

DATABASE SYSTEMS
 UNIT - III

UNIT- III
 SQL
Background

IBM developed the original version of SQL, originally called sequel, as part of the System R project in the early 1970s. Sequel language name has changed to SQL (Structure Query Language).

· Data-definition language (DDL). The SQL DDL provides commands for definition relation schemas, deleting relations, and modifying relations schemas.

· Interactive data-Manipulation language (DML).The SQL DML includes a query language based on both the rational algebra and the tuple relations calculus. It includes also commands to insert tuples into, delete tuples from, and modify tuples in the database.
· Integrity. The SQL DDL includes commands for defining views.

· Transaction control. SQL includes commands for specifying the beginning and ending of transactions.

· Embedded SQL and dynamic SQL. Embedded and dynamic SQL define how SQL statements can be embedded within general-purpose programming languages, such as C,C++,Java,Cobol,Pascal.

· Authorization. The SQL DDL includes commands for specifying access rights to relations and views.

Data Definition

The SQL DDL allows specification of not only a set of relations, but also information about each relation, including
· The schema for each relation

· The domain of values associated with each attributes

· The integrity constraints.

· The set of indices to be maintained for each relation.

· The security and authorization information for each relation

· The physical storage structure of each relation on disk.

· Basic Domain Types

· Basic Schema Definition in SQL

Basic Domain Types

The SQL standard supports variety of built-in domain types, including:
· char(n): A fixed-Length character string with user-specified length n.

· varchar(n): A variable-length character string with user-specified maximum length n. The full form character varying.

· int: An interger

· smallint: A small integer
· numeric (p,d): A fixed-point number with user-specified precision. The number consists of p digits (plus a sign), and d of the p digits are to the right of the decimal point. Thus numeric (3, 1) allows 44.5 to be stored.

· Real, double precision: Floating-point and double-precision floating-point numbers with machine-dependent precision.

· Float (n): A floating-point number, with precision of t least n digits.

Basic Schema Definition in SQL

DDL provides commands to create modify and delete tables.
· Create Table

· Alter Table

· Drop table

Create Table

Create table r(A1D1,A2D2,…………,AnDn,

<integrity-constrants1>…….<integrity- constants k>);

· r is the name of the relation or table name.

· Ai is the name of attributes in the schema of relation r.

· Di is the domain type of values in the domain of attributes Ai or Data types.

· There are a number of different allowable integrity constants Ex: Primary Key.

Primary Key

· The primary key attributes are required to be not null and unique.

· No tuple can have a null value for primary key attribute, and no two tuple in the relation can be equal on all the primary key attributes.

Create table account (account-number char (20)branch-name char(30),balance numeric(12,2),primary key(account-number));
Create table depositor (customer-name char(20),account-number char(20),primary key(customer-name, account-number));

Alter Table

· Alter table command to add attributes to an existing relation.

· All tuples in the relation are assigned null as the value for the new attribute.

· The form of the alter table command is

alter table r add A D;

· Where r is the name of existing relation, A is the name of the attribute to be added and D is the domain of the added attributes
alter table r drop A;
· Where r is the name of an existing relation, and A is the name of the attribute of the relation.
Drop Table

The drop table command deletes all information about the dropped relation from the database.

drop table r;
Where r is relation of the database.
Basic Structure of SQL Queries
A relational data base consists of a collection of relations, each of which is assigned a unique name.
The basic structure of an SQL expression consists of three clauses: select, from and where.
· The select is used to list the attributes desired in the result of a query.

· The from is lists the relations to be scanned in the evaluation of the expression.

· The where clause corresponds to the selection predicate of the relational algebra.

· A typical SQL query has the form

Select A1, A2, ………An from r1,r2……rm where P;

· A1represents an attributes and each r1 a relation. P is a predicate or condition. If the where clause is omitted, the condition is true.

The select Clause

· The asterisk symbol “*” can be used to denoted “all attributes”.
· A select clause of the form select* indicated that all attributes of the relations appearing in the from clause are selected.
· Select * from loan;

· Select branch-name from loan;

· Select loan-number, branch-name, amount*100 from loan;

The Where Clause

· SQL uses the logical connectives and, or, not rather the mathematical symbol >,< in the where clause.

· The operands of the logical connective can be expression s involving the comparison <,<=,>,>=,= and<>.
Select loan-number from loan where amount between 90000 and 100000;

Select loan-number from loan where amount<=100000 and amount>=90000;

The From clause

· The from clause by itself defines a Cartesian product of the relations in the clause.

Select customer-name, borrower. loan-number, amount from borrower, loan where borrower.loan-number=loan.loan-number;

The Rename operation

· SQL provides a mechanism for renaming both relations and attributes. It uses the as clause, taking the form:
· Old-name as new-name;
· Relation: select customer-name, T. loan-number , S.amount from borrower as T, loan as S where T. Loan-number=S. loan-number;

· Attribute: select customer-name, borrower. loan-number as loan-id, amount from borrower, loan where borrower. Loan-number=loan. loan-number;

Tuple Variables

· Tuple variables are most useful for comparing two tuples in the same relation.

Example: select customer-name, T. loan-number, S.amount from borrower as T, loan as S where T. Loan-number=S. loan-number;

· When we write expressions of the form relation-name.attribut-name the relation name is in effect, an implicitly defined tuple variable.
· SQL permits us to use the notation (v1,v2,……vn) to denote a tuple of arity n containing values v1,v2……vn.
· The comparison operators can be used on tuples, and the ordering is defined lexicographically. For example: (a1,a2) <= (b1,b2) is true if a1<b1 or (a1=b1) (a2<=b2).The two tuples are equal if all their attributes are equal.

String Operations

· The most commonly used operation on string is pattern matching using the operator like.
· We describe patterns by using two special characters.

· Percent (%): The % character matches any substring

· Underscore (_): The _ character matches any character.
· Patterns are case sensitive; that is, uppercase characters do not match lowercase characters.

· We consider the following examples:

· ‘perry%’ matches any string beginning with “perry”
· ‘%idge%’ matches any string containing “idge” as a substring.

· ‘_ _ _’ matches any string of exactly three characters.

· ‘_ _ _ %’ matches any string of at least three characters.

Select customer-name from customer where customer-street like ‘%Mani%’;

Ordering the Display of Tuples

· The order by clause cause the tuples in the result of a query to appear in sorted order.

· To list in alphabetic order all customers who have a loan at the perryridge branch, we write

Select customer-name from borrower, loan

where borrower. loan-number =loan. loan-number

and branch-name=’perryridge’ order by customer-name;

· The order by clause lists items in ascending order.

· To specify the s
· ort order, we may specify desc for descending order or asc for ascending order.

Select * from loan order by amount desc, loan- number asc;

Duplicates

· We can define the duplicate semantics of an SQL query using multiset versions of the relational operators.
· We define the multiset versions of several of the relational-algebra operations. Given multiset relations r1 and r2.

1. If there are c1 copies of tuple t1 in r1 and t1 satisfies selection then there are c1 copies of t1 in (r1).

2. For each copy of tuple t1 in r1, there is a copy of type πA(t1) in ΠA(r1), where Π A(t1) denotes the projection of the single tuple t1.
3. If there are c1 copies of tuple t1 in r1 and c2 copies of tuple t2 in r2, there are c1*c2 copies of the tuple t1.t2 in r1*r2.

r1={(1,a)(2,a)}

r2={(2),(3),(3)}

Π B(r1*r2)

 {(a,2),(a,2),(a,3),(a,3),(a,3),(a,3)}

· An SQL query of the form

Select A1,A2,…..An from r1,r2,…..rm where p;

Π A1, A2,…..An(P(r1*r2*……….*rm))

Set Operations

· The SQL operations union, intersect, and except operate on relations.
· Union, intersection, and set difference in relational algebra, the relations participating in the operations must be compatible; that is, they must have the same set of attributes.

1. Union

2. Intersect

3. Except

The Union Operation

· The union operation automatically eliminates duplicates.
Select customer-name from depositor union select customer-name from borrower;

Raj

Guna

Joseph

Anbu

· If we want to retain all duplicates, we must write union all in place of union

Select customer-name from depositor union all select customer-name from borrower;

Raj

Guna

Raj (Here it is duplicated

Joseph

Anbu

The Intersect Operation

· This operator returns only rows that are common to both the queries.

· Returns only the common result of two relations.

Select customer-name from depositor intersect select customer-name from borrower;

Raj

· If we want to retain all rows, we must write interest all in place of intersect

Select customer-name from depositor intersect all select customer-name from borrower;

Raj

Guna

Raj (Here it is same in two relations

Joseph

Anbu

The Except Operation

· This operator returns not common tuple in both the queries.

· Returns only the not common tuple result of two relations.

Select customer-name from depositor except select customer-name from borrower;

Guna

Joseph

Anbu

· If we want to retain all rows or tuples, we must write except all in place of except.

Select customer-name from depositor except all select customer-name from borrower;

Raj

Guna

Raj (Here it is same in two relations

Joseph

Anbu

Aggregate Functions

· Aggregate functions are functions that take a collection (a set or multiset) of values as input and return a single value.

· SQL offers five build-in aggregate functions.
· Average : avg

· Minimum : min

· Maximum : max

· Total : sum

· Count : count

Sum and Avg:

· The input to sum and avg must be a collection of numbers but the other operators can operate on collections on nonnumeric data types.

Select avg (balance) from account where branch- name=’perryridge’;

· The aggregate function not only to a single set of tuples, but also to a group of sets of tuples.

· We specify this whish in SQL using the group by clause.

· Tuples with the same value on all attributes in the group by clause are placed in one group.
Select branch- name, avg (balance) from account group by branch- name;

Count:
· We must eliminate duplicates before computing an aggregate function.

· If we do want to eliminate duplicates, we use the keyword distinct in the aggregate expression.

· Select branch- name, count (distinct customer- name) from depositor;
· Select branch- name, count (distinct customer- name) from depositor, account where depositor. account- number = account. account-number group by branch-name;
· We use the aggregate function count frequently to count the number of tuples in a relation.
· The notation for this function in SQL is count (*).

Select count (*) from customer;
· If we do want to find the maximum value we use max().

Select max(amount) from loan;

· If we do want to find the minimum value we use min().

Select min(amount) from loan;

Aggregation with Grouping

The aggregate function not only to a single set of tuples, but also to a group of sets of tuples.We specify this wish in SQL using the group by clause.

· Find the average salary in each department: We write this query as follows:

Select dept-name,avg(salary) as avg-salary from bank group by by dept-name;
Null Values

· SQL allows the use of null values to indicate absence of information about the value of an attribute.

Select loan-number from loan where amount is null;

· The predicate is not null tests for the absence of a null value.
· SQL treats as unknown the result of any comparison involving a null value.

· The predicate in a where clause can involve Boolean operations such as and, or and not on the results of comparisons, the definitions of the Boolean operations are extended to deal with the value unknown.

· and : The result of true and unknown is unknown, false and unknown is false, while unknown and unknown is unknown.

· or : The result of true or unknown is unknown, false or unknown is unknown, while unknown or unknown is unknown.

· not: The result of not unknown is known.

· SQL defines the result of an SQL statement of the form.

Select……from R1,….Rn where P;

Nested Subqueries
A subquery is a select- from- where expression that is nested within another query.
· Set Membership

· Set Comparison

· Test for Empty Relations

· Test for the Absence of Duplicate Tuples

Set Membership

· SQL allows testing tuples for membership in a relation.

· The in connective tests for set membership, where the set is a collection of values produced by a select clause.

· The not in connective tests for the absence of set membership.
Select distinct customer-name from borrower where customer-name in (select customer-name from depositor);

· Find all the customers who have both a loan and an account at the bank.

· We use the not in construct in a similar way. For example

Select distinct customer-name from borrower where customer-name not in (select customer-name from depositor);

· To find all customers who do have a loan at the bank, but do not have an account at the ban.

Set Comparison

· The ability of a nested subquery to compare sets.
Select distinct T. branch-name from branch as T, branch as S whereT.assets>s.assetsand s.branch-city=’Brooklyn’;

· Find the names of all branches that have assets greater than those of at least one branch locates in Brooklyn.

· The phrase “greater than at least one” is represented in SQL by>some.
Select branch-name from branch where assets >some (select assets from branch where branch-city=’brooklyn’);

· The keywords any is synonymous to some in SQL. some is not same as not in.

· SQL also allows <all, <= all, >=all, =all, and <>all comparisons. As an exercise, verify that <>all is identical to not in.

Select branch-name from branch where assets >all (select assets from branch where branch-city=’brooklyn’);
Test for Empty Relations
· SQL includes a feature for testing whether a subquery has any tuples in its result.

· The exists construct returns the value true if the argument subquery is nonempty.
Select customer-name from borrower where exists (select depositor where depositor.customer-name=borrower.customer-name);

· Find all customers who have both an account and a loan at the bank.

· We can test for nonexistence of tuples in a subquery by using not exists construct. We can use the not existsconstruct to simulate the set containment operation.
Test for the Absence of Duplicate Tuples

· Testing whether a subquery has any duplicate tuples in its result.

· The unique construct returns the value true if the argument subquery contains no duplicate tuples.
Select T.customer- name from depositor as T where unique (select R. customer-name from account, depositor as R where T. customer-name = R. customer- name andR. account-number = account. account-number and account. branch-name=’Perryridge’);
· Find all customers who have at most one account at the perryridge branch.
· We can test for the existence of duplicate tuples in a subquery by using the not unique construct.
Select T.customer- name from depositor as T where not unique (select R. customer-name from account, depositor as R where T. customer-name = R. customer- name and
R. account-number = account. account-number and
 account. branch-name=’Perryridge’);
· Find all customers who have at least two accounts at the perryridge branch.

Complex Queries

Two ways of composing multiple SQL blocks to express a complex query.
1. Derived Relations

2. The with clause

Derived Relations

· SQL allows a subquery expression to be used in the fromclause.
· If we use such an expression, then we must give the result relation a name, and we can rename the attributes.

· We so this renaming by using the as clause.
Select branch-name,avg-balance from (select branch-name, avg(balance) from account group by branch-name)as branch-avg (branch-name, avg-balance)where avg-balance > 1200;
· Find the average account balance of those branches where the average account balance is greater than $1200

The with clause

· The with clause provides a way of defining a temporary view whose definition is available only to the query in which the with clause.
With max-balance (value) asselect max (balance)from account select account-number from account,max-balncewhere account.balance=max-balance.value;
· Select accounts with the maximum balance; If there are many accounts with the same maximum balance, all of them are selected.
Views
· Any relation that is not part of the logical model, but is made visible to a user as a virtual relation, is called a view.
· It is possible to support a large number of views on top of any given set of actual relations.
View Definition
· We define in SQL by using the create view command.

· To define a view, we must give the view a name and must state the query that computes the view.
Create view v as<query expression>
· Where <query expression> is any legal query expression. The view name is represent by v.

Create view all-customer as (select branch-name, customer-name from depositor, account where depositor. account-number=account. account-number) union (select branch-name, customer-name from borrower, loan where borrower. loan-number=loan. loan-number);

· We want this view to be called all-customer.

· Database systems allow view relations to be stored, but they make sure that, if the actual relations used in the view definition change, the view is kept up to date. Such views are called materialized views.
· The process of keeping the view up to date is called view maintenance.
Views Defined by Using Other Views
· One view may be used in the expression defining another view.
Create view perryridge - customer as select customer-name from all-customer where branch-name=’perryridge’;

· Where all-customer is itself a view relation.

· View expansion is one way to define the meaning of views defined in terms of other views.

· Procedure assumes that view definitions are not recursive that is no view is used in its own definition, whether directly or indirectly through other view definitions.

Modification of the Database

1. Deletion
2. Insertion

3. Updates

4. Update of a View

5. Transactions

Deletion
· A delete request is expressed in much the same way as a query.

· We can delete only whole tuples; we cannot delete values on only particular attributes.
Delete from r where p;

· Where p represents a predicate and r represents a relation.

· At the other extreme, the where clause may be empty. The request deletes all tuples from the relation.

Delete from loan;

· Here are examples of SQL delete requests:

1. Delete from account where branch-name=’perryridge’;

2. Delete from loan where amount between 1300 and 1500;

3. Delete from account where branch-name in(select branch-name from branch where branch-city=’brooklyn’);

Insertion

· To insert data into a relation, we either specify a tuple to be inserted or write a query whose result is a set of tuples to be inserted.

· The simplest insert statement is a request to insert one tuple.
1. Insert into account values (‘A-9732’,’perryridge’,1200);

2. Insert into account (account-number ,branch- name, balance) values (‘A-9732’,’perryridge’,1200);
3. Insert into account select customer-name, loan-number from borrower, loan where borrower. loan-number = loan. Loan-number and branch-name=’perryridge’;

Updates

· We may wish to change a value in a tuple without changing all values in the tuples.

· The update statement can be used.
1. Update account set balance=balance*1.05;

2. Update account set balance= balance * 1.05 where balance>=1000;

Update of a View

· The difficulty is that a modification to the database expressed in terms of a view must be translated to a modification to the actual relations in the logical model of the database.
· There are two reasonable approaches to dealing with this insertion.

1. Reject the insertion and return an error message to the user.

2. Insert a tuple (L-37,”perryridge”,null) into the loan relation.

1. Create view loan-branch as select loan-number, branch-name from loan;

2. Insert into loan-branch values (‘L-37’,’perryridge’);
Transactions

· A transaction consists of a sequence of query and/or update statements.
· The SQL standard specifies that a transaction begin implicitly when an SQL statement is executed.
1. Commit work

2. Rollback work

Commit Work

· Commit work commits the current transaction; that is,it makes the updates performed by the transaction become permanent in the database.
· After the transaction is committed, a new transaction is automatically started.
· The commit command is used to make all transaction changes permanent to the database.

· Example: Commit;
Rollback

· The database state is restored to what it was before the first statement of the transaction was executed.

· This command is used to undo all the changes made in the current transaction.

· Example: Roll back;
Joined Relations

· Two or More relations are joined is called joins.
Types of Joins:
1. Inner Join
2. Left Outer Join

3. Right Outer Join

4. Full Outer Join

Inner Join

· The inner join retrieves tuples from two relations having a common attribute.

· The attributes of the result consist of the attributes of the left-hand-side relation followed by the attributes of the right-hand-side relation.

Loan inner join borrower on loan. loan-number=borrower. loan-number;

· An as clause should be used to assign unique names to attributes in query and subquery results.

· We rename the result relation of a join and the attributes of the result relation by using an as clause.
Loan inner join borrower on loan. loan-number=borrower. loan-number as lb(loan-number,branch-name, amount, customer-name,loan-num);

	Loan-number
	Branch-name
	Amount
	Customer-name
	Loan-number

	L-170
	Downtown
	3000
	Jones
	L-170

	L-230
	Redwood
	4000
	Smith
	L-230

Left Outer Join

· The attributes of the result consist of the attributes of the left-hand-side relation loan that does not match any tuple in the attributes of the right-hand-side relation borrower.

Loan left outer join borrower on loan. loan- number=borrower. loan- number;

	Loan-number
	Branch-name
	Amount
	Customer-name
	Loan-number

	L-170
	Downtown
	3000
	Jones
	L-170

	L-230
	Redwood
	4000
	Smith
	L-230

	L-260
	Perryridge
	1700
	Null
	Null

Right Outer Join
· The right outer join is symmetric to the left outer join.
· The tuples from the right-hand-side relation that does not match any tuple in the left-hand-side relation.
· We have seen the natural join and the on condition before.
Loan natural right outer join borrower;

	Loan-number
	Branch-name
	Amount
	Customer-name

	L-170
	Downtown
	3000
	Jones

	L-230
	Redwood
	4000
	Smith

	L-260
	Null
	null
	Hayes

Full outer Join
· The full outer join is a combination of the left and right outer-join types.
· After the operation computes the result of the inner join,

· It extends with nulls tuples from the left-hand-side relation that did not match with any from the right-hand-side.
Loan full outer join borrower using (loan-number);

	Loan-number
	Branch-name
	Amount
	Customer-name

	L-170
	Downtown
	3000
	Jones

	L-230
	Redwood
	4000
	Smith

	L-260
	Perryridge
	1700
	Null

	L-155
	Null
	Null
	Hayes

SQL Data Types and Schemas
· We covered a number of built-in data types supported in SQL, such as integer types, real types, and character types.

· There are additional built-in data types supported by SQL.
Built-in Data Types in SQL
· date: A calendar date containing a (four-digit) year, month, and day of the month.

· time: The time of day, in hour, minutes, and seconds. A variant, time(p), can be used to specify the number of fractional digits for seconds. It is also possible to store time zone information along with the time by specifying time with timezone.
· timestamp: A combination of date and time.A variant, timestamp(p), can be used to specify the number of fractional digits for seconds.
User-Defined Types

SQL supports two forms of user-defined data types.
· Distinct types

· Structured data types

Structured data types
The creation of complex data types with nested record structures, arrays, and multisets.
Distinct types
· Comparing a monetary value expressed in dollars directly with a monetary value expressed in pounds is also almost surely a programming error.
· A good type system should be able to detect such assignments or comparisons.
· SQL provides the notion of distinct types.
· The create type clause can be used to define new types.
Create type Dollars as numberic(12,2) final
Create type pounds as numberic(12,2) final

· The newly created types can be used ,as types of attributes of relations.

Create table account (account-number char(10),branch-name char(15),balance Dollars)

There are two significant differences between types and domains:

1. User-defined cannot have constraints or default values specified on them. Ex: not null.

2. Domains are not strongly typed.
Large-Object Types

· SQL therefore provides new large-object data types for character data (clob) and binary data (blob).

· The letters “lob” in these data types stands for “Large Object”
Book-review clob (10KB)
Image blob (10MB)

Movie blob(2GB)

Schemas, Catalogs, and Environments

· Contemporary database systems provide a three-level hierarchy for naming relations.
· The top level of the hierarchy consists of catalogs, each of which can contain schemas.
· SQL objects such as relations and views are contained within a schemas.
· In order to perform any actions on a database, a user must first connect to the database.
· Multiple catalog and schemas are part of an SQL environment that is set up for each connection.
· The environment additionally contains the user identifier.
Integrity Constraints

Integrity constraints ensure that changes made to the database by authorized users do not result in a loss of data consistency.
Examples of integrity constraints are:

1. An account balance cannot be null.

2. No two accounts can have the same account number.

3. Every account number in the depositor relation must have a matching account number in the account relation.

Constraints on a single Relation

· The create table command may also include integrity constraints statements.

· In additional to the “Primary Key” constraint, there are a number of other ones that can be included in the create table.
· Not null

· Unique

· Check <predicate>

Not null Constraint

· The null value is a member of all domains, and as a result is a legal value for every attribute in SQL by default.

· Restricting the domain of attributes account-number and balance to exclude null values, by declaring them as follows.

Account-number char(10)not null

Balance numeric(12,2)not null

· There are many situations where we want to avoid null values.
· The not null specification can also be applied to a user-defined domain declaration, as a result attributes of the domain type would not be allowed to take a null value.
Unique Constraint

· SQL also supports an integrity constraint

Unique (Aj1,Aj2,………………………..Ajm)

The unique specification says that attributes Aj1,Aj2,………….Ajm from a candidate Key; that is, no two tuples in the relation can be equal on all the primary key attributes.
The check Clause
· The check clause in SQL can be applied to relation declarations as well as to domain declarations.

· When applied to a relation declaration, the clause check (p) specifies a predicate P that must be satisfied by every tuple in a relation.

· Example: check (asset>=0) in the create table command for relation branch would ensure that the value of assets is nonnegative.

Create table student (name char (15) not null, student-id char (10), degree-level char (15), primary key (student-id), check (degree-level in (‘Bachelors’,’masters’,’Doctorate’)))

Referential Integrity

· To ensure that a value that appears in one relation for a given set of attributes also appears for a certain set of attributes in another relation. This condition is called referential integrity.

· Foreign keys can be specified as parts of the SQL create table statement by using the foreign key clause.

· The definition of the account table has a declaration “foreign key(branch-name) references branch”.

· This foreign-key declaration specifies that for each account tuple, the branch name specified in the tuple must exist in the branch relation.

Assertions
· An assertion is a predicate expressing a condition that we wish the database always to satisfy.
· Domain constraints and referential – integrity constraints are special forms of assertions.

· There are many constraints that we cannot express by using only these special forms.

· The sum of all loan amounts for each branch must be less than the sum of all account balances at the branch.
· Every loan has at least one customer who maintains an account with a minimum balance of $1000.00

· An assertion in SQL takes the form

Create assertion <assertion-name> check <predicate>

· When an assertion is created, the system tests it for validity.

· If the assertion is valid then any future modification to the database is allowed only if it does not cause that assertion to be violated.

Authorization

· Authorization to read data
· Authorization to insert new data

· Authorization to update data

· Authorization to delete data

· Each of these types of authorization is called a privilege.
· We may authorize the user all, none, or a combination of these types of privileges on specified parts of a database, such as a relation or a view.
· The SQL standard includes the privileges select, insert, update, and delete.

· SQL supports several other privileges, such as the privilege to create, delete, or modify relations, and the privilege to execute procedures.
 There are two types of authorization commands are used;

· Grant

· Revoke
Syntax:
· The grant statement is used to confer authorization. The basic form of this statement is

grant <Privilege list>on<relation name or view name>to<user/role list>

Select privilege:

· The select privilege authorizes a user to read data.
grnat select on account to john,mary

· The grant statement grants database users john and mary select authorization on the account relation.

Update privilege:

grant update (amount) on loan to john,mary

· The update authorization may be given either on all attributes of the relation or on only some.

· This grant statement gives users john and mary update authorization on the amount attribute of the loan relation.

Insert privilege:

· It is a used to allow user to insert tuples into the relation.

· The insert privilege also specified a list of attributes grand.

grnat insert on account to john,mary

Delete privilege:

· It is used to delete tuples from on relation
grnat delete on account to john,mary

· By default, a user/role that is granted a privilege is not authorized to grant that privilege to another user/role.

Revoke:
· To revoke an authorization, we use the revoke statement to cancel the authorization. It takes a form almost identical to that of grant:

revoke <privilege list>on<relation name or view name> from <user/role list>
Example: revoke select on branch from john,mary

revoke update(amount) on loan from john,mary
Transfer of Privileges:

· A user who has been granted some form of authorization may be allowed to pass on this authorization to other users.

· By default, a user/role that is granted a privilege is not authorized to grant the privilege to anther user/role.

· If we wish to grant a privilege and to allow the recipient to pass the privilege on to other users, we append the with grant option clause to the appropriate grant command.

U1

U4

DBA

U2

U5

U3

That user U5 is granted authorization by U1, U2 and U4 is authorization by only U1.

Embedded SQL

· The SQL standard defines embeddings of SQL in a variety of programming languages, such as C, COBOL, Pascal, Java, PL/I and FORTRAN.

· A programming language is called as a host language, and the SQL statement is called as embedded SQL.

· Programs written in the host language can use the embedded SQL syntax to access and update data stored in a database.

· An embedded SQL program must be processed by a special preprocessor prior to complication.

· The preprocessor replaces embedded SQL requests with host-language declarations and procedure calls that allow run-time execution of the database accesses.

· Then, the resulting program is compiled by the host-language compiler.

· To identify embedded SQL requests to the preprocessor, we use the EXEC SQL statement.

General form:
EXEC SQL<embedded SQL statement>END-EXEC

Example: EXEC SQL connect to server user user-name END-EXEC

· Server identifies the server to which a connection is to be established.

· Database implementations may require a password to be provided in addition to a user name.

· For instance, a semicolon is used instead of END-EXEC when SQL is embedded in C.

· The Java embedding of SQL (called SQLJ) uses the syntax.
#SQL {<embedded SQL statement>};
Variable Declaration:

 Variable can be declared by using the following statement.

EXEC SQL BEGIN DECLAR SECTION

int credit-amount

EXEC SQL END DECLAR SECTION

· To write a relational query, we use the declare cursor statement.

Example:

exec SQL

declare c cursor for

select ID,name

from student

The above statement used to find the names of the student.

· The program must use the open and fetch commands to obtain the result tuples.

Open statement:
· It is used to execute the query and to save the result with in a temporary relation
EXEC SQL Open c END-EXEC

Fetch statement:

· It is used to access data from database.

· It request variable for each attribute of the result relation.

EXEC SQL Fetch c into s1,s2 END-EXEC

The above statement by using the cursor we are fetching the attributes Id and student name, which are stored s1, s2.

Close statement:

Close statement used to tell the database system to delete temporary relation that held the result of the query.

EXEC SQL close c END-EXEC

Modification statement:

· A database modification request takes the form

EXEC SQL<any valid update, insert, or delete> END-EXEC
· Database relations can also be updated through cursors.
· For Example: if we want to add 100 to the balance attribute of every account where the branch name “manappari” .
declare c cursor for

Select *

From account

Where branch-name=’manappari’

For update account
Set balance=balance+100

Where current of c.

[image: image1.png]

K.BHUVANESWARI
Page 1

