

14

Unit –II

Classes and objects – Constructors and Destructors – New operator – operator overloading- Type conversions.

CLASS
A class is a way to bind the data and its associated functions together. It allows the data and functions to be hidden, from external use. Generally a class specification has two parts.
1. Class declaration

2. Class function definitions
Class declaration describes the type and scope of its members. The class function definitions describe how the class functions are implemented. The general form of class declaration is
	class class_name

{

private:

variable declarations;

function declarations;

public:

variable declarations;

function declarations;

};

Class is keyword. The identifier follows it is class_name. The body of a class is enclosed within braces and terminated by a semicolon. The class body contains the declaration of variables and functions. These variables and functions are called as class members. They are grouped under two sections namely private and public. The keywords private and public are known as visibility labels. These keywords should be followed by a colon.
The class members declared as private can be accessed only from within the class. The keyword private is optional. By default the members of a class are private. Public members can be accessed from outside the class also.

The variables declared inside the class are known as data members and the functions are known as member functions. Only the member functions can have access to the private data members and private functions. The binding of data and functions together into a single class-type variable is referred to as encapsulation.
Example

class employee
{

int empid;

char name[10];

public:
void getdata();

void putdata();
};

Pictorial representation of a class is
	Class: Employee

	DATA:

Empid

name

	Functions

getdata()

putdata()

 OBJECTS
· Creating objects

· Memory Allocation for objects

· Array of objects

· Objects as function arguments

· Returning objects

· Const objects

Creating objects

The declaration of class does not define any objects but only specifies what they will contain. Class specification provides only a template and does not create any memory space for the objects. The necessary memory space is allocated to an object at this stage. Once a class has been declared, variable of that template can be created using the class name followed by one or variable names. These class variables are called as objects.

Example:
employee e;
student s1,s2,s3;
Memory Allocation for objects

· Memory space for objects is allocated when they are declared. This statement is partly true.
· The member functions are created and placed in the memory space only once when they are defined as a class specification.
· Since the entire object belonging to that class use the same member function no separate space is allocated for member functions when objects are created.
· Only space for memory variable is allocated separately for each object.
· Separate memory locations for the objects are essential because memory variable will hold different value for different objects.

Array of objects

An array concept can be implemented in any user-defined data type class variable or object which is called as array of objects.

Example

class employee

{

char name[30];

float age;

public:

void getdata();

void putdata();

};

The identifier employee is a user-defined data type and can be used to create objects that relate to different employee categories.

Ex: employee manager[3];

The array manager has three objects, namely manager[0], manager[1] and manager[2]. So general array accessing methods are used to access individual elements and dot member operator is used to access member functions.
Ex: manager[i].putdata()
Note
An array of objects is stored inside the memory in the same way as a multi-dimensional array.
Only space for data item of the objects is created. Member functions are stored separately and will be used by all the objects.

	

	

	

	

	

	

 Manager[0]

 Manager[1]

 Manager[2]

Example: C++ Program to read details of 3 students and to display them.

#include<iostream.h>

#include<conio.h>

class student

{

int regno;

char name[10];

int m1,m2,m3;
public:

void getdata()

{

cout<<"enter regno,name,m1,m2,m3"<<endl;

cin>>regno>>name>>m1>>m2>>m3;

}

void putdata()

{

cout<<"regno,name,m1,m2,m3"<<endl;

cout<<regno<<endl<<name<<endl<<m1<<endl<<m2<<endl<<m3;

}

};

void main()

{

int i;

clrscr();

student s[3];

cout<<"enter details of 3 students";

for(i=0;i<3;i++)

{

s[i].getdata();

}

cout<<"3 students details are"<<endl;

for(i=0;i<3;i++)

{

s[i].putdata();

}

getch();

}

Output:

Enter details of 3 students
Enter regno,name,m1,m2,m3
101

Intel

60

69

75

Enter regno,name,m1,m2,m3
101

Cognizant
75
69

77
Enter regno,name,m1,m2,m3
101

TCS
57
56
77

Then entered three records will be displayed as output to user.
Objects as function arguments
Like any other data type an object may be used as a function argument. This can be done in two ways.
1. Pass by value
2. Pass by reference

Pass by value

A copy of entire object is passed to the function. In this case, changes made to the objects inside the function have no effects on the objects used to call the function.
Example:
class sample

{

int x,y;

public:

void getdata(int x1,int y1)

{

x=x1;

y=y1;

}

void putdata()

{

cout<<"x and y values are"<<endl;

cout<<x<<y;

}

void change(sample);

};

void sample::change(sample s)

{

s.x=0;

s.y=0;

}

void main()

{

clrscr();

sample s;

s.getdata(10,20);
cout<<”Before function call\n”;
s.putdata();

s.change(s);
cout<<”After function call\n”;
s.putdata();

getch();

}
Output

Before function call x and y values

10

20

After function call x and y values

10
20

Pass by reference

Only the address of the object is transferred to the function. When an address of the object is passed, called function work directly on the actual objects in the calling function. This means that any changes made to the objects inside the function will reflect in actual object. This method is more efficient to use.
Example:
#include<iostream.h>

#include<conio.h>

class sample

{

int x,y;

public:

void getdata(int x1,int y1)

{

x=x1;

y=y1;

}

void putdata()

{

cout<<"x and y values are"<<endl;

cout<<x<<y;

}

void change(sample &);

};

void sample::change(sample &s)

{

int temp;

temp=s.x;

s.x=s.y;

s.y=temp;

}

void main()

{

clrscr();

sample s,s1;

s.getdata(10,20);
cout<<”Before function call\n”;
s.putdata();

s.change(s);
cout<<”After function call\n”;
s.putdata();

getch();

}
Output

Before function call x an y values
10

20

After function call x an y values

20

10

Returning objects
A function cannot only receive objects as arguments but also return them.
Const objects

· User may create and use constant objects using const keyword before object declaration.
Example : we may create x as a constant object of the class matrix as follows

const matrix x(m,n);

· Any attempt to modify the values of m and n will generate compile-time error.

· A constant object can call only const member function.

DATA MEMBERS

The private data of a class can be accessed only through the member functions of that class. The following is the format for calling a member function
 ObjectName.FunctionName(actual arguments);
Static data members
A data member of a class can be qualified as static. Its special characteristics are
· Initialized to zero when the first object of its class created.

· Only one copy of that member is created for the entire class and is shared by all the objects of that class no matter how many objects are created.
· It is visible only within the class but lifetime is the entire program
· Static variables are used to maintain values common to the entire class.

· Static data members are stored separately rather than as a part of an object.

DEFINING MEMBER FUNCTIONS
Member function is to perform some task. Special characteristics of member functions are

· Several different classes can use the same function name. Their ‘membership label’ will resolve their scope.

· Member functions can access the private data of the class.

· A member function can call another member function directly, without using the dot operator.

Member functions can be defined in two places

· Outside the class definition

· Inside the class definition

Outside the class definition

Member functions that are declared inside a class have to be defined separately outside the class. The general form of a member function definition is
Return-type class-name : : function-name (argument declaration)

{

Function body

}

The symbol : : is called the scope resolution operator.

class-name : : function-name tells the compiler that the function specified is belong to the specified class.

Example

void employee : : getdata()

{

cin>>a>>b;

}

Since these functions do not return any value, their return-type is void.
Inside the class definition

Another method of defining a member function is to replace the function declaration by the actual function definition inside the class. For example,

class employee
{

int empid;
char name[10];

public:
void getdata()

{

cin>>empid>>name;

}

void putdata()

{

cout<<empid<<name;

}

};

When a function is defined inside a class, it is treated as an inline function. Therefore all restrictions and limitations that apply to an inline function are also applicable.

Private member function

Although all the member functions are placed in public section some situations may require certain function to be hidden from outside class. These functions are placed in private section.

Example: increment to an employee must be provided restricted access.

A private member function can only be called by another function that a member of its class. Even an object can’t invoke a private function using dot operator.

Example:

class sample

{

int m;

void read();

public:

void update();

void write();

};

If s1 is an object, then s1.read() is impossible. However, the function read() can be called by the function update() to update the value of m.

void sample :: update()

{

read();

}

#include<iostream.h>

#include<conio.h>

class employee

{

int empid,bs,inc,ns;

char name[10];

void increment()

{

if(bs>=5000)

inc=500;

else if((bs<5000) &&(bs>2000))

inc=200;

else

inc=100;

}

public:

void getdata()

{

cout<<"enter empid,name,bs";

cin>>empid>>name>>bs;

}

void calc()

{

increment();

ns=bs+inc;
cout<<"bs is\n"<<bs;

cout<<"inc is\n"<<inc;

cout<<"ns is\n"<<ns;

}

};

void main()

{

clrscr();

employee e;

e.getdata();

e.calc();

getch();

}
Static member function

A member function declared static has the following properties

· A static function can have access to only other static members declared in the same class.

· A static member function can be called using the class name (instead of objects) as follows.

Class-name :: function-name

#include<iostream.h>

#include<conio.h>

class add

{

static int a,b,c;

public:

static void getdata()

{

cout<<"enter a,b value\n";

cin>>a>>b;

}

static void calc()

{

c=a+b;

cout<<"added result is\n";

cout<<c;

}

};

int add::a;

int add::b;

int add::c;

void main()

{

clrscr();

add::getdata();

add::calc();

getch();
}

Nesting Member function

A member function of a class can be called by an object of that class using dot operator. A member function can be called by using its name inside another member function of the same class. This is known as nesting of member function.

Const member function

If a member function does not alter any data in the class, it may be declared as

void mul(int,int) const;

double get_balance() const;

The qualifier const is appended to the function prototype (in both declaration and definition).

The compiler will generate an error message if such function tries to alter the data values.

CONSTRUCTORS AND DESTRUCTORS
Member functions cannot be used to initialize the member variables at the time of creation of their objects. C++ provides a special member function called the constructor which enables an object to initialize itself when it is created. This is known as automatic initialization of objects. C++ also provides another member function called the destructor that destroys the objects when they are no longer required.
Constructors

A constructor is a ‘special’ member function whose task is to initialize the objects of its class.

It is called constructor because it constructs the values of data members of the class.
Special characteristics
· It has same name as class name

· They should be declared in the public section.

· They are invoked automatically when the objects are created.
· It has no return types, not even void and therefore and they cannot return values.
· They cannot be inherited though a derived class can call the base class constructor
· Constructors cannot be virtual
· They make implicit calls to the operators new and delete when memory allocation is required.

 Types of constructors
1. Default constructor

A constructor that accepts no parameters is called the default constructor. It may initialize the data members of all the objects to zero.

Example

class student

{
int m1,m2,m3;

public:
student()

{

m1=0; m2=0;m3=0;

}

2. Parameterized constructor

The constructors that can take arguments are called parameterized constructors.

It initializes the various data elements of different objects with different values when they are created.

Example:
class student

{

int m1,m2,m3;

public:

student(int x,int y,int z)

{

m1=x; m2=y;m3=z;

}

When a constructor has been parameterized, initial values are passed as arguments when an object is declared. This can be done in two ways.
· By calling the constructor explicitly
Example : student s=student(80,90,95)

· By calling the constructor implicitly

Example: student s(80,90,95);
Instead of fixed values input can be read from user using variables and variables can be specified instead of this fixed value. This is called dynamic initialization of objects.

Example: student(m1,m2,m3);

3. Copy constructor

A constructor used to declare and initialize an object from another object is called as copy constructor. It accepts a reference to its own class as a parameter.
Example: C++ program using three types of constructors
#include<iostream.h>

#include<conio.h>

#include<string.h>

class student

{

int m1,m2,m3;

public:

student()

{

m1=0; m2=0;m3=0;

}

student(int x,int y,int z)

{

m1=x; m2=y;m3=z;

}

student(student &x)

{

m1=x.m1;

m2=x.m2;

m3=x.m3;

}

void display()

{
cout<<”m1, m2 and m3 values are\n”;
cout<<”m1=” m1<<"\n";

cout<<”m2=”m2<<"\n";

cout<<”m3=”m3<<"\n";
}

};

void main()

{

clrscr();

student s;
cout<<”Default constructor values are\n”;

s.display();
student s1(80,90,100);
cout<<”Parameterized constructor values are\n”;

s1.display();
student s2(s1);
cout<<”copy constructor values are\n”;

s2.display();

getch();

}
Output

Default constructor values are

M1=0

M2=0

M3=0

Parameterized constructor values are
M1=80

M2=90

M3=100

copy constructor values are

M1=80

M2=90

M3=100
Note:

Constructor can be defined as inline function
Destructor
A destructor is used to destroy the objects that have been created by a constructor. The destructor is a member function whose name is same as the class name but is preceded by a tilde.
Example: ~integer() {}

A destructor never takes any argument nor does it return any value.
It will be invoked implicitly by the compiler upon exit from the program to clean up storage that is no longer accessible.
Operator Overloading- Creation of new definitions for C++ operators
C++ has the ability to provide the operators with a special meaning for a data type. The mechanism of giving such special meanings to an operator is known as operator overloading. Thus C++ tries to make the user-defined data type behave in much the same way as the built-in types.
All C++ operators can be overloaded (given additional meaning) except the following

· Class member access operator(., .*)

· Scope resolution operator(::)

· Size operator(Sizeof)
· Conditional operator(?:)

Note:
When an operator is overloaded its original meaning is not lost

Defining operator overloading

To define an additional task to an operator, we must specify what it means in relation to the class to which the operator is applied. This is done with the help of a special function called operator function which describes the task. The general form of an operator function is

Return-type classname :: operator op(arglist)
{

Function body

}

· Return type is the type of value returned by the specified operation
· Op is the operator being overloaded

· Op is preceded by the keyword operator

· Operator op is the function name

· Operator function must be either member function or friend function

· Arguments may be passed either by value or by reference.

There is a subtle difference between member function and friend function overloading
	Member function
	Friend function

	Has no argument for unary operators overloading and only one for binary operators overloading.
	Have only one arguments for unary operators overloading and two for binary operators overloading

 Example:
 void operator -()

 friend vector operator+(vector, vector);

 int operator = =(vector);

The process of overloading involves the following steps.

1. Create a class that defines the data type that is to be used in the overloading operation.

2. Declare the operator function operator op() in the public part of the class.
It may be either a member function or a friend function
3. Define the operator function to implement the required operation.

Overloading unary operators
An operator which requires single operand to perform its operation is called as unary operator. It can be overloaded using member and friend functions as subject to the rules of operator overloading.

Example: unary – operator overloading
#include<iostream.h>

#include<conio.h>

class sign

{

int x,y,z;

public:

void getdata(int x1,int y1,int z1)

{

x=x1;

y=y1;

z=z1;

}

void operator-()

{

x=-x;

y=-y;

z=-z;

}

void display()

{

cout<<"x,y and z values\n";

cout<<x<<y<<z;

}

};

void main()

{

clrscr();

sign s;

s.getdata(-80,60,-56);

s.display();

-s;

cout<<"result after overload\n";

s.display();

getch();

}
Output:

Result after overload:

80, -60, 56

Overloading unary - operator using friend function
#include<iostream.h>

#include<conio.h>

class sign

{

int x,y,z;

public:

void getdata(int x1,int y1,int z1)

{

x=x1;

y=y1;

z=z1;

}

friend sign operator-(sign s1)

{

s1.x=-s1.x;

s1.y=-s1.y;

s1.z=-s1.z;

return(s1);

}

void display()

{

cout<<"x,y and z values\n";

cout<<x<<y<<z;

}

};

void main()

{

clrscr();

sign s,r;

s.getdata(-80,60,-56);

s.display();

r=-s;

cout<<"result after overload\n";

r.display();

getch();

}
Output:

Result after overload:

80, -60, 56

Overloading binary operators
1. Using member function

· It receives only one type argument explicitly.
· Returns an object
· Left-hand operand is used to invoke the operator function and right-hand operand is passed as an argument. i.e, data members of object1 are accessed directly and the data members of object2 is accessed using dot operator.
Example: addition of two objects
#include<iostream.h>

#include<conio.h>

class complex

{

int x,y;

public:

void getdata(int x1,int y1)

{

x=x1;

y=y1;

}

complex operator+(complex c2)

{

complex temp;

temp.x=x+c2.x;

temp.y=y+c2.y;

return(temp);

}

void display()

{

cout<<"x,y values\n";

cout<<x<<y;

}

};

void main()

{

clrscr();

complex c1,c2,c3;

c1.getdata(12,15);

c2.getdata(4,5);

c3=c1+c2;

c3.display();

getch();

}
Output:
X=16, y=20

2. Using friend function

Friend function may be used in place of member functions for overloading a binary operator, the only difference being that a friend function requires two arguments to be explicitly passed to it.
#include<iostream.h>

#include<conio.h>

class complex

{

float x,y;

public:

void getdata(float x1,float y1)

{

x=x1;

y=y1;

}

friend complex operator+(complex c1,complex c2)

{

complex temp;

temp.x=c1.x+c2.x;

temp.y=c1.y+c2.y;

return(temp);

}

void display()

{

cout<<"x,y values\n";

cout<<x<<y;

}

};

void main()

{

clrscr();

complex c1,c2,c3;

c1.getdata(2.5,3.5);

c2.getdata(1.6,2.7);

c3=c1+c2;
cout<< “C1=”;

cout<< c1.display();

cout<< “C2=”;

cout<< c2.display();
cout<< “C3=”;

c3.display();

getch();

}
Output

C1=2.5 3.5

C2=1.6 2.7

C3=4.1 6.2

Rules for overloading operators
There are some restrictions and limitations in overloading operators.

1. Only existing operators can be overloaded. New operators cannot be created.
2. The overloaded operator must have at least one operand that is of user-defined type.
3. Basic meaning of an operator can’t be changed. i.e + operator can’t be used for subtraction.
4. There are some operators that cannot be overloaded.
Sizeof, ., .*, : :, ?:
5. Friend function cannot be used to overload certain operators

+, (), [], ->

6. Binary arithmetic operators such as +, - *, / must explicitly return a value.
[image: image1.png]

Member variable 2

Member variable 1

 Common for all objects

 Member function-1

 Member function-2 Memory created when functions defined

Object 1 Object 2 Object 3

 Memory created when objects defined.

Member variable 1

Member variable 2

Member variable 2

Member variable 1

