
Introduction to Computer Networks

Error Detecting & Correcting
Codes

1

Codes - Notations

2

 K bits of data encoded into n bits of information.
 n-K bits of redundancy
 The information data is of length K
 The code word is of length n
 (n,k) code

K

n

redundancy

(7,4)

=4

Parity

3

 Balances the number of 1-s in a code word
 Even parity – add 1 to achieve an even number of 1s

10101  101011
01010  010100

 Odd parity – add 1 to achieve an odd number of 1s
10101  101010
01010  010101

 XOR code word by bit to get even parity
 Odd parity is NOT of the result

 (K+1, K)
 Detects all 1-bit errors

Two-Dimensional Bit Parity

4

 (p l + p + l +1, p l)
 K = p l
 n= p l + p + l +1

 Can catch:
 All 1-,2-,3- bit errors
 Most 4-bit errors

10110001 11000010 01101000 00110101 01 001100

10110001
11000010
01101000
00110101
01001100

0
1
1
0
1
101100010

Hamming Codes

5

 Hamming codes are a family of linear error-
correcting codes that generalize the Hamming(7,4)-
code invented by Richard Hamming in 1950.
 Hamming codes can detect up to two and
correct up to one bit errors.
Hamming Distance – The number of positions in

which 2 words differ.
 100101, 101001 – distance of 2

 Code word of (n,K,d)
 Error Detection: d-1
 Error Correction: (d-1)/2



Hamming Codes

6

Code rate: K/n
Hamming was interested in optimizing two
parameters at once; increasing the distance as
much as possible, while at the same time increasing
the code rate as much as possible.
Hamming codes are special in that they are perfect
codes, that is, they achieve the highest
possible rate for codes with their block
length and minimum distance 3.

Hamming Codes - Construction

7

 Number bits from 1 and upwards
 A bit which is a power of 2 is a check bit
 1, 2, 4, 8….

 All other bits are data bits
 3, 5, 6, 7, 9, 10….

 Each parity bit covers all bits where the bitwise
AND of the parity position and the bit position is
non-zero.
 example : Bit 1 = 001

bit 2 AND bit 1 = 001 & 010 =000
bit 3 AND bit 1 = 001 & 011 = 001
….
 bit 1 = bit 3  bit 5  bit 7

1 2 3 4 5 6 71 2 4

001

011

010

100

101

110

111

1 2 3 4 5 6 71 3 5 7

1 2 3 4 5 6 72 3 6 7

1 2 3 4 5 6 74 5 6 7

Hamming Codes - Construction

Hamming Codes - Construction
 Use Generating Matrix (G) and Parity Check
Matrix (H).

 G x =y
 H y = s
 s is a null vector iff y is a code word, i.e. no parity error.
 If s is not null, it indicates which bit had an error
















































1111000
1100110
1010101

1000
0100
0010
1110
0001
1101
1011

H

G

Hamming Codes - Construction
 Example: error in bit 5














































































































































































































1
0
1

1
1
1
0
1
1
0

1111000
1100110
1010101

0
0
1
0
0
0
0

1
1
0
0
1
1
0

1
1
0
1

1000
0100
0010
1110
0001
1101
1011

)1101(

yH

yxG

x

Hamming Code (7,4)

Data Codeword Data Codeword
0000 0000000 1000 1110000
0001 1101001 1001 0011001
0010 0101010 1010 1011010
0011 1000011 1011 0110011
0100 1001100 1100 0111100
0101 0100101 1101 1010101
0110 1100110 1110 0010110
0111 0001111 1111 1111111

CRC – Cyclic Redundancy Check
 View data bits, D, as a binary number
 Choose r+1 bit pattern (generator), G
 Goal: choose r CRC bits, R, such that
 <D,R> exactly divisible by G (modulo 2)
 Receiver knows G, divides <D,R> by G. If
non-zero remainder: error detected!
 Can detect all burst errors less than r+1 bits

Polynomial Arithmetic Modulo 2
 B(x) can be divided by a divisor C(x) if B(x) is of

higher degree.
 B(x) can be divided once by a divisor C(x) if B(x)

is of the same degree as C(x).
 The reminder of B(x)/C(x) is obtained by

subtracting C(x) from B(x).
 Subtracting is Simply the XOR operation

CRC - Example
 G – Generator – x3+1
 D – x5+x3+x2+x1 – 101110

R = remainder []D.2r

G

CRC Implementation in Hardware
 CRC algorithm is easily implemented in hardware
using r-bit shift register and XOR gates.

 B(x) can be divided once by a divisor C(x) if B(x)
is of the same degree as C(x).
 The reminder of B(x)/C(x) is obtained by

subtracting C(x) from B(x).
 Subtracting is Simply the XOR operation

16

CRC Implementation in Hardware
 CRC algorithm is easily implemented in hardware

using r-bit shift register and XOR gates.
 Put an XOR gate in front of bit n, if there is a

term xn in the generator polynomial.
 Below is the hardware that should be used for the

generator x3 + x2 + 1.
 The message is shifted from right to left,

beginning with msb and ending with r zeros.
 When all the bits have been shifted in and

appropriately XORed, the register contains the
remainder, i.e. the CRC.

x2 x1 x0

message

17

CRC
 Here's a picture for the start of the division of

(x6 + x2 + 1) divided by (x3 + x2 + 1)

 Let's do the steps. I'll list the output bit, the
values in the boxes, and the remaining input

x2 x1 x0

1 0 0 0 1 0 1 0 0 0 0 0 0

 Here's a picture for the start of the division of
(x6 + x2 + 1) divided by (x3 + x2 + 1)

 Let's do the steps. I'll list the output bit, the
values in the boxes, and the remaining input

18

CRC

x2 x1 x0

0 0 0 1 0 1 0 0 0 0 0 1
0

 Here's a picture for the start of the division of
(x6 + x2 + 1) divided by (x3 + x2 + 1)

 Let's do the steps. I'll list the output bit, the
values in the boxes, and the remaining input

19

CRC

x2 x1 x0

0 0 1 0 1 0 0 0 0 1 0
0

 Here's a picture for the start of the division of
(x6 + x2 + 1) divided by (x3 + x2 + 1)

 Let's do the steps. I'll list the output bit, the
values in the boxes, and the remaining input

20

CRC

x2 x1 x0

0 1 0 1 0 0 0 1 0 0
1

 Here's a picture for the start of the division of
(x6 + x2 + 1) divided by (x3 + x2 + 1)

 Let's do the steps. I'll list the output bit, the
values in the boxes, and the remaining input

21

CRC

x2 x1 x0

1 0 1 0 0 0 1 0 1
1

 Here's a picture for the start of the division of
(x6 + x2 + 1) divided by (x3 + x2 + 1)

 Let's do the steps. I'll list the output bit, the
values in the boxes, and the remaining input

22

CRC

x2 x1 x0

0 1 0 0 0 1 1 0
1

 Here's a picture for the start of the division of
(x6 + x2 + 1) divided by (x3 + x2 + 1)

 Let's do the steps. I'll list the output bit, the
values in the boxes, and the remaining input

23

CRC

x2 x1 x0

1 0 0 0 0 0 1
0

 Here's a picture for the start of the division of
(x6 + x2 + 1) divided by (x3 + x2 + 1)

 Let's do the steps. I'll list the output bit, the
values in the boxes, and the remaining input

24

CRC

x2 x1 x0

0 0 0 0 1 1
0

 Here's a picture for the start of the division of
(x6 + x2 + 1) divided by (x3 + x2 + 1)

 Let's do the steps. I'll list the output bit, the
values in the boxes, and the remaining input

25

CRC

x2 x1 x0

0 0 1 1 0
1

 Here's a picture for the start of the division of
(x6 + x2 + 1) divided by (x3 + x2 + 1)

 Let's do the steps. I'll list the output bit, the
values in the boxes, and the remaining input

26

CRC

x2 x1 x0

0 0 0 1
0

 Here's a picture for the start of the division of
(x6 + x2 + 1) divided by (x3 + x2 + 1)

 Let's do the steps. I'll list the output bit, the
values in the boxes, and the remaining input

27

CRC

x2 x1 x0

0 1 0
0

