

 DATA BASE SYSTEMS

UNIT - II

UNIT-II
RELATIONAL MODEL
Structure of Relational Database:
· A Relational database consists of a collection of tables, each which is assigned a unique name.
· A row in a table represents a relationship among a set of values.
1. Basic Structure

2. Database Schema

3. Keys

4. Query Language

1. Basic Structure:

	account_number
	branch_name
	balance

	A-101
	downtown
	500

	A-102
	Perry ridge
	400

	A-222
	Redwood
	700

	A-305
	Round Hill
	350

The Account Relation
· Consider the account table. It has three column headers, account-number, branch_name, and balance.
· We refer to these headers as attributes.
· For each attribute, there is a set of permitted values, called the domain of that attributes.
· Let D1 denote the set of all account numbers, D2 the set of all branch names, and D3 the set of all balance.
· Therefore account is a subset of D1 ⨯ D2 ⨯ D3
· A table of n attributes must be a subset of
D1 ⨯ D2 ⨯……….⨯ Dn-1 ⨯ Dn
· Use the mathematical terms relation and table in place of the terms table and row.
· A tuple variable is a variable that stands for a tuple in other words, a tuple variable is a variable whose domain is the set of all tuples.
· We require that, for all relations r, the domains of all attributes of r be atomic.
· A domain is atomic if elements of the domain are considered to be indivisible units.

2. Database Schema

· The database schema, which is the logical design of the database, and the database instance.
· Which is a snapshot of the data in the database at a given instant in time.
· The concepts of a relation schema corresponds to the programming language notion of the definition
· We use account_schema to denote the relation schema for relation account.

Account_schema = (account_number, branch_name, balance);

· We denote the fact that account is a relation an account-schema by

 Account (Account_schema)

· The concept of a relation instance corresponds to the programming-language notion of a value of a variable.
· The value of a given variable may change with the time.
	Branch_name
	Branch_city
	assets

	Brighton
	Brooklyn
	7100000

	Downtown
	Brooklyn
	9000000

	Mianus
	Horseneck
	400000

	Redwood
	Palo alto
	210000

 The branch relation

· The schema for that relation is
Branch_schema=(branch_name, branch_city, assets)

· Note that the attribute branch_name, appears in both Branch_schema and Account_schema.
	Customer_name
	Customer_street
	Customer_city

	Adams
	Spring
	Pittsfield

	Brooks
	Senator
	Brooklyn

	Curry
	North
	Rye

	Glenn
	Sand hill
	Woodside

	Curry
	North
	Rye

	Jones
	Main
	Harrison

	Lindsay
	Park
	Pittsfield

The Customer Relation
· We need a relation to describe information about customers.

 Customer_schema= (customer_name,customer_street,customer_city);
· We also need a relation to describe the association between customers and accounts.

Depositor_Schema= (customer_name, account-number);

	Customer_name
	Account-number

	Hayes
	A-101

	Johnson
	A-102

	Smith
	A-222

	Turner
	A-305

The Depositor relation
Loan_Schema= (Loan_number, branch_name, amount);

	Loan_ number
	Branch_name
	amount

	L-11
	Round Hill
	900

	L-14
	Downtown
	1500

	L-15
	Perryridge
	1500

	L-16
	Perryridge
	1300

	L-17
	Downtown
	1000

	L-23
	Redwood
	2000

	L-93
	Mianus
	500

The Loan relation

borrower_schema= (customer_name, loan-number);

	Customer_name
	Loan_number

	Adams
	L-16

	Curry
	L-93

	Hayes
	L-15

	Jackson
	L-14

	Jones
	L-17

	Smith
	L-11

	Smith
	L-23

	Williams
	L-17

The borrower relation
3. keys:

· Super Key

· Candidate Key

· Primary Key

· Foreign Key

· The values of the attribute values of a tuple must be such that they can uniquely identify the tuple.
· A super key is a set of one or more attributes that, takes collectively allow us to identify uniquely a tuple in the relation.
Example: Customer_id is a super key the combination of customer_name and Customer_id is a super key for the relation customer.
· We are often interested in super keys for which no proper subset is a superkey. Such minimal super keys are called candidate keys.
Example: The both {customer_id} and {customer_name, customer street} are candidate keys.
· The term Primary Key to denote a candidate key that is chosen by the database designer as the principal means of identifying tuples within a relation.
· A key (Primary, Super, Candidate) is a property of the entire relation, rather than of the individual tuples.
· A relation schema say r1 may include among its attributes the primary key of another relation schema, say r2.
· This attribute is called foreign key from r1, referncing r2.
· The relation r1 is also called the referencing relation of the foreign key dependency, and r2 is called the referencing relation of the foreign key.
· A database schema, along with primary key and foreign key dependencies can be depicted pictorially by schema diagrams.
4. query languages:

· The Query languages are languages in which a user requests information from the database.
· Query languages can be categorized as either procedural or non-procedural.
· In a procedural language, the user instructs the system to perform a sequence of operations on the database to compute the desired result.
· In a non-procedural language, the user describes the desired information without giving a specific procedure for obtaining that information.
· There are a number of “pure” query languages.
· The relational algebra is a procedural.
· The tuple relational calculus is non-procedural.
· Relational algebra consists of a set of operations that takes one or two relations as input and produce a new relation as their result.
· The fundamental operations in the relational algebra are select, project, union set difference, Cartesian product, and rename.
· There are several other operations-namely set intersection, natural join, division, and assignment.
FUNDAMENTAL RELATIONAL – ALGEBRA OPERATIONS:
· The select operations
· The project operations
· Composition of Relational Operations
· The union Operations
· The Set-Difference Operations
· The Cartesian-Product Operations
· The Rename Operations
· The select, project and rename operations are called unary operations, because they operate on one relation.
· The other three operations operate on pairs of relations and are therefore called binary operations.

The select operations:

· The select operation selects tuples that satisfy a given predicate.
· We use the lowercase Greek letter sigma (σ) to denote selection.
· The predicate appears as a subscript to σ. The argument relation is in parentheses after the σ.
· To select those tuples of the laon relation where the branch is “Perryridge”, we write
σ branch_name = “perryridge” (loan)
· Find all tuples in which the amount lent is more than $1200 by writing,
σ amount > 1200 (loan)

· We allow comparisons using =, ≠, <, ≥, >, ≤ in the selection predicate.
· We can combine several predicates into a larger predicate by using the connectives and (⋀), or (⋁) and not (¬).
σ branch_name = “perryridge” ⋀ amount > 1200 (loan).

Output
	loan-number
	branch_name
	amount

	L-15
	perryridge
	1500

	L-16
	perryridge
	1300

The project operation:

· The project operation allows us to produce this relation.
· The project operation is a unary operation that returns its argument relation, with certain attributes left out.
· Since a relation is a set, any duplicate rows are eliminated.
· Project is denoted by the uppercase Greek letter Pi (Π).
· We which to appear in the result as a subscript to Π. The argument relation follows in parentheses.
Π loan-number, amount (loan).

Output:
	Loan-number
	Amount

	L-11
	900

	L-14
	1500

	L-15
	1500

	L-16
	1300

	L-17
	1000

	L-23
	2000

	L-93
	500

Composition of Relational Operations:

· “Find those customers who live in Harrison”. We write

 Π customer_name (σ customer_city= “Harrison” (customer))

· Since the result of a relational-algebra operation is of the same type as its inputs, relational-algebra operations can be composed together into a relational-algebra expression.

The union Operation:

· Consider a query to find the names of all bank customers who have either an account or a loan or both.
· We need the information in the depositor relation and in the borrower relation.

Π customer_name (borrower)

· We also know how to find the names of all customers with an account in the bank.

Π customer_name (depositor)

· We need the Union of those two sets that is we need all customer names that appear in either or both of the two relations.
· We fine, these data by the binary operation Union, denoted as in set theory, by U. So the expression needed is

Π customer_name (borrower) ∪ Π customer_name (depositor)

output:

	Customer_name

	Adams

	Curry

	Hayes

	Jackson

	Jones

	Smith

	Williams

	Johnson

	Turner

· Therefore for a union operation r ∪ s to be valid, we require that two conditions hold.
· The relation r and S must be of the same arity. That is, they must have the same number of attributes.
· The domains of the ith attributes of r and the ith attribute of S, must be the same for all i.
 The Set-Difference Operation:

· The Set-Difference operation, denoted by –, allows to find tuples that are in one relation but are not in another.
· The expression r – s produces a relation containing those tuples in r but not in s.
· We can find all customers of the bank who have an account but not a loan by writing,
Π customer_name (depositor) – Π customer_name (borrower)

 Output:

	Customer_name

	Johnson

	Turner

The Cartesian-Product Operation:

· The Cartesian-product operation, denote by a cross (⨯), allows us to combine information from any two relations.
· We write the Cartesian product of relations r1 and r2 as r1 ⨯ r2.
· The relation schema for r = borrower ⨯loan is

(borrower.customer_name, borrower.loan_number, loan.loan_number, loan.branch_name, loan.amount)

Output:

	borrower

customer_name
	borrower.

loan_number
	loan.

loan_number
	branch_name
	amount

	Adams
	L-16
	L-11
	Round Hill
	900

	Adams
	L-16
	L-14
	Downtown
	1500

	Adams
	L-16
	L-15
	Perryridge
	1500

	Adams
	L-16
	L-16
	Perryridge
	1300

	Adams
	L-16
	L-17
	Downtown
	1000

	Adams
	L-16
	L-23
	Redwood
	2000

	Adams
	L-16
	L-93
	Mianus
	500

	Curry
	L-93
	L-11
	Round Hill
	900

	Curry
	L-93
	L-14
	Downtown
	1500

	Curry
	L-93
	L-15
	Perryridge
	1500

	Curry
	L-93
	L-16
	Perryridge
	1300

	Curry
	L-93
	L-17
	Downtown
	1000

	Curry
	L-93
	L-23
	Redwood
	2000

	Curry
	L-93
	L-93
	Mianus
	500

	Hayes
	L-15
	L-11
	Round Hill
	900

	Hayes
	L-15
	L-14
	Downtown
	1500

	Hayes
	L-15
	L-15
	Perryridge
	1500

	Hayes
	L-15
	L-16
	Perryridge
	1300

	Hayes
	L-15
	L-17
	Downtown
	1000

	Hayes
	L-15
	L-23
	Redwood
	2000

	Hayes
	L-15
	L-93
	Mianus
	500

· We want to find the names of all customers who have a loan at the perryridge branch.
· We need the information in both the loan relation and the borrower relation to do so, if we write

σ branch_name= “Perryridge” (borrower ⨯ loan)

Output:
	Borrower

customer_name
	borrower.

loan_number
	loan.

loan_number
	branch_name
	amount

	Adams
	L-16
	L-15
	Perryridge
	1500

	Adams
	L-16
	L-16
	Perryridge
	1300

	Curry
	L-16
	L-15
	Perryridge
	1500

	Curry
	L-16
	L-16
	Perryridge
	1300

	Hayes
	L-16
	L-15
	Perryridge
	1500

	Hayes
	L-16
	L-16
	Perryridge
	1300

· We get only those tuples of (borrower ⨯ loan) that pertain to customers who have a loan at the Perryridge branch.
Π customer_name(σ borrower.loan_number, loan.loan_number (σ branch_name=“Perryridge” (borrower ⨯ loan)))
Output:
	Customer_name

	Adams

	Hayes

The Rename Operation:

· It is useful to be able to give them names: the rename operator, denoted by the lowercase Greek letter rho (ρ).
· Given a relational-algebra expression E, the expression

ρx (E)

· Returns the result of expression E under the name x.
· A second form of the rename operation is as follows. Assume that a relational-algebra expression E has arity n. Then the expression

ρx (A1, A2, ….An) (E).

· Returns the result of expression E under the name X, and with the attributes renamed to A1, A2…..An.

Π account. balance (σ account. balance < d.balance (account ⨯ ρd (account)))

	Balance

	500

	400

	700

	750

	350

· “Find the names of all customers who live on the same street and in the same city as Smith.”
Π customer_street, customer_city (σ customer_name = “smith” (customer))
	customer_name

	Curry

	Smith

Formal Definition of the Relational algebra:

· A basic expression in the relational algebra consists of either one of the following,

· A relation in the database

· A constant relation
· A constant relation is written by listing its tuples within {}.

Example: { (A-101, Downtown, 500) (A-215, Mianus, 700)}

· A general expression in the relational algebra is constructed out of smaller sub expression.
· Let E1 and E2 be relational-algebra expressions.
· Then the following are all relational-algebra expression
E1 U E2
E1 – E2
E1 ⨯ E2
· σP (E1), where P is a predicate on attribute in E1.
· ΠS (E1), where S is a list consisting of some of the attributes in E1.
· ρx (E1), where x is the new name for the result of E1.

ADDITIONAL RELATIONAL – ALGEBRA OPERATIONS:
· The Set-intersection Operation

· The Natural-Join Operation

· The Division Operation
· The Assignment operation

The Set-Intersection Operation:

· The first additional relational-algebra operation that we shall define is set intersection (∩).
· Suppose that we wish to find all customers who have both a loan and an account.
· Using set intersection, we can write

Π customer_name (borrower) ∩ Π customer_name (depositor)

Output:

	Customer_name

	Hayes

	Jones

	Smith

The Natural-Join Operation:

· The Natural-Join is a binary operation that allows us to combine certain selections and Cartesian product into one operation.
· It is denoted by the join symbol ⋈.
· Forms a Cartesian product of its two arguments. Performs a selection forcing equality on those attributes that appear in both relation schemas, and finally removes duplicate attributes.
· Find the names of all customers who have a loan at bank, and find the amount of the loan.

Π customer_name, loan_number, amount (borrower ⋈ loan)

· The schemas for borrower and loan have the attribute loan-number in common the natural-join operation consider only pairs of tuples that have same value on loan-number.

· It combines each such pair of tuples into a single tuple on the union of the two schemas

Output:

	Customer_name
	Loan-number
	Amount

	Adams
	L-16
	1300

	Curry
	L-93
	500

	Hayes
	L-15
	1500

	Jackson
	L-14
	1500

	Jones
	L-17
	1000

	Smith
	L-11
	900

	Smith
	L-23
	2000

	Williams
	L-17
	1000

· The natural join of r and s, denoted by r ⋈ s, is a relation on schema R U S formally defined as follows

r ⋈ s = Π R U S (σ r .A1=S. A1 ⋀ r.A2=S.A2 ⋀……⋀ r.An= S.An r⨯s)

where R ⋂ S = {A1, A2,……….An}.
· Find the names of all branches with customers who have an account in the bank and who live in Harrison.

Π branch_name (σ customer_city = “Harrison” (customer ⋈ account ⋈ depositor))

Output
	Branch_name

	Brighton

	Perryridge

The division Operation:

· The Division Operation denoted by ÷, is suited to queries that include the phrase “for all”.
· Suppose that we wish to find all customers who have an account at all the branches located in Brooklyn.

r1 = Π branch_name (σ branch_city = “Brooklyn” (branch))

Output
	Branch_name

	Brighton

	Downtown

· We can find all (customer_name, Branch_name) pairs for which the customer has an account at a branch by writing

r2 = Π customer_name, branch_name (depositor ⋈ account)

	Customer_name
	Branch_name

	Hayes
	Perryridge

	Johnson
	Downtown

	Johnson
	Brighton

	Jones
	Brighton

	Lindsay
	Redwood

	Smith
	Mianus

	Turner
	Round hill

· We need to find a customer who appears in r2 with every branch name in r1.
· The operation that provides exactly those customers is the divide operation.

Π customer_name, branch_name (depositor ⋈ account) ÷ Π branch_name (σ branch_city = “Brooklyn” (branch))

· Let relation r ÷ s is a relation on schema R – S (that is on the schema containing all attributes of schema R that are not in schema S).

· A tuple t is in r ÷ s if and only if both of two conditions hold:

· t is in ΠR– S (r)

· For every tuple ts in s, there is a tuple tr in r satisfying both of the following.

· tr [S] = ts [S]

· tr [R– S] = t
The Assignment Operation:

· The assignment operation, denoted by ←, works like assignment in a programming language.

· To write a relational-algebra expression by assigning parts of it to temporary relation variables.

· temp1 ←ΠR– S (r)

· temp2 ←ΠR– S ((temp1 ⨯ s) – ΠR– S, s(r))

· result = temp1 – temp 2

· The result of the expression to the right of the ← is assigned to the relation variable on the left of the ←.
· A query can be written as a sequential program consisting of a series of assignments followed by an expression whose value is displayed as the result of the query.
· Assignment must always be made to a temporary relation variable.

EXTENDED RELATIONAL-ALGEBRA OPERATIONS:
· An important extension is to allow aggregate operations such as computing the sum of the elements of a set, or their average

1. Generalized projection

2. Aggregate Functions

3. Outer Join

1. Generalized Projection:

· Extends the projection operation by allowing arithmetic functions to be used in the projection list.
· The generalized-projection operation has the form

Π F1, F2…………Fn (E)

· Where E is any relational-algebra expression, and each of F1, F2…….Fn is an arithmetic expression involving constants and attributes in the schema of E.

Πcustomer_name, limit – credit_balance (credit_info)

Output:
	Customer_name
	Limit
	Credit-balance

	Curry
	2000
	1750

	Hayes
	1500
	1500

	Jones
	6000
	700

	Smith
	2000
	400

· The attributes resulting from the expression limit – credit_balance does not have a name.
· We can apply the rename operation to the result of generalized projection in order to give it a name.
Π customer_name, (limit – credit_balance as credit_available (credit_info)

Output:
	Customer_name
	Credit-available

	Curry
	250

	Jones
	5300

	Smith
	1600

	Hayes
	0

· The second attributes of this generalized projection has been given the name credit – available.

2. Aggregate Function:

Sum:
· Aggregate function takes a collection of values and returns a single value as a result.

Example: The aggregate function sum takes a collection of values and returns the sum of the values. Thus the function sum applied on the collection.
{1, 1, 3, 4, 4, 11}

· Returns the values 24.
	Emp-name
	Branch_name
	Salary

	Adams
	Perrryridge
	1500

	Brown
	Perrryridge
	1300

	Gopal
	Perrryridge
	5300

	Johnson
	Downtown
	1500

	Loreena
	Downtown
	1300

	Peterson
	Downtown
	2500

	Rao
	Austin
	1500

	Sato
	Austin
	1600

The pt_works Relation
· To find total sum of Salaries of all the part-time employees in the bank.

g sum(salary) (pt-works)

· The symbol g is the letter, G in calligraphic font, read it as “Calligraphic G”.

branch_name g sum (salary) (pt-works)

	branch_name
	Sum(salary)

	Austin
	3100

	Downtown
	5300

	Perryridge
	8100

General form of aggregation:

· The general form of the aggregation operation g is as follows.

G1, G2…..Gn g F1(A1), F2(A2)…..Fm (Am)(E)

· Where E is any relational-algebra expression G1, G2……Gn constitute a list of attributes on which to group.

· And each Fi is an aggregate function and each Ai is an attribute name.

· The tuple in the result of expression E are partitioned into groups in such a way that,

· All tuples in a group have the same values for G1, G2………Gn.

· Tuples in different groups have different values for G1, G2, …..Gn.

Avg:
· The aggregate function avg returns the average of the values.
· Returns the values 4.
{1, 1, 3, 4, 4, 11}

g avg (salary) (pt-works)

Count:
· The aggregate function count returns the number of the elements in the collection, and returns 6 on the preceding collection.
g count (salary) (pt-works)

g count_distinct (branch_name) (pt-works)

	Branch_name

	Austin

	Downtown

	Perryridge

· If we do want to eliminate duplicates we use the same function names as before with the addition of the hyphenated string “distinct” appended to the end of the function name.

Min and Max:
· The aggregate functions include min and max, which return the minimum and maximum values in a collection; they return 1 and 11 respectively on the preceding collection.

{1, 1, 3, 4, 4, 11}

Max = 11

Min = 1

branch_name g max (salary) (pt-works)

(or)

branch_name g max (salary) as Max-salary (pt-works)

	Branch_name
	Max (salary)

	Austin
	1600

	Downtown
	2500

	Perryridge
	5300

branch_name g min (salary) (pt-works)

(or)

branch_name g min (salary) as Min-salary (pt-works)

	Branch_name
	Min (salary)

	Austin
	1500

	Downtown
	1300

	Perryridge
	1500

· The collections on which aggregate functions operate can have multiple occurrences of a value, the order in which the values appear is not relevant. Such collection are called multisets.

Outer join:

· The outer-join operation is an extension of the join operation to deal with missing information.
	Emp_name
	Street
	City

	Coyote
	Toon
	Hollywood

	Rabbit
	Tunnel
	Carrotville

	Smith
	Revolver
	Death valley

	Williams
	Seaview
	Seattle

The Employee Relation
	Emp_name
	Branch_name
	Salary

	Coyote
	Mesa
	1500

	Rabbit
	Mesa
	1300

	Gates
	Redmond
	5300

	Williams
	Redmond
	1500

The ft-works Relation
· We want to generate a single relation with all information (street, city, branch name, and salary) about full-time employees.
employee ⋈ ft_works
	Emp_name
	Street
	City
	Branch_name
	Salary

	Coyote
	Toon
	Hollywood
	Mesa
	1500

	Rabbit
	Tunnel
	Carrotville
	Mesa
	1300

	Williams
	Seaview
	Seattle
	Redmond
	1500

· Left outer Join

· Right outer Join

· Full outer Join

Left outer Join:

· The left outer join (⋈) takes all tuples in the left relation that did not match with any tuple in the right relation.
· The tuples with null values for all other attributes from the right relation, and adds them to the result of the natural join.

Employee ⋈ ft-works

	Emp_name
	Street
	City
	Branch_name
	Salary

	Coyote
	Toon
	Hodywood
	Mesa
	1500

	Rabbit
	Tunnel
	Carrotville
	Mesa
	1300

	Williams
	Seaview
	Seattle
	Redwood
	1500

	Smith
	Revolver
	Death valley
	Null
	Null

Right outer join:

· The right outer join denoted ⋈ .
· It is symmetric with the left outer Join.
· It pads tuples from the right relation that did not match any from the left relation with nulls and adds them to the result of the natural join.
Employee ⋈ ft-works

	Emp_name
	Street
	City
	Branch_name
	Salary

	Coyote
	Toon
	Hodywood
	Mesa
	1500

	Rabbit
	Tunnel
	Carrotville
	Mesa
	1300

	Williams
	Seaview
	Seattle
	Redwood
	1500

	Gates
	Null
	Null
	Redmond
	5300

Full outer Join:

· The full outer join denoted ⋈ .
· It padding tuples from the left relation that did not match any from the right relation, as well as tuples from the right relation that did not match any from the left relation, and adding them to the result of the join.
Employee ⋈ ft-works

	Emp-name
	Street
	City
	Branch_name
	Salary

	Coyote
	Toon
	Hodywood
	Mesa
	1500

	Rabbit
	Tunnel
	Carrotville
	Mesa
	1300

	Williams
	Seaview
	Seattle
	Redwood
	1500

	Smith
	Revolver
	Death valley
	Null
	Null

	Gates
	Null
	Null
	Redmond
	5300

NULL VALUES
· The special value null indicates “value unknown or nonexistent”, any arithmetic operations (such as +, -, *, /) involving null values must return a null result.
· Any comparisons (such as <, <=, >, >=, ≠) involving a null value evaluate to special value unknown.
· We cannot say for sure whether the result of the comparison is true or false, so we say that the result is the new truth value unknown.
· Comparisons involving nulls may occur inside Boolean expressions involving the and, or, and not operations.
And:

True and unknown = unknown

False and unknown = false

Unknown and unknown = unknown.

Or:

True or unknown = true

False or unknown = unknown

Unknown or unknown = unknown.

Not:

Not unknown = unknown.

Select:

· The selection operation evaluates predicate P in σp (E) on each tuple t in E.
· If the predicate returns the value true t is added to the result. Otherwise if the predicate returns unknown or false, t is not added to the result.

Join:

· Joins can be expressed as a Cartesian product followed by a selection.
· In a natural join say r ⋈ s, we can see from the above definition that if two tuples, tr ∊ r and ts ∊ s, both have a null value in a common attribute then the tuples do not match.
Projection:

· The projection operation treats nulls just like any other value when eliminating duplicates.
· If two tuples in the projection result are exactly the same, and both have nulls in the same fields, they are treated as duplicates.

Union, intersection, difference:

· These operations treats nulls just as the projection operation does.
· They treat tuples that have the same values on all fields as duplicates even if some of the fields have null values in both tuples.

Generalized projection:

· Duplicate tuples containing null values are handled as in the projection operation.

Aggregate:

· When null occur in grouping attributes the aggregate operation treats them just as in projection.
· When nulls occur in aggregated attributes, the operation deletes null values at the outset, before applying aggregation.
· If the resultant multiset is empty, the aggregate result is null.

Outer join:

· Outer join operation behaves just like join operations, except on tuples that do not occur in the join result.
· Such tuples may be added to the result (⋈, ⋈ , ⋈), padded with nulls.

MODIFICATION OF THE DATABASE:
· We address how to add, remove, or change information in the database.

· Deletion

· Insertion

· Updating
Deletion:

· We can delete only whole tuples.
· We cannot delete values on only particular attributes.
· In relational algebra a deletion is expressed by

r ⟵ r – E

· Where r is a relation and E is a relational-algebra query.
Examples of relational-algebra delete requests:

· Delete all of smith’s account records
depositor ⟵ depositor – σ customer_name = “Smith” (depositor)

· Delete all loans with amount in the range 0 to 50.

loan ⟵ loan – σ amount ≥ 0 ⋀ amount ≤ 50 (loan)

· Delete all accounts at branches located in Brooklyn.

r1 ⟵ σ branch_city = “Brooklyn” (account ⋈ branch)

r2 ⟵ Π branch_name, account_number, balance (r1)

account ⟵ account — r2

Insertion:

· To insert data into a relation we either specify a tuple to be inserted or write a query whose result is a set of tuples to be inserted.
· The relational-algebra expresses an insertion by

r ⟵ r U E

· Where r is a relation and E is a relational-algebra expression.
· We wish to insert the fact that smith has $1200 in account A-973 at the perryridge branch, we write

account ⟵ account U { (A-973, “Perryridge”, 1200)}

depositor ⟵ depositor U {(“smith”, A-973)}

Updating:

· We may wish to change a value in a tuple without changing all values in the tuple we can use the generalized-projection to do this task.

r ⟵ Π F1, F2……Fn (r)

· Where each Fi is either the ith attribute of r.
· If the ith attribute is not updated, or if the attribute is to be updated.
· Fi is an expression, involving only constants and the attributes of r, that gives the new value for the attribute
r ⟵ Π F1, F2……Fn (r) (σp (r)) U (r ⟵ (σp (r))

· If we want to select some tuples from r and to update only them, we can use the expression.
· P denotes the selection condition that chooses which tuple to update.
· Interest payment are being made, and that all balances are to be increased by 5 percent.

account ⟵ Π account-number, branch_name, balance * 1.05 (account)

· Suppose that accounts with balances over $10,000 receive 6 percent interest whereas all others receive 5 percent.

account ⟵ Π account_number, branch_name, balance * 1.06 (σ balance > 10000 (account)) U Π account_number, branch_name, balance * 1.05 (σ balance ≤ 10000 (account))

[image: image1.png]

K.BHUVANESWARI
Page 1

