
1

Unit –IV

Working with files

Managing Console I/O Operations – Working with Files – Templates – Exception Handling

A file is a collection of related data stored in a particular area on the disk. Programs can be designed

to perform the read and write operations on these files.

A file program involves the following kinds of communication

1. Data transfer between the console unit and the program

2. Data transfer between the program and a disk file.

The I/O system of C++ handles file operations using file streams as an interface between the

programs and files. Two types of streams are

1. Input Stream

2. Output Stream

Input stream extracts data from the file and the output stream inserts data to the file.

 Input stream

 Read data input

 Output stream

 Write data output

The input operation involves the creation of an input steam and linking it with the program and the

input file. Similarly the output operation involves establishing an output stream with the necessary

links with the program and the output file.

The I/O of C++ contains a set of classes that define the file handling methods. These classes are

derived from fstreambase and from the corresponding iostream class.

Program Disk file

2

Details of file stream classes

Class Description

Fstreambase

• Provides operations common to the file streams

• Base for fstream, ifstream and ofstream class

• Contains open() and close() function

Ifstream

• Provides input operation

• Contains open() with default input mode

• Inherits function get(),getline(),read(),seekg() and tellg() from istream

Ofstream

• Provides output operation

• Contains open() with default input mode

• Inherits function put(),seekp(), tellp() and write() function from

ostream

Fstream • Provides support for simultaneous input and output operations

• Contains open() with default input mode

• Inherits functions from istream and ostream classes through iostream

Filebuf

• Set the file buffers to read and write

• Contain close() and open() as members

Opening and closing a file

To use a file, suitable name for the file should be specified. File name is a string of characters that

make up a valid file name for operating system. It contains two parts a primary name and an optional

period with extension.

Ex: Test.doc, input.data

For opening a file, a file stream is created and it is linked to the filename. A file stream can be

defined using the classes ifstream, ofstream and fstream that are contained in the header file fstream.

The class to be used depends upon the purpose whether to read data from the file or write data to it.

A file can be opened in two ways

 Using the constructor function of the class

▪ It is useful when only one file is used in the stream

 Using the member function open() of the class.

▪ It is useful to manage multiple files using one stream.

3

Opening files using constructor

1. Create a file stream object to manage the stream using the appropriate class. The class ofstream

is used to create the output stream and the class ifstream to create the input stream.

2. Initialize the file object with the desired filename.

Example 1: Statement opens a file named “results” for output.

ofstream outfile(“results”);

Example 2: Statement declares infile as an ifstream object and attaches it to the data for reading.

 ifstream infile(“data”)

Although there is a single program two file stream objects, outfile (to put data to the file) and infile

(to get data from the file)

Note: when a file is opened for writing only, a new file is created if there is no file of that name. If a

file by that name already exists then its contents are deleted and the file is presented as a clean file.

#include<iostream.h>

#include<fstream.h>

#include<conio.h>

void main()

{

clrscr();

int mk1,mk2,mk3;

ofstream outf("student.txt");

cout<<"Enter mark1,mark2,mark3\n";

cin>>mk1;

outf<<mk1<<"\n";

cin>>mk2;

outf<<mk2<<"\n";

cin>>mk3;

outf<<mk3<<"\n";

outf.close();

ifstream inf("student.txt");

inf>>mk1;

inf>>mk2;

inf>>mk3;

cout<<"MARK1=\n"<<mk1<<endl;

cout<<"MARK2=\n"<<mk2<<endl;

cout<<"MARK3=\n"<<mk3<<endl;

inf.close();

getch();

}

Output

Enter mark1, mark2, mark3

25

4

22

23

Opening files using open()

The function open() can he used to open multiple files that use the same stream object. For example

a user may want to process a set of files sequentially. In such cases user may create a single stream

object and use it to open each file in turn. This is done as follows.

file-stream-class stream-object;

stream-object.open(“filename”);

Example

ofstream outfile;

outfile.open(“DATA1”);

.....

....

outfile.close();

outfile.open(“DATA2”);

.....

....

outfile.close();

Note: First file is closed before opening the second one. This is because a stream can be connected to

only one file at a time.

#include<iostream.h>

#include<fstream.h>

#include<conio.h>

void main()

{

clrscr();

int im1,im2,im3;

int em1,em2,em3;

ofstream outf;

outf.open("internal.txt");

cout<<"Enter internal marks:\n mark1,mark2,mark3\n";

cin>>im1;

outf<<im1<<"\n";

cin>>im2;

outf<<im2<<"\n";

cin>>im3;

outf<<im3<<"\n";

outf.open("external.txt");

cout<<"Enter External marks:\n mark1,mark2,mark3\n";

cin>>em1;

outf<<em1<<"\n";

cin>>em2;

outf<<em2<<"\n";

5

cin>>em3;

outf<<em3<<"\n";

outf.close();

ifstream inf;

inf.open("internal.txt");

inf>>im1;

inf>>im2;

inf>>im3;

inf.open("external.txt");

inf>>em1;

inf>>em2;

inf>>em3;

cout<<"Total marks are\n";

cout<<"MARK1=\n"<<em1<<endl;

cout<<"MARK2=\n"<<em2<<endl;

cout<<"MARK3=\n"<<em3<<endl;

inf.close();

getch();

}

Output

Enter internal marks

Enter mark1, mark2, mark3

15

22

23

Enter External marks

Enter mark1, mark2, mark3

60

55

50

Total marks are

MARK1=75

MARK2=77

MARK3=73

Open (): File modes

While opening files using constructor or open () function, file opening mode can also be specified

along with file name.

Syntax

Stream-object.open(“filename”,mode)

Mode – specifies the purpose for which the file is opened. If the mode is absence in syntax then

default values are assumed.

6

The default values are

ios::in for ifstream functions meaning open for reading only

ios::out for ofstream functions meaning open for writing only

Several file mode constants are defined in ios class of C++ I/O System.

Parameter Meaning

ios::app Append to end-of-file

ios::ate Go to end-of-file on opening

ios::binary Binary file

ios::in Open file for reading only

ios::nocreate Open fails if the file doesn’t exists

ios::noreplace Open fails if the file already exists

ios::out Open file for writing only

ios:: trunc Delete the contents of the file if it exists

Note

1. Opening a file in ios::out mode also opens it in ios::trunc mode

2. Both ios::app and ios::ate take to the end of the file when it is opened. But ios::app add data

to the end of the file only. ios::ate add data or modify existing data anywhere in the file.

3. When fstream class is used, mode should be specified explicitly.

4. The mode can combine two or more parameters using bitwise OR operator.

Ex: This opens the file in the append mode but fails to open the file if it does not exist.

File pointers and their manipulations

Each file has two associated pointers known as the file pointers. These pointers can be used to move

through files while reading and writing. They are

1. input pointer or get pointer – reading the contents of a given file location

2. output pointer or put pointer – writing to a given file location

Each time an input or output operation takes place the appropriate pointer is automatically advanced

Default pointer position

• When a file is opened in read-only mode the input pointer is automatically set at the beginning.

• When a file is opened in write-only mode the existing contents are deleted and the output pointer

is set at the beginning

• When an existing file is opened in append mode it moves the output pointer to the end of the file

7

Functions for manipulation of file pointers

To move the file pointers to desired position, file stream classes support a set of functions. They are

Function Description

seekg() Moves get pointer to a specified location

seekp() Moves put pointer to a specified location

tellg() Gives the current position of the get pointer

tellp() Gives the current position of the put pointer

For example infile.seekg(10) moves the file pointer to the byte number 10.

Seek functions seekg() and seekp() can also use two arguments as follows

seekg(offset,refposition)

seekp(offset,refposition)

The parameter offset represents the number of bytes the file pointer is to be moved from the location

specified by the parameter refposition. The refposition takes one of the following three constants

defined in ios class.

ios::beg start of the file

ios::cur current position of the pointer

ios::end end of the file

Examples

fout.seekg(0,ios::end) - go to the end of file

fout.seekg(m,ios::cur) - go forward by m bytes from the current position

fout.seekg(-m,ios::end) - go backward by m bytes from the end

Sequential input and output operations

The file stream classes support a number of member functions for performing input and output

operations on files. They are

1. Put() and get() - read singe character at a time

2. Write() and read() - write and read blocks of binary data

Get and Put functions

Put()- writes a single character to its associated file stream

Get() – reads a single character from its associated file stream.

8

Example: Program to display a file content on the screen.

#include<iostream.h>

#include<fstream.h>

#include<conio.h>

#include<string.h>

void main()

{

char str[50];int i;char ch;

clrscr();

cout<<"enter any string\n";

cin>>str;

fstream file;

file.open("get.txt",ios::in|ios::out);

for(i=0;i<strlen(str);i++)

{

file.put(str[i]);

}

file.seekg(0);

cout<<"Output string is\n";

while(file)

{

file.get(ch);

cout<<ch;

}

getch();

}

Write and Read functions program

#include<iostream.h>

#include<fstream.h>

#include<conio.h>

#include<string.h>

void main()

{

int a[5]={10,20,30,40,50};int i;

clrscr();

fstream file;

file.open("mark.txt",ios::in|ios::out);

for(i=0;i<5;i++)

{

file.write((char *) &a,sizeof(a));

}

file.seekg(0);

cout<<"Entered marks are\n";

while(file)

{

for(i=0;i<5;i++)

{

file.read((char *) &a,sizeof(a));

cout<<a[i];

}

9

}

file.close();

getch();

}

Write and Read functions program – using class and object

#include<iostream.h>

#include<fstream.h>

#include<conio.h>

#include<string.h>

class student

{

int m1,m2;

public:

void get()

{

cout<<"enter m1,m2\n";

cin>>m1>>m2;

}

void display()

{

cout<<"Marks are\n";

cout<<m1<<endl<<m2<<endl;

}

};

void main()

{

student s;

clrscr();

fstream file;

file.open("mark1.txt",ios::in|ios::out);

s.get();

file.write((char *) &s,sizeof(s));

file.seekg(0);

cout<<"Entered marks are\n";

file.read((char *) &s,sizeof(s));

s.display();

file.close();

getch();

}

TEMPLATES

Using templates, it is possible to create generic functions and classes. In a generic function or class,

the type of data upon which the function or class operates is specified as a parameter.

Thus, we can use one function or class with several different types of data without having to

explicitly recode specific versions for each data type.

10

Generic functions (Function Templates)

A generic function defines a general set of operations that will be applied to various types of data.

The type of data that the function will operate upon is passed to it as a parameter. Through a generic

function, a single general procedure can be applied to a wide range of data.

The general form of a template function definition is shown here:

template <class Ttype>

return-type func-name (Ttype a1, Ttype a2,……., Ttype n)

{

// body of function

}

Here, Ttype is a placeholder name for a data type used by the function.

Write a generic function swap to interchange any two variables (integer, character, and float).

#include <iostream.h>

template <class T>

void swap(T p, T q)

{

T temp;

temp = p;

p = q;

q = temp;

cout<<p<<”\t”<<q;

}

void main()

{

int i=10, j=20;

float x=10.1, y=23.3;

char a='x', b='z';

swap (i, j); /*swaps integers*/

swap (x, y); /* swaps floats*/

swap (a, b); /*swaps chars*/

}

Program 8.1

Output:

20 10

23.2 10.1

z x

Note: The line: template <class T> void swap (T p, T q) tells the compiler two things: that a template

is being created and that a generic definition is beginning. Here, T is a generic type that is used as a

placeholder. After the template portion, the function swap () is declared, using T as the data type of

the values that will be swapped. In main () , the swap () function is called using three different types

of data: ints, floats, and chars. Because swap () is a generic function, the compiler automatically

11

creates three versions of swap (): one that will exchange integer values, one that will exchange

floating-point values, and one that will swap characters.

A Function with Two Generic Types:

We can define more than one generic data type in the template statement by using a comma

separated list. For example; below program creates a template function that has two generic types.

#include <iostream.h>

template <class T1, class T2>

void myfunc (T1 x, T2 y)

{

cout << x << “\t” << y << “\n”;

}

void main()

{

myfunc (10, "I like C++");

myfunc (98.6, 19);

}

Output:

10 I like C++

98.6 19

Program 8.2

Generic Function Restrictions

Generic functions are similar to overloaded functions except that they are more restrictive. When

functions are overloaded, you may have different actions performed within the body of each

function. But a generic function must perform the same general action for all versions- only the type

of data can differ.

Generic class (class templates)

In addition to generic functions, we can also define a generic class. When we do this, we create a

class that defines all the algorithms used by that class; however, the actual type of the data being

manipulated will be specified as a parameter when objects of that class are created.

Generic classes are useful when a class uses logic that can be generalized. For example, the same

algorithms that maintain a queue of integers will also work for a queue of characters, and the same

mechanism that maintains a linked list of mailing addresses will also maintain a linked list of auto

part information.

The general form of a generic class declaration is:

template <class T>

class class-name

{

12

};

General form of a member function definition of template class:

template <class T>

Ret_type class_name <T>:: function()

{

}

General form of object creation of a template class:

class_name <data_type> object1, object2,…….

Write a program to add two numbers (either two integers or floats) using class templates.

#include <iostream.h>

template <class T>

class Add

{

T a, b;

public:

void getdata();

void display();

};

template <class T>

void Add <T>::getdata()

{

cout<<”Eneter 2 nos”;

cin>>a>>b;

}

template <class T>

void Add <T>::display()

{

cout<<”sum=”<<a+b;

}

void main()

13

{

Add <int> ob1;

Add <float> ob2;

ob1.getdata();

ob1.display();

ob2.getdata();

ob2.display();

}

Output:

Eneter 2 nos 4 5

Sum=9

Eneter 2 nos 4.8 5.1

Sum=9.9

Exception handling

The two most common types of bugs happen in a program are logic errors and syntactic errors.

Logic errors – Poor understanding of problem and solution procedure

Syntactic errors – Poor understanding of language

Debugging and testing procedure can solve this.

We often come across some peculiar problems other than logic or syntax errors. They are known as

exceptions. Exceptions are runtime unusual conditions that a program may encounter while

executing.

Example: Division by zero, access to an array outside of its bounds, running out of memory or disk

space.

When a program encounters an exceptional condition it is important that it is identified and dealt

with effectively.

Basics of exception handling

Exceptions are of two kinds. They are,

1. Synchronous exception

“Out-of-range-index” and “over-flow” are belonging to this type.

2. Asynchronous exception

Errors caused by events beyond the control of the program. Ex: keyboard interrupts

14

Exception handling mechanism in C++ is designed to handle only synchronous exception. Purpose

of exception handling mechanism is to provide means to detect and report an “exceptional

circumstance” so that appropriate action can be taken.

It involves the following steps

1. Find the problem (Hit the exception)

2. Inform that an error has occurred. (Throw the exception)

3. Receive the error information (Catch the exception)

4. Take corrective action (Handle the exception)

The error handling code basically consists of two segments, one to detect errors and to throw

exception, and other to catch the exception and to take appropriate actions.

Exception handling mechanism

This mechanism is basically built upon tree keywords

1. Try

2. Throw

3. Catch

Try is used to preface a bloc of statements which may generate exceptions. This block is called as try

block.

When an exception is detected, it is thrown using a throw statement in the try block. A catch block

defined by the keyword catch ‘catches’ the exception and handles it appropriately.

The general form of these two blocks is

.........

.........

try

{

........

throw exception;

.........

.........

}

catch(type arg)

{

.........

.........

}

Note: Exceptions are objects used to transmit information about a problem.

When the try block throws an exception the program control leaves the try block and leaves the catch

statement of the catch block.

15

If the type of object thrown matches the arg type in catch statement catch block is executed for

handling the exception.

If they do not match the program is aborted with the help of the abort () function which is invoked by

default. When no exception is detected and thrown control goes to the statement immediately after

catch block.

Multiple catch statements

It is possible that a program segment has more than one condition to throw and exception. In such

cases, we can associate more than one catch statement with a try as shown below.

try

{

Try block;

}

catch(type1 arg)

{

//catch block1

}

catch(type2 arg)

{

//catch block2

}

.

.

catch(typeN arg)

{

//catch blockN

}

When an exception is thrown, the exception handlers are searched in order for an appropriate match.

The first handler that yields a match is executed.

After executing the handler, the controller goes to the first statement after the last catch block for that

try.

When no match is found, the program is terminated.

Catch all exceptions

In some situations it may not be able to anticipate all possible types of exception and therefore may

not be able to design independent catch handlers to catch them.

In such case a catch statement is forced to catch all exceptions instead of a certain type alone.

catch (.....)

{

........

16

.........

}

Specifying exception

It is possible to restrict a function to throw only certain specified exception. This is achieved by

adding a throw list clause to the function definition.

The general form is

Type functions (arg-list) throw (type-list)

{

Function body

}

Type-list specifies the type of exception that may be thrown. Throwing any other type of exception

will cause abnormal program termination

Ex: void test(int x) throw(int, double)

Formatted console I/O operations

C++ supports a number of features that could be used for formatting the output. These features

include

• ios class functions and flags

• Manipulators

• User-defined output functions

The ios class contains a large number of member functions that would help us to format the output in

a number of ways. The most important ones among them are

Function Task

width () To specify the required field size for displaying an output value

precision() To specify the number of digits to be displayed after the

decimal point or a float value

fill() To specify a character that is used to fill the unused portion of a

field.

setf() To specify format flags that can control the form of output

display(such as left-justification and right-justification)

unsetf() To clear the flags specified.

17

Manipulators are special functions that can be included in the I/O statements to alter the format

parameters of a stream. To access these manipulators, the file iomanip should be included in the

program. The most important manipulators are,

Manipulators Equivalent ios function

setw() width ()

setprecision() precision()

setfill() fill()

setiosflags() setf()

resetiosflags() unsetf()

In addition to these functions supported by the C++ library user can create their own manipulator

functions to provide any special output formats.

Defining field width: width ()

Width () function is used to define the width of a field necessary for the output of an item. Since it is

a member function, an object is used to invoke it as shown below

cout.width(w)

Where w is the field width (number of columns). The output will be printed in a field of w characters

wide at the right end of the field.

The width() function can specify the field width for only one item(the item that follows

immediately).

Example

cout.width(5)

cout<<543<<12<<”\n”;

will produce the following output

The value 543 is printed right-justified in the first five columns. The specification width(5) does not

retain the setting for printing the number 12. This can be improved as follows.

cout.width(5)

cout<<543;

cout.width(5);

cout<<12<<”\n”;

 5 4 3 1 2

18

This produces the following output

C++ never truncates the values and therefore if the specified field width is smaller than the size of

the value to be printed, C++ expands the field to fit the value.

Setting precision: precision()

By default, the floating numbers are printed with six digits after the decimal point. However user can

specify the number of digits to be displayed after the decimal point while printing the floating-point

numbers. This can be done by using the precision() member function as

cout.precision(d)

where d is the number of digits to the right of the decimal point.

For example

cout.precision(3);

cout<<sqrt(2)<<”\n”;

cout<<3.14159<<”\n”;

will produce the following output

1.141

3.142

precision() retains the setting in effect until it is reset. It is possible to combine the field specification

with the precision setting.

Example

cout.precision(2);

cout.width(5);

cout<<1.2345

It instructs “Print two digits after the decimal point in a field of five character width”. Thus output

will be

 5 4 3 1 2

 1 . 2 3

19

Filling and Padding: fill()

While printing the values using much larger field widths than required by the values the unused

positions of the field are filled with whitespaces by default. However we can use the fill() function to

fill the unused positions by any desired character. It is used in the following form

cout.fill(ch);

where ch represents the character which is used for filling the unused positions.

cout.fill(‘*’);

cout.width(10);

cout<<5250<<”\n”;

The output would be

Formatting flags, Bit-fields and setf()

When the function width() is used, the value is printed right-justified in the field width created.

But is a usual practice to print the text left-justified. How do we get a floating point number printed

in the scientific notation?

The setf(), a member function of the ios class, can provide answers to these and many other

formatting questions. The setf() (setf stands for set flags) function can be used as follows

cout.setf(arg1,arg2)

The arg1 is one of the formatting flags defined in the class ios. The formatting flag specifies the

format action required for the output. Arg2 known as bit field specifies the group to which the

formatting flag belongs

* * * * * * 5 2 5 0

20

UNIT V

Standard Template Library – Manipulating Strings – Object Oriented Systems Development

STANDARD TEMPLATE LIBRARY (STL)

The Standard Template Library (STL) is a set of C++ template classes to provide common

programming data structures and functions such as lists, stacks, arrays, etc. It is a library of container

classes, algorithms, and iterators. It is a generalized library and so, its components are parameterized.

COMPONENTS OF STL

STL has three components

• Algorithms

• Containers

• Iterators

Algorithms

The header algorithm defines a collection of functions especially designed to be used on ranges of

elements. They act on containers and provide means for various operations for the contents of the

containers. STL includes many different algorithms to provide support to take such as initializing,

searching, popping, sorting, merging and copying. · They are implemented by template functions.

Containers

Containers or container classes store objects and data. There are in total seven standard “first-class”

container classes and three container adaptor classes and only seven header files that provide access

to these containers or container adaptors.

Types of containers

1. Sequence Containers

• They store elements in a linear sequence like a line.

• Each element is related to other elements by its position along the line.

• They all expand themselves through allow insertion of elements and support a number of

operations.

• Some types of sequence container are vector, list, deque, etc

Vector

· It is a dynamic array.

· It allows insertion & deletion at back & permits direct access to any element.

List

21

· It is a bidirectional linear list.

· It allows insertion and deletion anywhere in the list.

Dequeue

· It is a double ended queue.

· It allows insertion and deletion at both ends.

1. Associative Container

· They are design to support direct access to elements using keys. They are 4 types.

Set

· It is an associative container for storing unique sets.

· Here, is no duplicate are allowed.

Multisets

· Duplicates are allowed.

Map

· It is an associate container for storing unique key.

· Each key is associated with one value.

Multimap

• It is an associate container for storing key value pairs in which one key may be associated with

more than one value.

• We can search for a desired student using his name as the key.

• The main difference between a map and multimap is that, a map allows only one key for a given

value to be stored while multimap permits multiple key.

3. Derived Container

· STL provides 3 derived container, stack, queue, priority queue. They are also known as container

adaptor. They can be created from different sequence container.

Example: queue, priority_queue, stack

4. Unordered Associative Containers : implement unordered data structures that can be quickly

searched

Iterators

• Iterators are used for working upon a sequence of values. They are the major feature that allows

generality in STL. It is an object like a pointer that points to an element in a container. Iterators

are used to move through the contents of container. Just like pointers it can be incremented or

decremented.

• The STL implements five different types of iterators.

http://quiz.geeksforgeeks.org/queue-container-adaptors-the-c-standard-template-library-stl/
http://quiz.geeksforgeeks.org/priority-queue-container-adaptors-the-c-standard-template-library-stl/
http://quiz.geeksforgeeks.org/stack-container-adaptors-the-c-standard-template-library-stl/

22

• These are input iterators (that can only be used to read a sequence of values), output iterators

(that can only be used to write a sequence of values), forward iterators (that can be read,

written to, and move forward), bidirectional iterators (that are like forward iterators, but can

also move backwards) and random access iterators (that can move freely any number of steps

in one operation).

OBJECT ORIENTED SYSTEMS DEVELOPMENT

CLASSICAL SOFTWARE DEVELOPMENT LIFE CYCLE

Software development life cycle (SDLC) is a series of phases that provide a common understanding

of the software building process. The good software engineer should have enough knowledge on

how to choose the SDLC model based on the project context and the business requirements.

Requirements analysis

This phase focuses on the requirements of the software to be developed. It determines the processes

that are to be incorporated during the development of the software. To specify the requirements,

users' specifications should be clearly understood and their requirements be analyzed. This phase

involves interaction between the users and the software engineers and produces a document known

as Software Requirements Specification (SRS).

Design

This phase determines the detailed process of developing the software after the requirements have

been analyzed. It utilizes software requirements defined by the user and translates them into software

representation. In this phase, the emphasis is on finding solutions to the problems defined in the

requirements analysis phase.

Coding

This phase emphasizes translation of design into a programming language using the coding style and

guidelines. The programs created should be easy to read and understand. All the programs written

are documented according to the specification.

Testing

This phase ensures that the software is developed as per the user's requirements. Testing is done to

check that the software is running efficiently and with minimum errors. It focuses on the internal

logic and external functions of the software and ensures that all the statements have been exercised

(tested). Note that testing is a multistage activity, which emphasizes verification and validation of the

software.

23

Implementation and maintenance

This phase delivers fully functioning operational software to the user. Once the software is accepted

and deployed at the user's end, various changes occur due to changes in the external environment.

The changes also occur due to changing requirements of the user and changes occurring in the field

of technology. This phase focuses on modifying software, correcting errors, and improving the

performance of the software.

OBJECT-ORIENTED SOFTWARE DEVELOPMENT

In object-oriented software engineering, the software developer identifies and organizes the

application in terms of object-oriented concepts, prior to their final representation in any specific

programming language or software tools. The major phases of software development using object–

oriented methodology are object-oriented analysis, object-oriented design, and object-oriented

implementation.

Object–Oriented Analysis

In this stage, the problem is formulated, user requirements are identified, and then a model is built

based upon real–world objects. The analysis produces models on how the desired system should

function and how it must be developed. The models do not include any implementation details so

that it can be understood and examined by any non–technical application expert.

Steps in object-oriented Analysis

24

Problem understanding

First step in analysis process is to understand the problem of user. The problem should be refined and

redefined in terms of computer system engineering to suggest a computer-based solution. The

problem statement provides the basis for drawing the requirements specification of both the user and

the software.

Requirement specification

Once the problem is clearly defined a list of user requirement is generated. A clear understanding

should exist between the user and the developer of what is required. Based on user requirements the

specification for the software should be drawn. The develop should state clearly,

What outputs are required?, What processes are involved to produce these outputs?, What inputs are

necessary?, What resources are required?, etc.

This specification serves as a reference to test the final product.

Identification of objects

The best place to look for objects is the application itself. The application may be analyzed by using

one of the following two approaches.

1. Dataflow diagram (DFD)

2. Textual Analysis (TA)

Data Flow diagram

A dataflow diagram indicates how the data moves from one point to another in the system. The

boxes and data stores in the data flow diagram are gold candidates for the objects. The process

bubbles correspond to the procedures.

25

Textual Analysis

It is based on the textual de3scription of the problem or proposed solution. The description may be of

one or two sentences or one or two paragraphs depending on the type and complexity of the problem.

Using one of the above approaches,

1. Prepare an object table

2. Identify the objects that belong to the solutions space.

3. Identify the attributes of the solution space objects.

Identification of services

Once the objects in the solution space have been identified the next step is to identify a set of

services that each object should offer.

OBJECT–ORIENTED DESIGN

Object-oriented design includes two main stages, namely, system design and object design.

System Design

In this stage, the complete architecture of the desired system is designed. The system is conceived

as a set of interacting subsystems that in turn is composed of a hierarchy of interacting objects,

grouped into classes. System design is done according to both the system analysis model and the

proposed system architecture. Here, the emphasis is on the objects comprising the system rather

than the processes in the system.

Object Design

In this phase, a design model is developed based on both the models developed in the system

analysis phase and the architecture designed in the system design phase. All the classes required are

identified. The designer decides whether

• new classes are to be created from scratch,

• any existing classes can be used in their original form, or

• New classes should be inherited from the existing classes.

Reusability of classes from the previous designs, classification of objects into subsystems and

determination of appropriate protocols are some of the considerations of the design stage. The OOD

approach may involve the following steps

26

1. Review of objects created in the analysis phase

2. Specification of class dependences

3. Organization of class hierarchies

4. Design of classes

5. Design of member functions

Review of problem space objects

The main objective of this review is to refine the objects in terms of their attributes and operations

and to identify other objects that are solution specific.

Class dependencies

It is to Analysis the relationship between the classes. It is important to identify appropriate classes to

represent the objects and establish their relationships. The major relationships in design are

1. Inheritance relationships

2. Containment relationships

3. Use relationships

Organization of class hierarchies

Organization of the class hierarchies involves identification of common attributes and functions

among a group of related classes and then combining them to form a new class. The new class will

serve as the super-class and the others as subordinate-class.

This process may be repeated at different levels of abstraction with the sole objective of extending

the classes. The Pictorial representation is

27

Design of classes

Some guidelines should be considered while designing classes are

1. A class should be dependent on as few classes as possible

2. Interaction between two classes must be explicit.

3. Each subordinate class should be designed as a specialization of the base class with the sole

purpose of adding additional features.

4. The top class of a structure should represent the abstract model of the target concept

5. Function of a class should be defined as public interface.

Design of member function

The member function defines the operations that are performed on the objects data. Top-down

functional decomposition technique is used to design them.

OBJECT–ORIENTED IMPLEMENTATION AND TESTING

In this stage, the design model developed in the object design is translated into code in an

appropriate programming language or software tool. The databases are created and the specific

hardware requirements are ascertained. Once the code is in shape, it is tested using specialized

techniques to identify and remove the errors in the code.

C++ STRING CLASS AND ITS APPLICATIONS

A string defined as a sequence of characters. In C++ we can store string by one of the two ways

1. C style strings (or) Character Array

2. String class

C++ has in its definition a way to represent sequence of characters as an object of class. This class

is called std:: string. String class stores the characters as a sequence of bytes with a functionality of

allowing access to single byte character.

Difference between Character Array and String Class

Character Array String class

A character array is simply an array of

characters can terminated by a null character.

A string is a class which defines objects that

be represented as stream of characters.

Size of the character array has to allocated

statically, more memory cannot be allocated at

In case of strings, memory is allocated

dynamically. More memory can be allocated

https://www.geeksforgeeks.org/storage-for-strings-in-c/

28

run time if required. Unused allocated memory

is wasted in case of character array.

at run time on demand. As no memory is

preallocated, no memory is wasted.

Implementation of character array is

faster than std:: string.

Strings are slower when compared to

implementation than character array.

Character array do not offer much inbuilt

functions to manipulate strings.

String class defines a number of

functionalities which allow manifold

operations on strings.

String class is part of C++ library that supports a lot much functionality over C style strings. This

class is very large and includes many constructors, member functions and operators.

Operations on strings

1. Creating String Objects

1) string s1; (null string) //using constructor with no argument

2) string s2(“xyz”); //using one argument constructor

3) s1=s2; //assigning string objects

4) cin>>s1; //reading through keyboard

5) getline (cin s1)

2. Input Functions

• getline() :- This function is used to store a stream of characters as entered by the user in the

object memory.

• push_back() :- This function is used to input a character at the end of the string.

• pop_back() :- Introduced from C++11(for strings), this function is used to delete the last

character from the string.

3. Other string Manipulation functions

• copy(“char array”, len, pos) :- This function copies the substring in target character

array mentioned in its arguments. It takes 3 arguments, target char array, length to be

copied and starting position in string to start copying.

• swap() :- This function swaps one string with other.

• size() -- returns the length of the string

• length() -- returns the length of the string (same as size())

29

• capacity() -- returns the current allocated size of the string object (allocation might be larger

than current usage, which is the length)

• resize(X, CH) -- changes the string's allocated size to X. If X is bigger than the currently

stored string, the extra space at the end is filled in with the character CH

• clear() -- delete the contents of the string. Reset it to an empty string

• empty() -- return true if the string is currently empty, false otherwise

• at(X) -- return the character at position X in the string. Similar to using the [] operator

• Substrings

substr(X, Y) -- returns a copy of the substring (i.e. portion of the original string) that starts at

index X and is Y characters long

substr(X) -- returns a copy of the substring, starting at index X of the original string and

going to the end

• Append -- several versions. All of these append something onto the END of the original

string (i.e. the calling object, before the dot-operator)

append(str2) -- appends str2 (a string or a c-string)

• Compare

str1.compare(str2) -- performs a comparison, like the c-string function strcmp. A negative

return means str1 comes first. Positive means str2 comes first. 0 means they are the same

str1.compare(str2, X, Y) -- compares the portions of the strings that begin at index X and

have length Y. Same return value interpretation as above

• Find

str.find(str2, X) -- returns the first position at or beyond position X where the string str2 is

found inside of str

str.find(CH, X) -- returns the first position at or beyond position X where the character CH is

found in str

• Insert

str.insert(X, Y, CH) -- inserts the character CH into string str Y times, starting at position X

str.insert(X, str2) -- inserts str2 (string object or char array) into str at position X

30

Example:

// C++ program to demonstrate various function string class

#include <bits/stdc++.h>

int main()

{

 string str1("first string"); // initialization by raw string

 string str2(str1); // initialization by another string

 string str3(5, '#'); // initialization by character with number of occurence

 // initialization by part of another string

 string str4(str1, 6, 6); // from 6th index (second parameter)

 // 6 characters (third parameter)

 // initialization by part of another string : iterators version

 string str5(str2.begin(), str2.begin() + 5);

 cout << str1 << endl;

 cout << str2 << endl;

 cout << str3 << endl;

 cout << str4 << endl;

 cout << str5 << endl;

 string str6 = str4; // assignment operator

 str4.clear(); // clear function deletes all character from string

 // both size() and length() return length of string and // they work as synonyms

 int len = str6.length(); // Same as "len = str6.size();"

 cout << "Length of string is : " << len << endl;

 // a particular character can be accessed using at / // [] operator

 char ch = str6.at(2); // Same as "ch = str6[2];"

 cout << "third character of string is : " << ch << endl;

 // front return first character and back returns last charcter

 // of string

 char ch_f = str6.front();

 char ch_b = str6.back();

 // append add the argument string at the end

 str6.append(" extension"); // same as str6 += " extension"

 cout << str6 << endl;

 cout << str4 << endl;

 // substr(a, b) function returns a substring of b length // starting from index a

31

 cout << str6.substr(7, 3) << endl;

 // erase(a, b) deletes b characters at index a

 str6.erase(7, 4);

 cout << str6 << endl;

 str6 = "This is a examples";

 // replace(a, b, str) replaces b characters from a index by str

 str6.replace(2, 7, "ese are test");

 cout << str6 << endl;

string s1(“Road”);

string s2(“Read”);

s1.swap(s2);

}

ABSTRACT CLASSES

A class which represents generalization and provides functionality which is only intended to be

extended but not instantiated is called as Abstract Class.

Abstract classes: Properties

• Objects cannot be created for the abstract classes. If a class has only one method as

abstract, then that class must be an abstract class.

• The child class which extends an abstract class must define all the methods of the abstract

class.

• If the abstract method is defined as protected in the parent class, the function

implementation must be defined as either protected or public, but not private.

• The signatures of the methods must match, optional parameter given in the child class will

not be accepted and error will be shown.

• It may contain static variables or methods

• It may contain constructor but it can’t be called directly since abstract class can’t be

instantiated.

#include <iostream>

// Base class

class Shape

 {

 public:

 // pure virtual function providing interface framework.

 virtual int getArea() = 0;

 void setWidth(int w) {

 width = w;

 }

 void setHeight(int h) {

 height = h;

 }

32

 protected:

 int width;

 int height;

};

// Derived classes

class Rectangle: public Shape {

 public:

 int getArea() {

 return (width * height);

 }

};

class Triangle: public Shape {

 public:

 int getArea() {

 return (width * height)/2;

 }

};

void main() {

 Rectangle Rect;

 Triangle Tri;

 Rect.setWidth(5);

 Rect.setHeight(7);

 // Print the area of the object.

 cout << "Total Rectangle area: " << Rect.getArea() << endl;

 Tri.setWidth(5);

 Tri.setHeight(7);

 // Print the area of the object.

 cout << "Total Triangle area: " << Tri.getArea() << endl;

 return 0;

}

