FUNCTIONAL ANALYSIS UNIT-IV(P16MA41) II M.Sc. Mathematics

A. Thanga Pandi

Assistant Professor P.G. Department of Mathematics, Servite Arts and Science College for women, Thogaimalai, Karur, India.

20. Mai 2020

A. Thanga Pandi Servite Arts and Science College for women, Karur

Outline

¹ [General Preliminaries on Banach Algebra:](#page-2-0)

² [The radical and semi-simplicity:](#page-242-0)

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

Banach Algebra:

Banach Algebra is a complex banach space which is also an algebra with identity 1 and in which the multiplicative structure is relative to the norm by

(i) $||xy|| \le ||x|| ||y||$ (iii) $||1|| = 1$

Banach Sub-Algebra:

A banach sub-algebra of banach algebra , if A is closed and sub-algebra of A which contains 1.

Banach Algebra:

Banach Algebra is a complex banach space which is also an algebra with identity 1 and in which the multiplicative structure is relative to the norm by

(i) $||xy|| < ||x|| ||y||$ (iii) $||1|| = 1$

Banach Sub-Algebra:

A banach sub-algebra of banach algebra , if A is closed and sub-algebra of A which contains 1.

Disc Algebra:

 A simple application of morera's theorem from complex analysis show that it is closed and therefore a banach sub-algebra $\rho(D)$.

Disc Algebra:

 A simple application of morera's theorem from complex analysis show that it is closed and therefore a banach sub-algebra $\rho(D)$.

This banach algebra is called the disc algebra.

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

Disc Algebra:

 A simple application of morera's theorem from complex analysis show that it is closed and therefore a banach sub-algebra $\rho(D)$.

This banach algebra is called the disc algebra.

C [∗]−Algebra:

Banach sub-algebra of $B(H)$'s which are self-adjoint are called C^{*}-algebra.

Disc Algebra:

 A simple application of morera's theorem from complex analysis show that it is closed and therefore a banach sub-algebra $\rho(D)$.

This banach algebra is called the disc algebra.

C [∗]−Algebra:

Banach sub-algebra of $B(H)$'s which are self-adjoint are called C^* -algebra.

Weak operator topology:

It is the weakest topology with respect to which all these functions are continuous.

W^{*}−Algebra:

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

Weak operator topology:

It is the weakest topology with respect to which all these functions are continuous.

W^{*}-Algebra:

A C^* – algebra with the further property of being closed in the weak operator topology is called a W^{*} −algebra. Algebras of this kind are also called rings of operators (or) Neumann algebras.

Weak operator topology:

It is the weakest topology with respect to which all these functions are continuous.

W^{*}−Algebra:

A C^* – algebra with the further property of being closed in the weak operator topology is called a W^{*}−algebra. Algebras of this kind are also called rings of operators (or) Neumann algebras.

Regular Elements:

Let $\mathbb R$ be a ring with identity $x \in \mathbb R$ has an inverse. Then x is said to be regular element.

Singular Element:

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

Regular Elements:

Let $\mathbb R$ be a ring with identity $x \in \mathbb R$ has an inverse. Then x is said to be regular element.

Singular Element:

An elements which are not regular is called a singular elements.

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

Regular Elements:

Let $\mathbb R$ be a ring with identity $x \in \mathbb R$ has an inverse. Then x is said to be regular element.

Singular Element:

An elements which are not regular is called a singular elements.

Theorem 1

Every element x for which $||x-1|| < 1$ is regular and the inverse of such element is given by $\chi^{-1} = 1 + \sum$ ∞ $n=1$ $(1 - x)^n$

Proof:

Let
$$
r = ||x - 1||
$$
, So that $r < 1$.
Then, $||(1 - x)^n|| \le ||1 - x||^n \le r^n$

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

Theorem 1

Every element x for which $||x-1|| < 1$ is regular and the inverse of such element is given by $\chi^{-1} = 1 + \sum$ ∞ $n=1$ $(1 - x)^n$

Proof:

Let
$$
r = ||x - 1||
$$
, So that $r < 1$.
Then, $||(1 - x)^n|| \le ||1 - x||^n \le r^n$
Let $S_n = (1 - x) + (1 - x)^2 + ... + (1 - x)^n$.
For $n > m$,

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

Theorem 1

Every element x for which $||x-1|| < 1$ is regular and the inverse of such element is given by $\chi^{-1} = 1 + \sum$ ∞ $n=1$ $(1 - x)^n$

Proof:

Let
$$
r = ||x - 1||
$$
, So that $r < 1$.
Then, $||(1 - x)^n|| \le ||1 - x||^n \le r^n$
Let $S_n = (1 - x) + (1 - x)^2 + ... + (1 - x)^n$.
For $n > m$,

A. Thanga Pandi Servite Arts and Science College for women, Karur

$$
||S_n - S_m|| = ||(1 - x)^{m+1} + (1 - x)^{m+2} + \dots + (1 - x)^n||
$$

\n
$$
\leq ||(1 - x)^{m+1}|| + ||(1 - x)^{m+2}||
$$

\n
$$
+ \dots + ||(1 - x)^n||
$$

$$
||S_n - S_m|| = ||(1 - x)^{m+1} + (1 - x)^{m+2} + \dots + (1 - x)^n||
$$

\n
$$
\leq ||(1 - x)^{m+1}|| + ||(1 - x)^{m+2}||
$$

\n
$$
+ \dots + ||(1 - x)^n||
$$

\n
$$
\leq r^{m+1} + r^{m+2} + \dots + r^n
$$

$$
||S_n - S_m|| = ||(1 - x)^{m+1} + (1 - x)^{m+2} + \dots + (1 - x)^n||
$$

\$\leq\$ ||(1 - x)^{m+1}|| + ||(1 - x)^{m+2}||
+ \dots + ||(1 - x)^n||
\$\leq\$ r^{m+1} + r^{m+2} + \dots + r^n
\$\leq\$ r^{m+1}(1 + r + r^2 + \dots + r^{n-m-1})

$$
||S_n - S_m|| = ||(1 - x)^{m+1} + (1 - x)^{m+2} + ... + (1 - x)^n|| \le ||(1 - x)^{m+1}|| + ||(1 - x)^{m+2}|| + ... + ||(1 - x)^n|| \le r^{m+1} + r^{m+2} + ... + r^n \le r^{m+1}(1 + r + r^2 + ... + r^{n-m-1}) \le r^{m+1}(\frac{1 - r^{n-m}}{1 - r}) \to 0 \text{ as } n \to \infty
$$

A. Thanga Pandi Servite Arts and Science College for women, Karur

$$
||S_n - S_m|| = ||(1 - x)^{m+1} + (1 - x)^{m+2} + ... + (1 - x)^n|| \le ||(1 - x)^{m+1}|| + ||(1 - x)^{m+2}|| + ... + ||(1 - x)^n|| \le r^{m+1} + r^{m+2} + ... + r^n \le r^{m+1}(1 + r + r^2 + ... + r^{n-m-1}) \le r^{m+1}(\frac{1 - r^{n-m}}{1 - r}) \to 0 \text{ as } n \to \infty
$$

A. Thanga Pandi Servite Arts and Science College for women, Karur

\triangle Hence, $||S_n - S_m|| \to 0$ $n \to \infty$. \triangle {S_n} is cauchy sequence in A.

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

\triangle Hence, $||S_n - S_m|| \to 0$ $n \to \infty$. \mathbb{Z} {S_n} is cauchy sequence in A. \triangle A is complete.

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

\triangle Hence, $||S_n - S_m|| \to 0$ $n \to \infty$.

- \mathbb{Z} {S_n} is cauchy sequence in A.
- \triangle A is complete.
- \triangle {S_n} is converges to an element $y \in A$.

\n- ✓ Hence,
$$
||S_n - S_m|| \rightarrow 0 \quad n \rightarrow \infty
$$
.
\n- ✓ {S_n} is cauchy sequence in A.
\n- ✓ A is complete.
\n- ✓ {S_n} is converges to an element $y \in A$.
\n- ✓ Let $y = 1 + \sum_{n=1}^{\infty} (1 - x)^n$.
\n

\n- ✓ hence,
$$
||S_n - S_m|| \rightarrow 0 \quad n \rightarrow \infty
$$
.
\n- ✓ $\{S_n\}$ is cauchy sequence in *A*.
\n- ✓ A is complete.
\n- ✓ $\{S_n\}$ is converges to an element $y \in A$.
\n- ✓ Let $y = 1 + \sum_{n=1}^{\infty} (1 - x)^n$.
\n- ✓ Consider, $1 + S_n = 1 + (1 - x) + (1 - x)^2 + \ldots + (1 - x)^n$.
\n

\n- **Ans** Hence,
$$
||S_n - S_m|| \to 0 \quad n \to \infty
$$
.
\n- **Ans** $\{S_n\}$ is cauchy sequence in A .
\n- **Ans** A is complete.
\n- **Ans** $\{S_n\}$ is converges to an element $y \in A$.
\n- **Ans** Let $y = 1 + \sum_{n=1}^{\infty} (1 - x)^n$.
\n- **Ans** Consider, $1 + S_n = 1 + (1 - x) + (1 - x)^2 + \ldots + (1 - x)^n$.
\n

 $1 + S_n = v$, Then the joint continuous of multiplication in A.

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

$$
1 + S_n = 1 + \sum_{m=1}^{n} (1 - x)^m
$$

= 1 + $\sum_{m=1}^{\infty} (1 - x)^m$ as $n \to \infty$

 $1 + S_n = y$, Then the joint continuous of multiplication in A.

$$
(1-x)(1+S_n) \rightarrow (1-x)y \qquad (1)
$$

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

$$
1 + S_n = 1 + \sum_{m=1}^{n} (1 - x)^m
$$

= 1 + $\sum_{m=1}^{\infty} (1 - x)^m$ as $n \to \infty$

 $1 + S_n = y$, Then the joint continuous of multiplication in A.

$$
(1-x)(1+S_n)\rightarrow (1-x)y \qquad \qquad (1)
$$

$$
1 + S_n = 1 + \sum_{m=1}^{n} (1 - x)^m
$$

= 1 + $\sum_{m=1}^{\infty} (1 - x)^m$ as $n \to \infty$

 $1 + S_n = y$, Then the joint continuous of multiplication in A.

$$
(1-x)(1+S_n)\rightarrow (1-x)y \qquad \qquad (1)
$$

$$
(1 - x)(1 + S_n) = y - 1
$$
 (2)
From, Eq.(1) and (2)

$$
(1-x)(1+S_n) = y-1
$$
 (2)
From, Eq.(1) and (2)

$$
(1-x)y = y-1
$$

$$
(1-x)(1+S_n) = y-1
$$
 (2)
From, Eq.(1) and (2)

$$
\begin{array}{rcl} (1-x)y &=& y-1 \\ xy &=& 1 \end{array}
$$
$$
(1-x)(1+S_n) = y-1
$$
 (2)
From, Eq.(1) and (2)

$$
(1 - x)y = y - 1
$$

xy = 1
y = x⁻¹

Therefore, x is regular implies $x^{-1} = 1 + \sum$ ∞ $n=1$ $(1-x)^n$

$$
(1-x)(1+S_n) = y-1
$$
 (2)
From, Eq.(1) and (2)

$$
(1-x)y = y-1\nxy = 1\ny = x-1
$$

Therefore, x is regular implies $x^{-1} = 1 + \sum$ ∞ $n=1$ $(1-x)^n$

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

If G is an open set and therefore s is a closed set.

Let x_0 be an element in G and let x be any element in A.

If G is an open set and therefore s is a closed set.

Proof:

Let x_0 be an element in G and let x be any element in A.

Such that,
$$
||x - x_0|| < \frac{1}{||x^{-1}||}
$$

Now,

If G is an open set and therefore s is a closed set.

Proof:

Let x_0 be an element in G and let x be any element in A. 1

Such that,
$$
||x - x_0|| < \frac{1}{||x^{-1}||}
$$

Now,

$$
||x_0^{-1}x - 1|| = ||x_0^{-1}(x - x_0)||
$$

A. Thanga Pandi Servite Arts and Science College for women, Karur

If G is an open set and therefore s is a closed set.

Proof:

Let x_0 be an element in G and let x be any element in A. 1

Such that,
$$
||x - x_0|| < \frac{1}{||x^{-1}||}
$$

Now,

$$
||x_0^{-1}x - 1|| = ||x_0^{-1}(x - x_0)||
$$

<
$$
< ||x_0^{-1}|| \frac{1}{||x_0^{-1}||}
$$

A. Thanga Pandi Servite Arts and Science College for women, Karur

If G is an open set and therefore s is a closed set.

Proof:

Let x_0 be an element in G and let x be any element in A.

Such that,
$$
||x - x_0|| < \frac{1}{||x^{-1}||}
$$

Now,

 $||x_0^{-1}$ $||x_0^{-1}x-1|| = ||x_0^{-1}(x-x_0)||$ 0 $<$ $||x_0^{-1}$ $\frac{1}{10}$ $||x_0^{-1}$ \int_{0}^{-1} $<$ 1

A. Thanga Pandi Servite Arts and Science College for women, Karur

If G is an open set and therefore s is a closed set.

Proof:

Let x_0 be an element in G and let x be any element in A.

Such that,
$$
||x - x_0|| < \frac{1}{||x^{-1}||}
$$

Now,

 $||x_0^{-1}$ $||x_0^{-1}x-1|| = ||x_0^{-1}(x-x_0)||$ 0 $<$ $||x_0^{-1}$ $\frac{1}{10}$ $||x_0^{-1}$ \int_{0}^{-1} $<$ 1

A. Thanga Pandi Servite Arts and Science College for women, Karur

Since, $x = x_0(x_0^{-1})$ $\binom{m-1}{0}$ implies x is also in G.

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

- Since, $x = x_0(x_0^{-1})$ $\binom{m-1}{0}$ implies x is also in G.
- Therefore, G contains a nbhd of each of its points.

- Since, $x = x_0(x_0^{-1})$ $\binom{m-1}{0}$ implies x is also in G.
- Therefore, G contains a nbhd of each of its points.
- Hence, G is open.

- Since, $x = x_0(x_0^{-1})$ $\binom{m-1}{0}$ implies x is also in G.
- \bullet Therefore, G contains a nbhd of each of its points.
- \bullet Hence, ϵ is open.

Implies its Complements is closed.

- Since, $x = x_0(x_0^{-1})$ $\binom{m-1}{0}$ implies x is also in G.
- $\qquad \qquad$ Therefore, G contains a nbhd of each of its points.
- \bullet Hence, ϵ is open.
- Implies its Complements is closed. Thus, s is closed.

- Since, $x = x_0(x_0^{-1})$ $\binom{m-1}{0}$ implies x is also in G.
- $\qquad \qquad$ Therefore, G contains a nbhd of each of its points.
- \bullet Hence, G is open.
- Implies its Complements is closed. Thus, s is closed.

The mapping $x \to x^{-1}$ of G into G is continuous and is therefore a homeomorphism of G onto itself.

Let $f: G \to G$ be given by $f(x) = x^{-1} \forall x \in G$.

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

The mapping $x \to x^{-1}$ of G into G is continuous and is therefore a homeomorphism of G onto itself.

Proof:

Let $f: G \to G$ be given by $f(x) = x^{-1} \forall x \in G$. Let x_0 be an element of G and x be another element of G.

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

The mapping $x \to x^{-1}$ of G into G is continuous and is therefore a homeomorphism of G onto itself.

Proof:

Let $f: G \to G$ be given by $f(x) = x^{-1} \forall x \in G$. Let x_0 be an element of G and x be another element of G. 1

5 Such that
$$
||x - x_0|| < \frac{1}{2||x_0^{-1}|}
$$

The mapping $x \to x^{-1}$ of G into G is continuous and is therefore a homeomorphism of G onto itself.

Proof:

Let
$$
f: G \to G
$$
 be given by $f(x) = x^{-1} \forall x \in G$.

Let x_0 be an element of G and x be another element of G.

Such that
$$
||x - x_0|| < \frac{1}{2||x_0^{-1}||}
$$

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

 \triangle Let $\epsilon > 0$ be given such that $\epsilon < ||x^{-1}||$. \triangle Let $\delta = \frac{\epsilon}{2!}$ $2||x_0^{-1}$ \int_0^{-1} ||2 .

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

Let
$$
\epsilon > 0
$$
 be given such that $\epsilon < ||x^{-1}||$.
\n
$$
\Leftrightarrow \text{Let } \delta = \frac{\epsilon}{2||x_0^{-1}||^2}.
$$
\n
$$
\Leftrightarrow \text{Now,}
$$
\n
$$
||x_0^{-1}x - 1|| = ||x_0^{-1}(x - x_0)||
$$

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

||.

4 Let
$$
\epsilon > 0
$$
 be given such that $\epsilon < ||x^{-1}||$

\n**4** Let $\delta = \frac{\epsilon}{2||x_0^{-1}||^2}$.

\n**4** Now,

\n**5** $||x_0^{-1}x - 1|| = ||x_0^{-1}(x - x_0)||$

\n**6** $||x_0^{-1}x - 1|| < 1$

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

4 Let
$$
\epsilon > 0
$$
 be given such that $\epsilon < ||x^{-1}||$.
\n**4** Let $\delta = \frac{\epsilon}{2||x_0^{-1}||^2}$.
\n**4** Now,
\n**5** $||x_0^{-1}x - 1|| = ||x_0^{-1}(x - x_0)||$
\n**6** $||x_0^{-1}x - 1|| < 1$
\n**7** By Theorem-1,
\n**8** By Theorem-1,
\n**9** $x_0^{-1}x$ is in *G* and
\n**10** $x^{-1}x_0 = (x_0^{-1}x)^{-1}$

A. Thanga Pandi Servite Arts and Science College for women, Karur

4 Let
$$
\epsilon > 0
$$
 be given such that $\epsilon < ||x^{-1}||$.

\n**4** Let $\delta = \frac{\epsilon}{2||x_0^{-1}||^2}$.

\n**5** Now,

\n**6** $||x_0^{-1}x - 1|| = ||x_0^{-1}(x - x_0)||$

\n**7** $||x_0^{-1}x - 1|| < 1$

\n**8** By Theorem-1, $x_0^{-1}x$ is in **G** and $x^{-1}x_0 = (x_0^{-1}x)^{-1}$

\n**9** $x^{-1}x_0 = 1 + \sum_{n=1}^{\infty} (1 - x_0^{-1}x)^n$ when $||x - x_0|| < \delta$

Let
$$
\epsilon > 0
$$
 be given such that $\epsilon < ||x^{-1}||$.
\n \Leftrightarrow Let $\delta = \frac{\epsilon}{2||x_0^{-1}||^2}$.
\n \Leftrightarrow Now,
\n $\Leftrightarrow ||x_0^{-1}x - 1|| = ||x_0^{-1}(x - x_0)||$
\n $\Leftrightarrow ||x_0^{-1}x - 1|| < 1$
\n \Leftrightarrow By Theorem-1, $x_0^{-1}x$ is in *G* and $x^{-1}x_0 = (x_0^{-1}x)^{-1}$
\n $\Leftrightarrow x^{-1}x_0 = 1 + \sum_{n=1}^{\infty} (1 - x_0^{-1}x)^n$ when $||x - x_0|| < \delta$

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

$$
||f(x) - f(x_0)|| = ||x^{-1} - x_0^{-1}||
$$

\n
$$
\leq 2||x_0^{-1}||^2||x - x_0||
$$

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

$$
||f(x) - f(x_0)|| = ||x^{-1} - x_0^{-1}||
$$

\n
$$
\leq 2||x_0^{-1}||^2||x - x_0||
$$

\n
$$
< 2||x_0^{-1}||^2\delta
$$

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

$$
||f(x) - f(x_0)|| = ||x^{-1} - x_0^{-1}||
$$

\n
$$
\leq 2||x_0^{-1}||^2||x - x_0||
$$

\n
$$
< 2||x_0^{-1}||^2\delta
$$

\n
$$
||f(x) - f(x_0)|| < \epsilon
$$

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

$$
||f(x) - f(x_0)|| = ||x^{-1} - x_0^{-1}||
$$

\n
$$
\leq 2||x_0^{-1}||^2||x - x_0||
$$

\n
$$
< 2||x_0^{-1}||^2\delta
$$

\n
$$
||f(x) - f(x_0)|| < \epsilon
$$

Implies f is continuous at x_0 , f is continuous on G.

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

$$
||f(x) - f(x_0)|| = ||x^{-1} - x_0^{-1}||
$$

\n
$$
\leq 2||x_0^{-1}||^2||x - x_0||
$$

\n
$$
< 2||x_0^{-1}||^2\delta
$$

\n
$$
||f(x) - f(x_0)|| < \epsilon
$$

Implies f is continuous at x_0 , f is continuous on G.

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

 $f(x) = f(y)$

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

$$
\begin{array}{rcl}\nf(x) &=& f(y) \\
x^{-1} &=& y^{-1}\n\end{array}
$$

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

$$
f(x) = f(y)
$$

$$
x^{-1} = y^{-1}
$$

$$
x = y
$$

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

$$
f(x) = f(y)
$$

$$
x^{-1} = y^{-1}
$$

$$
x = y
$$

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

$$
f(x) = f(y)
$$

$$
x^{-1} = y^{-1}
$$

$$
x = y
$$

Therefore f is $1 - 1$.

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)
To prove: f is $1 - 1$ Now,

$$
f(x) = f(y)
$$

$$
x^{-1} = y^{-1}
$$

$$
x = y
$$

Therefore f is $1 - 1$.

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

To prove: f is Onto

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

To prove: f is Onto For all $x^{-1} \in G$, There exist $x \in G$ Such that $f(x^{-1} = x \in G)$

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

To prove: f is Onto For all $x^{-1} \in G$, There exist $x \in G$ Such that $f(x^{-1} = x \in G)$ Therefore, f is onto.

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

To prove: f is Onto For all $x^{-1} \in G$, There exist $x \in G$ Such that $f(x^{-1} = x \in G)$ Therefore, f is onto. Then, f^{-1} is also continuous.

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

To prove: f is Onto For all $x^{-1} \in G$, There exist $x \in G$ Such that $f(x^{-1} = x \in G)$ Therefore, f is onto. Then, f^{-1} is also continuous. Hence, f is homomorphism.

To prove: f is Onto For all $x^{-1} \in G$, There exist $x \in G$ Such that $f(x^{-1} = x \in G)$ Therefore, f is onto. Then, f^{-1} is also continuous. Hence, f is homomorphism.

Topological divisor of zero:

An element z in an banach algebra A is called a topological divisor of zero. If there exist a sequence ${z_n}$ in A such that $||z_n|| = 1$ and either $zz_n \to 0$ or $z_n z \rightarrow 0$.

Topological divisor of zero:

An element z in an banach algebra A is called a topological divisor of zero. If there exist a sequence ${z_n}$ in A such that $||z_n|| = 1$ and either $zz_n \to 0$ or $z_n z \to 0$.

Every divisor of zero is a topological divisor of zero.

Let $b \in A$ be a divisor of zero.

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

Every divisor of zero is a topological divisor of zero.

Proof:

Let $b \in A$ be a divisor of zero. There exist $a \neq 0$ such that $ab = ba = 0$

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

Every divisor of zero is a topological divisor of zero.

Proof:

Let $b \in A$ be a divisor of zero. There exist $a \neq 0$ such that $ab = ba = 0$ To prove: b is a topological divisor of zero.

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

Every divisor of zero is a topological divisor of zero.

Proof:

Let $b \in A$ be a divisor of zero. There exist $a \neq 0$ such that $ab = ba = 0$ To prove: b is a topological divisor of zero. Let $z_n =$ a $||a||$

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

Every divisor of zero is a topological divisor of zero.

Proof:

Let $b \in A$ be a divisor of zero. There exist $a \neq 0$ such that $ab = ba = 0$ To prove: b is a topological divisor of zero. Let $z_n =$ a $||a||$ Therefore, $||z_n|| = 1$

Every divisor of zero is a topological divisor of zero.

Proof:

Let $b \in A$ be a divisor of zero. There exist $a \neq 0$ such that $ab = ba = 0$ To prove: b is a topological divisor of zero. Let $z_n =$ a $||a||$ Therefore, $||z_n|| = 1$ $Z_n b \to 0$

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

Every divisor of zero is a topological divisor of zero.

Proof:

Let $b \in A$ be a divisor of zero. There exist $a \neq 0$ such that $ab = ba = 0$ To prove: b is a topological divisor of zero. Let $z_n =$ a $||a||$ Therefore, $||z_n|| = 1$ $Z_nb\to 0$ Hence, **b** is a topological divisor of zero.

Every divisor of zero is a topological divisor of zero.

Proof:

Let $b \in A$ be a divisor of zero. There exist $a \neq 0$ such that $ab = ba = 0$ To prove: b is a topological divisor of zero. Let $z_n =$ a $||a||$ Therefore, $||z_n|| = 1$ $Z_nb\to 0$ Hence, b is a topological divisor of zero.

The set of all topological divisor of zero Z is a subset of the set Sof all singular element in A or Z is a subset of S.

Proof:

Let $z \in Z$ and $\{z_n\}$ be a sequence in A such that $||z_n|| = 1$ and $z z_n \to 0$.

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

The set of all topological divisor of zero Z is a subset of the set Sof all singular element in A or Z is a subset of S.

Proof:

Let $z \in Z$ and $\{z_n\}$ be a sequence in A such that $||z_n|| = 1$ and $zz_n \to 0$. To prove: $z \in S$

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

The set of all topological divisor of zero Z is a subset of the set Sof all singular element in A or Z is a subset of S.

Proof:

Let $z \in Z$ and $\{z_n\}$ be a sequence in A such that $||z_n|| = 1$ and $z z_n \to 0$. To prove: $z \in S$ Suppose that $z \notin S$

The set of all topological divisor of zero Z is a subset of the set Sof all singular element in A or Z is a subset of S.

Proof:

Let $z \in Z$ and $\{z_n\}$ be a sequence in A such that $||z_n|| = 1$ and $z z_n \to 0$. To prove: $z \in S$ Suppose that $z \notin S$ Implies $z \in G$ [G is the complement of S]

The set of all topological divisor of zero Z is a subset of the set Sof all singular element in A or Z is a subset of S.

Proof:

Let $z \in Z$ and $\{z_n\}$ be a sequence in A such that $||z_n|| = 1$ and $z z_n \to 0$. To prove: $z \in S$ Suppose that $z \notin S$ Implies $z \in G$ [G is the complement of S]

The set of all topological divisor of zero Z is a subset of the set Sof all singular element in A or Z is a subset of S.

Proof:

Let $z \in Z$ and $\{z_n\}$ be a sequence in A such that $||z_n|| = 1$ and $z z_n \to 0$. To prove: $z \in S$ Suppose that $z \notin S$ Implies $z \in G$ [G is the complement of S]

By jointly continuous on multiplication $z^{-1}(z z_n) \to z^{-1}(0)$ $\therefore z_n \to 0$

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

By jointly continuous on multiplication $z^{-1}(z z_n) \to z^{-1}(0)$ $\therefore z_n \to 0$ Which is a contradiction to $||z_n|| = 1$

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

By jointly continuous on multiplication $z^{-1}(z z_n) \to z^{-1}(0)$ $\therefore z_n \to 0$ Which is a contradiction to $||z_n|| = 1$ Therefore, $z \in S$

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

By jointly continuous on multiplication $z^{-1}(z z_n) \to z^{-1}(0)$ $\therefore z_n \to 0$ Which is a contradiction to $||z_n|| = 1$ Therefore, $z \in S$ Hence, $Z \subset S$.

By jointly continuous on multiplication $z^{-1}(z z_n) \to z^{-1}(0)$ $\therefore z_n \to 0$ Which is a contradiction to $||z_n|| = 1$ Therefore, $z \in S$ Hence, $Z \subset S$.

The boundary of S is a subset of Z .

Proof:

Since, S is closed, it is boundary consists of all points in S which are the limits of convergent sequence in G.

The boundary of S is a subset of Z .

Proof:

Since, S is closed, it is boundary consists of all points in S which are the limits of convergent sequence in G.

Let Z belongs to the boundary of S

The boundary of S is a subset of Z .

Proof:

Since, S is closed, it is boundary consists of all points in S which are the limits of convergent sequence in G.

Let Z belongs to the boundary of S To prove: $z \in Z$

The boundary of S is a subset of Z .

Proof:

Since, S is closed, it is boundary consists of all points in S which are the limits of convergent sequence in G.

Let Z belongs to the boundary of S

To prove: $z \in Z$

Suppose $z \in S$ and there exist a sequence $\{r_n\}$ in G such that $r_n \to z$,

The boundary of S is a subset of Z .

Proof:

Since, S is closed, it is boundary consists of all points in S which are the limits of convergent sequence in G. Let Z belongs to the boundary of S To prove: $z \in Z$ Suppose $z \in S$ and there exist a sequence $\{r_n\}$ in G such that $r_n \to z$,

Then z is in Z.

The boundary of S is a subset of Z .

Proof:

Since, S is closed, it is boundary consists of all points in S which are the limits of convergent sequence in G. Let Z belongs to the boundary of S To prove: $z \in Z$ Suppose $z \in S$ and there exist a sequence $\{r_n\}$ in G such that $r_n \to z$, Then z is in Z.

Now,

$$
r_n^{-1}z - 1 = r_n^{-1}(z - r_n)
$$
 (3)

 \blacktriangle Suppose $\{r_n^{-1}\}\$ is bounded.

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

Now,

$$
r_n^{-1}z - 1 = r_n^{-1}(z - r_n)
$$
 (3)

 \iff Suppose $\{r_n^{-1}\}\$ is bounded. \blacktriangleright : $||r_n^{-1}|| \leq k \forall$ positive integer k.

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)
$$
r_n^{-1}z - 1 = r_n^{-1}(z - r_n)
$$
 (3)

 \iff Suppose $\{r_n^{-1}\}\$ is bounded. \mathbb{Z} : $||r_n^{-1}|| \leq k \forall$ positive integer k. \triangle Since $r_n \to z$. Implies $||r_n - z|| \leq \frac{1}{L}$ k $\forall n \geq m$

$$
r_n^{-1}z - 1 = r_n^{-1}(z - r_n)
$$
 (3)

■s Suppose
$$
\{r_n^{-1}\}
$$
 is bounded.

\n■s : $||r_n^{-1}|| \leq k \forall$ positive integer k .

\n■s Since $r_n \to z$. Implies $||r_n - z|| \leq \frac{1}{k} \forall n \geq m$.

\n■s From Eq.(3),

$$
||r_n^{-1}z-1|| = ||r_n^{-1}(z-r_n)||
$$

A. Thanga Pandi Servite Arts and Science College for women, Karur

$$
r_n^{-1}z - 1 = r_n^{-1}(z - r_n)
$$
 (3)

$$
\begin{aligned}\n\text{Suppose } & \{r_n^{-1}\} \text{ is bounded.} \\
\text{for } & \|\mathbf{r}_n^{-1}\| \leq k \forall \text{ positive integer } k. \\
\text{for } & \mathbf{r}_n \to \mathbf{z}. \text{ Implies } ||\mathbf{r}_n - \mathbf{z}|| \leq \frac{1}{k} \forall n \geq m.\n\end{aligned}
$$
\n
$$
\text{From Eq. (3)},
$$

$$
||r_n^{-1}z - 1|| = ||r_n^{-1}(z - r_n)||
$$

< $k\frac{1}{k}$

$$
r_n^{-1}z - 1 = r_n^{-1}(z - r_n)
$$
 (3)

$$
\begin{aligned}\n\text{Suppose } & \{r_n^{-1}\} \text{ is bounded.} \\
\text{for } & \|\mathbf{r}_n^{-1}\| \leq k \forall \text{ positive integer } k. \\
\text{for } & \mathbf{r}_n \to \mathbf{z}. \text{ Implies } ||\mathbf{r}_n - \mathbf{z}|| \leq \frac{1}{k} \forall n \geq m.\n\end{aligned}
$$
\n
$$
\text{From Eq. (3)},
$$

$$
||r_n^{-1}z - 1|| = ||r_n^{-1}(z - r_n)||
$$

< $k\frac{1}{k}$

$$
r_n^{-1}z - 1 = r_n^{-1}(z - r_n)
$$
 (3)

$$
\begin{aligned}\n\text{Suppose } & \{r_n^{-1}\} \text{ is bounded.} \\
\text{for } & \|\mathbf{r}_n^{-1}\| \leq k \forall \text{ positive integer } k. \\
\text{for } & \mathbf{r}_n \to \mathbf{z}. \text{ Implies } ||\mathbf{r}_n - \mathbf{z}|| \leq \frac{1}{k} \forall n \geq m.\n\end{aligned}
$$
\n
$$
\text{From Eq. (3)},
$$

$$
||r_n^{-1}z - 1|| = ||r_n^{-1}(z - r_n)||
$$

< $k\frac{1}{k}$

$||r_n^{-1}z - 1|| < 1 \forall n \ge m$

\bullet By Theorem -1, $r_n^{-1}z$ is regular.

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

$||r_n^{-1}z - 1|| < 1 \forall n \ge m$

\bullet By Theorem-1, $r_n^{-1}z$ is regular. \bigcap Implies $r_n^{-1}z \in G$

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

$$
||r_n^{-1}z-1|| < 1 \forall n \geq m
$$

\n- By Theorem−1,
$$
r_n^{-1}z
$$
 is regular.
\n- Implies $r_n^{-1}z \in G$
\n- Now, $z = r_n(r_n^{-1}z) \in G$ Implies $z \in G$
\n

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

$$
||r_n^{-1}z-1|| < 1 \forall n \geq m
$$

\n- By Theorem-1,
$$
r_n^{-1}z
$$
 is regular.
\n- Implies $r_n^{-1}z \in G$
\n- Now, $z = r_n(r_n^{-1}z) \in G$ Implies $z \in G$
\n- Which is contraction to $z \in S$
\n

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

$$
||r_n^{-1}z-1|| < 1 \forall n \geq m
$$

\n- By Theorem-1,
$$
r_n^{-1}z
$$
 is regular.
\n- Implies $r_n^{-1}z \in G$
\n- Now, $z = r_n(r_n^{-1}z) \in G$ Implies $z \in G$
\n- Which is contraction to $z \in S$
\n- if r_n^{-1} is unbounded.
\n

$$
||r_n^{-1}z-1|| < 1 \forall n \geq m
$$

\n- By Theorem-1,
$$
r_n^{-1}z
$$
 is regular.
\n- Implies $r_n^{-1}z \in G$
\n- Now, $z = r_n(r_n^{-1}z) \in G$ Implies $z \in G$
\n- Which is contraction to $z \in S$
\n- $\therefore \{r_n^{-1}\}$ is unbounded.
\n

Assume that
$$
||r_n^{-1}|| \to \infty
$$
.

\nFor $z_n = \frac{r_n^{-1}}{||r_n^{-1}||}$ implies $z_n = 1$.

\nFor z_n and $z_{n-1} = \frac{r_n^{-1}}{||r_n^{-1}||}$.

Assume that
$$
||r_n^{-1}|| \to \infty
$$
.

\nFor $z_n = \frac{r_n^{-1}}{||r_n^{-1}||}$ implies $z_n = 1$.

\nFor z_n and z_n is a nontrivial form.

\nFor z_n and z_n are the z_n and z_n

Assume that
$$
||r_n^{-1}|| \to \infty
$$
.
\n $\sqrt{\mathscr{B}}$ Define $z_n = \frac{r_n^{-1}}{||r_n^{-1}||}$ Implies $z_n = 1$
\n $\sqrt{\mathscr{B}}$ Now, $zz_n = z \frac{r_n^{-1}}{||r_n^{-1}||}$
\n $\sqrt{\mathscr{B}}$: $zz_n \to 0$
\n $\sqrt{\mathscr{B}}$: z is a topological divisor of zero.

 Assume that ||rⁿ −1 || → ∞. Define zⁿ = rn −1 ||rⁿ −1 || Implies ^zⁿ = 1 Now, zzⁿ = z rn −1 ||rⁿ −1 || ∴ zzⁿ → 0 ∴ z is a topological divisor of zero. Hence, z ∈ Z

Assume that
$$
||r_n^{-1}|| \to \infty
$$
.

\nSelfs: $z_n = \frac{r_n^{-1}}{||r_n^{-1}||}$ Implies $z_n = 1$

\nSelfs: $z_n = z \frac{r_n^{-1}}{||r_n^{-1}||}$

\nSelfs: $zz_n \to 0$

\nSelfs: $zz_n \to 0$

\nSelfs: $z \geq z_n \to 0$

\nSelfs: $z \geq z_n \to 0$

\nSelfs: $z \geq z_n \to 0$

\nFigure: $z \in Z$

Spectrum

Let A be a banach algebra and $x \in A$. Then spectrum of H is defined to be the following subsets of a complex plane. $\sigma(x) = \{\lambda/(x - \lambda) \text{ is singular}\}\$

Note

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

Spectrum

Let A be a banach algebra and $x \in A$. Then spectrum of H is defined to be the following subsets of a complex plane. $\sigma(x) = \{\lambda/(x - \lambda) \text{ is singular}\}\$

Note

- $\bullet x \lambda$ 1 is a continuous function of λ .
- **P** The set of all singular elements A is closed. Then $\sigma(x)$ is closed.

$\sigma(x)$ is a subset of the closed disc $\{z/|z| \leq ||x||\}$

Proof:

Let λ be a complex such that $|\lambda| > ||x||$. then, $\left|\frac{x}{x}\right|$ λ $\| < 1$

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

$\sigma(x)$ is a subset of the closed disc $\{z/|z| \leq ||x||\}$

Proof:

Let λ be a complex such that $|\lambda| > ||x||$. then, $\left\| \frac{\mathsf{x}}{\mathsf{x}} \right\|$ λ $|| < 1$ $||1 - (1 \times$ λ $)|| < 1$

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

$\sigma(x)$ is a subset of the closed disc $\{z/|z| \leq ||x||\}$

Proof:

Let
$$
\lambda
$$
 be a complex such that $|\lambda| > ||x||$.
then, $||\frac{x}{\lambda}|| < 1$
 $||1 - (1 - \frac{x}{\lambda})|| < 1$
By Theorem-1, $(1 - \frac{x}{\lambda})$ is regular.

A. Thanga Pandi Servite Arts and Science College for women, Karur

$\sigma(x)$ is a subset of the closed disc $\{z/|z| \leq ||x||\}$

Proof:

Let
$$
\lambda
$$
 be a complex such that $|\lambda| > ||x||$.
then, $||\frac{x}{\lambda}|| < 1$
 $||1 - (1 - \frac{x}{\lambda})|| < 1$
By Theorem-1,(1 - $\frac{x}{\lambda}$) is regular.
 $\therefore x - \lambda.1$ is regular.

$\sigma(x)$ is a subset of the closed disc $\{z/|z| \leq ||x||\}$

Proof:

Let
$$
\lambda
$$
 be a complex such that $|\lambda| > ||x||$.
then, $||\frac{x}{\lambda}|| < 1$
 $||1 - (1 - \frac{x}{\lambda})|| < 1$
By Theorem-1, $(1 - \frac{x}{\lambda})$ is regular.
 $\therefore x - \lambda.1$ is regular.

P The resolvent of x, denoted by $\rho(x)$ is the complement of $\sigma(x)$.

P Since $\sigma(x)$ is a closed subset of $\{z/|z| \leq ||x||\}$.

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

- **P** The resolvent of x, denoted by $\rho(x)$ is the complement of $\sigma(x)$.
- **P** Since $\sigma(x)$ is a closed subset of $\{z/|z| \leq ||x||\}$.
	- The resolvent of x is the function with values in A defined on $\rho(x)$ by $x(\lambda) = (x - \lambda.1)^{-1}$

P The resolvent of x, denoted by $\rho(x)$ is the complement of $\sigma(x)$. **P** Since $\sigma(x)$ is a closed subset of $\{z/|z| \leq ||x||\}$. **P** The resolvent of x is the function with values in A defined on $\rho(x)$ by $x(\lambda) = (x - \lambda.1)^{-1}$ **P** By theorem $x(\lambda) = \lambda(\frac{x}{\lambda})$ λ $(-1)^{-1}$ for $\lambda \neq 0$

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

P The resolvent of x, denoted by $\rho(x)$ is the complement of $\sigma(x)$. **P** Since $\sigma(x)$ is a closed subset of $\{z/|z| \leq ||x||\}$. **P** The resolvent of x is the function with values in A defined on $\rho(x)$ by $x(\lambda) = (x - \lambda.1)^{-1}$ **P** By theorem $x(\lambda) = \lambda(\frac{x}{\lambda})$ λ $(-1)^{-1}$ for $\lambda \neq 0$ **P** Implies $x(\lambda) \to 0$ as $n \to \infty$

P The resolvent of x, denoted by $\rho(x)$ is the complement of $\sigma(x)$. **P** Since $\sigma(x)$ is a closed subset of $\{z/|z| \leq ||x||\}$. **P** The resolvent of x is the function with values in A defined on $\rho(x)$ by $x(\lambda) = (x - \lambda.1)^{-1}$ **P** By theorem $x(\lambda) = \lambda(\frac{x}{\lambda})$ λ $(-1)^{-1}$ for $\lambda \neq 0$ **P** Implies $x(\lambda) \to 0$ as $n \to \infty$

If λ and μ are both in $\rho(x)$ then,

$$
x(\lambda) = x(\lambda)[x - \mu.1]x(\mu)
$$

= $x(\lambda)[x - \lambda.1 + (\lambda - \mu).1]x(\mu)$
= $[1 + (\lambda - \mu)x(\lambda)]x(\mu)$

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

If λ and μ are both in $\rho(x)$ then,

$$
x(\lambda) = x(\lambda)[x - \mu.1]x(\mu)
$$

= $x(\lambda)[x - \lambda.1 + (\lambda - \mu).1]x(\mu)$
= $[1 + (\lambda - \mu)x(\lambda)]x(\mu)$
 $x(\lambda) = x(\mu) + (\lambda - \mu)x(\lambda)x(\mu)$

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

If λ and μ are both in $\rho(x)$ then,

$$
x(\lambda) = x(\lambda)[x - \mu.1]x(\mu)
$$

\n
$$
= x(\lambda)[x - \lambda.1 + (\lambda - \mu).1]x(\mu)
$$

\n
$$
= [1 + (\lambda - \mu)x(\lambda)]x(\mu)
$$

\n
$$
x(\lambda) = x(\mu) + (\lambda - \mu)x(\lambda)x(\mu)
$$

\n
$$
x(\lambda) - x(\mu) = (\lambda - \mu)x(\lambda)x(\mu)
$$

A. Thanga Pandi Servite Arts and Science College for women, Karur

If λ and μ are both in $\rho(x)$ then,

$$
x(\lambda) = x(\lambda)[x - \mu.1]x(\mu)
$$

\n
$$
= x(\lambda)[x - \lambda.1 + (\lambda - \mu).1]x(\mu)
$$

\n
$$
= [1 + (\lambda - \mu)x(\lambda)]x(\mu)
$$

\n
$$
x(\lambda) = x(\mu) + (\lambda - \mu)x(\lambda)x(\mu)
$$

\n
$$
x(\lambda) - x(\mu) = (\lambda - \mu)x(\lambda)x(\mu)
$$

This relation is called the resolvent equation.

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

If λ and μ are both in $\rho(x)$ then,

$$
x(\lambda) = x(\lambda)[x - \mu.1]x(\mu)
$$

\n
$$
= x(\lambda)[x - \lambda.1 + (\lambda - \mu).1]x(\mu)
$$

\n
$$
= [1 + (\lambda - \mu)x(\lambda)]x(\mu)
$$

\n
$$
x(\lambda) = x(\mu) + (\lambda - \mu)x(\lambda)x(\mu)
$$

\n
$$
x(\lambda) - x(\mu) = (\lambda - \mu)x(\lambda)x(\mu)
$$

This relation is called the resolvent equation.

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

 $\sigma(x)$ is non-empty.

Proof:

Let f be a functional on A. (*ie*) An element of the conjugate space A^* and define $f(\lambda)$ by

$$
f(\lambda) = f(x(\lambda)) \tag{4}
$$

By the resolvent equation, we have

$$
x(\lambda) - x(\mu) = (\lambda - \mu)x(\lambda)x(\mu)
$$

 $\sigma(x)$ is non-empty.

Proof:

Let f be a functional on A. (*ie*) An element of the conjugate space A^* and define $f(\lambda)$ by

$$
f(\lambda) = f(x(\lambda)) \tag{4}
$$

By the resolvent equation, we have

$$
x(\lambda) - x(\mu) = (\lambda - \mu)x(\lambda)x(\mu)
$$
$f(x(\lambda) - x(\mu)) = (\lambda - \mu) f(x(\lambda) x(\mu))$ $f(\lambda) - f(\mu)$ $(\lambda - \mu)$ $= f(x(\lambda)x(\mu))$

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

$$
f(x(\lambda) - x(\mu)) = (\lambda - \mu) f(x(\lambda) x(\mu))
$$

\n
$$
\frac{f(\lambda) - f(\mu)}{(\lambda - \mu)} = f(x(\lambda) x(\mu))
$$

\n
$$
\lim_{\lambda \to \mu} \frac{f(\lambda) - f(\mu)}{(\lambda - \mu)} = f(x(\mu))^2
$$

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

$$
f(x(\lambda) - x(\mu)) = (\lambda - \mu) f(x(\lambda) x(\mu))
$$

\n
$$
\frac{f(\lambda) - f(\mu)}{(\lambda - \mu)} = f(x(\lambda) x(\mu))
$$

\n
$$
\lim_{\lambda \to \mu} \frac{f(\lambda) - f(\mu)}{(\lambda - \mu)} = f(x(\mu))^2
$$

So $f(\lambda)$ has a derivative at each point of $\rho(x)$.

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

$$
f(x(\lambda) - x(\mu)) = (\lambda - \mu) f(x(\lambda) x(\mu))
$$

\n
$$
\frac{f(\lambda) - f(\mu)}{(\lambda - \mu)} = f(x(\lambda) x(\mu))
$$

\n
$$
\lim_{\lambda \to \mu} \frac{f(\lambda) - f(\mu)}{(\lambda - \mu)} = f(x(\mu))^2
$$

So $f(\lambda)$ has a derivative at each point of $\rho(x)$.

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

Consider $|f(\lambda)| = ||f(x(\lambda))||$

 $|f(\lambda)| \to 0$ as $n \to \infty$ (5)

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

Consider
$$
|f(\lambda)| = ||f(x(\lambda))||
$$

$$
|f(\lambda)| \to 0 \quad \text{as} \quad n \to \infty \tag{5}
$$

To prove: $\sigma(x)$ is non-empty.

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

Consider
$$
|f(\lambda)| = ||f(x(\lambda))||
$$

$$
|f(\lambda)| \to 0 \quad \text{as} \quad n \to \infty \tag{5}
$$

To prove: $\sigma(x)$ is non-empty.

 \triangle Suppose that $\sigma(x)$ is empty.

Consider
$$
|f(\lambda)| = ||f(x(\lambda))||
$$

$$
|f(\lambda)| \to 0 \quad \text{as} \quad n \to \infty \tag{5}
$$

To prove: $\sigma(x)$ is non-empty.

- \triangle Suppose that $\sigma(x)$ is empty.
- \triangle By Liouvillies theorem,

Consider
$$
|f(\lambda)| = ||f(x(\lambda))||
$$

$$
|f(\lambda)| \to 0 \quad \text{as} \quad n \to \infty \tag{5}
$$

- To prove: $\sigma(x)$ is non-empty.
- \triangle Suppose that $\sigma(x)$ is empty.
- \triangle By Liouvillies theorem,
- \triangle f(λ) has a derivative at each point of $\rho(x)$ in entire complex plane.

Consider
$$
|f(\lambda)| = ||f(x(\lambda))||
$$

$$
|f(\lambda)| \to 0 \quad \text{as} \quad n \to \infty \tag{5}
$$

To prove:
$$
\sigma(x)
$$
 is non-empty.

- \triangle Suppose that $\sigma(x)$ is empty.
- \triangle By Liouvillies theorem,
- \triangle f(λ) has a derivative at each point of $\rho(x)$ in entire complex plane.

$$
\text{Lipplies } f(\lambda) \text{ is constant.}
$$

Consider
$$
|f(\lambda)| = ||f(x(\lambda))||
$$

$$
|f(\lambda)| \to 0 \quad \text{as} \quad n \to \infty \tag{5}
$$

To prove:
$$
\sigma(x)
$$
 is non-empty.

$$
\text{Suppose that } \sigma(x) \text{ is empty.}
$$

$$
\clubsuit
$$
 By Liouvillies theorem,

$$
\iff f(\lambda)
$$
 has a derivative at each point of $\rho(x)$ in
entire complex plane.

$$
\text{Lipplies } f(\lambda) \text{ is constant.}
$$

$$
\text{Lipplies } f(\lambda) = 0 \forall \lambda, \therefore f(x(\lambda)) = 0
$$

Consider
$$
|f(\lambda)| = ||f(x(\lambda))||
$$

$$
|f(\lambda)| \to 0 \quad \text{as} \quad n \to \infty \tag{5}
$$

To prove:
$$
\sigma(x)
$$
 is non-empty.

$$
\text{Suppose that } \sigma(x) \text{ is empty.}
$$

$$
\clubsuit
$$
 By Liouvillies theorem,

$$
\iff f(\lambda)
$$
 has a derivative at each point of $\rho(x)$ in
entire complex plane.

$$
\text{Lipplies } f(\lambda) \text{ is constant.}
$$

$$
\mathbb{Z}^n \text{ Implies } f(\lambda) = 0 \forall \lambda, \therefore f(x(\lambda)) = 0
$$

This is true for all $f \in A^*$, there exist $f_0 \in A^*$ such that $f_0(x(\lambda)) = ||(x(\lambda))|| \neq 0$

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

This is true for all $f \in A^*$, there exist $f_0 \in A^*$ such that $f_0(x(\lambda)) = ||(x(\lambda))|| \neq 0$

Which is contradiction to [\(5\)](#page-148-0)

- This is true for all $f \in A^*$, there exist $f_0 \in A^*$ such that $f_0(x(\lambda)) = ||(x(\lambda))|| \neq 0$
- Which is contradiction to (5)

\bullet : $x(\lambda) = 0 \forall \lambda$

- This is true for all $f \in A^*$, there exist $f_0 \in A^*$ such that $f_0(x(\lambda)) = ||(x(\lambda))|| \neq 0$
- Which is contradiction to (5)

$$
\begin{array}{c}\n\bullet \\
\cdot \cdot \cdot \times (\lambda) = 0 \forall \lambda \\
\bullet \quad \text{That is } 0 \in G\n\end{array}
$$

- This is true for all $f \in A^*$, there exist $f_0 \in A^*$ such that $f_0(x(\lambda)) = ||(x(\lambda))|| \neq 0$
- Which is contradiction to (5)

$$
\bullet x(\lambda) = 0 \forall \lambda
$$

- That is $0 \in G$
- Which is contradiction to $0 \notin G$

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

- This is true for all $f \in A^*$, there exist $f_0 \in A^*$ such that $f_0(x(\lambda)) = ||(x(\lambda))|| \neq 0$
- Which is contradiction to (5)

$$
\bullet x(\lambda) = 0 \forall \lambda
$$

- That is $0 \in G$
- Which is contradiction to $0 \notin G$
- \bullet : $\sigma(x)$ is non-empty.

- This is true for all $f \in A^*$, there exist $f_0 \in A^*$ such that $f_0(x(\lambda)) = ||(x(\lambda))|| \neq 0$
- Which is contradiction to (5)

$$
\bullet x(\lambda) = 0 \forall \lambda
$$

- That is $0 \in G$
- Which is contradiction to $0 \notin G$
- \bullet \cdot $\sigma(x)$ is non-empty.

Spectral radius of x:

The number $r(x)$ defined by $r(x) = \sup\{|\lambda|/\lambda \in \sigma(x)\}\$ is called the spectral radius of x. Note that $0 \leq r(x) \leq ||x||$.

If A is a division algebra then it equals the set of all scalar multiples of the identity.

Proof:

P If $x \in A$ then $x = \lambda.1$ for some scalar λ **P** Suppose that $x \neq \lambda.1 \forall \lambda$

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

If A is a division algebra then it equals the set of all scalar multiples of the identity.

Proof:

P If $x \in A$ then $x = \lambda.1$ for some scalar λ **P** Suppose that $x \neq \lambda.1 \forall \lambda$

P Implies $x - \lambda.1 \neq 0 \forall \lambda$

If A is a division algebra then it equals the set of all scalar multiples of the identity.

Proof:

- **P** If $x \in A$ then $x = \lambda.1$ for some scalar λ
- **P** Suppose that $x \neq \lambda.1 \forall \lambda$

- **P** Implies $x \lambda.1 \neq 0 \forall \lambda$
- **P** Since A is a division ring, $x \lambda.1$ is a regular.

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

If A is a division algebra then it equals the set of all scalar multiples of the identity.

Proof:

-
- **P** If $x \in A$ then $x = \lambda.1$ for some scalar λ
- **P** Suppose that $x \neq \lambda.1 \forall \lambda$
- **P** Implies $x \lambda.1 \neq 0 \forall \lambda$
- **P** Since A is a division ring, $x \lambda.1$ is a regular. **P** Implies $\sigma(x)$ is empty

If A is a division algebra then it equals the set of all scalar multiples of the identity.

Proof:

-
- **P** If $x \in A$ then $x = \lambda.1$ for some scalar λ
- **P** Suppose that $x \neq \lambda.1 \forall \lambda$
- **P** Implies $x \lambda.1 \neq 0 \forall \lambda$
- **P** Since A is a division ring, $x \lambda.1$ is a regular.
- **P** Implies $\sigma(x)$ is empty

If A is a division algebra then it equals the set of all scalar multiples of the identity.

Proof:

-
- **P** If $x \in A$ then $x = \lambda.1$ for some scalar λ
- **P** Suppose that $x \neq \lambda.1 \forall \lambda$
- **P** Implies $x \lambda.1 \neq 0 \forall \lambda$
- **P** Since A is a division ring, $x \lambda.1$ is a regular.
- **P** Implies $\sigma(x)$ is empty

P Which is a contradiction to $\sigma(x)$ is non-empty.

 \mathbf{P} ∴ $x = \lambda$ for some scalar λ .

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

$A \subset {\lambda \cdot 1/\lambda \in C}$ (6)

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

$$
A \subset \{\lambda.1/\lambda \in C\}
$$
 (6)

$$
\{\lambda.1/\lambda \in C\} \subset A
$$
 (7)

Then,

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

From [\(6\)](#page-170-0) and [\(7\)](#page-170-1), We get,

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

3 Which is a contradiction to
$$
\sigma(x)
$$
 is non-empty.
3 $\therefore x = \lambda$ for some scalar λ .

$$
A \subset \{\lambda.1/\lambda \in C\} \tag{6}
$$

Then,

$$
\{\lambda.1/\lambda \in C\} \subset A \tag{7}
$$

From [\(6\)](#page-170-0) and [\(7\)](#page-170-1), We get, $A = \{\lambda.1/\lambda \in C\}$

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

$$
A \subset \{\lambda.1/\lambda \in C\} \tag{6}
$$

Then,

$$
\{\lambda.1/\lambda \in C\} \subset A \tag{7}
$$

From (6) and (7), We get,

$$
A = \{\lambda.1/\lambda \in C\}
$$

A. Thanga Pandi Servite Arts and Science College for women, Karur

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

If 0 is the only topological divisor of zero in A then $A = C$.

Proof:

Let $x \in A$

 $\sigma(x)$ is non-empty

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

If 0 is the only topological divisor of zero in A then $A = C$.

Proof:

$$
\sqrt{\mathfrak{B}}
$$

$$
\sqrt{\mathscr{B}} \ \text{Let} \ x \in A
$$

 $\sigma(x)$ is non-empty

That is $\lambda \in \sigma(x)$ Implies $x - \lambda.1$ is singular

If 0 is the only topological divisor of zero in A then $A = C$.

Proof:

$$
\sqrt{\mathbb{P}} \ \text{Let } x \in A
$$

 $\sigma(x)$ is non-empty

That is $\lambda \in \sigma(\mathbf{x})$ Implies $\mathbf{x} - \lambda \cdot \mathbf{1}$ is singular

Let U be the neighbourhood of $x - \lambda.1$ and $f: C \to A$ is given by $f(\lambda) = x - \lambda.1$ is continuous.

If 0 is the only topological divisor of zero in A then $A = C$.

Proof:

$$
\sqrt{\mathscr{B}} \ \text{Let} \ x \in A
$$

 $\sigma(x)$ is non-empty

That is $\lambda \in \sigma(x)$ Implies $x - \lambda.1$ is singular

Let *U* be the neighbourhood of
$$
x - \lambda
$$
.1 and
\n $f : C \to A$ is given by $f(\lambda) = x - \lambda$.1 is
\ncontinuous.
\mathbb{S} : $f^{-1}(U)$ is neighbourhood of A. $f^{-1}(U)$ intersect both $\sigma(x)$ and $\rho(x)$. \mathcal{F} Implies $\mu \in \sigma(x) \cap f^{-1}(U)$ Implies $f(\mu) = x - \mu.1 \in S \cap U$

\mathbb{S} : $f^{-1}(U)$ is neighbourhood of A. $f^{-1}(U)$ intersect both $\sigma(x)$ and $\rho(x)$. \mathcal{F} Implies $\mu \in \sigma(x) \cap f^{-1}(U)$ Implies $f(\mu) = x - \mu.1 \in S \cap U$ \mathscr{F} and $\mu \in \rho(x) \cap f^{-1}(U)$ Implies $f(\mu) = x - \mu.1 \in G \cap U$

\n- ✓ ∴
$$
f^{-1}(U)
$$
 is neighbourhood of A . $f^{-1}(U)$ intersect both $\sigma(x)$ and $\rho(x)$.
\n- ✓ Implies $\mu \in \sigma(x) \cap f^{-1}(U)$ Implies $f(\mu) = x - \mu \cdot 1 \in S \cap U$
\n- ✓ and $\mu \in \rho(x) \cap f^{-1}(U)$ Implies $f(\mu) = x - \mu \cdot 1 \in G \cap U$
\n- ✓ ∴ U intersects both S and G
\n

\n- ✓ ∴
$$
f^{-1}(U)
$$
 is neighbourhood of A . $f^{-1}(U)$ intersect both $\sigma(x)$ and $\rho(x)$.
\n- ✓ Implies $\mu \in \sigma(x) \cap f^{-1}(U)$ Implies $f(\mu) = x - \mu \cdot 1 \in S \cap U$
\n- ✓ and $\mu \in \rho(x) \cap f^{-1}(U)$ Implies $f(\mu) = x - \mu \cdot 1 \in G \cap U$
\n- ✓ ∴ U intersects both S and G
\n- ✓ $x - \lambda \cdot 1$ is a boundary point of S .
\n

\n- ✓ ∴
$$
f^{-1}(U)
$$
 is neighbourhood of A . $f^{-1}(U)$ intersect both $\sigma(x)$ and $\rho(x)$.
\n- ✓ Implies $\mu \in \sigma(x) \cap f^{-1}(U)$ Implies $f(\mu) = x - \mu \cdot 1 \in S \cap U$
\n- ✓ and $\mu \in \rho(x) \cap f^{-1}(U)$ Implies $f(\mu) = x - \mu \cdot 1 \in G \cap U$
\n- ✓ ∴ U intersects both S and G
\n- ✓ $x - \lambda \cdot 1$ is a boundary point of S .
\n

\n- ✓ ∴
$$
f^{-1}(U)
$$
 is neighbourhood of A . $f^{-1}(U)$ intersect both $\sigma(x)$ and $\rho(x)$.
\n- ✓ Implies $\mu \in \sigma(x) \cap f^{-1}(U)$ Implies $f(\mu) = x - \mu \cdot 1 \in S \cap U$
\n- ✓ and $\mu \in \rho(x) \cap f^{-1}(U)$ Implies $f(\mu) = x - \mu \cdot 1 \in G \cap U$
\n- ✓ ∴ U intersects both S and G
\n- ✓ $x - \lambda \cdot 1$ is a boundary point of S .
\n

$\mathbf{P} \times -\lambda \cdot 1 = 0$ **P** Implies $x = \lambda.1$ Implies $x = C$. \bullet Since $x \in A$ Implies $x = C$. ∴ $A \subseteq C$.

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

$x - \lambda.1 = 0$

- **P** Implies $x = \lambda.1$ Implies $x = C$.
- \bullet Since $x \in A$ Implies $x = C$. ∴ $A \subseteq C$.
- P W.K.T $C \subset A$. $\cdot A = C$.

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

- **P** Implies $x = \lambda.1$ Implies $x = C$.
- \bullet Since $x \in A$ Implies $x = C$. ∴ $A \subseteq C$.

$$
\bullet \quad \text{W.K.T } C \subseteq A. \therefore A = C.
$$

If the norm in A satisfies the inequality $||x|| \geq k||x|| ||y||$ for some positive constant k. Then $A = C$.

Proof:

\triangle Let z be the topological divisor of zero in A. \triangle Suppose $z \neq 0$, there exist a sequence $\{z_n\}$ in A such that $zz_n \to 0$ and $||z|| = 1$.

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

If the norm in A satisfies the inequality $||x|| \geq k||x|| ||y||$ for some positive constant k. Then $A = C$.

Proof:

 \triangle Let z be the topological divisor of zero in A. \triangle Suppose $z \neq 0$, there exist a sequence $\{z_n\}$ in A such that $zz_n \to 0$ and $||z|| = 1$. $||z_{\mathbf{z}_n}|| \geq k||z|| ||z_n||$ and $k||z|| > 0$.

If the norm in A satisfies the inequality $||x|| \geq k||x|| ||y||$ for some positive constant k. Then $A = C$.

Proof:

 \triangle Let z be the topological divisor of zero in A. \triangle Suppose $z \neq 0$, there exist a sequence $\{z_n\}$ in A such that $zz_n \rightarrow 0$ and $||z|| = 1$. $||z_z_n|| \ge k||z|| ||z_n||$ and $k||z|| > 0$.

If the norm in A satisfies the inequality $||x|| \geq k||x|| ||y||$ for some positive constant k. Then $A = C$.

Proof:

 \triangle Let z be the topological divisor of zero in A. \triangle Suppose $z \neq 0$, there exist a sequence $\{z_n\}$ in A such that $zz_n \rightarrow 0$ and $||z|| = 1$. $||z_z_n|| \ge k||z|| ||z_n||$ and $k||z|| > 0$.

 $\lim_{n \to \infty} ||zz_n|| \ge k||z|| > 0$ (8)

$\sum_{n\to\infty}$ $||zz_n|| = 0$

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

$$
\lim_{n\to\infty}||zz_n||\geq k||z||>0
$$
 (8)

$$
\mathbb{Z}_p \lim_{n \to \infty} ||zz_n|| = 0
$$

\triangle Which is a contradiction to (8) ∴ $z = 0$

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

$$
\lim_{n\to\infty}||zz_n||\geq k||z||>0
$$
 (8)

$$
\mathbb{Z}_1 \lim_{n \to \infty} ||zz_n|| = 0
$$

\triangle Which is a contradiction to [\(8\)](#page-194-0) ∴ $z = 0$

∴ 0 is a only topological divisor of zero in A

$$
\lim_{n\to\infty}||zz_n||\geq k||z||>0
$$
 (8)

$$
\mathbb{Z}_1 \lim_{n \to \infty} ||zz_n|| = 0
$$

- \triangle Which is a contradiction to [\(8\)](#page-194-0) ∴ z = 0
- \triangle : 0 is a only topological divisor of zero in A \triangle By above theorem, We get, $A = C$

$$
\lim_{n\to\infty}||zz_n||\geq k||z||>0
$$
 (8)

$$
\mathbb{Z}_1 \lim_{n \to \infty} ||zz_n|| = 0
$$

- \triangle Which is a contradiction to [\(8\)](#page-194-0) ∴ z = 0
- \triangle : 0 is a only topological divisor of zero in A
- \triangle By above theorem, We get, $A = C$

If $A¹$ is a banach subalgebra of a banach algebra A then the spectra of an element x in A with respect to A and $A¹$ are related as follows

$$
i \ \sigma_{A^1}(x) \subseteq \sigma_A(x).
$$

ii Each boundary point of $\sigma_A(x)$ is also a boundary point of $\sigma_{A^1}(x)$.

Proof:

Let
$$
\lambda \in \sigma_{A^1}(x)
$$
 Implies $x - \lambda.1$ is singular in A^1 .

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

If $A¹$ is a banach subalgebra of a banach algebra A then the spectra of an element x in A with respect to A and $A¹$ are related as follows

$$
i \ \sigma_{A^1}(x) \subseteq \sigma_A(x).
$$

ii Each boundary point of $\sigma_A(x)$ is also a boundary point of $\sigma_{A^1}(x)$.

Proof:

Let
$$
\lambda \in \sigma_{A^1}(x)
$$
 Implies $x - \lambda.1$ is singular in A^1 .

Implies $\lambda \in \sigma_A(x)$. Hence, $\sigma_{A^1}(x) \subseteq \sigma_A(x)$.

If $A¹$ is a banach subalgebra of a banach algebra A then the spectra of an element x in A with respect to A and $A¹$ are related as follows

$$
i \ \sigma_{A^1}(x) \subseteq \sigma_A(x).
$$

ii Each boundary point of $\sigma_A(x)$ is also a boundary point of $\sigma_{A^1}(x)$.

Proof:

Let
$$
\lambda \in \sigma_{A^1}(x)
$$
 Implies $x - \lambda.1$ is singular in A^1 .

Implies $\lambda \in \sigma_A(x)$. Hence, $\sigma_{A^1}(x) \subseteq \sigma_A(x)$.

Let λ be a boundary point of $\sigma_A(x)$. **To prove:** Let λ be a boundary point of $\sigma_{A1}(x)$.

Implies $x - \lambda.1$ be a boundary point of the set of singular elements in A.

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

- Let λ be a boundary point of $\sigma_A(x)$. **To prove:** Let λ be a boundary point of σ_{λ} ¹(x).
- \triangle Implies $x \lambda$. 1 be a boundary point of the set of singular elements in A.
- \bigtriangleup x λ .1 belongs to boundary point of $S \subset Z$. By theorem-6

- Let λ be a boundary point of $\sigma_A(x)$. **To prove:** Let λ be a boundary point of σ_{λ} ¹(x).
- \triangle Implies $x \lambda.1$ be a boundary point of the set of singular elements in A.
- \mathbb{Z} x λ .1 belongs to boundary point of $S \subset Z$. By theorem-6

- Let λ be a boundary point of $\sigma_A(x)$. **To prove:** Let λ be a boundary point of σ_{λ} ¹(x).
- \triangle Implies $x \lambda$.1 be a boundary point of the set of singular elements in A.
- \mathbb{Z} x λ .1 belongs to boundary point of $S \subset Z$. By theorem-6
- \triangle Implies $x \lambda.1 \subset Z$
- $\triangle x \lambda$.1 is a topological divisor of zero in A.

- Let λ be a boundary point of $\sigma_A(x)$. **To prove:** Let λ be a boundary point of σ_{λ} ¹(x).
- \triangle Implies $x \lambda$.1 be a boundary point of the set of singular elements in A.
- \mathbb{Z} x λ .1 belongs to boundary point of $S \subset Z$. By theorem-6
- \triangle Implies $x \lambda.1 \subset Z$
- $\triangle x \lambda$.1 is a topological divisor of zero in A. \blacktriangle Implies $z_n \in A^1$.

- Let λ be a boundary point of $\sigma_A(x)$. **To prove:** Let λ be a boundary point of σ_{λ} ¹(x).
- \triangle Implies $x \lambda$.1 be a boundary point of the set of singular elements in A.
- \mathbb{Z} x λ .1 belongs to boundary point of $S \subset Z$. By theorem-6
- \triangle Implies $x \lambda.1 \subset Z$
- $\triangle x \lambda$.1 is a topological divisor of zero in A.

$$
\mathbb{A}^1
$$
 Implies $z_n \in A^1$.

 \triangle x – λ .1 is a topological divisor of zero in A^1 .

- Let λ be a boundary point of $\sigma_A(x)$. **To prove:** Let λ be a boundary point of $\sigma_{A}(\alpha)$.
- \triangle Implies $x \lambda.1$ be a boundary point of the set of singular elements in A.
- \triangle x λ .1 belongs to boundary point of $S \subset Z$. By theorem-6

$$
\mathbb{A}^1 \text{ Implies } x - \lambda.1 \subset Z
$$

 $\triangle x - \lambda$.1 is a topological divisor of zero in A. \triangle Implies $z_n \in A^1$.

$$
\mathbb{Z}^3
$$
 $x - \lambda.1$ is a topological divisor of zero in A^1 .

- Let λ be a boundary point of $\sigma_A(x)$. **To prove:** Let λ be a boundary point of $\sigma_{A}(\alpha)$.
- \triangle Implies $x \lambda.1$ be a boundary point of the set of singular elements in A.
- \triangle x λ .1 belongs to boundary point of $S \subset Z$. By theorem-6

$$
\mathbb{A}^1 \text{ Implies } x - \lambda.1 \subset Z
$$

 $\triangle x - \lambda$.1 is a topological divisor of zero in A. \triangle Implies $z_n \in A^1$.

$$
\mathbb{Z}^3
$$
 $x - \lambda.1$ is a topological divisor of zero in A^1 .

Implies $x - \lambda.1$ **is a singular elements in** A^1 **.**

U be the neighbourhood of λ in C. λ is a boundary point of $\sigma_A(x)$.

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

Implies $x - \lambda.1$ **is a singular elements in** A^1 **.** U be the neighbourhood of λ in C. λ is a boundary point of $\sigma_A(x)$. $\mathscr{B} \sigma_{A^1}(x) \subset \sigma_A(x)$ Implies $\rho_{A^1}(x) \supset \rho_A(x)$.

Implies $x - \lambda.1$ **is a singular elements in** A^1 **.** U be the neighbourhood of λ in C. λ is a boundary point of $\sigma_A(x)$. \mathbb{Z} $\sigma_{A}(\mathsf{x}) \subset \sigma_{A}(\mathsf{x})$ Implies $\rho_{A}(\mathsf{x}) \supset \rho_{A}(\mathsf{x})$. \mathcal{F} ∴ U intersects $\rho_{A^1}(x)$, $\lambda \in U$ and $\lambda \in \sigma_{A^1}(x)$, U intersects $\sigma_{41}(x)$

Implies $x - \lambda.1$ **is a singular elements in** A^1 **.** U be the neighbourhood of λ in C. λ is a boundary point of $\sigma_A(x)$. \mathbb{Z}^3 $\sigma_{A^1}(x) \subset \sigma_A(x)$ Implies $\rho_{A^1}(x) \supset \rho_A(x)$. \mathbb{R}^3 : U intersects $\rho_{A^1}(x)$, $\lambda \in U$ and $\lambda \in \sigma_{A^1}(x)$, U intersects $\sigma_{41}(x)$

 \mathcal{F} ∴ λ is boundary point of $\sigma_{A^1}(x)$

Implies $x - \lambda.1$ **is a singular elements in** A^1 **.** U be the neighbourhood of λ in C. λ is a boundary point of $\sigma_A(x)$. $\sigma_{A^1}(x) \subset \sigma_A(x)$ Implies $\rho_{A^1}(x) \supset \rho_A(x)$. \mathbb{R}^3 : U intersects $\rho_{A^1}(x)$, $\lambda \in U$ and $\lambda \in \sigma_{A^1}(x)$, U intersects $\sigma_{41}(x)$

 \mathbb{R}^3 : λ is boundary point of $\sigma_{A^1}(x)$

Each boundary point of $\sigma_A(x)$ is also a boundary point of $\sigma_{A^1}(x)$.

Implies $x - \lambda.1$ **is a singular elements in** A^1 **.** U be the neighbourhood of λ in C. λ is a boundary point of $\sigma_A(x)$. $\sigma_{A^1}(x) \subset \sigma_A(x)$ Implies $\rho_{A^1}(x) \supset \rho_A(x)$. \mathscr{F} : U intersects $\rho_{A^1}(x), \lambda \in U$ and $\lambda \in \sigma_{A^1}(x),$ U intersects $\sigma_{41}(x)$ $\sqrt{\frac{3}{2}}$: λ is boundary point of $\sigma_{A^1}(x)$

Each boundary point of $\sigma_A(x)$ is also a boundary point of $\sigma_{A^1}(x)$.
Lemma 1: The Formula for the Spectral Radius $\sigma(x^n) = (\sigma(x))^n$

Proof:

Let λ be a non-zero complex numbers.

Let $\lambda_1, \lambda_2, ..., \lambda_n$ be its distinct *n* roots.

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

Lemma 1: The Formula for the Spectral Radius $\sigma(x^n) = (\sigma(x))^n$

Proof:

Let λ be a non-zero complex numbers. Let $\lambda_1, \lambda_2, ..., \lambda_n$ be its distinct *n* roots.

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

Lemma 1: The Formula for the Spectral Radius $\sigma(x^n) = (\sigma(x))^n$

Proof:

Let λ be a non-zero complex numbers. Let $\lambda_1, \lambda_2, ..., \lambda_n$ be its distinct *n* roots.

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

There fore,

$$
x^{n}-\lambda.1 = (x - \lambda_{1}.1), (x - \lambda_{2}.1), ..., (x - \lambda_{n}.1)
$$
 (9)

6 Let
$$
\lambda \in \sigma(x^n)
$$
. $\therefore x^n - \lambda$ is singular.
6 If all the factors on the *R.H.S* of (9) are regular then the product is regular at least $(x - \lambda_i.1)$ is singular for some *i*.

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

There fore,

$$
x^{n}-\lambda.1 = (x - \lambda_{1}.1), (x - \lambda_{2}.1), ..., (x - \lambda_{n}.1)
$$
 (9)

Let
$$
\lambda \in \sigma(x^n)
$$
. $\therefore x^n - \lambda$ is singular.
\n**Example 1** If all the factors on the *R.H.S* of (9) are regular then the product is regular at least $(x - \lambda_i.1)$ is singular for some *i*.

Let
$$
\lambda_i \in \sigma(x)
$$
 implies $\lambda_i^n \in (\sigma(x))^n$.
\n(*i*e) $\lambda \in (\sigma(x))^n$
\nThere fore,
\n $\sigma(x^n) \subset (\sigma(x))^n$ (10)

Let $\lambda \in (\sigma(x))^n$ Implies $x - \lambda_i$. 1 is singular R.H.S of [\(9\)](#page-219-0) is singular. $\therefore \lambda \in \sigma(x^n)$

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

Let
$$
\lambda_i \in \sigma(x)
$$
 implies $\lambda_i^n \in (\sigma(x))^n$.
\n(*i*e) $\lambda \in (\sigma(x))^n$
\nThere fore,
\n $\sigma(x^n) \subset (\sigma(x))^n$ (10)

Let $\lambda \in (\sigma(x))^n$ Implies $x - \lambda_i$. 1 is singular R.H.S of [\(9\)](#page-219-0) is singular. $\therefore \lambda \in \sigma(x^n)$

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

Let
$$
\lambda_i \in \sigma(x)
$$
 implies $\lambda_i^n \in (\sigma(x))^n$.
\n(*i*e) $\lambda \in (\sigma(x))^n$
\nThere fore,
\n $\sigma(x^n) \subset (\sigma(x))^n$ (10)

Let $\lambda \in (\sigma(x))^n$ Implies $x - \lambda_i$. 1 is singular R.H.S of [\(9\)](#page-219-0) is singular. $\therefore \lambda \in \sigma(x^n)$

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

There fore, $(\sigma(x))^n \subset \sigma(x^n)$ (11) From (10) and (11) we get, $\sigma(x^n) = (\sigma(x))^n$

Theorem 13

 $r(x) = \lim ||x^n||^{\frac{1}{n}}$ Proof: The formula for the spectral radius is $r(x) = \sup\{|\lambda|/\lambda \in \sigma(x)\}\$

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

There fore, $(\sigma(x))^n \subset \sigma(x^n)$ (11) From (10) and (11) we get, $\sigma(x^n) = (\sigma(x))^n$

Theorem 13

$$
r(x) = \lim ||x^n||^{\frac{1}{n}}
$$

Proof:
The formula for the spectral radius is

$$
r(x) = \sup\{|\lambda|/\lambda \in \sigma(x)\}\
$$

$$
[r(x)]n = [sup{|\lambda|/\lambda \in \sigma(x)}]n
$$

= sup{|\lambda|ⁿ/\lambdaⁿ \in \sigma(xⁿ)}

 $[r(x)]^n = r(x^n)$ Now, $0 \le r(x) \le ||x||$ Implies $r(x^n) \le ||x^n||$ $r(x) \leq ||x^n||^{\frac{1}{n}} \forall n$ (12)

To prove: If a is any real number such that $r(x) < a$ then $||x^n||^{\frac{1}{n}} \le a$ for all but a finite number of n's

$$
[r(x)]^n = [\sup\{|\lambda|/\lambda \in \sigma(x)\}]^n
$$

\n
$$
= \sup\{|\lambda|^n/\lambda^n \in \sigma(x^n)\}
$$

\n
$$
[r(x)]^n = r(x^n)
$$

\nNow, $0 \le r(x) \le ||x||$ Implies $r(x^n) \le ||x^n||$
\n
$$
r(x) \le ||x^n||^{\frac{1}{n}} \forall n
$$
 (12)

To prove: If a is any real number such that $r(x) < a$ then $||x^n||^{\frac{1}{n}} \le a$ for all but a finite number of n's

Then,
$$
x(\lambda) = (x - \lambda.1)^{-1} = \lambda^{-1}(\frac{x}{\lambda} - 1)^{-1}
$$

$$
x(\lambda) = -\lambda^{-1} [1 + \sum_{n=1}^{\infty} \frac{x^n}{\lambda^n}]
$$
 (13)

If *f* is any functional on *A*, then (13) gives

$$
f(x(\lambda)) = -\lambda^{-1}[f(1) + \sum_{n=1}^{\infty} f(\frac{x^n}{\lambda^n})]
$$

$$
f(x(\lambda)) = -\lambda^{-1}[f(1) + \sum_{n=1}^{\infty} f(x^n)\lambda^{-n}]\forall |\lambda| > ||x||
$$
\n(14)

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

Then,
$$
x(\lambda) = (x - \lambda.1)^{-1} = \lambda^{-1}(\frac{x}{\lambda} - 1)^{-1}
$$

$$
x(\lambda) = -\lambda^{-1} [1 + \sum_{n=1}^{\infty} \frac{x^n}{\lambda^n}]
$$
 (13)

If *f* is any functional on *A*, then (13) gives

$$
f(x(\lambda)) = -\lambda^{-1}[f(1) + \sum_{n=1}^{\infty} f(\frac{x^n}{\lambda^n})]
$$

$$
f(x(\lambda)) = -\lambda^{-1}[f(1) + \sum_{n=1}^{\infty} f(x^n)\lambda^{-n}]\forall |\lambda| > ||x||
$$
\n(14)

A. Thanga Pandi Servite Arts and Science College for women, Karur

Then,
$$
x(\lambda) = (x - \lambda.1)^{-1} = \lambda^{-1}(\frac{x}{\lambda} - 1)^{-1}
$$

$$
x(\lambda) = -\lambda^{-1} [1 + \sum_{n=1}^{\infty} \frac{x^n}{\lambda^n}]
$$
 (13)

If *f* is any functional on *A*, then (13) gives

$$
f(x(\lambda)) = -\lambda^{-1}[f(1) + \sum_{n=1}^{\infty} f(\frac{x^n}{\lambda^n})]
$$

$$
f(x(\lambda)) = -\lambda^{-1}[f(1) + \sum_{n=1}^{\infty} f(x^n)\lambda^{-n}]\forall |\lambda| > ||x||
$$
\n(14)

A. Thanga Pandi Servite Arts and Science College for women, Karur

$f(x(\lambda))$ is an analytic function in the region $|\lambda| > r(x)$

 Since [\(14\)](#page-228-1) is its laurent expansion for $|\lambda| > ||x||$.

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

 $f(x(\lambda))$ is an analytic function in the region $|\lambda| > r(x)$

- \bullet Since [\(14\)](#page-228-1) is its laurent expansion for $|\lambda| > ||x||$.
- Let α be any real number such that $r(x) < \alpha < a$.

Then it follows that the series \sum^{∞} $n=1$ f (x^n α^n) converges.

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

- $f(x(\lambda))$ is an analytic function in the region $|\lambda| > r(x)$
- Since [\(14\)](#page-228-1) is its laurent expansion for $|\lambda| > ||x||$.
- \bullet Let α be any real number such that $r(x) < \alpha < a$.
- Then it follows that the series $\sum_{n=1}^{\infty}$ $n=1$ $f($ x n α^n) converges.
- So its terms from a bounded sequence.

- $f(x(\lambda))$ is an analytic function in the region $|\lambda| > r(x)$
- Since [\(14\)](#page-228-1) is its laurent expansion for $|\lambda| > ||x||$.
- \bullet Let α be any real number such that $r(x) < \alpha < a$.
- Then it follows that the series $\sum_{n=1}^{\infty}$ $n=1$ $f($ x n α^n) converges.
- So its terms from a bounded sequence.

Since this true for every f in A^* and the elements $\frac{x^n}{x^n}$ α^n form a bounded sequence in A. \int Thus $\frac{x^n}{x^n}$ α^n $|| \leq k$ then, $||x^n|| \leq \alpha^n k$

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

Since this true for every *f* in *A*^{*} and the elements
$$
\frac{x^n}{\alpha^n}
$$
 form a bounded sequence in *A*.
\nThus $||\frac{x^n}{\alpha^n}|| \leq k$ then, $||x^n|| \leq \alpha^n k$
\n $||x^n|| \cdot \frac{1}{n} \leq \alpha^n k \cdot \frac{1}{n}$ for some positive constant *k* and every n.

$$
\frac{1}{||x^n|| \cdot n} \le a \tag{15}
$$
 for all but a finite numbers n's.

A. Thanga Pandi Servite Arts and Science College for women, Karur

Since this true for every *f* in *A*^{*} and the elements
$$
\frac{x^n}{\alpha^n}
$$
 form a bounded sequence in *A*.
\nThus $||\frac{x^n}{\alpha^n}|| \leq k$ then, $||x^n|| \leq \alpha^n k$
\n $\frac{1}{||x^n|| \cdot n} \leq \alpha^n k \cdot \frac{1}{n}$ for some positive constant *k* and every n.

$$
\frac{1}{||x^n||} \frac{1}{n} \leq a
$$

 (15)

for all but a finite numbers n's.

A. Thanga Pandi Servite Arts and Science College for women, Karur

Since this true for every *f* in *A*^{*} and the elements
$$
\frac{x^n}{\alpha^n}
$$
 form a bounded sequence in *A*.
\nThus $||\frac{x^n}{\alpha^n}|| \leq k$ then, $||x^n|| \leq \alpha^n k$
\n $\frac{1}{||x^n|| \cdot n} \leq \alpha^n k \cdot \frac{1}{n}$ for some positive constant *k* and every n.

$$
\frac{1}{||x^n||} \frac{1}{n} \leq a
$$

 (15)

for all but a finite numbers n's.

A. Thanga Pandi Servite Arts and Science College for women, Karur

From (12) and (15) , we have, $r(x) = ||x^n||$ $n \le a \forall n \ge m$ where a is any real 1 number such that $r(x) < a$. $\therefore r(x) = \lim ||x^n||^{\frac{1}{n}}$

From (12) and (15), we have,
\n
$$
\frac{1}{r(x) = ||x^n||} \overline{n} \le a \forall n \ge m \text{ where a is any real number such that } r(x) < a.
$$
\n
$$
\therefore r(x) = \lim ||x^n||^{\frac{1}{n}}
$$

From (12) and (15), we have,
\n
$$
\frac{1}{r(x) = ||x^n||} \overline{n} \le a \forall n \ge m \text{ where a is any real number such that } r(x) < a.
$$
\n
$$
\therefore r(x) = \lim ||x^n||^{\frac{1}{n}}
$$

Ideal

An ideal in A is defined to be a subset I with the following three properties

 \bigcirc I is a linear space of A

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

Ideal

- \bigcirc I is a linear space of A
- $\textcolor{orange}{\bullet}$ $\textcolor{orange}{i} \in I$ Implies $\textcolor{orange}{xi} \in I$ for every element $\textcolor{orange}{x} \in A$

Ideal

- \bigcirc I is a linear space of A
- ? $i \in I$ Implies $xi \in I$ for every element $x \in A$
- $\bar{\boldsymbol{s}}$ $i\in I$ Implies $i\mathrm{x}\in I$ for every element $\mathrm{x}\in A$

Ideal

- \bigcirc *l* is a linear space of A
	- ? $i \in I$ Implies $xi \in I$ for every element $x \in A$
- $\mathbf{3}$ $i\in I$ Implies $i\mathbf{x}\in I$ for every element $\mathbf{x}\in A$
- If I satisfies the conditions (1) and (2) is called "left ideal" and ℓ satisfies the conditions (1) and (3) is called "right ideal".

Ideal

- \bigcirc *l* is a linear space of A
	- ? $i \in I$ Implies $xi \in I$ for every element $x \in A$
- $\mathbf{3}$ $i\in I$ Implies $i\mathbf{x}\in I$ for every element $\mathbf{x}\in A$
- If I satisfies the conditions (1) and (2) is called "left ideal" and ℓ satisfies the conditions (1) and (3) is called "right ideal".

Regular and Singular

- \triangle An element x in A is regular if there exist an element v such that $x\mathsf{v} = \mathsf{v} \mathsf{x} = 1$.
- \triangle x is Left regular if there exists an element y such that $yx = 1$ and x is not left regular is called left singular.

Regular and Singular

- \triangle An element x in A is regular if there exist an element v such that $x\mathsf{v} = \mathsf{v} \mathsf{x} = 1$.
- \triangle x is Left regular if there exists an element y such that $yx = 1$ and x is not left regular is called left singular.
- \triangle x is Right regular if there exists an element y such that $xy = 1$ and x is not left regular is called right singular.

Regular and Singular

- \triangle An element x in A is regular if there exist an element v such that $x\mathsf{v} = \mathsf{v} \mathsf{x} = 1$.
- \triangle x is Left regular if there exists an element y such that $yx = 1$ and x is not left regular is called left singular.
- \triangle x is Right regular if there exists an element y such that $xy = 1$ and x is not left regular is called right singular.

Maximal left ideal

A maximal left ideal in A is defined to be a proper left ideal which is not properly contained in any other proper left ideal.

Radical

The radical R of A is defined to be a proper left ideal which is not properly contained in any other proper left ideal.

Maximal left ideal

A maximal left ideal in A is defined to be a proper left ideal which is not properly contained in any other proper left ideal.

Radical

The radical R of A is defined to be a proper left ideal which is not properly contained in any other proper left ideal.
Maximal left ideal

A maximal left ideal in A is defined to be a proper left ideal which is not properly contained in any other proper left ideal.

Radical

The radical R of A is defined to be a proper left ideal which is not properly contained in any other proper left ideal.

If r is an element of R. Then $1 - r$ is left regular.

Proof

Let
$$
1 - r
$$
 be left singular.

So that $L = A(1 - r) = \{x - xr/x \in A\}$ is a proper left ideal which contain $1 - r$

If r is an element of R. Then $1 - r$ is left regular.

Proof

Let
$$
1 - r
$$
 be left singular.

- So that $L = A(1 r) = \{x xr/x \in A\}$ is a
	- proper left ideal which contain $1 r$
	- Let α, β be scalars and $x xr$ and $y yr \in L$

If r is an element of R. Then $1 - r$ is left regular.

Proof

Let
$$
1 - r
$$
 be left singular.

So that $L = A(1 - r) = \{x - xr/x \in A\}$ is a proper left ideal which contain $1 - r$

Let
$$
\alpha
$$
, β be scalars and $x - xr$ and $y - yr \in L$
\nNow,
\n
$$
\alpha(x - xr) + \beta(y - yr) = \alpha x + \beta y - (\alpha x + \beta y)r \in L
$$

If r is an element of R. Then $1 - r$ is left regular.

Proof

Let
$$
1 - r
$$
 be left singular.

So that $L = A(1 - r) = \{x - xr/x \in A\}$ is a proper left ideal which contain $1 - r$

Let
$$
\alpha, \beta
$$
 be scalars and $x - xr$ and $y - yr \in L$

Now,
\n
$$
\alpha(x-xr)+\beta(y-yr)=\alpha x+\beta y-(\alpha x+\beta y)r\in L
$$

Implies L is a linear subspace.

If r is an element of R. Then $1 - r$ is left regular.

Proof

Let
$$
1 - r
$$
 be left singular.

So that $L = A(1 - r) = \{x - xr/x \in A\}$ is a proper left ideal which contain $1 - r$

Let
$$
\alpha, \beta
$$
 be scalars and $x - xr$ and $y - yr \in L$

Now,
\n
$$
\alpha(x-xr)+\beta(y-yr)=\alpha x+\beta y-(\alpha x+\beta y)r\in L
$$

Implies L is a linear subspace.

 \triangle Let $x - xr \in L, y \in A$ \triangle Then $y(x - xr) = yx - yxr \in L$

Let
$$
x - xr \in L
$$
, $y \in A$
\n \Leftrightarrow Then $y(x - xr) = yx - yxr \in L$
\n \Leftrightarrow \therefore *L* is a left ideal which contains 1 - *r*.

Let
$$
x - xr \in L
$$
, $y \in A$
\n \Leftrightarrow Then $y(x - xr) = yx - yxr \in L$
\n \Leftrightarrow \therefore *L* is a left ideal which contains 1 - *r*.
\n \Leftrightarrow Now, 1 $\in A$, $x - xr = 1$ implies $x(1 - r) = 1$

\n- **2** Let
$$
x - xr \in L
$$
, $y \in A$
\n- **2** Then $y(x - xr) = yx - yxr \in L$
\n- **3** \therefore *L* is a left ideal which contains $1 - r$.
\n- **4** Now, $1 \in A$, $x - xr = 1$ implies $x(1 - r) = 1$
\n- **5** Since, $1 - r$ is a left singular for any $x \in A$
\n

\n- **2** Let
$$
x - xr \in L
$$
, $y \in A$
\n- **2** Then $y(x - xr) = yx - yxr \in L$
\n- **3** \therefore *L* is a left ideal which contains $1 - r$.
\n- **4** Now, $1 \in A$, $x - xr = 1$ implies $x(1 - r) = 1$
\n- **5** Since, $1 - r$ is a left singular for any $x \in A$
\n- **6** $x(1 - r) \neq 1 \forall x \in A$
\n

\n- **2** Let
$$
x - xr \in L
$$
, $y \in A$
\n- **3** Then $y(x - xr) = yx - yxr \in L$
\n- **4** \therefore *L* is a left ideal which contains $1 - r$.
\n- **5** Now, $1 \in A$, $x - xr = 1$ implies $x(1 - r) = 1$
\n- **6** Since, $1 - r$ is a left singular for any $x \in A$
\n- **7** $x(1 - r) \neq 1 \forall x \in A$
\n- **8** Which is a contradiction to $x - xr = 1$.
\n

\n- **2** Let
$$
x - xr \in L
$$
, $y \in A$
\n- **3** Then $y(x - xr) = yx - yxr \in L$
\n- **4** \therefore *L* is a left ideal which contains $1 - r$.
\n- **5** Now, $1 \in A$, $x - xr = 1$ implies $x(1 - r) = 1$
\n- **6** Since, $1 - r$ is a left singular for any $x \in A$
\n- **7** $x(1 - r) \neq 1 \forall x \in A$
\n- **8** Which is a contradiction to $x - xr = 1$.
\n- **9** There is no $x \in A$ such that $x - xr = 1$, $\therefore 1 \notin L$
\n

\n- **2** Let
$$
x - xr \in L
$$
, $y \in A$
\n- **3** Then $y(x - xr) = yx - yxr \in L$
\n- **4** \therefore *L* is a left ideal which contains $1 - r$.
\n- **5** Now, $1 \in A$, $x - xr = 1$ implies $x(1 - r) = 1$
\n- **6** Since, $1 - r$ is a left singular for any $x \in A$
\n- **7** $x(1 - r) \neq 1 \forall x \in A$
\n- **8** Which is a contradiction to $x - xr = 1$.
\n- **9** There is no $x \in A$ such that $x - xr = 1$, $\therefore 1 \notin L$
\n

Imbedded L is a maximal left ideal M Clearly $1 - r \in M$, Since $r \in R$, $1 \in M$

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

Imbedded L is a maximal left ideal M Clearly $1 - r \in M$, Since $r \in R$, $1 \in M$

 $\mathbf{I} = (1 - r) + r \in M$ Implies M is a proper subset of A.

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

 \blacksquare Hence, $1-r$ is left regular.

- Imbedded L is a maximal left ideal M Clearly $1 - r \in M$, Since $r \in R$, $1 \in M$ \bullet $1 = (1 - r) + r \in M$ Implies M is a proper subset of A .
- \blacksquare Implies $M \subset A$
- $a \in A$, then $a = a.1 \in M$
- \blacksquare Implies $A \subset M$ ∴ $A = M$
- Which is contradiction to $M \nleq A$
- Hence, $1 r$ is left regular.

If r is an element of R. Then $1 - r$ is regular.

Since $r \in R$.

Let By Previous Lemma, $1 - r$ is left regular.

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

If r is an element of R. Then $1 - r$ is regular.

Proof

Since $r \in R$.

There exist $S \in A$ such that $S(1 - r) = 1$ Implies $S - Sr = 1$

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

If r is an element of R. Then $1 - r$ is regular.

Proof

Since $r \in R$.

- Let By Previous Lemma, $1 r$ is left regular.
- There exist $S \in A$ such that $S(1 r) = 1$ Implies $S - Sr = 1$
- Implies $S = 1 + Sr$, then $S = 1 (-S)r$

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

If r is an element of R. Then $1 - r$ is regular.

Proof

Since $r \in R$.

- Let By Previous Lemma, $1 r$ is left regular.
- There exist $S \in A$ such that $S(1 r) = 1$ Implies $S - Sr = 1$
-
- Implies $S = 1 + Sr$, then $S = 1 (-S)r$
- Since R is a left ideal. Implies $(-S)r \in R$ and $1 - (-S)r$ is left regular.

If r is an element of R. Then $1 - r$ is regular.

Proof

Since $r \in R$.

- Let By Previous Lemma, $1 r$ is left regular.
- There exist $S \in A$ such that $S(1 r) = 1$ Implies $S - Sr = 1$

- Implies $S = 1 + Sr$, then $S = 1 (-S)r$
- Since R is a left ideal. Implies $(-S)r \in R$ and $1 - (-S)r$ is left regular.

Thus S is regular with inverse $1 - r$ is regular.

If r is an element of R. Then $1 - r$ is regular.

Proof

Since $r \in R$.

- Let By Previous Lemma, $1 r$ is left regular.
- There exist $S \in A$ such that $S(1 r) = 1$ Implies $S - Sr = 1$

- Implies $S = 1 + Sr$, then $S = 1 (-S)r$
- Since R is a left ideal. Implies $(-S)r \in R$ and $1 - (-S)r$ is left regular.

Thus S is regular with inverse $1 - r$ is regular.

If r is an element of R. Then $1 - xr$ is regular for every x.

 \bullet Let R be left ideal.

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

If r is an element of R. Then $1 - xr$ is regular for every x.

Proof

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

If r is an element of R. Then $1 - xr$ is regular for every x.

Proof

P Let R be left ideal.

- \mathbf{S} Since, $xr \in R\forall x$
- P Let By Previous Lemma, $1 xr$ is regular.

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

If r is an element of R. Then $1 - xr$ is regular for every x.

Proof

P Let R be left ideal.

 \bullet Let By Previous Lemma, $1 - xr$ is regular.

If r is an element of \bm{A} with the property that $1 - xr$ is regular for every x. Then r is in R.

Proof

Assume that $r \notin R$, so that r is not in some maximal left ideal M.

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

If r is an element of \bm{A} with the property that $1 - xr$ is regular for every x. Then r is in R.

Proof

Assume that $r \notin R$, so that r is not in some maximal left ideal M.

Let $M + Ar = \{m + xr/m \in M \text{ and } x \in A\}$

If r is an element of \bm{A} with the property that $1 - xr$ is regular for every x. Then r is in R.

Proof

Assume that $r \notin R$, so that r is not in some maximal left ideal M.

$$
\mathbb{S}^{\mathscr{B}} \text{ Let } M + Ar = \{m + xr/m \in M \text{ and } x \in A\}
$$

To prove $M + Ar$ is a left ideal. Let α , β be scalars,

If r is an element of \bm{A} with the property that $1 - xr$ is regular for every x. Then r is in R.

Proof

Assume that $r \notin R$, so that r is not in some maximal left ideal M.

$$
\mathbb{S}^{\mathscr{B}} \text{ Let } M + Ar = \{m + xr/m \in M \text{ and } x \in A\}
$$

To prove $M + Ar$ is a left ideal. Let α , β be scalars,
Let $a \in A$, $m + xr \in M + Ar$ \mathscr{F} Implies $a(m + xr) = am + (ax)r \in M + Ar$

Let
$$
a \in A
$$
, $m + xr \in M + Ar$

\nSuppose $a(m + xr) = am + (ax)r \in M + Ar$

\nSince, $m \in M$ implies $m + 0r \in M + Ar$

$$
M\subset M+Ar \qquad (16)
$$

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

Let
$$
a \in A
$$
, $m + xr \in M + Ar$

\nSuppose $a(m + xr) = am + (ax)r \in M + Ar$

\nSince, $m \in M$ Implies $m + 0r \in M + Ar$

$$
M \subset M + Ar \tag{16}
$$

Similarly,

$$
r \subset M + Ar \tag{17}
$$

Let
$$
a \in A
$$
, $m + xr \in M + Ar$

\nSuppose $a(m + xr) = am + (ax)r \in M + Ar$

\nSince, $m \in M$ Implies $m + 0r \in M + Ar$

$$
M \subset M + Ar \tag{16}
$$

Similarly,

$$
r \subset M + Ar \tag{17}
$$

Let
$$
a \in A
$$
, $m + xr \in M + Ar$

\nSuppose $a(m + xr) = am + (ax)r \in M + Ar$

\nSince, $m \in M$ Implies $m + 0r \in M + Ar$

$$
M \subset M + Ar \tag{16}
$$

Similarly,

$$
r \subset M + Ar \tag{17}
$$

 Since, M is a maximal left ideal and $r \notin M$, $M + Ar = A$, $1 \in A$

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

From [\(16\)](#page-288-0) and [\(17\)](#page-288-1), $M + Ar$ contains both M and r

 Since, M is a maximal left ideal and $r \notin M$, $M + Ar = A$, $1 \in A$

 $1 = m + xr$ for some $m \in M$, $x \in A$.

From [\(16\)](#page-288-0) and [\(17\)](#page-288-1), $M + Ar$ contains both M and r

 Since, M is a maximal left ideal and $r \notin M$, $M + Ar = A$, $1 \in A$ $1 = m + xr$ for some $m \in M$, $x \in A$.

 $m = 1 - xr$ is regular.

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

From (16) and (17),
$$
M + Ar
$$
 contains both *M* and *r*

 Since, M is a maximal left ideal and $r \notin M$, $M + Ar = A$, $1 \in A$ $1 = m + xr$ for some $m \in M, x \in A$. \mathbb{S} m = 1 – xr is regular.

Implies $m^{-1} \in A$ then $1 = m^{-1}m \in M$

From (16) and (17),
$$
M + Ar
$$
 contains both
\nM and r
\n \Leftrightarrow Since, M is a maximal left ideal and
\n $r \notin M$, $M + Ar = A$, $1 \in A$
\n \Leftrightarrow $1 = m + xr$ for some $m \in M$, $x \in A$.
\n \Leftrightarrow $m = 1 - xr$ is regular.
\n \Leftrightarrow Implies $m^{-1} \in A$ then $1 = m^{-1}m \in M$
\n \Leftrightarrow a $\in A$ Implies $a = a.1 \in M$: $A \subset M$

From (16) and (17),
$$
M + Ar
$$
 contains both
\nM and r
\nSince, M is a maximal left ideal and
\n $r \notin M$, $M + Ar = A$, $1 \in A$
\n $\begin{cases}\n\mathscr{F} & 1 = m + xr \text{ for some } m \in M, x \in A.\n\end{cases}$
\n $\begin{cases}\nm = 1 - xr \text{ is regular.} \\
\mathscr{F} & \text{Implies } m^{-1} \in A \text{ then } 1 = m^{-1}m \in M \\
a \in A \text{ Implies } a = a.1 \in M : A \subset M\n\end{cases}$

\n- **Example 4** From (16) and (17),
$$
M + Ar
$$
 contains both *M* and *r*
\n- **Example 4** Since *M* is a maximal left ideal and $r \notin M$, $M + Ar = A$, $1 \in A$
\n- **Example 4** If $m = 1 - xr$ for some $m \in M$, $x \in A$.
\n- **Example 4** If $m = 1 - xr$ is regular.
\n- **Example 4** If $m = 1 - xr$ is regular.
\n- **Example 4** If $m = 1 - xr$ is regular.
\n- **Example 4** If $m = 1 - xr$ is regular.
\n- **Example 4** If $m = 1 - xr$ is regular.
\n- **Example 4** If $m = 1 - xr$ is regular.
\n- **Example 4** If $m = 1 - xr$ is regular.
\n- **Example 4** If $m = 1 - xr$ is regular.
\n- **Example 4** If $m = 1 - xr$ is regular.
\n- **Example 4** If $m = 1 - xr$ is regular.
\n- **Example 4** If $m = 1 - xr$ is regular.
\n- **Example 4** If $m = 1 - xr$ is regular.
\n- **Example 4** If $m = 1 - xr$ is regular.
\n- **Example 4** If $m = 1 - xr$ is regular.
\n- **Example 4** If $m = 1 - xr$ is regular.
\n- **Example 4** If $m = 1 - xr$ is regular.
\n- **Example 4** If $m = 1 - xr$ is regular.
\n- **Example 4** If $m = 1 - xr$ is singular.
\n- **Example 4** If

From (16) and (17),
$$
M + Ar
$$
 contains both *M* and *r*
\nSince, *M* is a maximal left ideal and $r \notin M$, $M + Ar = A$, $1 \in A$
\n \Leftrightarrow $1 = m + xr$ for some $m \in M$, $x \in A$.
\n \Leftrightarrow $m = 1 - xr$ is regular.
\n \Leftrightarrow Implies $m^{-1} \in A$ then $1 = m^{-1}m \in M$
\n \Leftrightarrow $a \in A$ Implies $a = a.1 \in M : A \subset M$
\n \Leftrightarrow But $M \subset A : A = M$
\n \Leftrightarrow which is contradiction to *M* is a proper left ideal. Hence, $r \in R$

Lemma 6

If $1 - xr$ is regular then $1 - rx$ is also regular.

Proof

$$
\mathbf{\Omega}
$$

2. Assume that
$$
1 - xr
$$
 is regular with inverse $S = (1 - xr)^{-1}$
\n**3.** $(1 - xr)S = S(1 - xr) = 1$

$$
S - xrS = S - Sxr = 1 \tag{18}
$$

A. Thanga Pandi Servite Arts and Science College for women, Karur

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

Lemma 6

If $1 - xr$ is regular then $1 - rx$ is also regular.

Proof

Assume that
$$
1 - xr
$$
 is regular with inverse

\n
$$
S = (1 - xr)^{-1}
$$
\n• (1 - xr)S = S(1 - xr) = 1

\n
$$
S - xrS = S - Sxr = 1
$$
\n(18)

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

P Consider, $(1 - rx)(1 + rsx) = 1 - rx + rx$ P $(1 - rx)(1 + rsx) = 1$

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

29 Consider,
$$
(1 - rx)(1 + rsx) = 1 - rx + rx
$$

\n**30** $(1 - rx)(1 + rsx) = 1$
\n**51** Similarly, $(1 + rsx)(1 - rx) = 1 - rx + rx$

3. Consider,
$$
(1 - rx)(1 + rsx) = 1 - rx + rx
$$

\n**6.** $(1 - rx)(1 + rsx) = 1$
\n**7.** Similarly, $(1 + rsx)(1 - rx) = 1 - rx + rx$
\n**8.** $(1 + rsx)(1 - rx) = 1$

3 Consider,
$$
(1 - rx)(1 + rsx) = 1 - rx + rx
$$

\n**6** $(1 - rx)(1 + rsx) = 1$
\n**7** Similarly, $(1 + rsx)(1 - rx) = 1 - rx + rx$
\n**8** $\therefore (1 + rsx)(1 - rx) = 1$
\n**8** Hence, $(1 - rx)$ is regular with its inverse $(1 + rsx)$.

3. Consider,
$$
(1 - rx)(1 + rsx) = 1 - rx + rx
$$

\n**6.** $(1 - rx)(1 + rsx) = 1$
\n**7.** Similarly, $(1 + rsx)(1 - rx) = 1 - rx + rx$
\n**8.** $\therefore (1 + rsx)(1 - rx) = 1$
\n**8.** Hence, $(1 - rx)$ is regular with its inverse $(1 + rsx)$.

Theorem 14

The radical R of A equals each of the four sets in $\cap MLI = \{r/1 - xr\}$ is regular for every x and $\cap MRI = \{r/1 - rx\}$ is regular for x is a proper two sided ideal.

Proof **P** If $x \in R$ then $1 - xr$ is regular $\forall x$ [By lemma-4] \bullet Implies $\left\{\frac{r}{1}\right\}$ $1 - xr$ } is regular = $\{r/x \in R\}$ [By lemma-5]

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

Theorem 14

The radical R of A equals each of the four sets in $\cap MLI = \{r/1 - xr\}$ is regular for every x and \cap *MRI* = { $r/1 - rx$ } is regular for x is a proper two sided ideal.

Proof **P** If $x \in R$ then $1 - xr$ is regular $\forall x$ [By lemma-4] \bullet Implies $\left\{\frac{r}{1}\right\}$ $1 - xr$ } is regular = $\{r/x \in R\}$ [By lemma-5]

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

Theorem 14

The radical R of A equals each of the four sets in $\cap MLI = \{r/1 - xr\}$ is regular for every x and \cap *MRI* = { $r/1 - rx$ } is regular for x is a proper two sided ideal.

Proof **P** If $x \in R$ then $1 - xr$ is regular $\forall x$ [By lemma-4] \bullet Implies $\left\{\frac{r}{1}\right\}$ $1 - xr$ } is regular = $\{r/x \in R\}$ [By lemma-5]

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

 \triangle From [\(19\)](#page-311-0) and [\(20\)](#page-311-1), \triangle \cap MLI = R = \cap MRI

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

 ∩MLI is a proper left ideal and ∩MRI is a proper right ideal

\n- $$
\blacktriangle
$$
 From (19) and (20),
\n- \blacktriangle \cap *MLI* = $R = \cap$ *MRI*
\n- \cap *MLI* is a proper left ideal and \cap *MRI* is a proper right ideal
\n

\n- $$
\blacktriangle
$$
 From (19) and (20),
\n- \blacktriangle \cap *MLI* = $R = \cap$ *MRI*
\n- \cap *MLI* is a proper left ideal and \cap *MRI* is a proper right ideal
\n

A is said to be semi-simple if its radical equals the zero ideal {0}, that is if each non-zero element of A is outside of some maximal left ideal.

Theorem 15

The radical R of A is a proper closed two-sided ideal.

A is said to be semi-simple if its radical equals the zero ideal {0}, that is if each non-zero element of A is outside of some maximal left ideal.

Theorem 15

The radical R of A is a proper closed two-sided ideal.

Proof

If $x \in R$, then $1 - xr$ is regular $\forall x$

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

A is said to be semi-simple if its radical equals the zero ideal {0}, that is if each non-zero element of A is outside of some maximal left ideal.

Theorem 15

The radical R of A is a proper closed two-sided ideal.

Proof

If $x \in R$, then $1 - xr$ is regular $\forall x$ To prove Every maximal left ideal in A is closed.

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

A is said to be semi-simple if its radical equals the zero ideal {0}, that is if each non-zero element of A is outside of some maximal left ideal.

Theorem 15

The radical R of A is a proper closed two-sided ideal.

Proof

If $x \in R$, then $1 - xr$ is regular $\forall x$ To prove Every maximal left ideal in A is closed.

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

A is said to be semi-simple if its radical equals the zero ideal {0}, that is if each non-zero element of A is outside of some maximal left ideal.

Theorem 15

The radical R of A is a proper closed two-sided ideal.

Proof

If $x \in R$, then $1 - xr$ is regular $\forall x$ To prove Every maximal left ideal in A is closed.

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

\triangle : L in A is closed.

\triangle By above theorem, $\cap MLI = R$

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

\triangle : L in A is closed.

\mathbb{Z} By above theorem, ∩MLI = R

Since, MLI is closed Implies $\bigcap MLI = R$ is closed.

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

\mathbb{Z} : L in A is closed.

\triangle By above theorem, ∩MLI = R

- \triangle Since, MLI is closed Implies ∩MLI = R is closed.
- \bigtriangleup R is closed

\triangle ∴ L in A is closed.

\triangle By above theorem, ∩MLI = R

 \triangle Since, MLI is closed Implies ∩MLI = R is closed.

\triangle R is closed

 \triangle R is a proper two sided ideal.
\mathbb{Z} ∴ L in A is closed.

- \mathbb{Z} By above theorem, ∩MLI = R
- \triangle Since, MLI is closed Implies ∩MLI = R is closed.
- \bigtriangleup R is closed
- \triangle R is a proper two sided ideal.
- \triangle Hence, R is a proper closed two sided ideal.
- \mathbb{Z} ∴ L in A is closed.
- \mathbb{Z} By above theorem, ∩MLI = R
- \triangle Since, MLI is closed Implies ∩MLI = R is closed.
- \bigtriangleup R is closed
- \triangle R is a proper two sided ideal.
- \triangle Hence, R is a proper closed two sided ideal.
- \mathbb{Z} ∴ L in A is closed.
- \mathbb{Z} By above theorem, ∩MLI = R
- \triangle Since, MLI is closed Implies ∩MLI = R is closed.
- \bigtriangleup R is closed
- \triangle R is a proper two sided ideal.
- \triangle Hence, R is a proper closed two sided ideal.

If *I* is a proper closed two-sided ideal in *A*. Then the quotient algebra $\frac{A}{A}$ I is Banach algebra.

Let *I* is a proper closed two-sided ideal in A.

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

If *I* is a proper closed two-sided ideal in *A*. Then the quotient algebra $\frac{A}{A}$ I is Banach algebra.

Proof

Let I is a proper closed two-sided ideal in A . 举 ∴ $\frac{A}{I}$ I is a non-trivial complex Banach space with respect to the norm defined by

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

If I is a proper closed two-sided ideal in A. Then the quotient algebra $\frac{A}{A}$ I is Banach algebra.

Proof

 \mathcal{F} Let I is a proper closed two-sided ideal in A. $\color{red} \clubsuit \; \; \therefore \; \frac{A}{\cdot}$ I is a non-trivial complex Banach space with respect to the norm defined by **\\\\pmath{\sigma_{\sigma_n}** $||x + I|| = \inf{||x + i||/i \in I}$

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

If *I* is a proper closed two-sided ideal in *A*. Then the quotient algebra $\frac{A}{A}$ I is Banach algebra.

Proof

 \mathcal{F} Let I is a proper closed two-sided ideal in A. $\color{red} \clubsuit \; \; \therefore \; \frac{A}{\cdot}$ I is a non-trivial complex Banach space with respect to the norm defined by $||x + I|| = \inf{||x + i||/i \in I}$ Since A is a ring with identity 1, ℓ is a two-sided ideal.

If *I* is a proper closed two-sided ideal in *A*. Then the quotient algebra $\frac{A}{A}$ I is Banach algebra.

Proof

 \mathcal{F} Let I is a proper closed two-sided ideal in A. $\color{red} \clubsuit \; \; \therefore \; \frac{A}{\cdot}$ I is a non-trivial complex Banach space with respect to the norm defined by $||x + I|| = \inf{||x + i||}/i \in I$ Since \vec{A} is a ring with identity 1, \vec{I} is a two-sided ideal.

 $\tiny{\color{red} \ast \mathcal{L} \rightarrow \mathcal{A}}^A$ I is a ring with identity $y + l$.

 $\alpha(x+l)(y+l) = \alpha(xy+l)$

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

` ∴ A I is a ring with identity y + I.

$$
\alpha(x+l)(y+l) = \alpha(xy+l) \n= (\alpha x)y+l
$$

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

` ∴ A I is a ring with identity y + I.

$$
\alpha(x+l)(y+l) = \alpha(xy+l)
$$

= $(\alpha x)y+l$
= $\alpha(x+l)\alpha(y+l)$

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

` ∴ A I is a ring with identity y + I.

$$
\alpha(x+l)(y+l) = \alpha(xy+l)
$$

= $(\alpha x)y+l$
= $\alpha(x+l)\alpha(y+l)$
 $\alpha(x+l)(y+l) = (x+l)(\alpha y+l)$

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

` ∴ A I is a ring with identity y + I.

$$
\alpha(x+l)(y+l) = \alpha(xy+l)
$$

= $(\alpha x)y+l$
= $\alpha(x+l)\alpha(y+l)$
 $\alpha(x+l)(y+l) = (x+l)(\alpha y+l)$

 \cdot $\frac{A}{A}$ $\overline{}$ is an algebra.

A. Thanga Pandi Servite Arts and Science College for women, Karur

` ∴ A I is a ring with identity y + I.

$$
\alpha(x+l)(y+l) = \alpha(xy+l)
$$

= $(\alpha x)y+l$
= $\alpha(x+l)\alpha(y+l)$
 $\alpha(x+l)(y+l) = (x+l)(\alpha y+l)$

 \cdot $\frac{A}{A}$ I is an algebra.

A. Thanga Pandi Servite Arts and Science College for women, Karur

` ∴ A I is a ring with identity y + I.

$$
\alpha(x+l)(y+l) = \alpha(xy+l)
$$

= $(\alpha x)y+l$
= $\alpha(x+l)\alpha(y+l)$
 $\alpha(x+l)(y+l) = (x+l)(\alpha y+l)$

 \cdot $\frac{A}{A}$ I is an algebra.

A. Thanga Pandi Servite Arts and Science College for women, Karur

Let $x + l$, $y + l \in$ A I Now,

$||(x + 1)(y + 1)|| = ||(xy + 1)||$

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

Let
$$
x + l
$$
, $y + l \in \frac{A}{l}$
Now,

$||(x + 1)(y + 1)|| = ||(xy + 1)||$ $= \inf\{||xy + i||/i \in I\}$

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

Let
$$
x + l
$$
, $y + l \in \frac{A}{l}$
\nNow,
\n
$$
||(x + l)(y + l)|| = ||(xy + l)||
$$
\n
$$
= inf{||xy + i||/i \in l}
$$
\n
$$
= inf{||(x + i1)(y + i2)||/i1, i2 \in l}
$$

A

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

Let
$$
x + l
$$
, $y + l \in \frac{A}{l}$
Now,

$$
||(x + I)(y + I)|| = ||(xy + I)||
$$

= inf{||xy + i||/i $\in I$ }
= inf{||(x + i₁)(y + i₂)||/i₁, i₂ $\in I$ }
 \leq inf{||x + i₁||||y + i₂||/i₁, i₂ $\in I$ }

Let
$$
x + l
$$
, $y + l \in \frac{A}{l}$
\nNow,
\n
$$
||(x + l)(y + l)|| = ||(xy + l)||
$$
\n
$$
= inf{||xy + i||/i \in l}
$$
\n
$$
= inf{||(x + i_1)(y + i_2)||/i_1, i_2 \in l}
$$
\n
$$
\leq inf{||x + i_1|| ||y + i_2||/i_1, i_2 \in l}
$$
\n
$$
||(x + l)(y + l)|| \leq ||x + l||||y + l||
$$

Let
$$
x + l
$$
, $y + l \in \frac{A}{l}$
\nNow,
\n
$$
||(x + l)(y + l)|| = ||(xy + l)||
$$
\n
$$
= inf{||xy + i||/i \in l}
$$
\n
$$
= inf{||(x + i1)(y + i2)||/i1, i2 \in l}
$$
\n
$$
\leq inf{||x + i1|| ||y + i2||/i1, i2 \in l}
$$
\n
$$
||(x + l)(y + l)|| \leq ||x + l||||y + l||
$$

Let
$$
x + l
$$
, $y + l \in \frac{A}{l}$
\nNow,
\n
$$
||(x + l)(y + l)|| = ||(xy + l)||
$$
\n
$$
= inf{||xy + i||/i \in l}
$$
\n
$$
= inf{||(x + i1)(y + i2)||/i1, i2 \in l}
$$
\n
$$
\leq inf{||x + i1|| ||y + i2||/i1, i2 \in l}
$$
\n
$$
||(x + l)(y + l)|| \leq ||x + l||||y + l||
$$

 $||1 + I|| = ||(1 + I)(1 + I)||$ \leq $||1 + I||^2$

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

$||1 + I|| = ||(1 + I)(1 + I)||$ \leq $||1 + I||^2$

$1 \leq ||1 + I||$ (21)

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

$$
||1 + I|| = ||(1 + I)(1 + I)||
$$

\n
$$
\leq ||1 + I||^2
$$

$1 \leq ||1 + I||$ (21) $||1 + I|| = \inf\{||1 + I||/i \in I\}$ $||1 + I|| \le 1$ (22)

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

$$
||1 + I|| = ||(1 + I)(1 + I)||
$$

\n
$$
\leq ||1 + I||^2
$$

$$
1 \le ||1 + I|| \tag{21}
$$

$$
||1 + I|| = \inf\{||1 + I||/i \in I\}
$$

$$
||1 + I|| \le 1 \tag{22}
$$

From [\(21\)](#page-346-0) and [\(22\)](#page-346-1), we get, $||1 + I|| = 1$ Hence, $\frac{A}{A}$ I is a Banach algebra.

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

$$
||1 + I|| = ||(1 + I)(1 + I)||
$$

\n
$$
\leq ||1 + I||^2
$$

$$
1 \le ||1 + I|| \tag{21}
$$
\n
$$
||1 + I|| = \inf\{||1 + I||/i \in I\}
$$
\n
$$
||1 + I|| \le 1 \tag{22}
$$
\nFrom (21) and (22) we get $||1 + I|| = 1$

From [\(21\)](#page-346-0) and [\(22\)](#page-346-1), we get, $||1 + I|| = 1$ Hence, $\frac{A}{A}$ I is a Banach algebra. A. Thanga Pandi Servite Arts and Science College for women, Karur

Let
$$
\frac{A}{R}
$$
 is a semi-simple banach algebra

Proof

Since R is a proper closed two sided ideal in A .

举 $\frac{A}{A}$ R is banach algebra.

To prove $\frac{A}{B}$ R is a semi-simple.

Since R is a proper closed two sided ideal in A .

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

Let
$$
\frac{A}{R}
$$
 is a semi-simple banach algebra

Proof

 $\frac{1}{2}$

Since R is a proper closed two sided ideal in A . A

$$
\frac{A}{R}
$$
 is banach algebra.

To prove
$$
\frac{A}{R}
$$
 is a semi-simple.

Since R is a proper closed two sided ideal in A . A is banach algebra.

A. Thanga Pandi [FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0) Servite Arts and Science College for women, Karur

Let
$$
\frac{A}{R}
$$
 is a semi-simple banach algebra

Proof

 $\frac{1}{2}$

Since R is a proper closed two sided ideal in A . A

$$
\frac{A}{R}
$$
 is banach algebra.

To prove
$$
\frac{A}{R}
$$
 is a semi-simple.

Since R is a proper closed two sided ideal in A . A is banach algebra.

A. Thanga Pandi

Servite Arts and Science College for women, Karur

Example 7:
$$
A \rightarrow \frac{A}{R}
$$
 by $\mathcal{T}(x) = x + R$.

\n**Example 7:** A is clearly a homemorphism into $\frac{A}{R}$.

\n- ****** Define
$$
\mathcal{T} : A \to \frac{A}{R}
$$
 by $\mathcal{T}(x) = x + R$.
\n- ****** \mathcal{T} is clearly a homemorphism into $\frac{A}{R}$.
\n- ****** Let *l* be a left ideal in *A* then $\mathcal{T}(l)$ is a left ideal in $\frac{A}{R}$.
\n

\n- ****** Define
$$
\mathcal{T} : A \to \frac{A}{R}
$$
 by $\mathcal{T}(x) = x + R$.
\n- ****** \mathcal{T} is clearly a homemorphism into $\frac{A}{R}$.
\n- ****** Let *I* be a left ideal in *A* then $\mathcal{T}(I)$ is a left ideal in $\frac{A}{R}$.
\n- ****** Let *L* be a left ideal in $\frac{A}{R}$ then $\mathcal{T}^{-1}(L)$ is a left ideal in *A*.
\n

\n- ****** Define
$$
\mathcal{T} : A \to \frac{A}{R}
$$
 by $\mathcal{T}(x) = x + R$.
\n- ****** \mathcal{T} is clearly a homemorphism into $\frac{A}{R}$.
\n- ****** Let *I* be a left ideal in *A* then $\mathcal{T}(I)$ is a left ideal in $\frac{A}{R}$.
\n- ****** Let *L* be a left ideal in $\frac{A}{R}$ then $\mathcal{T}^{-1}(L)$ is a left ideal in *A*.
\n

\n- ****** Define
$$
\mathcal{T} : A \to \frac{A}{R}
$$
 by $\mathcal{T}(x) = x + R$.
\n- ****** \mathcal{T} is clearly a homemorphism into $\frac{A}{R}$.
\n- ****** Let *I* be a left ideal in *A* then $\mathcal{T}(I)$ is a left ideal in $\frac{A}{R}$.
\n- ****** Let *L* be a left ideal in $\frac{A}{R}$ then $\mathcal{T}^{-1}(L)$ is a left ideal in *A*.
\n

Let M be the set of all maximal left ideal of A and L that of $\frac{\overline{A}}{R}$ R

Define $f : M \to L$ by $f(m) = T(m)\forall m \in M$.

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)
Let M be the set of all maximal left ideal of A and L that of $\frac{A}{B}$ R Define $f : M \to L$ by $f(m) = T(m) \forall m \in M$. To prove f is one-to-one and onto

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

Let M be the set of all maximal left ideal of A and L that of $\frac{A}{B}$ R Define $f : M \to L$ by $f(m) = T(m) \forall m \in M$. To prove f is one-to-one and onto Let $f (M_1) = f (M_2)$ then $T(M_1) = T(M_2)$

Let M be the set of all maximal left ideal of A and L that of $\frac{A}{B}$ R Define $f : M \to L$ by $f(m) = T(m)\forall m \in M$. To prove f is one-to-one and onto Let $f(M_1) = f(M_2)$ then $T(M_1) = T(M_2)$ $\textcolor{black}{\tilde{\mathscr{R}}}\ \ \textcolor{black}{\mathcal{T}^{-1}(\ \mathcal{T}(M_1))=\ \mathcal{T}^{-1}(\ \mathcal{T}(M_2))\ \ \ \ \ \ M_1=M_2}$

Let M be the set of all maximal left ideal of A and L that of $\frac{A}{B}$ R Define $f : M \to L$ by $f(m) = T(m) \forall m \in M$. To prove f is one-to-one and onto Let $f(M_1) = f(M_2)$ then $T(M_1) = T(M_2)$ $\hspace{.15cm} \raisebox{.3cm}{$\scriptstyle{*}$} \hspace{.2cm} {\mathcal T}^{-1}({\mathcal T}(M_1)) = {\mathcal T}^{-1}({\mathcal T}(M_2)) \hspace{.2cm} M_1 = M_2$ 举 ∴ f is one-to-one.

Let M be the set of all maximal left ideal of A and L that of $\frac{A}{B}$ R Define $f : M \to L$ by $f(m) = T(m)\forall m \in M$. To prove f is one-to-one and onto Let $f(M_1) = f(M_2)$ then $T(M_1) = T(M_2)$ $\hspace{.15cm} \raisebox{.3cm}{$\scriptstyle{*}$} \hspace{.2cm} {\mathcal T}^{-1}({\mathcal T}(M_1)) = {\mathcal T}^{-1}({\mathcal T}(M_2)) \hspace{.2cm} M_1 = M_2$ \therefore f is one-to-one. $\frac{1}{2}$ f (T⁻¹(L)) = T(T⁻¹(L)) = L

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

Let M be the set of all maximal left ideal of A and L that of $\frac{A}{B}$ R Define $f : M \to L$ by $f(m) = T(m)\forall m \in M$. To prove f is one-to-one and onto Let $f(M_1) = f(M_2)$ then $T(M_1) = T(M_2)$ $\hspace{.15cm} \raisebox{.3cm}{$\scriptstyle{*}$} \hspace{.2cm} {\mathcal T}^{-1}({\mathcal T}(M_1)) = {\mathcal T}^{-1}({\mathcal T}(M_2)) \hspace{.2cm} M_1 = M_2$ \therefore f is one-to-one. $\sqrt[4]{*}$ $f(T^{-1}(L)) = T(T^{-1}(L)) = L$ \therefore f is onto.

Let M be the set of all maximal left ideal of A and L that of $\frac{A}{B}$ R Define $f : M \to L$ by $f(m) = T(m)\forall m \in M$. To prove f is one-to-one and onto Let $f(M_1) = f(M_2)$ then $T(M_1) = T(M_2)$ $\hspace{.15cm} \raisebox{.3cm}{$\scriptstyle{*}$} \hspace{.2cm} {\mathcal T}^{-1}({\mathcal T}(M_1)) = {\mathcal T}^{-1}({\mathcal T}(M_2)) \hspace{.2cm} M_1 = M_2$ \therefore f is one-to-one. $\sqrt[4]{*}$ $f(T^{-1}(L)) = T(T^{-1}(L)) = L$ \therefore f is onto.

Let M be the set of all maximal left ideal of A and L that of $\frac{A}{B}$ R Define $f : M \to L$ by $f(m) = T(m)\forall m \in M$. To prove f is one-to-one and onto Let $f(M_1) = f(M_2)$ then $T(M_1) = T(M_2)$ $\hspace{.15cm} \raisebox{.3cm}{$\scriptstyle{*}$} \hspace{.2cm} {\mathcal T}^{-1}({\mathcal T}(M_1)) = {\mathcal T}^{-1}({\mathcal T}(M_2)) \hspace{.2cm} M_1 = M_2$ \therefore f is one-to-one. $\sqrt[4]{*}$ $f(T^{-1}(L)) = T(T^{-1}(L)) = L$ \therefore f is onto.

\bullet To prove Radical in $\frac{A}{B}$ R is {0}. Consider, $\mathcal{T}^{-1}(\cap L) = \cap(\mathcal{T}^{-1}(L))$

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

 \bullet To prove Radical in $\frac{A}{B}$ R is {0}. Consider, $\mathcal{T}^{-1}(\cap L) = \cap(\mathcal{T}^{-1}(L))$ Intersection of all MLI of A is R. $\therefore T^{-1}(\cap L) = R$

$$
✓Two Two Radical in $\frac{A}{R}$ is {0}.
\n
$$
✓ Consider, T^{-1}(\cap L) = \cap (T^{-1}(L))
$$
\n
$$
✓ Intersection of all MLI of A is R.\n∴ T^{-1}(\cap L) = R
$$
$$

 \mathbb{P} Implies $\cap L = \mathcal{T}(R) = \{r + R/r \in R\} = \{R\}$

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)

✓ To prove Radical in
$$
\frac{A}{R}
$$
 is {0}.

\n**✓** Consider, $T^{-1}(\cap L) = \cap (T^{-1}(L))$

\n**✓** Intersection of all *MLI* of *A* is *R*.

\n∴ $T^{-1}(\cap L) = R$

\n**✓** Implies $\cap L = T(R) = \{r + R/r \in R\} = \{R\}$

\n**✓** $R = \text{zero element in } \frac{A}{R}$.

$$
✓To prove Radical in $\frac{A}{R}$ is {0}.
\n✓ Consider, $T^{-1}(\cap L) = \cap (T^{-1}(L))$
\n✓ Intersection of all *MLI* of *A* is *R*.
\n∴ $T^{-1}(\cap L) = R$
\n✓ Implies $\cap L = T(R) = \{r + R/r \in R\} = \{R\}$
\n✓ *R* = zero element in $\frac{A}{R}$.
\n✓. Radical in $\frac{A}{R}$.
$$

\n- ✓ To prove Radical in
$$
\frac{A}{R}
$$
 is {0}.
\n- ✓ Consider, $\mathcal{T}^{-1}(\cap L) = \cap(\mathcal{T}^{-1}(L))$
\n- ✓ Intersection of all *MLI* of *A* is *R*.
\n- ∴ $\mathcal{T}^{-1}(\cap L) = R$
\n- ✓ Implies $\cap L = \mathcal{T}(R) = \{r + R/r \in R\} = \{R\}$
\n- ✓ *R* = zero element in $\frac{A}{R}$.
\n- ✓ *...* Radical in $\frac{A}{R}$.
\n- ✓ Hence, $\frac{A}{R}$ is a semi-simple
\n

\n- ✓ To prove Radical in
$$
\frac{A}{R}
$$
 is {0}.
\n- ✓ Consider, $\mathcal{T}^{-1}(\cap L) = \cap(\mathcal{T}^{-1}(L))$
\n- ✓ Intersection of all *MLI* of *A* is *R*.
\n- ∴ $\mathcal{T}^{-1}(\cap L) = R$
\n- ✓ Implies $\cap L = \mathcal{T}(R) = \{r + R/r \in R\} = \{R\}$
\n- ✓ *R* = zero element in $\frac{A}{R}$.
\n- ✓ ∴ Radical in $\frac{A}{R}$.
\n- ✓ Hence, $\frac{A}{R}$ is a semi-simple
\n

Old Question Paper

A. Thanga Pandi Service Servite Arts and Science College for women, Karur

Old Question Paper

- Prove that Z (the set of all topological divisors of \mathbf{S} zero) is a subset of S.
- Define multiplicative functional
- 10. If $\left\|x^2\right\| = \left\|x\right\|^2$ for every x on arbitrary commutative Banach algebra A, then prove that $r(x) = ||x||$ every r.

SECTION $B - (5 \times 5 = 25)$

Answer ALL questions, choosing either (a) or (b)

11. (a) If R is a commutative ring with identity, then prove that R is a field \sim it has no non-trivial ideals.

 $^{\circ}$

- (b) If N is a normal linear space, then prove that the closed unit sphere S^* in N^* is a compact Hausdorff space in the weak* topology
- 12. (a) If M is a closed linear subspace of a Hilbert space H, then prove that $H = M \oplus M^{\perp}$

 Ω r

State and prove Bessel's inequality.

S.No. 7534

(a) Prove that two matrices in A_n are similar \Leftrightarrow they are the matrices of a single operator on H relative to (possibly) different bases.

α

(b) Show that there exists a unique positive operator A on H such that $A^2 = T$.

14. (a) If $1 - xr$ is regular, then prove that $1 - rx$ is regular.

 $0r$

- Prove that the boundary of S is a subset of Z.
- Prove that $M \rightarrow f$, is a one-to-one mapping $15.$ (a) of the set γ of all maximal ideals in A into the set of all its multiplicative functions.

 $_{0r}$

(b) If A is self-adjoint, then prove that \hat{A} is dense in $\mathfrak{C}(\gamma\eta)$ \overline{a}

S.No. 7534

A. Thanga Pandi Service Servite Arts and Science College for women, Karur

THANK YOU

[FUNCTIONAL ANALYSIS UNIT-IV](#page-0-0)