

Unit – I
Principles of Object-Oriented Programming – Beginning with C++ - Tokens, Expressions and Control Structures – Functions in C++.
PRINCIPLES OF OBJECT-ORIENTED PROGRAMMING
OOP treats data as a critical element in the program development.

It does not allow data to flow freely around the system. It ties data more closely to the functions that operate on it, and protects it from accidental modification from outside functions.
Object oriented programming is an approach that provides a way of modularizes programs by creating partitioned memory area for both data and functions that can be used as templates for creating copies of such modules on demand. Thus an object is considered to be a partitioned area of computer memory that stores data and set of operations that can access that data.
Object = data + methods

Simply to say, the data of an object can be accessed only by the methods associated with that object
Basic concepts of OOPs
There are some of the basic concepts to use the OOPs.
· Class
· Object

· Data Abstraction and Encapsulation

· Inheritance

· Polymorphism

· Dynamic Binding

· Message Communication
Object

· Objects are the basic runtime entities in an object oriented programming.
· Each object represents data, and code to manipulate the data.
· Objects can interact without having to know the details of each other’s data or code.
· It is sufficient to know the type of message accepted and the type of response returned by the objects.
The following figure denotes the pictorial representation of object in object-oriented analysis and design.
	Object : Student

	DATA

Name

Date-of-birth

Marks

	FUNCTIONS

Total

Average

Display

Syntax: classname object

Example: employee e;
Note: Object is also called as “the instance of a class”.
Class
· The entire set of data and the code to manipulate data can be combined and made user-defined data type with the help of a class.
· Once a class has been defined, any number of objects can be created for the class.
· A class is thus a collection of objects of similar type.

Syntax: class classname

Example: class employee

Here class is keyword. Classname can be any valid identifier supported by C++.

Note: The data are called data members because they hold information. The functions that operate on these data are called methods or member functions.

Data Abstraction and Encapsulation
· The wrapping up of data and methods into single unit is known as encapsulation.
· Now data is not accessible to the outside world and only those functions which are wrapped in the class can access it. i.e., functions provide interface between the objects data and the program.
· This insulation of the data from direct access by the program is called data hiding or information hiding.
· Data Abstraction refers to the act of representing essential features without including the background details or explanations.
Inheritance
Inheritance is the process of creating a new class from the existing class. The new classes are called as derived class. The existing class is called as base class. The derived class inherits all the properties from the base class.

The concept of inheritance provides the idea of reusability. This means that additional features can be added to an existing class without modifying it.

Polymorphism
The ability to take more than one form is defined as Polymorphism.
The process of making an operator to exhibit different behaviours in different instances is known as operator overloading. Using a single function name to perform different types of tasks is known as function overloading.

Example: + operator may exhibit different behaviours in different instances. For two numbers, the operation will generate a sum but for two strings it produces a concatenated string.

Dynamic binding

Binding refers to the linking of a procedure call to the code to be executed in response to the call. Dynamic binding means that the code associated with a given procedure call is not known until the time of the call at runtime. It is associated with polymorphism and inheritance

Message Communication

An object-oriented program consists of a set of objects that communicate with each other. It involves the following basic steps
i) Creating classes that defines objects and their behaviour

ii) Creating objects from class definition

iii) Establishing communication among objects

 Benefits of OOPS

1. Reusability

2. Code sharing

3. Data hiding

4. Reduced complexity of a problem

5. Prototyping
6. Message passing technique

7. Extendability.

· Through inheritance redundant code can be eliminated and use of existing classes is extended.
· Saving of time and higher productivity
· The principle of data hiding helps the programmer to build secure programs that cannot be invaded by code in other parts of the program

· It is easy to partition the work in a project based on objects.

· Object-oriented systems can be easily upgraded from small to large systems.

· Software complexity can be easily managed.

Applications of C++

C++ is suitable for any programming task including development of editors, compilers, data bases, common systems and any complex real-life application systems.

BEGINNING WITH C++
· C++ is an object-oriented programming language developed by Bjarne Stroustrup
· Since the class was a major addition to the original C language it was initially called as “C with classes”.
· The most important facilities that C++ adds on to C are classes, inheritance, function overloading and operator overloading.
· Object-oriented features in C++ allow programmers to build large programs with clarity, extensibility and ease of maintenance.
· C++ uses bottom-up approach.

Structure of a C++ program

A typical C++ program contains four sections. These sections may be placed in separate code files and then compiled independently or jointly.

	Include files

	Class declaration

	Member function definitions

	Main function program

Class declaration
Class is the place where data members and member functions are declared. The way to declare a class is as follows.
Syntax:
Class classname

{

data members;

public:

member functions;

}

Example:
class sample

{

int a,b,c;

public:

void getdata();

void display();

};

Member Function definition
· Member function is to perform some task. Member function can be defined in two places such as outside class definition and inside class definition.
· When it is defined outside of a class, scope resolution operator is used as associated with it. It indicates the fact that scope of function is restricted to the class where it is declared.

· When it is defined inside of a class, function declaration in class itself is replaced by function definition
· Member functions are always accessible using object name and dot operator
Example 1: /* member function definition outside of class */
void sample::getdata()

{

cout<<"enter a,b";

cin>>a>>b;

}
Example 2: /* member function definition inside of class */
class sample

{

int a,b,c;

public:

void getdata()
{

cout<<"enter a,b";

cin>>a>>b;

}
};

Main Function
Generally C++ program is a collection of functions. Every C++ program must have a main(). As usual execution begins at main(). This is the place for object creation, Member function calling and other input/output statements.

void main()

{

clrscr();

sample s;

s.getdata();

s.display();

getch();

}

 Note:

· <iostream> is the headerfile used in C++.

· C++ statements also terminate with semicolon.

· C++ comment uses // symbol at the start and there is no closing symbol
· It is common practice to organize a program into three separate files.
The class declarations are placed in a header file
The definitions of member functions go into another file.
This approach enables the programmer to separate the abstract specification of the interface (class definition) from the implementation details (member function definition).
Finally the main program that uses the class is placed in a third file which includes the previous two files as well as any other files required.

Example: C++ program to add two numbers

#include<iostream.h>

#include<conio.h>

class sample

{

int a,b,c;

public:

void getdata();

void display();

};

void sample::getdata()

{

cout<<"enter a,b value";

cin>>a>>b;

c=a+b;

}

void sample::display()

{

cout<<"sum of a,b is"<<c;

}

void main()

{

clrscr();

sample s;

s.getdata();

s.display();

getch(); }

Output

Enter a,b value

10

20

Sum of a,b is 30

TOKENS, EXPRESSIONS AND CONTROL STRUCTURES
Tokens

The smallest individual units in a program are known as tokens. C++ has the following tokens

· Keywords
· Identifiers

· Constants

· Strings

· Operators

Keywords

Keywords are explicitly reserved identifiers and cannot be used as names for the program variables or other user-defined program elements.
Example: auto, break, signed, sizeof, etc.

Identifiers

Identifiers are the names refer to the variables, functions, arrays, classes, etc created by the programmer. Each language has its own rules for naming these identifiers.
· The first character in the variable name must be an alphabet.

· Only alphabetic characters, digits and underscores (_) are permitted.

· Upper and lower case letters are distinct.

· Reserved word cannot be an identifier names.

Constants
Constants or literal refer to fixed values that do not change during the execution of a program. Literals do not have memory locations. C++ supports several kinds of constants. They are
1. Integer constant

2. Floating-point constant

3. Character constant
4. String constant

Symbolic constant
They are two ways of creating symbolic constants in C++.
· Using the qualifier const
· Defining a set of integer constant using enum keyword

Syntax:

const int size =10.
Named constants are like variables except their values can’t be changed. A const in C++ has local scope. In C it is global in nature.
Another method is enum{x,y,z}. This defines x,y and z as integer constants with values 0,1,2 respectively. We can also assign values to x,y and z explicitly.

enum{x=10,y=50,z=200}. Values can be any integer value.

Data types
Every variable used in a C++ program should be attached with some data type. Each data type is represented differently within the computer memory. These basic data types can be augmented by data type qualifiers such as short, long, signed and unsigned. But float and its types can’t be augmented with signed, unsigned and short except long.

Size and range of C++ basic data types

	Data Type
	Bytes
	Range

	Char
	1
	-128 to +127

	signed char
	1
	-128 to +127 (-27 to +27-1)

	unsigned char
	1
	0 to 255 (0 to 28-1)

	Int
	2
	-32768 to +32767

	signed int
	2
	-32768 to +32767 (-215 to +215-1)

	unsigned int
	2
	0 to 65535 (0 to 216-1)

	Short int
	2
	-31768 to 32767

	signed short int
	2
	-32768 to +32767 (-215 to +215-1)

	unsigned short int
	2
	0 to 65535 0 to 216-1

	Long int
	4
	-2147483648 to +2147483648 (-231 to +231-1)

	Signed long int
	4
	-2147483648 to +2147483648 (-231 to +231-1)

	Unsigned long int
	4
	0 to 4294967295 (0 to 232-1)

	Float
	4
	-3.4e38 to +3.4e38

	Double
	8
	-1.7e308 to +1.7 e308

	long double
	10
	-1.7e4932 to +1.7 e4932

Variables

In C, a quantity which may vary during program execution is called as variable. Variables names are names given to the locations in memory of a computer where different constants are stored. Rules for a variable are same as an identifier.
Variable Declaration

All variables should be declared before its usage, usually at the beginning of the program. A declaration causes storage to be reserved for an identifier.

Syntax: data type variable list;
Example : int a; float x;...

In C++ a variable can be declared right at the place of its first use. This makes the program easier to write and reduces the errors. It also makes the program easier to understand.
Dynamic initialization of variable
C++ permits initialization of variable at run time. This is referred as dynamic initialization.
Example

int n=strlen(string);

float area=3.14*rad*rad;

Declaration and initialization of variable can be done simultaneously at the place where the variable is used for the first time.
Reference variable
C++ introduces a new kind of variable known as the reference variable. A reference variable provides an alias for a previously defined variable.
Example: if sum is used as reference variable to total then sum and total can be used interchangeably to represent that variable.
Syntax:

data-type & reference name = variable-name

Example

float total=100;

float &sum=total;
cout<<total;

cout<<sum;

Both outputs value 100. The statement total = total +10 will change the value of both variable to 110. The assignment sum=0 will change the value of both variable to zero.
A reference variable must be initialized at the time of declaration. A major application of reference variable is passing arguments to functions.

void f(int &x)

{

x=x+10;

}

int main()
{

int m=10;

f(m);

...

}

When function is called it will become int &x=m. This function call is known as call by reference. When the function increments x, value of m is also incremented. It will become 20.
Operators
C++ has a rich set of operators. All C operators are valid in C++. Some new operators in C++ are
	<<
	insertion operator

	>>
	extraction operator

	: :
	scope resolution operator

	: :*
	Pointer to member declaratory

	->*
	Pointer to member operator

	.*
	Pointer to member operator

	delete
	memory release operator

	endl
	Line feed operator

	new
	Memory allocation operator

	setw
	Field width operator

Insertion or put to operator (<<)
· It is the output operator in C++

· cout identifier(a predefined object that represents the standard output stream in C++) always accompany this operator.
· It causes the string in quotation marks to be displayed on the screen.
· The multiple use of << in one statement is called as cascading
Example:
 cout<<“C++ is better than C”, will display the string in the screen.

 cout<<”sum=”<<sum<<”\n”, will display sum=14.
Extraction or get from operator (>>)

· It is the input operator in C++

· cin identifier(a predefined object that corresponds to the standard input stream in C++) always accompany this operator.
· It extracts the value from keyboard and assigns it to the variable on its right.

· Cascading of input operator >> also possible.
Example:

 cin>> number1
 It causes the program to wait for the user to type a number.

 cin>>number1>>number2;
The values are assigned from left to right. If two inputs 10 and 20 are keyed, 10 will be assigned to number1 and 20 will be assigned to numbered2.

Scope resolution operator

This operator allows access to the global version of a variable. The scope of the variable extends from the point of its declaration till the end of the block containing the declaration. A variable declared inside a block is said to be local to that block. Consider the following segment of a program

........
........

{

int x=10;

.........

..........

}

.........

.........

{

int x=1;
...........

............

}

The two declarations of x refer to two different memory locations containing different values. Statements in the second block cannot refer to the variable x declared in the first block, and vice versa.
In C, the global version of a variable cannot be accessed from within the inner block. C++ resolves this problem by introducing a new operator :: called the scope resolution operator. This can be used to uncover a hidden variable. It takes the following form

:: variable-name
#include<iostream.h>

#include<conio.h>

int m=10;
void main()

{

int m=20;

{

int k=m;
int m=30;

cout<< “we are in inner block”;

cout<<”k=”<<k<< “\n”;
cout<<”m=”<<m<< “\n”;
cout<<”::m=”<<::m<<”\n”;

}

cout<< “we are in outer block\n”;

cout<<”m=”<<m<< “\n”;

cout<<”::m=”<<::m<<”\n”;

}
Output

We are in inner block

K=20

M=10;

::m=10;

We are in outer block

M=20;

::m=10;

Note: It is to be noted ::m always refer to the global m. (value 10)

Memory Management Operators
C uses malloc and calloc functions to allocate memory dynamically at runtime. Similarly it uses the function free() to free dynamically allocated memory.

C++ defines two unary operators new and delete that perform the task of allocating and freeing the memory in a better and easier way. An object can be created by using new, and destroyed by using delete when required. A data object created inside a block with new will remain in existence until it is explicitly destroyed by using delete.
The new operator can be used to create objects of any type. It takes the following general form

Pointer-variable = new data-type;

New is used to create memory space for any data type including user-defined types such as arrays, structures, and classes. The general form for a one-dimensional array is
Pointer-variable = new data-type[size];
Here size specifies the number of elements in the array. For example, the statement Int *p=new int[10] Creates a memory space for an array of 10 integers. P[0] refer to the first element, p[1] to the second element and so on. When the data object is no longer needed, it is destroyed to release the memory space for reuse. The general form is
Delete pointer-variable

Example:

delete p;
The new operator offers the following advantages over the function malloc()

1. It automatically computes the size of the data object. We need not use the operator sizeof.
2. It automatically returns the correct pointer type, so that there is no need to use a type cast.

3. It is possible to initialize the object while creating the memory space.

4. Like any other operator, new and delete can be overloaded.
Operator precedence

	 Operators
	 Associativity

	::
	Left to Right

	(. () [] postfix ++ postfix --

	Left to Right

	prefix ++, prefix --, ~, !, unary +, -, *,&, (type), sizeof, new, delete
	Right to Left

	(. * *
	Left to Right

	*/ %
	Left to Right

	+ -
	Left to Right

	<<, >>
	Left to Right

	< <= > >=
	Left to Right

	== !=
	Left to Right

	&
	Left to Right

	^
	Left to Right

	|
	Left to Right

	&&
	Left to Right

	||
	Left to Right

	?:
	Left to Right

	= += -= *= /= %=
	Right to Left

	<< = >>= &= ^= |= ,(comma)
	Left to right

1.4 FUNCTIONS IN C++
Inline function

· A function which is expanded in a line when it is called is called inline function.

· It executes faster than other member function.

· It can be recursive.

· Its body does not contain if else, switch, loop, goto statement.

· The inline keyword is preceded by function definition.

Need for inline function
· Whenever a function is called, control jumps to definition part of the function definition.
· During this jumping of control, a significant amount of time is required.
· For functions having short definition if it is called several time, huge amount of time will be lost.
· Therefore if such function is declared as inline, when the function is called, rather than jumping to the definition of function, it is expanded in a line wherever it is called.
· Inline functions are defined as follows.

inline function-header

 {

function body

 }

Write a program to find area of a circle using inline function.

#include<iostream.h>

inline float area (int a)

{

return(3.14*a*a);

}

void main()

{

int r;

cout<<“ Enter the Value of r: ”;

cin>>r;

cout<<” Area is: “ << area(r);

}

Output:

Enter the Value of r:

7

153.86
Friend function
· The private members of a class cannot be accessed from outside the class.
· That is a non-member function cannot have an access to the private data of a class.
· However there could be a situation where there are two classes to share a particular function.
· In such situations, C++ allows the common function to be made friendly with both the classes, thereby allowing the function to have access to the private data of these classes.
· Such a function need not be a member of any of these classes.
The general form to make a class as friend is as
class ABC

{

......

......

public:

......

......

friend void xyz(void)

// declaration

};
· The function declaration should be preceded by the keyword friend. The function is defined elsewhere in the program like a normal C++ function.
· The function definition does not use either the keyword friend or the scope operator ::.
· A function can be declared as a friend in any number of classes.
· A friend functions although not a member function has full access right to the private members of the class.
A friend function possesses certain special characteristics

· It is not in the scope of the class to which it has been declared as friend.

· It cannot be called using the object of that class (Invoked like normal function)
· Unlike member functions it cannot access the member names directly and has to use an object name and dot membership operator with each member name (e.g A.x)
· It can be declared either in the public or the private part of a class without affecting its meaning.
· Usually it has the objects as arguments

Example 1: biggest between two numbers using friend function
#include<iostream.h>

#include<conio.h>

class second;

class first

{

int x;

public:

void getdata()

{

cout<<"enter x value";

cin>>x;

}

friend void max(first,second);

};

class second

{

int y;

public:

void getdata()

{

cout<<"enter y value";

cin>>y;

}

friend void max(first,second);

};

void max(first f,second s)

{

if(f.x>=s.y)

cout<<f.x;

else

cout<<s.y;

}

void main()

{

clrscr();

first f;

f.getdata();

second s;
max(f,s);S
s.getdata();

getch();

}

Example 2: Swapping of private data using friend function

#include<iostream.h>

#include<conio.h>

class class2;

class class1

{

int value1;

public:

void getdata()

{

cout<<"enter value1\n";

cin>>value1;

}
void display()

{

cout<<"value1 is\n"<<value1<<"\n";

}

friend void exchange(class1 &,class2 &);

};

class class2

{

int value2;

public:

void getdata()

{

cout<<"enter value2\n";

cin>>value2;

}

void display()

{

cout<<"value2 is\n"<<value2<<"\n";

}

friend void exchange(class1 &,class2 &);

};

void exchange(class1 &x, class2 &y)

{

int temp=x.value1;

x.value1=y.value2;

y.value2=temp;

}

void main()

{

clrscr();

class1 c1;

class2 c2;

c1.getdata();

c2.getdata();

cout<<"values before exchage\n";

c1.display();

c2.display();

cout<<"values after exchage\n";

exchange(c1,c2);

c1.display();

c2.display();

getch();

}
Function overloading

· Overloading refers to the use of same thing for different purposes.
· Using same function name to create functions that perform a variety of different tasks is known as function overloading.
· Using function overloading user can design a family of functions with one function name but with different argument lists.
· The function would perform different operations depending on the argument list in the function call.
· The correct function to be invoked is determined by checking the number and type of the arguments but not on the function type.
A function call first matches the prototype having the same number and type of arguments and then calls the appropriate function for execution. A best match must be unique. The function selection involves the following steps
· The compiler first tries to find an exact match in which the types of actual arguments are the same, and use that function.
· If an exact match is not found, the compiler uses the integral promotions to the arguments such as char to int, float to double to find a match.

· When either of them fails, the compiler tries to use the built-in conversions to the actual arguments and then uses the function whose match is unique.
· If the conversion is possible to have multiple matches then the compiler will generate an error message.
Example: add function is overloaded for different type and number of arguments

#include<iostream.h>

#include<conio.h>

int add(int,int);

double add(double,double);

float add(int,int,float);

void main()

{

clrscr();

cout<<"addition of two integer is\n"<<add(10,20)<<"\n"

cout<<"addition of two float is"<<add(12.23,18.12)<<"\n"

cout<<"addition of two integer and one float is\n"<<add(15,25,30.5)<<"\n";

getch();

}

int add(int x,int y)

{

return(x+y);

}

double add(double x1,double y1)

{

return(x1+y1);

}

float add(int x,int y,float z)

{

return(x+y+z);

}

Output:

Addition of two integer is 30
Addition of two float is 30.35
Addition of two integer and one float is 70.5[image: image1.png]

C++ data types

User-defined type

structure

union

class

enumeration

Built-in type

Derived type array

function

pointer

reference

Integral type

Void

Floating type

int

char

float

doublee

 A

 B

 C

 D

 Draw(triangle)

 Draw(box)

C

 Draw(circle)

 Shape draw()

