch();

}

Here is the sample run of the above C++ program:

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., NET.,Asst. Professor

83

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., NET.,Asst. Professor

84

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., NET.,Asst. Professor

85

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., NET.,Asst. Professor

86

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., NET.,Asst. Professor

87

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., NET.,Asst. Professor

88

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., NET.,Asst. Professor

89

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., NET.,Asst. Professor

90

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., NET.,Asst. Professor

91

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., NET.,Asst. Professor

92

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., NET.,Asst. Professor

93

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., NET.,Asst. Professor

94

C++ TEMPLATES
A C++ template is a powerful feature added to C++. It allows you

to define the generic classes and generic functions and thus

provides support for generic programming. Generic programming

is a technique where generic types are used as parameters in

algorithms so that they can work for a variety of data types.

Templates can be represented in two ways:

 Function templates

 Class templates

Function Templates:

We can define a template for a function. For example, if we have

an add() function, we can create versions of the add function for

adding the int, float or double type values.

Class Template:

We can define a template for a class. For example, a class template

can be created for the array class that can accept the array of

various types such as int array, float array or double array.

FUNCTION TEMPLATE

 Generic functions use the concept of a function template.

Generic functions define a set of operations that can be

applied to the various types of data.

 The type of the data that the function will operate on

depends on the type of the data passed as a parameter.

 For example, Quick sorting algorithm is implemented using

a generic function, it can be implemented to an array of

integers or array of floats.

 A Generic function is created by using the keyword

template. The template defines what function will do.

Syntax of Function Template:

template < class Ttype> ret_type f

unc_name(parameter_list)

{

 // body of function.

}

Where Ttype: It is a placeholder name for a data type used by the

function. It is used within the function definition. It is only a

placeholder that the compiler will automatically replace this

placeholder with the actual data type.

class: A class keyword is used to specify a generic type in a

template declaration.

Let's see a simple example of a function template:

 #include <iostream>

using namespace std;

template<class T> T add(T &a,T &b)

{

 T result = a+b;

 return result;

}

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., NET.,Asst. Professor

95

int main()

{

 int i =2;

 int j =3;

 float m = 2.3;

 float n = 1.2;

 cout<<"Addition of i and j is :"<<add(i,j);

 cout<<'\n';

 cout<<"Addition of m and n is :"<<add(m,n);

 return 0;

}

Output:

Addition of i and j is :5

Addition of m and n is :3.5

In the above example, we create the function template which can

perform the addition operation on any type either it can be integer,

float or double.

FUNCTION TEMPLATES WITH MULTIPLE PARAMETERS

We can use more than one generic type in the template function by

using the comma to separate the list.

Syntax

 template<class T1, class T2,.....>

return_type function_name (argu

ments of type T1, T2....)

{

 // body of function.

}

In the above syntax, we have seen that the template function can

accept any number of arguments of a different type.

Let's see a simple example:

#include <iostream>

template<class X,class Y> void fun(X a,Y b)

{

 std::cout << "Value of a is : " <<a<< std::endl;

 std::cout << "Value of b is : " <<b<< std::endl;

}

int main()

{

 fun(15,12.3);

 return 0;

}

Output:

Value of a is : 15

Value of b is : 12.3

In the above example, we use two generic types in the template

function, i.e., X and Y.

OVERLOADING A FUNCTION TEMPLATE

We can overload the generic function means that the overloaded

template functions can differ in the parameter list.

Let's understand this through a simple example:

#include <iostream>

using namespace std;

template<class X> void fun(X a)

{

 std::cout << "Value of a is : " <<a<< std::endl;

}

template<class X,class Y> void fun(X b ,Y c)

{

 std::cout << "Value of b is : " <<b<< std::endl;

 std::cout << "Value of c is : " <<c<< std::endl;

}

int main()

{

 fun(10);

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., NET.,Asst. Professor

96

 fun(20,30.5);

 return 0;

}

Output:

Value of a is : 10

Value of b is : 20

Value of c is : 30.5

In the above example, template of fun() function is overloaded.

RESTRICTIONS OF GENERIC FUNCTIONS

Generic functions perform the same operation for all the versions

of a function except the data type differs. Let's see a simple

example of an overloaded function which cannot be replaced by

the generic function as both the functions have different

functionalities.

Let's understand this through a simple example:

#include <iostream>

using namespace std;

void fun(double a)

{

 cout<<"value of a is : "<<a<<'\n';

}

void fun(int b)

{

 if(b%2==0)

 {

 cout<<"Number is even";

 }

 else

 {

 cout<<"Number is odd";

 }

}

int main()

{

 fun(4.6);

 fun(6);

 return 0;

}

Output:

value of a is : 4.6

Number is even

In the above example, we overload the ordinary functions. We

cannot overload the generic functions as both the functions have

different functionalities. First one is displaying the value and the

second one determines whether the number is even or not.

CLASS TEMPLATE

 Class Template can also be defined similarly to the

Function Template.

 When a class uses the concept of Template, then the class is

known as generic class.

Syntax:

template<class Ttype>

class class_name

{

 .

 .

}

Ttype is a placeholder name which will be determined when the

class is instantiated. We can define more than one generic data

type using a comma-separated list. The Ttype can be used inside

the class body.

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., NET.,Asst. Professor

97

Now, we create an instance of a class

class_name<type> ob;

where class_name: It is the name of the class.

type: It is the type of the data that the class is operating on.

ob: It is the name of the object.

Let's see a simple example:

#include <iostream>

template<class T>

class A

{

 public:

 T num1 = 5;

 T num2 = 6;

 void add()

 {

 std::cout << "Addition of num1 and num2 : " << num1+num2

<<std::endl;

 }

};

int main()

{

 A<int> d;

 d.add();

 return 0;

}

Output:

Addition of num1 and num2 : 11

In the above example, we create a template for class A. Inside the

main() method, we create the instance of class A named as, 'd'.

CLASS TEMPLATE WITH MULTIPLE PARAMETERS

We can use more than one generic data type in a class template,

and each generic data type is separated by the comma.

Syntax

template<class T1, class T2,>

class class_name

{

 // Body of the class.

}

Let's see a simple example when class template contains two

generic data types.

#include <iostream>

 template<class T1, class T2>

 class A

 {

 T1 a;

 T2 b;

 public:

 A(T1 x,T2 y) {

 a = x;

 b = y;

 }

 void display()

 {

 std::cout << "Values of a and b are : " << a<<" ,"<<b<<

std::endl;

 }

 };

void main()

 {

 A<int,float> d(5,6.5);

 d.display();

 }

Output:
Values of a and b are : 5,6.5

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., NET.,Asst. Professor

98

NONTYPE TEMPLATE ARGUMENTS

The template can contain multiple arguments, and we can also use

the non-type arguments In addition to the type T argument, we can

also use other types of arguments such as strings, function names,

constant expression and built-in types.

 Let' s see the following example:

template<class T, int size>

class array

{

 T arr[size]; // automatic array i

nitialization.

};

In the above case, the nontype template argument is size and

therefore, template supplies the size of the array as an argument.

Arguments are specified when the objects of a class are created:

array<int, 15> t1; // array of 15 integers.

array<float, 10> t2; // array of 10 floats.

array<char, 4> t3; // array of 4 chars.

Let's see a simple example of nontype template arguments.

#include <iostream>

template<class T, int size>

class A

{

 public:

 T arr[size];

 void insert()

 {

 int i =1;

 for (int j=0;j<size;j++)

 {

 arr[j] = i;

 i++;

 }

 }

 void display()

 {

 for(int i=0;i<size;i++)

 {

 std::cout << arr[i] << " ";

 }

 }

};

int main()

{

 A<int,10> t1;

 t1.insert();

 t1.display();

 return 0;

}

Output:

1 2 3 4 5 6 7 8 9 10

In the above example, the class template is created which contains

the nontype template argument, i.e., size. It is specified when the

object of class 'A' is created.

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., NET.,Asst. Professor

99

EXCEPTION HANDLING

Exceptions allow a method to react to exceptional

circumstances and errors (like runtime errors) within programs

by transferring control to special functions called handlers. For

catching exceptions, a portion of code is placed under exception

inspection. Exception handling was not a part of the original

C++. It is a new feature that ANSI C++ included in it. Now

almost all C++ compilers support this feature. Exception

handling technology offers a securely integrated approach to

avoid the unusual predictable problems that arise while

executing a program.

There are two types of exceptions:

1. Synchronous exceptions

2. Asynchronous exceptions

Errors such as: out of range index and overflow fall under the

category of synchronous type exceptions. Those errors that are

caused by events beyond the control of the program are

called asynchronous exceptions. The main motive of the

exceptional handling concept is to provide a means to detect

and report an exception so that appropriate action can be taken.

This mechanism needs a separate error handling code that

performs the following tasks:

 Find and hit the problem (exception)

 Inform that the error has occurred (throw exception)

 Receive the error information (Catch the exception)

 Take corrective actions (handle exception)

Mechanism of Exception Handling

The error handling mechanism basically consists of two parts.

These are:

1. To detect errors

2. To throw exceptions and then take appropriate actions

Exception handling in C++ is built on three keywords: try, catch,

and throw.

 try

 throw: A program throws an exception when a problem is
detected which is done using a keyword "throw".

 catch: A program catches an exception with an exception
handler where programmers want to handle the anomaly. The
keyword catch is used for catching exceptions.

The Catch blocks catching exceptions must immediately follow

the try block that throws an exception.

The general form of these two blocks is as follows:
Syntax:

try

{

 throw exception;

}

catch(type arg)

{

 //some code

}

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., NET.,Asst. Professor

100

Example

#include<iostream>

using namespace std;

int main()

{

 try {

 throw 6;

 }

 catch (int a) {

 cout << "An exception occurred!" <<

endl;

 cout << "Exception number is: " << a <<

endl;

 }

}

The exceptions are thrown by functions that

are invoked from within the try blocks. The

point at which the throw is executed is

called the throw point. Once an exception is

thrown to the catch block, the control

cannot return to the throw point, This

relationship is shown in figure.

Function invoked by try block throwing exception

Multiple catch statements
A single try statement can have multiple catch statements.
Execution of particular catch block depends on the type of
exception thrown by the throw keyword. If throw keyword send
exception of integer type, catch block with integer parameter
will get execute.

Example of multiple catch blocks

 #include<iostream.h>
 #include<conio.h>
 void main()
 {
 int a=2;

 try
 {
 if(a==1)

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., NET.,Asst. Professor

101

 throw a; //throwing integer exception

 else if(a==2)
 throw 'A'; //throwing character
exception

 else if(a==3)
 throw 4.5; //throwing float exception

 }
 catch(int a)
 {
 cout<<"\nInteger exception caught.";
 }
 catch(char ch)
 {
 cout<<"\nCharacter exception caught.";
 }
 catch(double d)
 {
 cout<<"\nDouble exception caught.";
 }

 cout<<"\nEnd of program.";

 }

 Output :

 Character exception caught.

 End of program.

Rethrowing Exceptions
Rethrowing exception is possible, where we have an inner and outer
try-catch statements (Nested try-catch). An exception to be thrown

from inner catch block to outer catch block is called rethrowing
exception.

Syntax of rethrowing exceptions

Example of rethrowing exceptions

 #include<iostream.h>

Programming in C++ R.BARANI, MCA., M.Phil.,(Ph.D)., NET.,Asst. Professor

102

 #include<conio.h>
 void main()
 {
 int a=1;
 try
 {
 try
 {
 throw a;
 }
 catch(int x)
 {
 cout<<"\nException in inner try-catch block.";
 throw x;
 }

 }
 catch(int n)
 {

 cout<<"\nException in outer try-catch block.";

 }

 cout<<"\nEnd of program.";

 }

 Output :

 Exception in inner try-catch block.

 Exception in outer try-catch block.

 End of program.

 UNIT 4 COMPLETED

Programming in C++ R.BARANI,MCA,M.Phil.,(PH.d).,NET., ASST.PROFESSOR

103

COMPONENTS OF STL

CONTAINERS

Containers can be described as the objects that hold the data of the same type. Containers are used to implement different
data structures for example arrays, list, trees, etc.

Following are the containers that give the details of all the containers as well as the header file and the type of iterator
associated with them :

Container Description Header

file

iterator

vector vector is a class that creates a dynamic array allowing insertions and

deletions at the back.

<vector> Random

access

list list is the sequence containers that allow the insertions and deletions

from anywhere.

<list> Bidirectional

deque deque is the double ended queue that allows the insertion and deletion

from both the ends.

<deque> Random

access

set set is an associate container for storing unique sets. <set> Bidirectional

Programming in C++ R.BARANI,MCA,M.Phil.,(PH.d).,NET., ASST.PROFESSOR

104

multiset Multiset is an associate container for storing non- unique sets. <set> Bidirectional

map Map is an associate container for storing unique key-value pairs, i.e.

each key is associated with only one value(one to one mapping).

<map> Bidirectional

multimap multimap is an associate container for storing key- value pair, and each

key can be associated with more than one value.

<map> Bidirectional

stack It follows last in first out(LIFO). <stack> No iterator

queue It follows first in first out(FIFO). <queue> No iterator

Priority-

queue

First element out is always the highest priority element. <queue> No iterator

Classification of containers :

o Sequence containers

o Associative containers

o Derived containers

Programming in C++ R.BARANI,MCA,M.Phil.,(PH.d).,NET., ASST.PROFESSOR

105

Note : Each container class contains a set of functions that can be used to manipulate the contents.

ITERATOR

o Iterators are pointer-like entities used to access the individual elements in a container.

o Iterators are moved sequentially from one element to another element. This process is known as iterating through a
container.

o Iterator contains mainly two functions:

begin(): The member function begin() returns an iterator to the first element of the vector.

end(): The member function end() returns an iterator to the past-the-last element of a container.

Iterator Categories

Iterators are mainly divided into five categories:

Input iterator:

o An Input iterator is an iterator that allows the program to read the values from the container.

o Dereferencing the input iterator allows us to read a value from the container, but it does not alter the value.

o An Input iterator is a one way iterator.

o An Input iterator can be incremented, but it cannot be decremented.

2. Output iterator:

o An output iterator is similar to the input iterator, except that it allows the program to modify a value of the

container, but it does not allow to read it.

o It is a one-way iterator.

o It is a write only iterator.

Programming in C++ R.BARANI,MCA,M.Phil.,(PH.d).,NET., ASST.PROFESSOR

106

3. Forward iterator:

o Forward iterator uses the ++ operator to navigate through the container.

o Forward iterator goes through each element of a container and one element at a time.

4. Bidirectional iterator:

o A Bidirectional iterator is similar to the forward iterator, except that it also moves in the backward direction.

o It is a two way iterator.

o It can be incremented as well as decremented.

5. Random Access Iterator:

o Random access iterator can be used to access the random element of a container.

o Random access iterator has all the features of a bidirectional iterator, and it also has one more additional feature,

i.e., pointer addition. By using the pointer addition operation, we can access the random element of a container.

Operations supported by iterators

iterator Element access Read Write Increment operation Comparison

Input -> v = *p

++ ==,!=

output

*p = v ++

forward -> v = *p *p = v ++ ==,!=

Bidirectional -> v = *p *p = v ++,-- ==,!=

Programming in C++ R.BARANI,MCA,M.Phil.,(PH.d).,NET., ASST.PROFESSOR

107

Random access ->,[] v = *p *p = v ++,--,+,-,+=,--= ==,!=,<,>,<=,>=

Algorithms

Algorithms are the functions used across a variety of containers for processing its contents.

Points to Remember:

o Algorithms provide approx 60 algorithm functions to perform the complex operations.

o Standard algorithms allow us to work with two different types of the container at the same time.

o Algorithms are not the member functions of a container, but they are the standalone template functions.

o Algorithms save a lot of time and effort.

o If we want to access the STL algorithms, we must include the <algorithm> header file in our program.

STL algorithms can be categorized as:

Nonmutating algorithms: Nonmutating algorithms are the algorithms that do not alter any value of a container object nor do

they change the order of the elements in which they appear. These algorithms can be used for all the container objects, and

they make use of the forward iterators.

o Mutating algorithms: Mutating algorithms are the algorithms that can be used to alter the value of a container. They

can also be used to change the order of the elements in which they appear.

o Sorting algorithms: Sorting algorithms are the modifying algorithms used to sort the elements in a container.

o Set algorithms: Set algorithms are also known as sorted range algorithm. This algorithm is used to perform some

function on a container that greatly improves the efficiency of a program.

o Relational algorithms: Relational algorithms are the algorithms used to work on the numerical data. They are mainly

designed to perform the mathematical operations to all the elements in a container.

Programming in C++ R.BARANI,MCA,M.Phil.,(PH.d).,NET., ASST.PROFESSOR

108

FUNCTION OBJECTS

A Function object is a function wrapped in a class so that it looks like an object. A function object extends the characteristics of
a regular function by using the feature of aN object oriented such as generic programming. Therefore, we can say that the
function object is a smart pointer that has many advantages over the normal function.

Following are the advantages of function objects over a regular function:

o Function objects can have member functions as well as member attributes.

o Function objects can be initialized before their usage.

o Regular functions can have different types only when the signature differs. Function objects can have different types

even when the signature is the same.

o Function objects are faster than the regular function.

A function object is also known as a 'functor'. A function object is an object that contains atleast one definition
of operator()function. It means that if we declare the object 'd' of a class in which operator() function is defined, we can use
the object 'd' as a regular function.

Suppose 'd' is an object of a class, operator() function can be called as:

d();

which is same as:

d.operator() ();

simple example:

1. #include <iostream>

2. using namespace std;

3. class function_object

4. {

Programming in C++ R.BARANI,MCA,M.Phil.,(PH.d).,NET., ASST.PROFESSOR

109

5. public:

6. int operator()(int a, int b)

7. {

8. return a+b;

9. }

10. };

11.

12. int main()

13. {

14. function_object f;

15. int result = f(5,5);

16. cout<<"Addition of a and b is : "<<result;

17.

18. return 0;

19. }

Output:

Addition of a and b is : 10

In the above example, 'f' is an object of a function_object class which contains the definition of operator() function. Therefore,
'f' can be used as an ordinary function to call the operator() function.

Manipulating strings

String Class in C++

 Creating string objects

 Reading string objects from keyboard

Programming in C++ R.BARANI,MCA,M.Phil.,(PH.d).,NET., ASST.PROFESSOR

110

 Displaying string objects to the screen

 Finding a substring from a string

 Modifying string

 Adding objects of string

 Comparing strings

 Accessing characters of a string

 Obtaining the size or length of a string, etc...

Manipulating Null terminated Strings

 strcpy(str1, str2): Copies string str2 into string str1.

 strcat(str1, str2): Concatenates string str2 onto the end of string str1.

 strlen(str1): Returns the length of string str1.

 strcmp(str1, str2): Returns 0 if str1 and str2 are the same; less than 0 if str1<str2; greater than 0 if str1>str2.

 strchr(str1, ch): Returns a pointer to the first occurrence of character ch in string str1.

 strstr(str1, str2): Returns a pointer to the first occurrence of string str2 in string str1.

Important functions supported by String Class

 append(): This function appends a part of a string to another string

 assign():This function assigns a partial string

 at(): This function obtains the character stored at a specified location

 begin(): This function returns a reference to the start of the string

 capacity(): This function gives the total element that can be stored

 compare(): This function compares a string against the invoking string

Programming in C++ R.BARANI,MCA,M.Phil.,(PH.d).,NET., ASST.PROFESSOR

111

 empty(): This function returns true if the string is empty

 end(): This function returns a reference to the end of the string

 erase(): This function removes character as specified

 find(): This function searches for the occurrence of a specified substring

 length(): It gives the size of a string or the number of elements of a string

 swap(): This function swaps the given string with the invoking one

Operators used for String Class

1. =: assignment

2. +: concatenation

3. ==: Equality

4. !=: Inequality

5. <: Less than

6. <=: Less than or equal

7. >: Greater than

8. >=: Greater than or equal

9. []: Subscription

10. <<: Output

11. >>: Input

	Basic Concepts of Object Oriented Programming
	 It is necessary to understand some of the concepts used extensively in object-oriented programming. These include:
	• Objects
	• Classes
	• Data abstraction and encapsulation
	• Polymorphism
	• Inheritance
	• Dynamic binding
	1) Objects:
	2) Classes:
	3) Data Abstraction and Encapsulation:
	4) Polymorphism
	5) Inheritance:
	TOKENS:
	2. Identifiers
	3. Constants

	SYMBOLIC CONSTANT:
	VARIABLE DECLARATION AND INITIALIZATION
	Syntax:
	Declaring More than one Variable

	Initialization of variables
	Syntax:
	Example:
	Practical:
	Output:

	C++ REFERENCE VARIABLE:
	SCOPE RESOLUTION OPERATOR

	MEMORY MANAGEMENT OPERATORS
	What are memory management operators?
	Syntax:
	For example:
	Delete Operator:
	Syntax: (1)
	For example: (1)

	C++ MANIPULATORS
	endl Manipulator:
	For example:
	1. cout << "Welcome" << endl;
	2. cout << " Girls";
	setw Manipulator:
	setfill Manipulator:
	Example:
	setprecision Manipulator:
	Example: (1)

	C++ TYPE CASTING
	Syntax:
	Example:
	TYPE CONVERSION
	Implicit Conversions
	Typecasting

	OPERATORS PRECEDENCE IN C++
	Syntax:
	++ Functions
	C++ Function Prototype
	C++ Function Call
	C++ Functions Definition
	Illustration of function call
	General structure of a function in C++ program

	CALL BY REFERENCE
	DEFAULT ARGUMENT
	Some examples of function declaration with default values are:
	Example :

	Working of default arguments

	RECURSION
	Example to print factorial number using recursion :

	FUNCTION OVERLOADING
	Example : Function Overloading

	ARRAYS WITHIN A CLASS
	STATIC DATA MEMBER
	Accessing static data member without static member function

	STATIC MEMBER FUNCTION IN C++
	C++ FRIEND FUNCTION
	Declaration of friend function in C++
	Example of C++ friend function used to print the length of a box.
	Types of Constructor:
	Parameterized Constructors:

	DYNAMIC CONSTRUCTOR
	Example:
	DESTRUCTOR
	C++ Destructor Program #1 : Simple Example

	OPERATOR OVERLOADING IN C++
	Operator Overloading Syntax
	Overloading Unary Operator
	Example of Unary Operator Overloading

	Overloading Binary Operator
	Binary Operators
	Example of Binary Operator Overloading

	OVERLOAD BINARY OPERATOR USING FRIEND FUNCTION
	STRING MANIPULATION USING OPERATOR OVERLOADING
	RULES OF OPERATOR OVERLOADING IN C++

	Single Inheritance:
	Example using virtual base class
	C++ Abstract Class
	C++ abstract class : syntax and structure
	Example of C++ Abstract class

	POLYMORPHISM IN C++
	What are Pointers?
	Declaration of Pointer variable:
	Initialization of Pointer variable:

	Using Pointers in C++
	C++ THIS POINTER
	Example of this pointer
	POINTER TO DERIVED CLASS OBJECT
	 In C++ you can declare a pointer that contains the address of the object of type class.
	 Suppose we have created a class named base as shown below:
	class Base { public: int x; void display () { cout<<”X=”<<x<<endl; } };

	C++ VIRTUAL FUNCTION
	Late binding or Dynamic linkage:
	In late binding function call is resolved during runtime. Therefore compiler determines the type of object at runtime, and then binds the function call.
	Example of virtual function

	PURE VIRTUAL FUNCTION IN C++
	Example of pure virtual function

	VIRTUAL CONSTRUCTORS / DESTRUCTORS
	Example Code

	UNFORMATTED CONSOL INPUT OUTPUT OPERATIONS
	Input/Output Streams
	Example: Program demonstrating cin and cout statements
	2) FORMATTED CONSOLE I/O OPERATIONS
	What is a Manipulator?
	endl Manipulator:
	For example:
	setw Manipulator:
	The output of the above example is:
	setfill Manipulator:
	The output of the above example is: (1)
	setprecision Manipulator:
	The output of the above example is:

	Create an Input Stream
	Create an Output Stream
	Create both Input/Output Streams

	Opening a File in C++
	A) Opening File Using Constructors
	B) Opening Files Using Open() Function
	C) The Concept of File Modes
	List of File Modes in C++

	Closing a File in C++
	C++ Opening and Closing a File Example
	C++ TEMPLATES
	FUNCTION TEMPLATE
	Syntax of Function Template:
	FUNCTION TEMPLATES WITH MULTIPLE PARAMETERS

	Syntax
	OVERLOADING A FUNCTION TEMPLATE
	RESTRICTIONS OF GENERIC FUNCTIONS

	CLASS TEMPLATE
	Syntax:
	CLASS TEMPLATE WITH MULTIPLE PARAMETERS

	Syntax (1)
	NONTYPE TEMPLATE ARGUMENTS
	Example of multiple catch blocks
	Syntax of rethrowing exceptions
	Example of rethrowing exceptions

	COMPONENTS OF STL
	CONTAINERS
	Note : Each container class contains a set of functions that can be used to manipulate the contents.

	ITERATOR
	Algorithms
	FUNCTION OBJECTS
	Important functions supported by String Class
	Operators used for String Class

