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Chapter 1

Real Analysis

1.1 Introduction

1.1.1 Order Property of R
1. Given z, y € R, with x < y then
(a) Ve eR(z+c¢ < y+o
(b) Ve eRe>0x+c¢ < y+c)
2. Transitive: V(z,y,2) € R x R x R, with 2 < y and y < z then z < z

3. Law of Trichotomy: V(z,y) € R x R exactly one of the following holds

(a) z <y
(b) z=y

(c) 2>y

Problem 1.1 Prove that 1 # 0

Solution By law of Trichotomy, one of the following holds,1 =0, 1 < 0, 1 > 0,
Suppose 1 =0 = Va € R, a.1 = .0 = R = {0} which is a contradiction.
Suppose 1 <0 = —-1>0 = —-1.—1>0.—1 = 1 > 0 contradiction to

Law of Trichotomy. Therefore 1 > 0.
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Problem 1.2 Given a € R, a® > 0.

Solution If @ = 0 then > =0 = a®> > 0. If @ > 0 then a.a > 0.a (by order
property) = a*>>0 = a*>0. fa<0then —a>0 = —a.—a>0.—a

(by order property) = a?> >0 = a* > 0.

1.2 Least Upper Bound

1.2.1 Bounds

Definition 1.1 (Upper bound) Let A C R. Given « is said to be an upper

bound of AifVa € A, (a < a).

Definition 1.2 (Lower bound) Let A C R. Given /3 is said to be an lower bound

of AifVa €A, (8 <a).

Definition 1.3 (Bounded Above) Let A C R, is said to be bounded above if

Ja € R such that a is an upper bound of A.

Definition 1.4 (Bounded Below) Let A C R, is said to be bounded below if
38 € R such that 3 is a lower bound of A.

Definition 1.5 (Bounded) Let A C R, is said to be bounded if Jo, 5 € R such

that « is an upper bound of A and 5 is a lower bound of A.

Definition 1.6 (Least upper bound) Let A C R. Given « is said to be an least

upper bound for A if
1. « is a upper bound for A.

2. Given any upper bound v € R for A then a <~ or given any real number

v < «, then 7 is not a upper bound for A.
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Definition 1.7 (Greatest lower bound) Let A C R. Given f is said to be a

greatest lower bound for A if
1. B is a lower bound for A.

2. Given any lower bound v € R for A then 8 > v or given any real number

~v < f3, then ~ is not a lower bound for A.

1.2.2 Least Upper Bound

Remark 1.1 (LUB Axiom) Let A be a non-empty subset of R, then Ja € R such
that o is a LUB for A.

Theorem 1.1 (Archimedian Property) IN is not bounded above.

Proof. Suppose N is bounded above. Since 1 € N, IN is non-empty and hence by
remark (1.1), 3o € R such that &« = lub(N) = «a — 1 is not a lub(N) =

dm € IN such that m >a—1 = m+1 > «, Since m + 1 € IN contradiction

to definition (1.6). Hence N is not bounded above. O
Theorem 1.2 (Avatars of Archimedian Property) The following are equivalent
i IN is not bounded above
ii Vo >0 & Vy € R(3In € N(nx > y))
iii Va € R(3In € N(n > a))

Proof. (i) = (ii) Let z > 0 and y € R. Suppose for all n € N, nx <y implies

n < Y implies Y is a upper bound for N, a contradiction to (i). Hence In € IN
x x

such that nz > y.

(i) = (iii) Let @ € R, let x =1 > 0 therefore by (ii), I3n € N such that n > a.
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(iii) = (i) Suppose N is bounded, Ja € R such that a is a lub for IN implies

that Vn € N, n < « O

Exercise 1.3 Z is not a bounded set.

Theorem 1.4 (Q is dense in R) Given a,b € R with a < b then there exists

x € Q such that a < x <b.

Proof. Given that a < b implies b — a > 0. Therefore by (ii) of theorem
(1.2)(Archimedian Property), there exists ¢ € IN such that ¢(b —a) > 1. Let
S :={m € Z:m < qga}. Suppose S is empty, Vm € Z, m > qa implies ga is a
lower bound for Z, a contradiction to exercise (1.3). Therefore S is non-empty.
Clearly S is bounded above (Vm € S, m < ga by definition of S). Therefore
there exists o € R such that « is a lub for S(by remark (1.1)), this implies oo — 1
is not a upper bound for S, implies there exists m € S such that m > a—-1 =
m+ 1 > «. Choose p = m + 1. It is enough to prove that ga < p and p < ¢b.
Suppose p < qa, implies p € S, a contradiction to the choice of p. Also suppose
p > qb, consider 1 = m+1—m > gb—qa = q(b—a) > 1 which is a contradiction
to Law of trichotomy. Therefore qa < p and p < ¢b, implies ga < p < ¢b, implies

a<]—)<b.

q
Pictures missing 0

Theorem 1.5 (Existance of n'® root) Let a be a non-negative real number and

n € IN. Then there exists a unique non-negative x € R such that 2" = «.

Proof. If a = 0 then x = 0 also suppose y" = 0 implies y = 0. Let a > 0,
S:={teR:t>0&t" <a}. 0€ S implies S # ¢. By Archimedian Property
(theorem (1.1)), there exists N € IN such that IN > a. Suppose N is not a upper

bound for S, then there exists x € S such that t > N = 2" > N" > N > q,
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a contradiction to the definition of S. Therefore N is a upper bound for S.
Therefore there exists a € R such that « is a lub for S(by remark (1.1)). It is
enough to prove that " = a. Suppose x" # «. Therefore by Law of Trichotomy
" < aora > a.

case 1: 2™ < .

oty ()
(

1 1
"+ <n) o (Since — >

J=1 J
) . 1 a—a" .
By Archimedian property 3k € IN such that k& > — T < ie.,
o —x" c
1 1 1 1 )
x"+E<a = (:1:+E)"<oz N :c—l—EeS, alsox<x+z — 1 is not

upper bound of S, a contradiction to x is a lub of S. Therefore 2" £ a.

Z)an% — .+ (=1 (Z) k:_ln
)

1 ny\ 1 -1 -1
n—2- _ - - -
gV ( )k (Since < k")

case 2: " > «
n n— 11
o (1) =
>0 n ik 11
- 1 k
7j=1

1 - .
(x— E)” > " — %, where ¢ = Z <n) ™l

Jj=1

I

&

3

_l’_
3
/—\
\_/

By Archimedian property 3k € IN such that k > — k(2" —a) > cie,

" — «

n C> = ( 1)">
X k} [0} e k} 8]

Claim: © — z is a upper bound of S.

1
Suppose there exists y € S such that y > x — = then y™ > (xr — dfraclk)” > «
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a contradiction to y € S. Therefore x — dfraclk is a upper bound of S. This is
1
a contradiction since z — z < x. Therefore 2" »# a.

picture is missing O

Corollary 1.1 Between any two real numbers there are infinitely many rationals.

Hint: Suppose finite.

Theorem 1.6 (Greatest Integer Function) Let € R. Then there exists a

unique m in 7, such that m <z <m + 1.

Proof. Consider the set S := {m € Z : m < Z}. Suppose S = ¢, then for all
m € Z, m >x = x is a lower bound for Z, contradiction to problem (1.3).
By the definition of S, x is a upper bound for S, therefore S is bounded above.
Hence by LUB axiom(remark (1.1)) Ja € R such that « is lub of S.Since o —1 is
not a upper bound for S, there exists m € S such that m > o — 1. Since m € S,
m<x. Supposex >m+1 = m+1€S = m+1<a = m<a-1,
a contradiction. Uniqueness: Suppose there exists n such that n <z <n+1,
W.LGlet m<n = m+1<n,therefore m<r<m+1<n — xr<n,a
contradiction to law of Trichotomy.

picture is missing ]

1.3 Sequence

Definition 1.8 (Sequence) Let X C R be a non-empty set. A Sequence in X
is a function f : N — X. We let z,, := f(n) and call z,, as the n'" term of the
sequence. The sequence is denoted by (z,,).

Definition 1.9 (Bounded Sequence) A sequence (x,) is said to be bounded

sequence if there exists M > 0, such that Vn € N, |z,,| < M.
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Definition 1.10 (Constant c-sequence) A sequence (z,) is said to be constant
c-sequence if Vn € N, x,, = c.

Definition 1.11 (Constant sequence) A sequence (z,) is said to be constant
sequence if there exists ¢ € X such that (z,) is a constant c-sequence(Vn € NN,
Ty = C).

Definition 1.12 (Eventually constant sequence) A sequence (x,,) is said to be
eventually constant sequence if there exists ¢ € X, ng € IN such that Vn > ny,
Ty = C.

Definition 1.13 (Convergent Sequence) A sequence (z,,) is said to be convergent
sequence if there exists a € R such that the terms of the sequence gets arbitrarilly

close to a. i.e., Ve > 0(3Ing € N(Vn > no(|z, — a| <¢€))). We denote as z,, — a
Note 1 We say a as a limit of the sequence ().

Definition 1.14 (Cauchy Sequence) A sequence (z,) is said to be cauchy se-
quence if the terms of the sequence gets arbitrarilly closer. i.e.Ve > 0(3ng €
IN(Vn,m > ng(|x, — x| < €))).

Exercise 1.7 Let z,y € R. If for all € > 0, |z — y| < € then x = y.

Theorem 1.8 (Limit of a sequence is unique) Let (a,) be a converging sequence.

Then the limit of the sequence (a,,) is unique.

Proof. Let a, — a and a,, — b. Let € > 0, a,, & a = dn; € N such that
€
5

Choose N =max{ni,ns}, now |a —b| = |la —ay +ay —b| < |a—an|+|ay — ] <

€
Yn > ny,la, —al < ) and a, - b = dny € N such that Vn > ns,|a, — b| <

% —|—§ = €. Therefore for all € > 0, |[a —b| < ¢ = a = b by exercise (1.7).Hence

limit of a sequence is unique. O

Theorem 1.9 Every convergent sequence is bounded.
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Proof. Let (z,) be a convergent sequence and x be its limit. Therefore for ¢ =

1(3ng € N(Vn > no(|z, — 2| < 1))). Consider |z, | < |z, — |+ |z| < 1 + |z|(for

n > ng). Choose M =max {|z1|,...,|Tny—1|,1+|2z|}, then for alln € N, |z,| < M.

Hence (z,,) is bounded.

O

Theorem 1.10 (Sandwich Lemma) Let (z,),(y,) and (z,) be sequences such

that vmn e N, z, <y, < z,. If ,, — a and 2, — a then y, — a.

Proof. Let € > 0, z,, — a implies In; € N such that Vn > nq, =, € (a — €,a + ¢€)

implies Vn > ny, a — € < x, and z, — a implies Iny, € IN such that Vn > na,

zn € (a — €,a + €) implies Vn > ng, z, < a + €. Choose nyg = max {n;,ny}, then

Yn>mng, a—e<z, <y, <z, <a-+ e Therefore y, — a.

1.3.1 Algebra of limits
Theorem 1.11 Let z, — z and y,, = y then z, + vy, = +y.

Proof. Let € > 0, x,, — x implies dn; € IN such that Vn > nq,

€

n <z
o — 2l < §
Yn — y implies Iny € IN such that Vn > ng,
v — 1 < 5
Yn — Y 9

Let ng = max {nj,ny}, then ¥n > no,

|xn+yn_<x+y)| < |xn—x‘+‘yn_y‘

<S¢ byeqns (1L1) & ((1.2)).

2 2

Theorem 1.12 Let z,, —» = and « € R then ax, — ax.

O

(1.1)

(1.2)
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Proof. Let € > 0, x,, — x implies dn; € IN such that Vn > nq,

€

|z, — x| < T+l (1.3)
then Vn > nyq,
|z, — ax| = |a||z, — 2
< (14 |a))|z, — =
< (1+ |oz\)1 :‘04 =¢€ by equation ((1.3))
reason for we go for 1 + |a| is @ may be equal to zero. O
Theorem 1.13 Let z, — x and y,, — y then x,y, — xy.
Proof. Consider
|Tnn — 2Y| = |Tnyn — Ty + 0y — Y|
< |allyn =yl + 1yl|z0 — ] (1.4)

< Jzallyn =yl + (1 + [y)zn — 2]
Let € > 0, (x,) is convergent implies it is bounded (by theorem (1.9)). Therefore
there exists M > 0 such that Vn € N, |z,| < M. y, — y implies In; € N such

that Vn > nq,

€
i L 1.5

T, — 1y implies dny € IN such that Vn > na,

€

Tn =Yl < 7771\ 1.6
ST o

Let ng = max {ny,ns}, then Vn > ny,
[Znyn — 2y <|Zallyn —yl + (1 + |y|)|zn — x| by equation ((1.4))
€ €
<M—+(1+ — = by eqns ((1.5)) & ((1.6)).
s Qg = by eans ((13) & ((16)

O
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1 1
Theorem 1.14 Let x,, — = and Vn € N, z,, # 0&x # 0 then — — —.
T x
Proof. Consider
2] = |20 — 20 + 7|
= |za| 2 J2] = [zn — 2]
Let € > 0, z,, — x implies dn; € IN such that Vn > nq,
x
|z, — x| < Jz| (1.8)
2
T, — x implies In, € IN such that Vn > ns,
2
2, — 2| < % (1.9)

Let ng = max {ny,ns}, then Vn > ny,

Lo
wnoox| ol
2| — x, )
2z — 2l by equations ((1.8)) & ((1.7))
|| ]
aPe
< ||22 =€ by equation ((1.9)).
T

Exercise 1.15 Let x,, — x. If for Vn € N, x,, > 0 then prove that z > 0.

Theorem 1.16 If for Vn € N, x,, > 0 then /z,, = =

Proof. Let ¢ > 0. If = 0 then x, — 0 implies dn; € N such that Vn > nq,
lz,| < € = /1, <e Ifx+#0 then x, — 0 implies Iny, € N such that
vn Z na,

|V — V| < Ve (1.10)
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Let n > no,

(V&0 — Vo) (VT + V)
Vi +E

o — 2

VIV
|z, — 7|

= E

E

NG

[V — ] =

since xz, >0

< =¢€ by equation ((1.10)).

1.3.2 Some Problems

1
Problem 1.3 Prove that — — 0.
n

1
Solution Let ¢ > 0, By Archimedian Property dng € IN such that ng > —.
€

1 1

Therefore Vn > ng, — < — < e.
n o
1

Problem 1.4 Prove that — 0, for £ € IN.

nk
1
Solution Let ¢ > 0, By Archimedian Property dng € IN such that ng > —.
€
1 1

1
Therefore Vn > ny, —<—-<—<e
n n _ no

Problem 1.5 For a > 0, ar — 1.
Solution
Problem 1.6 For 0 <a <1, a™ — 0.

1 1 1
Solution a <1 = - >1 = dh >0suchthat - =14+h = — =
a a a™

1
(14+h)" >nh = a" < e Also since 0 < a" and by Sandwich lemma
n

(theorem (1.10)), a™ — 0.



