5 PLANE ELECTROMAGNETIC WAVES
AND THEIR PROPAGATION

e S e e e Yy e S o

INTRODUCTION :

[In this chapter we shall show that the Maxwell’s field equations,
predict the existence of electromagnetic waves and discuss the
propagation of these waves in free space, non-conducting, conducting and
ionized media. We shall also investigate the energy flow associated with

their propagation.]
§ 5.1. Electromagnetic Waves in free space.*
We know that Maxwell’s equations are

VeD=p |

¥ o= J=cE

V><H=J+a—D> with< B=puH

ot D=

3B =¢E

VXE=-—
ot |

and in free space i.e. vacuum
p=0 g, =1
c=0 u, =1
So Maxwell's equations reduce to |

Ve E=) ..(a)]

VeH=0 ...(b)
JE

W

V xH=¢, > L)

oH
\Y XE=—},l0 5‘((‘)

Now if
(I) We take the curl of equation 2 (c) then

Vx(VxH)=¢,V x(%)

Le. [V(7 + 1)~ V°H] =, 2 (V x ).

..(1)

o)

13
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nd 2 (d)

- oH
VXE=—p_ T
o ot

But from equations 2(b)a
veH=0 and

eqn. 3) reduces t0 .
Soeq | 9H

(11) We take the curl of equation 2 (d), then

oH
v x(VxE)=V x(_l’-o _aT)

)
2 =—ql. —
ie. [V(V ¢E)-V E] =l (V xH).
But from equation 2 (a) and 2 (c)

oE
VeE= and

VxH=¢g,—.
" ot
So equation (4) reduces to
1°E__ . 1
] g - ———=0withp,&=—.
. VT TR )
A glance at differential equations (A) and (B) reveals that thege -
indential in form to the equation .

2
vig= L3V o

oAt -9

However equation (5) is a standard wave equation representing

unattenuated wave traveling at a speed V*. So we conclude that Sield
vector E and H are propagated in free space as waves at a speed

- =[4—“]=,/(9x10")x,/(10’)

(Eqt,) Y\4meg,

=3x10% m/s
i.e. the velocity of light **

lfunher as equation (A)-and (B) are vector wave equations their
solution can be obtained in many forms, for instance either stationary ot
pro.grcs’swc waves or having wave fronts of particular types such as plane,
cylindrical or spherical. Where no boundary conditions are imposed, 85 in

* For details of plane progressive way, i i
o, For ¢ € see point (3) in appendix I11.
This result suggests that light may be electromagnetic ifxpnaturc.

e
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::;snzh:g;:::Sslii'r::esgll-?lﬁ:)e:S(:"Z::;l:it;?‘"(ss?ri: most appropriate, So as the
y=y, e @ -ker)
he solutions of cquations (A) and (B) will be of the form
E=Eo e-i((nl—k or)
H=H, e @ -ker) ' ..(C)

where K is the so called wave vector given by
2t @
k=/n=== n=—=—n=—
A A "
with n as a unit vector in the direction of wave Ppropagation.
The form of field vectors E and H given by eqn. (C) suggests that in
case of field vectors operator V is equivalent to / k while 0/0tis (~iw).* So

Maxwell’s equations in free space i.e. eqn. (2) in terms of operator (%
and (~iw) can be written as

kE=0 .. (a)

keH=0 . (b)
-kxH=@g,E - © [ w(4)

KXxE=opH e @)

Regarding plane electromagnetic waves in free space it is worthy to
note that :

(i) As according eqn. 4 (a) the vector E is perpendicular to the
direction of propagation while according to eqn. 4 (b) the vector H is
perpendicular to the direction of propagation (i.e. in an electromagnetic
wave both the vectors E and H are perpendicular to the direction of wave
propagation), electromagnetic waves are transverse in nature.

Further as according to eqn. 4 (d) H is perpendicular to both E and k
while according to eqn. 4 (a) E is perpendicular to k. This all in turn
implies that in a plane electromagnetic waves vectors E, H and k are
orthogonal as shown in fig. 5.1.

(i) As according to equation 4 (d)

kxE=op,H

* For details see point (3) in appendix IIL.
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€y
o,
"=_ﬁ_(n xE) (as k =nk)
ie. Ol
Fig. 5.1
) nxE - k =9 - 1
ie. H aie cg (n XE) (as 2 and e, ~;2_)
nxE
ie. B= p . (D)
El_E, _L= Bo|_ (as _1
and ‘ﬁ|_ H, S ) (Eo ) A o c?

As the ratio | E/H | is real and positive, the vectors E and H are jy
phase* i.e. when E has its maximum value H has also its maximum
value. This is shown in fig. 5.2. From the above it is also clear that in ap

electromagnetic wave the amplitude of electric vector E, is Zo times that of
the magnetic vector H.

E

T

Fig. 5.2

\—/

For details sce point (4) in appendix I1,
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The quantity Zy has the dimensjop

1=l e (7Y oy
Z,]= =|—|= el
(%] \JV( €y ] J( """l] \/( coul./volt )

ohm x volt
=l T [=ohm
amp

e, of impedance, hence it is called the intrinsic or characteristic
i‘m,rlﬂ’” dence of free space. It is a constant having value

()] [“amxio”
zo=| (B |= [tmx0 7
0 l:\/[ €, ]] J[(I/lln x9%10” )] 120m 377Q

(iiiy  The Poynting vector for a
free space will be given by

plane electromagnetic wave in

E
S=ExH=Ex(XE)
CHy
E-E)n —(E«n 1
e S=M=——(Ezn)
- CHo CHy
(asE-n:ObccnuscEislton)
1 . 1 1
- o1 g2 e
or S=¢,cE'n Z'En (as ey cg, 20]
1 P
or <8>=gc<E*>n=—<E’>n,

0
But as

<E*>=<[Epe @R IR oo B2 o5t (@i~ ko r)>

ie.  <E? >=5;—=(&][ﬂ)=Ejm[as <cos’ 8 >=1]

2 \V2\\v2
2 1 2
So <S>=€°cE,',mn=Z—E;mn .(E)

i.e. the flow of energy in a plane wave in f;ee space is in the direction of
Wave propagation.

(iv) In case of a plane electromagnetic wave

A L 14 S
W, gHoH® W \H 7 e
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. energy density is equal 1o the mag

ney,
iC 051,
ie. the electr omagnet Yy

energy density-

Further Fin
isj = E_ff_‘:— =cn
<u> Efa

. S=cun
1.e.

agnetic energy in f, ree space is frang,
i the field vectors E and H 4,

\\
In case of pro

(i) The wave propagaics with @ speed equal to that of light in free space,

This implics that electromic
with the speed of light ¢ with whic
pagation E. M. W. in free space.

lilteg

(if) The electromagnetic waves are (ransverse in nature.

(iii) The wave vectors E and Hare mutually perpendicular.

(iv) The vector E and Hare in phase.

() The electrastatic energy density is equal to the magnctostatic energy densiy

(i) The electromagnetic energy is transmitted in the direction of wave Propagation
atspeed .

§ 5.2. Propagation of E. M. W. in Isotropic Dielectrics.*
We know that Maxwell’s field equations are

VeD=p
Ve B=0 J=0oE
V x H:J-_-%)_ with{B=pH (1)
aB’ D=¢E
VxE=-—
ot
and in isotropic dielectrics
6=0 and p=0.
So Maxwell's equations reduce to
VeE=0 ...(a)
VeH=0 ...(b)
V xH= @ -
ﬁ % -+(C)
VIXE -y
K 5 ...(d)

* A non-conductj

i 0, g medi ; 2 .
isotropic dielectric, “ whose properties are same in all directions i calkd

Plane Electromagnetic Waves and their Propagation

Now if
(1) We take the curl of equation 2 (¢) then
Vx(VxH)=¢V X[QE)
i
of V(VeH )-V'H =¢ ’,;1(‘7)([‘:)_
Jat
But from equations 2 (b) and 2 (d)

VeH=0 and o

\Y xE=-~ l—"
' ot

So cquation (3) reduces to

2
vin-pe 2t g
o’
1 9'H
VIH - — —5 =0 with pe =1/v?
ie RN W /\)

(1) We take the curl of eqn. 2 (d) then

Vx(VXE):Vx(—u%)

ie. V(v-z)—v=z=_u%(vxu)

But from equations 2 (a) and 2 (c)
VeE=0 and V x H=£aa—.’;

So equation (4) reduces to

IE__ .
o ? =0 Wlthpl£=]/‘\)2

239

E))

(A)

..(B)

A glance at equation (A) and (B) reveals that these are identical in

form to the equation

VZ 1 32W

v? o’ T

.(5)

However equation (5) is a standard wave equation representing an
unattenuated wave traveling at a speed v. So we conclude that field

vectors E and H propagate in isotropic dielectric as waves given by

(C)

E N Eo e—l((ot—k-r)
H[ |H,
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ot aspecd 1 1 (as€ =€, €, andp =n,
fage o " T H,)
Ve JEmek)
€ <clas gl =1/¢*; & and p, >1]. -(6)

ie. = \/m

i.e. thespeed of electromagnetic wave in isotropic dielectrics is less 1y, i
the speed of electromagnetic waves i Jfree space.

Further as index of refraction is defined as
n=(c/v)
in this particular case
i P n=yE 1) lasv=¢/{Een)]
and as in a non-magnetic mediump =1
n:J(E—) ie n=¢g, -(7)

Equation (7) is called Maxwell’s relation and has been actually
confirmed by experiments for long waves i.e. radio frequency and slow
infrared oscillations. In visible region of the spectrum this relation is also
fairly well satisfied for some substances such as Hz, CO;, Nz and O,. But
for many other substances it fails, when as a rule the substance shows
infrared selective absorption. With water the failure is especially marked.
For water, =1, €,=81 sothat n=9. Butitis well known that the index
of refraction of water for light is very closely given by 4/3 i.e. 1.33. The
solution of this appearent contradiction lies in the fact that our
macroscopic formulation of electromagnetic theory gives no indication of
the values to be expected fore, and 1, and we must rely on experiment to
obtain them. It tums out that these quantities are not really constant for a
given material but usually have a strong dependence on frequency due
to dispersion*.

It is also worthy to note here that €, >1 the velocity of light in an
isotropic dielectric medium.

=C. ¢
e )
isalways less then c ase, >1. -(8)

It is therefore possible for high energy particles to have velocities in
excess of v. When such particles pass through a dizlectric a bluish light
kno»yn as Cerenkov-radition is emitted due to the interaction of uniformly
moving charged particles with the medium,

* Fordetails see § 7.6 and 7.7.
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Further as the form of field vector E

suggests that and H given by equation (C)

V > ik and 2—)_@
ot

So in terms of these operators eqn. (2) reduces to

keE=0 . (a)
keH=0 .(b)
-k xH=0eE ...(c) - (9)*

kxE=0ouH ..(d)

From this form of Maxwell’s equation it is selfevident that in a plane
electromagnetic wave propagating through isotopic dielectric—

()) The vectors E, H and k are orthogonal i.e. the electro-
magnetic wave is transverse in nature and in it the electric and magnetic
vectors are also mutually orthogonal. This is because

accordingto9(a) EisLltok
accordingto9(b) HisLltok
according to 9 (c) E is L to both k and H
and accordingto 9(d) His Ltobothkand E
(if) The vectors E and H are in phase and their magnitudes are
related to each other by the relation.

El_E _ (], _
H H, [8']2,—2

where Z is called the impendence of the medium.
This is because according to equation 9 (d).

k 1 =0
H=a(an)=B(an) (as k—U]

; e _(nxE) =l
O

with z:\!®=\/@=”—’% (n=vr2))
E _z

or L3
H

= Z =real quantity. ..(10)

* In this case
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flow of energy is the direction in whicy, t
fow ¢ L ¢

o &

33 T7 jrection Of ) . .

o T .e:;‘.z-'xrc Poymting vector is (nW.) times of the Poyp,;
~231eS g Jdiaaads'- -

7 ~ no
: 2:: ;C :‘r':f;.;r.e wave propagales. through free space. g
It 1s because @xE)
S=EXH=EX—T
ie S=—1—{(E-E)n—(E-n)E]
) z
ie S=lE:n[:l.sEln=0bi\:3LEcEis_Lton]
% i s E: asl—i_‘__ n
& SR 270 7]
1 n .
' Somy i = lReba ] -1l
ie < ZE‘ ;1,[ :

(iv) The electromagnetic energy density is equal to the magneto-
static energy dersity and the total energy dersity is€, times of the energy
demsity if the same wave propagates through free space.

w, 16 efE') e £ B_ _B
i e ‘[“'":“Z)

- I HE
and u=u, +u, =e£" =¢, (g E7)
ke <S>= fi[ﬂ.fffmlz -
<u> [EgEL] KE
nc
Le. <S>=—<y> =
= u>n [(asn=(s¢)]
ie. <S>=y<uy>n

(as¢/n=v)
Le. electromagnetic energy is transmitted with the same velocity with
which the fields do.

§ 53. Propagation of EM.W. in Anisotropic Dielectric*.

In anisotropic medium the relative permitivity is no longer a scalar
and u::, deal with wave propagation we refer all fields to the principal axes
S0

D,=¢,E,;D,=Ee,E and D = M
3 o Y 4 2 = :ED€ -
Further since the medium is non-conducting i.e.
J=0; p=0mu’ =]
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So Maxwell's cquation in an anisotropic dielectric medium reduce to

divD=0 (a)
divH=0 (h)
3])]
curl H="2
a (c) wil2)
oH

curl E=-y1, e (d)
[’

It is important to note that in this case though
divD=0, divE=#0
because D in general is not in the direction of E.

Now consider a plane wave advancing with phase velocity valong the
direction of wave normal n (i.e. wave vector k). Let it be

E _ E e~ H(wi-ker)
ul|u, =3
So the operator V and - will be

V - ik and T = (—im).

And in terms of these operations equations (2) can be written as

keD=0 ...(a)
keH=0 ...(b) "
-kxH=0D ..(c) -4

kXE=p,0H ...(d)
From this form of Maxwell’s eqns. it is clear that
(/) The E. M. W. are transverse in nature w.r.t. D and H (and not
w.r.t. Eand H as in a isotropic media). It is because accordingto 4 (a) k is

1 to D while according to 4 (b) kis Lto H i.e. k is L to both Hand D as
shown in fig. 5.3.
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D. H and k are orthogonal because according 1,

. ) 7*}’ o\ TOrS .
(i) ¢ Ve hile according to eqn. 4 (c)Dis Ltoboithkand H

eqn.4 (b kis L0 Hw
(i) The vectors D, E

according to equation 4 (c)
p=—(kxH)/® (5)

and k are co-planer. This is becayge

while according to 4 (d)
H=(k XE)/p,® (6)

So from equations (5) and (6)
D =—[k x k x E]/j1,0°

D=-[keE)k- k*E]/u, @ (7

(iv) In an anisotropic medium energy is not propagated in
general in the direction of wave propagation (i.e. the direction of k and §
are not same) and the Poynting vector is coplaner with D, E and k. This is
because the Poynting vector is given by

S=ExH
i.e. Sisnormal to the plane of E and H and not to the plane of D and H
(which is the direction of k).

i.e.
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So boundary conditions become

(i) D,=0
i 8, =0
(i) Hy, =
(iv) Elr=0

at the surface of a perfect conductor (‘Ic‘(‘ll'i(.‘_ﬁc‘l(l E is oy, al vy,
magnetic fields H is tangential to the surface. 1_¢-_. the l“"gcn:;]‘.
component of electric field and normal component of Magnetic 'i]l
vanishes at the surface of a perfect conductor. <l
§ 6.2. Reflection and refraction of E.M.W,

we now need to consider that what happens
electromagnetic waves which are traveling in one medj um
upon an infinite plane surface separating this medium from
different electromagnetic properties.

When Plane
are incidenl
another With

When an electric wave is traveling through space there is an exact
balance between the electric and magnetic fields. Half of the energy of

r | Wave as a matter of fact is in electr
—| field and half in the magnetic.* |f (he
{ wave enters some different medium,
there must be a new distribution of
energy (due to the change in field
vectors). Whether the new medium is 3
dielectric, a magnetic, a conducting or
an ionised region, there will have to be a
readjustment of energy relations as the
wave reaches its surface. Since no
encrgy can be added to the wave as jt passes through the boundary surface,
the only way that a new balance can be achieved is for some of the
incident energy to be reflected. This is what actually happens. The

transmitted energy constitutes the refracted wave and the reflected one the
reflected wave,

Thc re.ﬂection and refraction of light at a plane surface between two
media of dt_t'ferent diclectric Properties is a familjar example of reflection
and refraction of electromagnetic wayes, The various aspects of th®
phenomenon divide themselves int two classes -

* SecAn§s2.

Interaction of EM.W. \wjgy, Matter on Macroscopic Scale

(A)  Kinematic Properties :

Following are the kinematic properties of reflection and refractiun

() Law of Frequency 1 7he Jrequency of the wave remyiis
unchanged by reflection o refraction.

D) The reflected ang refracted waves are in the same plane as
the incident wave and the normal to the boundary surface.

(iii) Law of Reflection : In case of reflection the angle of
reflection is equal to the angle of incidence i.e.

0, =0,

(V) Snell’s Law : /n cqge of refraction the ratio of the sin of the
angle of refraction to the sin of angle of incidence is equal to the ratio of
the refractive indices of the two mediq ie.

n,sin®, = n, sin 0,
(B) Dynamic Properties :

These properties are concerned with the :—

(&) Intensities of reflected and refracted waves.
(i) Phase changes and polarisation of waves.

The kinematic properties follow immediately from the wave nature of
phenomenon and the fact that there are boundary condition to be satisfied.
But they do not depend on the nature of the waves or the boundary
conditions. On the other hand the dynamic properties depend entirely on
the specific nature of electromagnetic fields and the boundary conditions.
Kinematic propertics are proved in example—1 while dynamic properties
are discussed in details in forth-coming articles.

Example 1. Assuming that the electric vector of an electro-

magnetic wave is given by
E= Eoe_‘ (¢ — k-r)

and in crossing a boundary the tangential component of e{ecrrie intensity
Is continuous prove the various laws of reflection and refraction.

Solution. Let the medium below the plane z=0(i. e.x-y. plm}e) have
permitivity and permeability €, and 1, respectively while _above I} s and
K,. If the plane wave with vector k; in the xz plane and mf]ucn;)k o);nu;
incident from medium - 1 while the waves with wave Vt.zc:jr l\f::e ;‘ -
frequencies w, and @, are the reflected and transmitted wave, give

boundary condition
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. . P ry / 2 N "
Now since i an E.M.W. E, H and k are orthogonal, in general there
are three possﬂ)lc modes of propagation viz.

(A) TE Waves (or Mode) : This is characterised by an
EMW. having an 'clecmc field E which is entirely in a plane transverse
1o the assumed axis of propagation (which is z-axis here). Only the
magnetic field H has a component along the assumed axis of propagation
and hence this type of wave is also known as H-wave. This is shown in
fie. 6.18 (a). For TE wave it is possible to express all field components in
erms of the axial magnetic field component H..

(B) TM wave (or Mode) : This is characterised by an
E.M.W. having magnetic field H which is entirely in a plane transverse to
the assumed axis of propagation (which is z-axis here). Only the electric
field E has a component along the assumed axis of propagation and hence
this type of wave is also known as E-wave. This is shown in fig. 6.18 (b).
For TM wave it is possible to express all field components in terms of
axial electric field components E..

A

— p—

Al @:: . =

X L ' L

—;';'-A/ong xA xis— H-Along x Axis H-Along x Axis
TE wave TM wave TEM wave
(a) (b) (c)
Fig. 6.18

(C) TEM wave (or Mode) : It is characterial by an E.M.W.
having both the electric and magnetic fields entirely in a plane transverse
to the assumed axis of propagation i.e. it is an electromagnetic wave in
which the direction of wave motion is along the assumed axis of
Propagation. This is shown in fig. 6.18 (¢) [In coaxial cables usually
EMW are propagated in this mode].

As an example here we shall discuss only TE wave. The electric fields

for incident and reflected waves in TE case will be

. - —ik rcosO + zsinB)
E=if e iot 0 0O
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propagated for which
or ®> Q.
elength or is the lowest frequep s

hy A is called cut of wavelength an4 nl:‘ch "
i glVen

ie. only those waves are
. < M

0
ie A isthe Jargest wav
be propagated. This is W

problem acts high pass filter. . .
av) The velocity with which energy is propagated slorg

p S
called group velocity ami Eg{'en y
t P} I\g

But from equation (7)

ko:m or ®=c¢ ,}(kﬁ +k:) [asko=(u)/t)

]
v R I TN o 4

¢ aKisis

v

o ok,
kﬂ 1 k= (k 2 k 2 172
ie. v =c—=cy[as o=k +k)"]
0
s v =csinf [as k, =k,sin6] 0

From expression (9) it is clear that the group velocity v. with yhig,
energy is propagated along the axis is lesser than c as sin @ < 1. Fury
multiplying equation (4) and (9) we get

vu.=c?
a result which is expected but by no means apparent.
§ 6.8. Wave Guide (Rectangular)
A hollow conducting metallic tube of uniform cross section usuall
filled with air, for transmitting electromagnetic wave by successive
reflections from inner walls of the
§ tube is called a wave guide. 1fli
cross section is rectangular it s
called rectangular wave guide and
if the cross section is circular itis
called cylindrical wave guide.

; It is used in UHF. ad
mncrongve region such as radar (f >3000MHz or A <10cm) as &
altcmam.'e to transmission lines as at these frequencies it can handleme®
power with lesser losses as compared to transmission lines.

Rectangular
Wave Guide

Fig. 6.19

Cylindrical
Wave Guide

* See Appendix 111,

teract ion of E.M.W. with Matter on Macy,, scopic Scale
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»ation of EXM.W, | e gui
propaga M Wave guides can be considered as a

1‘”"""1‘:"0“ in which cither TE or TM waves are reflected from wall t
wall and hence pass down the wave guide in zig-zag fashion [is
yransrmission [1ncs E.M.W. are usually propagated along the axis of cable
as TEM waves.]

As essential feature of wave guide propagation is that it exhibits a cut

off characteristic frequency similar to that of a high pass filter C:\ll

frequencies below the cut off value, the wave is simply reﬂ-ected

packwards e for}Va_r s - the wave guide and makes no forward

rogress. [Transmission line do not have any cut off frequency and are
broad band devies.]

Theory :
For making the treatment simple we assume that
(i) The walls of the guide are perfectly conducting so that tan-
gential component of E and normal component of B vanishes at its
surface.
(ii) The interioi of the wave
guide is free space i.e. vacuum so that X4
€=E, L=Wo

=0 andp=0.

(iii)  The cross section of guide
is uniform and rectangular. af z

(iv)  The axis of wave guide is ~ +—h—> 1
along z-direction of right handed Fig. 6.20

co-ordinate system.

In the light of above assumptions to discuss the propagation of
E.M.W. in the guide consider Maxwell’s eqns. in free space viz.

Div E=0 ... (a) Div B=0 ... (b)
1 9E B wi(ll)

C ey, =—— e d

url B a3 ©) CurlE > @

Taking the curl of eqn. 1 (d) we get
V xV x]g:-E curl (B)
ot

oy (V-E)-vixs=-ai(VxB)
‘ [asVxVxV=V (V:V)-V?V]
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; tions 1 (a) and (¢) reduces to
which in the Jight of equa :
e L2220
VE-Zar

g curl of eqn. | (c) and using | (b) and (g) e

Similarly takin &

We come to the conclusion that fields E and B are Propagarg
waves in the guide at a speed ¢ ”
Now as the solution of above wave equation when it ig Propagai,
along z-axis is 0
J=he 4
=T

so if kg is the wave vector or propagation constant along z-axis j.e, axis of
guide the solution of equations (2) and (3) will be

E(r.n _ E(m —i(wr- kg:)
B[ |Bu| {4
(ra (™

To determine how E; ) and By, ,) vary with x and y we start with
Maxwell’s equations

JB

curl B=-l—,E and curl E=——
3 ot

¢ or
which in terms of components can be written as
98, 9B, 1Q9E,  3E. O0E, 9B,

¥ k2 Foa ¥y aa o
9, _9B._10E, 3E, QJE, 0B, 5
B o dl M m
9, 9B, _13E 3E, & o8B
G A

But from equation (4) it is apparent that

L J
3z 7 e wd = o5 ik e [as k =9]
c

gtion of E-M.V. with Matter on M"‘""’-\‘t‘n/riv Seale
¢
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S0 cqualion (5). reduces to
ik
i)lj ——I/\B‘ :'—.’ S F (l)
I‘).l' . ¢
JB. ik, ”
I/\\I;. - n\ =- ( l:‘ wea(l) 3 b
B, IB, ik, .
= E (i)
Ay Ay ¢
and a')[i - ik.l:El =—ik,cB, ...()
K v
A ) B
i E, =5 ==tk l, ...(il)p T
oE, E
f-a*'- —%" =—ik,cB, ....(iii)
AN )

I we substitute the value of B, from equation 7 (ii) in 6 (i), we get

B,y (Kp L) K,
O\ ke ikyc dx c
e dy kyeox |ck, ¢ | "
i JoE 0B
SURMM SO . WY, B A
” % [koz-kg'][ & 3y] k.
And if we substitute the value of E, from 6 (i) 7 (ii), we get
. "_oa£+kzﬂ’z_] .(B)
Yolke —kj1L e ox G
Similarly eliminating B, and E, in turn, from 6 (ii) and 7 (i) we get
B
E =—o i . [kxai'koca—:] .(C)
C Tk =KD dy ox
and B s [_EQE_:+ P QB_:] D)
"k _kyz] c oy Fox

Examination of equations (A), (B), (C) and (D) shows that :

() If a electromagnetic wave is to be propagated along z Bxs
then ag E_=B_ =0, the equations (A), (B), (C)and (D) vam§h. Therefore
there is no non-zero component of E or B. This in turn implies that TE M
Waves cannot pe propagated along the axis of a wave guide.
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(i) If we set K-k =k} ie, k= k; —k: =k we fing "
fork, <k, k, is imaginary which in turn results in the attenuation of E i
H given by eqn. (4). '!'his in t.um means that we cannc.)t Propagaie Wy,
for which ko <k, (or fo < f.) i.e. a guide acts as a short of {1,g/, pass i,
in the sense that one can propagate waves along it whose frequ encics i
greater than cut off frequency.
The equation
KR-k=kl ie ki=k +k

: 11
ie. 2 ;;
is called guide equation. Itrelates the free space wavelength X,

& LI (as k =2m/})

£ ! to cutofp
wavelength A, and guide wavelength A .. According to it
Ao
)‘g = 2 '(El
;"0
1 =
)]
(ili) The phase velocity in the guide will be given by
u:ﬂ:cﬁ [as ko=9]
kx ks ¢
k 5 05
or v=—oX 2 = C: = [as & = &} = k)
Vg -k ) -G /ky)]
5
or V= ;1 I:as k= -‘%t-:l (F)
=e/x)]
This result clearly shows that v>cand for A, = A,
V=oo
i.e. phase velocity becomes infinite exactly at cut off,
(iv) As

k -KE =k e w=c B+ [ask, =0/d

The group velocity with which energy is propagated along the axis of
the guide will be given by

0 Jd 5
B =%=£[C(/{+,¢ u-]

v, =ci(K + Ky "2k

v

Le.

A
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or L, =cyll= (/2 )1

laskg =k2 + &2}

. jle= lask =2m/ (G

From this equation it s clear that v, < ¢ and vy, = c ! ©

W) Transvcrs.e components of the fields ie E, E, B, and B. of |
a guided wave are mflcpendcm of one another and depend 'only onjlhc
values of the longitudinal components £, or B: of the guided wave, so it is ‘
possible to express them in terms of .

5 ~of a Tinear superposition of two
independent solutions, one for which E=0(TE) and one for which
B.=0(TE). Transversc clectric waves are sometimes known as H wave
and transverse magnetic waves as E-waves,

TE Waves :

For these as E.=0 and k2 =k} ~k} equations (A), (B), (C) and (D)

reduce to
ikyc 9B, . ik, OB
me—— B =—f": 1l
c kf Ay ) ; kf % ... (1ii)
. . «(8)
_ikge 9B, - _'kg ): .
by = kcz % - (i) B, _k—cza_y - (iv)

Thus in TE mode all the transverse components of E and B can be
expressed in terms of longitudinal component of magnetic vector B.. In
order to compute B: we use equation (3) i.e.

., 10'B
V°B- — =0
¢t ot
which in the light of eqn. (4) i.e.
—i{t-k,z
B(r.l) = Bu‘ n e 4

ie. with -aa— = (ik,)and 3 — (—im) becomes
r4

ot
J’B 9'B

1 2
— +— +(ik,)* B—— (-iw)* B=0
ax? P (ike) c'( )

2 2 2
ie. a?+a_?+(“"_,_k§)3=o
dy-  dy c
ie. OB OB B=0 [isk,=0/cand K =K +K]
ot O’
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is a vector equation 0 must be satisfied for each

re equations i -
Asn?:t)\(ff l;l For z-component of B it redu
compone .

L8 S ki, =0 -(a)
v 2} .
with boundary condition |dB./0n's= 0ie
e at x=0 and x=a.
54 : 1
== =0 an y=b.
and E— =0 at 3
Such a solution is
nmy nmy »
B.-:Bucos(—u—]cos( ) ) e
N e
N i

indices m and n specify the mode. The cut of wavelength i

» 2" m
.l_ _—-_-l ’_n__+"_ (ask=_)
Al 2 “:2 b A
ic A== ()
(| [n]|
(] 2
a a

while cut off frequency will be

12
m* ot 2nc
©,, = nc[—a—:- + b—z-] [as (0] T] -.(K)

The modes corresponding to m and n are designated as TE,, mode.
The case m=n=0 gives a static field which do not represent a wave
propagation. So TEg, mode does not exist. If a <b the lowest cut off
frequency result form=0and n=1i.e.

ne T
@)y, =—ork, =—
( )OI b c b

The TEy mode is called the principal or dominant mode.

The fields in the guide for TE mode will be obtained from eqn. (8) by
substituting the solution for B., which is

where the
given by

B B —i(or - I:g:)

HArn = Py

i ,,,erarliﬂli of EM.W.with Mattey oy, Macros, copic Scal,
e

_ mmny Tl —irs -
=B, cos[—a Jco{--_] . i (o kg2)

o, Byr
je Pard B

Thus we have

inmck, - el o
E==— ) og| T | . Gy IO kg
a b

kb

inmck, mix

=— H N - o

v 7 Bysin—— ¢os 1, for-kgz)
k' a a
immk

—_ ® LM oamy —i(f -k -

= ™ B, sin—cos 1, o —kgz
- 2, a

inmk !
B,=——2B, cos| ZEX | cog | M| (04 - ky2)
{ kb 0 o |cos G g
™ yaves : i
For there as B, =0 and as k"~ k% =& equations A. B, € and D

reduce to
ik, OE.
B —r (l) ) =——— ...(iii
x kfz ox & oy (1ii) |
; . ..(10)
ik, 9. i, 3E (
=== _.(ii) B =—_—2
E AT
Thus in TM mode, all the transverse components of E and B can be
expressed in terms of longitudinal component of the electric field E., E.
may be computed by using the eqn. (4) for z-component
i (ot~ k)
ie. E,,=Eq.e
so that it satisfies eqn. (2) (for z component) i.e.
19E, _
¢ o
’E. 0'E, i
ie. —=+—-+(ik,)" E.
ax* 9y’ (k)" &,
JE, 9E. ,
> t+—tk E.=0
ox oy
with boundary condition E./s=01.e.
E.=0 at x=0 and x

and. E =0 at y=0 and y

V’E, - 0
(-iw)’

2
[4

E.=0

2
Jr |
or (as —-kl=ki-ki=k}
7

I
[S RS
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Such a solution is
: mnx ; nmy : (L
E =E, sin|— |sin| 75~ ~(L)
: a b
2 2
5 L, | m” n il
with &k =7~ [—2— + -55‘] (M)
which corresponds to a cut off wavelength

1/2

(%) =1 [@ﬁ%ﬁ—} [as k =2m/A]
a

c

and a cut off frequency 2
2 2
0, .i= nc[flz— + %] [ask =w/c]
a* b
Comparing eqn. (M) with (I) we find that in a rectangular waveguide

TE and TM modes have the same set of cut off frequencies. However the
cases m=0and n=1lorm=1land n=0 which were dominant in 7 mode

do not exist for TM wave because the field vanishes or m or n=0.
The value of the fields for TM mode will be obtained from eqn. (10)
by substituting the solution for E;, which is
2 g —i (@t — k2)

z(r,0) = z(x, »)

i.e. E:(’. p = EO sin (ﬂ) sin (n_ny) e—i (of — kgz)
i 4 b |

Thus we have

imnk MTX .
E=— = E, cos (‘*) sin (ﬂ) e—l (@r -k, 2
a a b

cos (%’)e‘f (1 -k z)

immk - )
and B, = ;- Cos (ﬂ) sin (Lny) ¢ '@ —k.2)
5 :

a

/

Note : In solving numeric
) als related to w i
ave guides keep in mi
P In mind that

(@) The cut off wavelength A, for a given moq .
given by ¢ and fiee space wavelength ko 47
2
A" = _—.__.:’_T.:;

DK

n— and A, =
¥

|

— ||

i
A4
)
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i, Cavity Resonator :
s i .
Wity resona S anenergy storj
A cavity resonator I§ an energy Storing device. ginm
circuit at low frequencies. Virtually i cariopurr ot

4y metallie ¢
a cavity reson
1C1E8 electrom

nclosure, when
ator or clectromagnetic
agnetic field oscillations
a very small expenditure of
ators have the advantages of
ICmarkable high O

ropetly e,\'cilcd-will ﬁfx}clim\ as
qvity. For certain spc'clhc fl‘equel
:an be sustained \vltl_nn the enclosure with
power 1058 i ic Cavilty wa‘]S. Cavity reson
reasonablc dimensions, simplicity,
high impendence.

A czf\’lly ,ezonglor 1S um{a!ly SUPCTIOr to conventional |- circuit by a
factor of about 20. i e the fraction of the stored energy dissipated per cycle
in a cavity resonator is about (1/20) the fraction dissipated per cycle iz an
L-C circuit. An add‘illonal advantage is that cavity resonators of practical
size have resonant frequencies which range upward from a few hundred
maga cycles just the region where it is almost impossible to construct a
L-C circuit.

and very

Cavity resonators are used as resonant circuit in high frequency tubes
such as Klystron, for band pass filters and for wave meters to measure

frequency.

Theory : Consider a rectangular cavity as shown in fig. 6.21, with
the assumptions. -

(i) The walls are perfectly conducting.

(i) The interior of cavity is free-space.

(iii) The cavity is rectangular. .

(iv) The wave is advancing along z-axis.

As there are two possible ¥nodes y
of propagation 7E or 7M in the T
cavity, we shall deal them separately.

Case I. TE Mode. In this

mode £=0 so that the electr'ic ﬁffld Y
propagating along +ive z-direction 5 |
may be expressed as Fig. 6.21
—i (ot — k4Z) A .
Ei(l',() = E(_\._ V) (54 g -_axis Wlu

.~ nropacating along
The electric field of reflected wWave propas

therefore be

E

—i (ot — k)
== E(\'. AR

r{r.n
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ctric field

sultant elé g
So thcfe —i((!)"'k -) +EI

e —i(wt + I.-x:)
2. ¥

E. =E'n ential component of E s 2,
condmon that tang €Toat the

0 (for all values of x, y and 1) requires
gip=0 ie E="F

so that k= ks
—iof g —g T
Eqa =E., ¢ ¢ ]

Elr 1) =2E. » sin kgf e
j —(at z=d implies that

The poundary
boundary Z=

—io!
ie.
the boundary condition Eia

sink,d=0  Of kd=pr

1é k= pr/d (1)

so that
; . PR it
E,,=2E. ., sm( 7 ) e
which in terms of components will be

nz >

. ' .(2)
P ) el
d

In order to calculate Ey and E, we write Maxwell’s equations
curl B=(/c?) (9E/r) and curl E = —(9B/dr) in terms of components and

solve to get

and En =2E . (

ik c 9B, ik.c 9B, *
=—C = ad E =—-%5—
PERFS b= =

Now B, will be obtained by solving the z-component of wave
equation for B i.e.

19
2 FR:
[ cat]BO

ie. 98, aB+aB laB

..(3)

* Y 2 o
But as for a wave propagating along z-axis

@d) ik,  and (9/9r) - (~iw)
* Equations & (j)and § (ii) of 6.1.
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_a_z—-Bi-f-aZB’ +[m_: k2
50 EYERT O PR ]Bz =0
9B, +£)—£—+I\ ‘B.=0
or a'\. a\

[withw/c=k, and k= ki=kl (4
The boundary condition| 98/0n ls=0i.e, ‘
oB

E)B’a;— 0 at x=0 and x=gq
“and _‘)—;=0 ' at y=0 and y=b
when applied to cquation (4) yiclds _
_ mmnx . nmy
&—%w4jr}mtr) »
5 __am
\Vith Ac =T a2 + ? _(6)

So substituting the value of B; from (5) in (3) we get

"E,.(,‘ » —-II]:—D:(m: ) B, sin (m:x) cos (?]
The above equation when substituted in eqns. (2) results
Eiy= % (%,E) B, cos (%) sin (m;y) sin ( £ :;z) gl ..(A)
E S %S( o )B n[m:x) cos (%) sin (%) P .(B)

with . E,, , =0 as waveis TE -(C)
" The components of magnetic field in this will be obtamed by using
the Maxwell’s.curl E = (—9B/d¢) in terms of components i.e.

£—-?_§_’L=_BB’ _aE’=im B, -‘
dy oz ot oz y
9, 0B 9, - uyp ()

oz ox ot oz
" 0E, OFE 0B, 0E, OE,
*x Ty a x o
‘ [2s E=0and (/21)~ - i0]

=i B,
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d
o d (B) gives “
(7)in the light of Ay T mmx
n. . 3
Socd ag, 2 (mm ) 221 B, sin (T) cos(?

—_— 2 {

B.="7p 0z Kk \°
L 0y 0% € pIz ;
cos| 2= | omicor
d

1 0k, __l’,[ﬂ)(ﬂ) B, cos [ﬂ) sin ("ﬂ:
B kA\b N @« )%

c th 3
cos (pT) el
1o, 2] 2, (1) (2] | o
and B. ol x o] k& a h .
e

which in the light of condition given by eqn. (6) becomes
mmy ") Gn pnz omiet
B.=2iB, cos "y cos b d

Discussion :

(1) Equation (A) to (F) express components of fields jj |,
resonant cavity for TE mode. From these it is evident that TEy, 7, me
TEqgy or TEjo modes do not exist in the cavity. The physically POSSibllc'
lowest modes are TE o1, Ton OF TE o .

(2) To calculate the resonant frequency of the cavity, we use g,
fact that in equation (4) k. is defined as

ky =k +k.
Above equation in the light of eqns. (1) and (6) reduce to
2 2 2
np mn nm
== +||—]| +|—
A=) (5]
| mr o P - ’
or m'= nc[;—; + 7 + F] [ask, =/c] (0)

Case II. TM Mofle :In this mode B,=0 and E. can be compu
ted by solving the z component of wave equation for E i.e.

2
(V:—lza—]5=0.

“‘(h)

¢’ or?
Proceeding as, in Case I we get
'E, 9E

@ g th B0

4y
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gbjected © the boundary conditions| £, [¢=0 .,
s E= 0 at x=0 and .
E.'=0 at y:o and .y=(ll)
Such 2 solution will be
. (mrx) . (nmy
=E, Ll h}
e Sm( “ ] Sm[ b ] (8)

2 2
it 2R glE
with ¢ (a b .(9)

In order to calculate Ex , 5 and E, ¢ , we write Maxwell cquations
curl B= (1/c*) (9E/dt)and curl E =~ (9B/0r)in terms of components and

Ive to g€t . .
= ik 9, ik Ot
E=7 5 T
k& ox K dy
Substituting the value of E; from eqn. (9) in (10) we get

ik, (mn mmx
__ 8 . | nTy
Eyen 'kcz( a ]Eucos(—a )Slﬂ(—b )
ik ml:) ( mmx nmy
E,.,=—|— |Essin| — —
s kcz(a 0 ( pe )cos( b ]

which in the light of equation (2) gives

Zkg m1 mmnx . nmy ) . piz it
Een = 'F (T E,cos (T sin (T) sin [7) e

2 c

. 2k,(nn . mmx oy (P2 i
E,(r")=——kc—f(T)EoSln(—a— COS(T sm(T)e ioat

~

..(10)

-(H)

)

The components B, ,, B, , and E_, wi]__!?‘b'e obtained by using
Maxwell equation [curl B= (1/¢c*) (9E/at)] in terms of components i.e.

38, 9B, 1 B o, 7
d 0z ot - Py
98B, 0B. | OE, 9B, i

B O TR Gt ) e R e (11
% " a R e
9, B, 12 B, B, _io
x d & ot x x

[as B, =0and (3/0t) = —iw]

* See equation 10(1) and 10(11) § in 6.8.

Scanned by CamScanner



314 : Electromagnetic T heory

So equation (11) in the light of (H) and (I) and with mp/d =k yields
- E e :
B, = 21(;) o (mt )sin (@)cos @)cos P12 | g-iok )
k= c\b a b d ; _

2io E T X ) . —i
B, =—kl2 C;’ ("; )cos(m—a—)sm(%w)cos(p?m)e K el )

c

and E =2Esin (ﬂ;n—x—)sin (H—wa )cos (-E?)e_imt (L)

Equations (H) to (L) represents the components of field vectors and
from these it is evident that modes TMqyqo,  TMoo1, TM100, TMo10, TMor1,
TM,0; do not exist. The physically possible lowest mode is 7M.

The resonant frequency will be given by the condition
b=k +k

o-s|(2)2) (2]
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