. Series Expansiopg
' 70. Introduction .

sefies. ' a fUﬂCtion e an
. a power series called Taylor’s serigs ¢
| the expansion is valid in some neighbou
'~ whichis analytic in an annu]ar regio
' Laurent’s series consisting of positi
- the concept of singular points of a
' the behaviour of the function in th

alyu'c at a point zg then it can be expanded as
NSisting of non-negative powers of z — 20 and
rhood of z,. We also prove that a function f(z)
Na < |z—zg| < bcan be expanded.as a series called
ve an'd negative powers of z — z. We also introduce
function and classify the singular points and discuss
e neighbourhood of a singularity.

o a

- |
/' \

1.1. Taylor’s Series ../. P

t\
1

S T |
3

N 2
\

' Theorem 7.1. (Taylor’s theorem) "/ -
Let f(z) be analytic in a region D containing zo. Then f(z) can be represented as a
| power series in z — zg given by :

E ‘ : ’ _, | f; z '
(n) = :
f EZO) (Z — 20)'1 4+ e
n P

E - The expansion is valid in the largest open disc with centre zq ¢ ODtained -3
'Proof. Letr > 0 be such that the disc [z — zg| < r is contained in' D.
Let0 < r; < r. Let Cy be the circlé“]z\_rzq| =r.

| By Cauchy’s integral formula we have

_ A ; |
f('Z) ) 2m-c:' (s —z)dg 0 i )
I

b Also by thc;)rem on higher derivatives we have

g =2 [ _fQar e (2)
ZHI'C (& — 7)n+l
I .
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174  Complex Analysis

1 I

| L
Now, C-Z=(§—z°)—(z—m)
_ 1

|
=— z-—ZO]

=

9 e
I z—-zo) \ (_Z___ﬂ) T U _,_(Z‘-zg |
=;»‘i§3[]+(t—zo i 0y 7:56) |

l ’ : 2 n—| a"

" (using the identify —— =1+a+a”+...+a"  + )

' T l-a | l —q
Sy zmw  Gowt @ gy

-2 - € -202 (¢ —20)° € =-z20)" | (¢ -z0)"¢-y

" Now, multjplying throughout by %?-, integrating over C| and using (1) and (2) we
get 2

(@) = f(z20) + f'(z0)(z - zo) + f”2(20) (z —20)% +

f(n l)(ZO)
= 1)!

(z — z9)*~ Py Ry oo 3

where R, = £=20)" f f @)z
¢ - 2)(¢ — z0)" "

~z0l = ry andz—20l <"

£ =2l = 1@ ~z) -
%) (Z“Zo)l>lc—zo|—|z—zo|=r|—IZ'ZOI‘

l &%

It =zl T - lz=zof

Let M denote the maximum vaj,e of | F @)
Iz — zol" MQrr)) 01 Cy.
=<0

Then |Ry| < - '
(r1—lz = 20))ry (by theorem 6.2)
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Series Expansions 175

= ___All_i;:_ﬂ-— |z ~ 251 \"~!
(r) e

=12 = zq)) ’
. < ence lim R, =),
r‘ N=» QO

N\
A

. Taking limMitas n = 0o in (3) we get

8 = f (< n) 4
f&) = Flao)+ =20 ) 4 -—2‘1’_’(; — )+
(n)

Note 1. The above series is called the Taylor series of f(z) about the point zg. Thus
i f(z) is analytic at a point zg then f(z) can be represented as a Taylor's series about

-, which is @ series in non negative powers of z — zo. The expansion is valid in some
xeighbourhood of zo.

Note 2. The Taylor series expansion of f(z) about the point zero is called the
Maclaunn s series. Thus the Maclaurin’s series of f(z) is given by

" z n .
()= fO) + %f’(m +_%f O+ + = fP O+

s 1 -
Example 1. The Taylor’s series for f(2) = - about z = 1 is.given by

f’ (]) ft!l(

—f(1)+£—(—)(z—-1)+ e =0+
Now, f(z)=z=>f(l)=1 _:iZ, s
1 ’
= —— ) =-1 -
fl(z)_ Z2=>f() ‘ 9
2 ' Ve S e
f”(z)=-§=>f’(l)=2 ile -
z6 " 'F:)J ,Z:--—.;
frR=-g=1=-6" 9. Z ¢
........................ iy .

| ‘
's seri ansion for = about | is
Hence the Taylor's series €xpan .

I - @=-D+@E-D ==+
Z
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176  Complex Analysis

~ s 1 — ] < l-
This expansion is valid in the disc |z — 11

. 1 EETAE,
i .y — — about z = I 1§ gIven by
Similarly the Taylor’s series for f(z) .

c—i?_@=0,

— i4

. . . - — 1 g 'r )
and the expansion is valid in the disc |z —i] <1 _("ef ify)

Example 2. Let f(z) = ¢*.
Then f®(z) = € for all n and hence f(")(O) = 1.

Hence the Maclaurin’s series for ¢ is given by

2 3
Z Z Z
‘=4t tgt

and the expansion is valid in the entire complex plane.

Maclaurin’s series expansion of some of the standard functions are given below,

Z"
-+-—'+Ill
n

2 .
1. Ae-‘z=|——z—+-z— + (=" 4 (J2] < o0)
e 13 25 " n! S 3
P P RS SPL I s |
2. sinz=z 3'+5’ + (—1)" (zn_l)!+---(lz|_<oo) :
3 o 22 4 nt 2’.2"'-2
. COSZ= l_i_'+<_17—m+( )] ____2)' + - (Jz] < 00)
b1 23 ZS 2n—
4 s ,
smhz” += 3' s == 3 +:-+ ————(zn ) (Jz] < 00)
4 n
5. coshz=1
Z +2'+ + - +(2n)' (|‘_|<oo)

1
6. T+ =]—-z472 -—z+ +(—l)"z"+ ~(z]l < 1)

]
7. .. ——
] -z ]+Z+Z -+Z +...+Zn+“-(]z!< 1y

2w 3
8. ]0g(l+2)=z_._z__ E__ _ Zn
2 +3 (=D I—_+"'(IZ|<])

9. rog(l—z)-_—'_.'______i___ 2N

Solved problems

Problem 1. Expand c0S Z into a Taylop'g ¢ ”
)| . in
the region of convergence. €S about the point z = 7/2 and deter™
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Series Expansions 177

F“ Sohlﬁ(m- Let f(:) =cCos: )
- The Taylor's series for £.) about -

) =7/2is
(E—x/2)

a2 E = .
I ID+=——7 (rr/2)+(—“—;—/-.

fO=f=/D+

2)*

| fT(@/2)+--

f Now £(2) = cos 2. Hence fx/2)=0

| f:(:) = —sinz. Hence f@/2) =-1.
f (2) = —cosz. Hence /=0
F7(2) = sin z. Hence @2y =1.

- . The Tavlor’s series fi Fa i
- \ s torcosz about z = /2 is

cosz == 7/2) g —7/2°  (=n/2)°
l ! 3! 5! .-
The expansion is valid throughout the complex plane.

. Problem 2. Expand f(z) =sinzina Taylor's series about z = /4 and determine the
- region of convergence of this series.

. Solution. The Taylor’s series for f(z) about z = /4 is -

<=7 42 "
E#;f (r/4) + -

z—x/d)
D) = fa/+ f—lf—/—-f (x/4) +

P 1
- Here f(z) = sinz. Hence f(:r/-l):\—/—;.

S 1
(=) = cos =. nfd) = —.
f'(z) = cosz. Hence f (7/4) 5
ﬁ < e, T l. ’
f"(z) = —sinz. Hence f'(x/4) = —\-/—5-
e 1
F7(2) = —cosz. Hence [ (x/4) s K

. The Taylor's series for sin 2 about 2= X4

z—a/M (1 (z=n/4)2 7 |
LA T (ﬁ)_ 2! (ﬁ)+ ......

2= %f8) (/02 (s 3
[Hu x4 @) _(ﬁ—j_{ﬂ_,*..]

I 2! 3!

ii SiInZ =

—
—_—

wl- Nl

. The expansion is valid in the entire complex plape.
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178 Complex Analysis

g~ | 'q series
- . o Taylor’'s s€r
Problem 3. Expand f(2) = ;-_*—:-l- as a Tay

(he region of convergence in each case,

] H c
(i) about the point ¢ = 1. Determin

Solution.
=1
(M) f(l'.)f—‘m
==+
=(:—l)(|—-:+zz-—z3+ ------
(E—:2+::3 ------- )—(l—z+z2—z3- caeeee)

=142z =222 420

The region of convergence is |2| < 1.

T —

() f@)= 1

_ z—1 )
T R4z-1).

z—1

The region of convergence is given by ‘ —

< 1 which is same as the circul
disc |z—1]| < 2. »

i’roblem 4. Show that

00
I
(i) ?:: ] +Z(n+l)(z+|)u when |z + 1] < |,

n=|

. I l l & l" z___z nh ‘ . :
i) = +ZZ(")(n+].)(_____.)

when |z - 2| < 2.
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Series Expansions 179
| ‘

—.‘*\—
-G+ )2
= [~ (24 1))-2

i o
:Somtion. (l);z- =

N +a4z+ 1) 4. iflz+ 1] <1
=1 +Z("+ D@+ 1)" when |z + Il <1.

n=|

Il
&Sl —
—
|
o
Nn |

(S}
~—
+
w
A~

(o]
NI |
[\®]
S~
[ *]
|
(I
=
|

-y

. 1. ) Z_—E n
Z+ZZI(_” (n+l)( 5 )

3 n=
A L

-

< | which is the same as the circular

Here the region of convergence is
disc |z — 2| < 2. .

Problem 5. Expand z ¢22 in a Taylor’s series about z = —1 and determine the region of

1 * - vy ' | )

convergin/ce’f ( @ %) \},.c;t,
i/ &

2z A g

.
_ Ze-(z-hl)e

f ' - 2(z+]

- _ [ 4 ettt — 26t )]

E 2L

2.( +1) 4 2 b
L (z+|){1+ = n (Z;]) +}

_[1+2(z+1)+4(zﬂ)_2_+,_,”
1! 2!
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. 180 Complex Analysis

. L

| 2+ 1)’ Z_Ei_'-)—Jr]

=-5H(z+l)+———7,—"+ 2!
e‘ .

2 2
2(z+')+_2_.£fi-l—)——+---
=+ 2!

|

I

P L T i A R
=—L[—I+(I—%)(z+l)+(-ﬁ—--2-!-.(z+ ) TR TR
c- !
i ; lane.
The expansion is valid throughout the complex pla o

’ ) —_— iﬂ | < 2
Problem 6. Find the Taylor’s series t0 represent TS |z|

Solution. By partial fractions

-2 — | 3 8 .
S —— = ——  (verify)
Z+2@z+3) . +2 z+3 ‘
AN R 2.8
= Z\. Z
‘ 2(1+5) 3(1+_§)
.
NG ' :
3 z\—-! 8 z\—!
=1+3(1+3) -3(0+3)
3 z 2 2 8 : 2 2
=4 - | [ _— — eve | — — —_ - e
'2( 2+2 '2+ ) 3(l 3+32 33+
3

and the expansion is valid in |z| < 2

Exercises.
1. Verify all the ten expa;lsions in7.1

I .
2. Expand ~ aboutz =—1 a4, i
pana - and z = 2 as Taylor’s series, stating the regio” o

convergence.

) that = = 1—2(z— _ i
3 ShOW '22 )+3(Z-—~I)2"'4(Z—l)3+--' fOl'il"Zle’]l
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Serley Expansiony 181

PP T oty
4 | N WIOrs Kerioy Wbout 2 = |

¢ Lind the Maclaurin'y Merles for - I
- e What Is s radius ol convergence,

o' Vo o
o, Obtain the Taylor'y seriey 1 represen

e | 2] < 1.

(2 1)z 3)

Obtain the Taylor's serien
\ : for | -,' about z'= 1, State the region of validity.

g, Find the Taylor's series for ze about 7 = l

20 10
9. Show that sin 2% = .2 _ & T gl

3‘ 51 - —.7!- S AEERER I‘()rl.':l =2

( ]@-\ n l n
3 EL(—I) Rk

T+ 23" l)"*'“q,m Hz=11<3

ne=|

P -n% 4@iz-1n?
g e[1+2(* DN L= ]

T 2! 3 T

12, Laurent’s Series

Asenesofthefonnz-z— )
=\ n

“n be considered as an ordinary power series in the varjabje l Hence if the radius of
z

“nvergence of the power series Z baz"israndr < oo the the seri€s Z — converges

-
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Theorem 7.2. (Laurent’s theorem) cuc« coml

182 Complex Analysis

. ” - 0. e d >
e convergence is uniform in every region 12l =2 p > rang (he

ic function in |z| > T-
h the usual power §

in the region |z| > r. Th
series represents an analyt :
If the series (1) is combined wit

o0
of the form ¥ anz".
—00

eries we get a more general seyj,
*CTigg

-+ (2)

This series is said to con\;crge at a point if tht? Purl of the scncs. consisting of the
s consisting of non-negative powers of ; 5,

: . 7 serie

negative powers of z and the part of the ; i e

separately convergent. We know that the Seres c(?ns;stlng of non negative powers of ,
converges in a disc |z] < 2 and the series consisting of negative powers of z CONVerges

in a region || > 1.
- If r| < r the series represente
in this annulus region it represents an a

We shall now prove that the converse situation is a
yticinaregion containing the annulus r| < |z—zp|< ny
SR PRL

can be represented in a series of the form Y an(z —20)" R
—00 = !

y | J )

! s
DG LA 2D

d by (2) converges in the region r| < 2] < ry apg
nalytic function. ,
Iso true.

(i.e) any function which is anal

:,‘.:[
e deyf

~ Let C; and C; denote respectively the concentric circles |z—zg| = ryand |z — 29| =n
with r; < r. Let f(z) be analytic in a region containing the circular annulus
ri < |z —zol < r2. Then f(z) can be represented as a convergent series of positive
and negative powers of z — zo given by

(o o]

by .
F@=) ——+D a2 —20)"
n=0

n=| (z = z0)"

whereb”'; 21'f f(f)d—f-H and iy = 1 f f(©&)d¢
mCl (& —2zp)~" zm'cz (T — 20)"™!

Proof. Let z be any point in the circular annulus r; < |z — zg| < r2.

Then by theorem 6.9 we have, f(z) = =" j‘f(C)dc 1 ff(c')dc

2ni ) ¢—2z 2mi) (-2
C> C
ZH'C, §~z 2mi z—¢C
As in the proof of Taylor’s theﬂrer-n. we have “
1 f) dEs
2mi ) ¢ : a‘(z"zo)fl-ag(z'_z_o)Z_!..'. .......
Ca

...... T an-1(z ~ zgyn-1 + R, ()
n\<«
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Series Expansions 183

Where p = -l—-. S ()
-'Tl mdf and

Rn(2) = £“_:._;9_)f_ j F@)de
€= -2

|
STt p-¢

Il

]

c_-,

()
Z=-120
Multiplying by f((') and integrating over C; we get
ACPLI S b' ML T N SRReEY ponml__ — + 8@ .. ).
z—-¢ z—2 (z2—20) (z — zp)"
C
| F@de o ] F&)E — 20)"d
where bn — 2;-,7 @ —:0)_n+‘~ n = 27”.(2—2.0)"6‘ P
1
From (1), (2) and (3) we get
SN ol |
f(')—ao+a|(- gg) ko= +an—1(z — 20)"
b - .
b b ... o L@
+:tl-':'6+‘(';:;52-+ + (z = zg)! + Rn(z) + Sn(2)

The 'required result follows if we can prove that R, — 0 and S, — 0asn —> 0.

Now, if ¢ € C) then [f =20/ =11 and

12=21=1E=20) =€ -z)| > |z = 20l ="
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184 Complex Analysis

If £ € C; then |¢ — zo| = r2 and |
z-z) Zr2 e

-2l =1 —20)~ -
‘ inCy UC2.
Now Iét M denote the maximum value of | f(2)| In 1
» — zo|" M(2rr2) (by theorem 6.2)
Th R <| =0 y ' UL R T o
ﬂﬂ l "I 2T "("2 — Iz —_ Z()l) {Rﬂ / _'.f"’ 3 s ,‘ ) ] ! ;:(,)JC@(
p=1 017 ; T —
Mz = 20l (I__:z_o_') . | FICTAY
& . -
—(rg'—lZ"ZOI) r2 ‘ ' (% . )

Since 12~ Zol < 1,Ry = Oasn — 00
- | M)
Also. ISnl = =2l 27 (Jz = 20l =)

Mr) ( r| )n
-“'(Iz—zol—rl) |z — zol

<1,8 — 0asn — o0.

Since
lz—20

'Hence_, by taking limitn — 00 in (4) we get‘

f@=) —— P )n + zoau(z —z0)".
| s

.nl

Hence the theorem.

Remark. The formulae for the Loefﬁmems a, and b,, in the Laurent s series expansion

_ f()dg .
are given by ay Y f ETO);H'_] | L | e (D
and bn;_Lf f&)dg : | ... 2
2ri J (¢ — zg)— ) :

Smce the integrandsin the j Integrals of (1) and (2) are analytic functions of ¢ throughout
the annular region, any simple closed curve C in the annulus can be used as the pa[h of
integration in place of Cy and C,, ‘ |

Hence Laurent’s series can be Wntten s

f@)= E An(z = 20)" (1 < 12 ~ 20| < ry) where A, = f f@ff_:
| s 4 "Toari )] @ —Zo)"
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Series Expansions 185

| T
'sul\’l“l Problems

‘ind the Laurent’s gor |
Jem Jo i AUTENt’s series expanct
fro ol Xpansion of f(z) = z2¢!/2 about z=0.

j&"'ullou. f@) =2z 2ellz,
clarly f(2) 8 analytic atall points 7 4 g,

Now, £ = 2 [.+l+_l_+_l_+ ]

2122 3123
1 |
—-Z +z —_—
+ 2 * 3!z Tz 4'z2

This is the required Laurent’s series expansion for f(z) at z = 0.

| ' ~1
problem 2. Expand C-DG=2) as a power series in z in the regions |
<l () 1<lzl<2 (iii) |z| > 2.
=l ’
Solution. Let f(z) = _ .
(2—1D(z-2)
. . . 1 1
By splitting into partial fractions, we have f(z) = p— - —

() The only points where f(z) is not analytic are 1 and 2. Hence f(2) is analytic
in |z| < 1 and hence can be represented as a Taylor’s series in |z] < 1.’
v 1 1 . _
", J\;)=z_l"z_2, : S [__
1 1 VR,
l—z 2-2 '

Z

. ] -1

-1 (1=-2
=—(1—Z) +2(l 2) .
=-—(1+Z_+22+"'+Z".+"") \
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f(z)sz_]_z-—z .
1 I ! ,
z(l—:) 2(1-3
&
—1 -1
I 1 T2
-1(-1) a3,
7
| 1 -, . l 1+(£ (Ez
=z[‘+(z)+(2).+ ]*2[ )+ )+
' (since - <land|Z|<]).
og 1 o0 Zn -
= ’!Z_:% Zn+| = an+l

186 Complex Analysis

the annular region I < Jz)'<2.and hence can be €Xpangy,

i is analytic in :
(i) /@ in this region- -

(P |
a Laurent’s s€nes '

This gives the Laurent’s series expansion in | < |z| < 2. ’

(iii) f(z) is analytic in the domain |z| > 2 and in this domain we have |2/z| < 1.
Hence \\

: 1 1 1 |
@Q=-|l—77=|"Z|7T""F75
. f@) [l—(l/z)] z[l—(Q/Z)]

R -1 1 — -

=-0-qa/r - -/t

N 1 132 = OE )

(e @) Q) o) (+ ()
.“ - . z z |

_il—z" o

- i+l

n=0

g

3. Expand . . A

Problem P. 2(z — 1) 28 Laurent’s series (i) about z = 0 in power of £
(i) about z = 1 in powers z = 1. Also state the region of validity
Solution. (i) The only points where £, ; f
(z) is not analyti 0 and 1. Henc®
can XpanOoGs 2 Laurent’s series in the annulus 0 < |zl <
N
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Series Expansions 187

1
='—"‘(l+z ..,2
Z *2 +"‘+Z"+---)(since|z|<l)

]
L4 === = 72
(Z+l+z+~ +'--+z"+~-).
This is the Laurent’s series €Xpansion of f(z) in0 < |z| < 1.

i) f (2_’-) 15'; analytic in 0 < |:_ =1l <1 and hence can be expanded as a Laurent’s
series In powers of z — 1 in this regjon.

1 _ l [ I : . T‘.),_\: . f/-,.; "Y"-'r AT A .
2(z—1) z-1 l+(z—l)] ‘ (yer) < '_
1 S

P =i+ G&-D]
/ -pf\) l 2 __l3 ...]

“,\3(‘/ =——l-G@-D+E-D-E-D+
e ‘ = : :
(’ (since |z — 1] < 1)

=-—-l——l——1+(2—l)_(z_l)2+""

This gives the I.aurent’s series expansion 1n O<|z—-1l< L.

's seri < tz = —2.
Problem 4. Find the Laurent’s S€res for T DE+2) abou -z _

Solution.  Let f(2) = + 1;(3 403

2 1+ @D+ E+2)P 4
z+2 '
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Series Expansions 187

I
Sty oy,

) (since jz| < 1)

1
' =_—(:_H4“'5‘*'252-i---'+z"+---).

This is the Laurent’s series expansion of £(z) in 0 < |z| < 1.

i f (z)isanalyticin 0 < |z — ]| < | and hence can be expanded as a Laurent’s
series in powers of z — | in this regjon.

—-

N ! R LR L
z2(z—1) z-1 ]+(Z_|)] ‘ ¢ ) :

= (4@
z—1

= -+ G-D == +)

z—1 o
(.’ ' , | ._(sinc:c»lz— 1<)
=—Lf—1-+(z—l)‘—(z—l)2+---.

This gives the T.aurent’s series expansion in 0 < |z — 1] < 1.

. i Z ) ‘
¥ aat ==2. =~
Foblem 4. Find the Laurent’s series for ESED) about lz _ R

'z
z+DE+2)

=12 (verify)

=‘z-{-l z42

=1
— —_+ .
T e+t

Solution. Let f(2) =

|

[\

2
s P R
=(-G+ T Tn

\ s X
| 24224 )
4+ @e+D+ @+ +. ]+z+2
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188 Complex Analysis

z a Laurent’s series valid for () .
Problem 5. E\Pdnd f() = ————-—m“z":—)' ina o | ) " 3
;Il‘ld (V) 0 < I:. - l < 1.

(i) 1 < |z | < 2 (iil) |z 1»2(iv)|z—l|>l

Solulion. Let f(2) = z-D2~-2)

SR = i -+-22 (by partial fractions).

-1 =

i |zl<l.

—l 2

===+ -2/,
f@)= + 3 -z/2) ( /2)

Since |z| < 1, f(z) can be expanded in series as

f@=-l +z+22+23_+---]+[1 +(§) +(%)2+ (%)3-}-]

_z %1
-, 2% =4 8
() 1<lz]<2
” . l - 3 = . 2 3 _""“' 1,_ 2. i N
b Zl—llz)“'+(1 427

2(1=1/2) 2(] —z/2)

Nowl <z] <2 L

'f(z)——[1+ +(5)2 () ]
O]
+(%) AR A

< 1. Hence we have

<landlE
2

+

I
A
&N |
N’

w

< | and

2
(iii) |z| > 2. Hence z
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: Series Expansions 189
1

I i e LV 2
f@F 2(1=1/2) Py
] 2
=-(1-1 —l_.__ .
z(' /2 (1 =2/
=-]£(l+:+-%+_‘]_+ )-—2 ]+2 2\ 2 2 3
©E z 2*(2) )
ol _3_ 1.5
= z zz 23?;"*-.-
,—1] > 1, Hence ! <1
' ‘ —1]
f(Z)=z_]*é-_92
o 2
Tz-1 z-1-1
1 2

i

Il
(3]
‘-—-
—
| )
(o] .
| | &9
ot
|
(& ]
| {— &
—_ |
|

M 0<|z=2| <. e
1 2

— —

f(Z)=Z—:_'_2___*:—]- z—2

2
= +z—2)] l“;‘__z

. 2
_-@-D+E=D = @=2+-1-

',____’_?_-4-1—(z—2)+(z—2)2—(z-—2)3+""'
=—
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190 Complex Analysis

. Laurent’s series valid in the region | < 2 <5

. I
Problem 6. Expand m

I -
. Then
Solution.  Let f(2) = 773,712
@-2-G=D L. 1
fQ=="e-n =1 z-2

nl<|zl <2 e '
ies in that region. Now

)i tic in the regio
f(2) is analy g A

Hence f(z) can be expanded in Lau
| I AL 1\~

I 1 __I1(-Z% ——(l—._

f@= z) - 1 2( 2’) 7 z) ,

z|. ;
In the region 1 < |z| < 2, we have 5 < | and

< 1. Hence f(z) canbe eXpandz|

in Laurent’s series as

n=0 % n=0
X XA
- _Z n+l - Z: !
ﬂ=0 n=0
z+4 ST e L
find Laurent’s series expansions in

Problem 7. If =
roblem 7. If f(z) ey

)0 <lz—1]<dand (i) |z = 1| > 4. - -
Z+4 ‘

(2+3)(z-1)?’

By expressing f(z) into partial fractions we get

l :
[@@)=— _ 1 5
- 16(Z+3) ]6(z - ]) +'4(Z _ 1)2 )

Solution. Let f(z) =

Z—1

n < 1.

(l;) 0 < |z— 1/ <4.Hence0 <

4
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‘ 1
f@) = ' ] 5
16G—T+4) " T6 -1  aG - N2
- ! 5
64(14.“_5_') 16z —1) ' 4z — 1)?

_ | (I z w1\ 1 N 5
o\ 4) T 16z - 1) | az—D?

< ls we h{lVe

o1 () () (5

1 n 5
T 16z —1) 4z —1?

' 2
S SR S NN L +}
T 4z—-1)2 16(z—=1) 64 64| 4 4

P - A ~ 4.
This is the required Laurent’s series expansion for f (2)in0 < |z 1l <

'(ii) |z — 1| > 4. Hence

< 1.
» z_
Now f(2) = T4\ 16z—1)  4@z—1?
'16(z—1)(1'+'j"{ o | '
z—1
: ’) 3
4 4 4
SR '1/—( )+(—"‘)’( —1) +]
=Tez-D| \z-1/ \z—-1/ Az
v s
. T 16— 4 —1)?
aer AR SR IR
-- o oftBefunss 2 -1 \ahdin
?
 Problem 8. Find the Laurent’s Serics CXpABSION O Hisguction (z+2)z+3)

' the annular region 2 < |z| < 3.

N |
z
Solution. Let f(2) = 7712)(z +3)°
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192 Complex Analysis

By splitting f(z) into partial fractions, we get
8

—

f(2) is analytic in the annular region 2 < Izl < 3.

Hence f(z) can be expanded as a Laurent’s series in that region.

 f@=1+ 3'2 - 82
Z (l.+ —) 3(] +§)

Z

=1 '("])"2" & (="
'+3Z__HTI—_SZ( n?H
n=p 2 n=0 3

Problem 9. For the function f(z) — ( s - find (Ma Taylor s series valid in 3 neigh
z(z

- bourhood of z = i and (i) a La““’m § series valid within an annulus of which centre
the origin.
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Series Expansions

l 7,0
- Solutlon, M f) = ;__LL
. 24 1)
m vy N ! | .
et L R P (by partial fractions)
=2(z-1)+ L ofi: I
2 741

:\\hcw (@) =2~ 1),h(z) = - und j @) = —.

1
Here h(i) = i h"(z) =

. Similarly we can prove that j(z)'= Z

P R TP T P P AT T e e e e o

= p(2 )+h(z) + j(2)

I
' & 2+
Taylor's expansion for g(z) about z =  is obviously 2(/ — 1) + 2(z — i).

Tuylor's expansion for h(z) about z = i is given by

00 (n) :
W@ =hi)+ Y # n'("

n=| .

(z-i".

(- i)"n!
jn+l _'

(-)"

so that k™ (i) =

_l N A _])u -
h(z)=-+Z "+)I"’(z—) Z("_H (z—=19)".

n=| —0

(-D*z—-i)"
(]+,)n+l ’

n=0

Hence the Taylor's expansion for f (2) is

=" (=" -
f(2)= 2('-')+2‘Z")+Z[,n+| W](z—z).

' -1
) fzy=2z- 2 iz + (1 4+2) (from (1))

=ZZ""2+':Z+(] —z+zz—zj+'-')if|2|v<]

"+ nthe annulus 0 < |z| < 1 the Laurent’s expansion is given by .

v wy
f(z)':'z'—]+Z+zz-z3‘+z4_.-~-.

193

. (1)
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194 Complex Analysis

| as a Laurent’s series, Also ing;
Ca[

7‘-
_._.(:,-——-—' about Z =

Problem 10. Expand f(2) = 7 N3

S.
the region of convergence of the seriet

t,:(z—-l)+2
Solution.  f(z) = —(-:——:T)T
2(z—=1)

e%e?
T @-N? .
2 2e-1) , =D 2= 1)
= l+ ) | + 1 +
“z-13 I 2! 3!
2 4 24
] 2 ! 4.
" + == + (Z—l)+
) [(2—1)3+(z—-1)2 @-D 3 }
This series converges for all values of z except z = I
Exercises
I ‘ - .
]+2Z ]+1—1+Z—"'+z —...where0 < |z| <1.

1. Prove that 55— =
. a2 z
2. Fmd a Laurents series expansions in powers of z of the function

1
f@@)=

ST _ |
3. Find two different Laurent’s series for ﬁ about z = 0 and state the
z¢(l —z
regions of validity.
] . ,
4. Expand T yE— as a power series in z valid in

(1) z]l <1 (1! <]zl <2 @iii) |z] > 2

5. Expand as a power series valid in 1 < lz| < 2.

222 -3z 42)

1
6. " Expand f(z) = : P
@+ 1)z +3) In Laurent’s series valid for

1<zl <3 Giyjz >3

()0 <lz+1<2 = (v)|g <
el
Uz —1)2

oy nt’s seri
7. Expand in Laure N atthe pointz =1.. ..
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Series Expansions 195

. a ’ e . .
Find a L L;rents Series expansion in powers of

8. @ z for the function
Z) = ———==,
AT}
9. Expand —2—*‘_ as a Laurent’s s ‘
' (z —3)2 eries at z = 3 and state the region of validity.
0. Expand 2 =31 2) in powers of z in the regions
MO<lzf <l G@)l<lzl<2 i)zl > 2
1. E ) — 243 ,
H xp}tnd f(2) 2@ =7 ) Inpowers of z
(1)  within the unit circle about the origin;
. (11)  within the annular region between the concentric c1rcle about the origin
having radii- 1 and 2 respectively;
~ (i1i) #'the exterior to the circle with centre as origin and radius 2.
| g
12. Represent f(z) = - ])( 3 by a series of powers.of z — 1 in
O0<jz—1] <2
13. Give two Laurent’s series expansion in powers of z for the function
g fl@)= W and specify the regions in which the expansions are valid. -
14. Represent the function 2—+——1 by
(i) its Taylor’s series in powers of z and give the region of validity;
(ii) its Laurent’s series in powers of z for the region |z| > Is
15. Obtain the L,aufent’s series of the function f(z) = @ - DZ=3) wvalid in the
region of (i) 1 < |z] < 3 (i) |z} > 3.
16. Qbtain the Laurent’s series expansions for W about z = 0 and specify
the regions in which the expansions are valid. ,
17. Fi ions in powers of z for when
7. Find lbe expansions 1n po | 22+ D2 +2)
Wizl <1 ()1 <ld<v2  (iD)ld> V2
Answers,
; ] 3 5 0 < 1
L f@)=-—z+2 -0+ 0 <
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3.

10.

Complex Analysis

2 1 > Zn ( )i "“]
(l) Z (] ar 2;;-{- )Z "z_—z:l Z" n=0 n=|
n=0
00 I ! ‘
n=0 5
. 1. 1,1 1z R
() =53 53 22 22 6 18 54
| 4 13 40
L =4
(ii) 2 B 25
1 1. 1] _—(z+ 1D+
(iii) 2(Z+l)-——+-(z+l) (z+1)
1 4Z- |3 2 ﬂ 3
™ 3-g+3° "3
(o o]
Y =1 - D"
n=0 ‘
) s _
- +'Z(_—l)"z2"-_' if0 < |z] <1
,z n=lI
I 2 -l——4(z_3)-+---;0<|z—3|<3
9z -3)2 27(z -3) . 243

3 7z 1522 3123
(l)—+4+8+ T +¥

(i) 2= D3+@2 - 1)l +@-nis
Z

O _—+Z[ (-.l)n 2 (;)"]Zn

3 ("l)" 5 X .
(ii) ~3 + P T
3Z 12 = 2)
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(i -2 g 2R s i(
o .‘:’ Nel) :” (”,' i)
l!. "":‘-ﬁJ‘...._.__ ‘ (\3\ (r. - I)"
4~ ” ‘m-n 2
o
RO U WP
Neal)
o0
M@ =1=23" " <
Ne=()
l , 00 — n
15, (1) = (Z—-—'-
-0 4\

16.
n=0
00 +1
(i) ZO(';"H).I <1
n=
DS (1 -=—)z*
o S (- 5
00 n 00 n+l,2n
, (—1) (-1)"""z
(11) Z z2n+2 + n+|
n=| n=

X, (-1)"(1=2")

n=0

713. Zeros of an Analytic Function ‘-

197

Series Expansions

00
iy Y 27"z~ |

n=0

00
iy 1423 ‘z‘":‘lzl > 1

n=0

>

Definition. Let f(z) be afunction which is analytic in a region D Leta f D. Thern a 15
said to be a zero of order r (where r is a positive integer) for f@if f (z).= (z—a)’ ?(")

where.(2) is analytic ata and ¢(a) + 0,
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198  Complex Analysis

Example 1. Consider f(z) = sinzg |
2 25 v assedaee
we know that sin 2 =177 -+ 3
22 ! PP
— &0(2)
4

"
,-
_——---

where p(z) =1 — =+ 5
Obviously ¢(z) is analyuc and @(0) = 1#0

z = 0 is a zero of order 1 for sin z.

Example 2. Let £(2) = (z — 2i)%(z + 3)3¢?
2i is a zero of order 2 and —3 is a zero of order 3 for f(z)

Example 3. Let f(z) = z°sinz
3 5
=l & n€E o
Then f(z) =z (z 3 i 51 )
2 4
Al e L
= 2%0(2)

2 7

where ¢(z) =1 __+§T— ------
Obviously ¢(z) is analytic and qo(O) £ 0.

0 is a zero of order 3 for f(z) = z%sinz.

. 5
Example 4. Let f(z) = :
z3 +1°

f(z)l=0#z -1=0
'““(Z‘l.)(zz¥z+1)=

+l 3 _1_1\/— e
"*“i__and each one is a zero of order 1.

Hence the zeros of f(z) are |, ——— 2~
gion 1 and is not identically zero in D

Theorem 7.3. Suppose f(2) is ‘{"=§|Yt1c in a
Then the set of all zeros Qf f(2) is isolated.
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Series Expansions 199

 Proof. - Leta € D be a zero for f(2). We shall prove that there exists a neighbourhood

|z—al <8 such that this neighbourhood does not contain any other zero for f(z).
Suppose a is a zero of order r for AN ’

Then f(2) = (z — a) p(z) (1)

where ¢(z) is analytic at a and ¢(a) # 0.
Now, since ¢ is analytic at a, ¢ is c_o;ninuous at a.
We can find a § > 0 such that

l2—al <5 = o) - p(@)] < L.

2
We claim that the neighbourhood |z — a| < & does not contain any other zeroof f(z). .

Suppose b #a is another zero for f(z) in this neighbourhood. Then |6 — a| < 8 and
f(b) =0. = .

2

Thus thé neighbourhood |z — a| < & contains no other zero of f(z) and hence the set
of all zeros of f(z) is isolated.

(b—aYeb)=0  (from (1))
Now, since b # a, (b — a) +0.
pb) =0
. ' 7 . le(a)l
_ Further |b =a| < 8§ = |p(b) — ¢(a)| < >
= |p(a)| < Ig‘O(a)l'which_isac:ontradic:tion. '

.

Corollary 1. Let f(z) be analytic in a regioh D. Suppose f(z) = 0 on a subset of D
which has a limit point in D. Then f(z) is identically zero in D.

. Corollary 2. Let f(z) and g(z) be two functions which are analytic in a region D.

Suppose f(z) = g(z) ona subset of D which has a limit point in D. Then f(z) = g(2)
in D. L , ' |
(consider the function f(z) — g(z) and the result follows from corollary 1)

Exercises.

|, Find all the zeros of the following functions,

(z+ 1)2(iz +2)3
. 2417
2. Prove that there is no analytic functiong whose zeros are precisely the points
e 141 2 ' :
l.'z'.g,“" n

(a) cos Z (b)
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Answers.

3 - 2/1.
e+ Da/neZ (O~ 1 and /

7.4, Singularities

™

Definition. A point a is called !
£(2) is not analytic at @ and [ is analytic

a singular point or a singularity of a functiop FQ)is
at some point of every disc |2 —a] < |
t

R o A
» U o
\

fl'l—
L

Example 1. Consider the function f(2) =

s
- L &
Then f'(z) = —— forallz ¢ 0..
Thus f(z2) is analytic except at & = 0.
.. 2 = 0 is a singular point of f(2).
» 1
Example 2. Consider the function f(2) = e

0 and i are singular points for f(2).
Definition. A point a is called an isolated singularity for f(z2) if
(i) f(2) is not analytic at 7 = a and
(i1) there exists r > O such that f(z) is analyticin0 < |z —a| < r.
(i.¢) the neighbourhood |z — a] < r contains no singularity of' f(z) except a.

]
Example 1. f(3) = has three isolated singularities z = 0, i, —i.

22+

. "~
- 4‘ o L. - & % ; '
e ' ¢ ~ . . - B . -
o

e 0. - | | |
Example 2. Consider the principal b : i oo ref® — lo 5 4 it
e 0 principal branch of logarithm given by log re'® = logr +i¢

singularities are not isolated,

Example 3. Consider the. function f(zy — _!_ The  singular points are 0, %

42, ...... and these are isolated singular poi ggl 2

We now proceed to classify the isojgreq singularties of a function.

Let a be an isolated singularity for g £ - .. ) o
. nct - t (~
analytic in 0 < |z —a| < r.Inthisg on f(z). Let r > 0 be such that /

Omain the fi 3 - sented 88 A
Laurent series given by : unction f(z) can be repres
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Series Expansions
00

sions 201
. ,. = b, 00 -
3 T uzl (2 = a)n + Z""('z = a)" where '
n=0
[ _f®dg
= i (§)d
a"'- 27” (C —~a)"t N} and by, = o j (L‘f f‘)’_iH '

The sencs consmmg of the negalwe powers of z ~ a in the above Laurent serids

pansloﬂ of f(2) ] 15 glven by Z )
v n=
mr;off(z) atz =a.

= and is called the principal part or singular

a—

e singalar part of £(2) at z

fhere are three types of singularities. They are

a detenmnes the eharacter of the smgulamy
@) Remavable smgularmes

(ii) Poles - . T

i) bssentaal S'ngularmes

ﬁmtlon Let a be un 1solated smgulanty for f@). Then a is called a remov
;mgularlty if the prmmpal pan of f (z) atz=a has no terms. :

able
Note lf a is a removable smgulanty for f (z) then the Laurent s senes expanswn of
f(@) about z=a is glven by . T e Y
o f(Z) Zan(z_a) '_ ok
= ..n=0 - '

-—ao+a1(z—a)+ +an(z—a) +
Hence llm f (z) =day

Hence by deﬁmng f (a)-_. ag the functlon f (z) becomes analyne ata..

E le 1. Let f(z) = -S-}-Ili C.learly 0 is an 1soldted smguldr pomt for f D).
xample

5.1 3 sinz I Z—-Zj-+£5.__
Now—=Z\ETF TS =) W A
T TR R e 5

' |.—--3—|'+*-—
Hefe the pﬁhcipalpaﬂof f() at z = 0 has no terms.
Hencez =0isa removable singularity. -

sinz-
Also lim — =

] Hence ‘l'f: ‘alngUIarlty Ctln be lemoved by deﬁnl g f( ) o
~ )0 Z

;0." . ,
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* Example 3 S@)= N has a double pole atz = 0.

202 Complex Analysis'

7 = Sll‘l A \
. Example 2. Let f@)=

-3

<

z= O is an 1solaled singularity.

‘ . ] 23 ' Z5
: z—sinz (- —-
~ Further —— =31\ 3 51
‘. ' -

' .o ) 4

z=0 is a rcrﬁovable singu]arity '

By defining f(Q) = é the funcuon becomes analytlc atz =0 "

Definition. Let a be an xsolated singularity of f(2). The point a is called a pole if the
principal part of f(z) atz = a hasa ﬁmte number of terms. If the prmmpal partof f(y)

at z = a is given by - _ : : ,
' by b o] L b )
‘ +——
z—'a+(z—ﬂ)2 (z—a)’ '

where by # 0 we say that a lS a pole of order r for f(z).

Note.’ A pole of order 1is called a simple pole and a pole of order 2'is called a double

pole. ' . _
. - B2
Example 1. Consider f(z) = .

: A =
z 20 3! N

Here the prmc:pal part of f (7) atz = 0 has a single terr_ﬁ —]- Héﬁce-z = 0 is a simple
poleoff(z) R 4 » L 2 & pn

-

‘sinz

Example 2. Let f(2) = tanz = oo The smoulamles of f(z) are —2— + i, whete
0s
n€Z. All the smgulanUes are poles ozf order l

cosz -

FOI"COSZ___l. ] 22_ 24- _
. 22 2 -5?+ZT—...~..--

I g2
- 7 ‘ﬁ+a— ......
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ﬁ ' Series Expansions 203
AT 2 |
npled Let f(5) = L2243
fe |

z—3 ¢ by parlml fracuonv.)
Here f(c) has a 51mp]e pole at > — 2. .

ition. Let a be an
ng:Iaﬂty of f(z)atz _ls((‘) ]'?f:es;::imamy of £(z). The point is called.an essential
oflerms Cipal part of f(Z) at z = q has an infipite number
S * 2
E‘*‘mPIEI Let f (2) = s e Obvriously z‘=
Further ellz = | + -4 _1_ ]

‘ T 2172 T3 317 21,3 + """ The pnnCIpal part of f(z) hasmﬁmle
numbff of terms. Hence e

0'is an isolated singularity for £(2).

i/z
has an essentlal singularity at z = 0.

E\ample 2. Let b (Z) =22 ‘Hﬂ(l/z) f (z) has essennal smgulanty atz =0."

~ Inthe following theorem we glve equivalent charactensatlons for an isolated smgular
pomt a of f(z)-to be a removable singularity.

%

Theorem 7.4. Let f(z) be a function defined in a region D of the complex plane except

possibly at.a point @ € D and let a be an isolated smgulanty for f(z). Then'a is a.
' removable smgulanty for f(2) if and only if there exists'a complex number ag such that'
by deﬁmng f(a) = ao the extended function becomes analync ata..

Proof. Supposc‘a isa removable smgulanty for f (z). \

Thenf(‘f)—zan(z—ﬂ) 0<|z—a1<r
- -n=0 '

= ao+a|(z—a)+az(~—a) e b

By deﬁnmg i (g) =ag; f becomes analytm ata.

- Conversely,  suppose there exists a complex number agp such that by deﬁmng
f(a) = ap, f becomes analyticin |z —al <. :
Hence f can berepresented asaTaylor s series, mpowerof z—ainthis nelghbourhood

. —a)t: shows th tthe rin atz =d has L. 8
Bivenby f(2) = Za"( “) This at the principal part of f(Z) R b e

0 {7
no terms. Hence a 1saremovable qmglﬂamy for f(z). et

’ 51%, L;(‘_

Theorem 7.5. (Rlemann’s theorcm) Let fbea funcuon which is bounded and analyl;c '
throughout a domain 0 < |2 — ol < 6. Then either fis analyuc at zo or else 20 isa
removable singular point of f. Lo :

-
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- Clearly lim 9(z)

204 Complex Analysis

tion in the given domain about ;

8 ot cmrlae i o 1C
Proof.. Consider the Laurent's serics for the r'l|l.l )z where C i 20- The
, umf‘ﬁucnl by of = is given by by = 21 i 3 =gyl Irclg

(2 —20) e -9

| =20l =r WhLI‘CI < 5

Now, since f is bounde therg exists a posmvc real llylnPCF M such that | f(z)| < M)
‘in0 < |z —zp| < 4.
| M (27rr)

' 6.2
|b,,|5 -2—1;-—_-”—;-— (by theorem 6.2)

= Mr"

" Since it_is true for every r such that 0 < r < 6, taking hmlt r— 0we get b,, =0
Hence the Laurent’s series for f(2) has no prmcnpal part. Hence the lheorem fi ollows

Theorem 7.6. Let f(z) be a function havmg a as an isolated smgular point. The the
following are equivalent. i : ‘

" (i) aisapole of order r for -f(2).

(n) f(z)canbe wntten inthe form f (z) = —ay 0 (z) where 6(2) hqs a removable

smgulamy atz=a and lim 9(z) # 0
—=a

' ] . B .
(m) aisa zero of order r for —. TS

fg) . ' 3 L J

Prool‘ (1) = (u) Leta be a pole order r for f (z) Then the Lau:ent S series expansnon
r
“of f (2) about ais glven by f(2) =
_ ‘ . ) " "Z; ( . ) i

+ Z: an (z — a)" where b, # O

f('v)—_( = ),[br+br_—|tz,—a)+...+bo(z-a)'—! +_ao(z'—a)f +...]

-

-]
( ),9(2) where 9(z) = b + b,_, (z —d) + .......
b #0 and 9(2) has a removable smgu]anty at z =a.

: !
(ii) = i) Let £ @) = o ——=0(2) and by Smtably deﬁmng B(a) we may assume

- that§(z) is analytlc ata and G(a) 20,

=(z—-q) —_ ] 1
f(z) | “) @) and 5?—) Is analync ata andm # O‘
Hence a is a zero of Order r for -_]__ |
SRy
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(iii)"")" (i) Leta be 4.2ero of order ‘for |

—

' f(z) ’
Then = = (2 = a)" (2) where oy i ' |
f(2) S\2 ML.,‘(Z') IS analytic at a and g(a) + 0.
o ns  SUE) |
[ (z) = oe—— )
gy vhere g (2) is .m.\lym ata and gy (a) + 0.

et =ag+a(z - -
Let 81 0 (: 1(2 ~ a) i— ctapzay . %0 thif ¢ a0 #0,
f@ =D a4 st .

——

@—ay T G2 v tootarta((z-a)+. ..

| : | in0<lz—aj<r
The principal part of f(z)atz = gijs

= + el : ar— .
(z —a)r t (_ZT,I)}—_l‘*‘_----f-‘tr_z — and ag # 0
.. "ais a pole of order r for f(z). " TR

heorem 7.7. An isolated singularity.a of. f(z)-is a pole'if and only if lim f@) =

Proof.“ Ifais d_pole of order r for f(z) thén 'f(z) x ,( g(r))r' with g(a) #0.
e : z—a . ,
11m f(z) T3 e

Conversely leta be an 1solated smgulanty for f (z) and let hm f (z)

. i
-Letﬂ(z)—T(—) \

ThcnllmB(z) Samandii, SIT S MR e

‘4

Hanse aiia"a removable singularity for 9(z) and by deﬁmng 9(2) = 0 6 becomes
analytic at a. Let a be a zero of order r for the funcnon 6(z) Then aisa pole of order r
for £(2). g o '

Definition.. A functron f(z) ns sard to be a meromorphlc functmn if lt is analytrc'; -

SN

Except at a finite number of pomts and these ﬁmte set of pomts are poles
. ] ‘ .
22— | |
f(z is analytic-except at z = Oandz = I. Al"O Gand | are poIes of order I and 3,
reSpectwely Hence f(z)isa mcromorphlc function, |
‘ Z 1 + . 2 + ig a ’ LN ;

Example 1. Let f (z) =

-~

|
ke
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<06 Complex Analysis

. g o nce z = 0 is an essential gj '
Example 3. ¢!/% is not a merOIHOFPEE,_ﬂL'l‘EgO" o . Mngul“rity

fore!/z, e

- The following theorem due to Weie
‘ nelghbourhood of an essential. singularity.

rstrass describes the behaviour of a funcuon iny th

‘Theorem 7.8, Lét zg bean essentiol singularity fora function f(z). Letc be any com

number. Thengivene, § > Othere exl%tsuPO'“t‘-wCh that [z—2zo| < 8and|f( )
(i.e) The function f(z) comes arbitrarily close to any complt,x number ¢

-nexghbourhood of an essentlal smgulanty

y lProof Suppose the theorem is false. Then there exist 3, £ > 0 such that for e every poin,
-z satisfying 0 < |z — ZO| <.§ we have |f(z) —c| = &.

pl(hg
"C| <p
l'n CV(:[y

. No_\ti consider the functiun g(z) = ____f(Z) —

] ' P
< -

~g@)| = F(_Z)_— ==

-Hence g(z) is bounded and further g(z) is analyticin 0 < |z — 2ol <6
. Hence by Riemann’s theorem 2=120 isa removable singularity for g(z)

g
= f(z) —cis analyuc‘at 20:

By «zuntab]y deﬁmng g(‘_o), the function g(z) becomes analyuc at zo

If g(zo) 0 then let 20 be a zero of order r for g(z).

Then zg is a po]e of order r for —% = f(.._) —c.

“

Thus f(z)is either analyuc at zg or else zg is a pole of f(z). which is a contradlcuon |
- to the hypothesis that zg is an essenual smgulamy for f ().
' Hence the theorem

~ Solved probléms‘
z
bl -
Solution. 5 The singularities of J (Z) are given by the values of z for Wthh et —1=0
Hence z.= Znn i,n €Z,are the singularities of f(z).

" Problem 1. Determine ang c]asmfy the smgular pomts of f (2) =

: Now, et ~ 1= (1.4, 2 2"
| (+..+2!+ ...... + =+ -1
.Zz i
=Z+_~_ '_.. Zn
2!+ ----- +;l_|+ ......
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Series Expansions 207

]lme‘_l*‘

ce 018 a removable sipgy)

fen ity for £(z).

im (=) = oo
o (u_ ) NN 40 and henee 3y
NSO o \ €% = | W hence 25, 4 0), are simple poles of (7).

plem 2. Determine and classify

the singularitie v g
 ation Cleariy 0 aihe es of f(z2) = sin(1/2).

only ¢ singularity of J2)

l LR
S =Rk
hus the pnnupal part of F@)atz = 0 has infini F o
o singularity For . : 0 has infinitely many terms and hence 0 is an
blem3 Detenmne and cl !
Pro c 'leIfy th singular points of

(2sinz — 1)2°
Solution, The smgulanues Off (z) are given by the values uf z for which 2 sin z—1=0.
- The singularities of f (7,) are given by z = % + 2n,n € Z, and they are double
poes. N - . |
:

Exercises.

1. Find the singularities of the fo]loWing fun'ct_ioné and claséify the singularities.

< g e R cor gt el f L \
w e (i)
: 2_2743 e B

(vii) 2 Z_Zz = (Ym)(z—:)sm(g +2,.)

2 Show'that lhe singular points of “each of the followmg funcuonq are poles.
Detcrmme the order of cach pole

ozl - (||)tanhz
4'(1)22——22 B i '
T e’ '
@—— V-
1
(v) 11 (v )zz(z—"ﬂ)z
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208 Contglm'.’tnzl[\'sis

N ! o iy 22
R gy S VT cosz |
, l ‘ y .
. (ix) 3 .:i:,,t-l (x) (@~ ”5“1 (‘ﬁ)
3. Findthe mxlcpr of the pole :I = () for the following functions.
W< i S (i) '_;2;;'_"__

| 4. Let f and q Im"vc a pole of order /m and n'respcr_:ﬁvcly at a. What can be saig
about the order of pole of (i) f + & iy fg (i) f/8 dla _
12 o

Show that if f has an essential singulafity at a so does’

o

Lo~

Answveirs i

s a simple pole -(iii) 0 is a pole of order 3. (iv) |
le poles (vi) 0,3 are double poles (vii) i, —i are
(x) —2i is an essential singularity.

2. (i) 0 and 2 are simple poles (i) 0i
is a double pole (v) i and —i are simp
double poles (viii) Oisa simple pole. -(ix) 2isa pole
3@l G2 G5 s

B R '»"", R

.
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: Calculus of Residues
" [ntroduction

iy er we introduce the g |
this chap'l and ¢ the C?“Ccl’l of the residue of o function [ (z) at an isolated
ngular point and prove Cauchy’s residue :

WS

N theorem. Using this theore : evaluate
cfrﬁli" types of real definite integrals. - Vi g this thcorem \(NL evaluate

8-1' ReSidueS @w

pefinition.  Leta be an iSo!ated singularity for f(z). Then the residue of f(z) at a is
xfined to be the coefficient of '

Z—a

in the Laurent's serics expansion of f(z) about «
pdisdenoted by Res (f(2);a). ‘ '

Thus Res (f(2); a} = 7_,‘,—; f f(2)dz = by where C is acircle |z — a| = r such that f
janalyticin 0.< |z —a| <r.
n

Example;' Coi)'sid'er f kz) =€

P

. Zrztatatat - P
- f(z) has a d'ouble'ijblé'at_lz# 0. 4 o R |
. Res {f@z); 0} = 'coefﬁ-cie_r:lt of‘—;- = 1 | |
Tﬁc foliowing lemmas prdﬁde metho'd_s,'fbr ‘cla.léul'ation" pf ;eéidues:.
Lemma 1. 1f £ = a is a simple pole for f(z) then )

" Res| fleya) % fim(z=a)f (. . |
Proof. Since z = a is a simple péle for f @) ;hq ll;a}ljrent’s‘ series expansion for f (;)

'a -Fao+_a|_(z—a')‘+--'----

,
T
<

‘dboutz = g is given by f(2) =

‘NOW; (z —-a)f(zj = b + ap(z f'a) +a(z - a)? + e
| :

.

s —l ’
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210 Complex Analysis

]mL(Z - u)f( ) = by
= Res (f(2):a) ‘
, ‘ 2(2) B T .
o gy D20 where g(z) s analytic ar
Lemma 2. 1f a is a simple pole for / (z) and J(2) = Y

and g(a) # 0 then Res [/ ()1 a) = g (). |
—a)[f(z) = Jim g(2) = gla).

.Pmol‘ Bylunm.ll Res {f(2)s a) = lu:,,h

' h(z)
: T s form —— where h(
Lemma 3. Ifaisa simple pole for f(z)andif f(2) 18 of th‘-' om 2y e iz} and

A(J are .uml)uc at aand h(a) # 0 and k(a) = 0 then
h(a)
Res (f(2):a) = 7" Y

Proof. Res[f(z)ia) = zliﬂ(z - a)_f(i) N

@
_";:h—?}z(z .—a)z—(-z—)'
lim h(2) Jin o) g |
=_z1_l)131 (2) im ) k@) R .. e . o .
v, Ii hA .1 [ z—d ] (snnce.k(;zj (.))'
= (Z)zi‘b k(@) - k(a) |
_/Q( ) 1 ] B
@]
e
" kK'(a)"
Lemma4 Leta be a pole or order m > ] for f(z) and let f(z) ( S(Z))"I where
2—0Q

2(z)is analytlc at a and g(a) #0. Then

‘ , ‘ o T . ‘ (n -I.)I
- Rei gy = £ @
W s (m—=1H!"
| i m =D et)ds .
Proof. g""'” @) = 55 (f e )fn

(by theérem on higher derivatives) where

'C lsacxrcle |z—al=r such, th’" f@)is analytnc m 0 < |7_ —al < r
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Caleulus of Resicdues 211
§" V@)
=D l)! = ‘ﬂ“f f@)dz = Res (f(2); a).
, C '

-

Solved Problems

problem 1. Calculate the residue of. —* L at its poles
. " ‘ c - 2z ' o ' I
2+1 -z

22-22 2(z-2)

=0and z = 2 are sxmple po]es for f(z) | P

solution. Let f(z) =

3 Reg[f(Z) 0}—11m(z—0)[ 2+ 1 ]
' . Lzz=2)
.'__] z+l=___l_ ,
-z—>OZ—" 2 S
' z+1 7]
: .Res {f(z) 2] = 11m(z—2) [z(z—Z)]'
. =limz—+—]=-'§.. |
=2 2 2

h
Allter f (z) can be wntten as f (2) = 1—2—3— where h(z) =z+1 and k(z) =72 - 2z SO
that &’ (z) =2z — ' '

. Res {f(z) 0}= I’-(Eﬁ); (by. Lemma 3)
2 Sl g

.' ._ 9 &

Res{f(z) 2= k’((z)) =3

1 4+ €
zcosz+sinz’

d _Pmblem 2. Find the residue at z = 0 of

*l + et
vcoqz+sm¢

Solutlon Let f(@)=

C}early Oisa po]e of order 1 for f (z).

" .
. Res{f(2):0} = hm L(g)) whereh(z) =1+e¢*and k(z) = zcosz + sin z.
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212 Complex Analysis

- . » 57 = —-—7"" SinZ+2COS".
NO“' l"(Z) — —78INZ + (:“Sz, + Co.b : 4

-

N

Res{f(Z): 0]: - =1

I | = al.
\/p}.oblem 3. Find lhe TL‘ildUt. of m atz = ¢

e
Solutlon Let f(2) = (—fm (z+al) (,_a,)z

z = ai and z = —ai are poles of order 2 for f(2).

| Letg(z) ( —I—at)"
g s Y
g (2)= (Z+al)3

| : __7 : ;2. - 2 R
- :Res {f(Z) az}— (a1) ”; (at +a!)3 8é3i3 "~ 8adi

4a
2 h ' v i ’ . ‘Zz + 4 e _ - .-4 . .
Problem 4. Find "the poles of f(z) = oy 22‘2 o, a:.u:_l ‘determl.ne .the resgdues at .;he N
poles. ' _ ] _ A E
244 2 +4

_Solution. f(z)= S22+ z(z+l—1)(z+l+l)

3 0,i— I and —1—iare snmple polee for f(2).

; Here f(z) = -% where h( ) =72 +4 and k(z) = 73 +2z + 2z

Hence k'(z) = 372 +4z +2

'. -4
.' Res{f()m ——=,;=-z

Res { f(2); :—]]_ i )

F=D), Haa oo oy
; G-12+d

B0 -12 446G -D+2

3~ ]

T (after SImphﬁcanon)
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gmilarly Res (/@) =1 — iy = = +3i)

problem 5. Find the residue of coy 7 4 !

| 0. -
golution- 2 = 0i 1s351mple pole for cot z. | o f(z) = S92 _ h@) 1

o ' : ' sm:f k(;)

. Res (f(2:0) = ) _ cos0 l
A K(0) cos 0 -
Z -
Prﬂblem 6. Find the remdue of ——‘f~_ ™" R
2@+ A1t poles.
. .

olutlon Let f(2) =

? 72(22 +9)"

Here 7= 0 is a double pole and = 3 and z —

To find the Res i (z) 0}, let g(z) = _:_z_

Calcnlus of Residues

= —31 are snmple poles for f(z).

213

| 2+9
C]early g(z) 1S dnalytlc atz=0 and g0)#0. _
_‘ L (z +9)
. Also g'(z
S mesa[Esnad
@ , A d
: ‘(0
- Res (/@ 0= £
| Tl sl . O e
* Now, to find Res {f (z) z] let f (Z) E ; so that h(z) = ¢ and‘k(z) = ‘1‘2,7("?-2 +9).
Th'en-k (2) = 425 182
: h(3t)
B “Res {f(2); 3i)= k’(3)
i
| | C 4GB+ 18(3i)
| 108 + 54
eBi '
__i(cos3+isin3)
- 54
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244 Complex Analysis

(sin3+iCOs3) ;
—_ ____—___~..——-—",
SmnlarlyReq [f(z) —3i}=— .54 L o
eof__.f_-—--at = 1.

Problem 7 Uge Laurent’s series to find the residu - ])2

: 2 .
: £22
' Solutlon Let f (2) = vl

Flrst we expand f(z) as Laurent s series at z = 1
22— 1)+2 '
(=D
. _ 62-62(24).' '
| 2 [ 2e-) 2 -1% Pe-13 ]
=:e"|r+ < + — + + - 45
(z—1)2 : ! '

A f(z)%

= ¢? = 2+-(z-—1)+--- ;
—e[z—l)2+ : ]+ 7 |

This is Laurent’s series expansion for f(z) atz = I.

Res | f iz); 1} = coefficient of in Laurent’s expansion:

= 2¢°,

Nofe. Without expanding in laurent’s series the residue at z = 1 can be found as
follows. Since f (z) has a pole of order 2 at z = | we choose g(z) = ¥ Y

(1 5 2z. "
. Res {£(2); 11=g—(,3=[ = ] =g A
g iis = =1
‘ pn';blem 8. Find the residue of G f_e; % at its pole.
g _ ‘
Solution. Let f(2) = ——. .
/ (z=1)3

= 1 is a pole of order 3 for f(c)- '

Let g(z) = z¢° so that g'(z) = € (~+1)andg (¢)—g~(z+2)

' g"(h) . 3e-
ﬂwchs[f( ); ”"""""“"5‘
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Caleulus of Residues

blem 9, Find the residue of —ﬁl_“

e gm at its polc

So]uthn Let f (z) = _1\_
-2 —sinz

Now Z—sing'= . _-‘ _ i + 25
| 3 s

£

Now let g(2) = ( :

1 2
{smsi+)

e ‘ " 0' .
Then Res { f(2); 0) = 8—2('—) Clearly g(0) = 6.
Ll B e e e
Now — — = 4 — —.:-. Differentiating with respect to z, we have

gy~ 3t st T
Y (C N s

@F _5} 7

Hence g'(0) = |
Again dlfferentlatmg with respect to z we have :

. P 2"«
[2(~)] [- g”(Z)]+g (z)2g(z)g (z) =2 o 122

[g(z)]"’ = e SR L
Putllngz—Oand using g(O) 6andg(0) 0 we get % o5
: Henceg”(o)__._
"oy
g0 3
. Res (f(Z) 0] 5 =T6
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216 Complex Analysis

'Exercises

1. Find the order of each pole .md find the

rcsiduc at the poles for each of p,

fo]lowmb _I"unclmns y P
.'-;(i) e o (i) 2 2; .
Lo 2243 T
Ry A0 A
: : _ g
| !
) N (vi) ——
™ wrEn. 22e? .
(vii) ol (vii1) =l ]‘
BE+4) (2 =2)
O ocosz - sinz
(ix) i - (x) 74 .
] - 2z
(21 ¢
e (z 2 1) W) =2
€ (,.") 1 _vé2;
iv
. (xiii) 2+ 12 X A
L i ’ - ) 1
Xv) —— (areal o (xvi - — '
‘(‘_ ?-zz a2( el o ( ) (z~+4)(z~— DS :
- T i .= ) 72 o ' L
2. Find the residue of e 4-“1)2(22 Pl at all its poles
_ AN o
X 3 Find the resndge of - o + m——— at the pole 7= 0 e
4. Calculatc the resndue of sec z at z = %
(Hint: S(_3C2~z == _]7' = 2 ). ‘
: cesz  1+4cos2z” -
F e 2 b, = : n+1m)!
5. Prove that lhe residue of where SR (=D""«( ")
= | ' ( T neNatz.—'- lis (n—l)'("‘*‘l)'
6. -Find the residue of —
"Ry _‘ (1422 atz = 1.
7. Prove that (i) Res (tanz, /2] = —; (i) Rés' l]—:—(;ﬂOI =
, 2. "Nk
8. Show that all the smgular points of - ‘are poles. Find thc order of P"]es

}md find the radlus at the po]es :

Z(Z-—l)
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Calculus of Residues ~217
1
., (i) simple pole; Res 5* ~i simple pole; Reg % (i) z =
_1/2. 3/2 (i) 0, i, —i simple poles; Res 3, (2i
poles: Resai/2, —ai/2 (v)i, —i order2; Res

(vii) 0 pole °f‘°fde" 3: Res 1/64; —4 simple pole; Res — | /64 (viii) 0 pole of order 2:
Res —3/4, 2 Slmlple pole; Res 3/4 (ix) 0 pole of order 3, Res —1/2 (x) 0 pole of order 4:
Res —6 (xi) I simple pole; Res 4 (xii) | pole of order 2; Res 2¢2  (xiii) —ri simple

pole; Res 1/2ri and 7i simple pole; Res —] /27i (xiv) 0 pole of order 3; Res —4/3
(v) ai, —ai simple poles; Res e™4 /2q;, ¢~

0,2 simple pole; Res
+3)/2, 2i - 3)/2 (iv) ai, —ai simple
—=i/4,i/4 (vi)0 pole of order 2; Res —1

“/2ai (xvi) —4 simple pole; Res 8/25, |
poleoforder 2; Res 8/25 2.2=-1 ~14/25; 2 - 2i: 72'21'; = _'_21.: 7—i 3.1
—i(2n = 2)!

25

82. Cauchy’s Residue Theorem

Theorem 8.1. (Cauchy’s residue theorem) =4

Let f(z)-be a function which
is analytic inside and on a sim-
ple closed curve C except for a
finite number of singular points
r A T2, TR , Zn inside C.

n ’ '
Then f f(2)dz = 2nmi Z Res { f(2) :Zj} ’
c j=!

Proof, e C,, Ca, -+, Cnbecircles withcentres z, z3, - - - - -. , zn respectively such
that al) circles are interior to C and are disjoint with each other. (refer figure).

By Cauchy’s theorem for multiply connected regions we have

ff(Z)dz=[f(z)dz+f‘f(z)dz+...+ff(z)dz.
C C| CZ Ca
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+...+2m' Res { f(2); z,)

, _ ' Res’ ; 22)
= 27i Res (f(2) ; 21) + 2mi Res (f(2) (by definition of residue)

n
= 2ri Z Res { f(z) ; zj)- Hence the theorem.
j=I

2 . —
z7dz is the circle |z| = 4.
where C is
Example. Evaluate f =@ +3)
C

72

Let f(z) = z-2)z+3)

th of them lie inside |z| = 4.

z = 2 and z = —3 are simple poles for f(2) and bo

. 72 _ 4
Now, Res {f(2) ;2] = lim(z = 2) |:(z —2)(z +3)] =5

o

| 2
e {f(?) e =’zli’r23(z +9 [(z “) + 3)] Sk

: 4 9 =
By Residue theorem f f(2)dz=2mi [-5— + (_3)] . 4

= —2ui.
2
- Z%dz
.. .-. =_2 -.
o Cf(z—2)(z+3) iy

: N YY) & -
v '\/Z = I -
Th.eorem 8.2. (Argument theore tf b%nct n which is analytic inside and on
a simple closed curve C except for A finite number of poles inside C. Also let f(z) have

. - ] ‘I(z :
no zeros on C.- Then 7l —'—JJ;(Z))JZ = N = P where N is the number of zeros of f(2)
= ,

inside C and P is the number of poles of f(z) inside C. (A pole or zero of order m is
counted m times). : . ‘

Solution. We observe that the singﬁlariiiés of the

f(2)

inside C are the
f(@)

function
poles and zeros of f(z) lying inside C,
Let z be a zero of order n for f(z). Let C

- | be a circle with centre zo such that it is thé
only zero of f(z) inside C. With Centre.2o

Then f(z) = (z — 20)"8(2) Where g(z) js analytic and nonzero inside C,. Hence
f(2) =n(z — 20" 'g(@) + @ — 20)"g'(y).
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Calculus of Residues 219

"’
f@_ ", 8@
f(z) 2= g(2) e (D)

§ince g is analytic and non zero mmdu C,, 8

panded as @ Taylor's series about z,, 8(2)

f'(2)
Res f( ) ..uo]-—cocfﬁcmnt of

is also analytic and hence can be

in (1)
2—20
! »} - =n K . ’ [
IL::) h(;;_-,-..o\T’ '-!‘~' L=} 3 0 ¢
/ >
gimilarly if 27 15 a pole of order p for f(z), then Res [ () ' 2 ] = —p.
f(2)
Cauch idue th l f’(Z) .
Hence by Cauchy s residue theorem, = —mdz = N — P where N is the number
Z

of ZeroS and P is the number of poles of f (z)- within C. _
Comllary If f(z) is analync inside and on C and not zero on C, " then

Z
j; ((z))d = N where N is the number of zeros lying inside c.
C
Proof. Since the number of poles 1s zero we have P=0. &
Hence the result follows. P

/

/

Theorem 8.3. (Rouchc’s theorem) lf f(2) and g(z) are analyuc inside and on a simple
closed cuive C and if |g(2)| < | f(2)| on C then f(2)+ g(z) and f(z) have the same

number of zeros inside C.

(z) 8(2)
Prool. £ (2) + g(2) = f(2) [I + —8}-(2—)] = f(2)9(2) where p(z) = 1 + Q)

Hence [f(z) +g(2)) = f @ +8@ =f '@+ f (z)¢"(z).
F@+8@ _ f@e@+ f@¢'@
f@+8@ f(@e(2)
- _fe e
= f2) 0 e

. f’(z)-{;g’(z)]‘dz: |. f’(z)dH I j‘qo'(z) d ()
" 2mi f(2) + 8 27” f(2) 2m'c @(2) :

g8(2) |

Now, by hypothesis |g(2)| < |f (2)| and hence |— ® <lonC.

lp(@) =1l <1 onC.
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220 Complex Analysis

Hence by maximum modulus theorem, [¢(2) — I| < 1 for every point z inside C.

@(2) # O for every point inside C.

Hence f ﬂl-(ﬁdz — Number of zeros of ¢(2) within C.
¢(2)

= 0.
L (/@ +8@ L [f®
Hence from (1), we have /[f(z) + 2(2) ]dz 2m f(2) 4

. N;=N; where N| and N3 denote respectively the number of zeros of
f(z) + g(z) and f(z) inside C. Hence the theorem.

Remark. WecandeducetheF undamental theorem of Algebra from Rouche’s theorem,

Theorem 8.4. (Fundamental theorem of algebra) . . f
A polynomial of degree n with complex coefﬁcxents has n zeros in C.

Proof. Letag+a)z +ay22 + -+ + anz", wherea,, # 0, be a polynomial of degree .
Let f(Z) =a,z"andg(z) =ag+a; +---+ an_,_lzn—l
8(z)

Clearly lir
early lim b 7 (@)

= 0.

Hence there exists a positive real number r such that f,( 2) < 1 forall z with |z| > r.
Z .

Hence by Rouche’s theorem f(z) and f(z) + g(z) have the same number of zeros

inside the circle |z| = r 4+ 1. But 0 is a zero of multiplicity n for f(z). Hence the given
polynomial f(z) + g(z) also has n zeros.

~

Solved Problems

Problem 1. Evaluate f

/ 3 +37where Cis|z| =

Solution. Z="3 is the simple pole of f(z) which lies inside the-circle lz| = 2.

. h2)
Res {f(z); —-2-] - 7_!"%/., @) where h(z) = 1 and k(z) = 2z + 3.
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. Py residue theorem f f(2)dz = 25 (l .
‘ z2=2 I) -

d:
A“tcro > = —

2243
c ( %

ll

C

2
&3
ool [t

= 1],

dz

Problem 2..Evaluatc f :22_e5 where C = (z: |z] = 1).

2

Solullon. Given integral can be written as f f(z)dz where f(z) =
z2

f(2) has pole of order 2 at z = 0 which lies inside the circle |z | | =-1.
Let g(z) = e~ <. Hence ¢'(z) = —e™*.

g’(O) _

. By Lemma 4, Res { f(2); 0} = —1.

By residue theorem f f(2)dz =2ni(=1) = —2mi.

2+ 3sinmz

dz where C is the square having vertices
z(z—1)?

Problem 3. Evaluate [

~

3+3i,3-3i, =3 +3i,—3-3i.

Solution. Let f(z) = 21231—"—’—’—2- Hergz= 0is asimple pole and z = | is adouble

2(z =17
Pole for £ (z) and both of them lie within C.

24 3sinmwz
Res [ f(2); 0]..}_1_%2( Z(Z—;)i )=2'

’

L 2 inrz
Res [ f(2): 1} = E-i!— where g(g) = 238072,
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23mcosmz — (2 + 3sin Jrz).

’ - —
j (\.) = 1'.2

L g'()= =3 =2,

. Res ([ f(2) )= =31 = 2,

_ ),
: - = —=Om”i.
*. By residue theorem f f(2)dz= i@ —3nr —2)
G
Problem 4. Evaluate f tan zd = where C is |z| = 2
z _
. : _sinz _ M
Solution. Lct f(z)_= tanz = sz k@
(2n+ l)n,n e N.

cos z has zeros at Z =

T Ao o _
.. f(2) has simplc‘poles atz=-—= anq z=73 inside the circle |z| = 2.

‘ o h@/2) _ sin(ir/2) _= _
Res {f(z); n/2} = K(m/2) - —sin(x/2)

h(=m/2) _ sin(=1/2) _
K(-m/2)  —sin(-m/2)

Res {f(2); —=7/2) =

By residue theorem [tan zdz =2mi[(=1) + (=1)] = —4ni.

C
. [ ex arni .3
_Problem 5. Prove that f ———dz = —5 where C is |z] = 3.
/ (z+1)3 e 2

‘\) _F‘;c o, C g
@ et
jon. Let f(2) = X
Solution f T

f(z) has a pole of order 3 at z=~I.

"
2!

‘(2) = 2022 and g"(2) = 4e%2 -

Res [f(2): =1 = £ where 8(z) = e,

Now g
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. Reslf@: =1} = e _
21

2
&
2

- By residue theorem f f(z)dz = ;i ( 2 _ Ami
e2)” o

blem 6. Evaluat
70 z+1 ® using (i) Cauchy's integral formula (ii) residue theorem

2T 4
244 zwhereC:sthecnrcle|z+]+,|_2

C
Solution. Clearly C is a circle with centre a = —(1 + i) and radius 2.
Now 5 z+1 — z+1
2°+2z44 (24 1)2 + (V3)2
— z+1
@+1+iV3+1-iv3)
e z+1
| [z = (=1 —iV3)llz = (=1 +iV/3)
2= —1+1i V3and z; = —1 —i/3 are the singular points of the given integrand
z+1 ’ - : -
24274+4
Now |z0 — a| = ‘r(f+ I)l—«/—+l > 2
and |z} —a| = l—i(x/i— l)l =J3-1<2
= —1 — i+/3 lies inside C.
(i) By using Cauchy integral fomuda.
_ z+1 R
| Consider f(2) = T —i/3)
We note that f(z) is analytic at all points inside C.
1 f(2)
ot By CaUChY'S integra] formula i -7 d = f(zl)
C
z+ 1)dz ,
5 1 ( = (—] —'l‘/g)
("e')iﬁ?_{[z‘—(l-—lf)][z—( 1 +iv/3)] A .
C
| [ @+Ddz __ (C1-i3)+1
(e) 57 ] Zx22+4  (-1=i3)— (=1 +iV3)
C
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(i)

Problem 7. Use remdue calculus to evaluate [ ey L

Solution. Let f(z) =

Here z = = 18 a simple pole and lies within C.

N2 h@@)
§ {f(~)- ‘3‘] = |lim where i1(z) = 3cos¢ and k(z) = 2i — 3z so that
k'(z) = =3. :

By residue theorem j f)dz = Zm[— cosh(2/3)]

(le)f

By using residue theorem.
' z+1
f(@)=

242:+4
Sincez = -1 — i /3 lies inside C

_ h(—1—iv/3) 5 a4 T and
Res {f(z); =1 —i/3} = k’_l_h/_)where (2) =2z an

k(z) = 22 + 2z + 4 sothatk'(z) = 2z + 2. _ |
| _ Z1=iv341 =iV3
.. Res {f(@); =1 —iv3)= i AT

) : 2mi .
By residue theoremf f(@)dz = —5—_= wi.

dz where C i is the unit cnrcle

2i =3z
C

3cosz
2i =3z’

2i

h->2,/3 A (2)

e pacifiEe . 300000
& Rt?b If(Z)' 2'/3] = —C—O—SL;_/3_) p— —COS(2’/3) = —COSh(2/3)°

2cosz

dz = ~2mi coah(?/3)
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- f(2) has simple poles 1, —1,3 and only 1, —1 lie inside |2| = 2.

I [zlﬁz.

!
|
|
r

Calculus of Residues 225

plem 8. Use residue theo 3,2
E" rem to evaluate f £ 2= dz around the circle
(22 = 1)z -3)
3,2
Solution. Let f(z) = —= +z—1
(22 =)z = 3)°

: , h(1) |
Res (f(2)i 1) = k(l)whereh(z)—xz 47— land k(z) = 2> — 327 —‘,+3soth.n

P(z) =32 = 62—1.

RES{ z ] _"——-.-..— = P ) - .,,(“,r:i‘—
f( ) } 6 I 4 . - C'f,- j‘_..;"-/\,ﬁ ‘:.} pid
Vd 7 o -/
' 7 / /.4 > -
3-1-1 1 {i =
Slmllarl Re'i &y = l e AR . ;
y Res { f(2); } 31618 Al

. By residue theorem,

3z —z-l ( 3+1) 2::'(_5) —5mi
=2l | —= -] = 11—\ = —

e“dz
z+2)(z—1)

Problem 9. Evaluate f ( where C isthecircle [z — 1| = 1.

&
+2@-1
£(2) has simple poles at 1, —2; the pole I is inside the circle |z — 1| = 1 and z = —2
lies outside the circle.

- " 18 ' e
Res [f(2: 1] = i =D ((Z+2)(z 2 1)) =3

Solution. f(2)=

_ i
By residue theorem f f(dz = 2mi (;) .

e i2me
et
(z+2(z-1) G
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Problem 10. Show that the function 2 +22- ¢!% has precisely one zero in the open Upper
half plane.

Solution. Take f(z) = 2 + z> and g(2) = —ef?. Let C be the simple Clvqsed curve
consisting of the semi circle |z| = r in the upper half plane rogether wnth the interval

[—r, r] on the real axis.
If z € [—r, r] then |g(z)| = 1 and | f(2)| = 2.

Hence | f(2)] > lg(2)].

Now, if z =re®?, 0 < 0 <nthen_|f(z)|=|g+zz| > |2 =2=r*=2

—rsinf

=e€

Also |g(2)] = l—e""‘m

Hence for sufficiently large value of r we have | f(z2)| > |g(2)]..

Hence by Rouche’s theorem f(z) + g(z) = 2 + 2 —eland f(z) =2+ zz‘have the
same number of zeros in the upper half plane. Also 2 + z2 has exactly one zero in the

upper half of the plane namely i /2.
Hence 2 + 22 — &% has exactly one root in the upper half plane.

\

2
=+ 1 !
.+ Evaluate ] f (Z)dz where C is the

(2 +2z+2)% i) f@)

Problem 11. Let f(z) =

circle |z] = 4.

Solution. i and —i are zeros of order I'and —1 + i and — II — i are poles of order 2
for f(z). Also these zeros and poles lie inside C.
Hence number of zeros of f(z) = N = 2 and number of poles of f(z) = P = 4. (Poles

are counted occording to their multiplicity)

I f'(@
By Argumenttheorem — | L <7, _ Ny _p_2_4——
. By Arg i ] 7o) dz. N 2—-4 2
Cc ’
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fxercises

. Evaluate the following integrals.

. 3z -4
(1) f e I)dz where C is the circle lz| = 2.

(i) f dz where C is the c1rcle Iz| = 2

ii zz + 4 | . .
(l") Z“‘" - dz where (a) C 1is the circle |2'_| =2 (b) C is the circle

C
lz—11=1
. 3dz _ _
(iv) where C is the circle |z| =
z+1 | »
C
3 . E
(v) f —-if-dz where C is the circle |z| = 1.
C [ %)
[ 2+ T _
(vi) [ 5 dz where C is the circle |z] = 3.
o z
-3
(vii) f 32" +2 dz where Cis (a) |z — 2| =2 (b) |z] = 4.
(z— D2 +4)
C
' dz . .
: where C is the circle |z} = 3.
(vin) f Sz _ |
e
(ix) f e dz where C is the cm:lel | ="1.
C ‘.
x) [ : dz 4),1- where C is (a) |z| = 2(b) lz+2| =3.
z2(z+
C
e:d‘
- ~dz where C is the circle |z] =
. f 2z — 1) (=
C
dz ]
(xii) dz where C is the circle |z| = =.-
22(z+ 1) 2
-
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, e! . ircle |z| = 3.
e C is the circl€
(xiii) f TR z)dl’ wher .

C
(xiv) f —e—:r——(lz(f > 0) where C is the square with vertices at
A 222+ 1). .

| +i, =1 +i, =1 =il =1

(xv) f COSh:dz where C is the square with vertices 2 % 2i.
2o
C

2. Prove that /coth zdz = 0 where C is the circle [z] == 1.
C -
3. _ Prove that f ze!/*dz = mi where C is the circle [z| = 5.

C
z

4. Prove that j 2 2 = 8mi where C is the circle |z| = 5.
' cosh z
C .

Answers.

1.(1) 6xi (1) =2mi (iii)-(a)Zm' (b) 3mi (iv) =2ni (v)\6m‘ (vi)2mi (vii) (a) i
(b) 6ri (viii)dmi (ix) =2mi (x)(a):—; (b)0 (xi)2mwi (xii) —2mi

-1

I [t : '
(xiil) 2ri [— + T(sm_f+ cos t] (xiv) 2i(1 — cost) (xv) mi

"z
NG
<. 8.3. [Evaluation of Definite Integrals
<« /‘ -
We use Cauchy’s residue theorem for evaluating certain types of real definite integrals.

27

TYPE 1. f f(cos 8, sin8)dd where f(cos, sin6) is a rational function of cos 8 and
0 | |

siné.

To evaluate this type of integral we substitute ; = ¢/®. As 9 varies from 0 to 21. 2
describes the unit circle |z| =1
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(,f'() + (_,""I'H

Also, cos @ = _z+ Pl
o 2 and
_,f() — l""'fl" —
siné = - .‘ _t=z |
2i 2

stituting se values . ] ' _ .
Substituting these values in the given integrand the integral is transformed into

e i t+z7! 7=z -
[H(.:)d.. where 6(z) = f [ — ] and C is the positively oriented unit

9] Y 2i
c - !
circle [z| = I."l‘l\e- integral ([ 9(z)dz can be evaluated using the residue theorem.
Solved problems
2
Problem 1. Evaluate f L .
5+4sin0 : -
A ia
2 40 . . | : e &
" Solution. Let/ = | ———- ~ 0 o
S0 [5+4sin9' ey A, ~
0 7 oY P
Putz = e'®. | A ¢ 9 ) A 4
' ' z—2"! T R p 74 ¢
Then dz = izdf and sin0 = TR . \‘\ '
IR | dz - N
The given integral is transformed to / = j 5 = where C is the unit
: ' s " -_—Z
. C.it|5+4
( s Az circle |z} = 1.
=) %= ey 2FET ) _ j‘ dz - o
- | 272 4+ 5iz -2 Sy y—a = O
. 9 R
1 | 1 — ¢ f‘-‘ \t) > (A 15
et f@ =7, 2+5:z— = 2z +2)z+i/2) R, P
_2i and —i /2 are simple poles of f(z) and the pole —i /2 lies msnde Gl =
1 1
— = ,lim =— = r cor A B
AlsoRes (f(2); —i/2) = L 2(q,+ ERETh . O ol A
] ok 9
Hence by Cauchy’s residue theorem [ = i ( : ) 2. Eele (2414 " B
() ,gu:’._»fva\("zJ 21" ./3“.7{‘.{ Vpo
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» o do 2 (-1 <a<l)
s 2 —— ) ~ 31 3 " ]
Problem 2. Prove that f T+ asing \/l’:a_z- aasing ¢
0 ' - ] ’ 5 \
‘ =27y 10. e
; Cn anddz = iz¢ - 1.yaft
Solution. Put z = ¢/?. Thensin® = —T ; = 1-1g
2w d - 7 - a )¢
/‘ de f z whcre C is the unit cindle. =
e e — =1 \
1 +asind z2—2
0 [1 +a ( 2i o
f ZdZ ] (. C),n n A 1 {;". ;
= . -— 7 X .——'""_‘v”o‘—‘-’ L 3 'Nov ] vy Y
z[2i +az-z H] T L
C ol
. 2dz ” - o 7::_
~J a2 +2iz—a \' T LA
. . o/ - S 7 ~
- , o7 4 B
: oL
Let f(2)= —

a2 +2z—a 4L y9\2-
-2&\/—444«2

The pole-s- of f(z) are given by z = -

4¢:\/1-a2

- - RL : = (smce—l<a<l)

a
. —1 +iv1 —a? - —i—iy1—a?
Letz) = — and 7 = il a
. a ' © a
1+ l—a2 : . :
We note that |z3| = >1 (since — 1l <a<1)

Also, since l..|zzl =1it follows the |z;] < 1. Hence there are no smgular pomts onC
and z = z) is the only simple pole mslsde C

R il = 1l 27“
es (f(2);21) zl_n*r!;l(z--m)I:(z_z,)(z‘—z'.z)]

2/a

2l =2

—
—

T m——
iVl —q2
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2
By residue theorm l—_di_=2n,- L
4 + asin@ )
_ 2n
vV1-a?
T
: ado T
_mvethat!:f = ——
gblem 3 ’ a2 + sin®g a2+1(a>0)
) .
- ~ado ,
solution- [ = | = (1—(:0529)
I G
n : 20=4 ;zd@f o9 g
gf zzﬂd6 ,  6=0 C\D:Or—.-
2a% + 1 —cos 20 . A= 2!
2 2d
2 aday ' (putting 260 = @)
2a2 4+ 1 —cosg |
_1f_ ' adz (putting z = ')
i 2 +z M| - , e
z|2a +|_—__2'—'_
2% dz -
"Tf[z(za2+l)z'—22"]]
C 2 '
- dz R o er)= 1 =0
?2‘"[:2 —2(2a%+ Nz +1 = patin = Jiod s e,
C ’ “‘_i_"(l’)’——-
ff(z)dz : —(/4’3 +2) 4 an :“_;_,“
c : ~

l and C is the unit circle |z| = 1.
“2@a% + D2+ ] - (e ) )+ novan
Pﬂesoff(z)mmemlsofz _20Qa? + )z +1=0.

" 1=(Qal+1)+2ava’ +!
lﬂ3'=(2az+I)Jrzau/aul;zz=(2a2+1)-za a2+l_
Cleany |z1] > 1 and ]zi12| — |'sothat 23] < 1.

Where £(2) =

e O
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Hence the only pole inside C is z = 22.
1

Res {f(2): 22} = lim (Z—ZZ)(Z-—ZO(Z—ZZ)

Z—12

1

- 2 — 11
] =
 (~4a)aZ+1
' - 2ai
From (1), I = 2mi Taada 1 ]
.
vat+1
A | 2n |
- . ) ) lusi doé
Problem 4. Using Cantour mtegatnon evaluate f 35 5sn0"
. 0
2r
~ Solution. Let / = / 4
usion. — J 134 5siné’
0
Put z = ¢/®, Then dz = ie'®do = izd#.
=1
Alsosinf = 2 z
&
.. The given integral is transformed to
dz (where C is the

-]

. — =l circle |z] = 1)
c iz[13+5(z = )]
_ 2i
[ &
2
C iz[l3+5(z _l)]
i2z7

2dz
=] 522 +426iz—5"

C

Scanned by CamScanner




Calculus of Residues 233

Let fQ)= ———_ 2

22 13 =
522 4026z — 5 (2 +51)(5z + 1)

i :
= —S5i are si . ' I
~5 and —3F are simple poles of £(z) and the pole -—% lies inside the unit circle.
Res If(;_); _.i.] = lim h(z) (where .'l(g) = 2 and
S| zs=ifsk'(z) k(z) =52°+i26z2 —5) b -

-

2 P =% 10~ .
lim | —————) 2% - .
z—>—i/5\ 10z 4 i26 4N1C

Il

3 2 ‘L:?}, ;‘.," -;,:‘ ;
—2i + 26i A y

== M )4

C12i ALY
Hence by Cauchy’s residue theorem / = 27 (-112—) = %

- i
| 2
| do
Problem 5. Use Contour integration technique to find the value of f 2 ot
| 0
2n
lution. Let ] = de b=
Solution. = | 35 cost’
. 0 '
Put z = ¢/®. Then dz = ie?d6 = izdf.
-1
z+2
Also cos8 = ="
dz . : .
. The given integral is transformed to [ = f T where C is the umt
- z
C -iz [2+ 2 ]

sircle Jz] = 1.
dz

e
)
__f 2dz

T )iz 422+ 1)

~ [ ~2idz
’ ) 24z
C

]
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—2i
Let f(2) = m

-2i
______________—-
T (z+2)?-3

= '
- (z+2—/§)(z+2‘*f/,‘/§)
' —2 4+ /3 lies inside C.

. 21+ /3 and =2 — /3 are simple poles of f(2); the pole

—2i
Res If(z); "2+‘/§l = ,_FE;'?*_Jg(ZZ +4)

- =2i
T Tat2/3+4
il —i
= \/?7
Hence by Cauchy’s residue theorem I = 2xi (_i) . 2%
Exercises F ol )
(o
2r O A AT
dé T A\ o T .
1. Showthatf————: — N\ N
543cosf 2° R S
0 : el -
A N \
27 o
2. Show that f Cos2de — %
S4+4cosf 6
_ 2
3. Show that f 2+‘"’ - = 2n
- COS ’
4 V3
2r

cos230d6  3p

. S that —_— e :
. Show a,/.5—4c0s263 R /

0
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2r
5. Show tha d6 2
€080 +2sin0 +2 = 7
g
6. Show that f -_.ﬂq.__ L., & ( N
a = T r—_a >
4 + cos @ vaz -1
2n '
7. Show that f 49 2m
= (@a>b>0)
4 a+ bcoso a2 —b
2n
8. Show thatf dg. = on @ < 1).
; | +asin® | —a2

9. Show that 2an

1),
(a+cose)2 T (@@= 1)3/2(" i)

b1 1
| 4+ 2cosé
10. Show that f do =

S+ 4cosf
0
2
d6 2
> (0<a<l).
11. Show that[ — o050 1 1 I —

0

| g(x)
TYPE 2. ff(z)dr where f(r)

= ]—z—i and g(x), h(x) are polynomials in x and
the degree of h (x) exce

¢ \{‘ r* g}
eds that of g(x) by at least two. hew = 9t )

8(z)
To evaluate this type of integral we take f(z) =

h(z)’
| The poles of f(z) are determined by the zeros of the equation h(z)

Case (i) No pole of ﬂz) lies on the real axis.

We choose the curve C consisting of the interval [—r, ] on the real axis and the semi
circle |z| = r lying in the upper half of the plane.
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. ' 1 1 u "
Here r is chosen sufficiently large so that all the poles lying in the upper half of the

plane are in the interior of C'. Then we have

[f(:‘.)dz=ff(.t)dx+ff(z)(lz

where C) is the semi circle.
f f(z2)dz — 0as r — 00 and hence

Since deg i(v) — deg g(.\') > 2 it follows that
Ci

: [f( )dz = f Fx)dx.

—00

f f(x)dx can be evaluated by evaluating f f (z)d z which in turn can be evaluated

—00
by using Cauchy’s residue theorem

Case (ii) f(z) has poles lying on the real axis.

Suppose a is a pole lying on the real axis. In this case we indent the real axis by £
semi-circle C; of radius & with centre a lying in the upper half plane where & is chosen
to be sufficiently small (refer figure).

Such an indenting must be done for every pole of f(z) lying on the real axis.

It can be proved that f S(2)dz = —mi Res { f(2); a). By taking limitas r — oo and
Cs

e — (0 we obtain the value of '[ f(x)dx.

—00
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Calculus of Residues 237

-~

N=o,12,3
Solved Problems

—

Problem 1, U ®
» Use Contour integration method to evaluate f oy
0

Y
Solution. Let f(z) = I =S ==) 2\ g

+4 ==

i

The poles of f(z) are g; . ,
given by th 4 L
fourth roots of —1. y the roots of the equation z* + 1 = 0, which are the four

B yl De Moivre’s theorem they are given by ei™/4; ¢f37/4, ¢i57/4. ¢i77/4 and all are simple
poles.

We (.:holose the contour C consisting of the interval [—r, r] on the real axis and the upper
semi-circle |z| = r which we denote by C.

ff(z)dz = ff(x)dx+ff(z)dz. ¢ el
C —-r C)

The poles of f(z) lying inside the contour C are obviously ¢i7/4 and e37/4 only.

We find the residues of f(z) at these points.

' (™™ L g ’ Lats
Res {2 i) = e e = | and k(z) = 2* + 1 so that K'(z) = 42°.
: 1 e—i3n/4
N Ln/Al _
. Res [f(f.).e } = e

_— e-i91r/4
Similarly Res [ flay et} = —5— ‘
By residue theorem

f f(z)dz = 2mi(sum of the residues at the poles)

c
_i3n/4  _—i9n/d
P KN i
4 it
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- Ezi[(COS(3JT/4) — i sin(37/4)) + (cos(97/4)

() (55

-5

Il

J /4
ff(Z) 2—2
Asr — 00, ff(z)dz—>0.
C
o0
_ j‘ dx 7
i 1+x4 V2
—00
o0
2]‘ dx  « s
) 1 + x4 \/i | + x4
0
00
/ dx o
) r4xd 22
0

Problem 2. Using the method of contour integration evaluate

)
Z

22+ D2 +4)
The poles of f(z) are i, —i, 2i, —2i.

Solution. Let f(z) =

Choose the contour C as shown in the figure.

— isin(97/4))]

is an even function).

2
X
i dx
x2 4+ DHEx2+4)
-0

\\J.@J
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Calculus of Residucs &7

I'he poles i and 2i lie within C. By residue theorem.

ff(Z)dZ = 2mi (sum of the residues of f(z)) - ()
C

We find the residues of ().

: h(i
Res [ f(2); 1} = ,:T((% where h(z) = 22 and k(z) = (2 + 1) +4) =2 +52° + 4

so that k'(z) = 423 + 10;.

ol ,J—‘
T {
ol —1 -1 I o T
- C\ (e . R < ) — — .y L; \
e L © Res{f (@) l}. —4i + 10i 6i 6 1
R = ‘
’ ; 7 —_— i — . 3 l'“ -
l Ae— es { f(2); 2i) 3 (verify 178 |
Y - ) . _ Vo ‘
'ru, "Jz, \,j)'-' . l . ,_ ~ _t_ /‘.g‘ 8 @’C-“ !
L, | Ty
= e 01 4
Qt"' [ i ' 0 p" —i - 8
AN . 3 W g C e =+2m'(_) 9 o _
L g (X o 6 iy 2
4 " e T neo
- £ =3 g O
g (e ‘.\ . g
1 itten, usi TR
* Also (1) can be written, using (2), as
r N -
x2
2)dz : dx = = ... (3)
ffkm“+f(@+4mﬂ+@ 3 s
Cl it = /

7 7o.4h)
Further the integral f f(z)dz — Oasr — oo. (0 +h)

G

°° 2
; j = dx = =
) G E DG+ 9 3’
—00

I2 T

dx = ——
H2+bD) " atb

o0
Problem 3. Evaluate f G
-0

Solution. Proceed as in previous problem.
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240  Complex Analysis

x2—x+42
dx.
x4+ 100249

Problem 4. Evaluate [
-0

22 —z+42
2+ 1022 4+9

Solution. Let f(z) =

Poles of f(z) are the zeros of 24 +10z2249=0.
A +102 +9= 2+ N+ D
.. z = £3i; %i. Hence z = 3i, =3i, i — i are the simple poles of /(z).

Choose the contour C as shown in the figure.

C
4(0,3)

1(0,1)

-T 0O ! r

ff(z)dz=ff(;)dx+ff(z)dz. (D
C -r . C

The poles of f(z) lying within C are i and 3i and both of them are simple poles.

h(i)
k'(i)

Res (f(2): i} = where h(z) = z> — z+ 2 and

k(z) = z* + 1022 + 9 s0 that k' (z) = 42> +20z.

“1—i+2 1—i
. R ; [ 1= - — .
@i = 50~ Ta
7+ 3i
Similarly Res { f(2); 3i) = —— (verify).

48i

N [ dz= 2mi (sum of the residues at the poles)

C
(=i T43i
="2n
'( 160 a8 )

__21”_(10 _Sm
- 48i ) 127
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Calculus of Residues 241

x¢ -
From(l)f;T;%;de+fi:ii S
uf X< 49 d z +lOz2+()Iz__|—2'

Now as r — oo the integral over C 1 =0

f x2—x 42 5x
dx = ——,
4 +10x2 49 12

(e o]
Problem 5. Evaluate 7 — f
0

(x2
Solution. l
(xz 2)2

co 00

f _dx f dx
(x2 + 02)2 - (x2 —_}- a2)2 )

A . :
Let £(2) !
7)) = ——m——.
(2% + a?)?

Poles of f(z) are the roots of (z2 + a2)? = 0.
Now, (z + az)2 (z + ai)%(z — ai)?.
", ai and —ai are double polt_as of f(2).

Choose the contour C consisting of the interval [—r, r] on the real axis and the semi
circle C; with centre 0 and radius r that lies in the upper half plane.

. ff(x)dx+ff(z)dz=jf(z)dz. | | .. (D
—-r C C ‘

The poles of f(z) lying within C is z = ai.

1
H

. 1, . .
Res[f(z); ai) = l—!-g (ai) where g(2) (Z+ai)2. .
Now g'(z) = =2(z + ai)—3. fg s - D = _-——-é"';::;
aay) | PR |

2BV (zmtj [
gl = T (b7 *‘.;ﬁ e’

‘ Jgon

W
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242 Complex Analysis

© Res(f (i) = .

a-t

: 3 3 s
. ‘/. f(\-) d«. = r-n;l (4},3,’) = 2(13.

T
/(1 ./‘f(z)[z=§z_3'

When r — oo the mtegral over Cy — 0.

f g I
(x2+a2)?2 243
—00 .

i j’ x T
") (x24+4a?)?  4a¥
0

(o ¢}

dx b4
Problem 6. Prove that f = —,
x6+1 3

0
1

x6 41

Sulution. Since

o0 o0

/ dx _?./‘ dx
0+1 ) x641°

—00 0
1

Now, let f(2) = "
f@ 26 +1

is an even function we have

The poles of f(z) are given by the roots of the equation z® + 1 = 0, which are the sixth

roots of —1.

By De Moivre’s theorem they are given by e/, ¢i37/6 ,i57/6 ,iTn/6 and i117/6 and

they are simple poles.

Now choose the contour C consisting of the interval [—r, r] on the real axis and the npper

semi circle |z| = r, which we denote by C.

The poles of f(z) lying inside C are ¢/™/6, ¢#37/6 ypq ¢i57/6,

- w where h(z) = 1 and k(2) = 2o +1

< py ei/6) = BT
Res [f(")’ # ] k'(ei®/6) so that 1'(z) = 62°
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similarly Res {f(z): c‘3"/6] = ée“'s”/z and
Res [ £ ciSn‘/G} _1 —i257/6
: .

.. By residue theorem

Calculus of Residues 243

f f(2) dz = 2mi (sum of the residues at the 3 poles)
A _

= 2mi [leSi:rlﬁ + _l_e—SiJr/z + _I_e—",jin/ﬁ]
6

6

el [(cos T _ i sinoX
= — —isin —
6 6

6

.

dx | 2

From(]),fx6+] +[f(z)dz— T
=r Cl

As r — oo the integral over C; — 0.

0 "
dx _2n'
' /x6+1“ 3°

-0
o0
f dx T
) X641 3
0 .
oox“dx__:rﬁ'
Problem 7. Provethat./.xﬁ_1 =5
0
2

Solution. Let f(z) = o1

o isinsn)
+ | cos > >

(' 257 . 2571)]
+ | cos— —isin —

3
- ) -0/-
f Y
-
i O =)
b cpenn +1 S anT

= = [cos2rM+
iy a5 —
— = Co&anty41 8P 2n'Y,
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244 Complex Analysis

i/6. ;3 —
The poles of f(z) are given by the sixth roots of unity, namely e2mil6 n=0,1,... '3,

Ti/3

2 . f(2) has 2 simple poles on the real axis, viz., | and —1 and the two poles e and
/3 lie on the upper half of the plane.
Now choose the contour C as shown in the figure.
C
C2 CJ
T - 0 y7i LT
—1—¢
ff(Z)dz —ff(z)dz+ f f(x)dx+[f(z)dz
l1—e r
f f(x)dx+ff(z)dz+ f f(x)dx . (D
—1+€ 146> B - '
Now, ff(z)dz= —miRes{ f(z); —1} :
= —pi (h(—l)) where h(z) = 74
’ k’( ]) and L(Z) = ZG -1
= —mi(—-1/6)
==HEE0: )
Similarly ff(z) dz = —xiRes{ f (2): 1)
o (h(l)
k'(1)
= —mi(1/6)
=—:’ti/6. : (3)
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Calculus of Residues 248

c ' ':ReS[f(z); e“":/:’l+Rcs.[f(z):e2’”/3l]

-h(eiﬂ/3) o8/
6eiSn/3 ¥ ol 10n /3

[ gidn/3 £i87/3
= 2mi _ o —
6e.'5:rr/3 6eil0m/3
T (ingy 23
7 (7P +em2)
. — Ca ;Cl/f)
— ( m/3 m/3) roe 2T 12" .
> s
t o0
mi L =V PR
= —(=2isinm/3 = —
3 (—2isinx/3) o

Substituting (2), (3), (4) in (1) and taking limits as €1, €2 = 0 and r — 0o we get

x4 dx+m i _nﬁ.
x0—1 6 6 3.

—00
T J3
d = —.'
.[ o
0
00
x4 dxe __3
.[ x6 —
0
Exercises
is Prové the following by using Cauchy’s residue theorem.
. o0
dx T
dx n it —_—
() f =3 4 of I+ 3
-dx | T | (iv)» dx _ Jtﬁ
(iii) f 2+|)2=I x4+12+l_ 6
(x | 0
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246 Complex Analysis

. 00(22 d . ) foo dx T
x% — 1)dx T R
(")_[x4+5x2+4=3 B TSP ERRNT:
0
o0 2dx
» xzdx v/ 4 111 [ =£
v f Zray  16a VI ] G EneT e T s
3 T
= (X)f 7
f +4)(x?-+9) 200 1
0
2. Show th [ i _ =
. ow that f (:xi— ])(x2+2) 6

(o.0] o0
TYPE 3. f @ cosaxdx or f g_(x_) sinaxdx where g(x) and h(x) are real poly-
h(x) hx) ‘
—00 —-0oQ
nomials such that degree of h(x) exceeds that of g(x) by at least one and a > 0.

Case (i) h(x) has no zeros on the real axis.

- 8(2) iaz
—e' ",
h(z)

..~ f(z) has no poles on the real axis.

In this case take f(z) =

Cglooose the contour as in Type 2 and proceeding as in Type 2 we get the value of

(x) I(IX
./ h(x) ax:

—=00

Taking the real and imaginary parts of @eiaxdx we obtain the values of

[ o) 7 "
5 8(x)
— d
f o) cosax dx and / e )smax dx
. —m .
Case (ii) 4 (x) has zeros of order one on the real axis

(z)
" Tak ) = 2"eldz
of h(x) on the real axis. In this case we in

d Type 2 and
evaluate the integral. ent the real axis as Case (ii) Of ype

To prove that the integral over the upper se we use

: micircle t roasr —
the following lemma. ends to ze
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Calculus of Residues 247

7\
Jordan’s Lemma.  Let f(z) be a function of the complex variable z satisfying the
following conditions. ,

() f(2) is analytic in upper half plane except at a finite number of poles.
(i) f(z) = Ouniformly as |z| — oo with0 < argz < 7.
(iii) @ 1s a positive integer. '

Then r‘_‘:‘c‘,c f J (z)e'%dz = 0 where C is the semi circle with centre at the origin and
C

radius r.

Solved Problems

o0
0 n
Problem 1. Prove that [ COSY dx = =.
14+ x2 2e
4 ,
. ' . iz -Q%,f ,:_ (o)
| Solution. Let f(z) = e . Tzt
! R N
The poles of f(z) are given by i and —i. =z B A

Choose the contour C as shown in the figure. .

(0,1)

-T 0 = r

The pole of f(z) that lies within C is i. Hence by residue theorem

ff(z) dz = 2miRes| f(2); i}
C

4

- h(i)

= 2nim where h(z) = ¢'* and k(z) =1 + 22
_2mie”!
T2 e
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248 Complex Aﬁalysis

r

eiu d /4
. .—-———z-——n
: ,[x2+ldx+.[ Z+ 1 e

-r

When r — oo the integral over C| tends to zero.

o0 .
em.\‘ i_n-
o[ =

—00
- (s @]
‘ : . j‘ cosx i
uating real parts we ge e
Eq g p g | +x2 c
0
cosx ( Cosx . fiicts
=,— since is an even function
[ 1 + x2 )
0
o0

j‘ coS X

Problem 2. Using the method of contour mtegrauon evaluate

o0 .
Ccos x
d b > 0).
(x2 +a2)(x2 + b?) x@a>5>0)
—00 v
Solution. Let f(z) e
ution. Let f(z) = .
(22 +a?)(z% + b2)

The polés of f(z) areia, —ia, ib, —ib. ‘ - )

Choose the contour C as shown in the ﬁguré.

The poles of f(2) which lie within C are ia and ib. |
Hence by residue theorem |

y f f(2) dz = 2mi(sum of the residues of f(@@). e

We find the rcsidue:s of f(2).

-
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Calculus of Residues 249
RCS( Z) a:) — h(ai) g
f@); aj) = m where h(z) = ¢/Z and

2 2.,.2
(z)=(Z"+a 2y _ 4
k( Wz® +b%) =, + (@ + b1)22 + a2b? 5o that

K(z) = 473 + 2(a? + szz_

—-d

"o Res {f(2); ai}= —
. _ | 4(1a)3 + 2(a? + b?)(ia)
" i2a[(a? + b2) — 2a?] o s 8
o a2 20
o) -2 one /-
_je—d 'L‘( \ O 5 e ('OQ:_} :02'
— ——— — __.l “O/——'-. ol —
) 2a(b? — a?) \ 2, 2,2)
—_ —aha f.zo —(:-l'-‘b
~je” 4. : J
“u@=@ T -2ie[a’®
e = i Lb OJ
b __._ .
Similarly, Res (f(2); bi}= 2b(b2 a2)
e ”
T 2b@? - b3’

: . i e~d b .
From(l)ff(z)dz=2m 2@ —oH\ a i
C - F
—b

_e )
-b —r '
T e e :
—bz(b = p ) (2)
Also (1) can be written using (2) as

- elx x  f[e? e
- - . ... (3)
ff(Z)dZ+f(2+a2)(x +b2) az—bz(b a ) | (

C\ \
Further the integral over Cj tendsto0as r — oo,
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250 Complex Analysis

(3) bepomes

® ix T c—h o=
. dy=—=—"5\"p = a4 |’
J (2+a )(x2 4 h?) at —b )
—o0

-

Equating real parts on both sides we gel

P cosx e "_h_e_u |
aEraeli . @@=\ b a )

-0

(o ¢]

cosaxdx T _
Problem 3. Prove that = z(a + 1e™? wherea > 0.

(x2 + 1)?
0
iaz
(22 + 1)?
The poles of f(z) are given by i and —i which are double poles. Now choose the contour
as in Problem 1. The pole of f(z) that lies within C is i.

Solution. Let f(2) =

iaz

N_ow, Res{f(2); i} = %g’(i) where g(z) = (2 2 i.)zf(Z) = (z+i)%
oy a2 4
£ = (2 +i)? .
. . _ HiaeTt — e (4i)  —ieT(a+ 1)
. Res{f(2); i} = 6 . . 4 ‘

Hence by Cauchy’s residue theorem

f’ f(2)dz = 2mi ("e"“(a + 1)) _m(a+ e ™
4 — .
C .

I)

—

\ f f(x)dx + f f(2)dz = ma +2l)e"“ .
- - ' Cl : N

As 1 — 00, the integral over C) tends to zero,

o0
.[ flx)dx = T@+ De”™
-—m 2 .
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Calculus of Residues 251

o0

Eqdating real parts / cosax dx — m(a+1)e ™
Jo )2 2
o0
. Cos ax n(a + De™
S ——dx = .
(x2+1)2 4
0
< 00 . R )
Problem 4. Prove that f Sin.¢ dx = et sm2.
x24+4x+5 e
-0
lution. Let f e
Solution. Let f(z) = ————.
g 22+4z45

The poles of f(z) are the roots of the equation 22 + 4z + 5 = 0. They are given by

—4:1:\/2]6—20 _ o4

=

" Now, choose the contour C as shown in the figure.

0 r.
—2 +i is the only pole of f (-z) that lies within C and it is a simple pole.

Hence by Cauchy’ residue theorem,

f f(z)dz = 2miRes{f(2); =2 + i}
C :

h(-2+i) where h(z) = €'?

=@ P andk@) =2 +42+5
r sre2l
ff(x) dx +‘f f(2)dz=
-r Cy
Since the integral over C| tends to zero as r — 0o, we have
P - ped
e T
f fx)dx = — ;(cosZ—isinZ).
—00
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252 Complex Analysis

Equating imaginary parts we get

o0

j‘ sin xdx xrsin2 .o (4)

x244x+5 T e

(o o]

Problem 5. Evaluate f
5 0

xsinx

dx.
x2 + a?

eiz
22 +a?

The poles of f(z) are given by ia and —ia which are sim
C as in Problem 1. -

Solution. Let f(z) =
ple poles. Choose the contour

Only the pole z = ia lies inside C.

| Res{f(z); ia) = h(i'a) where h(.z) = ze'? and k(2) = 22 + a? sothat k'(z) = 2z.

k'(ia)
iaet?) ¢4
. Res|f(2); ia} =G - 2
Hence by Cauchy’s residue theorem .

-y
f @) dz =27 (BT) ——
C .

'ff(.t)dx+jf(i)dz=nie—“.

G

When r — o0, [ f(2)dz=0.

w :
f f(x)dx=mie™™.
—00

00

f xel* L
. x2+azdx=:('e e

—0Q
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Calculus of Residues

00

() j‘ X(cos.x 4§ sin x)dx =
x2 + a? '

(ic) f X(COS X + i sin x)dx

=gmie” Y,
2 4 a2

Equating imaginary parts on both sides we get

00

xsinx
f 3 2dx = e Y,
X“4a

-0
Since the above integrand is an even function we have

Xsinx
2] 7 2d.1r=:re','“.
X‘+a :

(v < TR

j‘xsmx e'»'“ J
| x2 +a? 2
-0

sinx

Problem 6. Prove that f B dx = %

o0

iz

Solution. Let f(z)=%-- b TS

The only singular point of f(z) is 0 which is a simple pole and it lies on the real axis.
Now choose the contour C as shown in the figure.

+ff(x)dx+ff(z)'dz. ke Q)
€
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254 Complex Analysis

Since f(z) is analytic within C, f f(z)dz = 0 - (2)
. C
Also ff(:.) dz = —miRes( f(2); 0)
= —mic"
= -R'f. ... (3)

Further the integral over C) tends to 0 as r — 00.
Hence using (2) and (3) in (1) and taking limit as » — 0O we get

0=ff(.\')dx—7ri+ff(x)dx. | .

20
] f(x)dx = mi.

sin x
Equating the i 1magmary parts we get j —dx=m.

—00
. 00 ‘ . )
sin x T . sinx . )
f ——dx = — (since — is an even function).
¥ 2 o X . :
0 e
Exercises

' 1. Establish the following with the help of residues.

oo

) sinx dx x sin 2

(l) - _ -

x-+4x+5 e
-0
w L]
. sinx dx 7T sin |
(ll) 3 =

xc=2x+5 2e2

cosaxdx  m —ab
(iii) _[(xz Wy Ivhe 4b3(l +ab)e™ " (a >0, p > 0).

xsinx dx _ me 4 ‘(a
i) f 2+a? 2 )L
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