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UNIT-I   

OVERVIEW OF WIRELESS SENSOR NETWORKS &  

ARCHITECTURES   

   

1.1 KEY DEFINITIONS OF SENSOR NETWORKS:   

Definition: A Sensor Network is composed of a large number of sensor nodes, which are 

tightly positioned either inside the phenomenon or very close to it.    

Sensor networks have the contribution from signal processing, networking and 

protocols, databases and information management, distributed algorithms, and embedded 

systems and architecture.   

A wireless sensor network (WSN) can be defined as a network of low-size and lowcomplex 

devices denoted as nodes that can sense the environment and communicate the information 

gathered from the monitored field through wireless links.    

The following are the Key terms and concepts that will be used in sensor network development 

techniques.   

• Sensor: A transducer that converts a physical phenomenon such as heat, light, sound, or 

motion into electrical or other signals that may be further operated by other apparatus.   

• Sensor node: A basic unit in a sensor network, with on-board sensors, processor, 

memory, wireless modem, and power supply. It is often abbreviated as node. When a 

node has only a single sensor on board, the node is sometimes referred as a sensor.   

• Network topology: A connectivity graph where nodes are sensor nodes and edges are 

communication links. In a wireless network, the link represents a one-hop connection, 

and the neighbors of a node are those within the radio range of the node.   

• Routing: The process of determining a network path from a packet source node to its 

destination.   

• Date-centric: Approaches that name, route, or access a piece of data via properties, such 

as physical location, that are external to a communication network. This is to be 

contrasted with addresscentric approaches which use logical properties of nodes related 

to the network structure.   

• Geographic routing: Routing of data based on geographical features such as locations 

or regions. This is an example of datecentric networking.   

• In-network: A style of processing in which the data is processed and combined near 

where the data is generated.   
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• Collaborative processing: Sensors cooperatively processing data from multiple sources 

in order to serve a high-level task. This typically requires communication among a set of 

nodes.   

• State: A snapshot about a physical environment (e.g., the number of signal sources, their 

locations or spatial extent, speed of movement), or a snapshot of the system itself 

(e.g.,the network state).   

• Uncertainty: A condition of the information caused by noise in sensor measurements, or 

lack of knowledge in models. The uncertainty affects the system’s ability to estimate the 

state accurately and must be carefully modeled. Because of the ubiquity of uncertainty 

in the data, many sensor network estimation problems are cast in a statistical framework. 

For example, one may use a covariance matrix to characterize the uncertainty in a 

Gaussian-like process or more general probability distributions for non-Gaussian 

processes.   

• Task: Either high-level system tasks which may include sensing, communication, 

processing, and resource allocation, or application tasks which may include detection, 

classification, localization, or tracking.   

• Detection: The process of discovering the existence of a physical phenomenon. A 

thresholdbased detector may flag a detection whenever the signature of a physical 

phenomenon is determined to be significant enough compared with the threshold.   

• Classification: The assignment of class labels to a set of physical phenomena being 

observed.   

• Localization and tracking: The estimation of the state of a physical entity such as a 

physical phenomenon or a sensor node from a set of measurements. Tracking produces 

a series of estimates over time.   

• Value of information or information utility: A mapping of data to a scalar number, in the 

context of the overall system task and knowledge. For example, information utility of a 

piece of sensor data may be characterized by its relevance to an estimation task at hand 

and computed by a mutual information function.   

• Resource: Resources include sensors, communication links, processors, on-board 

memory, and node energy reserves. Resource allocation assigns resources to tasks, 

typically optimizing some performance objective.   

• Sensor tasking: The assignment of sensors to a particular task and the control of sensor 

state (e.g., on/off, pan/tilt) for accomplishing the task.   

• Node services: Services such as time synchronization and node localization that enable 

applications to discover properties of a node and the nodes to organize themselves into 

a useful network.   

• Data storage: Sensor information is stored, indexed, and accessed by applications. 

Storage may be local to the node where the data is generated, load-balanced across a 

network, or anchored at a few points (warehouses).   

• Embedded operating system (OS): The run-time system support for sensor network 

applications. An embedded OS typically provides an abstraction of system resources and 

a set of utilities.   
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• System performance goal: The abstract characterization of system properties. Examples 

include scalability, robustness, and network longevity, each of which may be measured 

by a set of evaluation metrics.   

• Evaluation metric: A measurable quantity that describes how well the system is 

performing on some absolute scale. Examples include packet loss (system), network 

dwell time (system), track loss (application), false alarm rate (application), probability 

of correct association (application), location error (application), or processing latency 

(application/system). An evaluation method is a process for comparing the value of 

applying the metrics on an experimental system with that of some other benchmark 

system.   

   

1.2 ADVANTAGES OF SENSOR NETWORKS:   

Networked sensing offers unique advantages over traditional centralized approaches. 

Dense/ compressed networks of distributed communicating sensors can improve 

signalto-noise ratio (SNR) by reducing average distances from sensor to source of signal, 

or target. Increased energy efficiency in communications is enabled by the multi-hop 

topology of the network. A decentralized sensing system is inherently more strong 

against individual sensor node or link failures, because of redundancy in the network.    

1.2.1 Energy Advantage:   

Because of the unique attenuation characteristics of radio-frequency (RF) signals, a 

multi-hop RF network provides a significant energy saving over a single-hop network 

for the same distance. Consider the following simple example of an N-hop network. 

Assume the overall distance for transmission is Nr, where r is the one-hop distance. The 

minimum receiving power at a node for a given transmission error rate is Preceive, and the 

power at a transmission node is Psend. Then, the RF attenuation model near the ground is 

given by    , where r is the transmission distance and α is the RF attenuation exponent.  

Due to multipath and other interference effects, α is typically in the range of 2 to 5. Equivalently, 

.   

Therefore, the power advantage of an N-hop transmission versus a single-hop transmission   

over the same distance Nr is       -------- 

---------(1)   

Figure 1.1 illustrates the power attenuation for the multi-hop and single-hop networks.  

A larger N gives a larger power saving due to the consideration of RF energy alone.  

However, this analysis ignores the power usage by other components of an RF circuitry.  

Using more nodes increases not only the cost, but also the power consumption of these other RF 

components. In practice, an optimal design seeks to balance the two conflicting factors for an 

=   
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overall cost and energy efficiency. Latency and robustness considerations may also argue 

against an unduly large number of relay nodes.   

 
   

Figure 1.1: The power advantage of using a multi-hop RF communication over a distance 

of Nr   

   

1.2.2 Detection Advantage:   

Each sensor has a finite sensing range, determined by the noise floor at the sensor.A 

denser sensor field improves the odds of detecting a signal source within the range. Once 

a signal source is inside the sensing range of a sensor, further increasing the sensor 

density decreases the average distance from a sensor to the signal source, hence  

improving the signal-to-noise ratio (SNR). Let us 

consider the acoustic sensing case in a two-dimensional 

plane, where the acoustic power received at a distance 

r is , which assumes an inverse distance squared 

attenuation. The SNR is given by    

 10log 10log 20log r        ------------------- (2)   

Increasing the sensor density by a factor of k reduces the average distance to a target by a 

factor of  Thus, the SNR advantage of the denser sensor network is   

20log  10log k    ---------------------  

(3)   

    ∝      

10   log    
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Hence, an increase in sensor density by a factor of k improves the SNR at a sensor by 10 log 

k db.   

   

1.3 UNIQUE CONSTRAINTS AND CHALLENGES:   

1.3.1 Constraints: A sensor network has a unique set of resource constraints problems 

such as finite on-board battery power and limited network communication bandwidth. A 

sensor network consists of circulated self-governing sensors to monitor physical or 

environmental conditions. WSN consist of an array of sensors, each sensor network node 

has typically several parts such as radio, transceiver, antenna and microcontroller. A 

Base station links the sensor network to another network to advertise the data sensed for 

future processing. Each sensor node communicates wirelessly with a few other local 

nodes within its radio communication range. Sensor networks extend the existing 

Internet deep into the physical environment.    

One of the biggest Constraint/problem of sensor network is power consumption. 

To solve this issue two methods are defined. First method is to introduce aggregation 

points(An aggregation is a collection, or the gathering of things together). This reduces 

total number of messages exchanged between nodes and saves some energy. Usually 

aggregation points are ordinary nodes that receive data from neighbouring nodes, 

execute processing and then forward the filtered data to next hop.   

 Real-time is a very important constraint in WSNs, because real-world conditions can 

introduce explicit or implicit time constraints. These networks are supposed to sense 

signals in the environment, and concepts like “data freshness” are important in its 

applications. This way, in some application, time-based/temporal validity in data collect 

by nodes can expire very quickly.    

   

1.3.2 Challenges: The challenges we face in designing sensor network systems and 

applications include Limited hardware, Limited support for networking, Limited support 

for software development.   

• Limited hardware: Each node has limited processing, storage, and communication 

capabilities, and limited energy supply and bandwidth.    

• Limited support for networking: The network is peer-to-peer, with a mesh topology 

and dynamic, mobile, and unreliable connectivity. There are no universal routing protocols or 

central registry services. Each node acts both as a router and as an application host.    

• Limited support for software development: The tasks are typically real-time and 

massively distributed, involve dynamic teamwork among nodes, and must handle multiple 

competing events. Global properties can be specified only via local instructions. Because of the 

coupling between applications and system layers, the software architecture must be codesigned 

with the information processing architecture   



Wireless Sensor Networks        Prepared By : Mrs. S. Leelavathi 
 

7  

  

   

1.4. DRIVING APPLICATIONS:    
Sensor networks may consist of many different types of sensors such as magnetic, 

thermal, visual, seismic, infrared and radar, which are able to monitor a wide variety of 

conditions. These sensor nodes can be put for continuous sensing, location sensing, 

motion sensing and event detection. The idea of micro-sensing and wireless connection 

of these sensor nodes promises many new application areas. A few examples of their 

applications are as follows:    

   

A. Area monitoring applications    

Area monitoring is a very common application of WSNs. In area monitoring, the WSN is 

deployed over a region where some physical activity or phenomenon is to be monitored. 

When the sensors detect the event being monitored (sound, vibration), the event is 

reported to the base station, which then takes appropriate action (e.g., send a message on 

the internet or to a satellite). Similarly, wireless sensor networks can be deployed in 

security systems to detect motion of the unwanted, traffic control system to detect the 

presence of high-speed vehicles. Also WSNs finds huge application in military area for 

battleeld surveillance, monitoring friendly forces, equipment and ammunition, 

reconnaissance of opposing forces and terrain, targeting and battle damage assessment .    

   

B. Environmental applications    

A few environmental applications of sensor networks include forest fire detection, green 

house monitoring, landslide detection, air pollution detection and flood detection. They 

can also be used for tracking the movement of insects, birds and small animals, planetary 

exploration, monitoring conditions that affect crops and livestock and facilitating 

irrigation.    

   

   

C. Health applications    

Some of the health applications for sensor networks are providing interfaces for the disabled, 

integrated patient monitoring, diagnostics, drug administration in hospitals, monitoring the 

movements and internal processes of insects or other small animals, telemonitoring of 

human physiological data, and tracking and monitoring doctors and patients inside a 

hospital.    

   

D. Industrial applications    

WSNs are now widely used in industries, for example in machinery condition-based 

maintenance. Previously inaccessible locations, rotating machinery, hazardous or 
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restricted areas, and mobile assets can now be reached with wireless sensors. They can 

also be used to measure and monitor the water levels within all ground wells and monitor 

leachate accumulation and removal.    

   

E. Other applications    

Sensor networks now find huge application in our day-to-day appliances like vacuum 

cleaners, micro-wave ovens, VCRs and refrigerators. Other commercial applications 

includes constructing smart oce spaces, monitoring product quality, managing inventory, 

factory instrumentation and many more.   

   

1.5 ENABLING TECHNOLOGIES FOR WIRELESS SENSOR NETWORKS:   

Building such wireless sensor networks has only become possible with some fundamental 

advances in enabling technologies.    

First technology is the miniaturization of hardware. Smaller feature sizes in 

chips have driven down the power consumption of the basic components of a sensor 

node to a level that the constructions of WSNs can be planned. This is particularly 

relevant to microcontrollers and memory chips and the radio modems which are 

responsible for wireless communication have become much more energy efficient.  

Reduced chip size and improved energy efficiency is accompanied by reduced cost.   

 
   

Figure 1.2: Enabling Technologies   

Second one is processing and communication and the actual sensing equipment 

is the third relevant technology. Here, however, it is difficult to generalize because of the 

vast range of possible sensors.   
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These three basic parts of a sensor node have to accompanied by power supply. 

This requires, depending on application, high capacity batteries that last for long times, 

that is, have only a negligible self-discharge rate, and that can efficiently provide small 

amounts of current. Ideally, a sensor node also has a device for energy scavenging, 

recharging the battery with energy gathered from the environment – solar cells or 

vibration-based power generation are conceivable options. Such a concept requires the 

battery to be efficiently chargeable with small amounts of current, which is not a 

standard ability. Both batteries and energy scavenging are still objects of ongoing 

research.   

The counterpart to the basic hardware technologies is software. This software 

architecture on a single node has to be extended to a network architecture, where the 

division of tasks between nodes, not only on a single node, becomes the relevant question-

for example, how to structure interfaces for application programmers. The third part to solve 

then is the question of how to design appropriate communication protocols.   

   

SINGLE-NODE ARCHITECTURE:   

   

1.6 HARDWARE COMPONENTS: Choosing the hardware components for a  

wireless sensor node, obviously the applications has to consider size, costs, and energy 

consumption of the nodes. A basic sensor node comprises five main components such as 

Controller, Memory, Sensors and Actuators, Communication devices and Power supply 

Unit.   

   

   
Figure 1.3: Sensor node Hardware components   

    

1.6.1 Controller: A controller to process all the relevant data, capable of executing 

arbitrary code. The controller is the core of a wireless sensor node. It collects data from 

the sensors, processes this data, decides when and where to send it, receives data from 

other sensor nodes, and decides on the actuator’s behavior. It has to execute various 
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programs, ranging from timecritical signal processing and communication protocols to 

application programs; it is the Central Processing Unit (CPU) of the node.   

For General-purpose processors applications microcontrollers are used. These 

are highly overpowered, and their energy consumption is excessive. These are used in 

embedded systems. Some of the key characteristics of microcontrollers are particularly 

suited to embedded systems are their flexibility in connecting with other devices like 

sensors and they are also convenient in that they often have memory built in.    

A specialized case of programmable processors are Digital Signal Processors 

(DSPs). They are specifically geared, with respect to their architecture and their 

instruction set, for processing large amounts of vectorial data, as is typically the case in 

signal processing applications. In a wireless sensor node, such a DSP could be used to 

process data coming from a simple analog, wireless communication device to extract a 

digital data stream. In broadband wireless communication, DSPs are an appropriate and 

successfully used platform.    

An FPGA can be reprogrammed (or rather reconfigured) “in the field” to adapt 

to a changing set of requirements; however, this can take time and energy – it is not 

practical to reprogram an FPGA at the same frequency as a microcontroller could change 

between different programs.    

An ASIC is a specialized processor, custom designed for a given application 

such as, for example, high-speed routers and switches. The typical trade-off here is loss 

of flexibility in return for a considerably better energy efficiency and performance. On 

the other hand, where a microcontroller requires software development, ASICs provide 

the same functionality in hardware, resulting in potentially more costly hardware 

development.   

Examples: Intel Strong ARM, Texas Instruments MSP 430, Atmel ATmega.   

1.6.2 Memory: Some memory to store programs and intermediate data; usually, 

different types of memory are used for programs and data. In WSN there is a need for 

Random Access Memory (RAM) to store intermediate sensor readings, packets from 

other nodes, and so on. While RAM is fast, its main disadvantage is that it loses its 

content if power supply is interrupted. Program code can be stored in Read-Only 

Memory (ROM) or, more typically, in Electrically Erasable Programmable Read-Only  

Memory (EEPROM) or flash memory (the later being similar to EEPROM but allowing data 

to be erased or written in blocks instead of only a byte at a time). Flash memory can also 

serve as intermediate storage of data in case RAM is insufficient or when the power supply 

of RAM should be shut down for some time.   
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1.6.3 Communication Device: Turning nodes into a network requires a device for sending 

and receiving information over a wireless channel.    

Choice of transmission medium: The communication device is used to exchange data 

between individual nodes. In some cases, wired communication can actually be the 

method of choice and is frequently applied in many sensor networks. The case of 

wireless communication is considerably more interesting because it include radio 

frequencies. Radio Frequency (RF)based communication is by far the most relevant one 

as it best fits the requirements of most WSN applications.   

Transceivers: For Communication, both transmitter and receiver are required in a sensor 

node to convert a bit stream coming from a microcontroller and convert them to and 

from radio waves. For two tasks a combined device called transceiver is used.    

Transceiver structure has two parts as Radio Frequency (RF) front end and the baseband part.    

1. The radio frequency front end performs analog signal processing in the actual radio frequency 

Band.   

2. The baseband processor performs all signal processing in the digital domain and   

 The Power Amplifier (PA) accepts upconverted signals from the IF or baseband 

part and amplifies them for transmission over the antenna.   

 The Low Noise Amplifier (LNA) amplifies incoming signals up to levels suitable 

for further processing without significantly reducing the SNR. The range of 

powers of the incoming signals varies from very weak signals from nodes close to 

the reception boundary to strong signals from nearby nodes; this range can be up 

to 100 dB.    

communicates with a sensor node’s processor or other dig ital circuitry.       

Figure 1.   4   :     RF front end       



Wireless Sensor Networks  S.Leelavathi  

  

12  

  

 Elements like local oscillators or voltage-controlled oscillators and mixers are 

used for frequency conversion from the RF spectrum to intermediate frequencies 

or to the baseband. The incoming signal at RF frequencies fRF is multiplied in a 

mixer with a fixedfrequency signal from the local oscillator (frequency fLO). The 

resulting intermediatefrequency signal has frequency fLO − fRF. Depending on the 

RF front end architecture, other elements like filters are also present.   

Transceiver tasks and characteristics:   

 Service to upper layer: A receiver has to offer certain services to the upper layers, 

most notably to the Medium Access Control (MAC) layer. Sometimes, this service 

is packet oriented; sometimes, a transceiver only provides a byte interface or even 

only a bit interface to the microcontroller.    

 Power consumption and energy efficiency: The simplest interpretation of energy 

efficiency is the energy required to transmit and receive a single bit.    

 Carrier frequency and multiple channels: Transceivers are available for different 

carrier frequencies; evidently, it must match application requirements and 

regulatory restrictions.    

 State change times and energy: A transceiver can operate in different modes: 

sending or receiving, use different channels, or be in different power-safe states.    

 Data rates: Carrier frequency and used bandwidth together with modulation and 

coding determine the gross data rate.    

 Modulations: The transceivers typically support one or several of on/off-keying, 

ASK, FSK, or similar modulations.    

 Coding: Some transceivers allow various coding schemes to be selected.   

 Transmission power control: Some transceivers can directly provide control over 

the transmission power to be used; some require some external circuitry for that 

purpose. Usually, only a discrete number of power levels are available from which 

the actual transmission power can be chosen. Maximum output power is usually 

determined by regulations.    

 Noise figure: The noise figure NF of an element is defined as the ratio of the 

Signal-toNoise Ratio (SNR) ratio SNRI at the input of the element to the SNR 

ratio SNRO at the element’s output: NF= . It describes the degradation of 

SNR due to the element’s operation and is typically given in dB: NF dB= SNRI 

dB − SNRO dB.    

 Gain: The gain is the ratio of the output signal power to the input signal power 

and is typically given in dB. Amplifiers with high gain are desirable to achieve 

good energy efficiency.   

 Power efficiency: The efficiency of the radio front end is given as the ratio of the 

radiated power to the overall power consumed by the front end; for a power 
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amplifier, the efficiency describes the ratio of the output signal’s power to the 

power consumed by the overall power amplifier.    

 Receiver sensitivity: The receiver sensitivity (given in dBm) specifies the 

minimum signal power at the receiver needed to achieve a prescribed Eb/N0 or a 

prescribed bit/packet error rate.    

 Range: The range of a transmitter is clear. The range is considered in absence of 

interference; it evidently depends on the maximum transmission power, on the 

antenna characteristics.    

 Blocking performance: The blocking performance of a receiver is its achieved bit 

error rate in the presence of an interferer.    

 Out of band emission: The inverse to adjacent channel suppression is the out of 

band emission of a transmitter. To limit disturbance of other systems, or of the 

WSN itself in a multichannel setup, the transmitter should produce as little as 

possible of transmission power outside of its prescribed bandwidth, centered 

around the carrier frequency.    

 Carrier sense and RSSI: In many medium access control protocols, sensing 

whether the wireless channel, the carrier, is busy (another node is transmitting) is 

a critical information. The receiver has to be able to provide that information. the 

signal strength at which an incoming data packet has been received can provide 

useful information  a receiver has to provide this information in the Received 

Signal Strength Indicator (RSSI).    

 Frequency stability: The frequency stability denotes the degree of variation from 

nominal center frequencies when environmental conditions of oscillators like 

temperature or pressure change.    

 Voltage range: Transceivers should operate reliably over a range of supply 

voltages. Otherwise, inefficient voltage stabilization circuitry is required.   

1.6.4 Sensors and actuators: The actual interface to the physical world: devices that can 

observe or control physical parameters of the environment.  Sensors can be roughly 

categorized into three categories as    

 Passive, omnidirectional sensors: These sensors can measure a physical quantity 

at the point of the sensor node without actually manipulating the environment by 

active probing – in this sense, they are passive. Moreover, some of these sensors 

actually are self-powered in the sense that they obtain the energy they need from 

the environment – energy is only needed to amplify their analog signal.    

 Passive, narrow-beam sensors These sensors are passive as well, but have a 

welldefined notion of direction of measurement.    

 Active sensors This last group of sensors actively probes the environment, for 

example, a sonar or radar sensor or some types of seismic sensors, which generate 

shock waves by small explosions. These are quite specific – triggering an 

explosion is certainly not a lightly undertaken action – and require quite special 

attention.   
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Actuators: Actuators are just about as diverse as sensors, yet for the purposes of designing 

a WSN that converts electrical signals into physical phenomenon.   

   

1.6.5 Power supply:  As usually no tethered power supply is available, some form of 

batteries are necessary to provide energy. Sometimes, some form of recharging by 

obtaining energy from the environment is available as well (e.g. solar cells). There are 

essentially two aspects: Storing energy and Energy scavenging.    

Storing energy: Batteries   

 Traditional batteries: The power source of a sensor node is a battery, either 

nonrechargeable (“primary batteries”) or, if an energy scavenging device is 

present on the node, also rechargeable (“secondary batteries”).   

   
TABLE 1.1: Energy densities for various primary and secondary battery types   

Upon these batteries the requirements are    

 Capacity: They should have high capacity at a small weight, small volume, and 

low price. The main metric is energy per volume, J/cm3.    

 Capacity under load: They should withstand various usage patterns as a sensor 

node can consume quite different levels of power over time and actually draw high 

current in certain operation modes.    

 Self-discharge: Their self-discharge should be low. Zinc-air batteries, for 

example, have only a very short lifetime (on the order of weeks).    

 Efficient recharging: Recharging should be efficient even at low and 

intermittently available recharge power.    

 Relaxation: Their relaxation effect – the seeming self-recharging of an empty or 

almost empty battery when no current is drawn from it, based on chemical 

diffusion processes within the cell – should be clearly understood. Battery lifetime 

and usable capacity is considerably extended if this effect is leveraged.    

 DC–DC Conversion: Unfortunately, batteries alone are not sufficient as a direct 

power source for a sensor node. One typical problem is the reduction of a battery’s 

voltage as its capacity drops. A DC – DC converter can be used to overcome this 
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problem by regulating the voltage delivered to the node’s circuitry. To ensure a 

constant voltage even though the battery’s supply voltage drops, the DC – DC 

converter has to draw increasingly higher current from the battery when the battery 

is already becoming weak, speeding up battery death. The DC – DC converter 

does consume energy for its own operation, reducing overall efficiency.    

   

Energy scavenging: Depending on application, high capacity batteries that last for long 

times, that is, have only a negligible self-discharge rate, and that can efficiently provide 

small amounts of current. Ideally, a sensor node also has a device for energy 

scavenging, recharging the battery with energy gathered from the environment – solar 

cells or vibration-based power generation are conceivable options.   

 Photovoltaics: The well-known solar cells can be used to power sensor nodes. The 

available power depends on whether nodes are used outdoors or indoors,  

and on time of day and whether for outdoor usage. The resulting power is 

somewhere between 10 μW/cm2 indoors and 15 mW/cm2 outdoors. Single cells 

achieve a fairly stable output voltage of about 0.6 V (and have therefore to be used 

in series) as long as the drawn current does not exceed a critical threshold, which 

depends on the light intensity. Hence, solar cells are usually used to recharge 

secondary batteries.   

 Temperature gradients: Differences in temperature can be directly converted to 

electrical energy.    

 Vibrations: One almost pervasive form of mechanical energy is vibrations: walls 

or windows in buildings are resonating with cars or trucks passing in the streets, 

machinery often has low frequency vibrations. both amplitude and frequency of 

the vibration and ranges from about 0.1 μW/cm3 up to 10, 000 μW/cm3 for some 

extreme cases. Converting vibrations to electrical energy can be undertaken by 

various means, based on electromagnetic, electrostatic, or piezoelectric principles.    

 Pressure variations: Somewhat akin to vibrations, a variation of pressure can also 

be used as a power source.    

 Flow of air/liquid: Another often-used power source is the flow of air or liquid in 

wind mills or turbines. The challenge here is again the miniaturization, but some 

of the work on millimeter scale MEMS gas turbines might be reusable.    
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Figure 1.5 A MEMS device for converting vibrations to electrical energy, based on  a 

variable capacitor   

   
TABLE 1.2: Comparison of energy sources   

   
1.7 ENERGY CONSUMPTION OF SENSOR NODES:   

In previous section we discussed about energy supply for a sensor node through 

batteries that have small capacity, and recharging by energy scavenging is complicated 

and volatile. Hence, the energy consumption of a sensor node must be tightly controlled. 

The main consumers of energy are the controller, the radio front ends, the memory, and 

type of the sensors. One method to reduce power consumption of these components is 

designing lowpower chips, it is the best starting point for an energy-efficient sensor 

node. But any advantages gained by such designs can easily be squandered/ wasted when 

the components are improperly operated. Second method for energy efficiency in 

wireless sensor node is reduced functionality by using multiple states of operation with 

reduced energy consumption. These modes can be introduced for all components of a 

sensor node, in particular, for controller, radio front end, memory, and sensors.    
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1.7.1 Microcontroller energy consumption: For a controller, typical states are  

“active”, “idle”, and “sleep”. A radio modem could turn transmitter, receiver, or both on or 

off. At time t1, the microcontroller is to be put into sleep mode should be taken to reduce 

power consumption from Pactive to Psleep. If it remains active and the next event occurs at 

time tevent, then a total energy is Eactive = Pactive (tevent − t1). On the other hand, requires a time 

τdown until sleep mode has been reached. Let the average power consumption during this 

phase is (Pactive + Psleep)/2. Then,   

Psleep is consumed until tevent. The energy saving is given by    

Esaved =(tevent − t1)Pactive − (τdown (Pactive + Psleep)/2 +(tevent − t1 − τdown )Psleep)   -----------  

(4)    

Once the event to be processed occurs, however, an additional overhead of   

Eoverhead = τUp (Pactive + Psleep)/2       ---------------- (5)   

   
Figure 1.6 Energy savings and overheads for sleep 

modes   

Switching to a sleep mode is only beneficial if Eoverhead < Esaved or, equivalently, if the time 

to the   

next event is sufficiently large:     ---------- (6)    

   

Examples:    
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Intel StrongARM   

The Intel StrongARM provides three sleep modes:   

 In normal mode, all parts of the processor are fully powered. Power consumption is up 

to 400 mW.    

 In idle mode, clocks to the CPU are stopped; clocks that pertain to peripherals are active. 

Any interrupt will cause return to normal mode. Power consumption is up to 100 mW.   

 In sleep mode, only the real-time clock remains active. Wakeup occurs after a timer 

interrupt and takes up to 160 ms. Power consumption is up to 50 μW.   

Texas Instruments MSP 430   

The MSP430 family features a wider range of operation modes: One fully operational 

mode, which consumes about 1.2 mW (all power values given at 1 MHz and 3 V). There 

are four sleep modes in total. The deepest sleep mode, LPM4, only consumes 0.3 μW, 

but the controller is only woken up by external interrupts in this mode. In the next higher 

mode, LPM3, a clock is also  till running, which can be used for scheduled wake ups, 

and still consumes only about 6 μW.   

Atmel ATmega   

The Atmel ATmega 128L has six different modes of power consumption, which are in principle 

similar to the MSP 430 but differ in some details. Its power consumption varies between 6 mW 

and 15 mW in idle and active modes and is about 75 μW in power-down modes.   

   

1.7.2 Memory energy consumption: The most relevant kinds of memory are on-chip 

memory and FLASH memory. Off-chip RAM is rarely used. In fact, the power needed to 

drive on-chip memory is usually included in the power consumption numbers given for 

the controllers. Hence, the most relevant part is FLASH memory. In fact, the 

construction and usage of FLASH memory can heavily influence node lifetime. The 

relevant metrics are the read and write times and energy consumption. Read times and 

read energy consumption tend to be quite similar between different types of FLASH 

memory. Energy consumption necessary for reading and writing to the Flash memory is 

used on the Mica nodes. Hence, writing to FLASH memory can be a time- and 

energyconsuming task that is best avoided if somehow possible.   

   

1.7.3 Radio transceivers energy consumption: A radio transceiver has essentially two tasks: 

transmitting and receiving data between a pair of nodes. Similar to  

microcontrollers, radio transceivers can operate in different modes, the simplest ones are 

being turned on or turned off. To accommodate the necessary low total energy 

consumption, the transceivers should be turned off most of the time and only be 

activated when necessary – they work at a low duty cycle.   
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The energy consumed by a transmitter is due to two sources one part is due to 

RF signal generation, which mostly depends on chosen modulation and target distance. 

Second part is due to electronic components necessary for frequency synthesis, 

frequency conversion, filters, and so on. The transmitted power is generated by the 

amplifier of a transmitter. Its own power consumption Pamp depends on its architecture  

Pamp = αamp + βampPtx. where αamp and βamp are constants depending on process technology 

and amplifier architecture. The energy to transmit a packet n-bits long (including all 

headers) then depends on how long it takes to send the packet, determined by the 

nominal bit rate R and the coding rate Rcode, and on the total consumed power during 

transmission.   

------- 

-- (7)   Similar to the 

transmitter, the receiver can be either turned off or turned on. While being turned on, it 

can either actively receive a packet or can be idle, observing the channel and ready to 

receive.  Evidently, the power consumption while it is turned off is negligible. Even the 

difference between idling and actually receiving is very small and can, for most 

purposes, be assumed to be zero. To elucidate, the energy Ercvd required to receive a 

packet has a startup component TstartPstart similar to the transmission case when the 

receiver had been turned off (startup times are considered equal for transmission and 

receiving here); it also has a component that is proportional to the packet time . During 

this time of actual reception, receiver circuitry has to be powered up,  requiring a (more 

or less constant) power of PrxElec.   

  ------------  

(8)   

1.7.4 Power consumption of sensor and actuators:   

Providing any guidelines about the power consumption of the actual sensors and 

actuators is impossible because of the wide variety of these devices. For example, 

passive light or temperature sensors – the power consumption can possibly be ignored in 

comparison to other devices on a wireless node. For others, active devices like sonar( A 

measuring instrument that sends out an acoustic pulse in water and measures distances in 

terms of time for the echo of the pulse to return), power consumption can be quite 

considerable in the dimensioning of power sources on the sensor node, not to overstress 

batteries.  
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Unit 2  

   

1.8 OPERATING SYSTEMS AND EXECUTION ENVIRONMENTS:   

   

1.8.1 Embedded operating systems:    

 An operating system (OS) is system software that manages computer hardware and 

software resources and provides common services for computer programs.    

 For hardware functions such as input and output and memory allocation, the operating 

system acts as an intermediary between programs and the computer hardware.    

 An embedded system is some combination of computer hardware and software, either 

fixed in capability or programmable, that is specifically designed for a particular function.   

 Embedded operating systems are designed to be used in embedded computer systems. 

They are able to operate with a limited number of resources. They are very compact and   

extremely efficient by design.               Figure 1.7  

Operating    

                      Systems   

1.8.2 TinyOS:    

 TinyOS is an open-source, flexible and application-specific operating system for 

wireless sensor networks.    

 Wireless sensor network consists of a large number of tiny and low-power nodes, each 

of which executes simultaneous and reactive programs that must work with strict 

memory and power constraints.   

 TinyOS meets these challenges and has become the platform of choice for sensor 

network such as limited resources and low-power operation.   

 Salient features of TinyOS are    
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 A simple event-based concurrency model and split-phase operations that 

influence the development phases and techniques when writing 

application code.    

 It has a component-based architecture which provides rapid innovation 

and implementation while reducing code size as required by the difficult 

memory constraints inherent in wireless sensor networks.    

 TinyOS’s component library includes network protocols, distributed 

services, sensor drivers, and data acquisition tools.   

 TinyOS’s event-driven execution model enables fine grained power 

management, yet allows the scheduling flexibility made necessary by the 

unpredictable nature of wireless communication and physical world 

interfaces.   

   

1.8.3 Programming paradigms and application programming interfaces:   

 Concurrent Programming: Concurrent 

processing is a computing model in which 

multiple processors execute instructions 

simultaneously for better performance. 

Concurrent means something that 

happens at the same time as something 

else. Tasks are broken down into subtasks 

that are then assigned  to  separate  

 processors  to simultaneously, instead 

of sequentially as they would have to be 

carried out by a single processor. 

Concurrent processing is sometimes 

said to be synonymous with parallel 

processing.   

   

 Process-based  concurrency:  Most 

general-purpose  operating  systems 

concurrent  (seemingly  parallel)  

execution multiple processes on a single 

CPU. Using processes you are forced to 

deal with communication through 

messages, which is the Erlang(A unit of 

traffic intensity in telephone system) way 

of doing communication. Data is not 

shared, so there is no risk  of  data  

corruption.  Fault-tolerance scalability  is  

the  main  advantages  of processes  vs.  

threads.  Another  
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 advantage processes is that they can crash and you are perfectly ok with that, 

because you just restart them (even across network hosts). If thread crashes, it 

may crash the entire process, which may bring down your entire application.    

   

 Event-based  programming:  In 

computer programming, event-driven 

programming is a programming paradigm 

in which the flow of the program is 

determined by events such as user actions 

(mouse  clicks,  key  

 presses),  sensor outputs,  or  messages  from  other programs/threads.    Event-

driven programming is the dominant paradigm used in Graphical User Interfaces 

(GUItype of user interface that allows users to interact with electronic devices through 

graphical icons) and other applications. The system essentially waits for any event to 

happen, where an event typically can be the availability of data from a sensor, the arrival 

of a packet, or the expiration of a timer. Such an event is then handled by a short sequence 

of instructions that only stores the fact that this event has occurred and stores the necessary 

information.   

   

 Interfaces to the operating system: A 

boundary across which two independent 

systems meet and act on or communicate 

with each other. In computer technology, 

there are several types of interfaces. User 

interface - the keyboard, mouse, menus of 

a computer system. The user interface 

allows the user to communicate with the 

operating system. Stands for "Application 

Programming Interface." An API is a set 

of commands, functions, protocols, and 

objects (wireless links, nodes) that 

programmers can use to create software 

or interact with an external system 

(sensors, actuators, transceivers). It 

provides developers with standard 

commands for performing common 

operations so they do not have to write the 

code from scratch.   

   

1.8.4 Structure of operating system and protocol stack: 

The traditional approach to communication protocol 

structuring is to use layering: individual protocols are 

pe rform    

modern,    

support    

of    

and    

using    

of    
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stacked on top of each other, each layer only using functions of the layer directly. This 

layered approach has great benefits in keeping the entire protocol stack manageable, in 

containing complexity, and in promoting modularity and reuse. For the purposes of a 

WSN, however, it is not clear whether such a strictly layered approach will serve. A 

protocol stack refers to a group of protocols that are running concurrently that are 

employed for the implementation of network protocol suite. The protocols in a stack 

determine the interconnectivity rules for a layered network model such as in the OSI or 

TCP/IP models.   

   

1.8.5 Dynamic energy and power management: Switching individual components into 

various sleep states or reducing their performance by scaling down frequency and supply 

voltage and selecting particular modulation and coding are prominent examples for 

improving energy efficiency. To control these possibilities, decisions have to be made by 

the operating system, by the protocol stack, or potentially by an application when to 

switch into one of these states. Dynamic Power Management (DPM) on a system level is 

the problem at hand. One of the complicating factors to DPM is the energy and time 

required for the transition of a component between any two states. If these factors were 

negligible, clearly it would be optimal to always & immediately go into the mode with 

the lowest power consumption possible.   

   

NETWORK ARCHITECTURE: It introduces the basic principles of turning 

individual sensor nodes into a wireless sensor network. In this optimization goals of how 

a network should function are discussed as     

 Sensor network scenarios   

 Optimization goals and figures of merit   

 Gateway concepts   

1.9 SENSOR NETWORK SCENARIOS:   

1.9.1 Types of sources and sinks: Source is any unit in the network that can provide 

information (sensor node).  A sink is the unit where information is required, it could 

belong to the sensor network or outside this network to interact with another network or 

a gateway to another larger Internet. Sinks are illustrated by Figure 1.11, showing 

sources and sinks in direct communication.   
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Figure 1.11 Three types of sinks in a very simple, single-hop sensor network   

   

1.9.2 Single-hop versus multi-hop networks:   

Because of limited distance the direct communication between source and sink is not 

always possible. In WSNs, to cover a lot of environment the data packets taking multi 

hops from source to the sink. To overcome such limited distances it better  to use relay 

stations,  The data packets taking multi hops from source to the sink as shown in  Figure  

1.12, Depending on the particular application of having an intermediate sensor node at 

the right place is high.   

   
Figure 1.12 Multi-hop networks: As direct communication is impossible because of 

distance and/or obstacles   

Multi-hopping also to improves the energy efficiency of communication as it consumes less 

energy to use relays instead of direct communication, the radiated energy required for 
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direct communication over a distance d is cdα (c some constant, α ≥ 2 the path loss 

coefficient) and using a relay at distance d/2 reduces this energy to 2c(d/2)α   

    

This calculation considers only the radiated energy. It should be pointed out that only 

multihop networks operating in a store and forward fashion are considered here. In such 

a network, a node has to correctly receive a packet before it can forward it somewhere. 

Cooperative relaying (reconstruction in case of erroneous packet reception) techniques 

are not considered here.   

   

1.9.3 Multiple sinks and sources: In many cases, multiple sources and multiple sinks 

present.  Multiple sources should send information to multiple sinks. Either all or some 

of the information has to reach all or some of the sinks. This is illustrated in figure 1.13.   

   

   

 
   

Figure 1.13 Multiple sources and/or multiple sinks.   

Note how in the scenario in the lower half, both sinks and active sources are used 

to forward data to the sinks at the left and right end of the network.   

   

1.9.4 Three types of mobility: In the scenarios discussed above, all participants were stationary. 

But one of the main virtues of wireless communication is its ability to support mobile 
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participants In wireless sensor networks, mobility can appear in three main forms a. Node 

mobility   

b. Sink mobility   

c. Event mobility   

1.9.4(a) Node Mobility: The wireless sensor nodes themselves can be mobile.  The 

meaning of such mobility is highly application dependent.  In examples like 

environmental control, node mobility should not happen; in livestock surveillance 

(sensor nodes attached to cattle, for example), it is the common rule. In the face of node 

mobility, the network has to reorganize to function correctly.   

1.9.4(b) Sink Mobility: The information sinks can be mobile. For example, a human 

user requested information via a PDA while walking in an intelligent building.  In a 

simple case, such a requester can interact with the WSN at one point and complete its 

interactions before moving on, In many cases, consecutive interactions can be treated as 

separate, unrelated requests.   

 
   

Figure 1.14 Sink mobility: A mobile sink moves through a sensor network as 

information is being retrieved on its behalf   

   

   

1.9.4(c) Event Mobility: In tracking applications, the cause of the events or the objects 

to be tracked can be mobile. In such scenarios, it is (usually) important that the observed 

event is covered by a sufficient number of sensors at all time. As the event source moves 

through the network, it is accompanied by an area of activity within the network – this 

has been called the frisbee model. This notion is described by Figure 1.15, where the task 

is to detect a moving elephant and to observe it as it moves around   
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Figure 1.15 Area of sensor nodes detecting an event – an elephant– that moves 

through the network along with the event source (dashed line indicate the  

elephant’s trajectory; shaded ellipse the activity area following or even preceding 

the elephant)   

   

1.10 OPTIMIZATION GOALS AND FIGURES OF MERIT:   

For all WSN scenarios and application types have to face the challenges 

such as    How to optimize a network and How to compare these 

solutions?    

 How to decide which approach is better?   

 How to turn relatively inaccurate optimization goals into measurable figures of merit?    

For all the above questions the general answer is obtained from     

 Quality of service   

 Energy efficiency   

 Scalability   

 Robustness   

1.10.1Quality of service: WSNs differ from other conventional communication 

networks in the type of service they offer.  These networks essentially only move bits 

from one place to another. Some generic possibilities are   

 Event detection/reporting probability- The probability that an event that actually 

occurred is not detected or not reported to an information sink that is interested in such an 

event For example, not reporting a fire alarm to a surveillance station would be a severe 

shortcoming.    
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 Event classification error- If events are not only to be detected but also to be classified, 

the error in classification must be small   

 Event detection delay -It is the delay between detecting an event and reporting it to 

any/all interested sinks   

 Missing reports -In applications that require periodic reporting, the probability of 

undelivered reports should be small   

 Approximation accuracy- For function approximation applications, the 

average/maximum absolute or relative error with respect to the actual function.   

 Tracking accuracy Tracking applications must not miss an object to be tracked, the 

reported position should be as close to the real position as possible, and the error should 

be small.   

1.10.2 Energy efficiency: Energy efficiency should be optimization goal. The most commonly 

considered aspects are:   

 Energy per correctly received bit-How much energy is spent on average to transport 

one bit of information (payload) from the transmitter to the receiver.   

 Energy per reported (unique) event-What is the average energy spent to report one 

event   

 Delay/energy trade-offs-“urgent” events increases energy investment for a speedy 

reporting events. Here, the trade-off between delay and energy overhead is interesting   

 Network lifetime The time for which the network is operational    

 Time to first node death-When does the first node in the network run out of energy or 

fail and stop operating?   

 Network half-life-When have 50 % of the nodes run out of energy and stopped operating   

 Time to partition-When does the first partition of the network in two (or more) 

disconnected parts occur?    

 Time to loss of coverage the time when for the first time any spot in the deployment 

region is no longer covered by any node’s observations.   

 Time to failure of first event notification A network partition can be seen as irrelevant 

if the unreachable part of the network does not want to report any events in the first place.   

1.10.3 Scalability: The ability to maintain performance characteristics irrespective of the 

size of the network is referred to as scalability. With WSN potentially consisting of 

thousands of nodes, scalability is an obviously essential requirement. The need for 

extreme scalability has direct consequences for the protocol design. Often, a penalty in 

performance or complexity has to be paid for small networks. Architectures and 

protocols should implement appropriate scalability support rather than trying to be as 

scalable as possible. Applications with a few dozen nodes might admit more-efficient 

solutions than applications with thousands of nodes.   

   

1.10.4 Robustness: Wireless sensor networks should also exhibit an appropriate 

robustness.  They should not fail just because a limited number of nodes run out of 
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energy, or because their environment changes and severs existing radio links between 

two nodes. If possible, these failures have to be compensated by finding other routes.   

   

1.11 GATE WAY CONCEPTS:   

1.11.1 Need for gateways:   

 For practical deployment, a sensor network only concerned with itself is insufficient.   

 The network rather has to be able to interact with other information devices for example 

to read the temperature sensors in one’s home while traveling and accessing the Internet 

via a wireless.   

 Wireless sensor networks should also exhibit an appropriate robustness   

 They should not fail just because of a limited number of nodes run out of energy or 

because of their environment changes and breaks existing radio links between two 

nodes.   

 If possible, these failures have to be compensated by finding other routes.   Figure 1.16 

shows this networking scenario, The WSN first of all has to be able to exchange data 

with such a mobile device or with some sort of gateway, which provides the physical 

connection to the Internet. The WSN support standard wireless communication 

technologies such as IEEE 802.11. The design of gateways becomes much more 

challenging when considering their logical design. One option is to regard a gateway 

as a simple router between Internet and sensor network.   

   
Figure 1.16 A wireless sensor network with gateway node, enabling access to remote 

clients via the Internet   

1.11.2 WSN to Internet communication: Assume that the initiator of a WSN – Internet 

communication resides in the WSN.    

 For example, a sensor node wants to deliver an alarm message to some Internet host.   

 The first problem to solve is how to find the gateway from within the network   

 Basically, a routing problem to a node that offers a specific service has to be solved, 

integrating routing and service discovery    
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 If several such gateways are available, how to choose between them?   

 In particular, if not all Internet hosts are reachable via each gateway or at least if some 

gateway should be preferred for a given destination host?    

 How to handle several gateways, each capable of IP networking, and the 

communication among them?    

 One option is to build an IP overlay network on top of the sensor network  How to 

map a semantic notion (“Alert Alice”) to a concrete IP address?   

 Even if the sensor node does not need to be able to process the IP protocol, it has to 

include sufficient information (IP address and port number, for example) in its own 

packets;    

 the gateway then has to extract this information and translate it into IP packets.    

 An ensuing question is which source address to use here – the gateway in a sense has 

to perform tasks similar to that of a Network Address Translation (NAT) device.   

 
   

Figure 1.17: A wireless Sensor Network with gateway node, enabling access to 

remote clients via the WSN   

1.11.3 Internet to WSN communication: The case of an Internet-based entity trying to access 

services of a WSN is even more challenging.   

 This is fairly simple if this requesting terminal is able to directly communicate with the 

WSN.   

 The more general case is, however, a terminal “far away” requesting the service, not 

immediately able to communicate with any sensor node and thus requiring the 

assistance of a gateway node   

 First of all, again the question is  how to find out that there actually is a sensor network 

in the desired location, and how to find out about the existence of a gateway node?   

 Once the requesting terminal has obtained this information, how to access the actual 

services.   
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 The requesting terminal can instead send a properly formatted request to this gateway, 

which acts as an application-level gateway    

 The gateway translates this request into the proper intra sensor network protocol 

interactions   

 The gateway can then mask, for example, a data-centric data exchange within the 

network behind an identity-centric exchange used in the Internet   

 It is by no means clear that such an application-level protocol exists that represents an 

actual simplification over just extending the actual sensor network protocols to the 

remote terminal   

 In addition, there are some clear parallels for such an application-level protocol with 

socalled Web Service Protocols, which can explicitly describe services and the way 

they can be accessed   

   

Figure 1.18: A wireless Sensor Network with gateway node, enabling access 

to remote clients via the internet   

1.11.4 WSN tunnelling:   

 The gateways can also act as simple extensions of one WSN to another WSN The idea 

is to build a larger, “virtual” WSN out of separate parts, transparently “tunneling” all 

protocol messages between these two networks and simply using the Internet as a 

transport network.   

 This can be attractive, but care has to be taken not to confuse the virtual link between 

two gateway nodes with a real link;   

 Otherwise, protocols that rely on physical properties of a communication link can get 

quite confused (e.g. time synchronization or localization protocols).   
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Figure 1.19 Connecting two WSNs with a tunnel over the Internet   

  

  

  

  

  

  

  

UNIT-III   

MAC PROTOCOLS FOR WIRELESS SENSOR NETWORKS   
  

3.1 INTRODUCTION:    

Nodes in an Ad-hoc wireless network share a common broadcast radio channel. Since 

the radio spectrum is limited, the bandwidth available for communication in such 

networks is also limited. Access to this shared medium should be controlled in such a 

manner that all nodes receive a fair share of the available bandwidth, and that the 

bandwidth is utilized efficiently. Characteristics of the wireless medium are completely 

different from wired medium. So a different set of protocols is required for controlling 

access to the shared medium in such networks. This is achieved by using Medium 

Access Control (MAC) protocol.   

   

3.2 ISSUES IN DESIGNING A MAC PROTOCOL FOR AD HOC WIRELESS 

NETWORKS   

The following are the main issues that need to be addressed while designing a MAC protocol 

for Ad-hoc wireless networks.   

3.2.1 Bandwidth Efficiency: Since the radio spectrum is limited, the bandwidth 

available for communication is also very limited. The MAC protocol must be designed 

in such a way that to maximize this bandwidth efficiency (the ratio of the bandwidth 
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used for actual data transmission to the total available bandwidth). That is the 

uncommon bandwidth is utilized in an efficient manner.    

3.2.3 Quality of Service Support(QoS): Providing QoS support to data sessions in 

Adhoc networks is very difficult due to their characteristic nature of nodes mobility. 

Most of the time, Bandwidth reservation made at one point of time may become invalid 

once the node moves out of the region. The MAC protocol for Ad-hoc wireless networks 

that are to be used in such real-time applications must have resource reservation 

mechanism take care of nature of the wireless channel and the mobility of nodes.   

3.2.4 Synchronization:  The MAC protocol must take into consideration the synchronization 

between nodes in the network.  Synchronization is very important for bandwidth (time slot) 

reservations by nodes achieved by exchange of control packets.    

3.2.5 Hidden and Exposed Terminal Problems: The hidden terminal problem refers to 

the collision of packets at a receiving node due to the simultaneous transmission of those 

nodes. The exposed terminal problem refers to the inability of a node, which is blocked 

due to transmission by a nearby transmitting node, to transmit to another node.   

3.2.6 Mobility of Nodes: This is a very important factor affecting the performance 

(throughput) of the protocol.  The MAC protocol obviously has no role to play in influencing 

the mobility of the nodes.   

3.2.7 Error-Prone Shared Broadcast Channel: Due to broadcast nature of the radio channel 

(transmissions made by a node are received by all nodes within its direct transmission range) 

there is a possibility of packet collisions is quite high in wireless networks. A MAC protocol 

should grant channel access to nodes in such a manner that collisions are minimized.    

3.2.8 Distributed Nature/Lack of Central Coordination: Ad hoc wireless networks do 

not have centralized coordinators because nodes keep moving continuously.  Therefore, 

nodes must be scheduled in a distributed fashion for gaining access to the channel. The 

MAC protocol must make sure that the additional overhead, in terms of bandwidth 

consumption is not very high.   
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Figure 3.1 Hidden and Exposed node problems   

   

3.3 DESIGN GOALS OF A MAC PROTOCOL FOR AD-HOC WIRELESS 

NETWORKS:   

The following are the important goals to be met while designing a medium access control 

(MAC) protocol for ad hoc wireless networks:   

1. The operation of the protocol should be distributed.   

2. The protocol should provide QoS support for real-time traffic.   

3. The access delay, which refers to the average delay experienced by any packet to get 

transmitted, must be kept low.   

4. The available bandwidth must be utilized efficiently.   

5. The protocol should ensure fair allocation of bandwidth to nodes.   

6. Control overhead must be kept as low as possible.   

7. The protocol should minimize the effects of hidden and exposed terminal problems.   

8. The protocol must be scalable to large networks.   

9. It should have power control mechanisms.   

10. The protocol should have mechanisms for adaptive data rate control.   

11. It should try to use directional antennas.   

12. The protocol should provide synchronization among nodes.   
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3.4 CLASSIFICATIONS OF MAC PROTOCOLS:   

MAC protocols for ad hoc wireless networks can be classified into several categories 

based on various criteria such as initiation approach, time synchronization, and 

reservation approaches. Ad hoc network MAC protocols can be classified into three 

basic types:   

a. Contention-based protocols   

b. Contention-based protocols with reservation mechanisms   

c. Contention-based protocols with scheduling mechanisms   

Apart from these three major types, there exist other MAC protocols that cannot be classified 

clearly under any one of the above three types of protocols.   

   

   

Figure 3.2 Classifications of MAC Protocols    

   

3.4.1 Contention-based protocols:    

 These protocols follow a contention-based channel access policy. Whenever it receives a 

packet to be transmitted, it contends with its neighbor nodes for access to the shared 

channel. Contention-based protocols cannot provide QoS guarantees to sessions since 

nodes are not guaranteed regular access to the channel. Random access protocols can be 

further divided into two types:   

1. Sender-initiated protocols: Packet transmissions are initiated by the sender 

node.   
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2. Receiver-initiated protocols: The receiver node initiates the contention 

resolution protocol. Sender-initiated protocols can be further divided into two types:   

a. Single-channel sender-initiated protocols: In these protocols, the total available 

bandwidth is used as it is, without being divided. A node that wins the contention 

to the channel can make use of the entire bandwidth.   

b. Multichannel sender-initiated protocols: In multichannel protocols, the available 

bandwidth is divided into multiple channels. This enables several nodes to 

simultaneously transmit data, each using a separate channel. Some protocols 

dedicate a frequency channel exclusively for transmitting control information.    

      

3.4.2 Contention-Based Protocols with Reservation Mechanisms   Ad hoc 

wireless networks sometimes may need to support real-time traffic, which requires 

QoS guarantees to be provided. In contention-based protocols, nodes are not 

guaranteed periodic access to the channel. Hence they cannot support real-time traffic. 

In order to support such traffic, certain protocols have mechanisms for reserving 

bandwidth a priori. Such protocols can provide QoS support to time-sensitive traffic 

sessions. These protocols can be further classified into two types:   

1. Synchronous protocols: Synchronous protocols require time synchronization 

among all nodes in the network, so that reservations made by a node are known 

to other nodes in its neighborhood. Global time synchronization is generally 

difficult to achieve.   

2. Asynchronous protocols: They do not require any global synchronization among 

nodes in the network. These protocols usually use relative time information for 

effecting reservations   

   

3.4.3 Contention-Based Protocols with Scheduling Mechanisms    

Node scheduling is done in a manner so that all nodes are treated fairly and no 

node is starved of bandwidth. Scheduling-based schemes are also used for enforcing 

priorities among flows whose packets are queued at nodes. Some scheduling schemes 

also take into consideration battery characteristics, such as remaining battery power, 

while scheduling nodes for access to the channel.   

   

3.4.4 Other Protocols   

  There are several other MAC protocols that do not strictly fall under the above categories.   

   

3.5 CONTENTION-BASED PROTOCOLS:   

 These protocols follow a contention-based channel access policy. Whenever it receives a 

packet to be transmitted, it contends with its neighbor nodes for access to the shared 

channel. Contention-based protocols cannot provide QoS guarantees to sessions since 
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nodes are not guaranteed regular access to the channel. Random access protocols can be 

further divided into two types:   

1. Sender-initiated protocols: Packet transmissions are initiated by the sender node.   

2. Receiver-initiated protocols: The receiver node initiates the contention resolution 

protocol.   

   

3.5.1 Sender-initiated protocols : These are further divided into two types:   

I. Single-channel sender-initiated protocols: In these protocols, the total available 

bandwidth is used as it is, without being divided. A node that wins the 

contention to the channel can make use of the entire bandwidth. Examples:  

MACAW, FAMA   

a) MACAW: Multiple Access Collision 

Avoidance for Wireless A Media Access Protocol 

for Wireless LANs is based on MACA Protocol.   

MACA Protocol:    

 When a node wants to transmit a data packet, it first transmit a RTS (Request To Send) 

frame.   

 The receiver node, on receiving the RTS packet, if it is ready to receive the data packet, 

transmits a CTS (Clear to Send) packet.    

 Once the sender receives the CTS packet without any error, it starts transmitting the 

data packet.   

 If a packet transmitted by a node is lost, the node uses the Binary Exponential Back-off 

(BEB) algorithm to back-off a random interval of time before retrying.  

The problem is solved by MACAW.   
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Figure 3.3 Packet transmission in MACA   

MACA EXAMPLES:   

1. MACA avoids the problem of hidden terminals    

 A and C want to send to B   

 A sends RTS first    

 C waits after receiving  CTS from B   

   

   

2. MACA avoids the problem of exposed terminals    

 B wants to send to A, C to another  
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terminal   

 Now C does not have  to wait for it  

cannot  receive     

   CTS from A   

   

MACAW Protocol:    

MACA for Wireless is a revision of MACA.   

 The sender transmits a RTS (Request To Send) frame if no nearby station transmits a 

RTS.   

 The receiver replies with a CTS (Clear To Send) frame.   

 Neighbors o Can see CTS, then keep quiet.   

o Can see RTS but not CTS, then keep quiet until the CTS is back to the sender.   

 The receiver sends an ACK when receiving an frame.   

o Neighbors keep silent until see ACK.   

 Collisions o There is no collision detection. o The senders know collision when they 

don’t receive CTS. o They each wait for the exponential backoff time.   

   
Figure 3.4 Packet transmission in MACAW   

   

b) FAMA:  Floor Acquisition Multiple Access Protocols   

 The floor acquisition multiple access (FAMA) protocols are based on a channel access 

discipline which consists of a carrier-sensing operation and a collision-avoidance dialog 

between the sender and the intended receiver of a packet. Floor acquisition refers to the 

process of gaining control of the channel. At any given point of time, the control of the 

channel is assigned to only one node, and this node is guaranteed to transmit one or more 

data packets to different destinations without suffering from packet collisions. Carrier-
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sensing by the sender, followed by the RTS-CTS control packet exchange, enables the 

protocol to perform as efficiently as MACA in the presence of hidden terminals, and as 

efficiently as CSMA otherwise.   

FAMA requires a node that wishes to transmit packets to first acquire the floor (channel) 

before starting to transmit the packets. The floor is acquired by means of exchanging 

control packets. Though the control packets themselves may collide with other control 

packets, it is ensured that data packets sent by the node that has acquired the channel are 

always transmitted without any collisions. Any single-channel MAC protocol that does 

not require a transmitting node to sense the channel can be adapted for performing floor 

acquisition tasks. Floor acquisition using the RTS-CTS exchange is advantageous as the 

mechanism also tries to provide a solution for the hidden terminal problem. There are 

two FAMA protocol variants are available:    

• RTS-CTS exchange with no carrier sensing (MACA).   

• RTS-CTS exchange with non-persistent carrier-sensing (FAMA-NTR).   

   

RTS-CTS exchange with no carrier sensing (MACA): In MACA, a ready node transmits 

an RTS packet. A neighbor node receiving the RTS defers its transmissions for the 

period specified in theRTS. On receiving the RTS, the receiver node responds by 

sending back a CTS packet, and waits for a long enough period of time in order to 

receive a data packet. Neighbor nodes of the receiver which hear this CTS packet defer 

their transmissions for the time duration of the impending data transfer. In MACA, nodes 

do not sense the channel. A node defers its transmissions only if it receives an RTS or 

CTS packet. In MACA, data packets are prone to collisions with RTS packets.   

   

FAMA – Non-Persistent Transmit Request: Before sending a packet, the sender senses 

the channel If channel is busy, the sender back-off a random time and retries later. If the 

channel is free, the sender sends RTS and waits for a CTS packet. If the sender cannot 

receive a CTS, it takes a random back-off and retries later. If the sender receives a CTS, 

it can start transmission data packet. In order to allow the sender to send a burst of 

packets, the receiver is made to wait a time duration τ seconds after a packet is received.   

    

   

Multichannel sender-initiated protocols: In multichannel protocols, the available 

bandwidth is divided into multiple channels. This enables several nodes to 

simultaneously transmit data, each using a separate channel. Some protocols dedicate a 

frequency channel exclusively for transmitting control information.    

   

II.   Multi-channel sender-initiated protocols:   
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a) Busy Tone Multiple Access Protocols (BTMA):   

 The Busy Tone Multiple Access (BTMA) protocol is one of the earliest protocols 

proposed for overcoming the hidden terminal problem faced in wireless environments. 

The transmission channel is split into two: a data channel and a control channel. The data 

channel is used for data packet transmissions, while the control channel is used to 

transmit the busy tone signal.    

 When a node is ready for transmission, it senses the channel to check whether the busy 

tone is active. If not, it turns on the busy tone signal and starts data transmission; 

otherwise, it reschedules the packet for transmission after some random rescheduling 

delay. Any other node which senses the carrier on the incoming data channel also 

transmits the busy tone signal on the control channel. Thus, when a node is transmitting, 

no other node in the two-hop neighborhood of the transmitting node is permitted to 

simultaneously transmit. Though the probability of collisions is very low in BTMA, the 

bandwidth utilization is very poor. Figure 3.5 shows the worstcase scenario where the 

node density is very high; the dotted circle shows the region in which nodes are blocked 

from simultaneously transmitting when node N1 is transmitting packets.   

   
Figure 3.5 Packet transmission in BTMA   
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b) Dual Busy Tone Multiple Access Protocol (DBTMAP):   

It is an extension of the BTMA scheme. In this also transmission channel is split in to 

two parts. A data channel for data packet transmissions and a control channel used for 

control packet transmissions (RTS and CTS packets) and also for transmitting the busy 

tones. In this protocol use two busy tones on the control channel, BTt and BTr. Where 

BTt indicate that it is transmitting on the data channel and  BTr indicate that it is 

receiving on the data channel. Two busy tone signals are two sine waves at different 

frequencies.   

 
   

Figure 3.6 Packet transmission in DBTMA  3.5.2 Receiver-initiated 

protocols:   

a) RECEIVER INITIATED-BUSY TONE MULTIPLE ACCESS PROTOCOL 

(RI-BTMA):   

 In this RI-BTMA similar to BTMA, the available bandwidth is divided into two channels: 

a data channel for transmitting data packets and a control channel. The control channel is 

used by a node to transmit the busy tone signal. A node can transmit on the data channel 

only if it finds the busy tone to be absent on the control channel.   

 The data packet is divided into two portions: a preamble and the actual data packet. The 

preamble carries the identification of the intended destination node. Both the data 

channel and the control channel are slotted, with each slot equal to the length of the 

preamble. Data  transmission consists of two steps. First, the preamble needs to be 

transmitted by the sender. Once the receiver node acknowledges the reception of this 

preamble by transmitting the busy tone signal on the control channel, the actual data 

packet is transmitted. A sender node that needs to transmit a data packet first waits for a 
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free slot, that is, a slot in which the busy tone signal is absent on the control channel. 

Once it finds such a slot, it transmits the preamble packet on the data channel. If the 

destination node receives this preamble packet correctly without any error, it transmits 

the busy tone on the control channel. It continues transmitting the busy tone signal as 

long as it is receiving data from the sender. If preamble transmission fails, the receiver 

does not acknowledge with the busy tone, and the sender node waits for the next free slot 

and tries again.  The busy tone serves two purposes. First, it acknowledges the sender 

about the successful reception of the preamble. Second, it informs the nearby hidden 

nodes about the impending transmission so that they do not transmit at the same time.     

 There are two types of RI-BTMA protocols: the basic protocol and the controlled 

protocol. In the basic protocol, nodes do not have backlog buffers to store data packets. 

Hence packets that suffer collisions cannot be retransmitted. Also, when the network 

load increases, packets cannot be queued at the nodes. This protocol would work only 

when the network load is not high; when network load starts increasing, the protocol 

becomes unstable.   

 The controlled protocol overcomes this problem. This protocol is the same as the basic 

protocol, the only difference being the availability of backlog buffers at nodes. 

Therefore, packets that suffer collisions, and those that are generated during busy slots, 

can be queued at nodes. A node is said to be in the backlogged mode if its backlog buffer 

is non-empty. When a node in the backlogged mode receives a packet from its higher 

layers, the packet is put into the buffer and transmitted later.   
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Figure 3.7 Packet transmissions in RI-BTMA  b) 

MACA-By Invitation   

 MACA-by invitation (MACA-BI) is a receiver-initiated MAC protocol. It reduces the 

number of control packets used in the MACA protocol. MACA, which is a senderinitiated 

protocol, uses the three-way handshake mechanism, where first the RTS and CTS control 

packets are exchanged, followed by the actual DATA packet transmission. MACA-BI 

eliminates the need for the RTS packet.  In MACA-BI the receiver node initiates data 

transmission by transmitting a Ready To Receive (RTR) control packet to the sender. If it 

is ready to transmit, the sender node responds by sending a DATA packet. Thus data 

transmission in MACA-BI occurs through a two-way handshake mechanism. The 

efficiency of the MACA-BI scheme is mainly dependent on the ability of the receiver 

node to predict accurately the arrival rates of traffic at the sender nodes.   

   
Figure 3.8 Packet transmissions in MACA-By   

   

c) Media Access with Reduced Handshake (MARCH):   

 The media access with reduced handshake protocol (MARCH) is a receiver-initiated 

protocol. MARCH, unlike MACA-BI, does not require any traffic prediction 

mechanism. The protocol exploits the broadcast nature of traffic from omnidirectional 

antennas to reduce the number of handshakes involved in data transmission. In MACA, 

the RTS-CTS control packets exchange takes place before the transmission of every data 

packet. But in MARCH, the RTS packet is used only for the first packet of the stream. 

From the second packet onward, only the CTS packet is used. A node obtains 

information about data packet arrivals at its neighboring nodes by overhearing the CTS 

packets transmitted by them. It then sends a CTS packet to the concerned neighbor node 

for relaying data from that node.   
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Figure 3.9 Handshake mechanism in (a) MACA and (b) MARCH   

3.6 CONTENTION-BASED PROTOCOLS WITH RESERVATION 

MECHANISMS:   

 These protocols are contention-based, contention occurs only during the resource 

(bandwidth) reservation phase. Once the bandwidth is reserved, the node gets exclusive 

access to the reserved bandwidth. Hence, QoS support can be provided for real-time 

traffic.   

   

3.6.1 Distributed Packet Reservation Multiple Access Protocol   

 The Distributed Packet Reservation Multiple Access protocol (D-PRMA) extends the 

earlier centralized Packet Reservation Multiple Access (PRMA) scheme into a 

distributed scheme that can be used in ad hoc wireless networks. PRMA was proposed 

for voice support in a wireless LAN with a base station, where the base station serves as 

the fixed entity for the MAC operation. D-PRMA extends this protocol for providing 

voice support in ad hoc wireless networks.   

 D-PRMA is a TDMA-based scheme. The channel is divided into fixed- and equal-sized 

frames along the time axis. Each frame is composed of s slots, and each slot consists of 

m mini- slots. Each mini-slot can be further divided into two control fields, RTS/BI and 

CTS/BI(BI stands for Busy Indication).  These control fields are used for slot reservation 

and for overcoming the hidden terminal problem. All nodes having packets ready for 

transmission contend for the first mini-slot of each slot. The remaining (m - 1) mini-slots 

are granted to the node that wins the contention. Also, the same slot in each subsequent 

frame can be reserved for this winning terminal until it completes its packet transmission 

session.    
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 If no node wins the first mini-slot, then the remaining mini-slots are continuously used 

for contention, until a contending node wins any mini-slot. Within a reserved slot, 

communication between the source and receiver nodes takes place by means of either 

Time Division Duplexing (TDD) or Frequency Division Duplexing (FDD). Any node 

that wants to transmit packets has to first reserve slots, if they have not been reserved 

already. A certain period at the beginning of each mini-slot is reserved for carriersensing. 

If a sender node detects the channel to be idle at the beginning of a slot (minislot 1), it 

transmits an RTS packet (slot reservation request) to the intended destination through the 

RTS/BI part of the current mini-slot. On successfully receiving this RTS packet, the 

receiver node responds by sending a CTS packet through the CTS/BI of the same mini-

slot. If the sender node receives this CTS successfully, then it gets the reservation for the 

current slot and can use the remaining mini-slots, that is, mini-slots 2 tom. Otherwise, it 

continues the contention process through the subsequent mini-slots of the same slot.   

 
   

Figure 3.10 Frame structure in D-PRMA   

   

To prioritize voice terminals over data terminals, the Voice terminals starts contenting 

from minislot 1 with probability p = 1 while data terminals can start such content with p 

< 1. Both voice and data terminals can content through the extra (m – 1) mini-slots with 

probability p < 1. Only the winner of a voice terminal can reserve the same slot in each 

subsequent frame until the end of packet transmission while the winner of a data terminal 

can only use one slot.   

   

3.6.2 Collision Avoidance Time Allocation Protocol (CATA):   

 The Collision Avoidance Time Allocation protocol (CATA) is based on dynamic topology 

dependent transmission scheduling. Nodes contend for and reserve time slots by means of 

a distributed reservation and handshake mechanism. CATA supports broadcast, unicast, 
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and multicast transmissions simultaneously. The operation of CATA is based on two basic 

principles:   

1. The receiver(s) of a flow must inform the potential source nodes about the 

reserved slot on which it is currently receiving packets. Similarly, the source 

node must inform the potential destination node(s) about interferences in the 

slot.   

2. Usage of negative acknowledgments for reservation requests, and control 

packet transmissions at the beginning of each slot, for distributing slot 

reservation information to senders of broadcast or multicast sessions.   

   

 Time is divided into equal-sized frames, and each frame consists of S slots. Each slot is 

further divided into five mini-slots. The first four mini-slots are used for transmitting 

control packets and are called control mini-slots (CMS1, CMS2, CMS3, and CMS4). 

The fifth and last Minislot, called data mini-slot (DMS), is meant for data transmission. 

The data mini-slot is much longer than the control mini-slots as the control packets are 

much smaller in size compared to data packets.   

 
   

Figure 3.11 Frame structure in CATA   

Each node receives data during the DMS of current slot transmits an SR in CMS1. Every 

node that transmits data during the DMS of current slot transmits an RTS in CMS2. 

CMS3 and CMS4 are used as follows:   

a. The sender of an intend reservation, if it senses the channel is idle in CMS1, transmits 

an RTS in CMS2.   

b. Then the receiver transmits a CTS in CMS3   

c. If the reservation was successful the data can transmit in current slot and the same slot 

in subsequent frames.   

d. Once the reservation was successfully, in the next slot both the sender and receiver do 

not transmit anything during CMS3 and during CMS4 the sender transmits a NTS.   
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If a node receives an RTS for broadcast or multicast during CMS2 or it finds the channel 

to be free during CMS2, it remains idle during CMS3 and CMS4. Otherwise it sends a 

NTS packet during CMS4. A potential multicast or broadcast source node that receives 

the NTS packet or detecting noise during CMS4, understands that its reservation is 

failed. If it find the channel is free in CMS4, which implies its reservation was 

successful. CATA works well with simple single-channel halfduplex radios.   

3.6.3 Hop Reservation Multiple Access Protocol:   

 HRMA is a multi-channel MAC protocol, based on half-duplex very slow frequency hopping 

spread spectrum (FHSS) radios. Each time slot is assigned a separate frequency channel 

Assume Lfrequency channels, f0 - dedicated synchronized channel frequency.  

The remaining L-1 frequencies  are divided into M  frequency pairs denoted by  

, i=1,2 ,3 ,4….M, Hop reservation (HR),   

RTS, CTS, DATA : fi and ACK      

 All idle nodes hop to the synchronizing frequency f0 and exchange synchronization 

information. Synchronizing slot: used to identify the beginning of a frequency hop and 

the frequency to be used in the immediately following hop. Any two nodes from two 

disconnected networks have at least two overlapping time period of length μs on the 

frequency f0.   

 
   

Figure 3.12 Frame format in HRMA   
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If μ is the length of each slot and μs is the length of the synchronization period on each slot, 

then the dwell time of f0 is μ+ μs.   

 
   

Figure 3.13 Merging of Subnets   

 A node ready to transmit data, it senses the HR period of the current slot, then if the 

channel is idle during HR period, it transmits an RTS during RTS period and waits for 

CTS during CTS period. If the channel is busy during HR period, it backs off for a 

randomly multiple slots. Suppose the sender needs to transmit data across multiple 

frames, it informs the receiver through the header of the data packet The receiver node 

transmits an HR packet during the HR period of the same slot in next frame to informs 

its neighbors. The sender receiving the HR packet, it sends an RTS during the RTS 

period and jams other RTS packets. Then Both sender and receiver remain silent during 

the CTS period.   

   

3.6.4 FPRP: Five-Phase Reservation Protocol   

 A single-channel TDMA based broadcast scheduling protocol. Nodes uses a contention 

mechanism in order to acquire time slots. The protocol assumes the availability of global 

time at all nodes. Time is divided into frames: reservation frame (RF) and information 

frame (IF). Each RF has N reservation slots (RS) and each IF has N information slots 

(IS). Each RS is composed of M reservation cycles (RCs). With each RC, a five-phase 

dialog takes place. Corresponding to IS, each node would be in one of the following 

three states: transmit (T), receive (R), and blocked (B).    
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Figure 3.14 Frame structure of FPRP   

   

The reservation takes five phases:    

1. Reservation request: Send reservation request (RR) packet to dest.   

2. Collision report: If a collision is detected by any node, that node broadcasts a CR 

packet   

3. Reservation confirmation: A source node won the contention will send a RC packet 

to destination node if it does not receive any CR message in the previous phase   

4. Reservation acknowledgment: Destination node acknowledge reception of RC by 

sending back RA message to source   

5. Packing and elimination: Use packing packet and elimination packet.   

   

Example:   
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Figure 3.15 Example of FPRP   

 Here nodes 1, 7, and 9 have packets ready to be transmitted to nodes 4, 8, and 10, 

respectively. During the reservation request phase, all three nodes transmit RR packets. 

Since no other node in the two-hop neighborhood of node 1 transmits simultaneously, 

node 1 does not receive any CR message in the collision report phase. So node 1 

transmits an RC message in the next phase, for which node 4 sends back an RA message, 

and the reservation is established. Node 7 and node 9 both transmit the RR packet in the 

reservation request phase. Here node 9 is within two hops from node 7. So if both nodes 

7 and 9 transmit simultaneously, their RR packets collide at common neighbor node 11. 

Node 11 sends a CR packet which is heard by nodes 7 and 9. On receiving the CR 

packet, nodes 7 and 9 stop contending for the current slot.   

   

3.6.5 MACA/PR: MACA with Piggy- Backed Reservation   

 MACA/PR is used to provide real time traffic support. The main components: a MAC 

protocol (MACAW + non persistent CSMA), a reservation protocol, and a QoS routing 

protocol. Each node maintains a reservation table (RT) that records all the reserved 

transmit and receive slots/windows of all nodes. Non-real time packet: wait for a free 

slot in the RT + random time => RTS => CTS => DATA => ACK. Real time packet 

transmit real time packets at certain regular intervals (say CYCLE).  

RTS=>CTS=>DATA (carry reservation info for next data) => ACK=>… =>DATA  

(carry reservation info)=>ACK, Hear DATA and ACK: update their reservation table.  

The ACK packet serves to renew the reservation, in addition to recovering from the packet loss. 

Reservation fail: fail to receive ACK packets for a certain number of DATA packets.   



Wireless Sensor Networks  S.Leelavathi  

  

52  

  

 For maintaining consistent information regarding free slots, Periodic exchange of 

reservation tables. Best effort and real time packet transmissions can be interleaved at 

nodes. When a new node joins: receive reservation tables from each of its neighbors and 

learns about the reservations made in the network. QoS Routing protocol: DSDV 

(destination sequenced distance vector). MACA/PR does not require global 

synchronization among nodes. Drawback is possibility of many fragmented free slots not 

being used at all.   

 
   

Figure 3.16 Packet transmission in MACA/PR    

3.6.6 RTMAC: Real Time Medium Access Control Protocol   

 The real-time medium access control protocol (RTMAC) provides a bandwidth 

reservation mechanism for supporting real-time traffic in ad hoc wireless networks. 

RTMAC consists of two components, a MAC layer protocol and a QoS routing protocol.  

The MAC layer protocol is a realtime extension of the IEEE 802.11 DCF. The QoS 

routing protocol is responsible for end-to-end reservation and release of bandwidth 

resources.    

 The MAC layer protocol has two parts: a medium-access protocol for best-effort traffic 

and a reservation protocol for real-time traffic. A separate set of control packets, 

consisting of ResvRTS, ResvRTSResvCTS, and ResvACK, is used for effecting 

bandwidth reservation for realtime packets. RTS, CTS, and ACK control packets are 
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used for transmitting best-effort packets. In order to give higher priority for real-time 

packets, the wait time for transmitting a ResvRTS packet is reduced to half of DCF inter-

frame space (DIFS), which is the wait time used for best-effort packets.   

  Time is divided into super-frames. As can be seen from Figure 6.24, the super-frame for 

each node may not strictly align with the other nodes. Bandwidth reservations can be 

made by a node by reserving variable-length time slots on super-frames, which are 

sufficient enough to carry the traffic generated by the node. Each super-frame consists of 

a number of reservation-slots (resv-slots). The time duration of each resv-slot is twice the 

maximum propagation delay. Data transmission normally requires a block of resvslots. A 

node that needs to transmit real-time packets first reserves a set of resv-slots. The set of 

resv-slots reserved by a node for a connection on a superframe is called a connection-

slot.    

 A node that has made reservations on the current super-frame makes use of the same 

connection-slot in the successive super-frames for transmitting packets. Each node 

maintains a reservation table containing information such as the sender id, receiver id, and 

starting and ending times of reservations that are currently active within its direct 

transmission range.   

 
     

Figure 3.17 Reservation mechanism in RTMAC   
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3.7 CONTENTION-BASED MAC PROTOCOLS WITH SCHEDULING 

MECHANISMS:   

   Protocols in this category focus on packet scheduling at the nodes and transmission 

scheduling of the nodes. The factors that affects scheduling decisions are Delay targets of 

packets, Traffic load at nodes and Battery power.   

   

3.7.1 Distributed Priority Scheduling and Medium Access in Ad Hoc Networks:   

 Distributed priority scheduling and medium access in Ad Hoc Networks present two 

mechanisms for providing quality of service (QoS). They are Distributed priority 

scheduling (DPS) – Piggy-backs the priority tag of a node’s current and head-of-line 

packets to the control and data packets and Multi-hop coordination – Extends the DPS 

scheme to carry out scheduling over multihop paths.    

 The distributed priority scheduling scheme (DPS) is based on the IEEE 802.11 

distributed coordination function. DPS uses the same basic RTS-CTS-DATA-ACK 

packet exchange mechanism. The RTS packet transmitted by a ready node carries the 

priority tag/priority index for the current DATA packet to be transmitted. The priority tag 

can be the delay target for the DATA packet. On receiving the RTS packet, the intended 

receiver node responds with a CTS packet. The receiver node copies the priority tag from 

the received RTS packet and piggybacks it along with the source node id, on the CTS 

packet. Neighbor nodes receiving the RTS or CTS packets (including the hidden nodes) 

retrieve the piggy-backed priority tag information and make a corresponding entry for the 

packet to be transmitted, in their scheduling tables (STs).   
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Figure 3.18 Piggy-backing and scheduling table update mechanism in DPS   

   

   

3.7.2 Distributed Wireless Ordering Protocol (DWOP)   

      

 The distributed wireless ordering protocol (DWOP) consists of a media access scheme 

along with a scheduling mechanism. It is based on the distributed priority scheduling 

scheme. DWOP ensures that packets access the medium according to the order specified 

by an ideal reference scheduler such as first-in-first-out (FIFO), virtual clock, or earliest 

deadline first. In this discussion, FIFO is chosen as the reference scheduler. In FIFO, 

packet priority indices are set to the arrival times of packets. Similar to DPS, control 

packets are used in DWOP to piggy-back priority information regarding head-of-line 

packets of nodes. Example:   
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Figure 3.19 (a) Information asymmetry. (b) Perceived collisions   

   

1. Information asymmetry: A transmitting node might not be aware of the arrival times 

of packets queued at another node which is not within its transmission range. The  

Solution is  a receiver find that the sender is transmitting out of order, an out-of-order 

notification is piggy-backed by the receiver on the control packet (CTS/ACK).   

   

2. Perceived collisions: The ACK packet collides at the node, the corresponding entry 

in the ST will never be removed. The Solution is  when a node observes that its rank 

remains fixed while packets whose PR are below the priority of its packet are being 

transmitted, it deletes the oldest entry from its ST.   

   

 In summary, DWOP tries to ensure that packets get access to the channel according to 

the order defined by a reference scheduler. The above discussion was with respect to the 

FIFO scheduler. Though the actual schedule deviates from the ideal FIFO schedule due 

to information asymmetry and stale information in STs, the receiver participation and the 

stale entry elimination mechanisms try to keep the actual schedule as close as possible to 

the ideal schedule.    

   

3.7.3 Distributed Laxity-Based Priority Scheduling Scheme:   

 The distributed laxity-based priority scheduling (DLPS) scheme is a packet scheduling 

scheme, where scheduling decisions are made taking into consideration the states of 

neighboring nodes and the feedback from destination nodes regarding packet losses. 

Packets are reordered based on their uniform laxity budgets (ULBs) and the packet 

delivery ratios of the flows to which they belong.   



Wireless Sensor Networks        Prepared By : Mrs. S. Leelavathi 
 

57  

  

 Each node maintains two tables: scheduling table (ST) and packet delivery ratio table 

(PDT). The ST contains information about packets to be transmitted by the node and 

packets overheard by the node, sorted according to their priority index values. Priority 

index expresses the priority of a packet. The lower the priority index, the higher the 

packet's priority. The PDT contains the count of packets transmitted and the count of 

acknowledgment (ACK) packets received for every flow passing through the node. This 

information is used for calculating current packet delivery ratio of flows.   

   

3.8 MAC PROTOCOLS THAT USE DIRECTIONAL ANTENNAS:   

 MAC protocols that use directional antennas for transmissions have several advantages 

over hose that use omnidirectional transmissions. The advantages include reduced signal 

interference, increase in the system throughput, and improved channel reuse that leads to 

an increase in the overall capacity of the channel.   

 A directional antenna or beam antenna is an antenna which radiates or receives greater 

power in specific directions allowing for increased performance and reduced interference 

from unwanted sources   

3.8.1 MAC Protocol Using Directional Antennas   

 The MAC protocol for mobile ad hoc networks using directional antennas makes use to 

improve the throughput in ad hoc wireless networks. The mobile nodes do not have any 

location information by means of which the direction of the receiver and sender nodes 

could be determined. The protocol makes use of an RTS/CTS exchange mechanism, 

which is similar to the one used in MACA. The nodes use directional antennas for 

transmitting and receiving data packets, thereby reducing their interference to other 

neighbor nodes. This leads to an increase in the throughput of the system. Each node is 

assumed to have only one radio transceiver, which can transmit and receive only one 

packet at any given time. The transceiver is assumed to be equipped with M directional 

antennas, each antenna having a conical radiation pattern, spanning an angle of  2π/M 

radians   
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Figure 3.21 Packet Transmission in directional antennas   

   

    

Figure 3.20 Radiation patterns of directional antennas     
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3.8.2 Directional Busy Tone-Based MAC Protocol:   

 The directional busy tone-based MAC protocol adapts the DBTMA protocol for use 

with directional antennas. It uses directional antennas for transmitting the RTS, CTS, and 

data frames, as well as the busy tones. By doing so, collisions are reduced significantly. 

Also, spatial reuse of the channel improves, thereby increasing the capacity of the 

channel. Each node has a directional antenna which consists of N antenna elements, each 

covering a fixed sector spanning an angle of (360/N) degrees. For a unicast transmission, 

only a single antenna element is used. For broadcast transmission, all the N antenna 

elements transmit simultaneously.   

      

 
   

Figure 3.22 Directional DBTMA(Example-1)   

   

 When a node is idle (not transmitting packets), all antenna elements of the node keep 

sensing the channel. The node is assumed to be capable of identifying the antenna 

element on which the incoming signal is received with maximum power. Therefore, 

while receiving, exactly one antenna element collects the signals. In an ad hoc wireless 

network, nodes may be mobile most of the time. It is assumed that the orientation of 

sectors of each antenna element remains fixed. The protocol uses the same two busy 

tones BTt and BTr used in the DBTMA protocol. A node that receives a data packet for 

transmission first transmits an RTS destined to the intended receiver in all directions 

(omnidirectional transmission). On receiving this RTS, the receiver node determines the 

antenna element on which the RTS is received with maximum gain. This will observe in 

figure 3.22(b). This protocol is not guaranteed to be collision free see Fig. 3.23(b).   
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Figure 3.23 Directional DBTMA(Example-2)   

   

3.8.3 Directional MAC Protocols for Ad-Hoc Wireless Networks:   

   

 
   

Figure 3.24 Operation of D-MAC Protocol   
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1. D-MAC: assume each node knows about the location of neighbors   

2. In the first directional MAC scheme (DMAC-1)   

a. Directional RTS (DRTS) Omni-directional CTS (OCTS) Directional DATA 

(DDATA) Directional ACK(DACK).   

b. May increase the probability of control packet collisions   

c. See Figure 3.24 (if node E send a packet to node A, it will collide the OCTS or 

DACK)   

3. In the second directional MAC scheme (DMAC-2)   

a. Both the Directional RTS (DRTS) and Omni-directional RTS (ORTS) transmissions 

are used.   

b. Reduced control packet collisions 4. Rules for using DRTS and ORTS:   

a. ORTS: None of the directional antennas are blocked   

b. DRTS: Otherwise.   

c. Another packet called directional wait-to-send (DWTS) is used in this scheme (See 

Figure 3.25)   

   
Figure 3.25 Operation of D-MAC Protocol   

   

3.9 OTHER MAC PROTOCOLS:   

There are several other MAC protocols that do not strictly fall under the three contention based 

protocol categories.   

3.9.1 Multichannel MAC Protocol:   

 The multichannel MAC protocol (MMAC) [24] uses multiple channels for data 

transmission. There is no dedicated control channel. N channels that have enough 

spectral separation between each other are available for data transmission. Each node 
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maintains a data structure called Preferable Channel List (PCL). The usage of the 

channels within the transmission range of the node is maintained in the PCL. Based on 

their usage, channels can be classified into three types.   

1. High preference channel (HIGH): The channel has been selected by the current 

node and is being used by the node in the current beacon interval (beacon interval 

mechanism will be explained later). Since a node has only one transceiver, there 

can be only one HIGH channel at a time.   

   

2. Medium preference channel (MID): A channel which is free and is not being 

currently used in the transmission range of the node is said to be a medium 

preference channel. If there is no HIGH channel available, a MID channel would 

get the next preference.   

3. Low preference channel (LOW): Such a channel is already being used in the 

transmission range of the node by other neighboring nodes. A counter is 

associated with each LOW state channel. For each LOW state channel, the count 

of source-destination pairs which have chosen the channel for data transmission 

in the current beacon interval is maintained.   

   

   

 
   

   

Figure 3.26 ATIM Window   
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Figure 3.27 Operation of MMAC Protocol   

   

 Time is divided into beacon intervals and every node is synchronized by periodic 

beacon transmissions. ATIM messages such as ATIM, ATIM-ACK 

(ATIMacknowledgment), and ATIM-RES (ATIM-reservation) are used for this 

negotiation. The exchange of ATIM messages takes place on a particular channel called 

the default channel. The default channel is one of the multiple available channels. This 

channel is used for sending DATA packets outside the ATIM window, like any other 

channel. The ATIM message carries the PCL of the transmitting node. The destination 

node, upon receiving the packet, uses the PCL carried on the packet and its own PCL to 

select a channel. The ATIM packets themselves may be lost due to collisions; in order to 

prevent this, each node waits for a randomly chosen back-off period before transmitting 

the ATIM packet.   

   

Channel selection mechanism:   

1. If a HIGH state channel exists in node R’s PCL then that channel is selected.   

2. Else if there exists a HIGH state channel in the PCL of node S then this channel is 

selected   
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3. Else if there exists a common MID state channel in the PCLs of both node S and node 

R then that channel is selected.   

4. Else if there exists a MID state at only one of the two nodes then that channel is 

selected.   

5. If all channels in both PCLs are in LOW state the channel with the least count is 

selected.   

   

 MMAC uses simple hardware. It requires only a single transceiver. It does not have any 

dedicated control channel. The throughput of MMAC is higher than that of IEEE 802.11 

when the network load is high. This higher throughput is in spite of the fact that in 

MMAC only a single transceiver is used at each node. Unlike other protocols, the packet 

size in MMAC need not be increased in order to take advantage of the presence of an 

increased number of channels.   

   

3.9.2 Multichannel CSMAMAC Protocol:   

      

 In the multichannel CSMA MAC protocol (MCSMA), the available bandwidth is divided 

into several channels. A node with a packet to be transmitted selects an idle channel 

randomly. The protocol also employs the notion of soft channel reservation, where 

preference is given to the channel that was used for the previous successful transmission. 

Though the principle used in MCSMA is similar to the frequency division multiple access 

(FDMA) schemes used in cellular networks, the major difference here is that there is no 

centralized infrastructure available, and channel assignment is done in a distributed 

fashion using carrier-sensing.   

      

 The total available bandwidth is divided into N non-overlapping channels. Where N is 

independent of the number of hosts in the network, each having a bandwidth of (W/N), 

where W is the total bandwidth available for communication. The channels may be 

created in the frequency domain (FDMA) or in the code domain (CDMA). Since global 

synchronization between nodes is not available in ad hoc wireless networks, channel 

division in the time domain (TDMA) is not used.   

      

 When the number of channels N is sufficiently large, each node tends to reserve a 

channel for itself. This is because a node prefers the channel used in its last successful 

transmission for its next transmission also. This reduces the probability of two 

contending nodes choosing the same channel for transmission. Even at high traffic loads, 

due to the tendency of every node to choose a reserved channel for itself, the chances of 

collisions are greatly reduced. The number of channels into which the available 
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bandwidth is split is a very important factor affecting the performance of the protocol. If 

the number of channels is very large, then the protocol results in very high packet 

transmission times.   

3.9.3 Power Control MAC Protocol for Ad Hoc Networks:    

 The power control MAC protocol (PCM) allows nodes to vary their transmission power 

levels on a per-packet basis. In the BASIC scheme, the RTS and CTS packets are 

transmitted with maximum power PMAX. The RTS-CTS handshake is used for deciding 

upon the transmission power for the subsequent DATA and ACK packet transmissions. 

This can be done using two methods.   In the first method, source node A transmits the  

RTS with maximum power PMAX. This RTS is received at the receiver with signal level  

PR. The receiver node B can calculate the minimum required transmission power level 

PDESIRED for the DATA packet, based on the received power level PR, the transmitted 

power level PMAX, and the noise level at receiver B. Node B then specifies this   

PDESIRED in the CTS packet it transmits to node A.   

 In the second method, when the receiver node B receives an RTS packet, it responds with 

a CTS packet at the usual maximum power level PMAX. When the source node receives 

this CTS packet, it calculates PDESIRED based on the received power level PR and 

transmitted power level PMAX as     

    x C  ……………………(1)  where  is the minimum necessary received signal 

strength and C is a constant.   

The main drawback in this protocol basic scheme is may possibility of collision, that will 

be observed in figure 3.28.   
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Figure 3.28 Packet transmission in BASIC scheme.   

PCM modifies this scheme so as to minimize the probability of collisions. The source 

and receiver nodes transmit the RTS and CTS packets, as usual, with maximum power 

PMAX. Nodes in the carrier-sensing zones of the source and receiver nodes set their NAVs 

(Network Allocation Vector) for EIFS (Extended Inter-Frame Space) duration when they 

sense the signal but are not able to decode it. In order to avoid collisions with packets 

transmitted by the nodes in its carrier-sensing zone, the source node transmits the DATA 

packet at maximum power level PMAX periodically. The power level changes for RTS-

CTS-DATA-ACK transmissions are shown in Figure 3.29. Hence with the above simple 

modification, the PCM protocol overcomes the problems faced in the BASIC scheme. 

PCM achieves throughput very close to that of the 802.11 protocol while using much 

less energy.   
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Figure 3.29 Packet transmission in PCM   

   

3.9.4 Receiver-Based AutoRate Protocol:   

 The Receiver-Based AutoRate Protocol (RBAR)uses a novel rate adaptation approach. 

The rate adaptation mechanism is at the receiver node instead of being located at the 

sender. Rate adaptation is the process of dynamically switching data rates in order to 

match the channel conditions so that optimum throughput for the given channel 

conditions is achieved. Rate adaptation consists of two processes, namely, channel 

quality estimation and rate selection. The accuracy of the channel quality estimates 

significantly influences the effectiveness of the rate adaptation process. Therefore, it is 

important that the best available channel quality estimates are used for rate selection.   

 Rate selection is done at the receiver on a per-packet basis during the RTS-CTS packet 

exchange. Since rate selection is done during the RTS-CTS exchange, the channel 

quality estimates are very close to the actual transmission times of the data packets. This 

improves the effectiveness of the rate selection process. The RTS and CTS packets carry 

the chosen modulation rate and the size of the data packet, instead of carrying the 

duration of the reservation.    

 The sender node chooses a data rate based on some heuristic and inserts the chosen data 

rate and the size of the data packet into the RTS. When a neighbor node receives this 

RTS, it calculates the duration of the reservation DRTS using the data rate and packet size 

carried on the RTS. The neighbor node then updates its NAV accordingly to reflect the 

reservation. Neighbor nodes receiving the CTS calculate the expected duration of the 

transmission and update their NAVs accordingly. The source node, on receiving the  

CTS packet, responds by transmitting the data packet at the rate chosen by the receiver node.   
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 If the rates chosen by the sender and receiver are different, then the reservation Duration 

DRTS calculated by the neighbor nodes of the sender would not be valid. DRTS time 

period, which is calculated based on the information carried initially by the RTS packet, 

is referred to as Tentative Reservation. In order to overcome this problem, the sender 

node sends the data packet with a special MAC header containing a Reservation Sub 

Header (RSH).   

 
   

Figure 3.30 Packet transmission in RBAR   

   

3.9.5 Interleaved Carrier-Sense Multiple Access Protocol(ICSMA):   The 

interleaved carrier-sense multiple access protocol (ICSMA) efficiently overcomes the 

exposed terminal problem faced in ad hoc wireless networks. The inability of a source 

node to transmit, even though its transmission may not affect other ongoing 

transmissions, is referred to as the exposed terminal problem. For example, consider the 

topology shown in Figure 3.31. Here, when a transmission is going from node A to node 

B, nodes C and F would not be permitted to transmit to nodes D and E, respectively.  

Node C is called a sender-exposed node, and node E is called a receiver-exposed node.  

The exposed terminal problem reduces the bandwidth efficiency of the system.   
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Figure 3.31 Exposed terminal problem   

Each node maintains a structure called extended network allocation vector (E-NAV)   

1. Two linked lists of blocks (SEList and REList):   

2. List looks like s1, f1; s2, f2;. . .; sk, fk, where si denotes start time of the i-th block list and 

fi denotes finish time of the i-th block.   

3. SEList : the node would be sender-exposed in the future such that sj < t < fj   

4. REList : the node would be receiver-exposed in the future such that sj < t < fj   

5. Both lists are updated when RTS and CTS packets are received by the node   
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Figure 3.32 Packet transmission in ICSMA   

   

ICSMA is a simple two-channel MAC protocol for ad hoc wireless networks that reduces 

the number of exposed terminals and tries to maximize the number of simultaneous 

sessions.   

Unit IV  

4. Infrastructure Establishment:  

When a sensor network is first activated, various tasks must be performed to establish 

the necessary infrastructure that will allow useful collaborative work to be performed.   

• Each node must discover which other nodes it can directly communicate with, and its radio 

power must be set appropriately to ensure adequate connectivity.  

• Nodes near one another may wish to organize them-selves into clusters, so that sensing 

redundancy can be avoided and scarce resources, such as radio frequency, may be reused 

across non-overlapping clusters.   

The common techniques used to establish such infrastructure: Topology control,  

Clustering, Time synchronization, and Localization for the network nodes   

4.1 Topology Control:  

A sensor network node that first wakes up executes a protocol to discover which other 

nodes it can communicate with (bidirectionally). This set of neighbors is determined by the 

radio power of the nodes as well as the local topography and other conditions that may degrade 

radio links. Unlike wired networks, nodes in a wireless sensor network can change the topology 

of the network by choosing to broadcast at less than their maximum possible power. This can 

be advantageous in situations where there is dense node deployment, as radio power is the main 

drain on a node’s batteries. The problem of topology control for a sensor network is how to set 

the radio range for each node so as to minimize energy usage, while still ensuring that the 

communication graph of the nodes remains connected and satisfies other desirable 

communication properties.    

Although in principle the transmitting range of each node can be set independently, 

let us first examine the simpler case where all nodes must use the same transmission range: 

inexpensive radio transmitters, for example, may not allow the range to be adjusted. We 

also ignore all effects of interference or multipath, so that any pair of nodes within range 

of each other can communicate. This homogeneous topology control setting defines the 

critical transmitting range (CTR) problem: compute the minimum common transmitting 

range r such that the network is connected.  
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The solution to the CTR problem depends on information about the physical placement 

of the nodes—another of the infrastructure establishment tasks. If the node locations are 

known a priori, or determined using the techniques described later in this chapter (see 

Section 4.4), then the CTR problem has a simple answer: the critical transmitting range is 

the length of the longest edge of the minimum Euclidean spanning tree (MST) connecting 

the nodes. This easily follows from the property that the MST contains the shortest edge 

across any partition of the nodes. The MST can be computed in a distributed fashion, using 

one of several such algorithms in the literature.  

The CTR problem has also been studied in a probabilistic context, where the node 

positions are not known but their locations come from a known distribution. The problem 

now becomes to estimate the range r that guarantees network connectivity with high 

probability (probability that tends to 1 as the number n of nodes grows to infinity).   

Such results are useful in settings where the node capabilities and mode of deployment 

prevent accurate localization. The probabilistic theory best suited to the analysis of CTR 

is the theory of geometric random graphs (GRG). In the GRG setting, n points are 

distributed into a region according to some distribution, and then some aspect of the node 

placement is investigated. If n points are randomly and uniformly distributed in the unit 

square, then the critical transmission range is, with high probability, r =  c√log n  
√    

      n  

for some constant c > 0. Such asymptotic results can help a node designer set the 

transmission range in advance, so that after deployment the network will be connected 

with high probability.  

Most situations, however, can benefit from allowing nodes different transmission 

ranges. Intuitively speaking, one should choose short ranges in areas of high node density 

and long ranges in regions of low density. If nodes can have different transmission ranges, 

then the goal becomes to minimize n ∑  riα  
1   

where ri denotes the range assigned to node i and α is the exponent describing the power 

consumption law for the system. This is the range assignment problem.  A factor 2 

approximation can be computed by first building an MST on the nodes, where the weight 

of the edge connecting nodes i and j is δ
α

 (i, j) [here δ(i, j) denotes the Euclidean 

distance from i to j]. The range ri for node i is then set to be the maximum of δ(i, j) over 

all nodes j which are neighbors of i in the MST [116].  

The homogeneous or non-homogeneous MST-based algorithms can be expensive to 

implement on typical sensor nodes. Several protocols have been proposed that attempt to 

directly solve the CTR problem in a distributed way. For example, the COMPOW protocol 

of [166] computes routing tables for each node at different power levels;   
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• A node selects the minimum transmit power so that its routing table contains all 

other nodes.   

• Recent work has also focused on topology control protocols that are lightweight 

and can work with weaker information than full knowledge of the node positions.   

• For an excellent survey of these protocols and the entire topology control area, 

the reader is referred to [201].  

4.2. Clustering:  

The nodes in a sensor network often need to organize themselves into clusters. 

Clustering allows hierarchical structures to be built on the nodes and enables more efficient 

use of scarce resources, such as frequency spectrum, bandwidth, and power. It allows the 

health of the network to be monitored and misbehaving nodes to be identified.  

 The networks can be comprised of mixtures of nodes, including some that are more 

powerful or have special capabilities, such as increased communication range, GPS, and 

the like. These more capable nodes can naturally play the role of cluster-heads.  

Each node nominates as a cluster-head the highest ID node it can communicate  with 

(including itself). Nominated nodes then form clusters with their nominators.  

Nodes that can communicate with two or more cluster-heads may become gateways—

nodes that aid in passing traffic from one cluster to another. In some applications, it may 

be useful to view the IDs as weights, indicating which nodes are to be favoured in 

becoming cluster-heads.  

 Clustering can be used to thin out parts of the network where an excessive number 

of nodes may be present.   

 A simplified long-range communication network can be set up using only cluster-

heads and gateways all other nodes communicate via their clusterhead.   

 Cluster-heads can be chosen to have a minimum separation com-parable to the 

node communication range.   

 This property ensures that each cluster-head has a bounded number of cluster-

head neighbors and that the density of cluster-heads is bounded from neighbors,.  

Additional research is needed into how to get all the benefits of clustering while 

distributing the load (and battery drain) of being a cluster-head evenly among all the nodes.  

  

4.3  Time Synchronization  

Since the nodes in a sensor network operate independently, their clocks may not 

be, or stay, synchronized with one another. This can cause difficulties when trying to 

integrate and interpret information sensed at different nodes. For example, if a moving car 
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is detected at two different times along a road, before we can even tell in what direction 

the car is moving, we have to be able to meaningfully com-pare the detection times.   

For instance, many localization algorithms use ranging technologies to estimate 

internodes distances; in these technologies, synchronization is needed for time-of-flight 

measurements that are then transformed into distances by multiplying with the medium 

propagation speed for the type of signal used (say, radio frequency or ultrasonic). 

Configuring a beam-forming array or setting a TDMA radio schedule are just two more 

examples of situations in which collaborative sensing requires the nodes involved to agree 

on a common time frame.  

While in the wired world time synchronization protocols such as NTP [159, 160] have 

been widely and successfully used to achieve Coordinated Universal Time (UTC), these 

solutions do not transfer easily to the ad hoc wireless network setting.  

 These wired protocols assume the existence of highly accurate master clocks on some 

net-work nodes (such as atomic clocks) and, more importantly, they also require that pairs 

of nodes in the protocol are constantly connected and that they experience consistent 

communication delays in their exchanges.   

Unfortunately, none of these assumptions is generally valid in sensor networks. No 

special master clocks are available, connections are ephemeral, and communication delays 

are inconsistent and unpredictable. Thus we must moderate our goals when it comes to 

synchronizing node clocks in sensor networks.   

4.3.1  Clocks and Communication Delays  

Computer clocks are based on hardware oscillators which provide a local time for 

each sensor network node. At real time t the computer clock indicates time C(t ), which 

may or may not be the same as t . For a perfect hardware clock, the derivative dC(t )/dt  

should be equal to 1. If this is not the case, we speak of clock skew (also called drift ).  The 

clock skew can actually change over time due to environmental conditions, such as 

temperature and humidity, but we will assume it stays bound close to 1, so that  

                                 dC(t)     

1 -  ρ ≤               ≤  1 + ρ  

                                 dt  

  

Where ρ denotes the maximum skew. A typical value of ρ for today’s hardware is 10
−6

. 

Small fluctuations on the skew are usually modeled as random Gaussian noise. Note that, 

because of clock skew, even if the clocks of two nodes are synchronized at some point in 

time, they need not stay so in the future.  

  

Even if no skew is present, the clocks of different nodes may dis-agree on what time  
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“0” means. Time differences caused by the lack of a common time origin are referred to as 

clock phase differences (or clock bias).  

 Send time: This is the time taken by the sender to construct the message, including delays 

introduced by operating system calls, context switching, and data access to the network 

interface.  

   
 Access time: This is the delay incurred while waiting for access to the transmission channel 

due to contention, collisions, and the like. The details of that are very MACspecific.  

   

 Propagation time: This is the time for the message to travel across the channel to the 

destination node. It can be highly variable, from negligible for single-hop wireless 

transmission to very long in multihop wide-area transmissions.  

   

 Receive time: This is the time for the network interface on the receiver side to get the 

message and notify the host of its arrival. This delay can be kept small by time-stamping 

the incoming packet inside the network driver’s interrupt handler.  

 Node i reads its local clock with time value t1 and sends this in a packet to node j.  

 Node j records the time t2 according to its own clock when the packet was received. We 

must have t2 = t1 + D + d. Node j, at time t3, sends a packet back to i containing t1, t2, and 

t3.  
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 Figure 4.1  Clock phase difference estimation, using three message exchanges (adapted from [104]).  

 Node i receives this packet at time t4. We must have t4 = t3 + D − d. Therefore, node i can 

eliminate  D from the above two equations and compute d = (t2 − t1 − t4 + t3)/2.  

 Finally, node i sends the computed phase difference d back to node j.  

Time synchronization can then be propagated across the network by using a spanning 

tree favouring direct connections with reliable delays [220]. In the presence of clock skew, 

however, frequent resynchronizations may be required. Furthermore, such ideal conditions 

on delays are hardly ever true in a sensor network.  

4.3.2  Interval Methods:  

As we mentioned, in many situations involving temporal reason-ing, the temporal 

ordering of events matters much more than the exact times when events occurred. In such 

situations, inter-val methods provide a lightweight protocol that can be used to move clock 

readings around the network and perform temporal comparisons [194].  

Suppose that event E occurs at real time t (E) and is sensed by some node i and given a 

time stamp Si(t ), according to the local clock of node i. Suppose also that node i’s out—
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but clock skew and network latency have to be dealt with. We will call intervals between 

events durations.  

In the simplest setting, if node 1 with maximum clock skew ρ1 wishes to transform a 

local duration C1 into the time framework of node 2 with maximum clock skew ρ2, we 

can proceed as follows. If the real time duration is t , then we must have  

1 − ρi  ≤  Δ
Ci  ≤ 1 + ρi,  

 

Δt  

 
  

for i = 1, 2. Thus the real time duration t is contained in the interval [ C1/(1 + ρ1), C1/(1 − 

ρ1)], and the duration according to the clock of node 2 satisfies  

Now suppose nodes 1 and 2 are neighbors and have a direct communication link between them. 

Node 1 has detected an event E and time-stamped it with time stamp r1 =  

S1(E). This temporal event needs to be communicated and transformed into the temporal 

frame of node 2. We must estimate the communication delay between the nodes. Now, 

under most communication protocols, for every message M that node 1 sends to node 2, 

there is a return acknowledgment message A from node 2 to node 1. Node 1 can measure 

the duration d between transmitting M and receiving A and use that as an upper bound on 

the communication delay (the obvious lower bound is 0). However, it is node 2 that needs 

to know this information in order to update the time stamp generated by node 1. This seems 

to require two message exchanges between nodes 1 and 2: a message M1 carrying r1, and 

a subsequent message M2 carrying d (along with the corresponding acknowledgments A1 

and A2), thus effectively doubling the communication overhead (see Figure 4.2).  
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to piggyback delay information on other content-carrying messages. Let us look again at 

Figure 4.2. Suppose M1 was a message sent from node 1 to node 2 earlier, for other 

purposes. Now M2 will be used to carry information about the time stamp S1(E). The idle 

time duration 1 = t2 − t1 can be measured according to the local clock of node 1, as the 

time between receiving A1 and transmitting M2. The round-trip duration p1 = t5 − t4 can 

be measured according to the local clock of node 2, as the time between transmitting A1 

and receiving M2. If sender node 1 piggybacks the idle time duration 1 on M2, then at time 

t5, the receiver node 2 can estimate the communication delay d via the bounds  

    1-p2  

0≤d≤p1-l1  

 

1+ p 1
 
 

The two nodes had earlier communication in the recent past and that, if a node 

communicates with several others, it keeps track of its last communication to each of its 

neighbors. Time stamps can be propagated from node to node as follows. Let ri and si 

denote, respectively, the times when node i receives and sends out the packet containing 

the time stamp (measured according to its local clock). Let i and pi denote the 

corresponding idle and round-trip times, as earlier (note that i is measured in the clock of 

Figure 4.2   Transforming  time  stamps  from  the  reference  frame  of  one  node  to  that  of  another  
( adapted from  [194]).   

Because com municating nodes typically exchange several mes - sages, it makes sense  
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node i − 1). Then we can recursively maintain a valid interval guaranteed to contain the 

original time stamp according to the local clock of node i, as follows.  

For node 1, the interval is [r1, r1] = [S1(E), S1(E)].  

For node 2, using the above reasoning, the interval is  

And for the n
th

 node in the transmission chain we get by iterating  

Thus in the end, detection times at one node can be transformed to time intervals in the 

local time frame of another node through a sequence of one-hop communications. 

Comparison of time stamps is done through standard interval methods: if the 

corresponding intervals are disjoint, then a meaningful time-stamp comparison can be 

made, and otherwise not.  

This time synchronization protocol has low overhead, scales well with network size, 

and can accommodate topology changes and short-lived connections. But, as with most 

interval methods, the intervals computed can get too large to be useful or to resolve most 

of the time comparisons needed.   

4.3.3  Reference Broadcasts  

Time comparisons are not sufficient for all applications and map-pings from event 

times to time intervals may quickly become useless if long delays or multihop routes 

increase the interval sizes beyond reasonable limits. Note that even if there is no skew 

between the clocks of different nodes (say ρi = 1 for all nodes above), time intervals can 

still grow large because delay estimates can have large uncertainty.  

The key idea of the reference broadcast system (RBS) of [63] is to use the broadcast 

nature of the wireless communication medium to reduce delays and delay uncertainty in 

the synchronization protocol. This is achieved by having the receiver nodes within the 

communication range of a broadcast message sent by a sender node synchronize with one 

another, rather than with the sender. This is accomplished by having the sender send a 

reference message to receivers who record its time of arrival each in their own time frame. 

The receivers then exchange this information among themselves. Receive times can be 

subject to random fluctuations because of environmental conditions; one way to mitigate 

the impact of these nondeterministic variations is to repeat the reference broadcast protocol 

a number of times and then average results in computing internode time offsets (relative 

phase differences). The group dispersion (i.e., the maximum offset between any pair of 

receiver nodes) can be significantly decreased in a large group of receiver nodes by such 

statistical methods (say, by a factor of 5, by repeating the reference broadcast 20 times 

[63]).  

The RBS protocol as described up until now deals with synchronization only among 

nodes that are in range of the same sender. Multihop synchronization is also possible, by 

just composing the inter-receiver clock affine mappings in the right way. Consider the 

scenario in Figure 4.3.  
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In this figure, sender A can synchronize nodes 1, 2, 3, and 4, while sender B can 

synchronize nodes 4, 5, 6, and 7 (of course, the sender/receiver distinction is purely 

artificial—any node can be sender or receiver). The affine clock maps obtained by RBS 

between nodes 1 and 4 (through A), and nodes 4 and 7 (through B), for example, can be 

composed to provide the clock map between nodes 1 and 7. In general, we can imagine an 

RBS graph with an edge  

 
                 Figure 4.3 The restricted broadcast time synchronization protocol between nonneighboring nodes (adapted from [63]).  

Between any two nodes that can be reached in one hop from a common sender. 

The edge between these nodes can be given a weight corresponding to the uncertainty of 

the clock phase difference estimation between the two nodes. Then, whenever two nodes 

need to synchronize in the graph, a shortest path between them can be sought using 

standard shortest-path graph algorithms [46]. Such algorithms can be expensive to run in 

a distributed sensor network setting; an alternative is to use the RBS pair wise affine clock 

map-pings for neighbouring nodes to transform times in a packet to the local frame of the 

current receiver, as the packet travels through the network, much in the spirit of the interval 

methods described in Section 4.3.2.  

4.4  Localization and Localization Services  

An attractive feature of a sensor network is that it can provide infor-mation about the 

world that is highly localized in space and/or time. For several sensor net applications, 

including target tracking and habitat monitoring, knowing the exact location where 

information was collected is critical. In fact, for almost all sensor net applica-tions, the value 

of the information collected can be enhanced if the location of the sensors where readings 

were made is also available. With current technologies, most sensor nodes remain static. 

Thus one way to know the node positions is to have the network installer measure these 
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locations during network deployment. This may not always feasible, however, especially in 

ad hoc deployment scenarios (such as dropping sensors from an aircraft), or in situations 

where the nodes may need to be moved for a variety of reasons (or move themselves, when 

that capability can be incorporated).  

In this section, we describe techniques for self-localization—that is, methods that allow 

the nodes in a network to determine their geographic positions on their own as much as 

possible, during the network initialization process. We also describe location service 

algorithms—methods that allow other nodes to obtain the location of a desired node, after 

the initial phase in which each node discovers its own location. Such location services are 

important for geographic routing, location-aware query processing, and many other tasks 

in a sensor network.  

Since the availability of GPS systems in 1993, it has been possible to build autonomous 

nodes that can localize themselves within a few meters’ accuracy by listening to signals 

emitted by a number of satellites and assistive terrestrial transmitters. But even today GPS 

receivers can be expensive and difficult to incorporate into every sensor node for a number 

of practical reasons, including cost, power consumption, large form factors, and the like. 

Furthermore, GPS systems do not work indoors, or under dense foliage, or in other 

expectable conditions. Thus in a sensor network context, it is usually reasonable to assume 

that some nodes are equipped with GPS receivers, but most are not. The nodes that know 

their position are called landmarks. Other nodes localize themselves by reference to a 

certain number of landmarks, using various ranging or direction-of-arrival technologies 

that allow them to determine the distance or direction of landmarks.  

4.4.1  Ranging Techniques  

Ranging methods aim at estimating the distance of a receiver to a transmitter, by 

exploiting known signal propagation characteristics. For example, pairs of nodes in a 

sensor network whose radios are in communication range of each other can use received 

signal strength (RSS) techniques to estimate the RF signal strength at the receiver.   

A second way to estimate distance is to measure the time it takes for a signal to travel 

from sender to receiver; this can be multiplied by the signal propagation speed to yield 

distance. Such methods are called time of arrival (TOA) techniques and can use either RF 

or ultrasound signals. This requires that the sender and receiver are synchronized and that 

the sender knows the exact time of transmission and sends that to the receiver.   

An alternative is to measure the time difference of arrival (TDOA) at two receivers, which 

then lets us estimate the difference in distances between the two receivers and the sender. 

Another issue is that signal propagation speed exhibits variability as a function of temperature 

or humidity as well (especially for ultrasound), and thus it is not realistic to assume it is constant 

across a large sensor field. Local pairs of beacons can be used to estimate local propagation 

speed. With proper calibration and the best current techniques, localization to within a few 

centimetres can be achieved.  
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4.4.2  Range-Based Localization Algorithms  

We now describe methods for localizing sensor network nodes with reference to 

nearby landmarks—we shall use the latter term to refer to other nodes that have already 

been localized. We confine our attention to distance measurements, obtained using one of 

the ranging techniques described earlier.  

The position of a node in the plane is determined by two parameters: its x and y coordinates. 

Therefore, at least two constraints are necessary to localize a node. A distance 

measurement with respect to a landmark places the node on a circle centered at the 

landmark whose radius is the measured distance (in the TDOA case, a difference of 

distances to two landmarks places the node on a hyperbola with the landmarks as foci). 

Since quadratic curves in the plane can have multiple intersections, in general a third 

distance measurement is necessary in order to completely localize a node (see Figure 4.4).  

In fact, most measurements have error, so the node in question is only localized to 

within a band around the measured distance circle. For this reason, it may be advantageous 

to use redundant measurements and least-squares techniques to improve the estimation 

accuracy. With additional measurements, in TOA methods, the propagation speed can be 

estimated locally as well, which will yield improved localization accuracy, as mentioned 

earlier.  

We now describe this operation, called atomic multilateration, in some detail [204]. 

The analysis is similar to the collaborative source localization discussed in Section 2.2.2. 

Suppose we number the node whose location we seek as node 0 and the available landmark 

nodes as 1, 2, . . . , n. Let the position of node i be (xi, yi) and its measured  

  

 
  

Figure 4.4 Localizing a node using three distance measurements.  
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time of arrival at node 0 be ti (for 1 ≤ i ≤ n). If s denotes the local signal propagation speed, then 

we have for each i, 1 ≤ i ≤ n  

  

 

√(xi − x0)
2
 + (yi − y0)

2
 + εi(x0, y0, s) = sti,  

where i indicates the error in the i
th

 measurement due to noise and other factors. We can 

also give each measurement a relative weight αi, indicating how much confidence we want 

to place in it. Our goal then is to estimate x0, y0, and s so as to minimize the weighted total 

squared error  

E(x0, y0, s) = ∑ αi
2 εi

2 (x0,y0,s)  

 Simplicity, we assume below that we have set αi = 1 for all i.  

We can linearize the above system of n constraints by squaring and subtracting the 

equation for measurement 1 from that of the others, thus obtaining n − 1 linear equations 

of the form (the x
2
0 + y0

2
 terms cancel):  

2x0(xi − x1) + 2y0(yi − y1) + s
2
(ti

2
 − t1

2
) = −x

2
i − yi

2
 + x

2
1 + y1

2
.  
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Figure 4.5 Iterative multilateration successively localizes more and more nodes (adapted from [203]).  

Algorithm is executed centrally or in a distributed fashion, there will be node configurations where 

this process will be unable to localize all the nodes.  

In the general case, iterative multilateration fails. What we have to go by is the positions 

of the original landmark nodes with GPS, plus various distance estimates between node 

pairs. In principle, if we have enough constraints and no degeneracies are present, we can 

write this as a large system of nonlinear equations that can be solved for the unknown node 

positions. However, solving such global algebraic systems is expensive, and the solution 

must be computed in a centralized fashion. To get around these difficulties, a method titled 

collaborative multilateration is described in [203] which admit of a reasonable distributed 

implementation.  

4.4.3  Other Localization Algorithms  

In settings where RSS and other ranging technologies cannot be used directly to 

estimate distances, there are a number of alternatives. In every sensor network, each node 

knows what other nodes it can talk to directly its one-hop neighbors. If the sensor nodes 

are densely and uniformly deployed, then we can use hop counts to landmarks as a 

substitute to physical distance estimates. In this setting, each landmark floods the network 

with a broadcast message whose hop count is incremented as it is passed from node to 

node. The hop count in the message from a landmark that first reaches a node is the hop 

distance of that node to the landmark (standard graph-based breadth-first search). In order 

to transform hop counts into approximate distances, the system must estimate the average 

distance corresponding to a hop. This can be done either by using inter-landmark distances 

that are known in both hop and Euclidean terms [169], or by using prior information about 

the size of the area where the nodes are deployed and their density [165]. Once a node has 

approximate distances to at least three landmarks this way, then the previous unit and 

multilateration techniques can be used.  

  

   

    

Figure 4.6  Node localization using multiple triangle containment tests (adapted from [93]).  
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The same paper argues that the accuracy of localization provided by k landmarks is O(1/k
2
).  

4.4.4  Location Services  

For geographic forwarding, energy-aware routing, and many other sensor net tasks, it 

is important to have a location service, a mechanism for mapping from node IDs of some 

sort to node locations. Note that even if the actual nodes in a sensor network are static, 

virtual node IDs, such as the tracking cluster leader mentioned earlier, can be mobile 

because of hand-offs from node to node (as the target moves).  

Providing a location service is an interesting problem, because the obvious solutions of 

having a central repository that correlates IDs to locations, or having a copy of that at every 

node, suffer from significant drawbacks. The former has a single point of failure and can 

cause communication delays unrelated to the distance between the sender and receiver; the 

latter requires space on every node and is extremely expensive to update in case some 

(virtual or real) nodes move, or are inserted or deleted.  

What we would like to have is a distributed location service that is robust to single node 

failures, spreads the load evenly across the network, and also has nice locality properties, 

in the sense that a node wishing to determine the location of another nearby node can do 

so at a cost that is sensitive to the distance of the receiver. Such a location service is in the 

Grid system presented in [134], which we describe below. We present this service using 

node UIDs as the node “names”; readers should keep in mind that any virtual name can be 

used equally wells  
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Figure 4.7  The location servers for node B, as selected by GLS (adapted from [134])   

At some point, the ascending tree path from A will meet the ascend-ing path from B that 

established the triplets of B’s location servers at each level. At that time, the search 

terminates and the location of B can be determined.  
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Figure 4.8 The nodes for which a given node acts as a location server are shown in small type size in the quad-tree cell of 

that node. Those having B’s location are shown in bold. The paths of two possible location queries for B are 

also shown, originating at node A (adapted from [134]).  

The crucial observation here is that at each step of the search, the current node, say C, 

is associated with a tile at a certain level i of the quad-tree and forwards the message to a 

node D which is the best node in the parent tile of the tile containing C, at level i + 1. This 

is because node D must be known to C. Indeed, node D cannot lie in the same level i tile 

as D, because D is “better” than C. But D recruited location servers for itself at level i, 

including in the level i tile containing C. Since C is the smallest ID node greater than B in 

the tile, it is a fortiori the smallest ID node greater than D as well. Therefore, C was 

recruited by D, and D is known to C. Consider again the example in Figure 4.8. When 

node A is the one with ID 76, the query proceeds to nodes 21 and then 20, a node which is 

a location server for B. When node A is the one with ID 90, the query proceeds to nodes 

70 and 37, where it terminates because again the latter is a location server for B.  

This algorithm has many nice properties. In particular, if the source and destination lie 

in a common quad-tree tile at level i, then at most i steps are needed before a location 

server for the destina-tion can be found for the source. This makes the cost of the location 

service distance-sensitive: the look-up time is sensitive to the separa-tion between the 

source and destination. This is a reflection of the fact that a node selects more location 

servers near itself, and fewer and fewer as we move farther away. Thus in an area of the 

network where location servers for a node B are far from each other and where we may 

have to take many steps to find one, that is OK because node B itself is far away and the 

cost of reaching the server can be amortized over the cost of reaching the destination B.  

Sensor Tasking and Control  

To efficiently and optimally utilize scarce resources in a sensor net-work, such as 

limited on-board battery power supply and limited communication bandwidth, nodes in a 

sensor network must be care-fully tasked and controlled to carry out the required set of 
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tasks while consuming only a modest amount of resources. For example, a cam-era sensor 

may be tasked to look for animals of a particular size and color, or an acoustic sensor may 

be tasked to detect the presence of a particular type of vehicle. To detect and track a moving 

vehicle, a pan-and-tilt camera may be tasked to anticipate and follow the vehicle object. It 

should be noted that to achieve scalability and autonomy, sensor tasking and control have 

to be carried out in a distributed fashion, largely using only local information available to 

each sensor.  

For a given sensing task, as more nodes participate in the sensing of a physical 

phenomenon of interest and more data is collected, the total utility of the data, perhaps 

measured as the information content in the data, generally increases. However, doing so 

with all the nodes turned on may consume precious battery power that cannot be easily 

replenished and may reduce the effective communication bandwidth due to congestion in 

the wireless medium as well. Furthermore, as more nodes are added, the benefit often 

becomes less and less signifi-cant, as the so-called diminishing marginal returns set in, as 

shown in Figure 5.1. To address the balance between utility and resource costs, this chapter 

introduces a utility-cost-based approach to distributed sensor network management.  

After discussing the general issues of task-driven sensing (Section 5.1), we develop a generic 

model of utility and cost (Section 5.2). Next, we present the main ideas of  

 

Figure 5.1 Utility and cost trade-off: As the number of participating nodes increases, we see diminishing returns.  

  and discuss a specific realization in information-driven sensor query-ing (IDSQ) and a  

cluster-leader based protocol in which informa-tion about a physical phenomenon resides 

at a fixed leader for an extended period of time (Section 5.3). We then introduce 

dynamic migration of information within a sensor network, as in the case of tracking a 

moving phenomenon. Here, we will address the issues of information hand-off, greedy 

versus multistep lookahead infor-mation routing, as well as maintenance of collaborative 

processing sensor groups (Section 5.4). Although the material in this chapter is 

introduced in the context of localization or tracking tasks, the basic idea of information-

based sensor tasking is applicable to more general sensing tasks.  

information - based sensor tasking   

Marginal utility   

  

  

Cost   

  

                                                             

  

  Number of nodes participating   
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5.1  Task-Driven Sensing  

The purpose of a sensor system is often viewed as obtaining information that is as 

extensive and detailed as possible about the unknown parts of the world state. Any targets 

present in the sensor field need to be identified, localized, and tracked. All this data is to 

be centrally aggregated and analyzed. This is a reasonable view when the potential use of 

this information is not known in advance, and when the cost of the resources needed to 

acquire and transmit the information is either fixed or of no concern. Such a scheme, 

however, runs the danger of flooding the network with useless data and depleting scarce 

resources from battery power to human attention, as already mentioned. There are obvious 

ways to be more selective in choosing what sensor nodes to activate and what information 

to communicate; protocols such as directed diffusion routing (see Section 3.5.1) address 

exactly this issue for the transport layer of the network.  

When we know the relevant manifest variables defining the world state—say, the 

position and identity of each target—then computing the answers to queries about the 

world state is a standard algorithm design problem. An algorithm typically proceeds by 

doing both numerical and relational (e.g., test) manipulations on these data, in order to 

compute the desired answer. The quality of the algorithm is judged by certain performance 

measures on resources, such as time and space used.  

5.2  Roles of Sensor Nodes and Utilities  

Sensors in a network may take on different roles. Consider the following example of 

monitoring toxicity levels in an area around a chemical plant that generates hazardous 

waste during processing. A number of wireless sensors are initially deployed in the 

region [see Figure 5.2(a)]. Due to the nature of the environment and the cost of 

deployment, further human intervention or node replacement is not feasible. The sensors 

form a mesh network, and data collected by a subset of nodes is transmitted, through the 

multihop network,  
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roles such as sensing (S), routing (R), sensing and routing (SR), or being idle (I), depending on the tasks and resources.  

   
and relayed off the network to an adjoining base station or gateway. The network may be 

tasked to monitor the maximum toxicity levels in the region.   

A sensor may take on a particular role depending on the application task requirement 

and resource availability such as node power levels [Figure 5.2(b)]. Some of the nodes, 

denoted by SR in the figure, may participate in both sensing and routing. Note that routing 

includes both receiving and transmitting data. Some (S) may perform sensing only and 

transmit their data to other nodes. Some (R) may decide to act only as routing nodes, 

especially if their energy reserve is limited. Yet still others (I) may be in an idle or sleep 

mode, to preserve energy. As one can see, as the node energy reserve or other conditions 

change, a sensor may take on a different role. For exam-ple, a sensing-androuting sensor 

may decide to drop the sensing role as soon as its energy reserve is below a certain level. 

To study the problem of determining what role a sensor should play, we first introduce 

utility and cost models of sensors and then techniques that find optimal or nearly optimal 

assignments. A utility function assigns a scalar value, or utility, to each data reading of a 

sensing node; that is,  

U : I × T → R  

Where I = {1, . . . , K} are sensor indices and T is the time domain. Each sensor operation 

is also assigned a cost. The cost of a sensing operation is Cs, aggregation cost is Ca, 

transmission cost is Ct , and reception cost is Cr . Note that these are unit costs per datum 

or packet, assuming the data in each operation can be so encapsulated. We further denote 

the set of nodes performing a sensing operation at time t as Vs(t ), aggregation nodes as 

Va(t ), transmitting nodes as Vt (t ), and receiving nodes as Vr (t ). Omitting the issue of 

communication channel access contention and the possibility of retransmission  

  

  Figure 5.2   Sensor tasking: (a) A chemical toxicity monitoring scenario. (b) Sensors may take on different  



Wireless Sensor Networks  S.Leelavathi  

  

90  

  

Determine the sets of sensors Vs, Vt , Vr , and Va that maximize the utility over a 

period of time subject to the constraint  

  

  
Max  

∑  ∑  U((i,t)  

t  i Vs(t )  
  

  

∑  ∑  Cs +  ∑  ∑  (Ct+Cr) +  ∑  ∑  C a  ≤ C total  

t  Vs(t )  t  Vt(t )  t  Va(t )  

        
  

We make a number of observations about the structure of utility and cost models. The 

utility of the network depends on the underlying routing structure. In a routing-tree 

realization, the tree must span the nodes that appear in the utility function and the base   

5.3  Information-Based Sensor Tasking  

  The main idea of information-based sensor tasking is to base sensor selection 

decisions on information content as well as constraints on resource consumption, latency, 

and other costs. Using information utility measures, sensors in a network can exploit the 

information content of data already received to optimize the utility of future sensing and 

communication actions, thereby efficiently managing scarce communication and 

processing resources. For example, IDSQ [233, 43] formulates the sensor tasking problem 

as a general distributed constrained optimization that maximizes information gain of 

sensors while minimizing communication and resource usage. We describe the main 

elements of the information-based approaches here.  

5.3.1 Sensor Selection     

Recall from Chapter 2 that for localization or tracking problem, a belief refers to 

the knowledge about the target state such as position and velocity. In the probabilistic 

framework, this belief is represented as a probability distribution over the state space. We 

consider two scenarios, localizing a stationary source and tracking a moving source, to 

illustrate the use of information-based sensor tasking.  

In the first scenario, a leader node might act as a relay station to the user, in which case 

the belief resides at this node for an extended time interval, and all information has to 

travel to this leader. In the second scenario, the belief itself travels through the network, 

and nodes are dynamically assigned as leaders. In this section, we consider the fixed leader 
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protocol for the localization of a stationary source and postpone the discussion of the 

moving leader protocols to Section 5.4.  

Given the current belief state, we wish to incrementally update the belief by 

incorporating the measurements of other nearby sensors. However, not all available 

sensors in the network provide useful information that improves the estimate. Furthermore, 

some information may be redundant. The task is to select an optimal subset and an optimal 

order of incorporating these measurements into our belief update. Note that in order to 

avoid prohibitive communication costs, this selection must be done without explicit 

knowledge of measurements residing at other sensors. The decision must be made solely 

based upon known characteristics of other sensors, such as their position and sensing 

modality, and predictions of their contributions, given the current belief about the 

phenomenon being monitored.  

Figure 5.3 illustrates the basic idea of sensor selection. The illustration is based on the 

assumption that estimation uncertainty can be effectively approximated by a Gaussian 

distribution, illustrated by uncertainty ellipsoids in the state space. In the figure, the 

ellipsoid at time t indicates the residual uncertainty in the current belief state. The ellipsoid 

at time t + 1 is the incrementally updated belief after incorporating an additional sensor, 

either a or b, at the next time step. Although in both cases, a and b, the area of high 

uncertainty is reduced by the same percentage, the residual uncertainty in case a maintains 

the largest principal axis of the distribution. If we were to decide between the two sensors, 

we might favor sensor b over sensor a, based on the underlying measurement task.  

Although details of the implementation depend on the network architecture, the 

fundamental principles derived in this chapter hold for both the selection of a remote 

sensor by a cluster-head as well  
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Figure 5.3 Sensor selection based on information gain of individual sensor contributions. The information gain is measured 

by the reduction in the error ellipsoid. In the figure, reduction along the longest axis of the error ellipsoid 

produces a larger improvement in reducing uncertainty. Sensor placement geometry and sensing modality can 

be used to compare the possible information gain from each possible sensor selection, a or b.  

as the decision of an individual sensor to contribute its data and to respond to a query 

traveling through the network. The task is to select the sensor that provides the best 

information among all available sen-sors whose readings have not yet been incorporated. 

As will be shown in the experimental results, this provides a faster reduction in estima-

tion uncertainty and usually incurs lower communication overhead for meeting a given 

estimation accuracy requirement, compared with blind or nearestneighbor sensor selection 

schemes.  

Example: Localizing a Stationary Source  

In this example, 14 sensors are placed in a square region, as shown in Figure 5.4. Thirteen 

sensors are lined along the diagonal, with one sensor off the diagonal near the upper left 

corner of the square. The true location of the target is denoted by a cross in the figure.  
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Figure 5.4 Source localization. The leader node (denoted by ×) queries other sensors (circles), to localize the source marked 

by a cross (+).  

To illustrate sensor selection among one-hop neighbors, we assume all sensors can 

communicate to the node at the center, which queries all other nodes and acts as the data 

fusion center (the leader). We further assume that each sensor’s measurement provides an 

estimate of the distance to the target, in the form of a doughnut-shaped likelihood function   

We first consider sensor selection based on a nearest neighborhood (NN) criterion. 

Using this criterion, the leader node at the center always selects the nearest node among 

those whose measurements have not been incorporated. Figure 5.5 gives a sequence of 

snapshots of the localization results based on the NN criterion. Figure 5.5(a) shows the 

posterior distribution after incorporating the measurement from the initial leader sensor. 

Next, using the NN criterion, the best sensor is the next nearest neighbor in the linear array, 

and so forth [Figure 5.5(b)]. Figure 5.5(c) shows the resulting posterior distribution after 

the leader combines its data with the data from its two nearest neighbors in the linear array. 

The distribution remains as a bimodal distribution as data from additional sensors in the 

linear array are incorporated [Figure 5.5(d)-(e)], until the sensor at the upper-left corner of 

the sensor field is selected.  

5.3.2  IDSQ: Information-Driven Sensor Querying  

In distributed sensor network systems, we must balance the infor-mation contribution of 

individual sensors against the cost of communicating with them. For example, consider 

the task of select-ing among K sensors with measurements {zi }
K

i=1. Given the current 
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belief p(x | {zi}i∈U ), where U ⊂ {1, . . . , K} is the subset of sensors whose measurement 

has already been incorporated, the task is to 3  

Figure 5.5 Sensor selection based on the nearest neighbor method. The estimation task here is to localize a stationary target 

labeled “+”. Circles denote sensors, and thick circles indicate those whose measurements have already been 

incorporated. (a) Residual uncertainty after incorporating the data from the leader at the center.  
(b)-(e) Residual uncertainty after incorporating each additional measurement from a selected sensor.   
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Figure 5.6 Sensor selection based on the Mahalanobis measure of information utility. The local-ization problem is the same 

as that in Figure 5.5. The residual uncertainties shown represent the results after incorporating measurements 

from the 4th and 5th sensors, respectively.  

determine which sensor to query among the remaining unincorpo-rated set A = {1, . . . , K} 

− U . This is a reasonable strategy for localizing a stationary target. For moving targets, 

the same sensor may pro-vide informative measurements at different times. The problem 

of tracking moving targets is discussed in Section 5.4.3.  

  

To be precise, let us define an information utility function  

                         Ø: P(R
d
 ) → R.  

P(
Rd

 ) represents the class of all probability distributions on d-dimensional state space R
d
 for the 

target state x. The utility function φ assigns a scalar value to each element                d p ∈ P(R ), which 

indicates how spread out or uncertain the distribution p is. Smaller values represent a more spread out 

distribution, while larger values represent a tighter, lowervariance distribution. Different choices of 

will be discussed later in the section. We further define a cost of obtaining a measurement as a 

function:  

ψ: R
h
 → R  

    

Where R
h
 is an h-dimensional measurement space where a measurement vector lies.  
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In the following, we will refer to sensor l, which holds the cur-rent belief, as the leader 

node. The constrained optimization problem of sensor tasking can be reformulated as an 

unconstrained optimization problem, with the following objective function as a mixture of 

information utility and cost:  

  

  

Here φ measures the information utility of incorporating the measurement zj
(t

 
)
 from 

sensor j ∈ A, ψ is the cost of communication and other resources, and γ is the relative 

weighting of the utility and cost. It should be noted that φ could measure either the total 

information utility of the belief state after incorporating the new measurement or just the 

incremental information gain, whichever is easier to compute. With this objective 

function, the sensor selection criterion takes the form  

  

  

However, in practice, we do not know the measurement value zj without transmitting it 

to the current aggregation center, the node l, first. Nevertheless, we wish to select the  

“most likely” best sensor, based on the current belief state p(x | {zi}i ∈U ) plus our 

knowledge of the measurement model and sensor characteristics. For example, the cost 

function ψ may be estimated as the distance between sensor j and sensor l, or the distance 

raised to some power, as a rough indica-tor of how expensive it is to transmit the 

measurement. As the result,  

we often compute an estimate of the cost,  ˆ , from parameters such  

ψ  

In the following, we use the approximations 
ˆ
 and 

ˆ
 whenever we  

φ  ψ  
  

discuss utility and cost. Further abusing the notation, the arguments  

to ˆ and  ˆ are not fixed, and the approximation functions may take  

φ  ψ  
  

various forms, depending on the application and context.  

  

Information Utility Measure I: Mahalanobis Distance  
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Assume the belief state is well approximated by a Gaussian distri-bution, and sensor data 

provide a range estimate, as in acoustic amplitude sensing, for example. In the sensor 

configuration shown in Figure 5.3, sensor a would provide better information than b 

because sensor a lies close to the longer axis of the uncertainty ellipsoid and its range 

constraint would intersect this longer axis transversely. To favor the sensors along the 

longer axes of an uncertainty ellipsoid, we use the Mahalanobis distance, a distance 

measure normalized by the uncertainty covariance . The (squared) Mahalanobis distance 

from y to µ is defined as  

  

  

(y − µ)
T

  
−1

(y − µ).  

  

The utility function for a sensor j, with respect to the target position estimate characterized 

by the mean xˆ and covariance , is defined as the negative of the Mahalanobis distance  

  

φ ζ    ζ  T  1 ζ  

"  " 

ˆ ! j, xˆ , " = − !  j − xˆ  −  ! j − xˆ ,  (5.3) 

where ζj is the position of sensor j.  

  

Intuitively, the points on the 1-σ surface of the error covariance ellipsoid are all 

equidistant from the center under the Mahalanobis measure (Figure 5.7). The utility 

function works well when the cur-rent belief can be well approximated by a Gaussian 

distribution or  
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y2  
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•  

  

  

y1  

  

Figure 5.7 Mahalanobis measure: Points on a constant density contour of a Gaussian distribu-tion N(µ, ) are equidistant from 

the mean µ.  

  

the distribution is very elongated, and the sensors are range sensors. However, a bearing 

sensor reduces the uncertainty along the direc-tion perpendicular to the target bearing and 

requires a different measure of utility. For a general uncertainty distribution or bearing 

sensors, we must develop alternative information utility measures.  

  

Information Utility Measure II: Mutual Information  

  

For multimodal, non-Gaussian distributions, a mutual information measure provides a 

better characterization of the usefulness of sen-sor data. Additionally, this measure is not 

limited to information  

  

based only on range data. Assume the current belief is p(x
(t

 
)
 z

(t
 
)
). The contribution of a potential 

sensor j is measured by  

  

ˆ z  , p x  z  = I  X  +  ; Zj  Z  = z   ,  (5.4)  

 
φ   (t )     (t )    (t )     (t   1)(t +1)    (t )  

   (t )       



Wireless Sensor Networks        Prepared By : Mrs. S. Leelavathi 
 

99  

  

                      

                     

   

                                 

where I (· ; ·) measures the mutual information in bits between two random variables. 

Essentially, maximizing the mutual information is equivalent to selecting a sensor whose 

measurement zj
(t

 
+1)

, when  

  

 

conditioned on the current measurement history z
(t

 
)
, would provide   
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the greatest amount of new information about the target location x
(t

 
+1)

. The mutual 

information can be interpreted as the Kullback-Leibler divergence between the belief after 

and before applying the new measurement zj
(t

 
+1)

. Therefore, this criterion favors the sensor 

that, on average, gives the greatest change to the current belief. An implementation of a real-

time tracking system using this utility function has shown that this measure is both practically 

useful and computationally feasible [144].  

  

Appendix C at the end of the book develops additional forms of utility measures. The 

appropriateness of a particular utility measure for a sensor selection problem depends on two 

factors: the charac-teristics of the problem, such as the data and noise models, and the 

computational complexity of computing the measure. For example, the Mahalanobis measure 

is easy to compute, although limited to certain data models. The mutual information applies 

to multimodal distributions, but its computation requires expensive convolution of discrete 

points if one uses a grid approximation of probability density functions. The choice of which 

measures to use illustrates the impor-tant design trade-off for sensor networks: optimality in 

information versus feasibility in practical implementation.  

  

  

  

5.3.3  Cluster-Leader Based Protocol  

  

The IDSQ method is based on the cluster-leader type of distributed processing protocol. 

Although the algorithm presented here assumes there is a single belief carrier node active at 

a time, the basic ideas also apply to scenarios where multiple belief carriers are active simul-

taneously, as long as the clusters represented by the belief carriers are disjointed from each 

other; in other words, each sensor senses a single target at a time. Assume we have a cluster 

of K1 sensors, each labeled by the integer {1, . . . , K1}. A priori, each sensor i only has 

knowledge of its own position ζi ∈ R
2
. An important prerequi-site is the appropriate cluster 

formation and leader election before applying the algorithm. The cluster may be initially 

formed from sensors with detections above a threshold and updated as the signal  
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source moves. A leader may be elected based on relative magnitude of measurement or time 

of detection (discussed later in this section). Techniques for clustering and leader election are 

also discussed in Section 4.2 of Chapter 4.  

  

We develop an IDSQ algorithm, using an information crite-rion for sensor selection and 

Bayesian filtering for data fusion (see Section 2.2.3), in the context of localization tasks. As 

pointed out earlier, the basic algorithm introduced here should be equally applicable to other 

sensing problems. Figure 5.8 shows the flowchart of this algorithm which is identical for 

every sensor in the cluster. The algorithm works as follows:  

Initialization (Step 1): Each sensor runs an initialization routine through which a leader node 

is elected from a cluster of K1 sensors who have detections. The leader election protocol will 

be consid-ered later. Other sensors in the cluster communicate their own characteristics 

{λi}
K

i=11, (i = l), as defined in Section 2.2.1, which include the position and noise variance 

of each sensor, to the leader l.  

Follower Nodes (Step 2a): If the sensor node is not the leader, then the algorithm follows the 

left branch in Figure 5.8. These nodes will wait for the leader node to query them, and if they 

are queried, they will process their measurements and transmit the queried information back 

to the leader.  

Initial Sensor Reading (Step 2b): If the sensor node is the leader, then the algorithm follows 

the right branch in Figure 5.8. The leader node will then  calculate a representation of the belief 

state with its own measurement, p(x | zl), and  

  

  begin to keep track of which sensor measurements have been incorporated into the belief 

state,   U = {l} ⊂ {1, . . . , K1}.  

Again, it is assumed that the leader node has knowledge of the characteristics {λi}
K

i=11 of all 

the sensors within the cluster.  
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Calculate initial belief  

Calculate information  

and used sensors  

  

3  
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  Belief good  

  enough?  
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Sensor selection algorithm  

  

  

Send information request  

  

  

Wait for information  
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used sensors  
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Figure 5.8 Flowchart of the information-driven sensor querying (IDSQ) algorithm for each sensor (adapted from [43]).   

Wait for activation prompt  

  

Send information  
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Belief Quality Test (Step 3): If the belief is good enough, based on some measure of goodness 

such as the size of belief, the leader node is finished processing. Otherwise, it will continue 

with sensor selection.  

  

Sensor Selection (Step 4): Based on the belief state, p(x | {zi}i∈U ), and sensor characteristics, 

{λi}
K

i=11, pick a sensor node from {1, . . . , K1} − U that satisfies some information criterion 

φ, assuming the one-hop cost is identical for all sensors. Say that node is j. Then, the leader 

will send a request for sensor j’s measurement, and when the leader receives the requested 

information, it will  

  

update the belief state with zj to get a representation of p(x | {zi}i∈U ∪ zj), and  

  

  add j to the set of sensors whose measurements have already been incorporated:  

  

 := U ∪ {j}.  

  

Now, loop back to step 3 until the belief state is good enough.  

  

At the end of this algorithm, the leader node contains all the information about the belief 

from the sensor nodes by intelligently querying a subset of the nodes that provide the majority 

of the information. This reduces unnecessary power consumption by trans-mitting only the 

most useful information to the leader node. This computation can be thought of as a local 

computation for this cluster. The belief stored by the leader can then be passed up for process-

ing at higher levels. In steps 2b and 4, some form of representation of the belief p(x | {zi}i∈U 

) is stored at the leader node. Considera-tions for the particular representation of the belief 

was mentioned in Section 2.3. In step 4, an information criterion is used to select the next 

sensor. Different measures of information utility, were dis-cussed in Section 5.3.2 and then 

in details in Appendix C at the end of the book.  
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Leader Election Protocol  

  

In the leader-based protocol, it is necessary to design efficient and robust algorithms for 

electing a leader, since typically more than one sensor may have detections about a target 

simultaneously. Here, we describe a geographically-based leader election scheme that 

resolves contention and elects a single leader via message exchange.  

  

First, consider the ideal situation. If the signal of a target propa-gates isotropically and 

attenuates monotonically with distance, the sensors physically closer to the target are more 

likely to detect the tar-get than the sensors far away. One can compute an “alarm region,” 

similar to a 3-σ region of a Gaussian distribution, such that most (e.g., 99 percent) of the 

sensors with detections fall in the region. This is illustrated in Figure 5.9. Sensor nodes are 

marked with small circles; the dark ones have detected a target. Assume the target is located 

at x (marked with a “+” in the figure), the alarm region is a  

  

  

 
Node A  

  

  

  

Subscription region   
  

of node A   

  

  

  

  

2 r     2 r   
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Subscription region  
  

of node B  

  

Figure 5.9  Leader election in a detection region (adapted from [142]).  
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disk centered at x with some radius r, where r is determined by the observation model. In 

practice, we choose r based on the maximum detection range plus a moderate amount of 

margin to account for possible target motion during a sample period.  

  

Ideally, nodes in an alarm region should collaborate to resolve their contention and elect 

a single leader from that region. However, the exact location of the alarm region is unknown 

since the target position x is unknown. Each node with a detection only knows that the target 

is within a distance of r, and a possible competi-tor could be a farther distance r from the 

target. Thus in the absence of a “message center,” a node notifies all nodes within a radius 2r 

of itself (the potential “competitors” for leadership) of its detection.  

  

Upon detection, each node broadcasts to all nodes in the enlarged alarm region a 

DETECTION message containing a time stamp indi-cating when the detection is declared, 

and the likelihood ratio p(z|H1)/p(z|H0), where H1 or H0 denote the hypotheses of the target 

being present or not. The higher this ratio, the more confident the detecting node is of its 

detection. We rely on a clock synchroniza-tion algorithm to make all time stamps comparable, 

as discussed in Section 4.3. We also need a routing mechanism to effectively limit the 
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propagation of the detection messages to the specified region, using, for example, the 

geographical routing to a region method presented in Section 3.4.4.  

  

After sending out its own detection message, the node checks all detection packets 

received within an interval of tcomm. The value of tcomm should be long enough for all 

messages to reach their destination, yet not too long so that the target can be consid-ered 

approximately stationary. These messages are then compared with the node’s own detection. 

The node winning this election then becomes the leader immediately, with no need for further 

confirmation. The election procedure is as follows:  

 If none of the messages is time-stamped earlier than the node’s own detection, the node  

declares itself leader.  

  

 If there are one or more messages with an earlier time stamp, the node knows that it is not the 

leader.  

Chapter 5   Sensor Tasking and Control   

  

 If none of the messages contains earlier time stamps, but some message contains a time stamp 

identical to the node’s detection time, the node compares the likelihood ratio. If the node’s 

likelihood ratio is higher, the node becomes the leader.  

  

This algorithm elects only one leader per target in an ideal situa-tion. However, in other 

situations multiple leaders may result. For example, if the DETECTION packet with the 

earliest detection time stamp fails to reach all the destination nodes, multiple nodes may find 

that they are the “earliest” detection and each may initiate a localization task. One way to 

consolidate the multiple leaders is to follow the initial election with another round of election, 

this time involving only the elected leaders from the initial round. Since there are fewer nodes 

to send out messages, the probability of DETECTION packets reaching every leader is greatly 

increased.  

  

  

  

Simulation Experiments  

  

The leader-based protocol is applied to the problem of spatial local-ization of a stationary 

target based on amplitude measurements from a network of 14 sensors, as arranged in Figure 

5.4. The goal is to compare different sensor selection criteria and validate the IDSQ algo-
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rithm presented earlier. Assuming acoustic sensors, the measurement model for each sensor 

i is given in Equation (2.4) of Chapter 2. For the experiment, we further assume a ∈ R, the 

source amplitude of the target signal, is uniformly distributed in the interval [alow , ahigh]. 

For simplicity, in the simulation examples considered in this sec-tion, a leader is chosen to 

be the one whose position ζl is closest to the centroid of the sensors, that is,  

  

  

    1  N      

      

     

l = arg j 1,..., N   j − N  i    
  =         i  1 

      min  ζ  

     ζ   .  

                      

              =          

                 

We test four different criteria for choosing the next sensor:  

  

A. Nearest neighbor  
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B. Mahalanobis distance  

  

C. Maximum likelihood  
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D. Best feasible region (or ground truth for one-step optimization)  

  

Criterion D is uncomputable in practice since it requires knowledge of sensor measurement 

values in order to determine which sensor to use. However, we use it as a basis for comparison 

with the other criteria. These four criteria are defined more precisely in Appendix D at the 

end of the book.  

  

Additional details of the protocol and sensor selection criteria are specified as follows. For 

the simulations, we have chosen alow = 10  

  

and ahigh = 50. The sensor noise variance σi is set to 0.1, which is about 10 percent of the 

signal amplitude when the amplitude of the target  

  

is 30 and the target is at a distance of 30 units from the sensor. The parameter β in criterion 

D (as specified in Appendix D) is chosen to be 2, since this value covers 99 percent of all 

possible noise instances. For the first simulation, the signal attenuation exponent α is set to 

1.6, which considers reflections from the ground surface. Then α is set to 2 for the second 

simulation, which is the attenuation exponent in free space with no reflections or absorption. 

The shape of the uncertainty region is sensitive to different choices of α; however, the 

comparative performance of the sensor selection algorithm for different selection criteria 

turns out to be relatively independent of α.  

  

The first simulation is a pedagogical example to illustrate the use-fulness of incorporating 

a sensor selection algorithm into the sensor network. Figure 5.4 earlier in the chapter shows 

the layout of 14 microphones. The one microphone not in the linear array is placed so that it 

is farther from the leader node than the farthest micro-phone in the linear array. With sensor 

measurements generated by a stationary source in the middle of the sensor network, sensor 

selec-tion criteria A and B are compared. The difference in the two criteria is the order in 

which the sensors’ measurements are incorporated into the belief.  

  

Figure 5.10 shows a plot of the logarithm of the determinant of the error covariance of the 

belief state (or the volume of the error Chapter 5   Sensor Tasking and Control  
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igure 5.10 Determinant of the error covariance for selection criteria A and B for the sensor layout shown in Figure 5.4. 

Criterion A tasks 14 sensors, while B tasks 6 sensors to be below an error threshold of five units (adapted 

from [43]).  

ellipsoid) versus the number of sensors incorporated. Indeed, the volume of the error 

covariance under selection criterion B is less than the volume of the error covariance under 

selection criterion A for the same number of sensors, after more than three sensors are 
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selected. When all 14 sensors have been accounted for, both methods produce the same 

amount of error reduction.  

A plot of the communication distance versus the number of sen-sors incorporated is 

shown in Figure 5.11. Certainly, the curve for selection criterion A is the lower bound for 

any other criterion. Criterion A optimizes the network to use the minimum amount of 

communication energy when incorporating sensor information; however, it largely ignores 

the information content of these sensors.  
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Figure 5.11 Total communication distance versus the number of sensors queried for selection criteria A and B for the 

sensor layout shown in Figure 5.4. For achieving the same threshold of the error, A tasks 14 sensors and uses 

nearly 500 units of communication distance, whereas B tasks 6 sensors and uses less than 150 units of 

communication distance (adapted from [43]).  

A more informative interpretation of the figure is to compare the amount of energy it takes 

for criterion A and criterion B to achieve the same level of accuracy. Examining Figure 

5.10, we see that under criterion A, in order for the log determinant of the covariance value 

to be less than 5, criterion A requires all 14 sensors to be tasked. On the other hand, 

criterion B requires only 6 sensors to be tasked. Now, comparing the total communication 

distance for this level of accuracy from Figure 5.11, we see that criterion B requires less 

than 150 units of communication distance for tasking 6 sensors, as opposed to nearly 500 

units of communication distance for tasking  
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all 14 sensors. Indeed, for a given level of accuracy, B generally requires less communication 

distance than A.  

  

The above simulation was carried out on a specific layout of the sensors, and the striking 

improvement of the error was largely due to the fact that most of the sensors were in a linear 

array. Thus, the next simulation will explore which one does better, on average, with 

randomly placed sensors.  

  

Microphones are placed uniformly in a given square region as shown in Figure 5.12(a). 

The target is placed in the middle of the square region and given a random amplitude. Then, 

the sensor algo-rithm for each of the different sensor selection criteria described earlier is run 

for 200 runs. Figure 5.12(b) shows a comparison between selection criteria A and B. There 

are three segments in each bar. The bottom segment represents the percentage of runs in 

which the error for B is strictly less than the error for A after k sensors have been incorporated. 

The middle represents a tie. The upper segment repre-sents the percentage of runs in which 

the error for B is larger than the error for A. Since the bottom segment is larger than the upper 

one (except for the initial and final phases when they are tied), this shows B performs better 

than A on average.  

  

Figures 5.12(c) and (d) show comparisons of sensor criteria C and D versus B. The 

performance of C is comparable to B and, as expected, D is better than B on average. The 

reason D is not always better than B over a set of sensors is because both are greedy criteria. 

The n
th

 best sensor is chosen incrementally with the first n − 1 sensors already fixed. Fixing 

the previous n − 1 sensors when choosing the n
th

 sensor is certainly suboptimal to choosing 

n sensors all at once to maximize the information content of the belief.  

  

  

5.3.4  Sensor Tasking in Tracking Relations  

  

The focus of this section is sensor tasking and control in the context of tracking spatial or 

temporal relations between objects and local or global attributes of the environment—as 
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opposed to the detailed estimation of positions and poses of individual objects. In certain 

cases, high-level behaviors of objects may be trackable more robustly than their exact 

positions, relations between objects may be directly  
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Figure 5.12 (a) Layout of seven randomly placed sensors (circles) with the target (cross) in the middle. (b) Percentage of 

runs where B performs better than A for seven randomly placed sensors. (c) Percentage of runs where B performs 

better than C for seven randomly placed sensors. (d) Percentage of runs where B performs better than D for 

seven randomly placed sensors (adapted from [43]).  

  

observable by sensors, and the large-scale behavior of an ensemble of objects may be easier 

to ascertain than the motion of the individual objects. By focusing on relations and the 

logical structure of the evi-dence with respect to the task at hand, information-based 

approaches will be able to allocate sensing, computation, and communication resources 

where they are most needed.  

An example of tracking relations is the “Am I surrounded?” prob-lem: determine if a 

friendly vehicle is surrounded by a number of enemy tanks [Figure 5.13(a)]. The goal is to 

design a sensing strategy that extracts global relations among the vehicles in question with-

out first having to solve local problems, such as accurately localizing individual vehicles. 

One definition of whether the friendly vehicle is surrounded by the tanks is to test if the 

vehicle is inside the geometric convex hull formed by the enemy tanks. Although the notion 

of “Am I surrounded?” is somewhat application dependent, we will use this definition to 

show how such a global relation can be determined by tasking appropriate sensors, based 

on how their local sensing actions can contribute to the assertion of the relation. We start by 

decom-posing a global relation into more primitive ones. For example, the global relation 

of whether a point d is surrounded by points a, b, c can be established by the conjunction of 

the more primitive relations CCW(a, b, d), CCW(b, c, d), CCW(c, a, d), where CCW denotes 

the counterclockwise relation [Figure 5.13(b)].  

To establish a CCW relation among three objects, sensors are selected to localize the 

objects, with the objective of maximizing  
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a  

  

(a)re 5.13  (a) A global relation of “Am I surrounded?” Here, a friendly vehicle in the mid-dle  is  attempting  

to  determine  if  it  is  inside  the  convex  hull  of  enemy  tanks.  

  

(b) Decomposition of a global relation into three more primitive CCW relations.  

  

the reduction in the uncertainty of the CCW relation while mini-mizing the number of sensor 

queries. To resolve a CCW relation, a sensor with maximum expected reduction in the 

uncertainty of the CCW relation is chosen. For example, to resolve the CCW(a, b, d) in 

Figure 5.13(b), where ellipses denote uncertainty covariances for localization of a, b, and d, 

one notices that tasking sensors that min-imize the error for node d can result in faster 

resolution of the CCW relation. Figure 5.14 shows a simulation of the CCW resolution as  

  

150  
   

Next sensor  
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Figure 5.14  A  CCW  relation  is  being  resolved  by  tasking  sensors  with  maximum  expected  

information gain. A “+” denotes the true location for each target (adapted from [87]).  
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sensors are selected. In the figure, each node is localized with a set of range sensors, resulting 

in residual uncertainties about object positions shown in the figure.  

  

Note that uncertainty in the CCW relation is caused by possi-ble collinearity or 

nearcollinearity of the targets. The best sensor selection strategy for removing collinearity 

uncertainty may be quite different from the best strategy for localizing the sensors, 

irrespec-tive of the CCW relation. Consider, for instance, the situation in Figure 5.15. Note 

that a passive infrared (PIR) sensor s1 may look at one of the tails of the distribution for 

target t3 and, upon seeing nothing there, lop off a large chunk of this distribution and reduce 

its spread. Yet that reduction is almost useless as far as eliminating wrongly oriented 

triplets of possible target locations. Another PIR sensor s2 may lop off a smaller part of the 

t2 distribution, yet have  

  

 much more significant benefit toward certifying CCW(t1, t2, t3). Analogous to the sensor 

selection for the point localization prob-lems, we need to develop a model of utility and 

cost that relates the resolution of global relations to the sensing and communications req 
uired. This remains as an open problem for future research.  

  

  

   

t2   s2  
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t3  t1  

  

 s1  

igure 5.15  The effect on CCW of alternate sensor readings (adapted from [87]).  

   

  

  

5.4  Joint Routing and Information Aggregation  

  

A primary purpose of sensing in a sensor network is to collect and aggregate information 

about a phenomenon of interest. While IDSQ provides us with a method of selecting the 

optimal order of sen-sors to obtain maximum incremental information gain, it does not 

specifically define how a query is routed through the network or the information is gathered 

along the routing path. This section outlines a number of techniques that exploit the 

composite objective function (5.1) to dynamically determine the optimal routing path.  

  

Consider the following two scenarios in which an information aggregation query is 

injected into the network. The first one is illus-trated in Figure 5.16(a). A user (which may 

be another sensor node)  

  
Exit  

  

  

(a)  (b)  

  

  

  

  

Query proxy   Query proxy   
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Figure 5.16 Routing and information aggregation scenarios: (a) Routing from a query proxy to the high activity region and 

back. The ellipses represent iso-contours of an infor-mation field, which is maximal at the center. The goal of 

routing is to maximally aggregate information along a path while keeping the cost minimal. (b) Routing from 

a query proxy to an exit node, maximizing information gain along the path (adapted from [145]).  

issues a query from an arbitrary node, which we call a query proxy node, requesting the 

sensor network to collect information about a phenomenon of interest. The query proxy 

has to figure out where such information can be collected and routes the query toward the 

high information content region. This differs from routing in com-munication networks 

where the destination is often known a priori to the sender. Here, the destination is 

unknown and is dynam-ically estimated by the network’s knowledge about the physical 

phenomenon.  

The second routing scenario is pictured in Figure 5.16(b). A user— for example, an 

police officer—may issue a query to a node, asking the sensor network to collect 

information and report the result to an extraction or exit node—for example, a police 

station—where the information can be extracted for further processing. In this sce-nario, 

the query proxy and exit nodes may be far away from the high information content region. 

A path taking a detour toward the high information region may be more preferable than the 

shortest path. In this section, we will first consider the sensor tasking and rout-ing problem 

for the first scenario. The problems associated with the second scenario are studied in 

Section 5.4.2.  

  

  

5.4.1  Moving Center of Aggregation  

  

We have described a class of algorithms based on the fixed belief carrier protocol in which 

a designated node such as a cluster leader holds the belief state. In that case, the querying 

node selects optimal sensors to request data from, using the information utility measures. 

For example, using the Mahalanobis distance measure, the querying node can determine 

which node can provide the most useful infor-mation while balancing the communication 

cost, without the need to obtain the remote sensor data first. We now consider a dynamic 

belief carrier protocol in which the belief is successively handed off to sensor nodes closest 

to locations where “useful” sensor data are being generated. In the dynamic case, the 

current sensor node updates the belief with its measurement and sends the estimation to 

the next neighbor that it determines can best improve the estimation.  
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Locally Optimal Search  

  

Here the information query is directed by local decisions of individ-ual sensor nodes and 

guided into regions maximizing the objective function J as defined in (5.1). Note that the 

function J is incremen-tally updated along with the belief updates along the routing path. 

The local decisions can be based on different criteria:  

  

 For each sensor k that makes the current routing decision, evaluate the objective function J 

at the positions of the m sensors within a local neighborhood determined by the 

communication distance, and pick the sensor j that maximizes the objective function 

locally within the neighborhood:  

  

= j  ∀  = 

ˆj  arg max(J (ζj)),   j   k  

  

where ζj is the position of the node j.  

  

 Choose the next routing sensor in the direction of the gradient of the objective function, ∇J . 

Among all sensors within the local communication neighborhood, choose the sensor j such 

that  

ˆ 

j = arg  j     J  ζj  ζk  , 

   (∇J )
T
 · ζj − ζk     max 

  

     ∇   ! −   "  

where ζk is the position of the current routing node, and “·” denotes the inner product of two 

vectors.  
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 If the network routing layer supports geographical routing, as described in Section 3.4, the 

querying sensor can directly route    

the query to the sensor closest to the optimum position. The opti-mum position ζo 

corresponds to the location where the utility function φ is maximized and can be computed 

by the querying sensor by evaluating the utility function:  

  

ζo = argζ [∇φ = 0] .  (5.5)  
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However, the destination is optimal only with respect to the cur-rent data the querying 

sensor has. As the query travels through the sensor nodes in the network, additional sensor 

data may be incrementally combined to continuously update the optimum position.  

  

  

 Instead of following the local gradients of the objective function throughout the routing path, 

the chosen direction at any hop can    

be biased toward the direction aiming at the optimum position, ζo. This variation of the 

gradient ascent algorithm is most useful in regions of small gradients of the objective 

function, that is, where the objective function is relatively flat. The direction toward the 

maximum of the objective function can be found by evaluating  

  

(5.5) at any routing step. This allows a node to compute locally the direction toward the 

optimum position (ζo − ζk), where ζk denotes the position of the current routing sensor. 

The optimal direction toward the next sensor can be chosen according to a weighted 

average of the gradient of the objective function and the direct connection between the 

current sensor and the optimum position:  

  

 = β∇J + (1 − β) (ζo − ζk) ,  

  

where the parameter β can be chosen, for example, as a func-tion of the inverse of the 

distance between the current and the optimum sensor positions: β = β !  ζo − ζk 
−1

 ". This 

routing mech-anism allows adapting the routing direction to the distance from the optimum 

position. For small distances, it might be better to follow the gradient of the objective 

function for the steepest ascent, that is, the fastest information gain. For large distances 

from the optimum position where the objective function is flat and data is noisy, it is faster 

to directly go toward the maximum than to follow the gradient ascent.  
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In order to locally evaluate the objective function and its deriva-tives, the query needs 

to be transmitted together with information on the current belief state. This information 

should be a compact  
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representation of the current estimate and its uncertainty and must provide complete 

information to incrementally update the belief state given local sensor measurements. For 

the earlier example of quantifying the information utility by the Mahalanobis distance, we  

need to transmit the triplet  {  ˆ    } with the query, where    q is the    ζ  

      ζ   

  

position of the querying sensor, xˆ is the current estimate of the target  

position, and  ˆ  is the current estimate of the position uncertainty  

  

covariance.  

  

The routing mechanism described earlier can be used to estab-lish a routing path toward 

the potentially best sensor, along which the measurement from the sensor closest to the 

optimum position is shipped back. When global knowledge about optimum sensor posi-

tions is available, the routing path is optimal whereas information gathering may not be. In 

the case of local sensor knowledge, the path is only locally optimal because the routing 

algorithm is a greedy method. The estimate and the estimation uncertainty can be dynam-

ically updated along the routing path. The measurement can also be shipped back to the 

query-originating node. Since the information utility objective function along the path is 

monotonically increasing, the information provided by subsequent sensors is getting 

incremen-tally better toward the global optimum. When the information is continuously 

shipped back to the querying sensor, the information arriving in sequential order provides 

an incremental improvement to the estimate. Once a predefined estimation accuracy is 

reached, the querying sensor can terminate the query even if it has not yet reached the 

optimum sensor position. Alternatively, instead of ship-ping information back to the 

querying sensor, the result could be read out from the network at the sensor where the 

information resides.  

Simulation Experiments  
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The objective function used in the greedy routing experiments is cho-sen according to (5.1), 

with the information utility and cost terms defined, respectively, as:  

  

φ(ζ , x,   ) (ζ x
)T −1

(ζ x), (5.6) j ˆ = −  j − ˆ  j − ˆ   
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ψ (ζj, ζl) = (ζj − ζl)
T
 (ζj − ζl),  (5.7)  

  

where ζl represents the position of the querying sensor l.  

Figure 5.17 shows snapshots of numerical simulations of the greedy routing algorithm 

on networks of randomly placed sensors. To simplify the illustration, current target 

position, xˆ, and its uncer-tainty, , were arbitrarily chosen and remained fixed for the run— 

that is, no incremental update of the belief state was implemented. The value of the 

objective function across the sensor network is shown as a contour plot, with peaks of the 

objective function located at the center of ellipses. The circle indicated by a question mark 

(?) depicts the position of the querying sensor (query origin), and the circle indicated by T 

depicts the estimated target position, xˆ. The current uncertainty in the position estimate, , 

is depicted as a 90-percentile ellipsoid enclosing the position T.  

The goal of the greedy routing algorithm is to guide the query as close as possible 

toward the maximum of the objective function, following the local gradients to maximize 

incremental information gain. While the case of trade-off parameter γ = 1 represents max-

imum information gain, ignoring the distance from the querying sensor (and hence the 

energy cost), the case γ = 0 minimizes the energy cost, ignoring the information gain. For 

other choices of 0 < γ < 1, the composite objective function represents a trade-off between 

information gain and energy cost.  

Figure 5.17 shows how variation of the trade-off parameter γ morphs the shape of the 

objective function. As γ decreases from 1 to 0, the peak location moves from being centered 

at the predicted target position (γ = 1) to the position of the querying sensor (γ = 0); at the 

same time, the contours change from being elongated, shaped according to the uncertainty 

ellipsoid represented by the estimated covariance , toward isotropic. Another interesting 

aspect of the combined objective function is that the spatial position of its maxi-mum does 
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not shift linearly between the estimated target position T and the query origin ?, with 

varying γ . This can be observed in the case of γ = 0. 2, where the maximum is located off 

the line connecting T and ?.  
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(c)  

  
Figure 5.17 Locally optimal routing for N = 200 randomly placed sensors, with varying infor-mation versus cost tradeoff 

parameter γ . From (a) to (c): γ = 1, γ = 0. 2, γ = 0. 0. For comparison, the position estimate of the target, T, 

and the position of the query origin, ?, are fixed in all examples (adapted from [43]).  
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In all three cases shown in Figure 5.17, the estimated target posi-tion and residual 

uncertainty are the same. Variations in shape and offset of the objective function are caused 
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by variations of the trade-off parameter γ . In order to visualize how the query is routed 

toward the maximum of the objective function by local decisions, both the estimated 

position xˆ as well as its uncertainty are left unaltered during the routing. It is important to 

note that incremental belief update during the routing by in-network processing would 

dynami-cally change both the shape and the offset of the objective function according to 

the updated values of the estimated position xˆ and its uncertainty at every node along the 

routing path. As the updated values of xˆ and are passed on to the next node, all routing 

deci-sions are still made locally. Hence, the plotted objective function represents a snapshot 

of the objective function that an active rout-ing node locally evaluates at a given time step, 

as opposed to the overlaid routing path which illustrates the temporal evolution of the 

multihop routing.  

  

  

The small circles surrounding the dots along the routing path illus-trate the subset of 

sensors the routing sensors (on the path) consider during sensor selection. Among these 

sensors, the ones that locally maximize the objective function have been selected as the 

successor routing nodes. The fraction of selected nodes among all nodes indi-cates the 

energy saved by using the greedy routing, as opposed to the total energy cost of flooding 

the network. The routing in Figure 5.17 can be terminated after reaching a spatial region 

where the residual uncertainty is below a preset threshold or the routing has reached a 

preset timeout that is passed along with the query.  

  

  

5.4.2  Multistep Information-Directed Routing  

  

The sensor selection in the previous routing problem is greedy, always selecting the best 

sensor given the current belief p(x | {zi}i ∈U ), and may get stuck at local maxima caused, 

for example, by network holes from the depletion of sensor nodes. Figure 5.18(a) provides 

a simple example. Here we use the inverse of Euclidean distance between a sensor and the 

target to measure the sensor’s information  
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contribution (assuming these information values are given by an “oracle”). The problem 

with greedy search exists regardless of the choice of information measure. Consider the 

case that the target moves from X to Y along a straight line [see Figure 5.18(a)]. Assume 

nodes A and B are equidistant from the target at any time. At time  

  

 = 0, suppose node A is the leader and can relay its target informa-tion to its neighbor B or 

C. If the selection criterion prefers a different node each time to increase diversity, then 

node B is chosen as the next leader. By the same criteria, B then relays back to A. The 

hand-offs continue back and forth between A and B, while the target moves away. The path 

never gets to nodes E, F, or G, who may become more informative as the target moves 

closer to Y . The culprit in this case is the “sensor hole” the target went through. The greedy 

algorithm fails due to its lack of knowledge beyond the immediate neighbor-hood. 

Recently, local routing algorithms such as GPSR [112] have been developed to traverse 

perimeters of network holes. However, they do not apply here since the routing destination 

is not always known a priori in our problem, and it is often impossible to tell if the routing 

is stuck at a local optimum without knowledge about the destination (e.g., compare the 

scenario in Figure 5.18(b) with that in Figure 5.18(a)).  
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Figure 5.18 Routing in the presence of sensor holes. A through G are sensor nodes. All edges have unit communication cost. 

The dashed lines plot target trajectory. In (a), the target is moving from X to Y . In (b), the target is bouncing back 

and forth between X and Y (adapted from [145]). er 5   Sensor Tasking and Control  

  

  

To alleviate the problem of getting trapped at local optima, one may deploy a look-ahead 

strategy to extend the sensor selection over a finite look-ahead horizon. However, in general 

the informa-tion contribution of each sensor is state-dependent—that is, how much new 

information a sensor can bring depends on what is already known. This state-dependency 

property sets the information-directed routing problem apart from traditional routing 

problems. Standard shortest-path algorithms on graphs such as Dijkstra or Bellman-Ford are 

no longer applicable. Instead, the path-finding algorithm has to search through many possible 

paths, leading to combinatorial explosion.  

  

  

To illustrate the state dependency in information aggregation, consider a simple sensor 

network example consisting of four sen-sors, A, B, C, and D, as shown in Figure 5.19. Belief 

about the target location is shown using grayscale grids (Figure 5.20). A brighter grid means 

that the target is more likely to be at the grid location.  
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Figure 5.19 A sample sensor network layout: Sensors are marked by circles, with labels A, B, C, and D. Arrows represent the 

order in which sensor data are to be combined. The target is marked by + (adapted from [145]).  

    

  

  

We assume a very weak initial belief, uniform over the entire sen-sor field, knowing only that 

the target is somewhere in the region. Figure 5.20(a)–(d) shows how information about the 

target location is updated as sensor data is combined in the order of A → B → C → D.  
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(c)  (d)  

  

Figure 5.20 Progressive update of target position, as sensor data is aggregated along the path ABCD. Figures (a)–(d) plot the resulting 

belief after each update.  

Table 5.1 Information aggregation in the sensor network pictured in Figure 5.19.  

  

Order of traverse   
Information∗   

MSE 

Sensor A   0.67   11.15 

Sensor B   1.33   10.02 

Sensor C   1.01   9.00 

Sensor D  0.07  8.54 

      

  

*Information is measured using mutual information defined in (5.4).  
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At each step, the active sensor node, marked as a solid white dot, applies its measurement to 

update the belief. The localization accu-racy is improved over time: the belief becomes more 

compact and its centroid moves closer to the true target location.  

  

Table 5.1 lists the information contribution for each sensor, as the path A → B → C → D 

is traversed. The error in localization, mea-sured as mean-squared error (MSE), generally 

decreases as more sensor measurements are incorporated. Note that sensors A and D are 

physically near each other, and their contributions toward the target localization should be 

similar. Despite such similarity, the informa-tion values differ significantly (0.67 for A and 

0.07 for D). Visually, as can be observed from Figure 5.20, sensor A brings a significant 

change to the initial uniform belief. In contrast, sensor D hardly causes any change. The reason 

for the difference is that A applies to a uniform belief state, while D applies to a compact 

belief, as shown in Figure 5.20(c).  

  

  

State dependency is an important property of sensor data aggre-gation, regardless of 

specific choices of information metrics. Sensor measurements are often correlated. Hence a 

sensor’s measurement is not entirely new; it could be merely repeating what its neighbors have 

already reported. In our current example, sensor D is highly redundant with sensor A. Such 

redundancy shows up in the belief state and thus should be discounted. Because of this, the 

search cost function [say, defined as the path cost minus the information gain, similar to that 

in (5.1)] is not necessarily additive along a path.  

  

To mitigate the combinatorial explosion problem, two strategies may be useful. We can restrict 

the search for optimal paths to a  
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small region of the sensor network. Or we can apply heuristics to approximate the costs so 

that they can be treated as additive. The first technique we describe searches for a shortest 

path among the family of paths with fewer than M hops that produce maximum information 

aggregation. The look-ahead horizon M should be large enough and comparable to the 

diameter of sensor holes, yet not so large as to make the computational cost prohibitive. The 

information about network inhomogeneity may be discovered periodically and cached at each 

node (see, e.g., [102]). Such information will be helpful in selecting the value for M during 

the routing-path planning.  
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For scenarios such as the one in Figure 5.16(b), the goal is to route a query from the query 

proxy to the exit point and accumulate as much information as possible along the way, so that 

one can extract a good estimate about the target state at the exit node and yet keep the total 

communication cost close to some prespecified amount. When it is possible to estimate the 

cost to go, the A∗ heuristic search method may be used [120]. The basic A∗ is a best-first 

search, where the merit of a node is assessed as the sum of the actual cost g paid to reach it 

from the query proxy, and the estimated cost h to pay to get to the exit node (the  

“cost to go”). For real-time path-finding, we use a variation of the A∗ method, namely, the 

real-time A ∗ (RTA∗) search.
1
 It restricts search to a small local region and makes real-time 

moves before the entire path is planned. Since only local information is used in the RTA∗ 

search, it can be implemented in a distributed fashion. Details of the above multistep search 

algorithms can be found in reference [145].  

  

  

  

5.4.3  Sensor Group Management  

  

In the scenarios we have considered so far (Figure 5.16), the phys-ical phenomenon of interest is 

assumed to be stationary. In many applications, the physical phenomenon may be mobile, requiring 

the network to migrate the information according to the motion of theThis  
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is closely related to the LRTA∗ algorithm of Section 3.4.4  

  

  

  

  

  

  

  

  

  

  

  

+ Target B  

  

Target A  

+  

  

  

Region B  

  

Region A  

  

  

  

Figure 5.21 Geographically based collaborative groups. The small circles are sensor nodes. The nodes inside a specified geographical region 

(e.g., region A or B) form a collaborative group (adapted from [142]).  
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physical phenomenon for communication efficiency and scalability reasons.  

  

In practical applications, the effect of a physical phenomena usu-ally attenuates with 

distance, thus limiting the propagation of physi-cal signals to geographical regions around the 

physical phenomenon. This gives rise to the idea of geographically based collaborative pro-

cessing groups. In the target tracking problem, for example, one may organize the sensor 

network into geographical regions, as illustrated in Figure 5.21. Sensors in the region around 

target A are respon-sible for tracking A, those in the region around B for tracking B. 

Partitioning the network into local regions assigns network resources according to the 

potential contributions of individual sensors.  

  

Furthermore, the physical phenomena being sensed change over time. This implies that the 

collaborative groups also need to be dynamic. As the target moves, the local region must move 

with it. Sensor nodes that were previously outside the group may join the  
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group, and current members may drop out. This requires some method for managing the group 

membership dynamically.  

  

Geographically based group initiation and management have to be achieved by a 

lightweight protocol distributed on all sensor nodes. The protocol needs to be powerful enough 

to handle complex situa-tions, such as those where data from multiple leaders are contending 

for processing resources, and be robust enough to tolerate poor communication qualities, such 

as out-of-order delivery and lost or delayed packets. In addition, the propagation region of 

group man-agement messages should be restrained to only the relevant nodes without flooding 

the entire network. This is not trivial, considering that the group membership is dynamic as 

the targets move and that the network is formed in an ad hoc way such that no nodes have the 

knowledge of the global network topology. The difficulties may be tackled via two techniques: 

(1) a leader-based tracking algorithm where at any time each group has a unique leader who 

knows the geographical region of the collaboration; and (2) recent advances in geographical 

routing (Section 3.4.4) that do not require the leader to know the exact members of its group.  

xample: Information Migration in Tracking a Moving Target  
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How can the information utility measures be applied to a tracking problem such as the one 

described in Section 2.1? Assume a leader node (the solid dot in Figure 5.22) carries the 

current belief state. The leader chooses a sensor with good information in its neighborhood 

according to the information measure and then hands off the cur-rent belief to the chosen 

sensor (the new leader). As discussed earlier, the information-based approach to sensor 

querying and data rout-ing selectively invokes sensors to minimize the number of sensing 

actions needed for a given accuracy and, hence, latency and energy usage.  

  

To estimate the position of the target, a leader node updates the belief state information 

received from the previous leader with the current measurement information, using, for 

example, the sequen-tial Bayesian method introduced in Section 2.2.3. For a moving target, a 

model on the target dynamics can be used to predict the  
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Sensor  A: Processing node at t  

  

Processing Sensor  B: Processing node at t+1  

  

 
Belief Communication  C: Processing node at t+2  

  

  

Figure 5.22 Information migration in tracking a moving target. As the target moves through the field of sensors, a subset of 

sensors are activated to carry the belief state. Each new sensor may be selected according to an information utility 

measure on the expected contribution of that sensor conditioned on the predicted location of the target (adapted 

from [41]).  

  

  

position of the target at the next time step. This predicted target position and the associated 

uncertainty can be used to dynamically aim the information-directed query at future positions 

to optimally track the target.  

  

  

Distributed Group Management  

  

A collaborative group is a set of sensor nodes responsible for the cre-ation and maintenance 

of a target’s belief state over time, which we call a track. Effectively, these are sensors whose 

coverage overlaps  
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with the state estimate of the track. When the target enters the sen-sor field or emits a signal 

for the first time, it is detected by a set of sensor nodes. Each individual sensor performs a 

local detection using a likelihood ratio test. Nodes with detections form a collabora-tive group 

and select a single leader—for instance, based on time of detection as discussed in Section 

5.3.3. While we discuss the single-leader approach, it is also possible that a small number of 

nodes are elected to share the leadership. Figure 5.23 shows how the leader node maintains 

and migrates the collaborative processing group.  

  

 After the leader is elected, it initializes a belief state p(x|z) as a uniform disk Rdetect  

 

  

  

  

  

  

+  

r  r  

centered   at its own location [Figure 5.23(a)].     
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(c)  

  

Figure 5.23  Distributed group maintenance: (a) An elected leader initializes a uniform belief over  

  

a region Rdetect . (b) The leader estimates the target position and sends a suppression message to a region Rsuppr . 
Nodes not receiving suppression time out to detection  
  

mode. (c) A new leader is selected using a sensor selection criterion. The current belief state is handed off to the new 

leader.  
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The disk contains the true target location with high probability.  

  

This belief provides a starting point for the subsequent tracking.  

  

 As the target moves, the sensors that did not previously detect may begin detecting. These 

sensors are potential sources of con-tention. The leader uses the uncertainty in track position 

estimate and maximum detection range to calculate a suppression region and informs all group 

members in the suppression region to stop detection [Figure 5.23(b)]. This reduces energy 

consumption of the other nodes and avoids further track initiation. The assumption is that 

there is only one target in the neighborhood.  

  

  

 Sensors are selected to acquire new measurements, using, for example, the sensor selection 

algorithm discussed earlier [Figure 5.23(c)]. As the belief state is refined by successive 

measure-ments, the group membership needs to be updated. This is accom-plished by updating 

the suppression region using suppression and unsuppression messages to designated regions.  
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When the targets are far apart, their tracks are handled by mul-tiple collaborative groups 

working in parallel. When targets cross, the position uncertainty regions for their tracks 

overlap and the col-laborative groups for these tracks are no longer distinct. This can be 

detected when a leader node receives a suppression message from a node with a different 

(track) ID from its own. When two groups col-lide, the sensor measurements in the 

overlapping region can now be associated with either one of the two tracks.  

  

Data association algorithms such as optimal assignment or mul-tiple hypothesis processing 

can be used to resolve this ambiguity. For example, a simple track-merging approach is to 

keep the older track and drop the younger track. The two collaborative groups then merge into 

a single group. This approach works well if the two tracks were initiated from a single target. 

When the two tracks result from two targets, the merging operation will temporarily track the 

two targets as one. When they separate again, a new track corresponding to one of the targets 

will be reinitiated; however, the identities of the targets will be lost. Using an identity 

management algorithm,  
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the ambiguities in the target identities after crossing tracks can be resolved using additional 

local evidence of the track identity and then propagate the information to other relevant tracks. 

Details of man-aging groups for multiple targets and their identities can be found in references 

[142, 210].  

  

  

5.4.4  Case Study: Sensing Global Phenomena  

  

We have been primarily concerned with sensing point targets so far. In some situations, we 

might encounter the problem of sensing a global phenomenon using local measurements only. 

In Section 5.3.4, we briefly described the problem of sensing a global relation among a set of 

objects. Another example of sensing global phenomena is determining and tracking the 

boundary of a large object moving over a sensor field, where each sensor only “sees” a portion 

of the boundary. One such application is tracking a moving chemical plume using airborne 

and ground-based chemical sensors.  
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How does the sensor tasking for these problems differ from what we have considered in 

sensing point targets? A primary challenge is to relate a local sensing action to the utility of 

determining the global property of the object(s) of interest. To address this chal-lenge, we need 

to convert the global estimation and tracking problem into a local analysis, using, for example, 

the so-called primal-dual transformation [51, 140]. Just as a Fourier transform maps a global 

property of a signal such as periodicity in the time domain to a local feature in the frequency 

domain, the primal-dual transforma-tion maps a line in the primal space into a point in the dual 

space, and vice versa (Figure 5.24). Using the primal-dual transformation, the shape of a target, 

when approximated as a polygonal object, can be tracked as a set of points in the dual space.  

  

A useful consequence of this mapping is its use in tasking sensors to sense a global phenomenon such 

as the boundary of a moving half-plane shadow. As we noted earlier, a wireless sensor network is severely 

constrained by the on-board battery power. If a sen-sor only wakes up, senses, and communicates when 

it expects an event of interest, the power consumption of the network could  
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Primal space  Dual space  

 
  

  

Figure 5.24 Primal-dual transformation. It is a one-one mapping where a point maps to a line and a line maps to a point (adapted 

from [140]).  

  

be dramatically reduced. For the boundary tracking problem, the prediction of when a sensor 

needs to participate in a collaborative processing task can be made in the dual-space 
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representation, where a boundary line L in the primal space is represented as a point l in the 

dual space, and sensors (points in the primal space) are repre-sented as lines (Figure 5.25). 

Those lines that form a cell containing the point l correspond to sensors that are potentially 

relevant for the next sensing task. As the half-plane shadow moves in the physical space (i.e., 

primal space), the corresponding point in the dual space moves from cell to cell. When the 

point crosses the cell boundary,  

    

  Primal space  
     

y     

    

P2(a2, b2)    

    

 P4(a4, b4)     Dual space  
. 

P (a ,b )   p4:= a4      1 b4  

1 1  1  P3(a3, b3)  

    p3:= a3  
.
    1 b3  

 x  .   p 2:= a2      1 b2  

  
 . 

L: y = a  x 1  l(  , )  

  

  

  

p1:  = a1  . 1 b1  

  

Figure 5.25 The prediction of which sensors will be relevant for sensing the target boundary L in the primal space is 

equivalent to the determination of lines that form the cell containing the corresponding l in the dual space 

arrangement (adapted from [140]).  
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a set of new sensors may become relevant to sensing the half-plane boundary and can be 

read off from the lines enclosing the current position in the dual space. The number of lines 

bounding a cell is 4 on the average. Thus the number of sensors that need be active at once 

is very small, no matter how many sensors are present in the field. This idea has been 

implemented and tested on a testbed of Berkeley wireless sensor motes (see reference [140]). 

An open prob-lem that remains to be addressed is an effective decentralization of the 

computation in the dual-space containment test.  

  



Wireless Sensor Networks  S.Leelavathi  

  

149  

  

5.5  Summary  

  

We have developed a number of important ideas for efficiently allo-cating the sensing, 

processing, and communication resources of a sensor network to monitoring and other 

application tasks. We have introduced the models of information utility and costs, as a basis 

for decentralized coordination and optimization within the network. The idea of 

information-driven sensor tasking, and its realization in IDSQ , is to base the sensor 

selection on the potential contri-bution of a sensor to the current estimation task while using 

a moderate amount of resources. Applying the idea to sensing sta-tionary or moving 

physical phenomena, we developed a number of protocols, including the leader-based and 

moving center of aggrega-tion. Moving beyond local greedy sensor selection, we introduced 

an information-driven routing to jointly optimize for routing and information aggregation, 

using a multistep look-ahead search. We also touched on the important topic of creating and 

managing col-laborative processing sensor groups, which are common to a number of 

monitoring applications.  

A number of key themes emerge from these discussions:  

  

 Central to these ideas is the notion of information utility, and the associated costs of acquiring 

the information. In the resource-limited sensor networks, the appropriate balance between 

the information and the costs is of paramount concern, since  

  Chapter 5   Sensor Tasking and Control  
  

  

unnecessary data collection or communication consumes precious bandwidth and energy 

and overload human attention.  

  

 The information utility measures can take on many different forms, depending on the 

application requirement and context. Aside from information-theoretic considerations, we 

must care-fully evaluate the computational complexity of applying the utility measures to 

sensor tasking, as inappropriate uses of infor-mation utility may consume intolerable 

amounts of resources and thereby diminish the benefit.  

  

  

 As a sensor network’s primary function is to collect information from a physical environment, 

we must rethink the role of routing in this context. As is becoming clear in the examples we 
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examined, routing in a sensor network often does not just perform a pure information 

transport function. It must be co-optimized with the information aggregation or 

dissemination.  

  

  

 A collaborative processing group is an important abstraction of physical sensors, since 

individual sensors are ephemeral and hence less important, and sensors collectively support 

a set of tasks. The challenge is to efficiently create, maintain, and migrate groups as tasks 

and physical environments change. A major benefit of establishing the collaborative group 

abstraction is in enabling the programming of sensor networks to move from addressing 

indi-vidual nodes to addressing collectives, a topic we discuss again in the context of 

platform issues and programming models in Chapter 7.  

  

Sensor Network Platforms 
and Tools  

  

In previous chapters, we discussed various aspects of sensor networks, including sensing 

and estimation, networking, infrastructure ser-vices, sensor tasking, and data storage and 

query. A real-world sensor network application most likely has to incorporate all these 

elements, subject to energy, bandwidth, computation, storage, and real-time constraints. 

This makes sensor network application development quite different from traditional 

distributed system development or database programming. With ad hoc deployment and 

frequently changing network topology, a sensor network application can hardly assume an 

always-on infrastructure that provides reliable services such as optimal routing, global 

directories, or service discovery.  

  

There are two types of programming for sensor networks, those carried out by end users 

and those performed by application devel-opers. An end user may view a sensor network as 

a pool of data and interact with the network via queries. Just as with query languages for 

database systems like SQL, a good sensor network programming lan-guage should be 

expressive enough to encode application logic at a high level of abstraction, and at the same 

time be structured enough to allow efficient execution on the distributed platform. Examples 

of sensor database query interfaces are described in Chapter 6. Ideally, the end users should 

be shielded away from details of how sensors are organized and how nodes communicate.  
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On the other hand, an application developer must provide end users of a sensor network 

with the capabilities of data acquisition, processing, and storage. Unlike general distributed 

or database systems, collaborative signal and information processing (CSIP)  
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software comprises reactive, concurrent, distributed programs run-ning on ad hoc, 

resourceconstrained, unreliable computation and communication platforms. Developers at 

this level have to deal with all kinds of uncertainty in the real world. For example, signals are 

noisy, events can happen at the same time, communication and computation take time, 

communications may be unreliable, bat-tery life is limited, and so on. Moreover, because of 

the amount of domain knowledge required, application developers are typically signal and 

information processing specialists, rather than operating systems and networking experts. 

How to provide appropriate pro-gramming abstractions to these application writers is a key 

challenge for sensor network software development. In this chapter, we focus on software 

design issues to support this type of programming.  

  

To make our discussion of these software issues concrete, we first give an overview of a 

few representative sensor node hardware plat-forms (Section 7.1). In Section 7.2, we present 

the challenges of sensor network programming due to the massively concurrent inter-action 

with the physical world. Section 7.3 describes TinyOS for Berkeley motes and two types of 

node-centric programming inter-faces: an imperative language, nesC, and a dataflow-style 

language, TinyGALS. Node-centric designs are typically supported by node-level simulators 

such as ns-2 and TOSSIM, as described in Section 7.4. State-centric programming is a step 

toward programming beyond individual nodes. It gives programmers platform support for 

think-ing in high-level abstractions, such as the state of the phenomena of interest over space 

and time. An example of state-centric platforms is given in Section 7.5.  

7.1  Sensor Node Hardware  

  

Sensor node hardware can be grouped into three categories, each of which entails a different 

set of trade-offs in the design choices.  

  

 Augmented general-purpose computers: Examples include low-power PCs, embedded PCs 

(e.g., PC104), custom-designed PCs  

(e.g., Sensoria WINS NG nodes),
1
 and various personal digital assistants (PDA). These nodes 

typically run off-the-shelf operating systems such as Win CE, Linux, or real-time operating 

systems and use standard wireless communication protocols such as Bluetooth or IEEE 

802.11. Because of their relatively higher processing capability, they can accommodate a wide 

variety of sensors, ranging from simple microphones to more sophisticated video cameras.  
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Compared with dedicated sensor nodes, PC-like platforms are more power hungry. 

However, when power is not an issue, these platforms have the advantage that they can 

leverage the availabil-ity of fully supported networking protocols, popular programming 

languages, middleware, and other off-the-shelf software.  

  

 Dedicated embedded sensor nodes: Examples include the Berkeley mote family [98], the  

UCLA Medusa family [202], Ember nodes,
2
 and MIT µAMP [32]. These platforms typically 

use commercial off-the-shelf (COTS) chip sets with emphasis on small form factor, low power 

processing and communication, and simple sensor interfaces. Because of their COTS CPU, 

these platforms typically support at least one programming language, such as C. However, in 

order to keep the program footprint small to accommodate their small memory size, 

programmers of these platforms are given full access to hardware but barely any operating 

system support. A classical example is the TinyOS platform and its companion programming 

language, nesC. We will discuss these platforms in Sections 7.3.1 and 7.3.2.  

  

 System-on-chip (SoC) nodes: Examples of SoC hardware include smart dust [109], the  

BWRC picoradio node [187], and the PASTA node.
3
 Designers of these platforms try to push 

the hardware limits by fundamentally rethinking the hardware architecture trade-offs for a 

sensor node at the chip design level. The goal is to find new ways of integrating CMOS, 

MEMS, and RF technologies    

  

 

 See   http://www.sensoria.com/ and http://www.janet.ucla.edu/WINS/, and [158].  

2 See http://www.ember.com.  
  

3 See http://pasta.east.isi.edu.  
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to build extremely low power and small footprint sensor nodes that still provide certain 

sensing, computation, and communica-tion capabilities. Since most of these platforms are 

currently in the research pipeline with no predefined instruction set, there is no software 

platform support available.  

Among these hardware platforms, the Berkeley motes, due to their small form factor, open 

source software development, and commer-cial availability, have gained wide popularity in 

the sensor network research community. In the following section, we give an overview of the 

Berkeley MICA mote.  
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7.1.1  Berkeley Mote  

The Berkeley motes are a family of embedded sensor nodes sharing roughly the same 

architecture. Figure 7.1 shows a comparison of a subset of mote types.  

  Mote type  WeC    Rene  Rene2  Mica    Mica2    Mica2Dot  

Ex 
ample 

picture  

                  

  Chip  AT90LS8535    ATme ga163L  ATmega103L    AT meg a128L  

  Type  4 MHz, 8 bit    4 MHz,  8 bit  4 MHz, 8 bit    8  MHz,  8 bit  

MCU  Program 

memory  
            

  (KB)   8     16  128      12 8  

  RAM (KB)   0.5     1  4      4    

External  Chip   24 LC 256     A T45DB014B     

nonvolatile  Connection 

type  
   I 2C       SPI      

storage                 

  
Size (KB)  

   32  
     512  

    

Default  Type   Coin cell        

 

      Coin cell  

power  Typical 

capacity  
                   

source  (mAh)   575        2850        1000  

  

  
Chip  

  

  

   

  
TR 1000  

  

  

  

  

      

CC1000  

2 xAA   
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                 868/9 16MHz, 433,  

RF  

Radio 

frequency  
     868/9 16MHz      or  315 MHz  

             

  
Raw 

speed 

(kbps)  
  

 10  
  

40  
    

38.4  

             Amplitude    Frequency  

  Modulation 

type  
On/Off key  Shift key    Shift key  
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Figure 7.1  A comparison of Berkeley motes.  

  

  

  

Let us take the MICA mote as an example. The MICA motes have a two-CPU design, as 

shown in Figure 7.2. The main microcontroller (MCU), an Atmel ATmega103L, takes care 

of regular processing. A separate and much less capable coprocessor is only active when the 

MCU is being reprogrammed. The ATmega103L MCU has integrated 512 KB flash memory 

and 4 KB of data memory. Given these small memory sizes, writing software for motes is 

challenging. Ideally, pro-grammers should be relieved from optimizing code at assembly 

level to keep code footprint small. However, high-level support and soft-ware services are 

not free. Being able to mix and match only necessary software components to support a 

particular application is essential to achieving a small footprint. A detailed discussion of the 

software architecture for motes is given in Section 7.3.1.  

  

  

  51-pin I/O expansion connector  

8 programming  

Digital I/O  8 analog I/O  
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Figure 7.2  MICA mote architecture.  
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In addition to the memory inside the MCU, a MICA mote also has a separate 512 KB flash 

memory unit that can hold data. Since the connection between the MCU and this external 

memory is via a low-speed serial peripheral interface (SPI) protocol, the external memory is 

more suited for storing data for later batch processing than for storing programs. The RF 

communication on MICA motes uses the TR1000 chip set (from RF Monolithics, Inc.) 

operating at 916 MHz band. With hardware accelerators, it can achieve a max-imum of 50 

kbps raw data rate. MICA motes implement a 40 kbps transmission rate. The transmission 

power can be digitally adjusted by software though a potentiometer (Maxim DS1804). The 

maximum transmission range is about 300 feet in open space.  

  

Like other types of motes in the family, MICA motes support a 51 pin I/O extension 

connector. Sensors, actuators, serial I/O boards, or parallel I/O boards can be connected via 

the connector. A sensor/ actuator board can host a temperature sensor, a light sensor, an 

accelerometer, a magnetometer, a microphone, and a beeper. The serial I/O (UART) 

connection allows the mote to communicate with a PC in real time. The parallel connection is 

primarily for downloading programs to the mote.  

  

It is interesting to look at the energy consumption of various components on a MICA mote. 

As shown in Figure 7.3, a radio  

  

  



 

 

  

 Component  

 

Rate  

 Startup 

time  
 Current 

consumption  

 MCU active  

  
  

4 MHz  

  

N/A  

  

5.5 mA  

MCU idle   4 MHz   1 s   1.6 mA  
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MCU suspend  32 kHz  4 ms  <20 A  

        

Radio transmit  40 kHz  30 ms  12 mA  

        

Radio receive  40 kHz  30 ms  1.8 mA  

          

 

Photoresister  2000 Hz  10 ms  1.235 mA  

          

 

Accelerometer  100 Hz  10 ms  5 mA/axis  

          

Temperature  2 Hz  500 ms  0.150 mA  

          

  

Figure 7.3  Power consumption of MICA motes.  
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transmission bears the maximum power consumption. However, each radio packet (e.g., 30 

bytes) only takes 4 ms to send, while lis-tening to incoming packets turns the radio receiver 

on all the time. The energy that can send one packet only supports the radio receiver for about 

27 ms. Another observation is that there are huge differ-ences among the power consumption 

levels in the active mode, the idle mode, and the suspend mode of the MCU. It is thus 

worthwhile from an energy-saving point of view to suspend the MCU and the RF receiver as 

long as possible.  

  

  

  

  

7.2  Sensor Network Programming Challenges  

  

Traditional programming technologies rely on operating systems to provide abstraction for 

processing, I/O, networking, and user inter-action hardware, as illustrated in Figure 7.4. 

When applying such a  

  

  

  

React to all events/messages  
  

(typically using an FSM)  
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• Message passing  
  

• Handshaking  
  

• Locks and monitors  
  

• Interrupt services  
  

• Polling sensors  

  

  

OS      OS    OS  

    Network      

Processor  Processor  Processor  

Sensors  Power  Sensors  
  

  

Figure 7.4 Traditional embedded system programming interface.  
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model to programming networked embedded systems, such as sensor networks, the 

application programmers need to explicitly deal with message passing, event 

synchronization, interrupt handing, and sen-sor reading. As a result, an application is typically 

implemented as a finite state machine (FSM) that covers all extreme cases: unreliable 

communication channels, long delays, irregular arrival of messages, simultaneous events, and 

so on. In a target tracking application implemented on a Linux operating system and with 

directed diffu-sion routing, roughly 40 percent of the code implements the FSM and the glue 

logic of interfacing computation and communication [142].  

  

For resource-constrained embedded systems with real-time require-ments, several 

mechanisms are used in embedded operating systems to reduce code size, improve response 

time, and reduce energy con-sumption. Microkernel technologies [211] modularize the 

operating system so that only the necessary parts are deployed with the appli-cation. Realtime 

scheduling [27] allocates resources to more urgent tasks so that they can be finished early. 

Event-driven execution allows the system to fall into low-power sleep mode when no 

interesting events need to be processed. At the extreme, embedded operating systems tend to 

expose more hardware controls to the programmers, who now have to directly face device 

drivers and scheduling algo-rithms, and optimize code at the assembly level. Although these 

techniques may work well for small, stand-alone embedded systems, they do not scale up for 

the programming of sensor networks for two reasons.  

  

  

  

  

 Sensor networks are large-scale distributed systems, where global properties are derivable 

from program execution in a massive number of distributed nodes. Distributed algorithms 

themselves are hard to implement, especially when infrastructure support is limited due to 

the ad hoc formation of the system and constrained power, memory, and bandwidth 

resources.  

  
 As sensor nodes deeply embed into the physical world, a sensor network should be able to 

respond to multiple concurrent stimuli at the speed of changes of the physical phenomena 

of interest.  
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In the rest of the chapter, we give several examples of sensor network software design 

platforms. We discuss them in terms of both design methodologies and design platforms. A 

design methodo-logy implies a conceptual model for programmers, with associated 

techniques for problem decomposition for the software designers. For example, does the 

programmer think in terms of events, message passing, and synchronization, or does he/she 

focus more on informa-tion architecture and data semantics? A design platform supports a 

design methodology by providing design-time (precompile time) lan-guage constructs and 

restrictions, and run-time (postcompile time) execution services.   

There is no single universal design methodology for all applica-tions. Depending on the 

specific tasks of a sensor network and the way the sensor nodes are organized, certain 

methodologies and plat-forms may be better choices than others. For example, if the network 

is used for monitoring a small set of phenomena and the sensor nodes are organized in a 

simple star topology, then a client-server software model would be sufficient. If the network 

is used for monitoring a large area from a single access point (i.e., the base station), and if 

user queries can be decoupled into aggregations of sensor readings from a subset of sensor 

nodes, then a tree structure that is rooted at the base station is a better choice. However, if the 

phenomena to be moni-tored are moving targets, as in the target tracking examples discussed 

in Chapter 2, then neither the simple client-server model nor the tree organization is optimal. 

More sophisticated design methodologies and platforms are required.  

7.3  Node-Level Software Platforms  

Most design methodologies for sensor network software are node-centric, where 

programmers think in terms of how a node should behave in the environment. A node-level 

platform can be a node-centric operating system, which provides hardware and networking 

abstractions of a sensor node to programmers, or it can be a language platform, which 

provides a library of components to programmers.  

A typical operating system abstracts the hardware platform by pro-viding a set of services 

for applications, including file management, memory allocation, task scheduling, peripheral 

device drivers, and networking. For embedded systems, due to their highly specialized 

applications and limited resources, their operating systems make dif-ferent trade-offs when 

providing these services. For example, if there is no file management requirement, then a file 

system is obviously not needed. If there is no dynamic memory allocation, then mem-ory 

management can be simplified. If prioritization among tasks is critical, then a more elaborate 

priority scheduling mechanism may be added.  

  

  

TinyOS [98] and TinyGALS [38] are two representative examples of node-level 

programming tools that we will cover in detail in this sec-tion. Other related software 

platforms include Maté [130], a virtual machine for the Berkeley motes. Observing that 
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operations such as polling sensors and accessing internal states are common to all sen-sor 

network application, Maté defines virtual machine instructions to abstract those operations. 

When a new hardware platform is intro-duced with support for the virtual machine, software 

written in the Maté instruction set does not have to be rewritten.  

  

  

7.3.1  Operating System: TinyOS  

  

TinyOS aims at supporting sensor network applications on resource-constrained hardware 

platforms, such as the Berkeley motes.  

  

To ensure that an application code has an extremely small foot-print, TinyOS chooses to 

have no file system, supports only static memory allocation, implements a simple task model, 

and provides minimal device and networking abstractions. Furthermore, it takes a language-

based application development approach, to be discussed later, so that only the necessary 

parts of the operating system are compiled with the application. To a certain extent, each 

TinyOS application is built into the operating system.  

  

Like many operating systems, TinyOS organizes components into layers. Intuitively, the 

lower a layer is, the “closer” it is to the hardware; the higher a layer is, the “closer” it is to the 

application.  
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In addition to the layers, TinyOS has a unique component architec-ture and provides as a 

library a set of system software components. A component specification is independent of 

the component implementation. Although most components encapsulate software 

functionalities, some are just thin wrappers around hardware. An application, typically 

developed in the nesC language covered in the next section, wires these components 

together with other application-specific components.  

Let us consider a TinyOS application example—FieldMonitor, where all nodes in a 

sensor field periodically send their temperature and photo sensor readings to a base station 

via an ad hoc routing mechanism. A diagram of the FieldMonitor application is shown in 

Figure 7.5, where blocks represent TinyOS components and arrows represent function calls 

among them. The directions of the arrows are from callers to callees.  
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Figure 7.5 The FieldMonitor application for sensing and sending measurements.   
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TIMER  

  

Internal state: evenFlag  

  

  
  

Figure 7.6  The Timer component and its interfaces.  

  

  

  

  

To explain in detail the semantics of TinyOS components, let us first look at the Timer 

component of the FieldMonitor application, as shown in Figure 7.6. This component is 

designed to work with a clock, which is a software wrapper around a hardware clock that 

gen-erates periodic interrupts. The method calls of the Timer component are shown in the 

figure as the arrowheads. An arrowhead pointing into the component is a method of the 

component that other com-ponents can call. An arrowhead pointing outward is a method 

that this component requires another layer component to provide. The absolute directions 
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of the arrows, up or down, illustrate this compo-nent’s relationship with other layers. For 

example, the Timer depends on a lower layer HWClock component. The Timer can set the  
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rate of the clock, and in response to each clock interrupt it toggles an internal Boolean flag, 

evenFlag, between true (or 1) and false (or 0). If the flag is 0, the Timer produces a 

timer0Fire event to trigger other com-ponents; otherwise, it produces a timer1Fire event. 

The Timer has an init() method that initializes its internal flag, and it can be enabled and 

disabled via the start and stop calls.  

A program executed in TinyOS has two contexts, tasks and events, which provide two 

sources of concurrency. Tasks are created (also called posted) by components to a task 

scheduler. The default  

implementation of the TinyOS scheduler maintains a task queue and invokes tasks 

according to the order in which they were posted. Thus tasks are deferred computation 

mechanisms. Tasks always run to completion without preempting or being preempted by 

other tasks. Thus tasks are nonpreemptive. The scheduler invokes a new task from the task 

queue only when the current task has completed. When no tasks are available in the task 

queue, the scheduler puts the CPU into the sleep mode to save energy.  

The ultimate sources of triggered execution are events from hard-ware: clock, digital 

inputs, or other kinds of interrupts. The execution of an interrupt handler is called an event 

context. The processing of events also runs to completion, but it preempts tasks and can be 

pre-empted by other events. Because there is no preemption mechanism among tasks and 

because events always preempt tasks, programmers are required to chop their code, 

especially the code in the event con-texts, into small execution pieces, so that it will not 

block other tasks for too long.  

notify its caller by a sendDone() method call. Only at this time is the AM component ready 

to accept another packet.  

  

In TinyOS, resource contention is typically handled through explicit rejection of 

concurrent requests. All split-phase operations return Boolean values indicating whether a 

request to perform the operation is accepted. In the above example, a call of send(), when 

the AM component is still sending the first packet, will result in an error signaled by the 

AM component. To avoid such an error, the caller of the AM component typically 

implements a pending lock, to remember not to request further sendings until the 

sendDone() method is called. To avoid loss of packets, a queue should be incor-porated by 

the caller if necessary.  

In summary, many design decisions in TinyOS are made to ensure that it is extremely 

lightweight. Using a component architecture that contains all variables inside the 

components and disallowing dynamic memory allocation reduces the memory management 

over-head and makes the data memory usage statically analyzable. The simple concurrency 
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model allows high concurrency with low thread maintenance overhead. As a consequence, 

the entire FieldMonitor system shown in Figure 7.5 takes only 3 KB of space for code and 

226 bytes for data. However, the advantage of being lightweight is not without cost. Many 

hardware idiosyncrasies and complexities of concurrency management are left for the 

application programmers to handle. Several tools have been developed to give programmers 

language-level support for improving programming productivity and code robustness. We 

introduce in the next two sections two special-purpose languages for programming sensor 

network nodes. Although both languages are designed on top of TinyOS, the principles they 

represent may apply to other platforms.  

7.3.2  Imperative Language: nesC  

nesC [79] is an extension of C to support and reflect the design of TinyOS v1.0 and above. 

It provides a set of language constructs and restrictions to implement TinyOS components 

and applications.  

Component Interface  

A component in nesC has an interface specification and an imple-mentation. To reflect the 

layered structure of TinyOS, interfaces of a nesC component are classified as provides or 

uses interfaces. A pro-vides interface is a set of method calls exposed to the upper layers, 

while a uses interface is a set of method calls hiding the lower layer components. Methods 

in the interfaces can be grouped and named. For example, the interface specification of the 

Timer component in Figure 7.6 is listed in Figure 7.7. The interface, again, independent of 

the implementation, is called TimerModule.  

Although they have the same method call semantics, nesC distin-guishes the directions 

of the interface calls between layers as event calls module TimerModule {  

  
provides {  

  
interface StdControl;  

  
interface Timer01;  

  
}  
u
s
e
s 
i
n
te
rf
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;  
  
}  

  
interface StdControl {  

  
command result_t init();  

  
}  

  
interface Timer01 {  

  
command result_t start(char type, uint32_t interval;  

  
command result_t stop();  
 event result_t timer0Fire();  
 event result_t timer1Fire();  

  
}  

  
interface Clock {  
 command result_t setRate(char interval, char scale); event result_t 
fire(); }  
  

  
Figure 7.7 The interface definition of the Timer component in nesC.  

and command calls. An event call is a method call from a lower layer component to a higher 

layer component, while a command is the opposite. Note that one needs to know both the 

type of the interface (provides or uses) and the direction of the method call (event or com-

mand) to know exactly whether an interface method is implemented by the component or 

is required by the component.  

  

The separation of interface type definitions from how they are used in the components 

promotes the reusability of standard interfaces. A component can provide and use the same 



Wireless Sensor Networks  S.Leelavathi  

  

173  

  

interface type, so that it can act as a filter interposed between a client and a service. A com-

ponent may even use or provide the same interface multiple times. In these cases, the 

component must give each interface instance a separate name using the as notation, as 

shown in the Clock interface in Figure 7.7.  

Component Implementation  

  

There are two types of components in nesC, depending on how they are implemented: 

modules and configurations. Modules are implemented by application code (written in a C-

like syntax). Configurations are implemented by connecting interfaces of existing 

components.  

  

The implementation part of a module is written in C-like code. A command or an event 

bar in an interface foo is referred as foo.bar. A keyword call indicates the invocation of a 

command. A keyword signal indicates the triggering by an event. For example, Figure 7.8 

shows part of the implementation of the Timer component, whose interface is defined in 

Figure 7.7. In a sense, this implementation is very much like an object in object-oriented 

programming without any constructors.  

Configuration is another kind of implementation of components, obtained by connecting 

existing components. Suppose we want to connect the Timer component and a hardware 

clock wrapper, called HWClock, to provide a timer service, called TimerC. Figure 7.9 

shows a conceptual diagram of how the components are connected, and Figure 7.10 shows 

the corresponding nesC code.  

  module Timer {  
  provides {  
interface StdControl;   

interface Timer01;    
}   
uses interface Clock as Clk;    
}   
  implementation {  

bool evenFlag;  

  
command result_t StdControl.init  () { 

evenFlag = 0;    
return call Clk.setRate(128, 4); //4 ticks per second    
}   
event result_t Clk.fire() { 
  evenFlag = !evenFlag; 
  if (evenFlag) {    
signal Timer01.timer0Fire();    
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}  else {  
signal Timer01.timer1Fire();    
}   
return SUCCESS;    
}   
...   
}  

  

  
Figure 7.8 The implementation definition of the Timer component in nesC.  

First of all, notice that the keyword configuration in the speci-fication indicates that this 

component is not implemented directly as a module. In the implementation section of the 

configuration, the code first includes the two components, and then specifies that the 

interface StdControl of the TimerC component is the StdControl interface of the 

TimerModule; similarly for the Timer01 interface. The connection between the Clock 

interfaces is specified using the -> operator. Essentially, this interface is hidden from upper 

layers.  
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Figure 7.9  The TimerC configuration implemented by connecting Timer with HWClock.  

Recall that TinyOS does not support dynamic memory allocation, so all components are 

statically constructed at compile time.  

A complete application is always a configuration rather than a module. An application 

must contain the Main module, which links the code to the scheduler at run time. The Main 

has a single StdControl interface, which is the ultimate source of initialization of all 

components.  

Concurrency and Atomicity  

  

The language nesC directly reflects the TinyOS execution model through the notion of 

command and event contexts. Figure 7.11  

configuration TimerC { 
  provides {   
interface StdControl; 
  interface Timer01; 
   
}   
}   
implementation {    
components TimerModule, Clock;  

  
StdControl = TimerModule.StdControl; 
  Timer = TimerModule.Timer;  

  
TimerModule.Clk   -> HWClock.Clock;  
}  
Figure 7.10  The implementation definition of the TimerC configuration in nesC.  

shows a section of the component SenseAndSend to illustrate some language features to 

support concurrency in nesC and the effort to reduce race conditions. The SenseAndSend 

component is intended to be built on top of the Timer component (described in the previous 

section), an ADC component, which can provide sensor readings, and a communication 

component, which can send (or, more pre-cisely, broadcast) a packet. When responding to 

a timer0Fire event, the SenseAndSend component invokes the ADC to poll a sensor read-

ing. Since polling a sensor reading can take a long time, a split-phase operation is 

implemented for getting sensor readings. The call to ADC.getData() returns immediately, 

and the completion of the oper-ation is signaled by an ADC.dataReady() event. A busy flag 

is used to explicitly reject new requests while the ADC is fulfilling an exist-ing request. 

The ADC.getData() method sets the flag to true, while the ADC.dataReady() method sets 

it back to false. Sending the sensor reading to the next-hop neighbor via wireless 

communication is also a long operation. To make sure that it does not block the processing 
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of the ADC.dataReady() event, a separate task is posted to the sched-uler. A task is a method 

defined using the task keyword. In order  



 

 

module SenseAndSend{   
provides interface StdControl; 
  uses interface ADC; 
  uses interface Timer: 
  u ses interface Send;  
}  

  
implementation { 
  bool busy; 
   
norace uint16_t sensorReading;  

  
command result_t StdControl.init() {    
busy = FALSE;    
}  

  
event result_t Timer.timer0Fire() { 
  bool localBusy;   atomic 
{   localBusy = busy;   busy = 
TRUE;    
}   
if (!localBusy  } {  
call ADC.getData(); //start getting sensor reading return SUCESS; 

  } else { return FAILED;    
}   
}  

  
task void sendData() { // send sensorReading   

adcPacket.data = sensorReading;    
call Send.send(&adcPacket, sizeof adcPacket.data}; return SUCESS; 
  }   

event result_t ADC.dataReady(uinit16_t data) { sensorReading = data; 
  post sendData();   atomic {   busy = FALSE;    
}   
return SUCCESS;    
}   
...   
}  

  
        Figure 7.11 A section of the implementation of SenseAndSend, illustrating the handling of concurrency in nesC.  

Wireless Sensor Networks  S.Leelavathi  

   

to simplify the data structures inside the scheduler, a task cannot have arguments. Thus the sensor 

reading to be sent is put into a sensorReading variable.  

There is one source of race condition in the SenseAndSend, which is the updating of the busy 

flag. To prevent some state from being updated by both scheduled tasks and event-triggered 
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interrupt han-dlers, nesC provides language facilities to limit the race conditions among these 

operations.  

In nesC, code can be classified into two types:  

• Asynchronous code (AC): Code that is reachable from at least one interrupt handler.  

  

• Synchronous code (SC): Code that is only reachable from tasks.  

  

Because the execution of TinyOS tasks are nonpreemptive and interrupt handlers preempts tasks, 

SC is always atomic with respect to other SCs. However, any update to shared state from AC, or 

from SC that is also updated from AC, is a potential race condition. To rein-state atomicity of 

updating shared state, nesC provides a keyword atomic to indicate that the execution of a block of 

statements should not be preempted. This construction can be efficiently implemented by turning 

off hardware interrupts. To prevent blocking the inter-rupts for too long and affecting the 

responsiveness of the node, nesC does not allow method calls in atomic blocks. In fact, nesC has a 

com-piler rule to enforce the accessing of shared variables to maintain the race-free condition. If a 

variable x is accessed by AC, then any access of x outside of an atomic statement is a compile-time 

error. This rule may be too rigid in reality. When a programmer knows for sure that a data race is 

not going to occur, or does not care if it occurs, then a norace declaration of the variable can prevent 

the compiler from checking the race condition on that variable.  

Thus, to correctly handle concurrency, nesC programmers need to have a clear idea of what is 

synchronous code and what is asynchronous code. However, since the semantics is hidden away in 

the layered structure of TinyOS, it is sometimes not obvious to the programmers where to add 

atomic blocks.  
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7.3.3  Dataflow-Style Language: TinyGALS  

Dataflow languages [3] are intuitive for expressing computation on interrelated data units by 

specifying data dependencies among them. A dataflow program has a set of processing units 

called actors. Actors have ports to receive and produce data, and the directional connec-tions 

among ports are FIFO queues that mediate the flow of data. Actors in dataflow languages 

intrinsically capture concurrency in a system, and the FIFO queues give a structured way of 

decoupling their executions. The execution of an actor is triggered when there are enough input 

data at the input ports.  

  

Asynchronous event-driven execution can be viewed as a special case of dataflow models, 

where each actor is triggered by every incom-ing event. The globally asynchronous and locally 

synchronous (GALS) mechanism is a way of building event-triggered concurrent execu-tion from 

thread-unsafe components. TinyGALS is such a language for TinyOS.  

  

One of the key factors that affects component reusability in embedded software is the 

component composability, especially con-current composability. In general, when developing a 

component, a programmer may not anticipate all possible scenarios in which the component may 

be used. Implementing all access to variables as atomic blocks incurs too much overhead. At the 

other extreme, making all variable access unprotected is easy for coding but certainly introduces 

bugs in concurrent composition. TinyGALS addresses concurrency concerns at the system level, 

rather than at the com-ponent level as in nesC. Reactions to concurrent events are managed by a 

dataflow-style FIFO queue communication.  

TinyGALS Programming Model  

  

TinyGALS supports all TinyOS components, including its interfaces and module 

implementations.
1
 All method calls in a component  
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1 Although posting tasks is not part of the TinyGALS semantics, the TinyGALS compiler and run time are compatible 

with it.  
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interface are synchronous method calls—that is, the thread of control enters immediately into the 

callee component from the caller component. An application in TinyGALS is built in two steps: 

(1) constructing asynchronous actors from synchronous com-ponents,
5
 and (2) constructing an 

application by connecting the asynchronous components though FIFO queues.  

An actor in TinyGALS has a set of input ports, a set of output ports, and a set of connected 

TinyOS components. An actor is constructed by connecting synchronous method calls among 

TinyOS compo-nents. For example, Figure 7.12 shows a construction of TimerActor  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Figure 7.12  Construction of a TimerActor from a Timer component and a Clock component.  

  

  



 

 

  

 In the implementation of TinyGALS as described in [39], which is based on TinyOS 0.6.1 and predates nesC, the 

asynchronous actors are called modules, and asyn-chronous connections are represented as “->”. To avoid the confusion 

with nesC, we have modified some of the TinyGALS syntax for inclusion in this section.  
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from two TinyOS components (i.e., nesC modules), Timer and Clock. Figure 7.13 is the 

corresponding TinyGALS code. An actor can expose one or more initialization methods. These 

methods are called by the TinyGALS run time before the start of an applica-tion. Initialization 

methods are called in a nondeterministic order, so their implementations should not have any cross-

component dependencies.  

  

At the application level, the asynchronous communication of actors is mediated using FIFO 

queues. Each connection can be param-eterized by a queue size. In the current implementation of 

TinyGALS, events are discarded when the queue is full. However, other mech-anisms such as 

discarding the oldest event can be used. Figure 7.14 shows a TinyGALS composition of timing, 

sensing, and sending part of the FieldMonitor application in Figure 7.5.  

Actor TimerActor {   

include components {    
TimerModule;    
HWClock;    
}   
init {    
TimerModule.init;    
}   
port in {   timerStart; 
   
}   
port out {   
zeroFire;   oneFire;    
}   
}   
implementation {    
timerStart   -> TimerModule.Timer.start; 

TimerModule.Clk   -> HWClock.Clock;  
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TimerModule.Timer.timer0Fire   -> zeroFire;  
TimerModule.Timer.timer1Fire   -> oneFire;  
}  

  

  
Figure 7.13  Implementation of the TimerActor in TinyGALS.  
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Figure 7.14    Triggering, sensing, and sending actors of the FieldMonitor in TinyGALS.  

  

  

  
Application FieldMonitor {    
include actors {   TimerActor; 
   
SenseAndSend;    
Comm;    
}   
implementation {   zeroFire => 
photoSense 5;   oneFire =>  
 tempSense 5; send => 
comm_input 10;    

Comm_input  

   

  

Comm  

  



 

 

}   
START@ timerStart;    

}  

Figure 7.15  Implementation of the FieldMonitor in TinyGALS.  

Figure 7.15 is the TinyGALS specification of the configuration in Figure 7.14. We omit the 

details of the SenseAndSend actor and the Comm actor, whose ports are shown in Figure 7.14. The 

symbol => rep-resents a FIFO queue connecting input ports and output ports. The integer at the end 

of the line specifies the queue size. The command START@ indicates that the TinyGALS run time 

puts an initial event into the corresponding port after all initialization is finished. In our exam-ple, 

an event inserted into the timerStart port starts the HWClock, and the rest of the execution is driven 

by clock interrupt events.  

  

The TinyGALS programming model has the advantage that actors become decoupled through 

message passing and are easy to develop independently. However, each message passed will trigger 

the sched-uler and activate a receiving actor, which may quickly become  
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inefficient if there is a global state that must be shared among mul-tiple actors. TinyGUYS 

(Guarded Yet Synchronous) variables are a mechanism for sharing global state, allowing quick 

access but with protected modification of the data.  

In the TinyGUYS mechanism, global variables are guarded. Actors may read the global 

variables synchronously (without delay). How-ever, writes to the variables are asynchronous in 

the sense that all writes are buffered. The buffer is of size one, so the last actor that writes to a 

variable wins. TinyGUYS variables are updated by the scheduler only when it is safe (e.g., after 

one module finishes and before the scheduler triggers the next module).  

TinyGUYS have global names defined at the application level which are mapped to the 

parameters of each actor and are further mapped to the external variables of the components that 

use these variables. The external variables are accessed within a component by using special 

keywords: PARAM_GET and PARAM_PUT. The code generator produces thread-safe 

implementation of these methods using locking mechanisms, such as turning off interrupts.  

TinyGALS Code Generation  

  

TinyGALS takes a generative approach to mapping high-level con-structs such as FIFO queues 

and actors into executables on Berkeley motes. Given the highly structured architecture of 

TinyGALS applica-tions, efficient scheduling and event handling code can be automat-ically 

generated to free software developers from writing error-prone concurrency control code. The 

rest of this section discusses a code generation tool that is implemented based on TinyOS v0.6.1 

for Berkeley motes.  

Given the definitions for the components, actors, and application, the code generator 

automatically generates all of the necessary code for (1) component links and actor connections, 

(2) application ini-tialization and start of execution, (3) communication among actors, and (4) 

global variable reads and writes.  

  

Similar to how TinyOS deals with connected method calls among components, the 

TinyGALS code generator generates a set of aliases for each synchronous method call. The code 

generator also creates a system-level initialization function called app_init(), which con-tains 

calls to the init() method of each actor in the system. The app_init() function is one of the first 

functions called by the TinyGALS run-time scheduler before executing the application. An 

application start function app_start() is created based on the @start annotation. This function 

triggers the input port of the actor defined as the application starting point.  

  

The code generator automatically generates a set of scheduler data structures and functions 

for each asynchronous connection between actors. For each input port of an actor, the code 

generator generates a queue of length n, where n is specified in the application definition. The 

width of the queue depends on the number of arguments of the method connected to the port. If 
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there are no arguments, then as an optimization, no queue is generated for the port (but space is 

still reserved for events in the scheduler event queue).  

For each output port of an actor, the code generator generates a function that has the same 

name as the output port. This function is called whenever a method of a component wishes to 

write to an output port. The type signature of the output port function matches that of the method 

that connects to the port. For each input port connected to the output port, a put() function is 

generated which handles the actual copying of data to the input port queue. The output port 

function calls the input port’s put() function for each connected input port. The put() function 

adds the port identifier to the scheduler event queue so that the scheduler will activate the actor 

at a later time.  

For each connection between a component method and an actor input port, a function is 

generated with a name formed from the name of the input port and the name of the component 

method. When the scheduler activates an actor via an input port, it first calls this generated 

function to remove data from the input port queue and then passes it to the component method.  

For each TinyGUYS variable declared in the application definition, a pair of data structures 

and a pair of access functions are generated. The pair of data structures consists of a data storage 

location of the type specified in the module definition that uses the global variable, along with 

a buffer for the storage location. The pair of access functions consists of a PARAM_GET() 

function that returns the value of the global variable, and a PARAM_PUT() function that stores 

a new value for the variable in the variable’s buffer. A generated flag indicates whe-ther the 

scheduler needs to update the variables by copying data from the buffer.  

Since most of the data structures in the TinyGALS run-time sched-uler are generated, the 

scheduler does not need to worry about han-dling different data types and the conversion among 

them. What is left in the run-time scheduler is merely event-queuing and function-triggering 

mechanisms. As a result, the TinyGALS run-time scheduler is very lightweight. The scheduler 

itself takes 112 bytes of memory, comparable with the original 86-byte TinyOS v0.6.1 scheduler.  

  

7.4  Node-Level Simulators  

Node-level design methodologies are usually associated with simu-lators that simulate the 

behavior of a sensor network on a per-node basis. Using simulation, designers can quickly 

study the performance (in terms of timing, power, bandwidth, and scalability) of poten-tial 

algorithms without implementing them on actual hardware and dealing with the vagaries of 

actual physical phenomena.A node-level simulator typically has the following components:  

   Sensor node model: A node in a simulator acts as a software execu-tion platform, a sensor 

host, as well as a communication terminal. In order for designers to focus on the application-

level code, a node model typically provides or simulates a communication pro-tocol stack, 

sensor behaviors (e.g., sensing noise), and operating system services. If the nodes are mobile, 
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then the positions and motion properties of the nodes need to be modeled. If energy char-

acteristics are part of the design considerations, then the power consumption of the nodes 

needs to be modeled.  

  

   Communication model: Depending on the details of modeling, communication may be 

captured at different layers. The most elaborate simulators model the communication media 

at the phys-ical layer, simulating the RF propagation delay and collision of simultaneous 

transmissions. Alternately, the communication may be simulated at the MAC layer or network 

layer, using, for example, stochastic processes to represent low-level behaviors.  

  

 Physical environment model: A key element of the environment within which a sensor network 

operates is the physical phe-nomenon of interest. The environment can also be simulated at 

various levels of detail. For example, a moving object in the physical world may be abstracted 

into a point signal source. The motion of the point signal source may be modeled by 

differential equations or interpolated from a trajectory profile. If the sensor network is 

passive—that is, it does not impact the behavior of the environment— then the environment 

can be simulated separately or can even be stored in data files for sensor nodes to read in. If, 

in addition to sensing, the network also performs actions that influence the behavior of the 

environment, then a more tightly integrated simulation mechanism is required.  

  

  

 Statistics and visualization: The simulation results need to be col-lected for analysis. Since the 

goal of a simulation is typically to derive global properties from the execution of individual 

nodes, visualizing global behaviors is extremely important. An ideal visualization tool should 

allow users to easily observe on demand the spatial distribution and mobility of the nodes, the 

connectivity among nodes, link qualities, end-to-end communication routes and delays, 

phenomena and their spatio-temporal dynamics, sensor readings on each node, sensor node 

states, and node lifetime parameters (e.g., battery power).  

A sensor network simulator simulates the behavior of a subset of the sensor nodes with 

respect to time. Depending on how the time is advanced in the simulation, there are two types 

of execution mod-els: cycle-driven simulation and discrete-event simulation. A cycle-driven 

(CD) simulation discretizes the continuous notion of real time into (typically regularly spaced) 

ticks and simulates the system behavior at these ticks. At each tick, the physical phenomena are 

first simulated, and then all nodes are checked to see if they have anything to sense, process, or 

communicate. Sensing and computation are assumed to be finished before the next tick. Sending 

a packet is also assumed to be completed by then. However, the packet will not be available for 

the destination node until the next tick. This split-phase communi-cation is a key mechanism to 

reduce cyclic dependencies that may occur in cycle-driven simulations. That is, there should be 

no two components, such that one of them computes yk = f (xk) and the other computes xk = 

g(yk), for the same tick index k. In fact, one of the most subtle issues in designing a CD simulator 
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is how to detect and deal with cyclic dependencies among nodes or algorithm com-ponents. 

Most CD simulators do not allow interdependencies within a single tick. Synchronous languages 

[91], which are typically used in control system designs rather than sensor network designs, do 

allow cyclic dependencies. They use a fixed-point semantics to define the behavior of a system 

at each tick.  

Unlike cycle-driven simulators, a discrete-event (DE) simulator assumes that the time is 

continuous and an event may occur at any time. An event is a 2-tuple with a value and a time 

stamp indicat-ing when the event is supposed to be handled. Components in a DE simulation 

react to input events and produce output events. In node-level simulators, a component can be a 

sensor node and the events can be communication packets; or a component can be a soft-ware 

module within a node and the events can be message passings among these modules. Typically, 

components are causal, in the sense that if an output event is computed from an input event, 

then the time stamp of the output event should not be earlier than that of the input event. 

Noncausal components require the simulators to be able to roll back in time, and, worse, they 

may not define a determin-istic behavior of a system [129]. A DE simulator typically requires a 

global event queue. All events passing between nodes or modules are put in the event queue and 

sorted according to their chronological order. At each iteration of the simulation, the simulator 

removes the first event (the one with the earliest time stamp) from the queue and triggers the 

component that reacts to that event.  

In terms of timing behavior, a DE simulator is more accurate than a CD simulator, and, as 

a consequence, DE simulators run slower. The overhead of ordering all events and 

computation, in addition to the values and time stamps of events, usually dominates the 

computation time. At an early stage of a design when only the asymptotic behaviors rather 

than timing properties are of concern, CD simulations usually require less complex 

components and give faster simulations. Partly because of the approximate timing behav-iors, 

which make simulation results less comparable from application to application, there is no 

general CD simulator that fits all sensor network simulation tasks. We have come across a 

number of home-grown simulators written in Matlab, Java, and C++. Many of them are 

developed for particular applications and exploit application-specific assumptions to gain 

efficiency.  

DE simulations are sometimes considered as good as actual imple-mentations, because of 

their continuous notion of time and discrete notion of events. There are several open-source 

or commercial simu-lators available. One class of these simulators comprises extensions of 

classical network simulators, such as ns-2,
6
 J-Sim (previously known as JavaSim),

7
 and 

GloMoSim/QualNet.
8
 The focus of these simu-lators is on network modeling, protocols 

stacks, and simulation performance. Another class of simulators, sometimes called software-

in-the-loop simulators, incorporate the actual node software into the simulation. For this 

reason, they are typically attached to particular hardware platforms and are less portable. 

Examples include TOSSIM [131] for Berkeley motes and Em* (pronounced em star) [62] for 

Linux-based nodes such as Sensoria WINS NG platforms.  



Wireless Sensor Networks  S.Leelavathi  

  

188  

  

7.4.1  The ns-2 Simulator and its Sensor Network Extensions  

  

The simulator ns-2 is an open-source network simulator that was orig-inally designed for 

wired, IP networks. Extensions have been made  

  

 Available at   http://www.isi.edu/nsnam/ns.  

7 Available at http://www.j-sim.org.  
  

8 Available at http://pcl.cs.ucla.edu/projects/glomosim. 
to simulate wireless/mobile networks (e.g., 802.11 MAC and TDMA MAC) and more 

recently sensor networks. While the original ns-2 only supports logical addresses for each 

node, the wireless/mobile extension of it (e.g., [25]) introduces the notion of node locations 

and a simple wireless channel model. This is not a trivial extension, since once the nodes 

move, the simulator needs to check for each physical layer event whether the destination 

node is within the com-munication range. For a large network, this significantly slows down 

the simulation speed.  

There are at least two efforts to extend ns-2 to simulate sensor net-works: SensorSim 

from UCLA
9
 and the NRL sensor network extension from the Navy Research  

Laboratory.
10

 SensorSim aims at providing an energy model for sensor nodes and 

communication, so that power properties can be simulated [175]. SensorSim also supports 

hybrid simulation, where some real sensor nodes, running real applications, can be executed 

together with a simulation. The NRL sensor network extension provides a flexible way of 

modeling physical phenomena in a discrete event simulator. Physical phenomena are 

modeled as network nodes which communicate with real nodes through phys-ical layers. 

Any interesting events are sent to the nodes that can sense them as a form of communication. 

The receiving nodes simply have a sensor stack parallel to the network stack that processes 

these events.  

The main functionality of ns-2 is implemented in C++, while the dynamics of the 

simulation (e.g., time-dependent application char-acteristics) is controlled by Tcl scripts. 

Basic components in ns-2 are the layers in the protocol stack. They implement the handlers 

inter-face, indicating that they handle events. Events are communication packets that are 

passed between consecutive layers within one node, or between the same layers across 

nodes.  

The key advantage of ns-2 is its rich libraries of protocols for nearly all network layers 

and for many routing mechanisms. These protocols  
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 Available at   http://nesl.ee.ucla.edu/projects/sensorsim/.  

 Available at http://pf.itd.nrl.navy.mil/projects/nrlsensorsim/.  

are modeled in fair detail, so that they closely resemble the actual protocol implementations. 

Examples include the following:  

 TCP: reno, tahoe, vegas, and SACK implementations  

  

 MAC: 802.3, 802.11, and TDMA  

  
 Ad hoc routing: Destination sequenced distance vector (DSDV) routing, dynamic source 

routing (DSR), ad hoc on-demand dis-tance vector (AODV) routing, and temporally ordered 

routing algorithm (TORA)  

  

 Sensor network routing: Directed diffusion, geographical routing (GEAR) and geographical 

adaptive fidelity (GAF) routing.  

  

7.4.2  The Simulator TOSSIM  

TOSSIM is a dedicated simulator for TinyOS applications running on one or more Berkeley 

motes. The key design decisions on building TOSSIM were to make it scalable to a network 

of potentially thou-sands of nodes, and to be able to use the actual software code in the 

simulation. To achieve these goals, TOSSIM takes a cross-compilation approach that compiles 

the nesC source code into components in the simulation. The event-driven execution model 

of TinyOS greatly simplifies the design of TOSSIM. By replacing a few low-level compo-

nents, such as the A/D conversion (ADC), the system clock, and the radio front end, TOSSIM 

translates hardware interrupts into discreteevent simulator events. The simulator event queue 

delivers the interrupts that drive the execution of a node. The upper-layer TinyOS code runs 

unchanged.  

TOSSIM uses a simple but powerful abstraction to model a wireless network. A network 

is a directed graph, where each vertex is a sensor node and each directed edge has a bit-error 

rate. Each node has a private piece of state representing what it hears on the radio channel. By 

setting connections among the vertices in the graph and a bit-error rate on each connection, 

wireless channel characteristics, such as imperfect channels, hidden terminal problems, and 

asymmetric links, can be easily modeled. Wireless transmissions are simulated at the bit level. 

If a bit error occurs, the simulator flips the bit.  

  

TOSSIM has a visualization package called TinyViz, which is a Java application that can 

connect to TOSSIM simulations. TinyViz also provides mechanisms to control a running 
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simulation by, for example, modifying ADC readings, changing channel properties, and 

injecting packets. TinyViz is designed as a communication ser-vice that interacts with the 

TOSSIM event queue. The exact visual interface takes the form of plug-ins that can interpret 

TOSSIM events. Beside the default visual interfaces, users can add application-specific ones 

easily.  

  

  

  

7.5 Programming Beyond Individual Nodes: State-Centric 

Programming  

  

Many sensor network applications, such as target tracking, are not simply generic 

distributed programs over an ad hoc network of energy-constrained nodes. Deeply rooted 

in these applications is the notion of states of physical phenomena and models of their 

evolu-tion over space and time. Some of these states may be represented on a small 

number of nodes and evolve over time, as in the target tracking problem in Chapter 2, 

while others may be represented over a large and spatially distributed number of nodes, 

as in tracking a temperature contour.  

  

A distinctive property of physical states, such as location, shape, and motion of objects, 

is their continuity in space and time. Their sensing and control is typically done through 

sequential state updates. System theories, the basis for most signal and information 

processing algorithms, provide abstractions for state update, such as:  

x 

k+1=  f (xk, uk)  (7.1) y 

k=  g(xk, uk)  (7.2)  

  

  

where x is the state of a system, u are the inputs, y are the outputs, k is an integer update 

index over space and/or time, f is the state update function, and g is the output or 

observation function. This formu-lation is broad enough to capture a wide variety of 

algorithms in sensor fusion, signal processing, and control (e.g., Kalman filtering, 

Bayesian estimation, system identification, feedback control laws, and finite-state 

automata).  
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However, in distributed real-time embedded systems such as sen-sor networks, the 

formulation is not so clean as represented in those equations. The relationships among 

subsystems can be highly com-plex and dynamic over space and time. The following 

concerns, not explicitly raised (7.1) and (7.2), must be properly addressed during the 

design to ensure the correctness and efficiency of the resulting systems.  

  

  

 Where are the state variables stored?  

  

 Where do the inputs come from?  

  

 Where do the outputs go?  

  

 Where are the functions f and g evaluated?  

  

 How long does the acquisition of inputs take?  

  

 Are the inputs in uk collected synchronously?  

  

 Do the inputs arrive in the correct order through communication?  

  

 What is the time duration between indices k and k + 1? Is it a constant?  

  

  

These issues, addressing where and when, rather than how, to per-form sensing, 

computation, and communication, play a central role in the overall system performance. 

However, these “nonfunctional” aspects of computation, related to concurrency, 

responsiveness, net-working, and resource management, are not well supported by traditional 

programming models and languages. State-centric pro-gramming aims at providing design 

methodologies and frameworks that give meaningful abstractions for these issues, so that 

system designers can continue to write algorithms like (7.1) and (7.2) on  
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top of an intuitive understanding of where and when the operations are performed. This 

section introduces one such abstraction, namely, collaboration groups.  

7.5.1  Collaboration Groups  

A collaboration group is a set of entities that contribute to a state update. These entities can 

be physical sensor nodes, or they can be more abstract system components such as virtual 

sensors or mobile agents hopping among sensors. In this context, they are all referred to as 

agents.  

Intuitively, a collaboration group provides two abstractions: its scope to encapsulate 

network topologies and its structure to encapsulate communication protocols. The scope 

of a group defines the membership of the nodes with respect to the group. For the discus-

sion of collaboration groups in this chapter, we broaden the notion of nodes to include both 

physical sensor nodes and virtual sensor nodes that may not be attached to any physical 

sensor. In this broader sense of node, a software agent that hops among the sensor nodes 

to track a target is a virtual node. Limiting the scope of a group to a sub-set of the entire 

space of all agents improves scalability. The scope of a group can be specified existentially 

or by a membership func-tion (e.g., all nodes in a geometric extent, all nodes within a 

certain number of hops from an anchor node, or all nodes that are “close enough” to a 

temperature contour). Grouping nodes according to some physical attributes rather than 

node addresses is an important and distinguishing characteristic of sensor networks.  

The structure of a group defines the “roles” each member plays in the group, and thus 

the flow of data. Are all members in the group equal peers? Is there a “leader” member in 

the group that consumes data? Do members in the group form a tree with parent and 

children relations? For example, a group may have a leader node that collects certain sensor 

readings from all followers. By mapping the leader and the followers onto concrete sensor 

nodes, we effectively define the flow of data from the hosts of followers to the host of the 

leader. The notion of roles also shields programmers from addressing individual  

nodes either by name or address. Furthermore, having multiple mem-bers with the same 

role provides some degree of redundancy and improves robustness of the application in the 

presence of node and link failures.  

Formally, a group is a 4-tuple:  

 = (A, L, p, R) 

where  

A is a set of agents;  

  

L is a set of labels, called roles;  
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p : A → L is a function that assigns each agent a role;  

  

R ⊆ L × L are the connectivity relations among roles.  

  

Given the relations among roles, a group can induce a lower-level connectivity relation E 

among the agents, so that ∀a, b ∈ A, if  

  

 p(a), p(b)) ∈ R, then (a, b) ∈ E. For example, under this formulation, the leader-follower 

structure defines two roles, L = {leader, follower}, and a connectivity relation, R = {(follower, 

leader)}, meaning that the follower sends data to the leader. Then, by specifying one leader 

agent and multiple follower agents within a geographical region (i.e., specifying a map p from 

a set of agents in A to labels in L), we have effectively specified that all followers send data 

to the leader without addressing the followers individually.  

  

At run time, the scope and structural dynamics of groups are man-aged by group 

management protocols, which are highly dependent on the types of groups. A detailed 

specification of group manage-ment protocols is beyond the scope of this section. Some 

examples of these protocols are discussed here at a high level. Interested readers can refer to 

Chapter 3 for more detail.  

Examples of Groups  

Combinations of scopes and structures create patterns of groups that may be highly reusable 

from application to application. Here, we give several examples of groups, though by no 

means is it a complete list. The goal is to illustrate the wide variety of the kinds of groups, 

and the importance of mixing and matching them in applications.  

Geographically Constrained Group. A geographically constrained group (GCG) 

consists of members within a prespecified geograph-ical extent. Since physical signals, 

especially the ones from point targets, may propagate only to a limited extent in an 

environment, this kind of group naturally represents all the sensor nodes that can possibly 

“sense” a phenomenon. There are many ways to specify the geographic shape, such as circles, 

polygons, and their unions and intersections. A GCG can be easily established by 

geographically con-strained flooding. Protocols such as Geocasting [117], GEAR [229], and 

Mobicast [102] may be used to support the communication among members even in the 
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presence of communication “holes” in the region. A GCG may have a leader, which fuses 

information from all other members in the group.  

  

N-hop Neighborhood Group. When the communication topology is more important than 

the geographical extent, hop counts are use-ful to constrain group membership. An nhop 

neighborhood group (n-HNG) has an anchor node and defines that all nodes within n 

communication hops are members of the group. Since it uses hop counts rather than Euclidean 

distances, local broadcasting can be used to determine the scope. Usually, the anchor node is 

the leader of the group, and the group may have a tree structure with the leader as the root to 

optimize for communication. If the leader’s behav-ior can be decomposed into suboperations 

running on each node, then the tree structure also provides a platform for distributing the 

computation.  

There are several useful special cases for n-HNG. For example, 0-HNG contains only the 

anchor node itself, 1-HNG comprises the one-hop neighbors of the anchor node, and ∞HNG 

contains all the nodes reachable from the root. From this point of view, TinyDB [149] (as 

discussed in Chapter 6) is built on a ∞-HNG group.  

Publish/Subscribe Group. A group may also be defined more dynam-ically, by all 

entities that can provide certain data or services, or that can satisfy certain predicates over 

their observations or internal states. A publish/subscribe group (PSG) comprises consumers 

express-ing interest in specific types of data or services and producers that provide those data 

or services. Communication among members of a PSG may be established via rendezvous 

points, directory servers, or network protocols such as directed diffusion.  

  

Acquaintance Group. An even more dynamic kind of group is the acquaintance group  

(AG), where a member belongs to the group because it was “invited” by another member in 

the group. The rela-tionships among the members may not depend on any physical properties 

at the current time but may be purely logical and histori-cal. A member may also quit the 

group without requiring permission from any other member. An AG may have a leader, 

serving as the rendezvous point. When the leader is also fixed on a node or in a region, GPSR 

[112], ad hoc routing trees, or directed diffusion types of protocols may facilitate the 

communication between the leader and the other members. An obvious use of this group is 

to monitor and control mobile agents from a base station. When all members in the group are 

mobile, there is no leader member, and any member may wish to communicate to one or more 

other members, the maintenance of connectivity among the group members can be nontrivial. 

The roaming hub (RoamHBA) protocol is an example of maintaining connectivity among 

mobile agents [67].  
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Using Multiple Types of Groups  

  

Mixing and matching groups is a powerful technique for tackling system complexity by 

making algorithms much more scalable and resource efficient without sacrificing conceptual 

clarity. One may use highly tuned communication protocols for specific groups to reduce 

latency and energy costs.  

There are various ways to compose groups. They can be com-posed in parallel to provide 

different types of input for a single computational entity. For example, in the target tracking 

problem in  

7.5.2  PIECES: A State-Centric Design Framework  

PIECES (Programming and Interaction Environment for Collab-orative Embedded Systems) 

[141] is a software framework that implements the methodology of state-centric 

programming over collaboration groups to support the modeling, simulation, and design of 

sensor network applications. It is implemented in a mixed Java-Matlab environment.  

  

Principals and Port Agents  

  

PIECES comprises principals and port agents. Figure 7.16 shows the basic relations among 

principals and port agents.  

A principal is the key component for maintaining a piece of state. Typically, a principal 

maintains state corresponding to certain aspects of the physical phenomenon of interest.
11

 

The role of a prin-cipal is to update its state from time to time, a computation corresponding 

to evaluating function f in (7.1). A principal also accepts other principals’ queries of certain 

views on its own state, a compu-tation corresponding to evaluating function g in (7.2).  

To update its portion of the state, a principal may gather informa-tion from other 

principals. To achieve this, a principal creates port agents and attaches them onto itself and 

onto the other principals. A port agent may be an input, an output, or both. An output port  
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 From a computational perspective, a port agent as an object certainly has its own state. But the distinction 

here is that the states of port agents are   not about physical phenomena.  

               

  

Figure 7.16  Principal and port agents (adapted from [141]).  

agent is also called an observer, since it computes outputs based on the host principal’s 

state and sends them to other agents. Observers may be active or passive. An active 

observer pushes data autonomously to its destination(s), while a passive observer 

sends data only when a consumer requests it. A principal typically attaches a set of 

observers to other principals and creates a local input port agent to receive the 

information collected by the remote agents. Thus port agents capture communication 

patterns among principals.  

  

The execution of principals and port agents can be either time-driven or event-driven, 

where events may include physical events that are pushed to them (i.e., data-driven) or 

query events from other principals or agents (i.e., demand-driven). Principals maintain 

state, reflecting the physical phenomena. These states can be updated, rather than 

rediscovered, because the underlying physical states are typically continuous in time. How 

often the principal states need to be updated depends on the dynamics of the phenomena 

or physical events. The executions of observers, however, reflect the demands of the 

outputs. If an output is not currently needed, there is no need to compute it. The notion of 

“state” effectively separates these two execution flows.  

  

To ensure consistency of state update over a distributed computa-tional platform, 

PIECES requires that a piece of state, say x|s, can only be maintained by exactly one 

principal. Note that this does not pre-vent other principals from having local caches of x|s 

for efficiency and performance reasons; nor does it prevent the other principals from 

locally updating the values of cached x|s. However, there is only one “master copy” for 

x|s; all local updates should be treated as “sug-gestions” to the master copy, and only the 
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principal that owns x|s has the final word on its values. This asymmetric access of 

variables simplifies the way shared variables are managed.  

Principal Groups  

  

Principals can form groups. A principal group gives its members a means to find other 

relevant principals and attaches port agents to them. A principal may belong to multiple 

groups. A port agent, how-ever, serving as a proxy for a principal in the group, can only 

be associated with one group.  

The creation of groups can be delegated to port agents, especially for leader-based 

groups. The leader port agent, typically of type input, can be created on a principal, and 

the port agent can take group scope and structure parameters to find the other principals 

and create fol-lower port agents on them. Groups can be created dynamically, based on 

the collaboration needs of principals. For example, when a track-ing principal finds that 

there is more than one target in its sensing region, it may create a classification group to 

fulfill the need of clas-sifying the targets. A group may have a limited time span. When 

certain collaborations are no longer needed, their corresponding groups can be deleted.  

The structure of a group allows its members to address other prin-cipals through their 

role, rather than their name or logical address. For example, the only interface that a 

follower port agent in a leader-follower structured group needs is to send data to the 

leader. If the leader moves to another node while a data packet is moving from a follower 

agent to the leader, the group management protocol should take care of the dangling 

packet, either delivering it to the leader at the new location or simply discarding it. The 

group management pro-tocol may be built on top of data-centric routing and storage 

services such as diffusion routing and GHT (discussed in earlier chapters).  

Mobility  

  

A principal is hosted by a specific network node at any given time. The most primitive 

type of principal is a sensing principal, which is fixed to a sensor node. A sensing 

principal maintains a piece of (local) state related to the physical phenomenon, based 

solely on its own local measurement history. Although a sensing principal is constrained 

to a physical node, other principals may be implemented as soft-ware agents that move 

from host to host, depending on information utility, performance requirements, time 

constraints, and resource availability. A principal P may also be attached to another 

princi-pal Q in the sense that P moves with Q . When a principal moves, it carries its state 

to the new location and the scope of the group it belongs to may be updated if necessary.  
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Mobile principals bring additional challenges to maintaining the state. For example, a 

principal should not move while it is in the middle of updating the state. To ensure this, 

PIECES imposes the restriction that whenever an agent is triggered, its execution must 

have reached a quiescent state. Such a trigger is called a responsible trigger [147]. Only 

at these quiescent states can principals move to other nodes in a well-defined way, 

carrying a minimum amount of information representing the phenomena.  

PIECES Simulator  

  

PIECES provides a mixed-signal simulator that simulates sensor net-work applications at 

a high level. The simulator is implemented using a combination of Java and Matlab. An 

event-driven engine is built in Java to simulate network message passing and agent 

execution at the collaboration-group level. A continuous-time engine is built in Matlab to 

simulate target trajectories, signals and noise, and sensor front ends. The main control 

flow is in Java, which maintains the global notion of time. The interface between Java 

and Matlab also makes it possible to implement functional algorithms such as signal 

processing and sensor fusion in Matlab, while leaving their execu-tion control in Java. A 

three-tier distributed architecture is designed through Java registrar and RMI interfaces, 

so that the execution in Java and Matlab can be separately interrupted and debugged.  

  

Like most network simulators such as ns-2, the PIECES simu-lator maintains a global 

event queue and triggers computational entities—principals, port agents, and groups—via 

timed events. However, unlike network simulators that aim to accurately simulate network 

behavior at the packet level, the PIECES simulator veri-fies CSIP algorithms in a 

networked execution environment at the collaboration-group level. Although groups must 

have distributed implementations in real deployments, they are centralized objects in the 

simulator. They can internally make use of instant access to any member of any role, 

although these services are not avail-able to either principals or port agents. This relieves 

the burden of having to develop, optimize, and test the communication protocols 

concurrently with the CSIP algorithms. The communication delay is estimated based on 

the locations of sender and receiver and the group management protocol being used. For 

example, if an output port of a sensing principal calls sendToLeader(message) on its con-

tainer group, then the group determines the sensor nodes that host the sensing principal 

and the destination principal, computes the number of hops between the two nodes 

specified by the group man-agement protocol, and generates a corresponding delay and a 

bit error based on the number of hops. A detailed example of using this simulator is given 

in the next section.  
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7.5.3  Multitarget Tracking Problem Revisited  

  

Using the state-centric model, programmers decouple a global state into a set of 

independently maintained pieces, each of which is assigned a principal. To update the 

state, principals may look for inputs from other principals, with sensing principals 

supporting the lowest-level sensing and estimation tasks. Communication patterns are 

specified by defining collaboration groups over principals and assigning corresponding 

roles for each principal through port agents. A mobile principal may define a utility 

function, to be evaluated at candidate sensor nodes, and then move to the best next 

location, all in a way transparent to the application developer. Developers can focus on 

implementing the state update functions as if they are writing centralized programs.  

  

To make these concepts concrete, let us revisit the multitarget tracking system 

introduced in Chapter 2. Recall that in Figure 2.5, the tracking of two crossing targets 

can be decomposed into three phases:  

  

  When the targets are far apart, the tracking problem can be treated as a set of 

singletarget tracking subproblems.  

  

  When the targets are in proximity of each other, they are tracked jointly due to signal 

mixing.  

  

  After the targets move apart, the tracking problem becomes two single-target tracking 

subproblems again.  

  

To summarize, there are two kinds of target information that the user cares about 

in this context: target positions and target identities. In the third phase above, in 

addition to the problem of updating track locations, there is a need to sort out ambiguity 

regarding which track corresponds to which target. We refer to this problem as the 

iden-tity management problem. Specifically, one must keep track of how the identities 

mix when targets cross over, and update identity infor-mation at the other node when 

credible target identity evidence is available to one node. The identity information may 

be obtained by a local classifier or by an identity management protocol across tracks. 

In PIECES, the system is designed as a set of communicating target trackers 
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(MTTrackers), where each tracker maintains the tra-jectory and identity information 

about a target or a set of spatially adjacent targets. An MTTracker is implemented by 

three principals: a tracking principal, a classification principal, and an identity 

management principal, as shown in Figure 7.17. In the first phase, the identity state of 

the track is trivial; thus no classification and identity management principals are 

needed.  
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Figure 7.17 The distributed multi-object tracking algorithm as implemented in the state-centric programming model, using distributed 

principals and agents as discussed in the text. Notice that the state-centric model allows an application developer to focus on  
key pieces of state information the sensor network creates and maintains, thus raising the abstraction level of programming (adapted from 

[141]).  

A tracking principal updates the track position state periodically. It collects local individual position estimates 

from sensors close to the target by a GCG with a leader-follower relation. The tracking principal is the leader, and 

all sensing principals within a certain geographical extent centered about the current target position esti-mate are 

the followers. The tracking principal also makes hopping decisions based on its current position estimate and the 

node char-acteristic information collected from its one-hop neighbors via a 1-HNG. When the principal is 

initialized, it creates the agents and corresponding groups. Behind the scene, the groups create fol-lower agents 

with specific types of output, indicated by the sensor modalities. Without further instructions from the programmer, 

the followers periodically report their outputs to the input port agents. Whenever the leader principal is activated 

by a time trigger, it updates the target position using the newly received data from the followers and selects the next 

hosting node based on neighbor node characteristics  

Both the classification principal and the identity management principal operate on the identity state, with the 

identity management principal maintaining the “master copy” of the state. In fact, the classification principal is 

created only when there is a need for classi-fying targets. The classification principal uses a GCG to collect class 

feature information from nearby sensing principals in the same way that tracking principals collect location 

estimates. The identity man-agement principal forms an AG with all other identity management principals that may 

have relevant identity information. They become members of a particular identity group only when targets intersect 

and their identities mix. Both classification principals and identity management principals are attached to the 

tracking principal for their mobility decisions. However, the formation of an AG among these three principals also 

provides the flexibility that they can make their own hopping decisions without changing their interaction interface.  

Simulation Results  

  

Figure 7.18 shows the progression of tracking two crossing targets. Initially, when the targets are well  

 
   Figure 7.18 Simulation snapshots: Sensor nodes are indicated by small circles, and the crossing lines indicate the true 

trajectories of the two targets. One geographically constrained group is created for each target. When the two targets cross 

over, their groups merge into one.  
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each target is tracked by a tracker whose sensing group is pictured as a shaded disk. The hosting node 

of the tracking principal is plotted in solid white dots, and the hosts for corresponding sensing principals 

are plotted in small, empty white circles inside the shaded disks. Since the targets are well separated, 

each identity group contains only one member—the identity management principal of a tracker. As the 

targets move toward the center of the sensor field, the sensing groups move with their respective track 

positions. In Figure 7.18(b), the two separate tracking groups have merged. A joint tracking prin-cipal 

updates tracks for both targets. The reason for the merge is that when the two targets approach each 

other, it is more accu-rate to track the targets jointly, rather than independently, due to the effect of 

signal mixing. Finally, as the targets move away from each other, the merged tracking group splits into 

two separate single-target    


