Unit –III
Inheritance: Extending classes – Pointers – Virtual functions and polymorphism.

Inheritance:
The process of deriving a new class from an existing class is called as inheritance. The existing class is referred to as the base class and the new class is called as the derived class or subclass.
Advantage: reusability and save time

There are several types of inheritance. They are,

1. Single inheritance

2. Multi-level inheritance

3. Hierarchical inheritance
4. Multiple inheritance

5. Hybrid inheritance
Defining Derived Classes

A derived class can be defined by specifying its relationship with the base class in addition to its own details. The general form of defining a derived class is

class derived-class-name: visibility-mode base-class-name
{

..........
..........

..........

};

The colon indicates that the derived-class is derived from the base-class. The visibility-mode is optional and if present may be either private or public or protected. Visibility mode specifies whether the features of the base class are privately or publicly derived. The default visibility-mode is private.
Example
class ABC : private XYZ //private derivation
{

Members of ABC

};
class ABC : public XYZ //public derivation
{

Members of ABC

};
class ABC : XYZ // private declaration by default
{

Members of ABC

};
· When a base class is privately inherited by a derived class, ‘public members’ of the base class become ‘private members’ they are inaccessible to the objects of the derived class.
· When the base class is publicly inherited ‘public members’ of the base class become ‘public members’ of the derived class and therefore they are accessible to the objects of the derived class.
· In both the cases, private members are not inherited and the private members of a base class will never become the members of its derived class.
Making a private member inheritable
A private member of a base class cannot be inherited and therefore it is not available for the derived class directly. To inherit private data to a derived class, visibility mode of the private member is modified so that it is accessible to all the other functions of the program.

C++ provides a visibility modifier called protected to support this. A member declared as protected is accessible by the member functions within its class and any class immediately derived from it.

· When a protected member is inherited in public mode, it becomes protected in the derived class too and therefore is accessible by the member functions of the derived class. It is used in further inheritance also.

· A protected member inherited in the private mode it becomes private in the derived class. Although it is available to the member function of the derived class, it is not available for further inheritance.

Single inheritance
A derived class inherits only one base class is called single inheritance. This is simplest form of inheritance. The pictorial representation of single inheritance is

Here A is base class and B is derived class. Object is created for derived class to access all the data and member functions concerned with both base and derived class.

Example: Student internal mark detail
#include<iostream.h>

#include<conio.h>

class student

{

int regno;

char name[10];

public:

void getdata()

{

cout<<"enter regno and name\n";

cin>>regno>>name;

}

void putdata()

{

cout<<"regno is\n";

cout<<regno;

cout<<"name is\n";

cout<<name;

}

};

class intnl:public student

{

int m1,m2,m3;

public:

void getmark()

{

cout<<"enter m1,m2,m3\n";

cin>>m1>>m2>>m3;

}

void putmark()

{

cout<<"Internal marks are\n";

cout<<m1<<m2<<m3;

}

};

void main()

{

clrscr();

intnl i;

i.getdata();

i.getmark();

i.putdata();

i.putmark();

getch();

}

Output:

Register number is : 101

Name is : Priya
Internal marks are

20

30

25

Multilevel inheritance

The mechanism of deriving a class from another derived class is known as multilevel inheritance. That is it has one base class and one or more derived classes. The pictorial representation of multilevel inheritance is

Here A is base class; B and C are derived classes. Object is created for derived class2 to access all the data and member functions concerned with both base and derived classes.

Example program: Employee payroll preparation
#include<iostream.h>

#include<conio.h>

#include<string.h>

class basic

{

protected:

int empid;

char name[10];

int bs;

public:

void getdata()

{

cout<<"enter empid,name and basicsalary\n";

cin>>empid>>name>>bs;

}

void putdata()

{

cout<<"empid,name and basic salary is\n";

cout<<empid<<endl<<name<<endl<<bs<<endl;

}

};

class allw:public basic

{

protected:

int TA,MA,HRA;

public:

void doallw()

{

TA=bs*0.45;

MA=bs*0.75;

HRA=bs*0.55;

}

void putallw()

{

cout<<"allowances are\n";

cout<<"TA:\n"<<TA<<endl;

cout<<"MA:\n"<<MA<<endl;

cout<<"HRA:\n"<<HRA<<endl;

}

};

class Net:public allw

{

int NS;

public:

void netsalary()

{

int NS=bs+TA+MA+HRA;

cout<<"netsalary is\n";

cout<<NS;

}

};

void main()

{

clrscr();

Net n;

n.getdata();

n.putdata();

n.doallw();

n.putallw();

n.netsalary();

getch();

}

Output

Empid, name and basic salary is

502

Karthikesh
5000

Allowances are

TA: 500

MA: 600

HRA: 550

Net salary is 6650
Hierarchical Inheritance
If properties of one base class are inherited by more than one derived class then it is known as hierarchical inheritance. The pictorial representation of hierarchical inheritance is

Here A is base class; B, C and D are derived classes. These derived classes can serve as a base class for the lower level classes if they exist. Every arrow indicates a hierarchical path. Object is created for the hierarchical path chosen by the user. It may not be essential to create object for all derived classes simultaneously.
Example:
#include<iostream.h>

#include<conio.h>

class student

{

int regno;

char name[10];

public:

void getdata()

{

cout<<"enter regno\n";

cin>>regno;

cout<<"enter name\n";

cin>>name;

}

void putdata()

{

cout<<"regno is\n";

cout<<regno;

cout<<"name is\n";

cout<<name;

}

};

class intnl:public student

{

int m1,m2,m3;

public:

void getmark()

{

cout<<"enter internal marks\n";

cout<<"enter m1,m2,m3\n";

cin>>m1>>m2>>m3;

}

void putmark()

{

cout<<"internal marks are\n";

cout<<m1<<m2<<m3;

}

};

class extnl:public student

{

int m1,m2,m3;

public:

void getemark()

{

cout<<"enter external marks\n";

cout<<"enter m1,m2,m3\n";

cin>>m1>>m2>>m3;

}

void putemark()

{

cout<<"external marks are\n";

cout<<m1<<m2<<m3;

}

};

void main()

{

clrscr();

intnl i;

extnl e;

i.getdata();

i.getmark();

i.putdata();

i.putmark();

e.getemark();

e.putemark();

getch();

}

Output

Register number is : 101

Name is : Priya
Internal marks are

20

30

25
External marks are

65
55

60

Multiple Inheritance
A derived class with multiple base classes is called multiple inheritance. Its pictorial representation is

Here A and B are base classes. C is a derived class. In multiple inheritance also object is created for derived class to access the data and member functions of base and derived classes.
#include<iostream.h>

#include<conio.h>

class acct

{

int acctno;

char name[10];

int balance;

public:

void get()

{

cout<<"enter acctno,name and balance\n";

cin>>acctno>>name>>balance;

}

void show()

{

cout<<"Ur Acctno,name and balance\n";

cout<<acctno<<name<<balance;

}

};

class loan

{

int acctno;

int loanamt;

public:

void get1()

{

cout<<"enter acctno and loanamt\n";

cin>>acctno>>loanamt;

}

void show1()

{

cout<<"Acctno and loanamt\n";

cout<<acctno<<loanamt;

}

};

class customer:public acct,public loan

{

public:

void validate()

{

if(balance<loanamt)

cout<<"loan can’t be sanctioned";

else

cout<<"loan is sanctioned";

}

};

void main()

{

clrscr();

customer c;

c.get();

c.get1();

c.show();

c.show1();

c.validate();

getch();

}
Output

Enter acctno, name and balance

101
Raju

15000

Enter acctno and loanamt
101

5000

Loan is sanctioned
Hybrid inheritance

When different inheritance types are combined to form a new inheritance it is named as hybrid inheritance. The following picture represents combination of both hierarchical and multiple inheritance.

Here A is base class. B and C are derived classes. And for next level, B and C serve as base classes for derived class D. Object is created for derived class D to access the data and member functions of base and derived classes
Virtual Base Class

Consider a situation where all the three kinds of inheritance namely multilevel, multiple and hierarchical inheritance are involved as shown below.

The child has two direct base classes 'parent1' and 'parent2' which themselves have a common base class 'grandparent'. The child inherits the properties of grandparent via two separate paths and directly. The grandparent is sometimes referred to as indirect base class.

Sine all the public and protected members of grandparent are inherited into child twice it introduces ambiguity and should be avoided.

The duplication of inherited members due to these multiple paths can be avoided by making the common base class as virtual base class while declaring the direct or intermediate base classes as shown below

Class A

{

.....

......

};

Class B1: virtual public A

{

.....

......

};

Class B2: virtual public A

{

.....

......

};

Class C: public B1, public B2

{

.....

......

};

When a class is made a virtual base class, C++ takes necessary care to see that only one copy of that class is inherited, regardless of how many inheritance paths exist between the virtual base class and a derived class.

#include<iostream.h>

#include<conio.h>

#include<math.h>

class student

{

protected:

int regno;

char name[10];

public:

void getdata()

{

cout<<"enter regno\n";

cin>>regno;

cout<<"enter name\n";

cin>>name;

}

void putdata()

{

cout<<"regno is\n";

cout<<regno<<endl;

cout<<"name is\n";

cout<<name<<endl;

}

};

class intnl:virtual public student

{

protected:

int im1,im2,im3;

public:

void getmark()

{

cout<<"enter internal marks\n";

cout<<"enter m1,m2,m3\n";

cin>>im1>>im2>>im3;

}

void putmark()

{

cout<<"internal marks are\n";

cout<<im1<<endl<<im2<<endl<<im3<<endl;

}

};

class extnl:virtual public student

{

protected:

int em1,em2,em3;

public:

void getemark()

{

cout<<"enter external marks\n";

cout<<"enter m1,m2,m3\n";

cin>>em1>>em2>>em3;

}

void putemark()

{

cout<<"external marks are\n";

cout<<em1<<endl<<em2<<endl<<em3<<endl;

}

};

class result:public intnl,public extnl

{

protected:

int tm1,tm2,tm3;

public:

void total()

{

tm1=im1+em1;

tm2=im2+em2;

tm3=im3+em3;

}

void display()

{

cout<<"total marks are\n";

cout<<tm1<<endl;

cout<<tm2<<endl;

cout<<tm3<<endl;

}

};

void main()

{

clrscr();

result r;

r.getdata();

r.getmark();

r.getemark();

r.putdata();

r.putmark();

r.putemark();

r.total();

r.display();

getch();

}

Abstract Classes
An abstract class is one that is not used to create objects. An abstract class is designed only to act as a base class. It is a design concept in program development and provides a base upon which other classes may be built.
Constructors in Derived Classes

· Constructors play an important role in initializing objects. In inheritance as long as base class constructor takes no arguments, the derived class need not have a constructor function.
· However if any base class contains a constructor with one or more arguments, then it is compulsory for the derived class to have a constructor and pass the arguments to the base class constructors.

· In inheritance, object is created for derived class. So it is responsibility of derived class to pass arguments to the base class constructor.

· The constructor of the derived class receives the entire list of values as its arguments and passes them on to the base constructors in the order in which they are declared in the derived class.

· When both the derived and base classes contain constructors, the base constructor is executed first and then the constructor in the derived class is executed.
The general form of defining a derived constructor is
#include<iostream.h>

#include<conio.h>

#include<string.h>

class book

{

int bookid;

char name[10];

int price;

public:

book(int x,char y[10],int z)

{

bookid=x;

strcpy(name,y);

price=z;

}

void display()

{

cout<<"Book details are\n";

cout<<"bookid:"<<bookid<<endl;

cout<<"Name:"<<name<<endl;

cout<<"Price:"<<price<<endl;

}

};

class bookdet:public book

{

int pages;

char author[10];

public:

bookdet(int x,char y[10],int z,int a,char b[10]):book(x,y,z)

{

pages=a;

strcpy(author,b);

}

void display1()

{

cout<<"Pages:"<<pages<<endl;

cout<<"Author:"<<author<<endl;

}

};

void main()

{

clrscr();

bookdet b(101,"ansi c",200,300,"bala");

b.display();

b.display1();

getch();

}
Virtual functions

Polymorphism refers to the property by which objects belonging to different classes are able to respond to the same message, but in different forms.

This necessitates the use of single pointer variable to refer to the objects of different classes. Here we use the pointer to base class to refer to all the derived objects.

When same function name is used in the base and derived classes, the function in base class is declared as virtual using the keyword Virtual preceding its normal declaration.

When a function is made virtual C++ determines which function to use at run time based on the type of object pointed to by the base pointer, rather than type of the pointer.
Run time polymorphism is achieved only when a virtual function is accessed through a pointer to the base class.

Example program

#include<iostream.h>

#include<conio.h>

class customer

{

char name[10];

char city[10];

int phno;

public:

virtual void get()

{

cout<<"enter name,city and phno\n";

cin>>name>>city>>phno;

}

public:

virtual void show()

{

cout<<"name,city and phno\n";

cout<<name<<endl<<city<<endl<<phno;

}

};

class personal:public customer

{

char empst[10];

char marist[10];

public:

void get()

{

cout<<"enter empst and marist\n";

cin>>empst>>marist;

}

void show()

{

cout<<"empst and marist\n";

cout<<empst<<endl<<marist<<endl;

}

};

void main()

{

clrscr();

customer *bptr,c;

personal p;

bptr=&c;

bptr->get();

bptr->show();

bptr=&p;

bptr->get();

bptr->show();

getch();

}
Output
Enter name, city and phno
Raju

Mnpri

2334565

Enter empst and marist

Employed

Married

Rules for virtual functions

· The virtual functions must be members of some class.

· They cannot be static members.

· They are accessed by using object pointers.

· A virtual function can be a friend of another class.

· A virtual function in a base class must be defined even though it may not be used.

· The prototypes of the base class version of a virtual function and the entire derived class version must be identical.

· We cannot have virtual constructors but we can have virtual destructors.

· While a base pointer can point to any type of the derived object, the reverse is not true.
· If a virtual function is defined in the base class, it need not be necessarily redefined in the derived class.
Pure virtual function

It is possible to declare a function virtual inside the base class and redefine it in the derived class. The function inside the base class is seldom used for performing any task. Such functions are called "do-nothing" function. This may be defined as follows

Virtual void display () =0;

A pure virtual function is a function declared in a base class that has no definition relative to the base class. In such cases, the compiler requires each derived class to either define the function or redeclare it as a pure virtual function.
A class containing pure virtual functions cannot be used to declare any objects of its own. Such classes are called abstract base classes. The main objective of an abstract base class is to provide some traits to the derived classes and to create a base pointer required for achieving run time polymorphism. [image: image1.png]

C

A

B

D

A

B

C

B

A

C

A

B

 D

C

B

A

 Child

Parent 2

Parent 1

Grand Parent

19

