[bookmark: _GoBack]ANNAI VAILANKANNI ARTS & SCIENCE COLLEGE,THANJAVUR DEPARTMENT OF PHYSICS

Operators in C
Operators are the foundation of any programming language. Thus the functionality of C language is incomplete without the use of operators. Operators allow us to perform different kinds of operations on operands.

[image: https://www.geeksforgeeks.org/wp-content/uploads/Operators-In-C.png]
An operator is a symbol that tells the compiler to perform specific mathematical or logical functions. C language is rich in built-in operators and provides the following types of operators
· Arithmetic Operators
· Relational Operators
· Logical Operators
· Bitwise Operators
· Assignment Operators
· Conditional Operators
· Special Operators

Arithmetic Operators
The following table shows all the arithmetic operators supported by the C language. Assume variable A holds 10 and variable B holds 20 then −

	Operator
	Description
	Example

	+
	Adds two operands.
	A + B = 30

	−
	Subtracts second operand from the first.
	A − B = -10

	*
	Multiplies both operands.
	A * B = 200

	/
	Divides numerator by de-numerator.
	B / A = 2

	%
	Modulus Operator and remainder of after an integer division.
	B % A = 0

	++
	Increment operator increases the integer value by one.
	A++ = 11

	--
	Decrement operator decreases the integer value by one.
	A-- = 9

Relational Operators
The following table shows all the relational operators supported by C. Assume variable A holds 10 and variable B holds 20 then −

	Operator
	Description
	Example

	==
	Checks if the values of two operands are equal or not. If yes, then the condition becomes true.
	(A == B) is not true.

	!=
	Checks if the values of two operands are equal or not. If the values are not equal, then the condition becomes true.
	(A != B) is true.

	>
	Checks if the value of left operand is greater than the value of right operand. If yes, then the condition becomes true.
	(A > B) is not true.

	<
	Checks if the value of left operand is less than the value of right operand. If yes, then the condition becomes true.
	(A < B) is true.

	>=
	Checks if the value of left operand is greater than or equal to the value of right operand. If yes, then the condition becomes true.
	(A >= B) is not true.

	<=
	Checks if the value of left operand is less than or equal to the value of right operand. If yes, then the condition becomes true.
	(A <= B) is true.

Logical Operators
Following table shows all the logical operators supported by C language. Assume variable A holds 1 and variable B holds 0, then −
	Operator
	Description
	Example

	&&
	Called Logical AND operator. If both the operands are non-zero, then the condition becomes true.
	(A && B) is false.

	||
	Called Logical OR Operator. If any of the two operands is non-zero, then the condition becomes true.
	(A || B) is true.

	!
	Called Logical NOT Operator. It is used to reverse the logical state of its operand. If a condition is true, then Logical NOT operator will make it false.
	!(A && B) is true.

Bitwise Operators
Bitwise operator works on bits and perform bit-by-bit operation. The truth tables for &, |, and ^ is as follows −
	p
	q
	p & q
	p | q
	p ^ q

	0
	0
	0
	0
	0

	0
	1
	0
	1
	1

	1
	1
	1
	1
	0

	1
	0
	0
	1
	1

Assume A = 60 and B = 13 in binary format, they will be as follows −
A = 0011 1100
B = 0000 1101

A&B = 0000 1100
A|B = 0011 1101
A^B = 0011 0001
~A = 1100 0011

The following table lists the bitwise operators supported by C. Assume variable 'A' holds 60 and variable 'B' holds 13, then –
	Operator
	Description
	Example

	&
	Binary AND Operator copies a bit to the result if it exists in both operands.
	(A & B) = 12, i.e., 0000 1100

	|
	Binary OR Operator copies a bit if it exists in either operand.
	(A | B) = 61, i.e., 0011 1101

	^
	Binary XOR Operator copies the bit if it is set in one operand but not both.
	(A ^ B) = 49, i.e., 0011 0001

	~
	Binary One's Complement Operator is unary and has the effect of 'flipping' bits.
	(~A) = ~(60), i.e,. -0111101

	<<
	Binary Left Shift Operator. The left operands value is moved left by the number of bits specified by the right operand.
	A << 2 = 240 i.e., 1111 0000

	>>
	Binary Right Shift Operator. The left operands value is moved right by the number of bits specified by the right operand.
	A >> 2 = 15 i.e., 0000 1111

Assignment Operators
The following table lists the assignment operators supported by the C language −

	Operator
	Description
	Example

	=
	Simple assignment operator. Assigns values from right side operands to left side operand
	C = A + B will assign the value of A + B to C

	+=
	Add AND assignment operator. It adds the right operand to the left operand and assign the result to the left operand.
	C += A is equivalent to C = C + A

	-=
	Subtract AND assignment operator. It subtracts the right operand from the left operand and assigns the result to the left operand.
	C -= A is equivalent to C = C - A

	*=
	Multiply AND assignment operator. It multiplies the right operand with the left operand and assigns the result to the left operand.
	C *= A is equivalent to C = C * A

	/=
	Divide AND assignment operator. It divides the left operand with the right operand and assigns the result to the left operand.
	C /= A is equivalent to C = C / A

	%=
	Modulus AND assignment operator. It takes modulus using two operands and assigns the result to the left operand.
	C %= A is equivalent to C = C % A

	<<=
	Left shift AND assignment operator.
	C <<= 2 is same as C = C << 2

	>>=
	Right shift AND assignment operator.
	C >>= 2 is same as C = C >> 2

	&=
	Bitwise AND assignment operator.
	C &= 2 is same as C = C & 2

	^=
	Bitwise exclusive OR and assignment operator.
	C ^= 2 is same as C = C ^ 2

	|=
	Bitwise inclusive OR and assignment operator.
	C |= 2 is same as C = C | 2

Conditional operator
The conditional operators in C language are known by two more names
1. Ternary Operator
2. ? : Operator
It is actually the if condition that we use in C language decision making, but using conditional operator, we turn the if condition statement into a short and simple operator.
The syntax of a conditional operator is :
expression 1 ? expression 2: expression 3
Explanation:
· The question mark "?" in the syntax represents the if part.
· The first expression (expression 1) generally returns either true or false, based on which it is decided whether (expression 2) will be executed or (expression 3)
· If (expression 1) returns true then the expression on the left side of " : " i.e (expression 2) is executed.
· If (expression 1) returns false then the expression on the right side of " : " i.e (expression 3) is executed
Special operator
	Operator
	Description
	Example

	sizeof
	Returns the size of an variable
	sizeof(x) return size of the variable x

	&
	Returns the address of an variable
	&x ; return address of the variable x

	*
	Pointer to a variable
	*x ; will be pointer to a variable x

image1.png
Operators in C

Unary operator ————»

Binary operator

Ternary operator ———»

Operator Type
S|P Unary operator
5 %0% Arithmetic operator

Relational operator

Logical operator

Bitwise operator

Assignment operator

Ternary or
conditional operator

a3

~

p]

