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Divisibility

l 1 INTRODUCTION

: Thc theory of numbers. is concerned wuth properties of the nafural nums-
bers 1,2,3,4,- - -, also called the positive integers.; “These numbers, together
with the negative integers and zero, form the set of integers. Propertiesof = -
these numbers have been studied from earliest times. For example, an
integer is divisible by 3 if and only if the sum of its digits is divisible by 3,
as In the number 852 with sum of digits 8 + 5 + 2 = 15. The equation
x% + y? =22 has mﬁmtely many solunons in pos:tlve integers, such as
32 + 42 = 52, whereas x +y?>=z%and x* + y* = z* have none. There
are infinitely many prime numbers, wherem natural number
such as 31 that cannot be factored into two smaller natural numbers. Thus,
33 is not a prime, because 33 = 3 - 11. _ _

_' The fact that the sequence of pnmes, 2, 3 5 7,11,13,17,- NS | end—
less was known to Euclid, who lived-about 350 B.c. Also known to Euclid.
was the result that vr_ 153 an znc:;:w_gn._that is, a number that
‘cannot be expressed"a‘s—tﬁ‘” quoti a/b of two mtegersmers
2/7,13/5, —14/9, and 99/100 are examples of rational numbers The
integers are themselves rational numbers because; for examp!e, 7 can be
written in the form 7/1. Another exampie of an irrational number is r,
the ratio of the circumference to the diameter of any circle. The rational

number 22 /7 is a good approximation to r, close but not precise. The fact
that mls_lgaqtmn\allneans that there is no fraction a/b that is exactly
equal to 7, with a and b integers. - -
In addition to known results, number theory abounds wnth unsolved :
problems.. Some background is needed just to state. these problems in
many cases. But there are a few unsolved problems that can be understood.
_~Wwith essentially no prior knowledge. Perhaps the most famous of these is
the conjecture known as Fermat’s last theorem, which is not really: a
theorem at all hecausc it has: not yet been proved. Pierre.de Fermat
(1601-1665) stated that he had a truly wondrous proof thzit the equation
x".+y" = z" has no solutions-in positive integers x, y, z for any exponent -

n> ﬂ:;;Fermat added that the margm of the book was too small to hold'the
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z Divisibility

proof. Whether Fermat really had a proof is not known, but it,now secms
unlikely, as the question has eluded mathematicians since his time.
Results in number theory often have their_sources in empirical obser-
vations. We might notice, for example, lhat'Levcry natural number up to
1000 can be expressed as a sum of four squares of natural numbers, as
illustrated by
1000 = 302 + 10% + 0% + 0%,
We might then feel confident enough to make the conjecture that every
natural number is expressible as a sum of four squares. This turns out to
be correct; it is presented as Theorem 6.25 in Chapter 6. The first proof of
this result was given by J. L.-Lagrange (1736-1813). We say that the four

square thcorem is best possible, because not every positive integer is

a sum of three squares of integers, 7 for example.
examples may turn

999 = 302 + 9% + 3% + 32,
il 0

expressible as
Of course, a conjecture made on the basis of a few
—n + 41 is a prime

out to be incorrect. For cxampl:.‘\thc expression_n? — r

number for n = 1,2,3,---,40 because it is easy to verify that 41,43,
47,53,--+,1601 are indeed prime numbers. But it would be hasty to
conjecture that *_, 441 is a prime for every natural number n,
because for 1 the value is 41f; We say that the casc n = 41 is a

counterexample~to the conjecture. \}
“"Leonhard Euler (1707-1783)¢dnjectured that no nth power is a sum
of fewer than n nth powers (the Swiss name Euler is pronounced “Oiler").

For n = 3. this would assert that no cube is the sum of two smaller cubes.
em 9.35. However, a counterexample to

This is true; it is proved in Theor
Euler's conjecture was provided in 1968 by L. J. Lander and Thomas
Parkin. Aﬂ\r'}’l'c result of a detailed computer search, they found that

1445 = 27° + 84% + 110° + 133%.

In 1987, N. 1. E!kier;.uscd the arithmetic of elliptic curves to discoyer that

20615673 = 2682440* + 15365639* + 18796760*,

a subsequent computer search located the lcast counterexample to

and
Euler’s conjecture for fourth powers. 'y
. The Goldbach conjecnure asserts that every even integer greater than 2
is the sum of two primes, as in the cxamples CrLTCR VY.
e ﬂ 5 k 9""
4=2+2, 6=3¥3, 20-@:1(.
50 =3 +47," 100 =29 + 7L %
Stated by Christian Goldbach in 1742, verificd up to 100,000 at least, this
i ded all attcmpts at proof. b
conjecture has eva d p pr ~
TSR AR il )

L1 Introduction . %
f 3

Because it is relatively casy to make conjectures in number
person whose name gets attached to a problem has often m:dlhm“h‘
contribution than the one who later solves.it. For example, Joh:a-ls""
(1741-1793) stated thagevery prime p is a divisor of (p — 1)1+ n‘:;ﬂ:::

It has h forth béen known as Wilson’ r
result has hence Bcwat _P:?':s_thcorem. although the firy

proof was given by Lagrange. § " .——
However, empirical observations are important i i
n the dmny of

general results and in testing conjectures. They are also useful in
standing thedrems. In studying a book on number theory, you a;nd"
advised to construct numerical examples of your own devising, especi “!1
a concept or a theorem is not well understood at first, el
Although our interest centers on integers and rational numbers, not
_ell]"pro?fs are given within this framework.. For example, the proof lh'a! -
|sJ :rra;:onal makes use of the system of ‘real numbers. The proof that
Pyl = z3 has no solution in positive integers is carried out in the
setting of complex numbers.
] Numb'cr tr!coxy is not only a systematic mathematical study but also 2
popular diversion, especially in its elementary form. It is part of what is
calh?d recreational mathematics, including numerical curiosities and the
solving of puzzles. This aspect of number theory is not emphasized in this
book, unless the questions are related to general propositions. Neverthe-
less, a systematic study of the theory is certainly helpful to anyone lookin
at problems in recreational mathematics. . ;
. The theory of numbers is closely tied to the other areas of mathemat
ics, most especially to abstract algebra, but also to linear algebra, combina-
:;:::l;:s, nr;nlys:s, geometry, and even topology. Consequently, proofs in the
lhcrcrya:)c "mum:crs rcl): on many different ideas and methods. Of these,
Hritie i o basic pnm_:lples‘ to which we draw especial attention. The
Faiied ke any sctl of positive integers has a smallest element if it contains
. thcfnrist at a l.‘In oth_cr words, if a set .~ of positive integers is not
rclatu’c;n s czntams an integer s such that for any member a of ./, the
S a holds. The second principle, mathematical induction, is
gs";-‘l consequence of the first.' It can be stated as follows: If a set 7 of
positive integers contains the integer 1, and contains 7 + 1 whenever it
contlatm? n, then .~ consists of all the positive integers.
e mi:::: '.-';az bc well to point out that a simple statement which asserts
hele i v ln integer with some particular property may be easy [0
e pr‘opositi cl:ny f_l;;:’ls an :xamp.lc... For example, it is easy to demonstrate
pidhle . There is a positive number-that is not the sum of three
,"" by noting that 7 is such a number. On the other hand, 2

1
Compare G. Birkhoff and 8. M ;
o i plondsosde, - MacLane, A Survey of Modern Algebra, 4th ed., Macmillan
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statement which asserts that all numbers €ss a certain prop
be proved in_this manner. The aSscrtio:O?Every p?iﬁllp,:gﬁfb'g Zafn?f:
form 4n + 1 is a sum of two squares,” is substantially mgre difficult to
establish (see Lemma 2.13 in Section 2.1). T

Finally, it is presumed that you are familiar with the usual formulation
of mathematical propositions. In particular, if 4 and B are two assertions,
the following statements are logically equivalent—they are just differen;
ways of saying the same thing. ; . :

" . Divisibility

A implies B.

If A is true, then B is true. : A
In order that A4 be true it is necessary that B
B is a necessary condition for A.

A is a sufficient condition of B.

be: lrug;

If A implies B and B impli.es A, then one can ééy that B is a necessary
and sufficient condition for 4 to hold. ;
In general, we shall use letters of the roman alphabet, a,b,c, ,

m,n,--,x,Yy, z to designate integers unless otherwise specified. We let Z '

denote the set {---, =2, —=1,0,1,2, -=-} of all integers, Q@ the set of all
rational numbers, R the set of all real numbers, and C the set of all

complex numbers.

: -
1.2 D[VISIBILIT]@

Divisors, multiples, and prime and composite numbers are concepts l;l;(!,
have been known and studied at least since the time of Euclid, about
a.¢. The fundamental ideas are developed in this and the next section.

[ i is divisi [ ero, if there is
. Definition 1.1 = An integer b is divisible by an integer a, pol zero, I ¥

- “an x'nreg:r x such that b = ax, and we wri{e/fl;.l In case b is not divisible by
a,wcwn':ea,}"bﬂ e, &

. : . s

Other language foﬁhe divisibility property a_Ib is tfha; alfd:;gesa =

that-a is a divisor of b, and that {J.is a n;u[plp_l:uﬂdear;tm L

0 < a < b, then a is called a proper divisor of b Jui D Dme

. the pair of integers in 4 3
e O Uiz lsRmtuher o |:he'gl‘?tu-rr?o::mb::f of the-pair, but also in

hand, not only may 0 occur as-the rig PRt b ip

ir::tancesywc :;ways have divisibility. Thus alq for etcryl:n:eginib ol
5 Theé .notation aXllb is sometimes used to indicate that 4 -2 %
e il

T —

™

—
.

Ny

§

\‘.\0

12 Divisibility

Theorem 1.1
f'. (1) alb implies q lbe for any integer c;
(2) alb and ble imply alc;

(3) alb and a|c impl)

] ya[(bx-i-cy)faran int :
(4) alb and bla imply a = 4p; I
(5) alb,a>0,b> 0, imply a < b;

(6) ifm +#0, alb implies and is implied by ma|mb.

)

Proaf . jThe proofs of these results follow at once from the definition of
divisibility. Property 3 admits an obviaus extension to any finite set, thus;

alb,,alb,, -, alb, imply a} ¥ b;x; for any integers x;.
: ol

Property 2 can be extended similarly.

To give a sample proof, consider item 3. Since alb and alc are given,
this implies that there are integers r and s such that b = ar and ¢ = as.
Hence, bx + ¢y can be written as a(rx + 5y¥), and this proves that @ is a
divisor of bx + cy. ey

The next result is a formal statement of the outcome when any integer
b is divided by any positive integer. For example, if 25 is divided by 7, the
quotient is 3 and the remainder is 4. These numbers are related by the
equality 25 = 7 - 3 + 4. Now we formulate this in the general case.

a > 0, there exist unique integers q and r such thatb =qga +r,0 <r <a.
If a X'b, then r satisfies the stronger inequalities 0 < r < a.

e ’
ﬁ;s)%hmum 1.2 The ;wision afgorr'!hm'. Given any integers a and b, with

Proof Consider the arithmetic progression
---,b—3a,b—2a,b—ab,b+ab+2ab+3a -

extending indefinitely in both directions. I_n this sequcnce,ds;le?d[tlhi
smallest non-negative member and denote it by r. Thus byh e mll :: o
satisfies the inequalities of the theorem. But z{l&u r, being in the seq .‘
is of the form b — ga, and thus g is defined in terms of_r. g a &

To prove the uniqueness of g and r, suppose tI’lereﬂlls:‘]:lnr & r.PFor j}
and r, satisfying the same conditions. First we prOV:ﬂ = Ilheli i fhi
not, we may presume that r <r, so that0 <r, —r<a,
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@ Divisibility

that r, — r = alg — q,) and so al(r, — r), a contradiction to Theorem 1.1,
gart 5. Hence r = r, and also ¢ = q,. . \

We have stated the theorem with the assumption a > 0. However, this
hypothesis is not necessary, and we may formulate the theorem without it:
given any integers a and b, with a # 0, there exist integers g and r such
that b=ga +r, 0 <r < |al. 3 .

Theorem 1.2 is called the division algorithm. An algorithm is a mathe-
matical procedure or method to obtain a result. We have stated Theorem
1.2 in the form “there exist integers g and #,” and this wording suggests
that we have a so-called existence theorem rather than an algorithm.
However, it may be observed that the proof does give a method for
obtaining the integers g and r, because the infinite arithmetic progression

---,b—a,b,b+a,--- need be examined only in part to yield the
smallest positive member r.
In actual practice the quotient g and the remainder r are obtained by

the arithmetic division of a into b.

Remark on Calculation Given integers a and b, the values of g and r can
be obtained in two steps by use of a hand-held calculator. As a simple
example, if b = 963 and a = 428, the calculator gives the answer 2.25 if
428 is divided into 963. From this we know that the quotient q = 2. To get
the remainder, we multiply 428 by 2, and subtract the result from 963 to
obtain r = 107. In case b = 964 and a = 428 the calculator gives 2.2523364
as the answer when 428 is divided into 964. This answer is approximate,
not exact; the exact answer is an infinite decimal. Nevertheless, the value
of g is apparent, because g is the largest integer not exceeding 964 /428;
in this case g = 2. In symbols we write g ={964/428]. (In general, if x is
a real number then [x] denotes the largest integer not exceeding x. That
is, [x] is the unique integer such that [x] < x < [x] + 1. Further proper-
ties of the function [x] are discussed in Section 4.1.) The value of r can
then also be determined, as r = b ~ ga = 964 — 2 - 428 = 108. Because
the value of g was obtained by rounding down a decimal that the
calculator may not have determined to sufficient precision, there may be a
question as to whether the calculated value of g is correct. Assuming that
the calculator performs integer arithmetic accurately, the proposed value
of g is confirmed by checking that the proposed remainder b — gz = 108
lies in the interval 0 < r < @ = 428:'In case r alone is of interest, it would
be tempting to note:that 428 times 0.2523364'is 107.99997, and then round
to the nearest integer, Thé method we have described, though longer, is
more reliable, as. it depends only on’integer arithmetic, i

3

1.2 Divisibility
(

Definition 1.2 The integer a is a common divisor of b g i

alc. Since there is only a finite number of dim'm,,fof :;c"ﬁ;:_;“_]bw.
there is only a finite number of common divisors of b and ¢, exceptin e >
b=c=0. If at least one of b and c is riot 0, the greatest amg, Case
common divisors is called the greatest common divisor of b tind :3 ﬂqu,
denoted by (b, ¢). Similarly, we denote the greatest common divisor B
integers by, b, b,, not all zero, by (b, by, -, b.), R of the

Thus the greatest common divisor (b, ¢) is defined for every pair
integers b, ¢ except b = 0, ¢ = 0, and we note that (b,c)> 1. &

Theorem 1.3 If g is the greatest common divisor of b and c, then there exist
integers x, and y, such that g = (b, c) = bxy + cy,.

Another way to state this very fundamental result is that the Ereatest
common divisor (abbreviated g.c.d.) of two integers b and ¢ is expressible
as a linear combination of b and ¢ with integral multipliers x, and Yo
This assertion holds not just for two integers but for any finite collection,
as we shall see in Theorem 1.5.

Proof Consider the linear combinations bx + cy, where x and ¥ range
over all integers. This set of integers {bx + cy) includes positive and
negative values, and also 0 by the choice x = y = 0, Choose x5 and y, sc
that &x, + cy, is the least positive integer / in the set; thus ! = bx;, + oy,

Next we prove that /|6 and flc. We establish the first of these, and the
second follows by analogy. We give an indirect proof that 11, that is, we
as§umF {4b and obtain a contradiction. From /¥'b it follows that there
CXist integers ¢ and r, by Theorem 1.2, such that b =lg + r with
0 < r < I Hence we have r==>b—lg=2>b—qlbx, + cy,) = b(l — gxy) +
f(-—qyo), and thus r is in the set {bx + cy}. This contradicts the fact that |
is the least positive integer in the set {bx + cy}.

Now since g is the greatest common divisor of & and €, we may write
b=gB c=gC, and I = bxo + cyg = g(Bxy + Cy,). Thus gll, and so by
part 5 of Theorem 1.1, we conclude that g <! Now g </ is impossible,
since g is the greatest common divisor, so g = [ = bxy + cyg. el

Theorem 1.4  The greatest common divisor g of b and ¢ can be characterized
in the following two ways: (1) It is the least Ppositive value of bx + cy where x
and y range over ail integers; (2) it is the positive common divisor of b and ¢
that is divisible by every common divisor,
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Proo) rt 2, we
follows from the proof of Theorem 1.3. To prove pa

! P;::tlif‘:i is any common divisor of b and c, then dlg by part of

?':?or::m 1.1. Morcover, there cannot be two distinct integers with prop-

erty 2, because of Theorem 1.1, part 4.

i i ible i - hen d is not

“If an integer d is expressible in the form d = bx + ¢y, t r
neccfsaridy thegg.c‘d. (b, c). However, it does follow from such an equation
that (b, c) is a divisor of 4. In particular, if bx + ¢y = 1 for some integers

x and y, then(b,c) = 1.

Theorem 1.5 Given any integers by, by, o, b, not all zero, with greatest
common divisor g, there exist integers x, x;," "+, x,, such that

i
g=(b,by b)) = ¥ b,

i=1

Furthermore, g is the least positive value of the linear form Lj_\b, 7 where
the y, ronge over all integers; also g is the positive common divisor of
by, by, -, b, that is divisible by every common divisor.

Proof This result is a straightforward generalization of t_hc Precedin_g two
theorems, and the proof is analogous without any complications arising in
the passage from two integers to n integers.

Theorem 1.6 For any positive integer m,
(ma, mb) = m(a,b).

Proof By Theorem 1.4 we have
(ma, mb) = least positive value of max + mby
= m - {least positive value of axr + by}
=m(a,b).
Theorem 1.7 If dla and d|b and d > 0, then

T

)

.tffu.h) =g, then

1.2 Divisibility . 9

Proof The second assertion is the special case of the first obtained by
using the greatest common divisor g of a and b in the role of d. The first
assertion in turn is a direct consequence of Theorem 1.6 obtained by
replacing m, a, b in that theorem by d, a/d, b/d respectively.

ol
Theorem 1.8 “If (a,m) = (b,m) = 1, then (ab,m) = 1.

Proof By Theorem 1.3 there exist integers x,. yo, x,, ¥, such that | =
axy + myy = bx; + my,. Thus we may write (ax,Xbx,) = (1 — my,)
(1 —my) = 1 = my, where y, is defined by the equation Yi=Yg+y, —
myyy,. From the equation abr,x, + my, =1 we note, by part 3 of
Theorem 1.1, that any common divisor of ab and s is a divisor of 1, and
hence (ab, m) = 1. :

Definition 13 We say that a and b are relatively prime in case (a, b) = 1,
and that a;, a,," -, a,, are relatively prime in case (aj,ay,--,a,) =1 We
say that a,, a,,- - -, a, are relatively prime in pairs in case (a,,a,) = | for
alli=1,2-nandj=1,2,--- nwih i # J.

The fact that (a, b) = 1 is sometimes expressed by saying that a and b
are coprime, or by saying that a is prime to b.

Theorem 1.9  For any integer x, (a, b) = (b, a) = (a, — b) = {a. b + ax),

Proof Denote (a, b) by d and (a, b + ax) by g. It is clear that (b,a) =
(a, = b)=d.

By Theorem 1.3, we know that there exist integers xy and y, such
that d = ax,, + by,. Then we can write

d =a(xy —xv) + (b + ax) y,.

It follows that the greatest common divisor of a and b + ax is a divisor of
d, that is, g|ld. Now we can also prove that d|g by the following argument.
Since dla and d|b, we see that d|(b + ax) by Theorem 1.1, part 3. And
from Theorem 1.4, part 2, we know that every common divisor of g and
b + ax is a divisor of their g.c.d., that is, a divisor of g. Hence, dlg. From
dlg and gld, we conclude that d = +g by Theorem 1.1, part 4. However,
d and g are both positive by definition, so d = 8.
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10 Divisibility

Theorem 1.10 If clab and (b, c) = 1, then cla.

Proof By Theorem 1.6, (ab, ac) = a(b, c) = a. By; hypathesis clab and
clearly clac, so cla by Theorem 1.4, part 2. 7 - *;

Given two integers b and ¢, how can the greatest common divisor g
be found? Definition 1.2 gives no answer to this question. The investiga-
tion of the set of integers {(bx + cy) to find a smallest positive element is
not practical for large values of b and ¢. If b and c are small, values of g,
Xg, and y, such that g = bxy + oy, can be found by inspection. For
example, if b = 10 and ¢ = 6, it is obvious that g = 2, and one pair of
values for x4, ¥, is 2, — 3. But if b and c are large, inspection is not
adequate except in rather obvious cases such as (963, 963) = 963 and
(1000, 600) = 200. However, Theorem 1.9 can be used to calculate g
effectively and also to get values of x, and y,. (The reason we want values

of x4 and y, is to find integral solutions of linear equations. These turn up

in many simple problems in number theory.) We now discuss an example
to show how Theorem 1.9 can be used to calculate the greatest common
divisor.

Consider the case b = 963, ¢ = 657. If we divide ¢ into b, we get a

g = 1, and remainder r = 306. Thus b=cq+r,orr=>5b—cq,

quotient
c) by replacing a

in particular 306 = 963 — 1 - 657. Now (b,¢).= (b — cq,
and x by ¢ and —g in Theorem 1.9, so we see that

(963,657) = (963 — 1 - 657,657) = (306, 657) -

The integer 963 has been replaced by the smaller integer 306, and this
suggests that the procedure be repeated. So we divide 306 into 657 togeta

quotient 2 and a remainder 45, and

(306, 657) = (306,657 — 2~ 306) = (306,45).

Next 45 is divided into 306 with quotient 6 and remainder 36, then 36 is
divided into 45 with quatient 1 and remainder 9. We conclude that
(963, 657) = (306, 657) = (306,45) = (36,45) = (36,9).
il e non i
Thus (963, 657) = 9, and we can express 9 as a linear combination of 963
and 657 by sequentially writing eachr remainder’as a linear combination of

1.2 Divisibility
1
the two original numbers: \
306 = 963 — 657;

45 = 657 — 2 - 306 = 657 — 2 - (963 — 657)

=3:657—2-963;
36*306—6'45=(‘)63—*657)—6-(3-657—2.%3}

= 13- 963 — 19 - 657;
9 =45—36=3-657 —2-963 — (13- 963 — 19 - 657)

= 22657 — 15 - 963.

In terms of Theorem 1.3, where g = (b, ¢) = bry + cy,, beginning with
b =963 and ¢ = 657 we have used a procedure called the Euclidean
algorithm to find g = 9, X5 = — 15, yo = 22. Of course, these values for 1,
and y, are not unique: —15 + 657k and 22 — 963k will do where k is any
integer.

To find the greatest common divisor (b, ¢) of any two integers b and
¢, we now generalize what is done in the special case above. The process
will also give integers x, and y, satisfying the equation bxo + ¢y = (b,c).
The case ¢ = 0 is special: (b,0) = |b|. For ¢ = 0, we observe that (b, c) =
(b, — ¢) by Theorem 1.9, and hence, we may presume that ¢ is positive.

Theorem 1.11 The Euclidean algorithm. Given integers b and ¢ > 0, we
make a repeated application of the division algorithm, Theorem 1.2, lo oblain

a series of equations

b=cq, +r, 0<r <c,
c=nrg; tnr, 0<r,<ry,
r=raq; +ry, 0<r<r,

Lo =r_aq;tr, 0<r<r_,.
Loy =ndg, .-
The greatest common divisor (b,c)} of b and ¢ is r;. the lasr nonzero

remainder in the division process. Values of xo and yo in (b, c) = bxy + &g
can be obrained by writing each r, as a linear combination of b and c.

Pro.af The chain of equations is obtained by dividing c into b, r; into ¢
ry into ry,---,r; into r,_,. The process stops when the division is exact,
that is, when the remainder is zero. Thus in our application of Theorem
1.2 we have written the inequalities for the remainder without an equality
sign. Thus, for example, 0'< r; <c in place of 0 < r; < ¢, because if iy
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were equal to zero, the chain would stop at the first equation b = eq,, in
which case the greatest common divisor of & and ¢ would be c.

We now prove that r, is the greatest commeon divisor g of b and c. By
Theorem 1.9, we observe that £

(&,¢) = (b —cq;.c) =(’|-C,=’(’l-c"r|‘?:) 3
= (rp.r2) = (ry = rags.ry) = (r5.13).

Continuing by mathematical induction. we get (b,c) = (r,_.r))=1(r,0)
= f'. _ )

To ses that 7, is 2 linear combination of b and ¢, we argue by
induction that each r, is a linear combination of b and c. C!cari;. r is
such a linear combination. and likewise r,. In general, r, is a linear
combination of r,_; and r,_.. By the inductive hypothesis we may suppose
tkat these latter two numbers are linear combinations of b and ¢, and it
follows that r, is also a linear combination of b and .

Example 1 Find the greatest common divisor of 42823 and 6409.

Solurion  We zpply the Euclidean algorithm, using a calculator. We divide
¢ intc b, where b = 42823 and ¢ = 6409. following the notation of
Theorem 1.11. The quotient g, and remainder r, are g, = 6 and r, = 4369,
with the derzils of this division as follows. Assuming the use of the
simplest kind of hand-heid calculator with only the four basic operations
~.— .x% .= . when 6409 is divided into 42823 the calculator gives
6.6516976. or some version of this with perhaps fewer decimal places. So
we know that the guotient is 6. To get the remainder, we multiply 6 by
6409 to ger 3%454, and we subtract this from 42823 to get the remainder
4369.

Continuing, if we divide 4369 into 6309 we get a quotient g, = 1 and
remazinder r, = 2040. Dividing 2040 into 4369 gives q; = 2 and r; = 289.
Drviding 289 into 2040 gives g, = 7 and r, = 17. Since 17 is an exact
divisor of 259, the solution is that the g.c.d. is 17

This can be put in tabular form as follows:

42823 = 6 - 6409 + 4369 (42823, 6409)
6409 = 1-4369 + 2040 = (6409,4369)
4369 = 2 - 2040 + 289 = (4369,2040)
2040 = 7 - 289 + 17 = (2040, 289)

289 = 17- 17 = (289,17) = 17

[

12 Dicisibility
13
Example 2 Find integers x and v to satisfy i
428231 + ANy = 17,
Solunon  We find integers x, and ), such that
42823x, + 640y, =1,
Here it is natural to consider 1 = 1,2+, but to initiate the process we

also consider i = D and { = =1, We put r_, = 42523, and write
42823 - 1 + 6409 - 0 = 42823,

Similarly, we put r, = 6409, and write
42823 -0 - 6409 - 1 = 649

We multiply the second of these equations by g, = 6. and subtract the
result from the first equation. to obtain

42823 - 1 + 6309 - ( —6) = 4369,

We multiply this equation by g, = 1, and subtract it from the preceding
equation to find that

42823 - (—1) + 6309 - 7 = 2040.

We multiply this by g, = 2, and subtract the result from the preceding
equation to find that

42823 -3 + 6409 - (—20) = 289.

Next we multiply this by g, = 7. and subtract the result from the preced-
ing equation to find that

42823 - (—22) + 6409 - 147 = 17.
On dividing 17 into 289, we find that g; = 17 and that 289 = 17+ 17. Thus
ry is the last positive remainder, so that g = 17, and we may lake

x = —22, y = 147. These values of x and y are not the unly_one‘s pf.)ssibtc.
In Section 5.1, an analysis of all solutions of a linear equation is given.
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14 Divisibility

Remark on Calculation. 'We note that x, is determined from x,_, and
X,z by the same formula that r, is determined from r,_, and r,_,. Thati
h=hoar— 40 -

Xy =Koy QX s

and similarly

Yo =Yi-a =4 i
The only distinction between the three sequences r,, x,, and y, is that they
start from different initial conditions:

r..=b, ro=¢,

x_,=1, x5 =0,

and
Y =0, yo=1.
Just as polynomial division may be effected symbolically, omitting the

powers of the variable, we may generate the g, r, x, ¥, in a compact
table. In the numerical example just considered, this would take the

following form:

i Giv 5 L i

-1 42823 1 0
0 6 6409 0 1
1 1 4369 1 -6
2 2 2040 -1 7
3 7 289 3 -20
4 17 17 -22 147
5 0

When implemented on a computer, it 1s unnecessary to record the entire
table. Each row is generated solely from the two preceding rows, so it
suffices 10 keep only the rwo latest rows. la the numerical cases we have
considered it has been the case that b > ¢. Although it is natural to start
in this way, it is by no means necessary. If b < ¢, then ¢, = O and r, = 5,
which has the eflect of interchanging & and c.

Example 3 Find g = (b, c) where b = 5033464705 and ¢ = 3137640337,
and determine x and y such that br + o = z.

1.2 Dicisibility
I

Solution We calculate:

5033464705 1 0

1 3137640337 o - )
1 1895824368 1 -1
1 1241815969 il 2
1 654008399 2 -3
1 587807570 -3 5
8 66200829 ] -8
1 58200938 -43 - 69
7 7999891 48 ' -7
3 2201701 -379 : 608
1 1394788 1185 : - 1901
1 806913 - 1564 . 2509
1 587875 2749 -H10
2 219038 —4313 619
1 149799 11375 - 18248
2 69239 ~ 15688 25167
6 11321 42751 -68582
8 1313 —272194 436659
1 817 2220303 —3561854
1 496 - 2492497 3998513
1 321 4712300 — 7560367
1 175 — 7205297 11558380
1 146 11918097 — 19119247
5 29 — 19123394 30678127
29 1 107535067 — 172509882

Thus g = 1, and we may take x = 107535067, y = — 172509882,

- c;?;;za(c; m;rnber of n_erau‘clms I;'ol' the Euclidean algorithm required
“-, i , ¢) depends in an Intricate manner on b and c, but it is easy
bl r5 a rough bound for j as follows: If r, is small compared with
é—l}:;mﬁlf‘é fﬁ;uz/i»:hzn subsgnnti;! irogrcss has been made at this step.

o B S h-p Inwhich case g, = l,and 7, , =r_ -
EC(d;’d_uI({Czd. ;l;:’uls wesee that r,,., <r,_, /2 in either case. From this it can
il ar;uf 3log c. (Here, and throughout this book, we employ
b mofc i M, to the base e. Some writers denote this function
b are we could improve on the constant 3 (see Problem 10

M 4.4), but it is nevertheless the case that j is comparable to log¢
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16 Divisibility

for most pairs b, c. Since the logarithm increases very slowly, the practical
consequence is that one can calculate the g.c.d. quickly, even when b and

¢ are very large.

Definition 1.4 The integers ay, a5, -, a,, all different from zero, have a
common multiple b if a |b fori = 1,2,-- n. {Note that conumon multiplcs
do exist; for example the product a,a, - -- a, is one.) The least of the positive
common muliiples is called the least common multiple, and it is denoted by

[aj a2 54,

Theorem LI2 If b is any commen multiple of a,.a,, . a,. then
[a,, a3, - -2 a,llb. This is the same as saying that if h denotes [a,. a5, *, a,],
then 0, x h, £ 2h, + 3h, -+ comprise all the common muliiples of

e L

Proof Let m be any common multiple and divide m by h. By Theorem
1.2 there is a quotient ¢ and a remainder r such that m = gh + r,
0 < r < h. We must prove that r = 0. If 7 # 0 we argue as follows. For
each i = 1,2,---,n we know that a,lA and a,|m, so that a,|r. Thus r is a
positive common multiple of a,, a,," -+, a, contrary to the fact that 4 is
the least of all the positive common multiples.

Theorem 1L.13  Ifm > 0, [ma, mb] = mla.bl. Also [a.b)] - (a.b) = labl.

Proof Let H =[ma,mb], and h = [a, b]. Then mh is a multiple of ma
and mb, so that mh > H. Also, H is a multiple of both ma and mb, so
H /m is a multiple of a and b. Thus, H/m = h, from which it follows that
mh = H, and this establishes the first part of the theorem.

It will suffice to prove the second part for positive integers a and b,
since (o, — b] = [a, b]. We begin with the special case where (a,b) = 1.
Now [a, b] is a multiple of a, say ma. Then blma and {a,b) = 1, 50 by
Theorem 1.10 we conclude that b|m. Hence b < m, ba < ma. But ba,
being u positive common multiple of b and 4, canno: be less than the least
common multiple, so ba = ma = [a, b].

Turning 10 the general case where {(a,b) =g > 1, we have
(a/g.b/g) =1 by Theorem 1.7. Applying the result of the preceding

paragraph, we obtain
[n b”a b) ab
g elle ] e

Multiplying by g? and using Theorem 1.6 as well as the first part of the
present theorem, we get [a, bja, b) = ab.

1.2 Divisibility 17
lPROBLEMS
1. By using the Euclideaa algorithm, find the greatest common divisor
(g.cd.) of =

(a) 7469 and 2464; (k) 2689 and 4001;

(¢) 2947 and 3997; (d) 1109 and 4999. .
2. Find the greatest common divisor g of the numbers 1819 and 3587,

and then find integers x and y to satisfy

1819x + 3587y = ¢,

3. Find values of x and y to satisfy
(a) 423x + 198y = 9;
(b) 71x — 50y = 1;
(e) 43x+6dy = I;
(d) 93x — 8ly = 3;
(e).6x+ 10y + 152 = 1.

4. Find the least common multiple (l.c.m.) of (a) 482 and 1687, (b) 60
and 61.

5. How many integers between 100 and 1000 are divisible by 77

6. Prove that the product of three consecutive integers is divisible by 6;
of four consecutive integers by 24.

7. Exhibit three integers that are relatively prime but not relatively
prime in pairs.

. Two integers are said to be of the same parin: if they are both even
or bot.h odd; if one is even and the other odd, they are said to be of
opposite parity, or of different parity. Given any two integers, prove
that their sum and their difference are of the same parity.

9. Show that if ac|bc then alb.
10. Given alb and c|d, prove that aclbd.
11. Prove that 4.¥ (n* + 2) for any integer n.
12. Given that (a,4) = 2 and (b,4) = 2, prove that (g + b,4) = 4,
13. Prove that n® — n is divisible by 2 for every integer »; that #® — n is
divisible by 6; that n* — i is divisible by 30,

14. Prove that if n is odd, n® — 1 is divisible by 8.

15, Prove that if x and v are odd, then x* + y2 is even but not divisible
by 4.

16. Prove that it a and b are positive integers satisfying (a. b) = [a. b]
then a = b.

7. Evaluate (n,n + 1) and [n, n + 1] where n is a positive integer.

o
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Divisibility

plane. Similarly, draw n — 2 additional regular pentagons on the
base sides P\ Py, PP, -+, PP, all pentagons lying on the same
side of the line P, P,. Mark dots at each vertex and at unit intervals

along the sides of these pentagons. Prove that the total number of
dots in the array is (3n2 — n)/2, In general, if regular k-gons are
constructed on the sides PPy, PP, PP, with dots marked
again at unit intervals, prove that the total number of dots is
1 + &kn(n ~ 1)/2 = (n = 1) This is the nth k-gonal number.

*49. Prove that if m > n then a" + 1 is a divisor of a2 — 1. Show that
if a, m, n are positive with m = n, then

i= 2= = [1if aiseven
Sin Lkl {Zifnisodd.
*50. Show that if (a, b) = 1 then (a + b,a?

_ —ab+b¥) =1or3.
*51. Show that if (a, b) = 1 and p is an od

d -pril"nc, then

ba’+b" 1
; = ]1orp.
(a+ ) a+b‘) §

7‘52. Suppose that 2" + 1 = xy, where x and y are integers > 1 and
n > 0. Show that 2?|(x — 1) if and only if 2°|(y — 1).

- *53. Show that (n!+ 1,(n + 1)1+ 1) = 1. .

- **54. Let a and b be positive integers such that (1 + ab)|(a? + b2). Show

g that the integer (a® + b?)/(1 + ab) must be a perfect square. .

-3 PRIMES

Definition 1.5 An integer p > 1 is called a prime numpcr, ora frim;,n ta.r:
case there is no divisor d of p satisfying 1 < d < p. If an integer a
a prime, it is called a composite number.

Thus, for example, 2, 3, 5, and 7 are primes, whereas 4, 6, 8, and 9 are
composite.

ct
Theorem 1.14 Every integer n greater than 1 can be expressed as a produ
of primes (with perhaps only one factor).

x ; .
Proof If the integer n is a prime, then the lntegcrfltcsg:ezlta;::z ass.ay

i i a , say,
*product” with a single factor. Otherwise n can be

- **Problerns marked with a double asterisk are much more difficult.

L3 Primes

nng, v:rhc.re 1 <N, <nand l<n,<y If n
un.th'emmc 1t will factor into, say, n.p whu.:. 1
stmilarly for n, Fiti p

H <n, <

- This process of writi YSmand | < g, «
i iting cach ¢o R 4

a5.a product of factors must ¢ : p0tite

1 is a

n= p‘l‘np;z e D;"
where P1 Py -+, p, are distingt primes and T a3, @, are positive,
'I‘!1is representation of n as a product of primes is called the canonical
fgzc:mnng of n into prime powers. It turns out that the represemtation is
unique in the-sense that, for fixed M, any other representation is merely a
reordering or permutation of the factors, Although it may appear obvious
that the factoring of an integer into a product of primes is unique,
nevertheless, it requires proof. Historically, mathematicians took the
unique factorization theorem for granted, but the great mathematician

cal systems, notably in algebraic
hapter 9, where unique factoriza-
this property causes considerable
he subject. To demonstrate that
a mathematical system, we digress
to present two examples in which
xample is easy; the second is much
mitted on a first reading of this book.
First consider the class & of positive even integers, so that the

elements of ¢ are 2,4,6,8,10, - - - . Note that & isa multiplicative system,
the product of any two elements in & being again in &. Now let us confine
our attention to & in the sense that the only “numbers” we know are
members of . Then 8 = 2+ 4 is “composite,” whereas 10 is a “pr‘:‘me
since 10 is not the product of two or more *“numbers.” The primes"” are
2,6,10,14, - -, the “composite numbers” are 4,8, 12, - - . Now the Dnumc-l
ber” 60 has two factorings into “primes,” namely 60 = 2.- 30 =6 10, an
so factorization is not unique.” ) :

i:\ semewhat less .artiﬁqcial, but also rather more comp!l;‘c,g_l_%. ;);;n::lz
is obtained by considering the class ¢ of numbers a -} aahihigiiva
and b range over all integers. We say that this system

number theory, which is discussed in C
tion fails to hold, and the absence of
difficulty in a systematic analysis of t
unique factorization need not hold in
from the main theme for a moment
factorization is not unique. The first e
harder to follow, sa it might well be o

Scanned with CamScanner



a9 Divisibility

addition and multiplication, meaning that the sum and product of two
elements in ¢ are elements of €. By taking b = 0 we note that the
integers form a subset of the class #.

First we establish that there are primes in «, and that €very number
in ¢ can be factored into primes. For any number a + by— § in < it will
be convenient to have a norm, N(a + by~ 6), defined as

N(a+b/=6)=(a+b/—6)a = bV=6) = a? + 62,

Thus the norm of a number in ¢ is the product of the complex number
a + b/— 6 and its conjugate a — by — 6. Another way of saying this,
perhaps in more familiar language, is that the norm is the square of the
absolute value. Now the norm of every number in ¢ is a positive integer
greater than 1, except for the numbers 0,1, — 1 for which we have
NWO)=0, NI) =1, N(—-1) = 1. We say that we have a factoring of a +
by — 6 if we can write

a+b/=6 = (x, +yV=6)(x, +y,y—6) (1.1)

where N(x, + y,/~ 6) > 1 and N(x, + y,'— 6) > 1. This restriction on
the norms of the factors is needed to rule out such trivial factorings
as a+bV=6=(1Xa+byY-6)=(—1X—-a — bY—6). The norm of
a product can be readily calculated to be the product of the norms of
the factors, so that in the_ factoring (1.1) we have N(a + bvV—6) =
N(x, + yV= 6)N(x, + y,/— 6). It follows that

1 <N(x, +y,Y=6) <N(a+b/—6),
1<N-(x2+y2v/-—6){N(a +b'i/—_6)

50 any number a + b¥ —6 will break up into only a finite number of
factors since the norm of each factor is an integer.

We remarked above that the norm of any number in ¢, apart from 0
and 1, is greater than 1. More can be said. Since N(a + bV — 6) has the
value a? + 6b%, we observe that

N(a+w—6);_6 ifb+0, (1.2)

that is, the norm of any nonreal number in ¢ is not less than 6. )

A number of # having norm >1, but that cam:lot be‘fact'ured in ll!c
sense of (1.1), is called a prime in €. For example, 5 is a prime in &, for 12
the first place, 5 cannot be factored into real numbers in «. In the secon

L3 Primes ; E

Place, if we had a factoring 5 = |
B3 =(x +y /=
plexinumbers, we could take norms ]to gt; 6 X, /%) ingg

5 =N(x, +y, V= WN(x, 4y 0= §)
which contradicts (1.2), Thus, 5 is a prime
establishes that 2 is a prime. Prime In €, and 4 similay

) We 4re now in a position to show that not ]
uniquely into primes, Consider the number 10 ap,

iy

I Numberg of
d its two facw'_e "“'

0=2-5=2+/=8)2-v=p),

The first product 2 - 5 has factors that ar
Thus we can conclude that there is not un;
10/in #". Note that this conclusion d
Foul 0€s not depend on gur know
2+ v'l 6and 2 — y~6 are primes; they actually are, bug -y ; B
tant in our discussion, , i
) This exarrfple may also seem artificial, but jt is, in fact, taken from a2
important topic, algebraic number theory, discussed in Chapter 9,
We now return to the ‘discussion of unique factorizalioﬂ in the

ordinary integers 0, + L+2 -+, It will be i
following result. S

Theorem 1.15 If plab, p being a prime, then pla or p|b. More generally, i
plaia, -+ a,, then p divides ay least one factor a, of the product. 3

Proof 1f pXa, then (a2, p) =1 and so by Theorem 1.10, p|b: We ma
regard this as the first step of a proof of the general statement by
mathematical induction. So we assume that the proposition holds whes
ever p divides a product with fewer than n factors, Now if pla,a, -~ 4,
that is, pla,c where ¢ = a,a, --- a,, then pla, or plec. If ple we apph
the induction hypothesis 'to conclude that pla, for some subscript i from?
to .

Theorem L.16 The fundamental theorem of arithmetic, or the unique facior
ization theorem. The factoring of any integer n > 1 into primes is unique aps
from the order of the prime Sactors.

First Proof Suppose that there is an integer n with two different fiﬂ::
ings. Dividing out any primes common to the two representations:
would have an cquality of the form

el (13
P\P; " p=qqy " g, :
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~ where the raf:t_ors 7 and g; are primes, not necessarily all distinct, b

- where no prime on the left side occurs on the right side. But tr;is ‘:;
impossible bc‘f‘lu.sc pilg,q, *+ - q,, so by Theorem L.15, p, is a divisor of
] a’: least one of the g;. That is, p, must be identical with at least one of
. the g,. it

Second Proof - Suppose that the theorem is false and let # be the smallest
positive integer having more than one representation as the product of
primes, say ;

n=p\p; TP =919 " 4, (1.4)

Ses AR Pl R |

It is clear that r and s are greater than 1. Now the primes p,, p,, -, p,
have no members in common with g,, q,," -, g, because if, for example,
p, were a common prime, then we could divide it out of both sides of (1.4)
to get two distinct factorings of n/p,. But this would contradict our
assumption that all integers smaller than n are uniquely factorable.

Next, there is no loss of generality in presuming that p, < 4,, and we
define the positive integer N as :

N=(g,-p)a:q -+ 4, =p(P2P3 " " P, — %203 """ 4,). (1.5)

it is clear that N < n, so that N is uniquely factorable into primes. But
'py (g, — p,), so (1.5) gives us two factorings of N, one involving p, and
the other not, and thus we have a contradiction. ,

= In the application of the fundamental theorem we frequently write any
. integer @ > 1 in the form .

. aw= I_‘Ipaip)
gor 2

where a(p)is a non-negative integer, and it is understood tha:lt n:(_p) =0
for all sufficiently large primes p. If a = 1 then a(p) = 0 for 1 Sg::ll:t?:‘lfs'
and the product may be considered to be empty. For brevity w uetimg
‘write @ = T1p®, with the tacit understanding that the exponeénts a depe:
on p and, of course on a. If :

a ) (1.6)

o) a(p)! b = I-IP"“”-,.— c = ,I_Ip’-’ ),
a I;Ip . 3 i .

by the ‘fundamental

p- If, conversely,

and ab = c, then a(p) + B(p) = ¥(p) for all p,
[1p## with

: (p) for all
theorem. Here alc, and we note that a(p) < ¥(P -
..a(p) < y(p) for all p, then we may define an integer b

L3 Primes

B(p) = v(p) ~ o =
P) = alp). Then ab = ¢, whicn

that the divisibility m:ﬂm ale is 'eq‘:’if;;::;?os?: that alc. Thy, o

alp) < ; o farmite b
¥(p). As a consequence, the greatest Dom:::::wd'n{' inequalitie
WVisor and the

least common multiple can be written as

(a,b) = min (a(p), B¢ p))
I;IP m, [a,b] = EIP"'""("'“'”. (7

For example, if @ = 108 and b = 225, then

a =235 p=203252

(a_ b) = 203250 =9, [a,b] = 223151 = 2700,
The first part of Theorem 1.13, like many similar identities, follows easily
from the fundamental theorem in conjunction with (1.7). Since min (a, B)
+ max(a, B) = a + B for any real numbers a, g, the relations (1.7) also
provide a means of establishing the second part of Theorem 1.13. On the
other hand, for calculational purposes the identifies (1.7) should only be
used when the factorizations of 2 and b are already known, as in general
the task of factoring a and & will involve much more computation than is
required if one determines (a, &) by the Euclidean algorithm.
We call a a square (or alternatively a perfect square) if it can be
written in the form n? By the fundamental theorem we see that a is a
square if and only if all the exponents a{p) in (1.6) are even. We say that
a is square-free if 1 is the largest square dividing @. Thus a is square-free if
and only if the exponents a(p) take only the values 0 and 1. Finally, we
observe that if p is prime, then the assertion p*lla is equivalent to
k = alp).

Theorem 1.17 Euclid. The number of primes is infinite. That is, there is no
end to the sequence of primes .
2,3,5,7,11,13, .,

Proof Suppose that py, p,, -, p, are the first r primes. Then form the
number ! ‘ ‘
n=1+pp; P

- or p,. Hence any prime

is n ivisi b or or -
Note that n is not divisible by p, P O Prsince n is cither a

divisor p of n is a prime distinct from p,, p2,° 5 1 e
prime or has a prime factor p, this implies that lh?rc is a prime c;::lt_m:;
from p,, P3," ", P, Thus we see that for any finite .r,ﬁtl!te num
primes is not exactly r. Hence the number of primes is infinite.
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26 Divisibility

Students often note that the first few of the numbers n here are
primes. However, 1 + 2+3 5.7+ 11- 13 = 59 - 509,

Theorem 1.18 There are arbitranly large gaps in the series of primes. Stated
otherwise, given any positive integer k, there exist k consecutive composite
integers,

Proof Consider the integers
(k+ D!+ 2,(k+ 1)+ 3,---,(5 + )+ Ak (k+ D)+ k+ 1.

Every one of these is composite because j divides (k + I)!+j if 2 <j <
k + 1.

The primes are spaced rather irregularly, as the last theorem suggests.
If we denote the number of primes that do not exceed x by m(x), we may
ask about the nature of this function. Because of the irregular occurrence
of the primes, we cannot expect a simple formula for =(x), but we may
seek to estimate its rate of growth. The proof of Theorem 1.17 can be used
to derive a lower bound for w(x), but the estimate obtained, m(x) >
cloglog x, is very weak. We now derive an inequality that is more
suggestive of the true state of affairs.

Tﬁeorelil 1.19 For every real number y =2,

-Y, —>loglogy — 1.

pPsy

Here it is understood that the sum is over all primes p < y. From this
it follows that the infinite series L1/p diverges, which ]';)rovides a second
proof of Theorem 1.17.

Proof Let y be given, y > 2, and let .# denote the set of all those
positive integers n that are composed entirely of primes p not exceeding
y. Since there are only finitely many primes p <y, ?nd since the terms of
an absolutely convergent infinite series may be arbitrarily rearranged, we

see that

1 1 ; 1 :
ﬂ{1+$+?+—5+-")=2;- (1.8)

pey P C nEN

e

13 Primes

g fofn b
If n is a positive integer <y then ) ey 5pq th
includes the sum I, ., 1/n. Let N denotelthe largest US the gop
ing y. By the integral test, Integer i
v §
' i
N1 N+1dx '
L2 [T e,

n=1 N

Thus the right side of (1.8) is > log y. On the other hand, the ¢
left side of (1.8) is a geometric series, whose value is (] - ]/p;‘[': on the

see that S0 e |
1 =1
IT(1- —) > log y.
p<y P
We assume for the moment that the inequality
el--n.l > (1 - U)-l (13]

holds for all real numbers v in the interval 0 < v < 1/2. Taking v = 1/p,
we deduce that o : C

1 1) o .
I1 exp[;-&-?).‘»!ogy."'

Py

Since [Texp(a;) = exp(La,), and since the logarithm function is monolot
ically increasing, we may take logarithms of both sides and deduce that i

i
3
¥
o

RN

7 > loglog y.
ey P pay P '

By the comparison test we see that the second sum is

and by the integral test this is

i #
S
5 e O LT 1.9). We "]
This gives the stated inequality, but it renrains to P'O"‘( :
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