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INTRODUCTION :

d 3 we have summarised the mathematical descrj
of static electric and magnetic fields. We now wish to consider the
general situation in which the ﬁe_ld quantities may dcpc,ld upon
Under such conditions there is an interdependence of the field quantitjeg
and it is no longer possible to discuss separately the electric and Magnetje
fields and we are forced to consider the general concept of i
electromagnetic field. The time dependent electromagnetic field equag, N
are called Maxwell’s equations. These equations are mathematicg|
abstractions of experimental results.

Ptiop
More
time,

[In chapter 1an

In this chapter we seek to establish the formation of the fielq
equations, to show that their solutions are unique, to discuss the scalar ang
vector potentials of the field and to consider the law of conservation of
charge, energy and momentum].

§ 4.1. Equation of Continuity.

Under steady-state conditions the charge density in any given region
will remdin constant. We now relax the requirement of steady-state
conditions and allow the charge density to become a function of time. Itis
experimentally verified that the net amount of electric charge in a closed
system rémains constant. Therefore if the net charge within a certain
region decreases with time, this implies that a like amount of charge must

-appear in some other region. This transport of charge constitutes a current

ie. - 1 =—(dg/dr). (1)

—ive sign here indicates that charge contained in a specified volume
decreases with time.

However by definition of current density

,  I=fJeas. «{E)
So from equation ( 1) and (2) we have—
§ Jods = .|
S dt
F d
Le. J = —
£ ik - f p dr. [as = .[ 0 dt] (28)
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if we hold the surface §
fixed in space, tbc time variation
of the volume mlc‘gml must be
solely due to the time variation
of p. Thus

ﬁJnls =J%? dt.  ..(3)

But from Gauss's theorem

S

faeds =] (@iv)ae
-(4)

So comparing expression (3) and (4) we get

4:‘ (div))dt=- I‘ aal: dt.

ie. §( (div J +%)dt =0, (5

Since equations (5) is true for any arbitrary finite volume, the integral
must vanish i.e.

Fig. 4.1

. ap
div J +—=0.
wvJ+ al

Equation (A) is called the equation of continuity and is an expression
of the experimental fact that electric charge is conserved.

AA)

Example 1. Starting with the equation of continuity and assuming
Ohm's law, show that the charge density in a conductor obeys
the equation

Ep+§_q_=0

e . o
Solving the above equation discuss the final result.

Solution. As according to continuity equation

div T4 22, )
ot
And according to Ohm’s law ?

J=cE.
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5 div(@E) *
0
P _o
gdivE+ ﬁ =
or 3
: E(diveEH'ég"O
o 2 .
5:"-(divl))*”aj"o (dSD=€E)
or P
ot _
i This is the req:ired result. To solve the above equation, let
1S 1
£ _constt=1*
c
So the equation (3) becomes -
p__1 ;% %
R
On integrating it, we get
t
logp=—;+ logC
Le. p= Ce ", b
Now ifatt=0 p=p, then.
i (5
So in the light of equation (5), (4) becomes
| p=p,e? ..(6)

This is the desired result and from this result it is clear that—

() The charge density in the volume decreases exponentally
with time at a rate such that after a time ¢

it reduces to t=t

1

=0 st

P=Poe =;(po)
. As!heunitofconstamﬁs

T =£=Lmd x (ohm x meter)
S meter |
‘=Fa"‘d><0hm=w

So its d i
charactrisio o g . ™™ at o

ofthe given mediypy,

Field Equations and Conservation Laws 177

ie. 36.8% of its loriginal value. So the relaxation time is that time in
which charge density reduces to 36.8% of its initial value.

(ii) As for good conductors

€
r=2altr g
()

€

P [as6— coande, =1]'.
al ~(111) .

So pP=pee”" Y 2pe™” 50

je in case of good conductors, the frec volume charge density is
practically zero, and any nf:t charge must be situated at the surface i.e.
charge disappears almost instantaneously from the interior of a good
conductor (such as copper) and resides on its surface.

(iiiy As for good insulator

e EL
T=—=""Sw (3500
G o
So p=p,e’? =2p,e’ =p,

i.e. in case of good insulators, the free volume charge density practically
remains unchanged as time passes, i.e. charge remains for an extremely
long period within good insulators such as quartz.

§ 4.2. Displacement Current.

We know that Ampere’s circuital law in its most general form is
given by

i Ha=[Jeds [seccquationcof§3.10 (@]
[ o
ie. Lcurl Heds = LJ ods
or curlH=J (1)

Let us now examine the validity of this equation in the event that the
fields are allowed to vary with time. If we take the divergence of both
sides of equation (1) then

div (curl H)=div J. ‘ (2
Now as div of curl of any vector is zero, we get from equation )
divI=0 (3)

* In note (ii) of application (d) in § 2.3 we have shown that for "“;“:“;f“;‘;:;‘f 8
conductor acts like a material of infinite dielectric constant. ngevefr in c':lsc lct'x : : : cstﬂl i
polarisation effects are completely overshadowed by dispersion of me . 5 vistcs s
hold good. For purpose of estimation, in case of conduction through metal we usually .
as discussed in § 7.9.
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inuity equation 1" genera
Now the €0 e
divI="7 ~(4)
: ial case that the charge gop .
.+ only in the spec1d - Cngity «
and will therefor® vanish ongst conclude that .Amptmds' law as Stateg i:
static. Consngl{‘ only for steady state condjthni ;m ' li‘“SUﬂiciQ Mgy
equation (1)1 Vz:il endent fields: Because of this Maxwell assumeg thay
{he case of t1me- + complete but should ha.‘-c something tlse it Lo thig
equation (1) LS n;enoted be J,, then equation (1) can be rewritten 5
‘something’ be ]
. curH=J +Js0 ~(5)
divergence :
In order to identify Ja, W€ calculate the diverg of equatiop )
again and get )
; div curl H=div J+J) _ .
ie. div@+a)=0 (asdivcurl g =()
or divJ +divJi=0 !
P divJ;=-divJ
0 e
ie divly= -a—‘: : [from equation @)
J . " .
ie. div Jd=5; (divD) . [asdivD=y)
i dD :
Le. le(Jd - 5{—)=0 A -(6)
As equation (6) is true for any arbitrary volume
dD :
=50 1 e v l(B)
And so the modified form of Ampere’s circuital law becomes
oD
curlH=J + —. (B
3 (B)

The term which Maxwell added to Ampere’s law viz. (9D/ar) is
called the displacement current to distinguish it from J, the conduction
current. By adding this term to Ampere’s law, Maxwell assumed that the

time rate of change of dis i j
‘ placement produc B
conduction current does, P et e

Regarding displacement current itis worthy to note that :

(i) Displaceme .
nt cu . ;
Prodiuces a magne(i 1y Tent s a current only in‘the sense that it

1d. 1t has none of the other properties of current.
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For example displacement curren can h

ave a finite value in perfec
yacuum where there are no charges of T

any type.
(i) 1!“: ““‘E"'l}l(lc 01" the displacement current is cqual to the
time rate of change of electric displacement vector D

(iti) Displacement current serves to make the total current
continuous across discontinuities in conduction current (See example 2
and problem 4).

(iv) The displuccm?'t'u current in a good conductor is negligible
as compared to 'lhc condllstlon current at any frequency lower than the
optical frequencies (~ 107 Hertz), (Sce example 3).

(v) The addition of displacement current ie.  (ID/dr) to
Ampere’s law ie. curl H=J results in

curIH=J+a—D

dt

i.e. displacement current relates the electric field vector E (as D =¢E) to
the magnetic field vector H. This in turn implics that in casc of time
dependent fields it is not possible to deal with electric and magnetic ficlds
separately, but the two fields are interlinked and give rise to what are
know as clectromagnetic fields ie. The addition of displacement
current to Ampere’s law result, in the unification of electric and
magnetic phenomena.

It must be emphasized here that the ultimate justification for
Maxwell’s assumption of displacement current is in the experimental
verification. Indeed the effects of the displacement current are difficult to
observe directly except at very high frequencies. However indirect
verification is afforded by predictions of many effects particularly in
electromagnetic theory of light which are confirmed by experiments. We
may therefore consider that Maxwell’s form of Ampere’s law has be.en
subjected to experimental tests and has been found to be generally valid.

Note:  Different types of current densities—

(a) Conduction current density J : It arises due to the physical motion of true
charge and is given by
[§3.1

. Tt arises due to the polarisation of the material

J=0cE=ngv
(b) Polarisation current density 1,
and is given by l
& [note in problem—7
J,= (P /dr)

Scanned by CamScanner



Electromagneyic The
on,

182 a [
9 (E,cos0) ase=g g,
i J, =& £ o (Eo
) — e, € Eo SN O!
i.e. Jd - r . )
i} t+— |-
, J =ms,soEo cos(m ) “
ie.
i d (4) it is clear that
So from equation (3) an (¢ ]

7 €, €y Eo €08 ot + 3

’JL i oE,coso!

Jy| vk
7 o (5)

But as fora good conductor
¢ =1* and 6~ 10" mohs/meter

12
) =§‘_xf,x?’>(1—0—l—~fx10'"
J 10

ie. the displacement current in a good conductor is completely neligible
compared to the conduction current at any frequency lower than optical

frequencies (f, ~ 10" Hertz).

Note: Itis interesting to note that although conduction current (equation 3) is in phase
with the clectric field intensity (equation 1), the displacement current (equation 4) leads the
clectric field by 7/2 radians ie. displacement current leads the conduction current by
/2 radians.

§ 4.3. Maxwell’s equations.
(A) The equation :

These are four fundamental equations of electromagnetism and
corresponds to a generalisation of certain experimental observations-
regarding electricity and magnetism. The following four laws of

electricity and magnetism constitutes the so called ‘differential form’ of
Maxwell’s equations :

cumlncmr;“:‘; k(") of ap!»lncann (@)in § 2.3 we have shown that for electrostatic effects 2
pn‘mmmnc s{ rx ¢ amaterialof infinite diclectric constant, However in case of steady current a5

5 '
effects are completely overshadowed by dispersion of metals this result does not

hold good. For py e
> Pose of estimation, in cas .
€ =" Lftomegn. (A)in§ 7.7, fon. in case of conduction through metal we usually ke
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i) Gauss™ law for the electric field of charge yields
divD=V.D=p
JhoreD is clccll‘iyc displacement in coulombyg/y?
Jensity i coul/m’.
(ii) Gauss” law for magnetic field yields
divB=V.B=0

where B is the magnetic induction in web/m?,

and p is the free charge

(iii) Ampere's law in circuital form for the magnetic field
accompanying a current when modified by Maxwell yields
curl H=VxH =J+ a_[)
ot
where H is the mggnctic field intensity in amperes/m and J is the current
density in amp/m”.

(iv) Faraday’s law in circuital form for the induced
clectromotive force produced by the rate of change of magnetic flux
linked with the path yields

curl E=V><E=—a—B
ot

where E is the electric field intensity in volts/m.

(B) Derivations :

(i) Let us consider a surface S bounding a volume T within a
dielectric. Originally the volume T contains no net charge but we allow
the dielectric to be polarised say by placing it in an electric field. We also
deliberately place some charge on the di-electric body. Thus we have two
type of charges :

(a) real charge of densityp (b) bound charge density p'.
Gauss’s law then can be written as
1
Eds=—|(p+p')dt
§Eds=-J0+0)
ie. € @ E.ds ___L pd +TJ‘P' dr. s(1)

But as the bound charge density ' is defined as p’=~div P and
§ E.ds=], divEde
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Fig. 4.3

So equation (1) becomes

g, [ divEdt=] pdr-[ divPar

i [ div(e E+P)dt =[ pdr

or J‘ divDdrt =J‘ pdt

(asD=g E+P)

or | @ivp-pyar=0

Since this equation is true for all volumes, the integrand must Vanish,

Thus we have
divD=VeD=p.

Fig. 4.4

(8

(i) Experiments to-date have
shown that magnetic monopoles do
not exist. This in turn implies that
the magnetic lines of force are
cither closed group or go off to
infinity. Hence the number of
magnetic lines of force entering
any arbitrary closed surface is
exactly the same leaving it.
Therefore the flux of magnetic
induction B across any closed
surface is always zero i.e.

@) B.ds=0.
s

Field Equations and Conservation Laws
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Transforming this surface

o ntegral into volume
arem, we g2e
theort

integral by Gauss's
[ divBdr=q

But as the surface bounding the volume
equation will be true only when the integr,

divB=VeR =),

18 quite arbitrary the above
and vanishes i ¢,

~(B)

Note:  For altemative methods ol proving div B = 0 see example | in chapter 3

(i) From Ampere's circuital law the
magnetic pole once round a closed
is cxprcSSCd by

; work done in carrying unit
arbitrary path linked with the current 1

gﬁ‘ Hedl =1

ie ﬁ Hed! =LJ.,[5

(s 1= )

where S is the surface bounded by
the closed path C.

Now changing the line
integral into surface integral by
Stoke’s theorem, we get

J curl Heds =I Jeds
s L]
ie. curl H=1J. (2)

But Maxwell found it to be
incomplete for changing electric
fields and assumed that a quantity T

_dD
]

Fig.45

called displacement current must also be included in it so that it may
satisfy the continuity equation i.e. J must be replaced in equation (2) by
J+J, so that the law becomes

cul H=J +J,

ie. curlH=1J + %[!Z .(C)
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(iv)  According Fa
= Aary

law of electromagnetje iml..\.l-"l"}\
4 |

know that the induceq ¢ M

flux i.c. ge of
do,

dt A

Now if E be () e
intcn.sil yata p.oini the work do:lqc
moving a unit Clmrgc throy 'lc in
small distance dl is Ee ). U

: S
Fig. 4.6 work done in moving the ypjy cl?a:hc
once round the circuit js § ) dgle
Now as c.m.f. is defined as the amount of work done in movirig 4 llnilt
charge once round the electric circuit.
€ =i Eedl (4)
So comparing equation (3) and (4), we get
Eedl d0,"
] =— .
i dt «(5)
But as
45 = |, Beds
d
Eedl =—— | Be ds.
So ﬁ . - I

Transformating the line integral by Stoke's theorem into surface
integral we get

_Lcurl E-ds=-di’j8-ds.

Assuming that surface S is fixed in space and only B changes with
time, above equation yields

oB
L(curlE-l-EJOds:O

* This cquation shows that a changing magnetic field produces an electric fielk
However it has also been found that a changing electric field also produces a magnetic field. The
magnetic field produced by changing electric field is given by

§ Bedt=p,e, =% _ | do,

T [asuhgozl/c:]

proportional to the rage “rt‘h. i |

Field Equations and Conservation Laws
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As the above integral is true for

any arbitrary surfac !

3ol o surface n Seype
e vanish Ty surface the integrand
JB

ot (D)

ie curl K =~
(©) particular Cases :

(i) Ina conducting medium of relative permitivitye, and permeability
W, as

D=¢k =g, e,k
And B=pH =y, p H,
Maxwell's equation reduce to
() VeE=pfg, (ii) Vel =0

_ JE , . b1
(ul) VxH J“’E,Eo E— (nl) VK[&=~“[IIH (_DT .

(i) In a non-conducting media of relative permitivity €, and

_ permeability ., as

p=0=0
S0 J=cE=0
and hence Maxwell's equations become
() VeE=0 (ii) VeH=0
(i) VX“=€,ED% (iv) VxE=—y, W%ITI'
(iii) In free space as
€ =y, =1
p=0=0.
Maxwell’s equations become
() VeE=0 (i) VeH=0

JE
iif) VxH=g,—
(iif) VxH=¢g, ”

, .
(iv) VXE=-, Ty
(D) Discussion :

1. These equations are based on experimental observations. The
equations : (A) and (C) correspond to electricity while (B) and (D)
to magnetism.
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| and apply to all ¢]
ions are genem X CClro,
7, These cqu?ll\i),hich are at rest WI-L. the coordinate SYste n:ghelic

i cdla
mena in ;
ot independent of each other

pheno!

) we can de

ns(B)and (0)

are called the first pair of Maxwelpg o s
econd pair. equyy;
called the second p

e uation ®
iop,

why equatio
while (4) and (Q) 27
The cquation (A)
of char;
quation (A) with (B) and (C) “"illl (D
dentical while right hand sides are ngy - . ¢
L

represents Coulomb’s law whj|e

4 ! . 3 s
- se i.e. continuity equation (see ey th
g \amplcs Y t

law of conservation
5, If we comparc [

find that left hand sides arc! : .
turn implics that clectric and magnetic Phenomcna are assymmggs, i
¢ to the non-existance of monopoles. ang

this asymmetry arises du
Nofe: This asymmetry of electro-magnetism suggests that monm
: -

cither north or south magnetic charge) should exist as the concept of magnetic monopo]g.,
bring to electricity and magnetisma symmetry to which nature loves and is lacking in o, oulg

picture. Dirac has also prov
their propertics. But so far :
experiments have failed to find any sign o !
find any good reason why monopoles should not exist.

Recently, American Institute of Physics and the University of California at Berkley joj
announced that monopole has been observed by a group of physists. If confirmed, the defec'f."’
of monopoles will have a major impact on Physics and Technology. "

(6) The correspondence of B and H with E and D through
Maxwell equations (D) and (C) respectively implies that in case of time
dependent fields the electric and magnetic fields are inseparably linked
}w.th cach other giving rise to what is known as electromagnetic field and
it is l?ot possible to deal scparately with electric and magnetic fields in
this situation.

od on theoretical grounds that monopole should exist ang prrfcrle‘scm
Icteq

the magnetic monopoles has frustated all its investigators,
f these. The theorists on the other hand haye fa.ile.ell.ll 3
to

(E) Physical Significance (or Integral Form)

Mzm[\;v{:llt’:cafEl S[d°f Gauss’s and Stoke’s Theorems we can write the
\ leld equations in integra i :
physical significance, il sad. bepes Qi 7

(i) Integrating M 8 .
volume t we get 8 Maxwell’s first equation div D =p over an arbitrary

. LV-Ddt:J.‘pdr
changing the vo. integral of I

divergence theorem ang keeping H. S. into surface integral by Gauss's

in mind that fp dv=q we get

ions are I
These equation g)and from (C), (A) (see exampe <) frop,

on, |

Jd Equulinnx and Conservation Laws
¢ 189

Fi

Y D'(lﬁ:
§ Dedbg A

g0 Maxwell’s first cquation signifies that the total flux of electric
ement linked with a closed surface s equal to the total ch;r'gz'

isplac .
d" ({l(,‘_"({ by the closed surface.
gnclosed D!
(ii) Integrating Maxwell's second equation div B = 0 over an arbitrary
vol. TWe get
| VeBaz=0.

Converting the vol. integral into surface integral with the help of
Gauss’s theorem We get

f Beds=0 (B

So Maxwell’s II equation significs that the total flux of magnetic
induction linked with a closed surface is zero.

(iii) Integrating Maxwell’s 111 equation curl H=J + (dD/dt) over
a surface S bounded by the loop C we get

[ curl H-ds=j(.l+aa—[’)]-ds

Converting the surface integral of L.H.S. into line integral with the
help of stoke’s theorem we get

gﬁn-dl=j(J+?a_'?].ds

which signifies that magnetomotive force around a closed path ﬁ Hed l]

-(Cy)

is equal to the conduction current plus displacement current linked with
that path.

(iv) Integrating Maxwell’s IV equation curl E= - (0B/dr) over a
surface S bounded by the loop C we get

qurl Eeds =—I%—? -ds

Converting the surface integral of L.H.S. into line integral with the
help of Stoke’s Theorem we get

)
ﬁ E-dl:-ajnods

r

(D)
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lectromotive force i.e. line integrq) el

ual to the negative rate of o, "ic
€ lﬂl;gc of

which signifies that the : e
intensity around a cIas_e ;; i
magncl.ic flux Jinked with the pai.

p i 'l cwell's C(]NI”I'OH.\‘
Exam le 4 Starting Hllhl faxwell's
. Via. !,

aD

JB 1. 9D
E:-——aT and curlH=J + a

curl

ively  that

respectively show .

g divB=0 and divE=p

Solution. Taking the divergence of given Maxwell’s it
we get

0 . o oD
div curl E=—div E (B) and div curl H =div (J + E)

Now as the div curl of any vector is zero and space and i
operations are interchangable, above equations reduce to

% (divB)=0 and éaT (divD)=—divJ

or % (divB)=0 and % (div D)=%—‘: (HS divyJ +%%=0]

Now if for each point of space div B and div D become zero at any
time either in the past or in future, above equation on integration yields

divB=0 and divD=p

Example 5. Starting from Maowell’s equations prove (a) Coulomb’s |

law, (b) Continuity equation.

Solution. () From Maxwell’s first equation we have
divD=p ()
Inlegratin_g this equation over a sphere of radius » we get
[ divpar =[ par

ie. § D'ds=q
- e Eeds=g (asD=¢,€,E=6F
Le. so E(4nr2) =q
ie. E= 1 i
4ne, r?

Field Equations and Conservation Laws
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i Bu-Ll_ 2
L.e dng, 5 (as E is radial) -(2)
So the force experienced by a test charge g,
F=¢q E= LY
ne,
This is the required result.
(b) From Maxwell’s third equation we have
JD
culH=J+2.
o ..(3)

Taking divergence of both sides of this equation
div curl H =div (J + il .
{7
Now as the div curl of any vector is zero, above equation reduces to

: an
d —— =
|V(J+ al) 0

ie. div J +div (92)=0

Jt
ie. divJ +%(div D)=0 .(4)
or divJ +% =0 (asfromeqgn.(1) VeD=p) ..(5)

This is the required result.
§ 4.4. Energy in Electromagnetic fields. (Poynting’s theorem)
From Maxwell’s equations it is possible to derive an important

expression which we shall recognise at the energy principle in an
electromagnetic field.

For this consider Maxwell’s equations (C) and (D) i.e. Ampere’s and
Faraday’s laws in differential forms
aD

cul H=J +— (1
ot

and & a8, 2
ot

If we take the scalar product of equation (1) with E and of equation
(2) with (=H) we get

aD
E.CurlH=E.J+Eo_a—t-. (3)
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H aD
5 =+H*=""
and _HecurlE ot =
yand (4) we get

adding equation 3 el a 1,08
.curIH— a! a-’]

_H-curlE +E

But by the vector identity
HecurlE- Eecurl H=div (EX H)

The above equation reduces to

oD . 0B
—div (ExHF"'E*[E"aT MY ] -(5)

oE d 9
Nowas E® §=E'Eo E—g:‘;ErEo 'aT(E' E) _%E(E' D)

JB .a_}_{___l ,@.H,H=li ”
and H037=u,poﬂ at'zu'“"ar( ) zat(H B)

So equation (5) reduces to

J-E+g% (EeD +HeB)+div (Ex H)=0. 6

Each term ir the above equation can be given some physical meaning
ifit is multiplied by an element of volume drand integrated over a volume

1 whose enclosing surface is S. Thus the result is

[ (eE)du+ | ;%(E-muon) dt +j( div(ExH) dt= 0
Butas [ div(ExH) dr=‘§s (Ex H)-ds
3
o [ (eE) de+[ 1 (BoD+HeB) it +§ (BxH)ds=0 .

To understand what equation (A) means, let us now interpret various
term in it—
(A) Interpretation of J. (JeE)dt :

The istributi
25 made zu'?f"‘td'_smb““o" represented by the vector J can be considered
p ol various changes ¢; moving with velocity v; so that

[1eEdr={1a10E [asJ do=1d]]

Field Equations and Conservation Lays
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=|dqv.E
f lasdl = (dgq/dt)dl = dg v]

=Y.9,(%E,) (
(7
where E; denotes the electric field at the position of charg
arge q;.

Now clectromagnetic force on the it charg,

Lorentz expression ed particle is given by the

F =g, (E, +v, XB,).

So the work done per unit time on the charge ¢; by the field will be

T=ERY [alF_cﬂ
: dr ~ dr ~F.v]

=q,(E, +v, xB))ey,

. aw, E
3 —=gq.v,®
ie R A

(as F,=q, (E, +v, xB,)

[asv,* (v xB,)=(y xv)*B,=0]

So the rate at which the work is done by the field on the charges is

oW W,
o "X = e B ~(8)
Comparing equation (7) and (8) we find that
aw
[30 Ear o] -(9)

ie. thefirstterm J(J o E) dtrepresents the rate at which work is done by

the field on the charges

Note: It is worthly to note here that—

(i) In case of charged particles moving in free space with no external force acting,

the work done by the field on the charges appears as kinetic energy of the particles as

oW I,
MW _vi_VFe
ot X F] ZEev
. av, v,
ie. %’?:Zmia_"ov,(asﬂ =m,—afl—]
g W _ 0/, _v39 2
ie. ; _aT=3‘.(7m,v,-v,)—Z§(%"uV. )
ie. B_W_____?_ lm,v,.z=zr—'

o o~ o
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by the field on the charge i.e. the Kinetic

ork done
the work do is described as heat energy or ohmje losg ]nzrgy
S ang

(i) [nside matter, th¢ e
is transferred to random motion
is

given by ) 7
L - eEdt= ~dt (as -
’DI—_ J‘ J°E L o E= )
2’.‘.’. = ‘.’_z_xsxl(rmj" dt= S[)
ie. a O
LLS =p£,-SI(as G=I/pand J =1/S).
o a8
W _pplopR(ask=p 15).
ie A s
—

d
(B) Interpretation of L %éj(E'D +HeB) dt

If we allow the volume T to be arbitrary large the surface integry) in
eqn. (A) can be made to vanish by placing t.he §urface S sufficiently
away so that the field cannot propagate to this distance in any finite time
ie. @ (ExH)eds=0. So under these circumstances equation (4)

reduces to
T o
Ejaumwi(x-m HeB)dt+ 5 =0
ie. %[J‘allspncc 3(EeD + HeB) dT+W]=0

Thus the quantity in the square bracket is conserved. Now considera
closed system in which the total energy is assumed to be constant. The
system consists of the electromagnetic field and of all the charged
particles present in the field. The term W represents the total kinetic

energy of the particles. We are therefore led to associate the remaining
energy term

Iall space _;(E. D:He B
with the energy of the electro-magnetic field, i.e.

U= 1) e $(EoD+ HoB) dt. 10)

Field Equations and Con.x‘cl'vution Lawsy
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antit C consi
The quantity U may.bu considered to pe 4 Kind of potential energ
One need not ascribe this potential nergy 1o the charged parti | b
must consider this term as a fielq energy. A co; lclE:a e Lbl dng
S cncrgy store

: neept sy
in the field itself rather th 4 P ;
articles is a basic concept

an residing with the p
of the theory of electromagnetism,

Note :

If we write cquation (10) ay
U j all space idv

o
where ,,=;(L-D+ HeB) may be thought of gg the energy densi
m:lg"CliC field. energy density of the clectro-
Further as

u=1EeD+ 11eB

first term on R.H.S. contains only electrical quantities while the second, one magnetic, we can

have

u=u,+u,
with u=31EeD =lee E? = energy density of electric field
and u,=1HeB= MM H? = energy density of magnetic field

(C) Interpretation of§ (Ex H)eds,

Instead of taking the volume integral in equations (A) over all space,
let us now consider a finite volume. In this case the surface integral of
(Ex H) will not in general vanish and so this term must be retained. Let
us construct the surface § in such a way that in the interval of time under
consideration, none of the charged particles will cross this surface. Then
for the conservation of energy

2 ow

= . ~(11
T &}!(ExH) ds (1)

The left hand side is the time rate of change of the energy of the ficld
and of the particles contained within the volume 7. Thus the surface
intergral @ (E x H)eds must be considered as the energy flowing out of
the volumé bounded by the surface S per sec. But by hYP.O‘hCSiS no
particles are crossing the surface, so the vector (E x H)is to be interpreted
as the amount of the field energy passing through unit arca of the il
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. .tion of energy flow. T
- is normal 10 the dlrcf:“on sented by S i.e he Veetg
i ‘]:h:]t Ivu;mim: vector® and is rcpre .e.
: x H)is calle ©
(ExH) X .
tion.
Interpretation of th Energy Equa ——
jon (6) in differential form ¢,y b
: f above, equation .
In the light ©
written as o

J.E+—07+V'S=0' ~(13)

[n the event that the medium has zero conduct;wty ie. Jh= oF =0, the

« equation becomes exactly of the same form as the continuy
above eq‘vhich expresses the law of conservation qf charge. We are led
:;l\i;l::) :mlogy that the physical n}caning of equation 13, 11 or (A) 5 1
n;prescnl the law of conservat{on of energ)./ for clf:c:tromai:,neﬁc
phenomena. According to equation (11) the time rate of clza;'zge of
electromagnetic energy within a certain volume plus the rate at wlfxch the
work is done by the field on the charges is equal .to fhe energy flowing ingg
the system through its bounding surface per unit time.

Example 6. Show that for a cylindrical resistor of length |,
radius r and resistivity p, the rate of flow of energy P, at which energy
flows into the resistor through its cylindrical surface (calculated by
integrating the Poynting vector over this surface) is equal to the rate at
which Joule heat is produced i.e.

P=T%R.
Solution.  As in case of a conductor
J=6E ie. E=pl. (asp =1/o) (1)

T'hc electric field is parallel to the direction J. In addition to the above
f'f’“”c field there is also a magnetic field whose direction is given by
right hand thumb’ rule and magnitude by Ampere’s law i.e.

e = guas
IIanz jurz

Le.

ie.
e H= { Jr ~(2)
* For details see Ani&lcz\u

Field Equations and Conservation Laws
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The dircction of E and H e perpendicular 1o iJ

cach other as shown in fig. 4.7, 50 the Poynting vector ] D
5= Ex H will be perpendicular o the planc of E and ~——ri ———1
H and into the paper. Its magnitude will be

S=EH=PJX-;Jr

ie. S=“;pJ2I' ,(3)

As a consequence of this rate of flow of field m
encrgy into the resistor through its cylindrical surface > K

will be S
P= _:':s Seds =£ Sds

\_—_/
[as S and ds are anti-parallel] Fig. 4.7
ie j—;p./ zmr's=—; pJS % x2mr | [35 J([S=2ﬂr[]
/
. P=p/imril=1tp—L [as J ’,]
nr nre
ie. P=IR [asR:p%].
nr

Note: (i) This example clearly shows that according to field energy point of view, the
energy that appears in a resistor as Joule heat does not enter it through the connecting wires but
through the space around the wires and the resistor,

(ii)  As in this example

U=(teE" + LpoH) mrl

ie. U =[§E,, (pJy +llu(~§-/’):] rrl
ie. U= [-; €’ + tuor'] J* mr'l = constant
or @U/an=0
So this example is an illustration of
M = —f Seds
ot s
of the general equation for conservation of field energy
ie. W, W | Suis.
a o *

Example 7. 4 parallel plate capacitor as shown in fig. 4.8' is
being charged. Show that the rate atwhich energy flow '.’"0 the capac:{or
Srom the surrounding space. (Calculated by integrating the Poynting
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e earth, (he raditis of rh; ;xn";s 7%10° m and g, e,
e Slll:f('ﬂ; 0{;;11 earth and sunis 15% i
istance - , |
o n in!erp[auetary SL'Z.II plan}e , hifi ‘ Zd s‘;)’ ) ?f -

(1))_, !/ ,da other weights negublg. dheu;o il m:i. ll.‘v ma\-‘."”,m
m/clm al(;(’m in centimelers per sec” au ity "
rcelert :

:;frjmnl is2 cal/cm"-mm).
Solution :
2cal =%,4'_2—=1,5x10,\ J;’UICS
@ A5 =ty 07 X60 N
3
_f.‘s_z,léf—l(‘)—zjxlo -lsN/mz
(Pmo )s‘ ¢ 3X105 Ans.
Furtheras ;
i 0 (See exampl, 8)
l}_‘Sz 103 X ]'—S_i
1 SS=SE—,‘:—=]-5>( 7x108
=6x107 Watt/m?
S _6x10’ i .
(Py)s= c  3x10° I

(b) As in part (a)

« ot =510 xS g 17 dymes
(Pma)s‘:SXlO N/m =X = 2

10*cm? cm
Force mass X acc

Now as pressure = S
area area

pressure 5%x107°

=0-5 cm/sec?.

ie. acc=——————————
mass per unitarea 10~

§ 4.7. Electromagnetic Potentials A and ¢.

The analysis of an electromagnetic field is often facilitated by the use
of auxiliary functions known as electromagnetic potentials. At every
point of space the field vectors satisfy the equations

divD=p. (A)
divB=0. ..(B)
curlH=J +a—D_ .(C)
ot
curl E:-@ . (D)
ot

Field Equations and Conservatjoy Laws
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According to equation (B) the £

eld of v, .
conscqucntly B canbe representeq kit

asthe curl of
B=curl A
where A is a vector which is function of space (x, y,

always solenoidal,
another vector say Ai.e.

(1)
) and time (f) both.

In equation (D) from (1), we get

dJ
curl E=-—
= (curlA)

or curI(E+Qﬁ)=0
ot

Now substituting the value of B

i.e. the field of the vector E + Da_A is irrot
t

ational and must be equal to the

gradient of some scalar function /.e.

0A
E+— =—pry
i = grad ¢
e 0A
or E= grﬂdd)——a’—- (2)

Thus we have introduced a vector A and a scalar ¢ both being

functions of position and time. These are called clectromagnetic
potentials. The scalar ¢ is called the scalar potential and the vector A,

vector potential. Regarding electromagnetic potentials it is worth
noting that

(i) These are mathematical functions which are not physically
measurable.

(ii) These are not independent of each other.

(iii) These define the field vector E and B uniquely but themselves are
non-unique (See § 4.7).
(iv) These play an important role in relativistic electrodynamics (See
chapter 10).
Example 11.  Show that the potentials at the position defined by the
vector t in uniform electric and magnetic fields may be wrilten as
¢=—E-r and A:% (BX l‘)
Solution. (a) We know that
E=iE, +JE, +kE, =(EV)r
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1 $ In terms of Electromagnetic Pot
otentials.

This ™

s e .

. w consider the Maxwell’s equation (C) j
Lt

No
peurl H=pJ +p _32
SE (1)
of curlB-_—.pJ+£ua_
t (2)

1o Band E f i
ing rom equations (1) and (2) of § 4.7 in above
S 4. we get

subStitut
curl (curlA) = Wy + e -a— (—grad - 9A
ot Y
” gmMWA—VM;wyﬂﬁg@mm_wyA
t °ca
ie VZA—u.e—a—zi“i— ad | di 90 "
(2 3 gr v A +u357)=_“J_ @)
Gimilarly if we consider equation (A) ie.
divD=p
ie. edivE=p
ie div (— grad ¢ — @_) —
) dat ) €
Le. V2 +— d =—-P-.
¢ ot (@iv4) £
Adding and subtracting LLE 5;? it becomes
;2
P L&)

) %9 9 .. o9
V20— b+ — (divA+pES )=

ot”
Equation (3) and (4) are field equations in terms of electromagnetic
potentials, as equations (B) and (D) are satisfied in defining the scalar and

vector potentials. So Maxwell equations are reduced from four to two by

(ieCtTOmagnetic potentials, however these arc coupled.

o note that the concept of ele
less of the same

s from four to tWo, and even more Of
licity but 2 trick which hides the complexity in the

ctromagnetic potential,

reducl lote : The reader may be happy !
Py CS‘;hc number of Maxwell’s equation
it b ctu;}lly this all is not a real simp

mtion of the symbols A and 0.
resting and

+ something more inte
tained in 2

hors want to pu
ysics can be con

Tomak
o make the above statement more clear aut
All the laws of ph

fascinati
nat : v
ing that has been discovered recently.

Single equation

———
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amvordlines’ * of the situation and we haye r"'mul;,

‘Iu:mlilymlrcd * o :

the law of mechanics F=ma and rewrite j, a
+ of mechanics and the square of ‘mismaqcp»
n other words

where Uis3 ph)'sic:xl N
-0 12k

o exnmple]sluppl;:C":ue'r;mIch'

— ma)isca oo i
'“'wnl(l:‘d the unwordliness of mechani ;
. U,=(F—ma)’

lines for every law of Ph)’sics_ then ¥
c |0h

"-c-(r'."',":?

y we can calculate the unword

U=EU,

of nature will be
U=0.

In the same W2
unwordlines will be

and the greatest law

Jaw though appears 10 be beautifully simple, in notation is most comp
lex,

QObviously this
§ 4.9. Non-uniqueness of Electromagnetic Potentials ang Conep;

of Gauge :
In terms of electror
B=curlA ;i

A
E:-grad¢—3r—- (2)

magnetic potentials field vectors are givep by

and
From equations (1) and (2) it is clear that for a given A and ¢, each of
the field vectors B and E has only one value i.e. A and ¢ determine B ang
E uniquely. However the converse is not true i.e. field vectors do not
determine the potentials A and ¢ completely. This is turn implies that fora
given A and ¢ there will be only one E and B while for a given E and B
there can be an infinite number of A's and ¢’s. This is because the curl of
the gradient of any scalar vanishes identically and hence we may addto A
the gradient of a scalar A without affecting B. That is A may be
replaced by
A'=A +grad A -(3)

But if this is done, equation (2) becomes

J
E=‘8"ad¢-5;(A'—gradA)

ie. E=—grad(¢——J__,

So if we make the transformation gj must also
replace 6 by rmation given by eqn. (3) we

= N

d Equations and Conservation Lays
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The expressions for field vectors E anq
it sformations (3) and (4) i.e.
B=curl A 3 xurl (A'~grad A) =cur| A’
=—grad ¢ ——=- j gﬁ aA ¢
E=—grad ¢ En grad(¢+a()—a—l(A—gradA)

0A'
=grad ¢’ - —
Eadd ot

B remain unchanged under

and

ie. we et the same ficld vectors whether we use the set (A, o) or (A" ¢).

S0 electromagnelic potentials define the field vectors uniquely though
they themselves are non-unique.

The transformations given by equations (3) and (4) are called gauge
transformations and the arbitrary scalar A gauge function. From the
above it is also clear that even though we add the gradient of a scalar
function, the field vectors remain unchanged. Now it is the field
quantities and not the potentials that possess physical meaningfulness.
we therefore say that the fleld vectors are invarient to gauge
transformations i.e. they are gauge invarient.

Because of the arbitrariness in the choice of gauge i.e non-
uniqueness of potentials, we are free to impose an additional condition on
A. 'We may state this in other terms : a vector is not completely specified
by giving only its curl but if both the curl and the divergence of a vector
are specified the vector is uniquely determined. Clearly it is to our
advantage to make a choice for div A in any convenient manner that will
provide a simplification for the particular problem under consideration.
Generally.div A is chosen in two ways (described in following articles)
according as the field contains charge or not.

§ 4.10. Lorentz Gauge :
The Maxwell’s field equations in terms of electromagnetic
potentials are

2
VzA-uzﬂ—gl'ad[divA+u£ﬂ)=—pJ (1)
ot? ot
% of. a¢)_ P @
Z — e — — | sl
Vo—pe Y +at(dWA tHeS :

reveals that these equations

Ac : i 1) and (2 .
asual glance at equations (1) and (2) el aad caled)

Will be much more simplified (i.e. will becomei
Wwe choose
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divA +HE n
i “(3
This requirement is called the Lorenz condition and whey 2

| satisfy it, the gauge is known as Loreny; g Veety,
; auge

d scalar potemia ]
" field equation reduce to

So with Lorentz conditign

VA - g—=—H
a a!' ~(4)

2 93:— E.
v ¢—peall p/

and 3 ¥
Butas pe=1/v’*. '
So equations (4) and (5) can be written as
PA = :
Oo=-ple -(6)
g 9’ (1)
with 0=V - T3

Equations (6) and (7) are inhomogeneous wave equations apq an
Kknown as D’ Alembertian equations and can be solved in genery| bya
method similar to that we use to solve Poisson's equation. The potep; i
obtained by solving these equations are called retarted potentials and gy,
discussed in § 8.1.

In order to determine the requirement that Lorentz condition places
on A, we substitute A’ and ¢’ from equations (3) and (4) of § 4.8 i
eqn. (3) i.e.

- [, 20)_
div(A’ —grad A)+e > (¢+ % ]-0
a9’ 3’A

of or?

So A’ and ¢' will also satisfy equation (3) i.e. Lorentz condition |
provided that

ie. divA'+pe——=V?A —gp

VZI\ —EN a-—l} =0
ot*
ie. *A =0, -0

i.c., Lorentz condition is invariant under those gauge lransformatianSf”’

“"”C"_ the gauge finctions are solutions of the homogeneous W?
equations,

* Sece §5.1and 5.2 for details,

»1d Equations and Conservation [ gy
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The advantages of this particular gauge are :

(i) Trmakes the equations for A and ¢ independent of cach other

(ii) 1t leads to the wave equationg which {reat 9

; and A on
equivﬂlc“‘ footings.

(i) 1t is a concept which is independent of
dhosen and so fits naturally into the

of relativity:

: }hc co-ordinate system
considerations of special theory

Example 14, Show that a potential called Herz

potential 7
dgﬁllt’d by

P=-div®

__)

1 on

‘ A=——
And ¢t ot

automatically satisfies the Lorentz condition. Obtain also E and B in
terms of .

Solution. We know that Lorentz condition is
divA+ —aﬁ =0.
ot
As for free space
HE=pg, =1/c?
the Lorentz condition in free space is
100
divA+——=0
ct ot
Substituting the given values of A and ¢ in L.H.S.

, 13 . (1 a‘n’) i ds
=D odiv| == |+ 5= (-div®
de+c2 o dw(c2 % +c’ at( ivT)

-
1 on 10n

=di ___]_' B
ie dlv(Cz py d’v(cz 31)

ie. the electromagnetic potentials given by
-
1 on

¢t ot

-
)=chm1(%’t-‘) A1

0=-div® and A=

satisfy the Lorentz condition.
Further

1
B=curlA=curl(?

E4E
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aA dd. _,__l_ﬁ
p Ez,grad¢"‘a7'=ga ke ¢ ot
an
- oy
P T ASVZ -_ar
) E=graddiv T -V'T c? 3—2;‘0]
ie.
¥ 17C.
ie E =curl cur ()

' itten as
tion (1) and (2) can be wri '
s ;: =(1/c*)(@G/dr) and E =curl GwithG =curl 7,

§ 4.11. Coulomb Gauge

An inspection of field equations in terms of elcc“'()magneﬁc

potentials i.e.

2’A : 90 _
V’A—W?—Wd(d“’f\’fus a’)——u.l. )
3%, 9 e
And V’q»—pe? +—a-’-(dnvA +HE=" =0
d i p
ie. Vi + o divA)= o 0
shows that if we assume
divA=0. 0
equation (2) reduces to Poisson’s equation
V0. == (4

whose solution is
_ 1 p?,00* .,
Bern _EI R dt -(9)
i.e. the scalar potential is just the instantaneous Coulombian potential due
to chargep (¢!, /) 2! #). This is the origin of the name Coulomb gauge.
Equation (1) in the light of (3) reduced to
1 0’A d
ViRl ST sy | 22 6
. vz alz u‘] ,'I‘EV a ¢ ( )
- N°"V to express equation (6) in more convenient way Wwe US
oisson’s equation (4) which with the help of (5) can be written as

|
vl L (p”,9) Pt
{4 JI\R d‘t}:—g% A0

. .
For the solution of Poisson’s equation see Appendix-II.

uations and Conservation Laws 221

FI'L‘M Eq

Now as Poisson’s cquation holds good for scalar
nd veetors both, replacing p (¥, 1) by J' we get
8
1 ) J
V— | —dty=-=
{4nc -[ R } € ~(8)
Now from the vector identity

VxVxG=V(V:G)-VG
VG=V(V:G)-V xV xG

}
Taking G:J(J/R)dt',wc get
JI .l' J,
7 4 [ ) ] [y o . )
vt V(V J'Rdr) VXV [
n in the light of equation (8) reduces to

—4m J’=V(V-J%d‘c')—VxVxJ%df

Fig. 4.14

whic

] L el L LAy
i J__4nV[VJ'Rdr]+41t\7xVxJRdr ..(9)
NowasV'I(J'/R)dT'
=I[’11€V'J'+J' R (%)}[as V(SV)=85V:V+V-AS]
= j J'V(/R)d
== j J V' (I/R)dv

A5+
o7 (5 e)r-re )

v dt'—i(i).ds
R R

[as J'is not a function of x, yand z]
[as V (/R) =V (/R)]

d LNl
[as J.V (-E]d‘l.' =%z ds]
AsJ'is confined to the vol ¥/, the surface contribution will vanish so

V'.J'(%)dt' =j%ldt' ..(10)

And V x [ (3'/R)dr

—
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1 !
xJ_ | = | 4T
()
[as curl SV =Scurl V —y o
, Sy
=,I [J'XV'(]/R)(K] J'is not a function of
[as 9 xvyandz]

3 R VR =g

vxd o J_') v
=J[“’“VX(R

=J_V_'§‘l'd1'+§"—'xds
i [As [V Var=-f vy,

ibution will vani
As J'is confined to VoI T, surface contrib nish so

AP ALY
So eqn. (9) becomes o
1 A ¢ 1 xJ
o~V [—dt+—VX dt
o= 41:V J R i J R
ie. V=¥ , (1)
4 y 1 ooVl ., o Vx|
with V=V [ wddy =V x[—=dv .y
Now as 1 o
VxJ,=V x['ZEVJ R dt']
ie. V'xJ', =0 (ascurl grad$ =0) (14
and veJ, =V-[Vx [ L™
ie. Vel =0 (asdiveurl V =0) A1)

the first term on RHLS. of equation (12) is irrotational and second s

solenoidal. The first term is called longitudinal current and the other
transverse current,

B

) N'"',' From equations (12) and (13) it is clear that any well behaved vector functd
which vanishes at infinit

; y can be expressed as the sum of an irrotational part and a solenoidal P
Further more we have also

Y proved by (12) that a vector is completely specified if its diverg?™
and curl are given at all points of space. el

——

* Secnotein §3.7,

Field Equations and Conservation Laws
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So in the light of equation (12), (6) can be written as
20
AR Sk, +0,) e 2
v? az} THOTRE M
1 A d
2 s | p o
ie VA Vi oor ==, ““Jlﬂmva ij———(n') dv
| B [substituting ¢ from equation (5)]
i VA-——5=-W, - +uLVJ'_V,.Jd'
ie. v oo ™ R~
.. ap(’_, 1)
as from continuity eqn. —-a— =-V's]
t
5 1 9°A .
& v _7W=_MT —WJ, +ud, [Fromequation (13)]
1 9’A
ie. i Y ==
i DA =-pJ,. -(16)

i.e. the equation for A can be expressed entirely in terms of the transverse
current. So this gauge sometimes is also called transverse gauge.

The Coulomb gauéé has a certain advantage. In it the scalar potential
is exactly the electrostatic potential (equation 5) and electric field

. 0A
E:—g:adcb—ﬁ

is separable into an electrostatic field ¥ =¢ and a wave field given
by —(0A/at). '

This gauge is cten used when no source are present. Then according
to equation (5)¢ =0and A satisfies the homogencous wave equation (16).
The fields are given by

: E=—a—A and B=V xA.
ot

Example 15.  In a source fiee region if
A=ix! +27k
compute field vectors E and B and transverse current Jr
Solution.  As in a source free regionp =0.

1 p(rl.l)
S = |—dt =0
° ¢ 4ne, I R
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