FUNCTIONAL ANALYSIS UNIT-IV(P16MA41) II M.Sc. Mathematics

A. Thanga Pandi

Assistant Professor P.G. Department of Mathematics, Servite Arts and Science College for women, Thogaimalai, Karur, India.

20. Mai 2020

A. Thanga Pandi

Servite Arts and Science College for women, Karur

FUNCTIONAL ANALYSIS UNIT-IV

Outline

1 General Preliminaries on Banach Algebra:

2 The radical and semi-simplicity:

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

Banach Algebra:

Banach Algebra is a complex banach space which is also an algebra with identity 1 and in which the multiplicative structure is relative to the norm by

(i) $||xy|| \le ||x|| ||y||$ (ii) ||1|| = 1

Banach Sub-Algebra:

A banach sub-algebra of banach algebra , if A is closed and sub-algebra of A which contains 1.

A. Thanga Pandi

Banach Algebra:

Banach Algebra is a complex banach space which is also an algebra with identity 1 and in which the multiplicative structure is relative to the norm by

(i) $||xy|| \le ||x|| ||y||$ (ii) ||1|| = 1

Banach Sub-Algebra:

A banach sub-algebra of banach algebra , if A is closed and sub-algebra of A which contains 1.

A. Thanga Pandi

Disc Algebra:

A simple application of morera's theorem from complex analysis show that it is closed and therefore a banach sub-algebra $\rho(D)$.

Disc Algebra:

A simple application of morera's theorem from complex analysis show that it is closed and therefore a banach sub-algebra $\rho(D)$.

This banach algebra is called the disc algebra.

C^* -Algebra:

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

Disc Algebra:

A simple application of morera's theorem from complex analysis show that it is closed and therefore a banach sub-algebra $\rho(D)$.

This banach algebra is called the disc algebra.

C^{*}–Algebra:

Banach sub-algebra of B(H)'s which are self-adjoint are called C^* -algebra.

Disc Algebra:

A simple application of morera's theorem from complex analysis show that it is closed and therefore a banach sub-algebra $\rho(D)$.

This banach algebra is called the disc algebra.

C^{*}–Algebra:

Banach sub-algebra of B(H)'s which are self-adjoint are called C^* -algebra.

Weak operator topology:

It is the weakest topology with respect to which all these functions are continuous.

 W^* -Algebra:

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

Weak operator topology:

It is the weakest topology with respect to which all these functions are continuous.

W^* -Algebra:

A C^* -algebra with the further property of being closed in the weak operator topology is called a W^* -algebra. Algebras of this kind are also called rings of

operators (*or*) Neumann algebras.

Weak operator topology:

It is the weakest topology with respect to which all these functions are continuous.

W^* -Algebra:

A C^* -algebra with the further property of being closed in the weak operator topology is called a W^* -algebra. Algebras of this kind are also called rings of

operators (or) Neumann algebras.

Regular Elements:

Let \mathbb{R} be a ring with identity $x \in \mathbb{R}$ has an inverse. Then x is said to be regular element.

Singular Element:

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

Regular Elements:

Let \mathbb{R} be a ring with identity $x \in \mathbb{R}$ has an inverse. Then x is said to be regular element.

Singular Element:

An elements which are not regular is called a singular elements.

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

Regular Elements:

Let \mathbb{R} be a ring with identity $x \in \mathbb{R}$ has an inverse. Then x is said to be regular element.

Singular Element:

An elements which are not regular is called a singular elements.

Theorem 1

Every element x for which ||x - 1|| < 1 is regular and the inverse of such element is given by $x^{-1} = 1 + \sum_{n=1}^{\infty} (1 - x)^n$

Proof:

Let
$$r = ||x - 1||$$
, So that $r < 1$.
Then, $||(1 - x)^n|| \le ||1 - x||^n \le r^n$

A. Thanga Pandi

Servite Arts and Science College for women, Karur

FUNCTIONAL ANALYSIS UNIT-IV

Theorem 1

Every element x for which ||x - 1|| < 1 is regular and the inverse of such element is given by $x^{-1} = 1 + \sum_{n=1}^{\infty} (1 - x)^n$

Proof:

Let
$$r = ||x - 1||$$
, So that $r < 1$.
Then, $||(1 - x)^n|| \le ||1 - x||^n \le r^n$
Let $S_n = (1 - x) + (1 - x)^2 + ... + (1 - x)^n$.
For $n > m$,

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

Theorem 1

Every element x for which ||x - 1|| < 1 is regular and the inverse of such element is given by $x^{-1} = 1 + \sum_{n=1}^{\infty} (1 - x)^n$

Proof:

Let
$$r = ||x - 1||$$
, So that $r < 1$.
Then, $||(1 - x)^n|| \le ||1 - x||^n \le r^n$
Let $S_n = (1 - x) + (1 - x)^2 + ... + (1 - x)^n$.
For $n > m$,

A. Thanga Pandi

Servite Arts and Science College for women, Karur

FUNCTIONAL ANALYSIS UNIT-IV

$$\begin{split} ||S_n - S_m|| &= ||(1-x)^{m+1} + (1-x)^{m+2} \\ &+ ... + (1-x)^n || \\ &\leq ||(1-x)^{m+1}|| + ||(1-x)^{m+2}|| \\ &+ ... + ||(1-x)^n|| \end{split}$$

$$\begin{split} ||S_n - S_m|| &= ||(1-x)^{m+1} + (1-x)^{m+2} \\ &+ \dots + (1-x)^n|| \\ &\leq ||(1-x)^{m+1}|| + ||(1-x)^{m+2}|| \\ &+ \dots + ||(1-x)^n|| \\ &\leq r^{m+1} + r^{m+2} + \dots + r^n \end{split}$$

$$\begin{aligned} ||S_n - S_m|| &= ||(1 - x)^{m+1} + (1 - x)^{m+2} \\ &+ ... + (1 - x)^n|| \\ &\leq ||(1 - x)^{m+1}|| + ||(1 - x)^{m+2}|| \\ &+ ... + ||(1 - x)^n|| \\ &\leq r^{m+1} + r^{m+2} + ... + r^n \\ &\leq r^{m+1}(1 + r + r^2 + ... + r^{n-m-1}) \end{aligned}$$

$$\begin{aligned} ||S_n - S_m|| &= ||(1 - x)^{m+1} + (1 - x)^{m+2} \\ &+ \dots + (1 - x)^n|| \\ &\leq ||(1 - x)^{m+1}|| + ||(1 - x)^{m+2}|| \\ &+ \dots + ||(1 - x)^n|| \\ &\leq r^{m+1} + r^{m+2} + \dots + r^n \\ &\leq r^{m+1}(1 + r + r^2 + \dots + r^{n-m-1}) \\ &\leq r^{m+1}(\frac{1 - r^{n-m}}{1 - r}) \to 0 \text{ as } n \to \infty \end{aligned}$$

A. Thanga Pandi

Servite Arts and Science College for women, Karur

FUNCTIONAL ANALYSIS UNIT-IV

$$\begin{aligned} ||S_n - S_m|| &= ||(1 - x)^{m+1} + (1 - x)^{m+2} \\ &+ \dots + (1 - x)^n|| \\ &\leq ||(1 - x)^{m+1}|| + ||(1 - x)^{m+2}|| \\ &+ \dots + ||(1 - x)^n|| \\ &\leq r^{m+1} + r^{m+2} + \dots + r^n \\ &\leq r^{m+1}(1 + r + r^2 + \dots + r^{n-m-1}) \\ &\leq r^{m+1}(\frac{1 - r^{n-m}}{1 - r}) \to 0 \text{ as } n \to \infty \end{aligned}$$

A. Thanga Pandi

Servite Arts and Science College for women, Karur

FUNCTIONAL ANALYSIS UNIT-IV

Hence, $||S_n - S_m|| \to 0$ $n \to \infty$. $A = \{S_n\}$ is cauchy sequence in A.

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

$\bigstar \text{ Hence, } ||S_n - S_m|| \to 0 \quad n \to \infty.$

- \swarrow { S_n } is cauchy sequence in A.
- 🖾 A is complete.
- $\bowtie \{S_n\}$ is converges to an element $y \in A$.

$$\begin{array}{l} \checkmark & \text{Hence, } ||S_n - S_m|| \to 0 \quad n \to \infty. \\ & \swarrow \quad \{S_n\} \text{ is cauchy sequence in } A. \\ & \checkmark \quad A \text{ is complete.} \\ & \swarrow \quad \{S_n\} \text{ is converges to an element } y \in A. \\ & \swarrow \quad \{S_n\} \text{ is converges to an element } y \in A. \\ & \swarrow \quad \text{Let } y = 1 + \sum_{n=1}^{\infty} (1-x)^n \end{array}$$

$$\begin{array}{ll} \swarrow & \text{Hence, } ||S_n - S_m|| \to 0 \quad n \to \infty. \\ & \swarrow & \{S_n\} \text{ is cauchy sequence in } A. \\ & \swarrow & A \text{ is complete.} \\ & \swarrow & \{S_n\} \text{ is converges to an element } y \in A. \\ & \swarrow & \{S_n\} \text{ is converges to an element } y \in A. \\ & \swarrow & \text{Let } y = 1 + \sum_{n=1}^{\infty} (1-x)^n \\ & \swarrow & \text{Consider,} \\ & 1 + S_n = 1 + (1-x) + (1-x)^2 + \ldots + (1-x)^n \end{array}$$

A. Thanga Pandi

FUNCTIONAL ANALYSIS UNIT-IV

Hence,
$$||S_n - S_m|| \to 0$$
 $n \to \infty$.
 $\{S_n\}$ is cauchy sequence in A .
 A is complete.
 $\{S_n\}$ is converges to an element $y \in A$.
 E Let $y = 1 + \sum_{n=1}^{\infty} (1-x)^n$
Consider,
 $1 + S_n = 1 + (1-x) + (1-x)^2 + ... + (1-x)^n$

A. Thanga Pandi

FUNCTIONAL ANALYSIS UNIT-IV

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

$$1 + S_n = 1 + \sum_{m=1}^n (1 - x)^m$$

= $1 + \sum_{m=1}^\infty (1 - x)^m \operatorname{asn} \to \infty$

$$(1-x)(1+S_n) \to (1-x)y$$
 (1)

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

$$1 + S_n = 1 + \sum_{m=1}^n (1 - x)^m$$

= $1 + \sum_{m=1}^\infty (1 - x)^m \operatorname{asn} \to \infty$

$$(1-x)(1+S_n) \to (1-x)y$$
 (1)

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

$$1 + S_n = 1 + \sum_{m=1}^n (1 - x)^m$$

= $1 + \sum_{m=1}^\infty (1 - x)^m \operatorname{asn} \to \infty$

$$(1-x)(1+S_n) \to (1-x)y$$
 (1)

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

$$(1-x)(1+S_n) = y-1$$
 (2)
From, Eq.(1) and (2)

$$(1-x)(1+S_n) = y-1$$
 (2)
From, Eq.(1) and (2)

$$(1-x)y = y-1$$

$$(1-x)(1+S_n) = y-1$$
 (2)
From, Eq.(1) and (2)

$$(1-x)y = y-1$$

xy = 1
$$(1-x)(1+S_n) = y-1$$
 (2)
From, Eq.(1) and (2)

$$(1-x)y = y-1$$
$$xy = 1$$
$$y = x^{-1}$$

Therefore, x is regular implies $x^{-1} = 1 + \sum_{n=1}^{\infty} (1-x)^n$

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

$$(1-x)(1+S_n) = y-1$$
 (2)
From, Eq.(1) and (2)

$$(1-x)y = y-1$$
$$xy = 1$$
$$y = x^{-1}$$

Therefore, x is regular implies $x^{-1} = 1 + \sum_{n=1}^{\infty} (1-x)^n$

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

If G is an open set and therefore s is a closed set.

Proof:

Let x_0 be an element in G and let x be any element in A.

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

If G is an open set and therefore s is a closed set.

Proof:

Let x_0 be an element in G and let x be any element in A.

Such that,
$$||x - x_0|| < \frac{1}{||x^{-1}||}$$

Now

If G is an open set and therefore s is a closed set.

Proof:

Let x_0 be an element in G and let x be any element in A.

Such that,
$$||x - x_0|| < \frac{1}{||x^{-1}||}$$

Now,

$$||x_0^{-1}x - 1|| = ||x_0^{-1}(x - x_0)||$$

A. Thanga Pandi

Servite Arts and Science College for women, Karur

If G is an open set and therefore s is a closed set.

Proof:

Let x_0 be an element in G and let x be any element in A.

Such that,
$$||x - x_0|| < \frac{1}{||x^{-1}||}$$

Now,

$$egin{array}{rcl} ||x_0^{-1}x-1|| &=& ||x_0^{-1}(x-x_0)|| \ &<& ||x_0^{-1}||rac{1}{||x_0^{-1}||} \end{array}$$

A. Thanga Pandi

Servite Arts and Science College for women, Karur

If G is an open set and therefore s is a closed set.

Proof:

Let x_0 be an element in G and let x be any element in A.

Such that,
$$||x - x_0|| < \frac{1}{||x^{-1}||}$$

Now,

 $\begin{aligned} ||x_0^{-1}x - 1|| &= ||x_0^{-1}(x - x_0)|| \\ &< ||x_0^{-1}|| \frac{1}{||x_0^{-1}||} \\ &< 1 \end{aligned}$

A. Thanga Pandi

Servite Arts and Science College for women, Karur

If G is an open set and therefore s is a closed set.

Proof:

Let x_0 be an element in G and let x be any element in A.

Such that,
$$||x - x_0|| < \frac{1}{||x^{-1}||}$$

Now,

 $\begin{aligned} ||x_0^{-1}x - 1|| &= ||x_0^{-1}(x - x_0)|| \\ &< ||x_0^{-1}|| \frac{1}{||x_0^{-1}||} \\ &< 1 \end{aligned}$

A. Thanga Pandi

Servite Arts and Science College for women, Karur

• By Theorem -1, $x_0^{-1}x$ is in G.

Since, $x = x_0(x_0^{-1})$ implies x is also in G.

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

• By Theorem -1, $x_0^{-1}x$ is in G.

- Since, $x = x_0(x_0^{-1})$ implies x is also in G.
- Therefore, G contains a nbhd of each of its points.

- By Theorem -1, $x_0^{-1}x$ is in G.
- Since, $x = x_0(x_0^{-1})$ implies x is also in G.
- Therefore, G contains a nbhd of each of its points.
- \checkmark Hence, G is open.

- By Theorem -1, $x_0^{-1}x$ is in G.
- Since, $x = x_0(x_0^{-1})$ implies x is also in G.
- Therefore, G contains a nbhd of each of its points.
- \checkmark Hence, G is open.

Implies its Complements is closed.

- By Theorem -1, $x_0^{-1}x$ is in G.
- Since, $x = x_0(x_0^{-1})$ implies x is also in G.
- Therefore, G contains a nbhd of each of its points.
- \checkmark Hence, G is open.
- Implies its Complements is closed.
 Thus, s is closed.

- By Theorem -1, $x_0^{-1}x$ is in G.
- Since, $x = x_0(x_0^{-1})$ implies x is also in G.
- Therefore, G contains a nbhd of each of its points.
- \checkmark Hence, G is open.
- Implies its Complements is closed.
 Thus, *s* is closed.

The mapping $x \to x^{-1}$ of G into G is continuous and is therefore a homeomorphism of G onto itself.

Proof:

• Let $f: G \to G$ be given by $f(x) = x^{-1} \forall x \in G$.

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

The mapping $x \to x^{-1}$ of G into G is continuous and is therefore a homeomorphism of G onto itself.

Proof:

✓ Let f: G → G be given by f(x) = x⁻¹∀x ∈ G.
✓ Let x₀ be an element of G and x be another element of G.

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

The mapping $x \to x^{-1}$ of G into G is continuous and is therefore a homeomorphism of G onto itself.

Proof:

• Let
$$f: G \to G$$
 be given by $f(x) = x^{-1} \forall x \in G$.

Let x_0 be an element of G and x be another element of G.

Such that
$$||x - x_0|| < \frac{1}{2||x_0^{-1}||}$$

The mapping $x \to x^{-1}$ of G into G is continuous and is therefore a homeomorphism of G onto itself.

Proof:

• Let
$$f: G \to G$$
 be given by $f(x) = x^{-1} \forall x \in G$.

Such that
$$||x - x_0|| < \frac{1}{2||x_0^{-2}|}$$

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

$\begin{array}{l} \swarrow & \text{Let } \epsilon > 0 \text{ be given such that } \epsilon < ||x^{-1}||. \\ \\ \swarrow & \text{Let } \delta = \frac{\epsilon}{2||x_0^{-1}||^2}. \end{array}$

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

Let
$$\epsilon > 0$$
 be given such that $\epsilon < ||x^{-1}||$.
Let $\delta = \frac{\epsilon}{2||x_0^{-1}||^2}$.
Now,
 $||x_0^{-1}x - 1|| = ||x_0^{-1}(x - x_0)||$

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

$$\begin{array}{l} \swarrow & \text{Let } \epsilon > 0 \text{ be given such that } \epsilon < ||x^{-1}|| \\ \\ \swarrow & \text{Let } \delta = \frac{\epsilon}{2||x_0^{-1}||^2}. \\ \\ \end{array} \\ \begin{array}{l} \swarrow & \text{Now,} \\ \\ \swarrow & ||x_0^{-1}x - 1|| = ||x_0^{-1}(x - x_0)|| \\ \\ \\ \swarrow & ||x_0^{-1}x - 1|| < 1 \end{array} \\ \end{array}$$

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

A. Thanga Pandi

Servite Arts and Science College for women, Karur

A. Thanga Pandi

A. Thanga Pandi

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

$$\begin{aligned} ||f(x) - f(x_0)|| &= ||x^{-1} - x_0^{-1}|| \\ &\leq 2||x_0^{-1}||^2||x - x_0|| \end{aligned}$$

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

$$\begin{aligned} ||f(x) - f(x_0)|| &= ||x^{-1} - x_0^{-1}|| \\ &\leq 2||x_0^{-1}||^2||x - x_0|| \\ &< 2||x_0^{-1}||^2\delta \end{aligned}$$

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

$$||f(x) - f(x_0)|| = ||x^{-1} - x_0^{-1}|| \\ \leq 2||x_0^{-1}||^2||x - x_0|| \\ < 2||x_0^{-1}||^2\delta \\ ||f(x) - f(x_0)|| < \epsilon$$

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

$$\begin{aligned} ||f(x) - f(x_0)|| &= ||x^{-1} - x_0^{-1}|| \\ &\leq 2||x_0^{-1}||^2||x - x_0|| \\ &< 2||x_0^{-1}||^2\delta \\ ||f(x) - f(x_0)|| &< \epsilon \end{aligned}$$

Implies f is continuous at x_0 , f is continuous on G.

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

$$\begin{aligned} ||f(x) - f(x_0)|| &= ||x^{-1} - x_0^{-1}|| \\ &\leq 2||x_0^{-1}||^2||x - x_0|| \\ &< 2||x_0^{-1}||^2\delta \\ ||f(x) - f(x_0)|| &< \epsilon \end{aligned}$$

Implies f is continuous at x_0 , f is continuous on G.

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

f(x) = f(y)

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

$$f(x) = f(y)$$

 $x^{-1} = y^{-1}$

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

$$f(x) = f(y)$$

$$x^{-1} = y^{-1}$$

$$x = y$$

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

$$f(x) = f(y)$$

$$x^{-1} = y^{-1}$$

$$x = y$$

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

$$f(x) = f(y)$$

 $x^{-1} = y^{-1}$
 $x = y$

Therefore
$$f$$
 is $1 - 1$.

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV
To prove: f is 1-1 Now,

$$f(x) = f(y)$$

$$x^{-1} = y^{-1}$$

$$x = y$$

Therefore f is 1 - 1.

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

To prove: *f* **is Onto**

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

To prove: f is Onto For all $x^{-1} \in G$, There exist $x \in G$ Such that $f(x^{-1} = x \in G)$

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

To prove: f is Onto For all $x^{-1} \in G$, There exist $x \in G$ Such that $f(x^{-1} = x \in G)$ Therefore, f is onto.

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

To prove: f is Onto For all $x^{-1} \in G$, There exist $x \in G$ Such that $f(x^{-1} = x \in G)$ Therefore, f is onto. Then, f^{-1} is also continuous.

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

To prove: f is Onto For all $x^{-1} \in G$, There exist $x \in G$ Such that $f(x^{-1} = x \in G)$ Therefore, f is onto. Then, f^{-1} is also continuous. Hence, f is homomorphism.

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV To prove: f is Onto For all $x^{-1} \in G$, There exist $x \in G$ Such that $f(x^{-1} = x \in G)$ Therefore, f is onto. Then, f^{-1} is also continuous. Hence, f is homomorphism.

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

Topological divisor of zero:

An element z in an banach algebra A is called a topological divisor of zero. If there exist a sequence $\{z_n\}$ in A such that $||z_n|| = 1$ and either $zz_n \to 0$ or $z_n z \to 0$.

Topological divisor of zero:

An element z in an banach algebra A is called a topological divisor of zero. If there exist a sequence $\{z_n\}$ in A such that $||z_n|| = 1$ and either $zz_n \to 0$ or $z_n z \to 0$.

Every divisor of zero is a topological divisor of zero.

Proof:

Let $b \in A$ be a divisor of zero.

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

Every divisor of zero is a topological divisor of zero.

Proof:

Let $b \in A$ be a divisor of zero. There exist $a \neq 0$ such that ab = ba = 0

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

Every divisor of zero is a topological divisor of zero.

Proof:

Let $b \in A$ be a divisor of zero. There exist $a \neq 0$ such that ab = ba = 0**To prove:** b is a topological divisor of zero.

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

Every divisor of zero is a topological divisor of zero.

Proof:

Let $b \in A$ be a divisor of zero. There exist $a \neq 0$ such that ab = ba = 0**To prove:** b is a topological divisor of zero. Let $z_n = \frac{a}{||a||}$

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

Every divisor of zero is a topological divisor of zero.

Proof:

Let $b \in A$ be a divisor of zero. There exist $a \neq 0$ such that ab = ba = 0**To prove:** b is a topological divisor of zero. Let $z_n = \frac{a}{||a||}$ Therefore, $||z_n|| = 1$

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

Every divisor of zero is a topological divisor of zero.

Proof:

Let $b \in A$ be a divisor of zero. There exist $a \neq 0$ such that ab = ba = 0**To prove:** b is a topological divisor of zero. Let $z_n = \frac{a}{||a||}$ Therefore, $||z_n|| = 1$ $Z_n b \to 0$

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

Every divisor of zero is a topological divisor of zero.

Proof:

Let $b \in A$ be a divisor of zero. There exist $a \neq 0$ such that ab = ba = 0**To prove:** b is a topological divisor of zero. Let $z_n = \frac{a}{||a||}$ Therefore, $||z_n|| = 1$ $Z_n b \to 0$ Hence, b is a topological divisor of zero.

A. Thanga Pandi

Every divisor of zero is a topological divisor of zero.

Proof:

Let $b \in A$ be a divisor of zero. There exist $a \neq 0$ such that ab = ba = 0**To prove:** b is a topological divisor of zero. Let $z_n = \frac{a}{||a||}$ Therefore, $||z_n|| = 1$ $Z_n b \to 0$ Hence, b is a topological divisor of zero.

A. Thanga Pandi

The set of all topological divisor of zero Z is a subset of the set S of all singular element in A or Z is a subset of S.

Proof:

Let $z \in Z$ and $\{z_n\}$ be a sequence in A such that $||z_n|| = 1$ and $zz_n \to 0$.

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

The set of all topological divisor of zero Z is a subset of the set S of all singular element in A or Z is a subset of S.

Proof:

Let $z \in Z$ and $\{z_n\}$ be a sequence in A such that $||z_n|| = 1$ and $zz_n \to 0$. To prove: $z \in S$

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

The set of all topological divisor of zero Z is a subset of the set S of all singular element in A or Z is a subset of S.

Proof:

Let $z \in Z$ and $\{z_n\}$ be a sequence in A such that $||z_n|| = 1$ and $zz_n \to 0$. **To prove:** $z \in S$ Suppose that $z \notin S$

The set of all topological divisor of zero Z is a subset of the set S of all singular element in A or Z is a subset of S.

Proof:

Let $z \in Z$ and $\{z_n\}$ be a sequence in A such that $||z_n|| = 1$ and $zz_n \to 0$. **To prove:** $z \in S$ Suppose that $z \notin S$ Implies $z \in G$ [G is the complement of S]

The set of all topological divisor of zero Z is a subset of the set S of all singular element in A or Z is a subset of S.

Proof:

Let $z \in Z$ and $\{z_n\}$ be a sequence in A such that $||z_n|| = 1$ and $zz_n \to 0$. **To prove:** $z \in S$ Suppose that $z \notin S$ Implies $z \in G$ [G is the complement of S]

The set of all topological divisor of zero Z is a subset of the set S of all singular element in A or Z is a subset of S.

Proof:

Let $z \in Z$ and $\{z_n\}$ be a sequence in A such that $||z_n|| = 1$ and $zz_n \to 0$. **To prove:** $z \in S$ Suppose that $z \notin S$ Implies $z \in G$ [G is the complement of S]

By jointly continuous on multiplication $z^{-1}(zz_n) \rightarrow z^{-1}(0)$ $\therefore z_n \rightarrow 0$

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

By jointly continuous on multiplication

$$z^{-1}(zz_n) \rightarrow z^{-1}(0)$$

 $\therefore z_n \rightarrow 0$
Which is a contradiction to $||z_n|| = 1$

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

By jointly continuous on multiplication $z^{-1}(zz_n) \rightarrow z^{-1}(0)$ $\therefore z_n \rightarrow 0$ Which is a contradiction to $||z_n|| = 1$ Therefore, $z \in S$

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

By jointly continuous on multiplication $z^{-1}(zz_n) \rightarrow z^{-1}(0)$ $\therefore z_n \rightarrow 0$ Which is a contradiction to $||z_n|| = 1$ Therefore, $z \in S$ Hence, $Z \subset S$.

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

By jointly continuous on multiplication $z^{-1}(zz_n) \rightarrow z^{-1}(0)$ $\therefore z_n \rightarrow 0$ Which is a contradiction to $||z_n|| = 1$ Therefore, $z \in S$ Hence, $Z \subset S$.

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

The boundary of S is a subset of Z.

Proof:

Since, S is closed, it is boundary consists of all points in S which are the limits of convergent sequence in G.

The boundary of S is a subset of Z.

Proof:

Since, S is closed, it is boundary consists of all points in S which are the limits of convergent sequence in G.

Let Z belongs to the boundary of S

The boundary of S is a subset of Z.

Proof:

Since, S is closed, it is boundary consists of all points in S which are the limits of convergent sequence in G. Let Z belongs to the boundary of S

To prove: $z \in Z$

The boundary of S is a subset of Z.

Proof:

Since, *S* is closed, it is boundary consists of all points in *S* which are the limits of convergent sequence in *G*. Let *Z* belongs to the boundary of *S* **To prove:** $z \in Z$

Suppose $z \in S$ and there exist a sequence $\{r_n\}$ in G such that $r_n \to z$,

The boundary of S is a subset of Z.

Proof:

Since, S is closed, it is boundary consists of all points in S which are the limits of convergent sequence in G. Let Z belongs to the boundary of S**To prove:** $z \in Z$ Suppose $z \in S$ and there exist a sequence $\{r_n\}$ in G such that $r_n \to z$, Then z is in Z.

The boundary of S is a subset of Z.

Proof:

Since, S is closed, it is boundary consists of all points in S which are the limits of convergent sequence in G. Let Z belongs to the boundary of S**To prove:** $z \in Z$ Suppose $z \in S$ and there exist a sequence $\{r_n\}$ in G such that $r_n \to z$, Then z is in Z.

Now,

$$r_n^{-1}z - 1 = r_n^{-1}(z - r_n)$$
(3)

Suppose $\{r_n^{-1}\}$ is bounded.

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

Now,

$$r_n^{-1}z - 1 = r_n^{-1}(z - r_n)$$
 (3)

✓ Suppose $\{r_n^{-1}\}$ is bounded. ✓ $: ||r_n^{-1}|| \le k \forall$ positive integer k.

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV
$$r_n^{-1}z - 1 = r_n^{-1}(z - r_n)$$
 (3)

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

$$r_n^{-1}z - 1 = r_n^{-1}(z - r_n)$$
 (3)

Suppose $\{r_n^{-1}\}$ is bounded. $\swarrow :: ||r_n^{-1}|| \le k \forall$ positive integer k.
Since $r_n \to z$. Implies $||r_n - z|| \le \frac{1}{k} \forall n \ge m$ From Eq.(3),

$$||r_n^{-1}z - 1|| = ||r_n^{-1}(z - r_n)||$$

A. Thanga Pandi

Servite Arts and Science College for women, Karur

$$r_n^{-1}z - 1 = r_n^{-1}(z - r_n)$$
 (3)

Suppose
$$\{r_n^{-1}\}$$
 is bounded.
 $\swarrow : . ||r_n^{-1}|| \le k \forall$ positive integer k .
Since $r_n \to z$. Implies $||r_n - z|| \le \frac{1}{k} \forall n \ge m$
From Eq.(3),

$$||r_n^{-1}z - 1|| = ||r_n^{-1}(z - r_n)|| < k \frac{1}{k}$$

Servite Arts and Science College for women, Karur

A. Thanga Pandi

$$r_n^{-1}z - 1 = r_n^{-1}(z - r_n)$$
 (3)

Suppose
$$\{r_n^{-1}\}$$
 is bounded.
 $\swarrow : . ||r_n^{-1}|| \le k \forall$ positive integer k .
Since $r_n \to z$. Implies $||r_n - z|| \le \frac{1}{k} \forall n \ge m$
From Eq.(3),

$$||r_n^{-1}z - 1|| = ||r_n^{-1}(z - r_n)|| < k \frac{1}{k}$$

Servite Arts and Science College for women, Karur

A. Thanga Pandi

$$r_n^{-1}z - 1 = r_n^{-1}(z - r_n)$$
 (3)

Suppose
$$\{r_n^{-1}\}$$
 is bounded.
 $\swarrow : . ||r_n^{-1}|| \le k \forall$ positive integer k .
Since $r_n \to z$. Implies $||r_n - z|| \le \frac{1}{k} \forall n \ge m$
From Eq.(3),

$$||r_n^{-1}z - 1|| = ||r_n^{-1}(z - r_n)|| < k \frac{1}{k}$$

Servite Arts and Science College for women, Karur

A. Thanga Pandi

$||r_n^{-1}z-1|| < 1 \forall n \ge m$

• By Theorem -1, $r_n^{-1}z$ is regular.

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

$||r_n^{-1}z-1|| < 1 \forall n \ge m$

By Theorem-1, $r_n^{-1}z$ is regular. Implies $r_n^{-1}z \in G$

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

$$||r_n^{-1}z-1|| < 1 \forall n \ge m$$

By Theorem-1,
$$r_n^{-1}z$$
 is regular.
Implies $r_n^{-1}z \in G$
Now, $z = r_n(r_n^{-1}z) \in G$ Implies $z \in G$

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

$$||r_n^{-1}z-1|| < 1 \forall n \ge m$$

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

$$||r_n^{-1}z-1|| < 1 \forall n \ge m$$

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

$$||r_n^{-1}z-1|| < 1 \forall n \ge m$$

By Theorem-1,
$$r_n^{-1}z$$
 is regular.
Implies $r_n^{-1}z \in G$
Now, $z = r_n(r_n^{-1}z) \in G$ Implies $z \in G$
Which is contraction to $z \in S$
 $\therefore \{r_n^{-1}\}$ is unbounded.

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

Assume that
$$||r_n^{-1}|| \to \infty$$
.
Define $z_n = \frac{r_n^{-1}}{||r_n^{-1}||}$ Implies $z_n = 1$
Now, $zz_n = z \frac{r_n^{-1}}{||r_n^{-1}||}$

Assume that
$$||r_n^{-1}|| \to \infty$$
.
Define $z_n = \frac{r_n^{-1}}{||r_n^{-1}||}$ Implies $z_n = 1$
Now, $zz_n = z \frac{r_n^{-1}}{||r_n^{-1}||}$
 $\therefore zz_n \to 0$

Assume that
$$||r_n^{-1}|| \to \infty$$
.
Define $z_n = \frac{r_n^{-1}}{||r_n^{-1}||}$ Implies $z_n = 1$
Mow, $zz_n = z \frac{r_n^{-1}}{||r_n^{-1}||}$
 $\therefore zz_n \to 0$
 $\therefore z$ is a topological divisor of zero.

$$\begin{array}{l} \checkmark & \text{Assume that } ||r_n^{-1}|| \to \infty. \\ \\ \swarrow & \text{Define } z_n = \frac{r_n^{-1}}{||r_n^{-1}||} \text{ Implies } z_n = 1 \\ \\ \swarrow & \text{Now, } zz_n = z \frac{r_n^{-1}}{||r_n^{-1}||} \\ \\ \\ \checkmark & zz_n \to 0 \\ \\ \\ \checkmark & z \text{ is a topological divisor of zero.} \\ \\ \\ \end{array}$$

Assume that
$$||r_n^{-1}|| \to \infty$$
.
Define $z_n = \frac{r_n^{-1}}{||r_n^{-1}||}$ Implies $z_n = 1$
Mow, $zz_n = z \frac{r_n^{-1}}{||r_n^{-1}||}$
 $\therefore zz_n \to 0$
 $\therefore z$ is a topological divisor of zero.
Hence, $z \in Z$

A. Thanga Pandi

Spectrum

Let A be a banach algebra and $x \in A$. Then spectrum of H is defined to be the following subsets of a complex plane. $\sigma(x) = \{\lambda/(x - \lambda) \text{ is singular}\}$

Note

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

Spectrum

Let A be a banach algebra and $x \in A$. Then spectrum of H is defined to be the following subsets of a complex plane. $\sigma(\mathbf{x}) = \{\lambda/(\mathbf{x} - \lambda) \text{ is singular}\}$

Note

 $\mathbf{x} - \lambda \mathbf{1}$ is a continuous function of λ . $\mathbf{\hat{x}}$ The set of all singular elements A is closed. Then $\sigma(x)$ is closed.

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

$\sigma(x)$ is a subset of the closed disc $\{z/|z| \le ||x||\}$

Proof:

Let λ be a complex such that $|\lambda| > ||x||$. then, $||\frac{x}{\lambda}|| < 1$

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

$\sigma(x)$ is a subset of the closed disc $\{z/|z| \le ||x||\}$

Proof:

Let λ be a complex such that $|\lambda| > ||x||$. then, $||\frac{x}{\lambda}|| < 1$ $||1 - (1 - \frac{x}{\lambda})|| < 1$

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

$\sigma(x)$ is a subset of the closed disc $\{z/|z| \le ||x||\}$

Proof:

Let
$$\lambda$$
 be a complex such that $|\lambda| > ||x|$
then, $||\frac{x}{\lambda}|| < 1$
 $||1 - (1 - \frac{x}{\lambda})|| < 1$
By Theorem-1, $(1 - \frac{x}{\lambda})$ is regular.

A. Thanga Pandi

Servite Arts and Science College for women, Karur

•

$\sigma(x)$ is a subset of the closed disc $\{z/|z| \le ||x||\}$

Proof:

Let
$$\lambda$$
 be a complex such that $|\lambda| > ||x|$
then, $||\frac{x}{\lambda}|| < 1$
 $||1 - (1 - \frac{x}{\lambda})|| < 1$
By Theorem-1, $(1 - \frac{x}{\lambda})$ is regular.
 $\therefore x - \lambda.1$ is regular.

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV •

$\sigma(x)$ is a subset of the closed disc $\{z/|z| \le ||x||\}$

Proof:

Let
$$\lambda$$
 be a complex such that $|\lambda| > ||x|$
then, $||\frac{x}{\lambda}|| < 1$
 $||1 - (1 - \frac{x}{\lambda})|| < 1$
By Theorem-1, $(1 - \frac{x}{\lambda})$ is regular.
 $\therefore x - \lambda.1$ is regular.

A. Thanga Pandi

•

The resolvent of x, denoted by $\rho(x)$ is the complement of $\sigma(x)$.

Since $\sigma(x)$ is a closed subset of $\{z/|z| \le ||x||\}$.

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

- The resolvent of x, denoted by $\rho(x)$ is the complement of $\sigma(x)$.
- Since $\sigma(x)$ is a closed subset of $\{z/|z| \le ||x||\}$.
 - The resolvent of x is the function with values in A defined on $\rho(x)$ by $x(\lambda) = (x - \lambda.1)^{-1}$

The resolvent of x, denoted by ρ(x) is the complement of σ(x).
Since σ(x) is a closed subset of {z/|z| ≤ ||x||}.
The resolvent of x is the function with values in A defined on ρ(x) by x(λ) = (x - λ.1)^{-1}
By theorem x(λ) = λ(^x/_λ - 1)^{-1} for λ ≠ 0

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

x The resolvent of x, denoted by $\rho(x)$ is the complement of $\sigma(x)$. Since $\sigma(x)$ is a closed subset of $\{z/|z| \leq ||x||\}$. \mathbf{x} The resolvent of x is the function with values in A defined on $\rho(x)$ by $x(\lambda) = (x - \lambda.1)^{-1}$ • By theorem $x(\lambda) = \lambda(\frac{x}{\lambda} - 1)^{-1}$ for $\lambda \neq 0$ $Implies x(\lambda) \to 0 as n \to \infty$

x The resolvent of x, denoted by $\rho(x)$ is the complement of $\sigma(x)$. Since $\sigma(x)$ is a closed subset of $\{z/|z| \leq ||x||\}$. \mathbf{x} The resolvent of x is the function with values in A defined on $\rho(x)$ by $x(\lambda) = (x - \lambda.1)^{-1}$ • By theorem $x(\lambda) = \lambda(\frac{x}{\lambda} - 1)^{-1}$ for $\lambda \neq 0$ $Implies x(\lambda) \to 0 as n \to \infty$

If λ and μ are both in $\rho(\mathbf{x})$ then,

$$\begin{aligned} x(\lambda) &= x(\lambda)[x - \mu.1]x(\mu) \\ &= x(\lambda)[x - \lambda.1 + (\lambda - \mu).1]x(\mu) \\ &= [1 + (\lambda - \mu)x(\lambda)]x(\mu) \end{aligned}$$

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

If λ and μ are both in $\rho(\mathbf{x})$ then,

$$\begin{aligned} x(\lambda) &= x(\lambda)[x - \mu.1]x(\mu) \\ &= x(\lambda)[x - \lambda.1 + (\lambda - \mu).1]x(\mu) \\ &= [1 + (\lambda - \mu)x(\lambda)]x(\mu) \\ x(\lambda) &= x(\mu) + (\lambda - \mu)x(\lambda)x(\mu) \end{aligned}$$

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

If λ and μ are both in $\rho(\mathbf{x})$ then,

$$\begin{aligned} x(\lambda) &= x(\lambda)[x - \mu.1]x(\mu) \\ &= x(\lambda)[x - \lambda.1 + (\lambda - \mu).1]x(\mu) \\ &= [1 + (\lambda - \mu)x(\lambda)]x(\mu) \\ x(\lambda) &= x(\mu) + (\lambda - \mu)x(\lambda)x(\mu) \\ \lambda) - x(\mu) &= (\lambda - \mu)x(\lambda)x(\mu) \end{aligned}$$

A. Thanga Pandi

x()

Servite Arts and Science College for women, Karur

If λ and μ are both in $\rho(\mathbf{x})$ then,

$$\begin{aligned} x(\lambda) &= x(\lambda)[x - \mu.1]x(\mu) \\ &= x(\lambda)[x - \lambda.1 + (\lambda - \mu).1]x(\mu) \\ &= [1 + (\lambda - \mu)x(\lambda)]x(\mu) \\ x(\lambda) &= x(\mu) + (\lambda - \mu)x(\lambda)x(\mu) \\ \lambda) - x(\mu) &= (\lambda - \mu)x(\lambda)x(\mu) \end{aligned}$$

This relation is called the resolvent equation.

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

x()

If λ and μ are both in $\rho(\mathbf{x})$ then,

$$\begin{aligned} x(\lambda) &= x(\lambda)[x - \mu.1]x(\mu) \\ &= x(\lambda)[x - \lambda.1 + (\lambda - \mu).1]x(\mu) \\ &= [1 + (\lambda - \mu)x(\lambda)]x(\mu) \\ x(\lambda) &= x(\mu) + (\lambda - \mu)x(\lambda)x(\mu) \\ \lambda) - x(\mu) &= (\lambda - \mu)x(\lambda)x(\mu) \end{aligned}$$

This relation is called the resolvent equation.

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

x(,

 $\sigma(x)$ is non-empty.

Proof:

Let f be a functional on A. (*ie*) An element of the conjugate space A^* and define $f(\lambda)$ by

$$f(\lambda) = f(x(\lambda))$$
 (4)

By the resolvent equation, we have

$$\mathbf{x}(\lambda) - \mathbf{x}(\mu) = (\lambda - \mu)\mathbf{x}(\lambda)\mathbf{x}(\mu)$$

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

 $\sigma(x)$ is non-empty.

Proof:

Let f be a functional on A. (*ie*) An element of the conjugate space A^* and define $f(\lambda)$ by

$$f(\lambda) = f(x(\lambda))$$
 (4)

By the resolvent equation, we have

$$\mathbf{x}(\lambda) - \mathbf{x}(\mu) = (\lambda - \mu)\mathbf{x}(\lambda)\mathbf{x}(\mu)$$

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV
$f(x(\lambda) - x(\mu)) = (\lambda - \mu)f(x(\lambda)x(\mu))$ $\frac{f(\lambda) - f(\mu)}{(\lambda - \mu)} = f(x(\lambda)x(\mu))$

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

$$f(x(\lambda) - x(\mu)) = (\lambda - \mu)f(x(\lambda)x(\mu))$$
$$\frac{f(\lambda) - f(\mu)}{(\lambda - \mu)} = f(x(\lambda)x(\mu))$$
$$\lim_{\lambda \to \mu} \frac{f(\lambda) - f(\mu)}{(\lambda - \mu)} = f(x(\mu))^{2}$$

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

$$f(x(\lambda) - x(\mu)) = (\lambda - \mu)f(x(\lambda)x(\mu))$$
$$\frac{f(\lambda) - f(\mu)}{(\lambda - \mu)} = f(x(\lambda)x(\mu))$$
$$\lim_{\lambda \to \mu} \frac{f(\lambda) - f(\mu)}{(\lambda - \mu)} = f(x(\mu))^{2}$$

So $f(\lambda)$ has a derivative at each point of $\rho(x)$.

A. Thanga Pandi

FUNCTIONAL ANALYSIS UNIT-IV

$$f(x(\lambda) - x(\mu)) = (\lambda - \mu)f(x(\lambda)x(\mu))$$
$$\frac{f(\lambda) - f(\mu)}{(\lambda - \mu)} = f(x(\lambda)x(\mu))$$
$$\lim_{\lambda \to \mu} \frac{f(\lambda) - f(\mu)}{(\lambda - \mu)} = f(x(\mu))^{2}$$

So $f(\lambda)$ has a derivative at each point of $\rho(x)$.

A. Thanga Pandi

FUNCTIONAL ANALYSIS UNIT-IV

Consider $|f(\lambda)| = ||f(x(\lambda))||$

$$|f(\lambda)|
ightarrow 0$$
 as $n
ightarrow \infty$

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

Consider
$$|f(\lambda)| = ||f(x(\lambda))||$$

$$|f(\lambda)|
ightarrow 0$$
 as $n
ightarrow \infty$

To prove: $\sigma(x)$ is non-empty.

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

Consider
$$|f(\lambda)| = ||f(x(\lambda))||$$

$$|f(\lambda)|
ightarrow 0$$
 as $n
ightarrow \infty$

To prove: $\sigma(x)$ is non-empty.

Suppose that $\sigma(x)$ is empty.

Consider
$$|f(\lambda)| = ||f(x(\lambda))||$$

$$|f(\lambda)|
ightarrow 0$$
 as $n
ightarrow \infty$

To prove: $\sigma(x)$ is non-empty.

- Suppose that $\sigma(x)$ is empty.
- By Liouvillies theorem,

Consider
$$|f(\lambda)| = ||f(x(\lambda))||$$

$$|f(\lambda)| \to 0 \quad as \quad n \to \infty$$
 (5)

- To prove: $\sigma(x)$ is non-empty.
- Suppose that $\sigma(x)$ is empty.
- ▲ By Liouvillies theorem,
- $\swarrow f(\lambda)$ has a derivative at each point of $\rho(x)$ in entire complex plane.

5)

Consider
$$|f(\lambda)| = ||f(x(\lambda))||$$

$$|f(\lambda)|
ightarrow 0$$
 as $n
ightarrow \infty$ (

- To prove: $\sigma(x)$ is non-empty.
- Suppose that $\sigma(x)$ is empty.
- louvillies theorem,
- $\checkmark f(\lambda)$ has a derivative at each point of $\rho(x)$ in entire complex plane.

Implies $f(\lambda)$ is constant.

Consider
$$|f(\lambda)| = ||f(x(\lambda))||$$

$$|f(\lambda)| \to 0 \quad as \quad n \to \infty$$
 (5)

- To prove: $\sigma(x)$ is non-empty.
- Suppose that $\sigma(x)$ is empty.
- louvillies theorem,
- $\checkmark f(\lambda)$ has a derivative at each point of $\rho(x)$ in entire complex plane.
- Implies $f(\lambda)$ is constant.

 $\swarrow \text{ Implies } f(\lambda) = 0 \forall \lambda, \therefore f(x(\lambda)) = 0$

Consider
$$|f(\lambda)| = ||f(x(\lambda))||$$

$$|f(\lambda)| \to 0 \quad as \quad n \to \infty$$
 (5)

- To prove: $\sigma(x)$ is non-empty.
- Suppose that $\sigma(x)$ is empty.
- louvillies theorem,
- $\checkmark f(\lambda)$ has a derivative at each point of $\rho(x)$ in entire complex plane.
- Implies $f(\lambda)$ is constant.

$$\bigstar \text{ Implies } f(\lambda) = 0 \forall \lambda, \therefore f(x(\lambda)) = 0$$

This is true for all $f \in A^*$, there exist $f_0 \in A^*$ such that $f_0(x(\lambda)) = ||(x(\lambda))|| \neq 0$

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

This is true for all $f \in A^*$, there exist $f_0 \in A^*$ such that $f_0(x(\lambda)) = ||(x(\lambda))|| \neq 0$

 \bullet Which is contradiction to (5)

- This is true for all $f \in A^*$, there exist $f_0 \in A^*$ such that $f_0(x(\lambda)) = ||(x(\lambda))|| \neq 0$
- Which is contradiction to (5)

- This is true for all $f \in A^*$, there exist $f_0 \in A^*$ such that $f_0(x(\lambda)) = ||(x(\lambda))|| \neq 0$
- Which is contradiction to (5)

$$\therefore x(\lambda) = 0 \forall \lambda$$

$$That is 0 \in G$$

- This is true for all $f \in A^*$, there exist $f_0 \in A^*$ such that $f_0(x(\lambda)) = ||(x(\lambda))|| \neq 0$
- Which is contradiction to (5)
- $\therefore x(\lambda) = 0 \forall \lambda$
- That is $0 \in G$
- Which is contradiction to $0 \notin G$

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

- This is true for all $f \in A^*$, there exist $f_0 \in A^*$ such that $f_0(x(\lambda)) = ||(x(\lambda))|| \neq 0$
- Which is contradiction to (5)

$$\stackrel{\bullet}{\frown} x(\lambda) = 0 \forall \lambda$$

- That is $0 \in G$
- Which is contradiction to $0 \notin G$
- $\therefore \sigma(x)$ is non-empty.

- This is true for all $f \in A^*$, there exist $f_0 \in A^*$ such that $f_0(x(\lambda)) = ||(x(\lambda))|| \neq 0$
- Which is contradiction to (5)

$$\stackrel{\bullet}{\frown} x(\lambda) = 0 \forall \lambda$$

- That is $0 \in G$
- Which is contradiction to $0 \notin G$
- $\therefore \sigma(x)$ is non-empty.

Spectral radius of x:

The number r(x) defined by $r(x) = \sup\{|\lambda|/\lambda \in \sigma(x)\}$ is called the spectral radius of x. Note that $0 \le r(x) \le ||x||$.

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

If A is a division algebra then it equals the set of all scalar multiples of the identity.

Proof:

Proof If $x \in A$ then $x = \lambda .1$ for some scalar λ Suppose that $x \neq \lambda . 1 \forall \lambda$

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

If A is a division algebra then it equals the set of all scalar multiples of the identity.

Proof:

If x ∈ A then x = λ.1 for some scalar λ Suppose that x ≠ λ.1∀λ Implies x − λ.1 ≠ 0∀λ

If A is a division algebra then it equals the set of all scalar multiples of the identity.

Proof:

- **Proof** If $x \in A$ then $x = \lambda .1$ for some scalar λ
- **Suppose that** $x \neq \lambda . 1 \forall \lambda$

- Implies $x \lambda . 1 \neq 0 \forall \lambda$
- Since A is a division ring, $x \lambda .1$ is a regular.

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

If A is a division algebra then it equals the set of all scalar multiples of the identity.

Proof:

- **Solution** If $x \in A$ then $x = \lambda .1$ for some scalar λ
- **Suppose that** $x \neq \lambda.1 \forall \lambda$

$$\mathbf{\hat{x}} \text{ Implies } \mathbf{x} - \lambda . \mathbf{1} \neq \mathbf{0} \forall \lambda$$

If A is a division algebra then it equals the set of all scalar multiples of the identity.

Proof:

- **Solution** If $x \in A$ then $x = \lambda .1$ for some scalar λ
- **Suppose that** $x \neq \lambda.1 \forall \lambda$

$$Implies \ x - \lambda.1 \neq 0 \forall \lambda$$

- Since A is a division ring, $x \lambda .1$ is a regular.
- Solution Implies $\sigma(x)$ is empty

If A is a division algebra then it equals the set of all scalar multiples of the identity.

Proof:

- **Solution** If $x \in A$ then $x = \lambda .1$ for some scalar λ
- **Suppose that** $x \neq \lambda.1 \forall \lambda$

$$Implies \ x - \lambda.1 \neq 0 \forall \lambda$$

- Since A is a division ring, $x \lambda .1$ is a regular.
- Solution Implies $\sigma(x)$ is empty

Which is a contradiction to $\sigma(x)$ is non-empty. $\therefore x = \lambda$ for some scalar λ .

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

$$A \subset \{\lambda. 1/\lambda \in C\}$$
(6)

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

(()

$$A \subset \{\lambda.1/\lambda \in C\}$$
(6)
$$\{\lambda.1/\lambda \in C\} \subset A$$
(7)

<u>A. Thanga</u> Pandi FUNCTIONAL ANALYSIS UNIT-IV

Then,

Which is a contradiction to
$$\sigma(x)$$
 is non-empty.
 $\therefore x = \lambda$ for some scalar λ .

$$A \subset \{\lambda. 1/\lambda \in C\}$$
(6)

Then,

$$\{\lambda.1/\lambda \in C\} \subset A \tag{7}$$

From (6) and (7), We get,

A. Thanga Pandi

FUNCTIONAL ANALYSIS UNIT-IV

Which is a contradiction to
$$\sigma(x)$$
 is non-empty.
 $\therefore x = \lambda$ for some scalar λ .

$$A \subset \{\lambda.1/\lambda \in C\}$$
(6)

Then,

$$\{\lambda.1/\lambda \in C\} \subset A \tag{7}$$

From (6) and (7), We get, $\mathcal{A} = \{\lambda.1/\lambda \in \mathcal{C}\}$

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

Which is a contradiction to
$$\sigma(x)$$
 is non-empty.
 $\therefore x = \lambda$ for some scalar λ .

$$A \subset \{\lambda.1/\lambda \in C\}$$
(6)

Then,

$$\{\lambda.1/\lambda \in C\} \subset A \tag{7}$$

From (6) and (7), We get, $A = \{\lambda.1/\lambda \in C\}$

A. Thanga Pandi

Servite Arts and Science College for women, Karur

FUNCTIONAL ANALYSIS UNIT-IV

If 0 is the only topological divisor of zero in A then A = C.

Proof:

Let $x \in A$

 $\mathfrak{G}(x)$ is non-empty

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

If 0 is the only topological divisor of zero in A then A = C.

Proof:

Let
$$x \in A$$

 $\sigma(x)$ is non-empty

That is $\lambda \in \sigma(x)$ Implies $x - \lambda .1$ is singular

If 0 is the only topological divisor of zero in A then A = C.

Proof:

Let
$$x \in A$$

 $\sigma(x)$ is non-empty

That is $\lambda \in \sigma(x)$ Implies $x - \lambda .1$ is singular

Let U be the neighbourhood of $x - \lambda .1$ and $f: C \to A$ is given by $f(\lambda) = x - \lambda .1$ is continuous.

If 0 is the only topological divisor of zero in A then A = C.

Proof:

$$\checkmark f Let x \in A$$

 $\sigma(x)$ is non-empty

CE

That is $\lambda \in \sigma(x)$ Implies $x - \lambda .1$ is singular

Let U be the neighbourhood of
$$x - \lambda .1$$
 and $f: C \to A$ is given by $f(\lambda) = x - \lambda .1$ is continuous.
✓ f⁻¹(U) is neighbourhood of A. f⁻¹(U) intersect both σ(x) and ρ(x). ✓ Implies μ ∈ σ(x) ∩ f⁻¹(U) Implies f(μ) = x − μ.1 ∈ S ∩ U

f⁻¹(*U*) is neighbourhood of *A*. *f*⁻¹(*U*) intersect both *σ*(*x*) and *ρ*(*x*). Implies μ ∈ *σ*(*x*) ∩ *f*⁻¹(*U*) Implies *f*(μ) = *x* − μ.1 ∈ *S* ∩ *U*and μ ∈ *ρ*(*x*) ∩ *f*⁻¹(*U*) Implies *f*(μ) = *x* − μ.1 ∈ *G* ∩ *U*

✓ f⁻¹(U) is neighbourhood of A. f⁻¹(U) intersect both
$$\sigma(x)$$
 and $\rho(x)$.
✓ Implies $\mu \in \sigma(x) \cap f^{-1}(U)$ Implies $f(\mu) = x - \mu . 1 \in S \cap U$
✓ and $\mu \in \rho(x) \cap f^{-1}(U)$ Implies $f(\mu) = x - \mu . 1 \in G \cap U$
✓ ... U intersects both S and G

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

A. Thanga Pandi

FUNCTIONAL ANALYSIS UNIT-IV

A. Thanga Pandi

FUNCTIONAL ANALYSIS UNIT-IV

$x - \lambda . 1 = 0$ Tuplies $x = \lambda . 1$ Implies x = C.

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

$\begin{array}{l} & \mathbf{x} - \lambda . \mathbf{1} = \mathbf{0} \\ & \mathbf{x} \quad \text{Implies } \mathbf{x} = \lambda . \mathbf{1} \text{ Implies } \mathbf{x} = \mathbf{C}. \\ & \mathbf{x} \quad \text{Since } \mathbf{x} \in \mathbf{A} \text{ Implies } \mathbf{x} = \mathbf{C}. \\ & \mathbf{x} \quad \mathbf{C}. \end{array}$

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

$\begin{array}{l} \textcircled{\begin{subarray}{ll} x - \lambda . 1 = 0 \\ \textcircled{\begin{subarray}{ll} x = \lambda . 1 \\ \end{array}} & \text{Implies } x = \lambda . 1 \text{ Implies } x = C. \\ \textcircled{\begin{subarray}{ll} x \in A \\ \end{array}} & \text{Since } x \in A \text{ Implies } x = C. \\ \textcircled{\begin{subarray}{ll} x \in C \\ \end{array}} & \overbrace{\begin{subarray}{ll} x \in C \\ \end{array}} & \overbrace{\ben{subarray}{ll} x \in C \\ \end{array}} & \overbrace{\begin$

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

If the norm in A satisfies the inequality $||x|| \ge k||x||||y||$ for some positive constant k. Then A = C.

Proof:

Let z be the topological divisor of zero in A. Suppose $z \neq 0$, there exist a sequence $\{z_n\}$ in A such that $zz_n \rightarrow 0$ and ||z|| = 1.

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

If the norm in A satisfies the inequality $||x|| \ge k||x||||y||$ for some positive constant k. Then A = C.

Proof:

 $\begin{array}{l} \swarrow & \text{Let } z \text{ be the topological divisor of zero in } A. \\ & \swarrow & \text{Suppose } z \neq 0, \text{ there exist a sequence } \{z_n\} \text{ in } \\ & A \text{ such that } zz_n \rightarrow 0 \text{ and } ||z|| = 1. \\ & \swarrow & ||zz_n|| \geq k ||z|| ||z_n|| \text{ and } k ||z|| > 0. \end{array}$

If the norm in A satisfies the inequality $||x|| \ge k||x||||y||$ for some positive constant k. Then A = C.

Proof:

 $\begin{array}{l} \swarrow & \text{Let } z \text{ be the topological divisor of zero in } A. \\ & \swarrow & \text{Suppose } z \neq 0, \text{ there exist a sequence } \{z_n\} \text{ in } \\ & A \text{ such that } zz_n \rightarrow 0 \text{ and } ||z|| = 1. \\ & \swarrow & ||zz_n|| \geq k ||z|| ||z_n|| \text{ and } k ||z|| > 0. \end{array}$

If the norm in A satisfies the inequality $||x|| \ge k||x||||y||$ for some positive constant k. Then A = C.

Proof:

 $\begin{array}{l} \swarrow & \text{Let } z \text{ be the topological divisor of zero in } A. \\ & \swarrow & \text{Suppose } z \neq 0, \text{ there exist a sequence } \{z_n\} \text{ in } \\ & A \text{ such that } zz_n \rightarrow 0 \text{ and } ||z|| = 1. \\ & \swarrow & ||zz_n|| \geq k ||z|| ||z_n|| \text{ and } k ||z|| > 0. \end{array}$

$\lim_{n\to\infty} ||zz_n|| \ge k||z|| > 0 \tag{8}$

$\lim_{n\to\infty}||zz_n||=0$

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

$$\lim_{n\to\infty} ||zz_n|| \ge k||z|| > 0 \tag{8}$$

$$\lim_{n\to\infty}||zz_n||=0$$

Multiply Which is a contradiction to (8) $\therefore z = 0$

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

$$\lim_{n\to\infty} ||zz_n|| \ge k||z|| > 0 \tag{8}$$

$$\lim_{n\to\infty}||zz_n||=0$$

Multiply Which is a contradiction to (8) $\therefore z = 0$

 \swarrow : 0 is a only topological divisor of zero in A

$$\lim_{n\to\infty} ||zz_n|| \ge k||z|| > 0 \tag{8}$$

$$\lim_{n\to\infty}||zz_n||=0$$

- Multiply Which is a contradiction to (8) $\therefore z = 0$
- [∠] ∴ 0 is a only topological divisor of zero in A [∠] By above theorem, We get, A = C

$$\lim_{n\to\infty} ||zz_n|| \ge k||z|| > 0 \tag{8}$$

$$\lim_{n\to\infty}||zz_n||=0$$

- Multiply Which is a contradiction to (8) $\therefore z = 0$
- $\stackrel{\checkmark}{\frown} 0 \text{ is a only topological divisor of zero in } A$ $\stackrel{\checkmark}{\frown} By above theorem, We get, A = C$

If A^1 is a banach subalgebra of a banach algebra A then the spectra of an element x in A with respect to A and A^1 are related as follows

 $\sigma_{A^1}(x) \subseteq \sigma_A(x).$

ii Each boundary point of $\sigma_A(x)$ is also a boundary point of $\sigma_{A^1}(x)$.

Proof:

$$\stackrel{\checkmark}{=} \text{Let } \lambda \in \sigma_{A^1}(x) \text{ Implies } x - \lambda.1 \text{ is singular in } A^1.$$

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

If A^1 is a banach subalgebra of a banach algebra A then the spectra of an element x in A with respect to A and A^1 are related as follows

$$\sigma_{A^1}(x) \subseteq \sigma_A(x).$$

ii Each boundary point of $\sigma_A(x)$ is also a boundary point of $\sigma_{A^1}(x)$.

Proof:

Let
$$\lambda \in \sigma_{A^1}(x)$$
 Implies $x - \lambda .1$ is singular in A^1 .

³ Implies $\lambda \in \sigma_A(x)$. Hence, $\sigma_{A^1}(x) \subseteq \sigma_A(x)$.

If A^1 is a banach subalgebra of a banach algebra A then the spectra of an element x in A with respect to A and A^1 are related as follows

$$\sigma_{A^1}(x) \subseteq \sigma_A(x).$$

ii Each boundary point of $\sigma_A(x)$ is also a boundary point of $\sigma_{A^1}(x)$.

Proof:

$$\stackrel{\checkmark}{=} \text{Let } \lambda \in \sigma_{A^1}(x) \text{ Implies } x - \lambda.1 \text{ is singular in } A^1.$$

Solution Implies
$$\lambda \in \sigma_A(x)$$
. Hence, $\sigma_{A^1}(x) \subseteq \sigma_A(x)$.

Let λ be a boundary point of $\sigma_A(x)$. **To prove:** Let λ be a boundary point of $\sigma_{A^1}(x)$.

Implies $x - \lambda .1$ be a boundary point of the set of singular elements in A.

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

- Let λ be a boundary point of $\sigma_A(x)$. **To prove:** Let λ be a boundary point of $\sigma_{A^1}(x)$.
- Implies $x \lambda .1$ be a boundary point of the set of singular elements in A.
- $\swarrow x \lambda.1$ belongs to boundary point of $S \subset Z$. By theorem-6

- Let λ be a boundary point of $\sigma_A(x)$. **To prove:** Let λ be a boundary point of $\sigma_{A^1}(x)$.
- Implies $x \lambda .1$ be a boundary point of the set of singular elements in A.
- $\swarrow x \lambda.1$ belongs to boundary point of $S \subset Z$. By theorem-6

- Let λ be a boundary point of $\sigma_A(x)$. **To prove:** Let λ be a boundary point of $\sigma_{A^1}(x)$.
- Implies $x \lambda .1$ be a boundary point of the set of singular elements in A.
- $\swarrow x \lambda.1$ belongs to boundary point of $S \subset Z$. By theorem-6
- $\bigstar \text{ Implies } x \lambda . 1 \subset Z$
- $\swarrow x \lambda.1$ is a topological divisor of zero in A.

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

- Let λ be a boundary point of $\sigma_A(x)$. **To prove:** Let λ be a boundary point of $\sigma_{A^1}(x)$.
- Implies $x \lambda .1$ be a boundary point of the set of singular elements in A.
- $\swarrow x \lambda.1$ belongs to boundary point of $S \subset Z$. By theorem-6
- $\bigstar \text{ Implies } x \lambda . 1 \subset Z$
- $\stackrel{\checkmark}{\longrightarrow} x \lambda.1 \text{ is a topological divisor of zero in } A.$ $\stackrel{\checkmark}{\longrightarrow} \text{ Implies } z_n \in A^1.$

- Let λ be a boundary point of $\sigma_A(x)$. **To prove:** Let λ be a boundary point of $\sigma_{A^1}(x)$.
- Implies $x \lambda .1$ be a boundary point of the set of singular elements in A.
- $\swarrow x \lambda.1$ belongs to boundary point of $S \subset Z$. By theorem-6
- $\bigstar \text{ Implies } x \lambda . 1 \subset Z$
- $\stackrel{\checkmark}{\longrightarrow} x \lambda.1 \text{ is a topological divisor of zero in } A.$ $\stackrel{\checkmark}{\longrightarrow} \text{Implies } z_n \in A^1.$

 $\swarrow x - \lambda.1$ is a topological divisor of zero in A^1 .

- Let λ be a boundary point of $\sigma_A(x)$. **To prove:** Let λ be a boundary point of $\sigma_{A^1}(x)$.
- Implies $x \lambda .1$ be a boundary point of the set of singular elements in A.
- $\swarrow x \lambda.1$ belongs to boundary point of $S \subset Z$. By theorem-6

$$\bigstar \text{ Implies } x - \lambda . 1 \subset Z$$

- $\stackrel{\checkmark}{\longrightarrow} x \lambda.1 \text{ is a topological divisor of zero in } A.$ $\stackrel{\checkmark}{\longrightarrow} \text{Implies } z_n \in A^1.$
- $\swarrow x \lambda.1$ is a topological divisor of zero in A^1 .

- Let λ be a boundary point of $\sigma_A(x)$. **To prove:** Let λ be a boundary point of $\sigma_{A^1}(x)$.
- Implies $x \lambda .1$ be a boundary point of the set of singular elements in A.
- $\swarrow x \lambda.1$ belongs to boundary point of $S \subset Z$. By theorem-6

$$\bigstar \text{ Implies } x - \lambda . 1 \subset Z$$

- $\stackrel{\checkmark}{\longrightarrow} x \lambda.1 \text{ is a topological divisor of zero in } A.$ $\stackrel{\checkmark}{\longrightarrow} \text{Implies } z_n \in A^1.$
- $\swarrow x \lambda.1$ is a topological divisor of zero in A^1 .

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

✓ Implies x - λ.1 is a singular elements in A¹.
✓ U be the neighbourhood of λ in C. λ is a boundary point of σ_A(x).
✓ σ_{A¹}(x) ⊂ σ_A(x) Implies ρ_{A¹}(x) ⊃ ρ_A(x).

✓ Implies x - λ.1 is a singular elements in A¹.
✓ U be the neighbourhood of λ in C. λ is a boundary point of σ_A(x).
✓ σ_{A1}(x) ⊂ σ_A(x) Implies ρ_{A1}(x) ⊃ ρ_A(x).
✓ U intersects ρ_{A1}(x), λ ∈ U and λ ∈ σ_{A1}(x), U intersects σ_{A1}(x)

Implies x - λ.1 is a singular elements in A¹.
U be the neighbourhood of λ in C. λ is a boundary point of σ_A(x).
σ_{A¹}(x) ⊂ σ_A(x) Implies ρ_{A¹}(x) ⊃ ρ_A(x).
∴ U intersects ρ_{A¹}(x), λ ∈ U and λ ∈ σ_{A¹}(x), U intersects σ_{A¹}(x)

 $\overset{\checkmark}{\sim}$ $\therefore \lambda$ is boundary point of $\sigma_{A^1}(x)$

Implies $x - \lambda .1$ is a singular elements in A^1 . TE U be the neighbourhood of λ in C. λ is a boundary point of $\sigma_A(x)$. $\checkmark \sigma_{A^1}(x) \subset \sigma_A(x)$ Implies $\rho_{A^1}(x) \supset \rho_A(x)$. $\stackrel{\checkmark}{=} :: U \text{ intersects } \rho_{A^1}(x), \ \lambda \in U \text{ and } \lambda \in \sigma_{A^1}(x),$ U intersects $\sigma_{A^1}(x)$ $\checkmark : \lambda$ is boundary point of $\sigma_{A^1}(x)$ \checkmark Each boundary point of $\sigma_A(x)$ is also a boundary point of $\sigma_{A^1}(x)$.

Implies $x - \lambda .1$ is a singular elements in A^1 . U be the neighbourhood of λ in C. λ is a boundary point of $\sigma_A(x)$. $\checkmark \sigma_{A^1}(x) \subset \sigma_A(x)$ Implies $\rho_{A^1}(x) \supset \rho_A(x)$. $\stackrel{\checkmark}{=} :: U \text{ intersects } \rho_{A^1}(x), \ \lambda \in U \text{ and } \lambda \in \sigma_{A^1}(x),$ U intersects $\sigma_{A^1}(x)$ $\checkmark : \lambda$ is boundary point of $\sigma_{A^1}(x)$ **B** Each boundary point of $\sigma_A(x)$ is also a

boundary point of $\sigma_{A^1}(x)$.
Lemma 1: The Formula for the Spectral Radius $\sigma(x^n) = (\sigma(x))^n$

Proof:

Let λ be a non-zero complex numbers. Let $\lambda_1, \lambda_2, ..., \lambda_n$ be its distinct *n* roots.

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

Lemma 1: The Formula for the Spectral Radius $\sigma(x^n) = (\sigma(x))^n$

Proof:

⁶⁶ Let λ be a non-zero complex numbers. ⁶⁶ Let $\lambda_1, \lambda_2, ..., \lambda_n$ be its distinct n roots.

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

Lemma 1: The Formula for the Spectral Radius $\sigma(x^n) = (\sigma(x))^n$

Proof:

⁶⁶ Let λ be a non-zero complex numbers. ⁶⁶ Let $\lambda_1, \lambda_2, ..., \lambda_n$ be its distinct n roots.

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

There fore,

$$x^{n} - \lambda . 1 = (x - \lambda_{1} . 1), (x - \lambda_{2} . 1), ..., (x - \lambda_{n} . 1)$$
 (9)

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

There fore,

$$x^{n} - \lambda . 1 = (x - \lambda_{1} . 1), (x - \lambda_{2} . 1), ..., (x - \lambda_{n} . 1)$$
 (9)

A. Thanga Pandi

Let
$$\lambda_i \in \sigma(x)$$
 implies $\lambda_i^n \in (\sigma(x))^n$.
(ie) $\lambda \in (\sigma(x))^n$
There fore,
 $\sigma(x^n) \subset (\sigma(x))^n$ (10)

• Let $\lambda \in (\sigma(x))^n$ Implies $x - \lambda_i.1$ is singular • R.H.S of (9) is singular. $\therefore \lambda \in \sigma(x^n)$

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

Let
$$\lambda_i \in \sigma(x)$$
 implies $\lambda_i^n \in (\sigma(x))^n$.
(ie) $\lambda \in (\sigma(x))^n$
There fore,
 $\sigma(x^n) \subset (\sigma(x))^n$ (10)

• Let $\lambda \in (\sigma(x))^n$ Implies $x - \lambda_i \cdot 1$ is singular • R.H.S of (9) is singular. $\therefore \lambda \in \sigma(x^n)$

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

Let
$$\lambda_i \in \sigma(x)$$
 implies $\lambda_i^n \in (\sigma(x))^n$.
(ie) $\lambda \in (\sigma(x))^n$
There fore,
 $\sigma(x^n) \subset (\sigma(x))^n$ (10)

• Let $\lambda \in (\sigma(x))^n$ Implies $x - \lambda_i \cdot 1$ is singular • R.H.S of (9) is singular. $\therefore \lambda \in \sigma(x^n)$

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

There fore, $(\sigma(x))^n \subset \sigma(x^n)$ (11) From (10) and (11) we get, $\sigma(x^n) = (\sigma(x))^n$

Theorem 13

$$r(x) = \lim ||x^n||^{\frac{1}{n}}$$

Proof:
The formula for the spectral radius is
 $r(x) = \sup\{|\lambda|/\lambda \in \sigma(x)\}$

A. Thanga Pandi FUNCTIONAL ANALYSIS <u>UNIT-IV</u>

There fore, $(\sigma(x))^n \subset \sigma(x^n)$ (11) From (10) and (11) we get, $\sigma(x^n) = (\sigma(x))^n$

Theorem 13

$$r(x) = \lim ||x^n||^{\frac{1}{n}}$$

Proof:
The formula for the spectral radius is
 $r(x) = \sup\{|\lambda|/\lambda \in \sigma(x)\}$

A. Thanga Pandi

(12)

$$[r(x)]^n = [\sup\{|\lambda|/\lambda \in \sigma(x)\}]^n = \sup\{|\lambda|^n/\lambda^n \in \sigma(x^n)\}$$

 $[r(x)]^n = r(x^n)$ Now, $0 \le r(x) \le ||x||$ Implies $r(x^n) \le ||x^n||$ $r(x) \le ||x^n||^{\frac{1}{n}} \forall n$

To prove: If a is any real number such that r(x) < a then $||x^n||_n^1 \le a$ for all but a finite number of n's

A. Thanga Pandi

(12)

$$[r(x)]^n = [\sup\{|\lambda|/\lambda \in \sigma(x)\}]^n = \sup\{|\lambda|^n/\lambda^n \in \sigma(x^n)\}$$

$$[r(x)]^n = r(x^n)$$

Now, $0 \le r(x) \le ||x||$ Implies $r(x^n) \le ||x^n||$
 $r(x) \le ||x^n||^{\frac{1}{n}} \forall n$

To prove: If *a* is any real number such that r(x) < a then $||x^n||_n^1 \le a$ for all but a finite number of n's

A. Thanga Pandi

Then,
$$x(\lambda) = (x - \lambda . 1)^{-1} = \lambda^{-1} (\frac{x}{\lambda} - 1)^{-1}$$

$$x(\lambda) = -\lambda^{-1} \left[1 + \sum_{n=1}^{\infty} \frac{x^n}{\lambda^n}\right]$$
(13)

If f is any functional on A, then (13) gives

$$f(x(\lambda)) = -\lambda^{-1}[f(1) + \sum_{n=1}^{\infty} f(\frac{x^n}{\lambda^n})]$$

$$f(x(\lambda)) = -\lambda^{-1}[f(1) + \sum_{n=1}^{\infty} f(x^n)\lambda^{-n}]\forall |\lambda| > ||x||$$
(14)

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

Then,
$$x(\lambda) = (x - \lambda . 1)^{-1} = \lambda^{-1} (\frac{x}{\lambda} - 1)^{-1}$$

$$x(\lambda) = -\lambda^{-1} \left[1 + \sum_{n=1}^{\infty} \frac{x^n}{\lambda^n}\right]$$
(13)

If
$$f$$
 is any functional on A , then (13) gives

$$f(x(\lambda)) = -\lambda^{-1}[f(1) + \sum_{n=1}^{\infty} f(\frac{x^n}{\lambda^n})]$$

$$f(x(\lambda)) = -\lambda^{-1}[f(1) + \sum_{n=1}^{\infty} f(x^n)\lambda^{-n}]\forall |\lambda| > ||x||$$
(14)

A. Thanga Pandi

Servite Arts and Science College for women, Karur

Then,
$$x(\lambda) = (x - \lambda . 1)^{-1} = \lambda^{-1} (\frac{x}{\lambda} - 1)^{-1}$$

$$x(\lambda) = -\lambda^{-1} \left[1 + \sum_{n=1}^{\infty} \frac{x^n}{\lambda^n}\right]$$
(13)

If
$$f$$
 is any functional on A , then (13) gives

$$f(x(\lambda)) = -\lambda^{-1}[f(1) + \sum_{n=1}^{\infty} f(\frac{x^n}{\lambda^n})]$$

$$f(x(\lambda)) = -\lambda^{-1}[f(1) + \sum_{n=1}^{\infty} f(x^n)\lambda^{-n}]\forall |\lambda| > ||x||$$
(14)

A. Thanga Pandi

Servite Arts and Science College for women, Karur

• $f(x(\lambda))$ is an analytic function in the region $|\lambda| > r(x)$

Since (14) is its laurent expansion for $|\lambda| > ||x||$.

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

 $f(x(\lambda))$ is an analytic function in the region $|\lambda| > r(x)$

Since (14) is its laurent expansion for $|\lambda| > ||x||$.

• Let α be any real number such that $r(x) < \alpha < a$.

Then it follows that the series $\sum_{n=1}^{\infty} f(\frac{x^n}{\alpha^n})$ converges.

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

- $f(x(\lambda))$ is an analytic function in the region $|\lambda| > r(x)$
- Since (14) is its laurent expansion for $|\lambda| > ||x||$.
- Let α be any real number such that $r(x) < \alpha < a$.
- Then it follows that the series $\sum_{n=1}^{\infty} f(\frac{x^n}{\alpha^n})$ converges.
- So its terms from a bounded sequence.

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

- $f(x(\lambda))$ is an analytic function in the region $|\lambda| > r(x)$
- Since (14) is its laurent expansion for $|\lambda| > ||\mathbf{x}||.$
- Let α be any real number such that $r(x) < \alpha < a$.
- Then it follows that the series $\sum_{n=1}^{\infty} f(\frac{x^n}{\alpha^n})$ converges.
- So its terms from a bounded sequence.

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

$$\frac{1}{||x^n||n \le a}$$

for all but a finite numbers n's.

A. Thanga Pandi

Servite Arts and Science College for women, Karur

(15)

$$\frac{1}{|n|} \le a$$

for all but a finite numbers n's.

A. Thanga Pandi

Servite Arts and Science College for women, Karur

(15)

$$\frac{1}{|n|} \le a$$

for all but a finite numbers n's.

A. Thanga Pandi

Servite Arts and Science College for women, Karur

From (12) and (15), we have, $\underbrace{1}{r(x)} = ||x^n|| \, \overline{n} \le a \forall n \ge m \text{ where a is any real}$ number such that r(x) < a. $\therefore r(x) = \lim ||x^n||^{\frac{1}{n}}$

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

From (12) and (15), we have,

$$\underbrace{1}_{r(x)} = ||x^{n}|| \stackrel{n}{n} \leq a \forall n \geq m \text{ where a is any real}$$
number such that $r(x) < a$.

$$\therefore r(x) = \lim ||x^{n}||^{\frac{1}{n}}$$

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

From (12) and (15), we have,

$$\underbrace{1}_{r(x)} = ||x^{n}|| \stackrel{n}{n} \leq a \forall n \geq m \text{ where a is any real}$$
number such that $r(x) < a$.

$$\therefore r(x) = \lim ||x^{n}||^{\frac{1}{n}}$$

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

Ideal

An ideal in A is defined to be a subset I with the following three properties

I is a linear space of A

Ideal

An ideal in A is defined to be a subset I with the following three properties

- I is a linear space of A
- ② $i \in I$ Implies $xi \in I$ for every element $x \in A$

Ideal

An ideal in A is defined to be a subset I with the following three properties

- I is a linear space of A
- ② $i \in I$ Implies $xi \in I$ for every element $x \in A$
- $i \in I$ Implies $ix \in I$ for every element $x \in A$

Ideal

An ideal in A is defined to be a subset I with the following three properties

- I is a linear space of A
- **②** *i* ∈ *I* Implies $xi \in I$ for every element $x \in A$
- $i \in I$ Implies $ix \in I$ for every element $x \in A$

If I satisfies the conditions (1) and (2) is called "left ideal" and I satisfies the conditions (1) and (3) is called "right ideal".

Ideal

An ideal in A is defined to be a subset I with the following three properties

- I is a linear space of A
- **②** *i* ∈ *I* Implies $xi \in I$ for every element $x \in A$
- $i \in I$ Implies $ix \in I$ for every element $x \in A$

If I satisfies the conditions (1) and (2) is called "left ideal" and I satisfies the conditions (1) and (3) is called "right ideal".

Regular and Singular

- An element x in A is regular if there exist an element y such that xy = yx = 1.
- x is Left regular if there exists an element y such that yx = 1 and x is not left regular is called left singular.

Regular and Singular

- An element x in A is regular if there exist an element y such that xy = yx = 1.
- x is Left regular if there exists an element y such that yx = 1 and x is not left regular is called left singular.
- x is **Right regular** if there exists an element y such that xy = 1 and x is not left regular is called right singular.

Regular and Singular

- An element x in A is regular if there exist an element y such that xy = yx = 1.
- x is Left regular if there exists an element y such that yx = 1 and x is not left regular is called left singular.
- x is **Right regular** if there exists an element y such that xy = 1 and x is not left regular is called right singular.

Maximal left ideal

A maximal left ideal in A is defined to be a proper left ideal which is not properly contained in any other proper left ideal.

Radical

The radical R of A is defined to be a proper left ideal which is not properly contained in any other proper left ideal.

Maximal left ideal

A maximal left ideal in A is defined to be a proper left ideal which is not properly contained in any other proper left ideal.

Radical

The radical R of A is defined to be a proper left ideal which is not properly contained in any other proper left ideal.
Maximal left ideal

A maximal left ideal in A is defined to be a proper left ideal which is not properly contained in any other proper left ideal.

Radical

The radical R of A is defined to be a proper left ideal which is not properly contained in any other proper left ideal.

If r is an element of R. Then 1 - r is left regular.

Proof

Let 1 - r be left singular.

So that $L = A(1 - r) = \{x - xr/x \in A\}$ is a proper left ideal which contain 1 - r

If r is an element of R. Then 1 - r is left regular.

Proof

• Let
$$1 - r$$
 be left singular.

- So that $L = A(1 r) = \{x xr/x \in A\}$ is a proper left ideal which contain 1 r
 - Let α, β be scalars and x xr and $y yr \in L$

If r is an element of R. Then 1 - r is left regular.

Proof

(

• Let
$$1 - r$$
 be left singular.

- So that $L = A(1 r) = \{x xr/x \in A\}$ is a proper left ideal which contain 1 r
- Let α, β be scalars and x xr and $y yr \in L$ • Now,

$$\alpha(x-xr)+\beta(y-yr)=\alpha x+\beta y-(\alpha x+\beta y)r\in L$$

If r is an element of R. Then 1 - r is left regular.

Proof

• Let
$$1 - r$$
 be left singular.

So that $L = A(1 - r) = \{x - xr/x \in A\}$ is a proper left ideal which contain 1 - r

• Let
$$\alpha, \beta$$
 be scalars and $x - xr$ and $y - yr \in L$

Now,

$$\alpha(x-xr)+\beta(y-yr) = \alpha x + \beta y - (\alpha x + \beta y)r \in L$$

 \checkmark Implies L is a linear subspace.

If r is an element of R. Then 1 - r is left regular.

Proof

(

• Let
$$1 - r$$
 be left singular.

So that $L = A(1 - r) = \{x - xr/x \in A\}$ is a proper left ideal which contain 1 - r

• Let
$$\alpha, \beta$$
 be scalars and $x - xr$ and $y - yr \in L$

Now,

$$\alpha(x-xr)+\beta(y-yr) = \alpha x + \beta y - (\alpha x + \beta y)r \in L$$

• Implies L is a linear subspace.

 \checkmark Let $x - xr \in L, y \in A$ \swarrow Then $y(x - xr) = yx - yxr \in L$

 \checkmark Let $x - xr \in L, y \in A$ from $y(x - xr) = yx - yxr \in L$ \swarrow : L is a left ideal which contains 1 - r.

Let
$$x - xr \in L, y \in A$$

Then $y(x - xr) = yx - yxr \in L$
 $\therefore L$ is a left ideal which contains $1 - r$.
Now, $1 \in A, x - xr = 1$ implies $x(1 - r) = 1$

Let
$$x - xr \in L, y \in A$$

Then $y(x - xr) = yx - yxr \in L$
∴ L is a left ideal which contains $1 - r$.
Now, $1 \in A, x - xr = 1$ implies $x(1 - r) = 1$
Since, $1 - r$ is a left singular for any $x \in A$

Let
$$x - xr \in L, y \in A$$

Then $y(x - xr) = yx - yxr \in L$
 $\therefore L$ is a left ideal which contains $1 - r$.
Now, $1 \in A, x - xr = 1$ implies $x(1 - r) = 1$
Since, $1 - r$ is a left singular for any $x \in A$
 $x(1 - r) \neq 1 \forall x \in A$

Let
$$x - xr \in L, y \in A$$

Then $y(x - xr) = yx - yxr \in L$
Now, $1 \in A, x - xr = 1$ implies $x(1 - r) = 1$
Since, $1 - r$ is a left singular for any $x \in A$
 $x(1 - r) \neq 1 \forall x \in A$
Which is a contradiction to $x - xr = 1$.

Let
$$x - xr \in L, y \in A$$

Then $y(x - xr) = yx - yxr \in L$
Now, $1 \in A, x - xr = 1$ implies $x(1 - r) = 1$
Since, $1 - r$ is a left singular for any $x \in A$
 $x(1 - r) \neq 1 \forall x \in A$
Which is a contradiction to $x - xr = 1$.
There is no $x \in A$ such that $x - xr = 1$,
 $\therefore 1 \notin L$

✓ Imbedded *L* is a maximal left ideal *M*✓ Clearly $1 - r \in M$, Since $r \in R, 1 \in M$

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

■ Imbedded *L* is a maximal left ideal *M* ■ Clearly $1 - r \in M$, Since $r \in R, 1 \in M$

• $1 = (1 - r) + r \in M$ Implies M is a proper subset of A.

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

- Imbedded L is a maximal left ideal M
- Clearly $1 r \in M$, Since $r \in R, 1 \in M$
- $1 = (1 r) + r \in M$ Implies M is a proper subset of A.
- Implies $M \subset A$
- $a \in A$, then $a = a.1 \in M$
- Implies $A \subset M$ $\therefore A = M$
- Which is contradiction to $M \nleq A$
- Figure 4.1 r is left regular.

- Imbedded L is a maximal left ideal M
- Clearly $1 r \in M$, Since $r \in R, 1 \in M$
- $1 = (1 r) + r \in M$ Implies M is a proper subset of A.
- Implies $M \subset A$
- $a \in A$, then $a = a.1 \in M$
- Implies $A \subset M$ $\therefore A = M$
- Which is contradiction to $M \nleq A$
- Hence, 1 r is left regular.

If r is an element of R. Then 1 - r is regular.

Proof

Since $r \in R$.

Let By Previous Lemma, 1 - r is left regular.

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

If r is an element of R. Then 1 - r is regular.

Proof

Since $r \in R$.

There exist $S \in A$ such that S(1 - r) = 1Implies S - Sr = 1

If r is an element of R. Then 1 - r is regular.

Proof

Since $r \in R$.

- Let By Previous Lemma, 1 r is left regular.
- There exist $S \in A$ such that S(1 r) = 1Implies S - Sr = 1
- Implies S = 1 + Sr, then S = 1 (-S)r

If r is an element of R. Then 1 - r is regular.

Proof

Since $r \in R$.

- Let By Previous Lemma, 1 r is left regular.
- There exist $S \in A$ such that S(1 r) = 1Implies S - Sr = 1

- Implies S = 1 + Sr, then S = 1 (-S)r
- Since R is a left ideal. Implies $(-S)r \in R$ and 1 (-S)r is left regular.

If r is an element of R. Then 1 - r is regular.

Proof

Since $r \in R$.

- Let By Previous Lemma, 1 r is left regular.
- There exist $S \in A$ such that S(1 r) = 1Implies S - Sr = 1

Implies S = 1 + Sr, then S = 1 - (-S)r

Since R is a left ideal. Implies $(-S)r \in R$ and 1 - (-S)r is left regular.

Thus S is regular with inverse 1 - r is regular.

If r is an element of R. Then 1 - r is regular.

Proof

Since $r \in R$.

- Let By Previous Lemma, 1 r is left regular.
- There exist $S \in A$ such that S(1 r) = 1Implies S - Sr = 1

Implies S = 1 + Sr, then S = 1 - (-S)r

Since R is a left ideal. Implies $(-S)r \in R$ and 1 - (-S)r is left regular.

Thus S is regular with inverse 1 - r is regular.

If r is an element of R. Then 1 - xr is regular for every x.

Proof

 \clubsuit Let R be left ideal.

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

If r is an element of R. Then 1 - xr is regular for every x.

Proof

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

If r is an element of R. Then 1 - xr is regular for every x.

Proof

 \clubsuit Let R be left ideal.

- Since, $xr \in R \forall x$
- Solution: Let By Previous Lemma, 1 xr is regular.

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

If r is an element of R. Then 1 - xr is regular for every x.

Proof

\mathbf{S} Let R be left ideal.

\$ Let By Previous Lemma, 1 - xr is regular.

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

If r is an element of A with the property that 1 - xr is regular for every x. Then r is in R.

Proof

Assume that $r \notin R$, so that r is not in some maximal left ideal M.

If r is an element of A with the property that 1 - xr is regular for every x. Then r is in R.

Proof

Assume that $r \notin R$, so that r is not in some maximal left ideal M.

Let $M + Ar = \{m + xr/m \in M \text{ and } x \in A\}$

If r is an element of A with the property that 1 - xr is regular for every x. Then r is in R.

Proof

Assume that $r \notin R$, so that r is not in some maximal left ideal M.

$$\stackrel{\scriptstyle {\scriptstyle \checkmark}}{=} \, \operatorname{Let}\, M + Ar = \{m + xr/m \in M \text{ and } x \in A\}$$

To prove M + Ar is a left ideal. Let α, β be scalars,

If r is an element of A with the property that 1 - xr is regular for every x. Then r is in R.

Proof

Assume that $r \notin R$, so that r is not in some maximal left ideal M.

$$\stackrel{\scriptstyle {\scriptstyle \checkmark}}{=} \, \operatorname{Let}\, M + Ar = \{m + xr/m \in M \text{ and } x \in A\}$$

To prove M + Ar is a left ideal. Let α, β be scalars,
Let
$$a \in A, m + xr \in M + Ar$$
Implies $a(m + xr) = am + (ax)r \in M + Ar$
Since, $m \in M$ Implies $m + 0r \in M + Ar$

$$M \subset M + Ar \tag{16}$$

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

Let
$$a \in A, m + xr \in M + Ar$$

Implies $a(m + xr) = am + (ax)r \in M + Ar$
Since, $m \in M$ Implies $m + 0r \in M + Ar$

$$M \subset M + Ar \tag{16}$$

Similarly,

$$r \subset M + Ar \tag{17}$$

Let
$$a \in A, m + xr \in M + Ar$$
Implies $a(m + xr) = am + (ax)r \in M + Ar$
Since, $m \in M$ Implies $m + 0r \in M + Ar$

$$M \subset M + Ar$$
 (16)

Similarly,

$$r \subset M + Ar$$
 (17)

Let
$$a \in A, m + xr \in M + Ar$$
Implies $a(m + xr) = am + (ax)r \in M + Ar$
Since, $m \in M$ Implies $m + 0r \in M + Ar$

$$M \subset M + Ar$$
 (16)

Similarly,

$$r \subset M + Ar$$
 (17)

Since, M is a maximal left ideal and $r \notin M$, M + Ar = A, $1 \in A$

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

From (16) and (17), M + Ar contains both M and r

Since, M is a maximal left ideal and $r \notin M$, M + Ar = A, $1 \in A$

1 = m + xr for some $m \in M, x \in A$.

From (16) and (17),
$$M + Ar$$
 contains both M and r

Since, M is a maximal left ideal and $r \notin M, M + Ar = A, 1 \in A$

- 1 = m + xr for some $m \in M, x \in A$.
- m = 1 xr is regular.

T B

From (16) and (17),
$$M + Ar$$
 contains both M and r

Since, M is a maximal left ideal and $r \notin M, M + Ar = A, 1 \in A$

$$1 = m + xr$$
 for some $m \in M, x \in A$.

$$m = 1 - xr$$
 is regular.

From (16) and (17),
$$M + Ar$$
 contains both
 M and r
Since, M is a maximal left ideal and
 $r \notin M$, $M + Ar = A$, $1 \in A$
 $1 = m + xr$ for some $m \in M$, $x \in A$.
 $m = 1 - xr$ is regular.
Implies $m^{-1} \in A$ then $1 = m^{-1}m \in M$
 $a \in A$ Implies $a = a.1 \in M \therefore A \subset M$
But $M \subset A \therefore A = M$

From (16) and (17),
$$M + Ar$$
 contains both
 M and r
Since, M is a maximal left ideal and
 $r \notin M, M + Ar = A, 1 \in A$
 $1 = m + xr$ for some $m \in M, x \in A$.
 $m = 1 - xr$ is regular.
Implies $m^{-1} \in A$ then $1 = m^{-1}m \in M$
 $a \in A$ Implies $a = a.1 \in M \therefore A \subset M$
But $M \subset A \therefore A = M$
which is contradiction to M is a proper left
ideal. Hence, $r \in R$

From (16) and (17),
$$M + Ar$$
 contains both
 M and r
Since, M is a maximal left ideal and
 $r \notin M, M + Ar = A, 1 \in A$
 $1 = m + xr$ for some $m \in M, x \in A$.
 $m = 1 - xr$ is regular.
Implies $m^{-1} \in A$ then $1 = m^{-1}m \in M$
 $a \in A$ Implies $a = a.1 \in M \therefore A \subset M$
But $M \subset A \therefore A = M$
which is contradiction to M is a proper left
ideal. Hence, $r \in R$

A. Thanga Pandi

Lemma 6

If 1 - xr is regular then 1 - rx is also regular.

Proof

$$S - xrS = S - Sxr = 1 \tag{18}$$

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

Lemma 6

If 1 - xr is regular then 1 - rx is also regular.

Proof

Assume that
$$1 - xr$$
 is regular with inverse
 $S = (1 - xr)^{-1}$
 $(1 - xr)S = S(1 - xr) = 1$
 $S - xrS = S - Sxr = 1$ (18)

A. Thanga Pandi

FUNCTIONAL ANALYSIS UNIT-IV

Consider, (1 - rx)(1 + rsx) = 1 - rx + rx(1 - rx)(1 + rsx) = 1

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

Consider,
$$(1 - rx)(1 + rsx) = 1 - rx + rx$$

 $(1 - rx)(1 + rsx) = 1$
Similarly, $(1 + rsx)(1 - rx) = 1 - rx + rx$

Consider,
$$(1 - rx)(1 + rsx) = 1 - rx + rx$$

 $(1 - rx)(1 + rsx) = 1$
Similarly, $(1 + rsx)(1 - rx) = 1 - rx + rx$
 $(1 + rsx)(1 - rx) = 1$

Consider,
$$(1 - rx)(1 + rsx) = 1 - rx + rx$$

 $(1 - rx)(1 + rsx) = 1$
Similarly, $(1 + rsx)(1 - rx) = 1 - rx + rx$
 $\therefore (1 + rsx)(1 - rx) = 1$
Hence, $(1 - rx)$ is regular with its inverse $(1 + rsx)$.

Consider,
$$(1 - rx)(1 + rsx) = 1 - rx + rx$$

 $(1 - rx)(1 + rsx) = 1$
Similarly, $(1 + rsx)(1 - rx) = 1 - rx + rx$
 $\therefore (1 + rsx)(1 - rx) = 1$
Hence, $(1 - rx)$ is regular with its inverse $(1 + rsx)$.

A. Thanga Pandi

FUNCTIONAL ANALYSIS UNIT-IV

Theorem 14

The radical R of A equals each of the four sets in $\cap MLI = \{r/1 - xr\}$ is regular for every x and $\cap MRI = \{r/1 - rx\}$ is regular for x is a proper two sided ideal.

Proof If $x \in R$ then 1 - xr is regular $\forall x$ [By lemma-4] Implies $\{\frac{r}{1 - xr}\}$ is regular $= \{r/x \in R\}$ [By lemma-5]

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

Theorem 14

The radical *R* of *A* equals each of the four sets in $\cap MLI = \{r/1 - xr\}$ is regular for every *x* and $\cap MRI = \{r/1 - rx\}$ is regular for *x* is a proper two sided ideal.

Proof If $x \in R$ then 1 - xr is regular $\forall x$ [By lemma-4] Implies $\{\frac{r}{1 - xr}\}$ is regular = $\{r/x \in R\}$ [By lemma-5]

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

Theorem 14

The radical *R* of *A* equals each of the four sets in $\cap MLI = \{r/1 - xr\}$ is regular for every *x* and $\cap MRI = \{r/1 - rx\}$ is regular for *x* is a proper two sided ideal.

Proof If $x \in R$ then 1 - xr is regular $\forall x$ [By lemma-4] Implies $\{\frac{r}{1 - xr}\}$ is regular = $\{r/x \in R\}$ [By lemma-5]

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

There fore,

$$R = \cap MLI$$
 (19)
Similarly,
 $R = \cap MRI$ (20)

From (19) and (20), $\land \square \square MLI = R = \square MRI$

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

From (19) and (20), $\square \cap MLI = R = \cap MRI$ $\square \cap MLI$ is a proper left ideal and $\cap MRI$ is a proper right ideal

There fore,

$$R = \cap MLI$$
 (19)
Similarly,
 $R = \cap MRI$ (20)

✓ From (19) and (20),
✓ ∩*MLI* =
$$R = ∩MRI$$
✓ ∩*MLI* is a proper left ideal and $∩MRI$ is a proper right ideal

There fore,

$$R = \cap MLI$$
 (19)
Similarly,
 $R = \cap MRI$ (20)

✓ From (19) and (20),
✓ ∩*MLI* =
$$R = ∩MRI$$
✓ ∩*MLI* is a proper left ideal and $∩MRI$ is a proper right ideal

A is said to be semi-simple if its radical equals the zero ideal $\{0\}$, that is if each non-zero element of A is outside of some maximal left ideal.

Theorem 15

The radical R of A is a proper closed two-sided ideal.

A is said to be semi-simple if its radical equals the zero ideal $\{0\}$, that is if each non-zero element of A is outside of some maximal left ideal.

Theorem 15

The radical R of A is a proper closed two-sided ideal.

Proof

If $x \in R$, then 1 - xr is regular $\forall x$

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

A is said to be semi-simple if its radical equals the zero ideal $\{0\}$, that is if each non-zero element of A is outside of some maximal left ideal.

Theorem 15

The radical R of A is a proper closed two-sided ideal.

Proof

If $x \in R$, then 1 - xr is regular $\forall x$ To prove Every maximal left ideal in A is closed.

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

A is said to be semi-simple if its radical equals the zero ideal $\{0\}$, that is if each non-zero element of A is outside of some maximal left ideal.

Theorem 15

The radical R of A is a proper closed two-sided ideal.

Proof

If $x \in R$, then 1 - xr is regular $\forall x$ **To prove** Every maximal left ideal in A is closed.

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

A is said to be semi-simple if its radical equals the zero ideal $\{0\}$, that is if each non-zero element of A is outside of some maximal left ideal.

Theorem 15

The radical R of A is a proper closed two-sided ideal.

Proof

If $x \in R$, then 1 - xr is regular $\forall x$ **To prove** Every maximal left ideal in A is closed.

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

\swarrow : *L* in *A* is closed.

∠ By above theorem, $\cap MLI = R$

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

\checkmark : *L* in *A* is closed.

∠ By above theorem, $\cap MLI = R$

Since, MLI is closed Implies $\cap MLI = R$ is closed.

\checkmark : *L* in *A* is closed.

∠ By above theorem, $\cap MLI = R$

Since, MLI is closed Implies $\cap MLI = R$ is closed.

\bowtie R is closed

$\stackrel{\checkmark}{\frown} : L \text{ in } A \text{ is closed.}$

∠ By above theorem, $\cap MLI = R$

Since, MLI is closed Implies $\cap MLI = R$ is closed.

 \bowtie R is a proper two sided ideal.
- \checkmark : *L* in *A* is closed.
- [∠] By above theorem, $\cap MLI = R$
- Since, MLI is closed Implies $\cap MLI = R$ is closed.
- \swarrow R is a proper two sided ideal.
- \swarrow Hence, R is a proper closed two sided ideal.

- \checkmark : *L* in *A* is closed.
- [∠] By above theorem, $\cap MLI = R$
- Since, MLI is closed Implies $\cap MLI = R$ is closed.
- \swarrow R is a proper two sided ideal.
- \checkmark Hence, R is a proper closed two sided ideal.

- \checkmark : *L* in *A* is closed.
- [∠] By above theorem, $\cap MLI = R$
- Since, MLI is closed Implies $\cap MLI = R$ is closed.
- \swarrow R is a proper two sided ideal.
- \checkmark Hence, R is a proper closed two sided ideal.

If I is a proper closed two-sided ideal in A. Then the quotient algebra $\frac{A}{I}$ is Banach algebra.

Proof

* Let I is a proper closed two-sided ideal in A.

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

If I is a proper closed two-sided ideal in A. Then the quotient algebra $\frac{A}{I}$ is Banach algebra.

Proof

★ Let I is a proper closed two-sided ideal in A.
 ★ ∴, A/I is a non-trivial complex Banach space with respect to the norm defined by

If I is a proper closed two-sided ideal in A. Then the quotient algebra $\frac{A}{I}$ is Banach algebra.

Proof

Let I is a proper closed two-sided ideal in A.
∴, A/I is a non-trivial complex Banach space with respect to the norm defined by
||x + I|| = inf{||x + i||/i ∈ I}

If I is a proper closed two-sided ideal in A. Then the quotient algebra $\frac{A}{I}$ is Banach algebra.

Proof

Let *I* is a proper closed two-sided ideal in *A*.
∴, *A*/*I* is a non-trivial complex Banach space with respect to the norm defined by *||x + I|| = inf{||x + i||/i ∈ I}*Since *A* is a ring with identity 1, *I* is a two-sided ideal.

A. Thanga Pandi

If I is a proper closed two-sided ideal in A. Then the quotient algebra $\frac{A}{I}$ is Banach algebra.

Proof

Let *I* is a proper closed two-sided ideal in *A*.
∴, *A*/*I* is a non-trivial complex Banach space with respect to the norm defined by *||x + I|| = inf{||x + i||/i ∈ I}*Since *A* is a ring with identity 1, *I* is a two-sided ideal.

A. Thanga Pandi

* : $\frac{A}{I}$ is a ring with identity y + I.

 $\alpha(x+I)(y+I) = \alpha(xy+I)$

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

$$*$$
: $\frac{A}{I}$ is a ring with identity $y + I$.

$$\alpha(x+I)(y+I) = \alpha(xy+I) \\ = (\alpha x)y+I$$

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

$$*$$
: $\frac{A}{I}$ is a ring with identity $y + I$.

$$\alpha(x+I)(y+I) = \alpha(xy+I)$$

= $(\alpha x)y+I$
= $\alpha(x+I)\alpha(y+I)$

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

$$*$$
: $\frac{A}{I}$ is a ring with identity $y + I$.

$$\alpha(x+1)(y+1) = \alpha(xy+1)$$

= $(\alpha x)y+1$
= $\alpha(x+1)\alpha(y+1)$
 $\alpha(x+1)(y+1) = (x+1)(\alpha y+1)$

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

$$*$$
: $\frac{A}{I}$ is a ring with identity $y + I$.

$$\alpha(x+1)(y+1) = \alpha(xy+1)$$

= $(\alpha x)y+1$
= $\alpha(x+1)\alpha(y+1)$
 $\alpha(x+1)(y+1) = (x+1)(\alpha y+1)$

 $\therefore \frac{A}{I}$ is an algebra.

Servite Arts and Science College for women, Karur

$$*$$
: $\frac{A}{I}$ is a ring with identity $y + I$.

$$\alpha(x+1)(y+1) = \alpha(xy+1)$$

= $(\alpha x)y+1$
= $\alpha(x+1)\alpha(y+1)$
 $\alpha(x+1)(y+1) = (x+1)(\alpha y+1)$

 $\therefore \frac{A}{I}$ is an algebra.

Servite Arts and Science College for women, Karur

$$*$$
: $\frac{A}{I}$ is a ring with identity $y + I$.

$$\alpha(x+1)(y+1) = \alpha(xy+1)$$

= $(\alpha x)y+1$
= $\alpha(x+1)\alpha(y+1)$
 $\alpha(x+1)(y+1) = (x+1)(\alpha y+1)$

 $\therefore \frac{A}{I}$ is an algebra.

Servite Arts and Science College for women, Karur

Let x + I, $y + I \in \frac{A}{I}$ Now,

||(x+l)(y+l)|| = ||(xy+l)||

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

Let
$$x + I$$
, $y + I \in \frac{A}{I}$
Now,

$$||(x + I)(y + I)|| = ||(xy + I)|| \\= \inf\{||xy + i||/i \in I\}$$

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

Let
$$x + I$$
, $y + I \in \frac{A}{I}$
Now,
 $||(x + I)(y + I)|| = ||(xy + I)||$
 $= \inf\{||xy + i||/i \in I\}$
 $= \inf\{||(x + i_1)(y + i_2)||/i_1, i_2 \in I\}$

Λ

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

Let
$$x + I$$
, $y + I \in \frac{A}{I}$
Now,

$$||(x + I)(y + I)|| = ||(xy + I)||$$

= inf{||xy + i||/i \in I}
= inf{||(x + i_1)(y + i_2)||/i_1, i_2 \in I}
\leq inf{||x + i_1||||y + i_2||/i_1, i_2 \in I}

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

Let
$$x + I$$
, $y + I \in \frac{A}{I}$
Now,
 $||(x + I)(y + I)|| = ||(xy + I)||$
 $= \inf\{||xy + i||/i \in I\}$
 $= \inf\{||(x + i_1)(y + i_2)||/i_1, i_2 \in I\}$
 $\leq \inf\{||x + i_1||||y + i_2||/i_1, i_2 \in I\}$
 $||(x + I)(y + I)|| \leq ||x + I||||y + I||$

FUNCTIONAL ANALYSIS UNIT-IV

Let
$$x + I$$
, $y + I \in \frac{A}{I}$
Now,
 $||(x + I)(y + I)|| = ||(xy + I)||$
 $= \inf\{||xy + i||/i \in I\}$
 $= \inf\{||(x + i_1)(y + i_2)||/i_1, i_2 \in I\}$
 $\leq \inf\{||x + i_1||||y + i_2||/i_1, i_2 \in I\}$
 $||(x + I)(y + I)|| \leq ||x + I||||y + I||$

FUNCTIONAL ANALYSIS UNIT-IV

Let
$$x + I$$
, $y + I \in \frac{A}{I}$
Now,
 $||(x + I)(y + I)|| = ||(xy + I)||$
 $= \inf\{||xy + i||/i \in I\}$
 $= \inf\{||(x + i_1)(y + i_2)||/i_1, i_2 \in I\}$
 $\leq \inf\{||x + i_1||||y + i_2||/i_1, i_2 \in I\}$
 $||(x + I)(y + I)|| \leq ||x + I||||y + I||$

FUNCTIONAL ANALYSIS UNIT-IV

$\begin{aligned} ||1+I|| &= ||(1+I)(1+I)|| \\ &\leq ||1+I||^2 \end{aligned}$

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

$||1 + I|| = ||(1 + I)(1 + I)|| \\ \leq ||1 + I||^{2}$

$1 \le ||1 + I|| \tag{21}$

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

$$||1 + I|| = ||(1 + I)(1 + I)|| \\ \leq ||1 + I||^2$$

$1 \le ||1 + I||$ (21) $||1 + I|| = \inf\{||1 + I||/i \in I\}$ $||1 + I|| \le 1$ (22)

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

$$||1 + I|| = ||(1 + I)(1 + I)|| \le ||1 + I||^2$$

$$1 \le ||1 + I||$$
(21)
$$||1 + I|| = \inf\{||1 + I||/i \in I\}$$
$$||1 + I|| \le 1$$
(22)

From (21) and (22), we get, ||1 + I|| = 1Hence, $\frac{A}{I}$ is a Banach algebra.

A. Thanga Pandi

FUNCTIONAL ANALYSIS UNIT-IV

$$||1 + I|| = ||(1 + I)(1 + I)|| \le ||1 + I||^2$$

$$1 \le ||1 + I||$$
(21)
$$||1 + I|| = \inf\{||1 + I||/i \in I\}$$
$$||1 + I|| \le 1$$
(22)

From (21) and (22), we get,
$$||1 + I|| = 1$$

Hence, $\frac{A}{I}$ is a Banach algebra.

A. Thanga Pandi

FUNCTIONAL ANALYSIS UNIT-IV

Let
$$\frac{A}{R}$$
 is a semi-simple banach algebra

Proof

$\label{eq:since} \ensuremath{\mathscr{R}}\ \mbox{sided ideal in ${\cal A}$}.$

$\frac{A}{R}$ is banach algebra.

To prove $\frac{A}{R}$ is a semi-simple.

Since R is a proper closed two sided ideal in A.

Let
$$\frac{A}{R}$$
 is a semi-simple banach algebra

Proof

*

Since R is a proper closed two sided ideal in A.

$$\frac{A}{R}$$
 is banach algebra.

To prove
$$\frac{A}{R}$$
 is a semi-simple.

Since *R* is a proper closed two sided ideal in *A*. $\frac{A}{5}$ is banach algebra.

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

Let
$$\frac{A}{R}$$
 is a semi-simple banach algebra

Proof

*

Since R is a proper closed two sided ideal in A.

$$\frac{A}{R}$$
 is banach algebra.

To prove
$$\frac{A}{R}$$
 is a semi-simple.

Since R is a proper closed two sided ideal in A.

$$\frac{7}{P}$$
 is banach algebra.

A. Thanga Pandi

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

* Define
$$T: A \to \frac{A}{R}$$
 by $T(x) = x + R$.
* T is clearly a homemorphism into $\frac{A}{R}$.
* Let I be a left ideal in A then $T(I)$ is a left ideal in $\frac{A}{R}$.

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

Servite Arts and Science College for women, Karur

FUNCTIONAL ANALYSIS UNIT-IV

Let M be the set of all maximal left ideal of Aand L that of $\frac{A}{R}$

* Define $f: M \to L$ by $f(m) = T(m) \forall m \in M$.

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV
Let M be the set of all maximal left ideal of Aand L that of $\frac{A}{R}$ Define $f: M \to L$ by $f(m) = T(m) \forall m \in M$. To prove f is one-to-one and onto

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

Let M be the set of all maximal left ideal of Aand L that of $\frac{A}{R}$ Define $f: M \to L$ by $f(m) = T(m) \forall m \in M$. To prove f is one-to-one and onto Let $f(M_1) = f(M_2)$ then $T(M_1) = T(M_2)$

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

Let M be the set of all maximal left ideal of Aand L that of $\frac{A}{R}$ Define $f: M \to L$ by $f(m) = T(m) \forall m \in M$. To prove f is one-to-one and onto Let $f(M_1) = f(M_2)$ then $T(M_1) = T(M_2)$ $T^{-1}(T(M_1)) = T^{-1}(T(M_2)) \quad M_1 = M_2$

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

Let M be the set of all maximal left ideal of Aand L that of $\frac{A}{R}$ Define $f: M \to L$ by $f(m) = T(m) \forall m \in M$. To prove f is one-to-one and onto Let $f(M_1) = f(M_2)$ then $T(M_1) = T(M_2)$ $T^{-1}(T(M_1)) = T^{-1}(T(M_2))$ $M_1 = M_2$ *: f is one-to-one.

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

Let M be the set of all maximal left ideal of Aand L that of $\frac{A}{R}$ Define $f: M \to L$ by $f(m) = T(m) \forall m \in M$. To prove f is one-to-one and onto Let $f(M_1) = f(M_2)$ then $T(M_1) = T(M_2)$ $T^{-1}(T(M_1)) = T^{-1}(T(M_2))$ $M_1 = M_2$ \cdot f is one-to-one. $f(T^{-1}(L)) = T(T^{-1}(L)) = L$

★ Let *M* be the set of all maximal left ideal of *A* and *L* that of
$$\frac{A}{R}$$
★ Define *f* : *M* → *L* by *f*(*m*) = *T*(*m*)∀*m* ∈ *M*.
★ **To prove** *f* is one-to-one and onto
★ Let *f*(*M*₁) = *f*(*M*₂) then *T*(*M*₁) = *T*(*M*₂)
★ *T*⁻¹(*T*(*M*₁)) = *T*⁻¹(*T*(*M*₂)) *M*₁ = *M*₂
★ ∴ *f* is one-to-one.
★ *f*(*T*⁻¹(*L*)) = *T*(*T*⁻¹(*L*)) = *L*

★ Let *M* be the set of all maximal left ideal of *A* and *L* that of
$$\frac{A}{R}$$
★ Define *f* : *M* → *L* by *f*(*m*) = *T*(*m*)∀*m* ∈ *M*.
★ **To prove** *f* is one-to-one and onto
★ Let *f*(*M*₁) = *f*(*M*₂) then *T*(*M*₁) = *T*(*M*₂)
★ *T*⁻¹(*T*(*M*₁)) = *T*⁻¹(*T*(*M*₂)) *M*₁ = *M*₂
★ ∴ *f* is one-to-one.
★ *f*(*T*⁻¹(*L*)) = *T*(*T*⁻¹(*L*)) = *L*
★ ∴ *f* is onto.

★ Let *M* be the set of all maximal left ideal of *A* and *L* that of
$$\frac{A}{R}$$
★ Define *f* : *M* → *L* by *f*(*m*) = *T*(*m*)∀*m* ∈ *M*.
★ **To prove** *f* is one-to-one and onto
★ Let *f*(*M*₁) = *f*(*M*₂) then *T*(*M*₁) = *T*(*M*₂)
★ *T*⁻¹(*T*(*M*₁)) = *T*⁻¹(*T*(*M*₂)) *M*₁ = *M*₂
★ ∴ *f* is one-to-one.
★ *f*(*T*⁻¹(*L*)) = *T*(*T*⁻¹(*L*)) = *L*
★ ∴ *f* is onto.

To prove Radical in ^A/_R is {0}. Consider, T⁻¹(∩L) = ∩(T⁻¹(L))

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV

To prove Radical in $\frac{A}{R}$ is $\{0\}$. Consider, $T^{-1}(\cap L) = \cap (T^{-1}(L))$ Intersection of all MLI of A is R. $\therefore T^{-1}(\cap L) = R$

 ✓ To prove Radical in ^A/_R is {0}.
 ✓ Consider, T⁻¹(∩L) = ∩(T⁻¹(L))
 ✓ Intersection of all *MLI* of *A* is *R*. ∴ T⁻¹(∩L) = *R* ✓ Implies ∩L = T(R) = {r + R/r ∈ R} = {R}

To prove Radical in
$$\frac{A}{R}$$
 is $\{0\}$.
Consider, $T^{-1}(\cap L) = \cap (T^{-1}(L))$
Intersection of all *MLI* of *A* is *R*.
 $\therefore T^{-1}(\cap L) = R$
Implies $\cap L = T(R) = \{r + R/r \in R\} = \{R\}$
R = zero element in $\frac{A}{R}$.

To prove Radical in
$$\frac{A}{R}$$
 is $\{0\}$.
Consider, $T^{-1}(\cap L) = \cap (T^{-1}(L))$
Intersection of all *MLI* of *A* is *R*.
 $\therefore T^{-1}(\cap L) = R$
Implies $\cap L = T(R) = \{r + R/r \in R\} = \{R\}$
R = zero element in $\frac{A}{R}$.
 \therefore Radical in $\frac{A}{R}$.

A. Thanga Pandi

Servite Arts and Science College for women, Karur

To prove Radical in
$$\frac{A}{R}$$
 is $\{0\}$.
Consider, $T^{-1}(\cap L) = \cap(T^{-1}(L))$
Intersection of all *MLI* of *A* is *R*.
 $\therefore T^{-1}(\cap L) = R$
Implies $\cap L = T(R) = \{r + R/r \in R\} = \{R\}$
R = zero element in $\frac{A}{R}$.
K : Radical in $\frac{A}{R}$.
Hence, $\frac{A}{R}$ is a semi-simple

A. Thanga Pandi

To prove Radical in
$$\frac{A}{R}$$
 is $\{0\}$.
Consider, $T^{-1}(\cap L) = \cap (T^{-1}(L))$
Intersection of all *MLI* of *A* is *R*.
 $\therefore T^{-1}(\cap L) = R$
Implies $\cap L = T(R) = \{r + R/r \in R\} = \{R$
R = zero element in $\frac{A}{R}$.
K adical in $\frac{A}{R}$.
Hence, $\frac{A}{R}$ is a semi-simple

A. Thanga Pandi

Old Question Paper

A. Thanga Pandi

Servite Arts and Science College for women, Karur

Old Question Paper

- 8. Prove that Z (the set of all topological divisors of zero) is a subset of S.
- Define multiplicative functional.
- 10. If $\|x^2\| = \|x\|^2$ for every x on arbitrary commutative Banach algebra A, then prove that r(x) = |x|every x.

SECTION B $-(5 \times 5 = 25)$

Answer ALL questions, choosing either (a) or (b)

- If R is a commutative ring with identity, 11. (a) then prove that R is a field \Leftrightarrow it has no non-trivial ideals. 0
 - (b) If N is a normal linear space, then prove that the closed unit sphere S^* in N^* is a compact Hausdorff space in the weak* topology.
- 12. (a) If M is a closed linear subspace of a Hilbert space H, then prove that $H = M \oplus M^{\perp}$.

(b) State and prove Bessel's inequality.

S.No. 7534

(a) Prove that two matrices in A_s are similar 13. ⇔ they are the matrices of a single operator on H relative to (possibly) different bases.

Or

(b) Show that there exists a unique positive operator A on H such that $A^2 = T$.

14. (a) If 1-xr is regular, then prove that 1-rx is regular.

Or

- (b) Prove that the boundary of S is a subset of Z.
- Prove that $M \to f_{-}$ is a one-to-one mapping 15. (a) of the set yn of all maximal ideals in A into the set of all its multiplicative functions.

Or

(b). If A is self-adjoint, then prove that A is dense in C(m) 3

S.No. 7534

A. Thanga Pandi

FUNCTIONAL ANALYSIS UNIT-IV

THANK YOU

A. Thanga Pandi FUNCTIONAL ANALYSIS UNIT-IV