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Chapter 1

Real Analysis

1.1 Introduction

1.1.1 Order Property of R

1. Given x, y ∈ R, with x < y then

(a) ∀ c ∈ R(x+ c < y + c)

(b) ∀ c ∈ R,c > 0(x+ c < y + c)

2. Transitive: ∀(x, y, z) ∈ R×R×R, with x < y and y < z then x < z

3. Law of Trichotomy: ∀(x, y) ∈ R×R exactly one of the following holds

(a) x < y

(b) x = y

(c) x > y

Problem 1.1 Prove that 1 6= 0

Solution By law of Trichotomy, one of the following holds,1 = 0, 1 < 0, 1 > 0,

Suppose 1 = 0 =⇒ ∀α ∈ R, α.1 = α.0 =⇒ R = {0} which is a contradiction.

Suppose 1 < 0 =⇒ −1 > 0 =⇒ −1.− 1 > 0.− 1 =⇒ 1 > 0 contradiction to

Law of Trichotomy. Therefore 1 > 0.

1



2 Real Analysis

Problem 1.2 Given a ∈ R, a2 > 0.

Solution If a = 0 then a2 = 0 =⇒ a2 ≥ 0. If a > 0 then a.a > 0.a (by order

property) =⇒ a2 > 0 =⇒ a2 ≥ 0. If a < 0 then −a > 0 =⇒ −a.− a > 0.− a

(by order property) =⇒ a2 > 0 =⇒ a2 ≥ 0.

1.2 Least Upper Bound

1.2.1 Bounds

Definition 1.1 (Upper bound) Let A ⊆ R. Given α is said to be an upper

bound of A if ∀ a ∈ A, (a ≤ α).

Definition 1.2 (Lower bound) Let A ⊆ R. Given β is said to be an lower bound

of A if ∀ a ∈ A, (β ≤ a).

Definition 1.3 (Bounded Above) Let A ⊆ R, is said to be bounded above if

∃α ∈ R such that α is an upper bound of A.

Definition 1.4 (Bounded Below) Let A ⊆ R, is said to be bounded below if

∃β ∈ R such that β is a lower bound of A.

Definition 1.5 (Bounded) Let A ⊆ R, is said to be bounded if ∃α, β ∈ R such

that α is an upper bound of A and β is a lower bound of A.

Definition 1.6 (Least upper bound) Let A ⊆ R. Given α is said to be an least

upper bound for A if

1. α is a upper bound for A.

2. Given any upper bound γ ∈ R for A then α ≤ γ or given any real number

γ < α, then γ is not a upper bound for A.
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Definition 1.7 (Greatest lower bound) Let A ⊆ R. Given β is said to be a

greatest lower bound for A if

1. β is a lower bound for A.

2. Given any lower bound γ ∈ R for A then β ≥ γ or given any real number

γ < β, then γ is not a lower bound for A.

1.2.2 Least Upper Bound

Remark 1.1 (LUB Axiom) Let A be a non-empty subset of R, then ∃α ∈ R such

that α is a LUB for A.

Theorem 1.1 (Archimedian Property) N is not bounded above.

Proof. Suppose N is bounded above. Since 1 ∈ N, N is non-empty and hence by

remark (1.1), ∃α ∈ R such that α = lub(N) =⇒ α − 1 is not a lub(N) =⇒

∃m ∈ N such that m > α − 1 =⇒ m + 1 > α, Since m + 1 ∈ N contradiction

to definition (1.6). Hence N is not bounded above.

Theorem 1.2 (Avatars of Archimedian Property) The following are equivalent

i N is not bounded above

ii ∀x > 0 & ∀y ∈ R(∃n ∈ N(nx > y))

iii ∀a ∈ R(∃n ∈ N(n > a))

Proof. (i) =⇒ (ii) Let x > 0 and y ∈ R. Suppose for all n ∈ N, nx ≤ y implies

n ≤ y

x
implies

y

x
is a upper bound for N, a contradiction to (i). Hence ∃n ∈ N

such that nx > y.

(ii) =⇒ (iii) Let a ∈ R, let x = 1 > 0 therefore by (ii), ∃n ∈ N such that n > a.
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(iii) =⇒ (i) Suppose N is bounded, ∃α ∈ R such that α is a lub for N implies

that ∀n ∈ N, n ≤ α

Exercise 1.3 Z is not a bounded set.

Theorem 1.4 (Q is dense in R) Given a, b ∈ R with a < b then there exists

x ∈ Q such that a < x < b.

Proof. Given that a < b implies b − a > 0. Therefore by (ii) of theorem

(1.2)(Archimedian Property), there exists q ∈ N such that q(b − a) > 1. Let

S := {m ∈ Z : m ≤ qa}. Suppose S is empty, ∀m ∈ Z, m > qa implies qa is a

lower bound for Z, a contradiction to exercise (1.3). Therefore S is non-empty.

Clearly S is bounded above (∀m ∈ S, m ≤ qa by definition of S). Therefore

there exists α ∈ R such that α is a lub for S(by remark (1.1)), this implies α− 1

is not a upper bound for S, implies there exists m ∈ S such that m > α−1 =⇒

m + 1 > α. Choose p = m + 1. It is enough to prove that qa < p and p < qb.

Suppose p ≤ qa, implies p ∈ S, a contradiction to the choice of p. Also suppose

p ≥ qb, consider 1 = m+1−m ≥ qb− qa = q(b−a) > 1 which is a contradiction

to Law of trichotomy. Therefore qa < p and p < qb, implies qa < p < qb, implies

a <
p

q
< b.

Pictures missing

Theorem 1.5 (Existance of nth root) Let α be a non-negative real number and

n ∈ N. Then there exists a unique non-negative x ∈ R such that xn = α.

Proof. If α = 0 then x = 0 also suppose yn = 0 implies y = 0. Let α > 0,

S := {t ∈ R : t ≥ 0&tn ≤ α}. 0 ∈ S implies S 6= φ. By Archimedian Property

(theorem (1.1)), there exists N ∈ N such that N > α. Suppose N is not a upper

bound for S, then there exists x ∈ S such that x > N =⇒ xn > Nn > N > α,
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a contradiction to the definition of S. Therefore N is a upper bound for S.

Therefore there exists α ∈ R such that α is a lub for S(by remark (1.1)). It is

enough to prove that xn = α. Suppose xn 6= α. Therefore by Law of Trichotomy

xn < α or xn > α.

case 1: xn < α.

(x+
1

k
)n = xn +

(

n

1

)

xn−1
1

k
+

(

n

2

)

xn−2
1

k2
+ . . .+

(

n

n

)

1

kn

≤ xn +

(

n

1

)

xn−1
1

k
+

(

n

2

)

xn−2
1

k
+ . . .+

(

n

n

)

1

k
(Since

1

k
>

1

kn
)

= xn +
n

∑

j=1

(

n

j

)

xn−j 1

k

∴ (x+
1

k
)n ≤ xn +

c

k
, where c =

n
∑

j=1

(

n

j

)

xn−j

By Archimedian property ∃k ∈ N such that k >
c

α− xn
=⇒ 1

k
<

α− xn

c
i.e.,

xn +
c

k
< α =⇒ (x+

1

k
)n < α =⇒ x +

1

k
∈ S, also x < x+

1

k
=⇒ x is not

upper bound of S, a contradiction to x is a lub of S. Therefore xn ≮ α.

case 2: xn > α

(x− 1

k
)n = xn −

(

n

1

)

xn−1
1

k
+

(

n

2

)

xn−2
1

k2
− . . .+ (−1)n

(

n

n

)

1

kn

≥ xn −
(

n

1

)

xn−1
1

k
−
(

n

2

)

xn−2
1

k
− . . .−

(

n

n

)

1

k
(Since

−1

k
<

−1

kn
)

= xn +

n
∑

j=1

(

n

j

)

xn−j 1

k

∴ (x− 1

k
)n ≥ xn − c

k
, where c =

n
∑

j=1

(

n

j

)

xn−j

By Archimedian property ∃k ∈ N such that k >
c

xn − α
=⇒ k(xn −α) > c i.e.,

xn − c

k
> α =⇒ (x− 1

k
)n > α

Claim: x− 1

k
is a upper bound of S.

Suppose there exists y ∈ S such that y > x − 1

k
then yn > (x − dfrac1k)n > α,
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a contradiction to y ∈ S. Therefore x − dfrac1k is a upper bound of S. This is

a contradiction since x− 1

k
< x. Therefore xn ≯ α.

picture is missing

Corollary 1.1 Between any two real numbers there are infinitely many rationals.

Hint: Suppose finite.

Theorem 1.6 (Greatest Integer Function) Let x ∈ R. Then there exists a

unique m in Z, such that m ≤ x < m+ 1.

Proof. Consider the set S := {m ∈ Z : m ≤ Z}. Suppose S = φ, then for all

m ∈ Z, m > x =⇒ x is a lower bound for Z, contradiction to problem (1.3).

By the definition of S, x is a upper bound for S, therefore S is bounded above.

Hence by LUB axiom(remark (1.1)) ∃α ∈ R such that α is lub of S.Since α−1 is

not a upper bound for S, there exists m ∈ S such that m > α− 1. Since m ∈ S,

m ≤ x. Suppose x ≥ m+ 1 =⇒ m+ 1 ∈ S =⇒ m + 1 ≤ α =⇒ m ≤ α − 1,

a contradiction. Uniqueness: Suppose there exists n such that n ≤ x < n + 1,

W.L.G let m < n =⇒ m+ 1 ≤ n, therefore m ≤ x < m+ 1 ≤ n =⇒ x < n, a

contradiction to law of Trichotomy.

picture is missing

1.3 Sequence

Definition 1.8 (Sequence) Let X ⊆ R be a non-empty set. A Sequence in X

is a function f : N → X . We let xn := f(n) and call xn as the nth term of the

sequence. The sequence is denoted by (xn).

Definition 1.9 (Bounded Sequence) A sequence (xn) is said to be bounded

sequence if there exists M > 0, such that ∀n ∈ N, |xn| ≤ M .
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Definition 1.10 (Constant c-sequence) A sequence (xn) is said to be constant

c-sequence if ∀n ∈ N, xn = c.

Definition 1.11 (Constant sequence) A sequence (xn) is said to be constant

sequence if there exists c ∈ X such that (xn) is a constant c-sequence(∀n ∈ N,

xn = c).

Definition 1.12 (Eventually constant sequence) A sequence (xn) is said to be

eventually constant sequence if there exists c ∈ X , n0 ∈ N such that ∀n ≥ n0,

xn = c.

Definition 1.13 (Convergent Sequence) A sequence (xn) is said to be convergent

sequence if there exists a ∈ R such that the terms of the sequence gets arbitrarilly

close to a. i.e., ∀ǫ > 0(∃n0 ∈ N(∀n ≥ n0(|xn − a| < ǫ))). We denote as xn → a

Note 1 We say a as a limit of the sequence (xn).

Definition 1.14 (Cauchy Sequence) A sequence (xn) is said to be cauchy se-

quence if the terms of the sequence gets arbitrarilly closer. i.e.,∀ǫ > 0(∃n0 ∈

N(∀n,m ≥ n0(|xn − xm| < ǫ))).

Exercise 1.7 Let x,y ∈ R. If for all ǫ > 0, |x− y| < ǫ then x = y.

Theorem 1.8 (Limit of a sequence is unique) Let (an) be a converging sequence.

Then the limit of the sequence (an) is unique.

Proof. Let an → a and an → b. Let ǫ > 0, an → a =⇒ ∃n1 ∈ N such that

∀n ≥ n1,|an − a| < ǫ

2
and an → b =⇒ ∃n2 ∈ N such that ∀n ≥ n2,|an − b| < ǫ

2
.

Choose N =max{n1,n2}, now |a− b| = |a− aN + aN − b| ≤ |a− aN |+ |aN − b| <
ǫ

2
+

ǫ

2
= ǫ. Therefore for all ǫ > 0, |a− b| < ǫ =⇒ a = b by exercise (1.7).Hence

limit of a sequence is unique.

Theorem 1.9 Every convergent sequence is bounded.
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Proof. Let (xn) be a convergent sequence and x be its limit. Therefore for ǫ =

1(∃n0 ∈ N(∀n ≥ n0(|xn − x| < 1))). Consider |xn| ≤ |xn − x| + |x| < 1 + |x|(for

n ≥ n0). Choose M =max {|x1|,. . .,|xn0−1|,1+ |x|}, then for all n ∈ N, |xn| < M .

Hence (xn) is bounded.

Theorem 1.10 (Sandwich Lemma) Let (xn),(yn) and (zn) be sequences such

that ∀n ∈ N, xn ≤ yn ≤ zn. If xn → a and zn → a then yn → a.

Proof. Let ǫ > 0, xn → a implies ∃n1 ∈ N such that ∀n ≥ n1, xn ∈ (a− ǫ,a + ǫ)

implies ∀n ≥ n1, a − ǫ < xn and zn → a implies ∃n2 ∈ N such that ∀n ≥ n2,

zn ∈ (a − ǫ,a + ǫ) implies ∀n ≥ n2, zn < a + ǫ. Choose n0 = max {n1,n2}, then

∀n ≥ n0, a− ǫ < xn ≤ yn ≤ zn < a + ǫ. Therefore yn → a.

1.3.1 Algebra of limits

Theorem 1.11 Let xn → x and yn → y then xn + yn → x+ y.

Proof. Let ǫ > 0, xn → x implies ∃n1 ∈ N such that ∀n ≥ n1,

|xn − x| < ǫ

2
(1.1)

yn → y implies ∃n2 ∈ N such that ∀n ≥ n2,

|yn − y| < ǫ

2
(1.2)

Let n0 = max {n1,n2}, then ∀n ≥ n0,

|xn + yn − (x+ y)| ≤ |xn − x|+ |yn − y|

<
ǫ

2
+

ǫ

2
= ǫ by eqns ((1.1)) & ((1.2)).

Theorem 1.12 Let xn → x and α ∈ R then αxn → αx.
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Proof. Let ǫ > 0, xn → x implies ∃n1 ∈ N such that ∀n ≥ n1,

|xn − x| < ǫ

1 + |α| (1.3)

then ∀n ≥ n1,

|αxn − αx| = |α||xn − x|

< (1 + |α|)|xn − x|

< (1 + |α|) ǫ

1 + |α| = ǫ by equation ((1.3))

reason for we go for 1 + |α| is α may be equal to zero.

Theorem 1.13 Let xn → x and yn → y then xnyn → xy.

Proof. Consider

|xnyn − xy| = |xnyn − xny + xny − xy|

≤ |xn||yn − y|+ |y||xn − x|

< |xn||yn − y|+ (1 + |y|)|xn − x|

(1.4)

Let ǫ > 0, (xn) is convergent implies it is bounded (by theorem (1.9)). Therefore

there exists M > 0 such that ∀n ∈ N, |xn| < M . yn → y implies ∃n1 ∈ N such

that ∀n ≥ n1,

|yn − y| < ǫ

2M
(1.5)

xn → y implies ∃n2 ∈ N such that ∀n ≥ n2,

|xn − y| < ǫ

2(1 + |y|) (1.6)

Let n0 = max {n1,n2}, then ∀n ≥ n0,

|xnyn − xy| < |xn||yn − y|+ (1 + |y|)|xn − x| by equation ((1.4))

< M
ǫ

2M
+ (1 + |y|) ǫ

2(1 + |y|) = ǫ by eqns ((1.5)) & ((1.6)).
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Theorem 1.14 Let xn → x and ∀n ∈ N, xn 6= 0&x 6= 0 then
1

xn

→ 1

x
.

Proof. Consider

|x| = |xn − xn + x|

≤ |xn|+ |xn − x|

=⇒ |xn| ≥ |x| − |xn − x|

(1.7)

Let ǫ > 0, xn → x implies ∃n1 ∈ N such that ∀n ≥ n1,

|xn − x| < |x|
2

(1.8)

xn → x implies ∃n2 ∈ N such that ∀n ≥ n2,

|xn − x| < |x|2ǫ
2

(1.9)

Let n0 = max {n1,n2}, then ∀n ≥ n0,
∣

∣

∣

∣

1

xn

− 1

x

∣

∣

∣

∣

=
|x− xn|
|x||xn|

<
2|x− xn|
|x||x| by equations ((1.8)) & ((1.7))

<
2
|x|2ǫ
2

|x|2 = ǫ by equation ((1.9)).

Exercise 1.15 Let xn → x. If for ∀n ∈ N, xn ≥ 0 then prove that x ≥ 0.

Theorem 1.16 If for ∀n ∈ N, xn ≥ 0 then
√
xn → √

x

Proof. Let ǫ > 0. If x = 0 then xn → 0 implies ∃n1 ∈ N such that ∀n ≥ n1,

|xn| < ǫ2 =⇒ √
xn < ǫ. If x 6= 0 then xn → 0 implies ∃n2 ∈ N such that

∀n ≥ n2,
∣

∣

√
xn −

√
x
∣

∣ <
√
xǫ (1.10)
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Let n ≥ n2,

∣

∣

√
xn −

√
x
∣

∣ =

∣

∣

∣

∣

(
√
xn −

√
x)(

√
xn +

√
x)√

xn +
√
x

∣

∣

∣

∣

=
|xn − x|√
xn +

√
x

≤ |xn − x|√
x

since xn ≥ 0

<

√
xǫ√
x

= ǫ by equation ((1.10)).

1.3.2 Some Problems

Problem 1.3 Prove that
1

n
→ 0.

Solution Let ǫ > 0, By Archimedian Property ∃n0 ∈ N such that n0 >
1

ǫ
.

Therefore ∀n ≥ n0,
1

n
≤ 1

n0

< ǫ.

Problem 1.4 Prove that
1

nk
→ 0, for k ∈ N.

Solution Let ǫ > 0, By Archimedian Property ∃n0 ∈ N such that n0 >
1

ǫ
.

Therefore ∀n ≥ n0,
1

nk
≤ 1

n
≤ 1

n0

< ǫ.

Problem 1.5 For a ≥ 0, a
1

n → 1.

Solution

Problem 1.6 For 0 ≤ a ≤ 1, an → 0.

Solution a < 1 =⇒ 1

a
> 1 =⇒ ∃h > 0 such that

1

a
= 1 + h =⇒ 1

an
=

(1 + h)n > nh =⇒ an <
1

nh
. Also since 0 ≤ an and by Sandwich lemma

(theorem (1.10)), an → 0.


