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Divisibility

l 1 INTRODUCTION

: Thc theory of numbers. is concerned wuth properties of the nafural nums-
bers 1,2,3,4,- - -, also called the positive integers.; “These numbers, together
with the negative integers and zero, form the set of integers. Propertiesof = -
these numbers have been studied from earliest times. For example, an
integer is divisible by 3 if and only if the sum of its digits is divisible by 3,
as In the number 852 with sum of digits 8 + 5 + 2 = 15. The equation
x% + y? =22 has mﬁmtely many solunons in pos:tlve integers, such as
32 + 42 = 52, whereas x +y?>=z%and x* + y* = z* have none. There
are infinitely many prime numbers, wherem natural number
such as 31 that cannot be factored into two smaller natural numbers. Thus,
33 is not a prime, because 33 = 3 - 11. _ _

_' The fact that the sequence of pnmes, 2, 3 5 7,11,13,17,- NS | end—
less was known to Euclid, who lived-about 350 B.c. Also known to Euclid.
was the result that vr_ 153 an znc:;:w_gn._that is, a number that
‘cannot be expressed"a‘s—tﬁ‘” quoti a/b of two mtegersmers
2/7,13/5, —14/9, and 99/100 are examples of rational numbers The
integers are themselves rational numbers because; for examp!e, 7 can be
written in the form 7/1. Another exampie of an irrational number is r,
the ratio of the circumference to the diameter of any circle. The rational

number 22 /7 is a good approximation to r, close but not precise. The fact
that mls_lgaqtmn\allneans that there is no fraction a/b that is exactly
equal to 7, with a and b integers. - -
In addition to known results, number theory abounds wnth unsolved :
problems.. Some background is needed just to state. these problems in
many cases. But there are a few unsolved problems that can be understood.
_~Wwith essentially no prior knowledge. Perhaps the most famous of these is
the conjecture known as Fermat’s last theorem, which is not really: a
theorem at all hecausc it has: not yet been proved. Pierre.de Fermat
(1601-1665) stated that he had a truly wondrous proof thzit the equation
x".+y" = z" has no solutions-in positive integers x, y, z for any exponent -

n> ﬂ:;;Fermat added that the margm of the book was too small to hold'the
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z Divisibility

proof. Whether Fermat really had a proof is not known, but it,now secms
unlikely, as the question has eluded mathematicians since his time.
Results in number theory often have their_sources in empirical obser-
vations. We might notice, for example, lhat'Levcry natural number up to
1000 can be expressed as a sum of four squares of natural numbers, as
illustrated by
1000 = 302 + 10% + 0% + 0%,
We might then feel confident enough to make the conjecture that every
natural number is expressible as a sum of four squares. This turns out to
be correct; it is presented as Theorem 6.25 in Chapter 6. The first proof of
this result was given by J. L.-Lagrange (1736-1813). We say that the four

square thcorem is best possible, because not every positive integer is

a sum of three squares of integers, 7 for example.
examples may turn

999 = 302 + 9% + 3% + 32,
il 0

expressible as
Of course, a conjecture made on the basis of a few
—n + 41 is a prime

out to be incorrect. For cxampl:.‘\thc expression_n? — r

number for n = 1,2,3,---,40 because it is easy to verify that 41,43,
47,53,--+,1601 are indeed prime numbers. But it would be hasty to
conjecture that *_, 441 is a prime for every natural number n,
because for 1 the value is 41f; We say that the casc n = 41 is a

counterexample~to the conjecture. \}
“"Leonhard Euler (1707-1783)¢dnjectured that no nth power is a sum
of fewer than n nth powers (the Swiss name Euler is pronounced “Oiler").

For n = 3. this would assert that no cube is the sum of two smaller cubes.
em 9.35. However, a counterexample to

This is true; it is proved in Theor
Euler's conjecture was provided in 1968 by L. J. Lander and Thomas
Parkin. Aﬂ\r'}’l'c result of a detailed computer search, they found that

1445 = 27° + 84% + 110° + 133%.

In 1987, N. 1. E!kier;.uscd the arithmetic of elliptic curves to discoyer that

20615673 = 2682440* + 15365639* + 18796760*,

a subsequent computer search located the lcast counterexample to

and
Euler’s conjecture for fourth powers. 'y
. The Goldbach conjecnure asserts that every even integer greater than 2
is the sum of two primes, as in the cxamples CrLTCR VY.
e ﬂ 5 k 9""
4=2+2, 6=3¥3, 20-@:1(.
50 =3 +47," 100 =29 + 7L %
Stated by Christian Goldbach in 1742, verificd up to 100,000 at least, this
i ded all attcmpts at proof. b
conjecture has eva d p pr ~
TSR AR il )

L1 Introduction . %
f 3

Because it is relatively casy to make conjectures in number
person whose name gets attached to a problem has often m:dlhm“h‘
contribution than the one who later solves.it. For example, Joh:a-ls""
(1741-1793) stated thagevery prime p is a divisor of (p — 1)1+ n‘:;ﬂ:::

It has h forth béen known as Wilson’ r
result has hence Bcwat _P:?':s_thcorem. although the firy

proof was given by Lagrange. § " .——
However, empirical observations are important i i
n the dmny of

general results and in testing conjectures. They are also useful in
standing thedrems. In studying a book on number theory, you a;nd"
advised to construct numerical examples of your own devising, especi “!1
a concept or a theorem is not well understood at first, el
Although our interest centers on integers and rational numbers, not
_ell]"pro?fs are given within this framework.. For example, the proof lh'a! -
|sJ :rra;:onal makes use of the system of ‘real numbers. The proof that
Pyl = z3 has no solution in positive integers is carried out in the
setting of complex numbers.
] Numb'cr tr!coxy is not only a systematic mathematical study but also 2
popular diversion, especially in its elementary form. It is part of what is
calh?d recreational mathematics, including numerical curiosities and the
solving of puzzles. This aspect of number theory is not emphasized in this
book, unless the questions are related to general propositions. Neverthe-
less, a systematic study of the theory is certainly helpful to anyone lookin
at problems in recreational mathematics. . ;
. The theory of numbers is closely tied to the other areas of mathemat
ics, most especially to abstract algebra, but also to linear algebra, combina-
:;:::l;:s, nr;nlys:s, geometry, and even topology. Consequently, proofs in the
lhcrcrya:)c "mum:crs rcl): on many different ideas and methods. Of these,
Hritie i o basic pnm_:lples‘ to which we draw especial attention. The
Faiied ke any sctl of positive integers has a smallest element if it contains
. thcfnrist at a l.‘In oth_cr words, if a set .~ of positive integers is not
rclatu’c;n s czntams an integer s such that for any member a of ./, the
S a holds. The second principle, mathematical induction, is
gs";-‘l consequence of the first.' It can be stated as follows: If a set 7 of
positive integers contains the integer 1, and contains 7 + 1 whenever it
contlatm? n, then .~ consists of all the positive integers.
e mi:::: '.-';az bc well to point out that a simple statement which asserts
hele i v ln integer with some particular property may be easy [0
e pr‘opositi cl:ny f_l;;:’ls an :xamp.lc... For example, it is easy to demonstrate
pidhle . There is a positive number-that is not the sum of three
,"" by noting that 7 is such a number. On the other hand, 2

1
Compare G. Birkhoff and 8. M ;
o i plondsosde, - MacLane, A Survey of Modern Algebra, 4th ed., Macmillan
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statement which asserts that all numbers €ss a certain prop
be proved in_this manner. The aSscrtio:O?Every p?iﬁllp,:gﬁfb'g Zafn?f:
form 4n + 1 is a sum of two squares,” is substantially mgre difficult to
establish (see Lemma 2.13 in Section 2.1). T

Finally, it is presumed that you are familiar with the usual formulation
of mathematical propositions. In particular, if 4 and B are two assertions,
the following statements are logically equivalent—they are just differen;
ways of saying the same thing. ; . :

" . Divisibility

A implies B.

If A is true, then B is true. : A
In order that A4 be true it is necessary that B
B is a necessary condition for A.

A is a sufficient condition of B.

be: lrug;

If A implies B and B impli.es A, then one can ééy that B is a necessary
and sufficient condition for 4 to hold. ;
In general, we shall use letters of the roman alphabet, a,b,c, ,

m,n,--,x,Yy, z to designate integers unless otherwise specified. We let Z '

denote the set {---, =2, —=1,0,1,2, -=-} of all integers, Q@ the set of all
rational numbers, R the set of all real numbers, and C the set of all

complex numbers.

: -
1.2 D[VISIBILIT]@

Divisors, multiples, and prime and composite numbers are concepts l;l;(!,
have been known and studied at least since the time of Euclid, about
a.¢. The fundamental ideas are developed in this and the next section.

[ i is divisi [ ero, if there is
. Definition 1.1 = An integer b is divisible by an integer a, pol zero, I ¥

- “an x'nreg:r x such that b = ax, and we wri{e/fl;.l In case b is not divisible by
a,wcwn':ea,}"bﬂ e, &

. : . s

Other language foﬁhe divisibility property a_Ib is tfha; alfd:;gesa =

that-a is a divisor of b, and that {J.is a n;u[plp_l:uﬂdear;tm L

0 < a < b, then a is called a proper divisor of b Jui D Dme

. the pair of integers in 4 3
e O Uiz lsRmtuher o |:he'gl‘?tu-rr?o::mb::f of the-pair, but also in

hand, not only may 0 occur as-the rig PRt b ip

ir::tancesywc :;ways have divisibility. Thus alq for etcryl:n:eginib ol
5 Theé .notation aXllb is sometimes used to indicate that 4 -2 %
e il

T —

™

—
.

Ny

§

\‘.\0

12 Divisibility

Theorem 1.1
f'. (1) alb implies q lbe for any integer c;
(2) alb and ble imply alc;

(3) alb and a|c impl)

] ya[(bx-i-cy)faran int :
(4) alb and bla imply a = 4p; I
(5) alb,a>0,b> 0, imply a < b;

(6) ifm +#0, alb implies and is implied by ma|mb.

)

Proaf . jThe proofs of these results follow at once from the definition of
divisibility. Property 3 admits an obviaus extension to any finite set, thus;

alb,,alb,, -, alb, imply a} ¥ b;x; for any integers x;.
: ol

Property 2 can be extended similarly.

To give a sample proof, consider item 3. Since alb and alc are given,
this implies that there are integers r and s such that b = ar and ¢ = as.
Hence, bx + ¢y can be written as a(rx + 5y¥), and this proves that @ is a
divisor of bx + cy. ey

The next result is a formal statement of the outcome when any integer
b is divided by any positive integer. For example, if 25 is divided by 7, the
quotient is 3 and the remainder is 4. These numbers are related by the
equality 25 = 7 - 3 + 4. Now we formulate this in the general case.

a > 0, there exist unique integers q and r such thatb =qga +r,0 <r <a.
If a X'b, then r satisfies the stronger inequalities 0 < r < a.

e ’
ﬁ;s)%hmum 1.2 The ;wision afgorr'!hm'. Given any integers a and b, with

Proof Consider the arithmetic progression
---,b—3a,b—2a,b—ab,b+ab+2ab+3a -

extending indefinitely in both directions. I_n this sequcnce,ds;le?d[tlhi
smallest non-negative member and denote it by r. Thus byh e mll :: o
satisfies the inequalities of the theorem. But z{l&u r, being in the seq .‘
is of the form b — ga, and thus g is defined in terms of_r. g a &

To prove the uniqueness of g and r, suppose tI’lereﬂlls:‘]:lnr & r.PFor j}
and r, satisfying the same conditions. First we prOV:ﬂ = Ilheli i fhi
not, we may presume that r <r, so that0 <r, —r<a,
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@ Divisibility

that r, — r = alg — q,) and so al(r, — r), a contradiction to Theorem 1.1,
gart 5. Hence r = r, and also ¢ = q,. . \

We have stated the theorem with the assumption a > 0. However, this
hypothesis is not necessary, and we may formulate the theorem without it:
given any integers a and b, with a # 0, there exist integers g and r such
that b=ga +r, 0 <r < |al. 3 .

Theorem 1.2 is called the division algorithm. An algorithm is a mathe-
matical procedure or method to obtain a result. We have stated Theorem
1.2 in the form “there exist integers g and #,” and this wording suggests
that we have a so-called existence theorem rather than an algorithm.
However, it may be observed that the proof does give a method for
obtaining the integers g and r, because the infinite arithmetic progression

---,b—a,b,b+a,--- need be examined only in part to yield the
smallest positive member r.
In actual practice the quotient g and the remainder r are obtained by

the arithmetic division of a into b.

Remark on Calculation Given integers a and b, the values of g and r can
be obtained in two steps by use of a hand-held calculator. As a simple
example, if b = 963 and a = 428, the calculator gives the answer 2.25 if
428 is divided into 963. From this we know that the quotient q = 2. To get
the remainder, we multiply 428 by 2, and subtract the result from 963 to
obtain r = 107. In case b = 964 and a = 428 the calculator gives 2.2523364
as the answer when 428 is divided into 964. This answer is approximate,
not exact; the exact answer is an infinite decimal. Nevertheless, the value
of g is apparent, because g is the largest integer not exceeding 964 /428;
in this case g = 2. In symbols we write g ={964/428]. (In general, if x is
a real number then [x] denotes the largest integer not exceeding x. That
is, [x] is the unique integer such that [x] < x < [x] + 1. Further proper-
ties of the function [x] are discussed in Section 4.1.) The value of r can
then also be determined, as r = b ~ ga = 964 — 2 - 428 = 108. Because
the value of g was obtained by rounding down a decimal that the
calculator may not have determined to sufficient precision, there may be a
question as to whether the calculated value of g is correct. Assuming that
the calculator performs integer arithmetic accurately, the proposed value
of g is confirmed by checking that the proposed remainder b — gz = 108
lies in the interval 0 < r < @ = 428:'In case r alone is of interest, it would
be tempting to note:that 428 times 0.2523364'is 107.99997, and then round
to the nearest integer, Thé method we have described, though longer, is
more reliable, as. it depends only on’integer arithmetic, i

3

1.2 Divisibility
(

Definition 1.2 The integer a is a common divisor of b g i

alc. Since there is only a finite number of dim'm,,fof :;c"ﬁ;:_;“_]bw.
there is only a finite number of common divisors of b and ¢, exceptin e >
b=c=0. If at least one of b and c is riot 0, the greatest amg, Case
common divisors is called the greatest common divisor of b tind :3 ﬂqu,
denoted by (b, ¢). Similarly, we denote the greatest common divisor B
integers by, b, b,, not all zero, by (b, by, -, b.), R of the

Thus the greatest common divisor (b, ¢) is defined for every pair
integers b, ¢ except b = 0, ¢ = 0, and we note that (b,c)> 1. &

Theorem 1.3 If g is the greatest common divisor of b and c, then there exist
integers x, and y, such that g = (b, c) = bxy + cy,.

Another way to state this very fundamental result is that the Ereatest
common divisor (abbreviated g.c.d.) of two integers b and ¢ is expressible
as a linear combination of b and ¢ with integral multipliers x, and Yo
This assertion holds not just for two integers but for any finite collection,
as we shall see in Theorem 1.5.

Proof Consider the linear combinations bx + cy, where x and ¥ range
over all integers. This set of integers {bx + cy) includes positive and
negative values, and also 0 by the choice x = y = 0, Choose x5 and y, sc
that &x, + cy, is the least positive integer / in the set; thus ! = bx;, + oy,

Next we prove that /|6 and flc. We establish the first of these, and the
second follows by analogy. We give an indirect proof that 11, that is, we
as§umF {4b and obtain a contradiction. From /¥'b it follows that there
CXist integers ¢ and r, by Theorem 1.2, such that b =lg + r with
0 < r < I Hence we have r==>b—lg=2>b—qlbx, + cy,) = b(l — gxy) +
f(-—qyo), and thus r is in the set {bx + cy}. This contradicts the fact that |
is the least positive integer in the set {bx + cy}.

Now since g is the greatest common divisor of & and €, we may write
b=gB c=gC, and I = bxo + cyg = g(Bxy + Cy,). Thus gll, and so by
part 5 of Theorem 1.1, we conclude that g <! Now g </ is impossible,
since g is the greatest common divisor, so g = [ = bxy + cyg. el

Theorem 1.4  The greatest common divisor g of b and ¢ can be characterized
in the following two ways: (1) It is the least Ppositive value of bx + cy where x
and y range over ail integers; (2) it is the positive common divisor of b and ¢
that is divisible by every common divisor,
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Proo) rt 2, we
follows from the proof of Theorem 1.3. To prove pa

! P;::tlif‘:i is any common divisor of b and c, then dlg by part of

?':?or::m 1.1. Morcover, there cannot be two distinct integers with prop-

erty 2, because of Theorem 1.1, part 4.

i i ible i - hen d is not

“If an integer d is expressible in the form d = bx + ¢y, t r
neccfsaridy thegg.c‘d. (b, c). However, it does follow from such an equation
that (b, c) is a divisor of 4. In particular, if bx + ¢y = 1 for some integers

x and y, then(b,c) = 1.

Theorem 1.5 Given any integers by, by, o, b, not all zero, with greatest
common divisor g, there exist integers x, x;," "+, x,, such that

i
g=(b,by b)) = ¥ b,

i=1

Furthermore, g is the least positive value of the linear form Lj_\b, 7 where
the y, ronge over all integers; also g is the positive common divisor of
by, by, -, b, that is divisible by every common divisor.

Proof This result is a straightforward generalization of t_hc Precedin_g two
theorems, and the proof is analogous without any complications arising in
the passage from two integers to n integers.

Theorem 1.6 For any positive integer m,
(ma, mb) = m(a,b).

Proof By Theorem 1.4 we have
(ma, mb) = least positive value of max + mby
= m - {least positive value of axr + by}
=m(a,b).
Theorem 1.7 If dla and d|b and d > 0, then

T

)

.tffu.h) =g, then

1.2 Divisibility . 9

Proof The second assertion is the special case of the first obtained by
using the greatest common divisor g of a and b in the role of d. The first
assertion in turn is a direct consequence of Theorem 1.6 obtained by
replacing m, a, b in that theorem by d, a/d, b/d respectively.

ol
Theorem 1.8 “If (a,m) = (b,m) = 1, then (ab,m) = 1.

Proof By Theorem 1.3 there exist integers x,. yo, x,, ¥, such that | =
axy + myy = bx; + my,. Thus we may write (ax,Xbx,) = (1 — my,)
(1 —my) = 1 = my, where y, is defined by the equation Yi=Yg+y, —
myyy,. From the equation abr,x, + my, =1 we note, by part 3 of
Theorem 1.1, that any common divisor of ab and s is a divisor of 1, and
hence (ab, m) = 1. :

Definition 13 We say that a and b are relatively prime in case (a, b) = 1,
and that a;, a,," -, a,, are relatively prime in case (aj,ay,--,a,) =1 We
say that a,, a,,- - -, a, are relatively prime in pairs in case (a,,a,) = | for
alli=1,2-nandj=1,2,--- nwih i # J.

The fact that (a, b) = 1 is sometimes expressed by saying that a and b
are coprime, or by saying that a is prime to b.

Theorem 1.9  For any integer x, (a, b) = (b, a) = (a, — b) = {a. b + ax),

Proof Denote (a, b) by d and (a, b + ax) by g. It is clear that (b,a) =
(a, = b)=d.

By Theorem 1.3, we know that there exist integers xy and y, such
that d = ax,, + by,. Then we can write

d =a(xy —xv) + (b + ax) y,.

It follows that the greatest common divisor of a and b + ax is a divisor of
d, that is, g|ld. Now we can also prove that d|g by the following argument.
Since dla and d|b, we see that d|(b + ax) by Theorem 1.1, part 3. And
from Theorem 1.4, part 2, we know that every common divisor of g and
b + ax is a divisor of their g.c.d., that is, a divisor of g. Hence, dlg. From
dlg and gld, we conclude that d = +g by Theorem 1.1, part 4. However,
d and g are both positive by definition, so d = 8.
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10 Divisibility

Theorem 1.10 If clab and (b, c) = 1, then cla.

Proof By Theorem 1.6, (ab, ac) = a(b, c) = a. By; hypathesis clab and
clearly clac, so cla by Theorem 1.4, part 2. 7 - *;

Given two integers b and ¢, how can the greatest common divisor g
be found? Definition 1.2 gives no answer to this question. The investiga-
tion of the set of integers {(bx + cy) to find a smallest positive element is
not practical for large values of b and ¢. If b and c are small, values of g,
Xg, and y, such that g = bxy + oy, can be found by inspection. For
example, if b = 10 and ¢ = 6, it is obvious that g = 2, and one pair of
values for x4, ¥, is 2, — 3. But if b and c are large, inspection is not
adequate except in rather obvious cases such as (963, 963) = 963 and
(1000, 600) = 200. However, Theorem 1.9 can be used to calculate g
effectively and also to get values of x, and y,. (The reason we want values

of x4 and y, is to find integral solutions of linear equations. These turn up

in many simple problems in number theory.) We now discuss an example
to show how Theorem 1.9 can be used to calculate the greatest common
divisor.

Consider the case b = 963, ¢ = 657. If we divide ¢ into b, we get a

g = 1, and remainder r = 306. Thus b=cq+r,orr=>5b—cq,

quotient
c) by replacing a

in particular 306 = 963 — 1 - 657. Now (b,¢).= (b — cq,
and x by ¢ and —g in Theorem 1.9, so we see that

(963,657) = (963 — 1 - 657,657) = (306, 657) -

The integer 963 has been replaced by the smaller integer 306, and this
suggests that the procedure be repeated. So we divide 306 into 657 togeta

quotient 2 and a remainder 45, and

(306, 657) = (306,657 — 2~ 306) = (306,45).

Next 45 is divided into 306 with quotient 6 and remainder 36, then 36 is
divided into 45 with quatient 1 and remainder 9. We conclude that
(963, 657) = (306, 657) = (306,45) = (36,45) = (36,9).
il e non i
Thus (963, 657) = 9, and we can express 9 as a linear combination of 963
and 657 by sequentially writing eachr remainder’as a linear combination of

1.2 Divisibility
1
the two original numbers: \
306 = 963 — 657;

45 = 657 — 2 - 306 = 657 — 2 - (963 — 657)

=3:657—2-963;
36*306—6'45=(‘)63—*657)—6-(3-657—2.%3}

= 13- 963 — 19 - 657;
9 =45—36=3-657 —2-963 — (13- 963 — 19 - 657)

= 22657 — 15 - 963.

In terms of Theorem 1.3, where g = (b, ¢) = bry + cy,, beginning with
b =963 and ¢ = 657 we have used a procedure called the Euclidean
algorithm to find g = 9, X5 = — 15, yo = 22. Of course, these values for 1,
and y, are not unique: —15 + 657k and 22 — 963k will do where k is any
integer.

To find the greatest common divisor (b, ¢) of any two integers b and
¢, we now generalize what is done in the special case above. The process
will also give integers x, and y, satisfying the equation bxo + ¢y = (b,c).
The case ¢ = 0 is special: (b,0) = |b|. For ¢ = 0, we observe that (b, c) =
(b, — ¢) by Theorem 1.9, and hence, we may presume that ¢ is positive.

Theorem 1.11 The Euclidean algorithm. Given integers b and ¢ > 0, we
make a repeated application of the division algorithm, Theorem 1.2, lo oblain

a series of equations

b=cq, +r, 0<r <c,
c=nrg; tnr, 0<r,<ry,
r=raq; +ry, 0<r<r,

Lo =r_aq;tr, 0<r<r_,.
Loy =ndg, .-
The greatest common divisor (b,c)} of b and ¢ is r;. the lasr nonzero

remainder in the division process. Values of xo and yo in (b, c) = bxy + &g
can be obrained by writing each r, as a linear combination of b and c.

Pro.af The chain of equations is obtained by dividing c into b, r; into ¢
ry into ry,---,r; into r,_,. The process stops when the division is exact,
that is, when the remainder is zero. Thus in our application of Theorem
1.2 we have written the inequalities for the remainder without an equality
sign. Thus, for example, 0'< r; <c in place of 0 < r; < ¢, because if iy
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were equal to zero, the chain would stop at the first equation b = eq,, in
which case the greatest common divisor of & and ¢ would be c.

We now prove that r, is the greatest commeon divisor g of b and c. By
Theorem 1.9, we observe that £

(&,¢) = (b —cq;.c) =(’|-C,=’(’l-c"r|‘?:) 3
= (rp.r2) = (ry = rags.ry) = (r5.13).

Continuing by mathematical induction. we get (b,c) = (r,_.r))=1(r,0)
= f'. _ )

To ses that 7, is 2 linear combination of b and ¢, we argue by
induction that each r, is a linear combination of b and c. C!cari;. r is
such a linear combination. and likewise r,. In general, r, is a linear
combination of r,_; and r,_.. By the inductive hypothesis we may suppose
tkat these latter two numbers are linear combinations of b and ¢, and it
follows that r, is also a linear combination of b and .

Example 1 Find the greatest common divisor of 42823 and 6409.

Solurion  We zpply the Euclidean algorithm, using a calculator. We divide
¢ intc b, where b = 42823 and ¢ = 6409. following the notation of
Theorem 1.11. The quotient g, and remainder r, are g, = 6 and r, = 4369,
with the derzils of this division as follows. Assuming the use of the
simplest kind of hand-heid calculator with only the four basic operations
~.— .x% .= . when 6409 is divided into 42823 the calculator gives
6.6516976. or some version of this with perhaps fewer decimal places. So
we know that the guotient is 6. To get the remainder, we multiply 6 by
6409 to ger 3%454, and we subtract this from 42823 to get the remainder
4369.

Continuing, if we divide 4369 into 6309 we get a quotient g, = 1 and
remazinder r, = 2040. Dividing 2040 into 4369 gives q; = 2 and r; = 289.
Drviding 289 into 2040 gives g, = 7 and r, = 17. Since 17 is an exact
divisor of 259, the solution is that the g.c.d. is 17

This can be put in tabular form as follows:

42823 = 6 - 6409 + 4369 (42823, 6409)
6409 = 1-4369 + 2040 = (6409,4369)
4369 = 2 - 2040 + 289 = (4369,2040)
2040 = 7 - 289 + 17 = (2040, 289)

289 = 17- 17 = (289,17) = 17

[

12 Dicisibility
13
Example 2 Find integers x and v to satisfy i
428231 + ANy = 17,
Solunon  We find integers x, and ), such that
42823x, + 640y, =1,
Here it is natural to consider 1 = 1,2+, but to initiate the process we

also consider i = D and { = =1, We put r_, = 42523, and write
42823 - 1 + 6409 - 0 = 42823,

Similarly, we put r, = 6409, and write
42823 -0 - 6409 - 1 = 649

We multiply the second of these equations by g, = 6. and subtract the
result from the first equation. to obtain

42823 - 1 + 6309 - ( —6) = 4369,

We multiply this equation by g, = 1, and subtract it from the preceding
equation to find that

42823 - (—1) + 6309 - 7 = 2040.

We multiply this by g, = 2, and subtract the result from the preceding
equation to find that

42823 -3 + 6409 - (—20) = 289.

Next we multiply this by g, = 7. and subtract the result from the preced-
ing equation to find that

42823 - (—22) + 6409 - 147 = 17.
On dividing 17 into 289, we find that g; = 17 and that 289 = 17+ 17. Thus
ry is the last positive remainder, so that g = 17, and we may lake

x = —22, y = 147. These values of x and y are not the unly_one‘s pf.)ssibtc.
In Section 5.1, an analysis of all solutions of a linear equation is given.
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14 Divisibility

Remark on Calculation. 'We note that x, is determined from x,_, and
X,z by the same formula that r, is determined from r,_, and r,_,. Thati
h=hoar— 40 -

Xy =Koy QX s

and similarly

Yo =Yi-a =4 i
The only distinction between the three sequences r,, x,, and y, is that they
start from different initial conditions:

r..=b, ro=¢,

x_,=1, x5 =0,

and
Y =0, yo=1.
Just as polynomial division may be effected symbolically, omitting the

powers of the variable, we may generate the g, r, x, ¥, in a compact
table. In the numerical example just considered, this would take the

following form:

i Giv 5 L i

-1 42823 1 0
0 6 6409 0 1
1 1 4369 1 -6
2 2 2040 -1 7
3 7 289 3 -20
4 17 17 -22 147
5 0

When implemented on a computer, it 1s unnecessary to record the entire
table. Each row is generated solely from the two preceding rows, so it
suffices 10 keep only the rwo latest rows. la the numerical cases we have
considered it has been the case that b > ¢. Although it is natural to start
in this way, it is by no means necessary. If b < ¢, then ¢, = O and r, = 5,
which has the eflect of interchanging & and c.

Example 3 Find g = (b, c) where b = 5033464705 and ¢ = 3137640337,
and determine x and y such that br + o = z.

1.2 Dicisibility
I

Solution We calculate:

5033464705 1 0

1 3137640337 o - )
1 1895824368 1 -1
1 1241815969 il 2
1 654008399 2 -3
1 587807570 -3 5
8 66200829 ] -8
1 58200938 -43 - 69
7 7999891 48 ' -7
3 2201701 -379 : 608
1 1394788 1185 : - 1901
1 806913 - 1564 . 2509
1 587875 2749 -H10
2 219038 —4313 619
1 149799 11375 - 18248
2 69239 ~ 15688 25167
6 11321 42751 -68582
8 1313 —272194 436659
1 817 2220303 —3561854
1 496 - 2492497 3998513
1 321 4712300 — 7560367
1 175 — 7205297 11558380
1 146 11918097 — 19119247
5 29 — 19123394 30678127
29 1 107535067 — 172509882

Thus g = 1, and we may take x = 107535067, y = — 172509882,

- c;?;;za(c; m;rnber of n_erau‘clms I;'ol' the Euclidean algorithm required
“-, i , ¢) depends in an Intricate manner on b and c, but it is easy
bl r5 a rough bound for j as follows: If r, is small compared with
é—l}:;mﬁlf‘é fﬁ;uz/i»:hzn subsgnnti;! irogrcss has been made at this step.

o B S h-p Inwhich case g, = l,and 7, , =r_ -
EC(d;’d_uI({Czd. ;l;:’uls wesee that r,,., <r,_, /2 in either case. From this it can
il ar;uf 3log c. (Here, and throughout this book, we employ
b mofc i M, to the base e. Some writers denote this function
b are we could improve on the constant 3 (see Problem 10

M 4.4), but it is nevertheless the case that j is comparable to log¢
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16 Divisibility

for most pairs b, c. Since the logarithm increases very slowly, the practical
consequence is that one can calculate the g.c.d. quickly, even when b and

¢ are very large.

Definition 1.4 The integers ay, a5, -, a,, all different from zero, have a
common multiple b if a |b fori = 1,2,-- n. {Note that conumon multiplcs
do exist; for example the product a,a, - -- a, is one.) The least of the positive
common muliiples is called the least common multiple, and it is denoted by

[aj a2 54,

Theorem LI2 If b is any commen multiple of a,.a,, . a,. then
[a,, a3, - -2 a,llb. This is the same as saying that if h denotes [a,. a5, *, a,],
then 0, x h, £ 2h, + 3h, -+ comprise all the common muliiples of

e L

Proof Let m be any common multiple and divide m by h. By Theorem
1.2 there is a quotient ¢ and a remainder r such that m = gh + r,
0 < r < h. We must prove that r = 0. If 7 # 0 we argue as follows. For
each i = 1,2,---,n we know that a,lA and a,|m, so that a,|r. Thus r is a
positive common multiple of a,, a,," -+, a, contrary to the fact that 4 is
the least of all the positive common multiples.

Theorem 1L.13  Ifm > 0, [ma, mb] = mla.bl. Also [a.b)] - (a.b) = labl.

Proof Let H =[ma,mb], and h = [a, b]. Then mh is a multiple of ma
and mb, so that mh > H. Also, H is a multiple of both ma and mb, so
H /m is a multiple of a and b. Thus, H/m = h, from which it follows that
mh = H, and this establishes the first part of the theorem.

It will suffice to prove the second part for positive integers a and b,
since (o, — b] = [a, b]. We begin with the special case where (a,b) = 1.
Now [a, b] is a multiple of a, say ma. Then blma and {a,b) = 1, 50 by
Theorem 1.10 we conclude that b|m. Hence b < m, ba < ma. But ba,
being u positive common multiple of b and 4, canno: be less than the least
common multiple, so ba = ma = [a, b].

Turning 10 the general case where {(a,b) =g > 1, we have
(a/g.b/g) =1 by Theorem 1.7. Applying the result of the preceding

paragraph, we obtain
[n b”a b) ab
g elle ] e

Multiplying by g? and using Theorem 1.6 as well as the first part of the
present theorem, we get [a, bja, b) = ab.

1.2 Divisibility 17
lPROBLEMS
1. By using the Euclideaa algorithm, find the greatest common divisor
(g.cd.) of =

(a) 7469 and 2464; (k) 2689 and 4001;

(¢) 2947 and 3997; (d) 1109 and 4999. .
2. Find the greatest common divisor g of the numbers 1819 and 3587,

and then find integers x and y to satisfy

1819x + 3587y = ¢,

3. Find values of x and y to satisfy
(a) 423x + 198y = 9;
(b) 71x — 50y = 1;
(e) 43x+6dy = I;
(d) 93x — 8ly = 3;
(e).6x+ 10y + 152 = 1.

4. Find the least common multiple (l.c.m.) of (a) 482 and 1687, (b) 60
and 61.

5. How many integers between 100 and 1000 are divisible by 77

6. Prove that the product of three consecutive integers is divisible by 6;
of four consecutive integers by 24.

7. Exhibit three integers that are relatively prime but not relatively
prime in pairs.

. Two integers are said to be of the same parin: if they are both even
or bot.h odd; if one is even and the other odd, they are said to be of
opposite parity, or of different parity. Given any two integers, prove
that their sum and their difference are of the same parity.

9. Show that if ac|bc then alb.
10. Given alb and c|d, prove that aclbd.
11. Prove that 4.¥ (n* + 2) for any integer n.
12. Given that (a,4) = 2 and (b,4) = 2, prove that (g + b,4) = 4,
13. Prove that n® — n is divisible by 2 for every integer »; that #® — n is
divisible by 6; that n* — i is divisible by 30,

14. Prove that if n is odd, n® — 1 is divisible by 8.

15, Prove that if x and v are odd, then x* + y2 is even but not divisible
by 4.

16. Prove that it a and b are positive integers satisfying (a. b) = [a. b]
then a = b.

7. Evaluate (n,n + 1) and [n, n + 1] where n is a positive integer.

o
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Divisibility

plane. Similarly, draw n — 2 additional regular pentagons on the
base sides P\ Py, PP, -+, PP, all pentagons lying on the same
side of the line P, P,. Mark dots at each vertex and at unit intervals

along the sides of these pentagons. Prove that the total number of
dots in the array is (3n2 — n)/2, In general, if regular k-gons are
constructed on the sides PPy, PP, PP, with dots marked
again at unit intervals, prove that the total number of dots is
1 + &kn(n ~ 1)/2 = (n = 1) This is the nth k-gonal number.

*49. Prove that if m > n then a" + 1 is a divisor of a2 — 1. Show that
if a, m, n are positive with m = n, then

i= 2= = [1if aiseven
Sin Lkl {Zifnisodd.
*50. Show that if (a, b) = 1 then (a + b,a?

_ —ab+b¥) =1or3.
*51. Show that if (a, b) = 1 and p is an od

d -pril"nc, then

ba’+b" 1
; = ]1orp.
(a+ ) a+b‘) §

7‘52. Suppose that 2" + 1 = xy, where x and y are integers > 1 and
n > 0. Show that 2?|(x — 1) if and only if 2°|(y — 1).

- *53. Show that (n!+ 1,(n + 1)1+ 1) = 1. .

- **54. Let a and b be positive integers such that (1 + ab)|(a? + b2). Show

g that the integer (a® + b?)/(1 + ab) must be a perfect square. .

-3 PRIMES

Definition 1.5 An integer p > 1 is called a prime numpcr, ora frim;,n ta.r:
case there is no divisor d of p satisfying 1 < d < p. If an integer a
a prime, it is called a composite number.

Thus, for example, 2, 3, 5, and 7 are primes, whereas 4, 6, 8, and 9 are
composite.

ct
Theorem 1.14 Every integer n greater than 1 can be expressed as a produ
of primes (with perhaps only one factor).

x ; .
Proof If the integer n is a prime, then the lntegcrfltcsg:ezlta;::z ass.ay

i i a , say,
*product” with a single factor. Otherwise n can be

- **Problerns marked with a double asterisk are much more difficult.

L3 Primes

nng, v:rhc.re 1 <N, <nand l<n,<y If n
un.th'emmc 1t will factor into, say, n.p whu.:. 1
stmilarly for n, Fiti p

H <n, <

- This process of writi YSmand | < g, «
i iting cach ¢o R 4

a5.a product of factors must ¢ : p0tite

1 is a

n= p‘l‘np;z e D;"
where P1 Py -+, p, are distingt primes and T a3, @, are positive,
'I‘!1is representation of n as a product of primes is called the canonical
fgzc:mnng of n into prime powers. It turns out that the represemtation is
unique in the-sense that, for fixed M, any other representation is merely a
reordering or permutation of the factors, Although it may appear obvious
that the factoring of an integer into a product of primes is unique,
nevertheless, it requires proof. Historically, mathematicians took the
unique factorization theorem for granted, but the great mathematician

cal systems, notably in algebraic
hapter 9, where unique factoriza-
this property causes considerable
he subject. To demonstrate that
a mathematical system, we digress
to present two examples in which
xample is easy; the second is much
mitted on a first reading of this book.
First consider the class & of positive even integers, so that the

elements of ¢ are 2,4,6,8,10, - - - . Note that & isa multiplicative system,
the product of any two elements in & being again in &. Now let us confine
our attention to & in the sense that the only “numbers” we know are
members of . Then 8 = 2+ 4 is “composite,” whereas 10 is a “pr‘:‘me
since 10 is not the product of two or more *“numbers.” The primes"” are
2,6,10,14, - -, the “composite numbers” are 4,8, 12, - - . Now the Dnumc-l
ber” 60 has two factorings into “primes,” namely 60 = 2.- 30 =6 10, an
so factorization is not unique.” ) :

i:\ semewhat less .artiﬁqcial, but also rather more comp!l;‘c,g_l_%. ;);;n::lz
is obtained by considering the class ¢ of numbers a -} aahihigiiva
and b range over all integers. We say that this system

number theory, which is discussed in C
tion fails to hold, and the absence of
difficulty in a systematic analysis of t
unique factorization need not hold in
from the main theme for a moment
factorization is not unique. The first e
harder to follow, sa it might well be o

Scanned with CamScanner



a9 Divisibility

addition and multiplication, meaning that the sum and product of two
elements in ¢ are elements of €. By taking b = 0 we note that the
integers form a subset of the class #.

First we establish that there are primes in «, and that €very number
in ¢ can be factored into primes. For any number a + by— § in < it will
be convenient to have a norm, N(a + by~ 6), defined as

N(a+b/=6)=(a+b/—6)a = bV=6) = a? + 62,

Thus the norm of a number in ¢ is the product of the complex number
a + b/— 6 and its conjugate a — by — 6. Another way of saying this,
perhaps in more familiar language, is that the norm is the square of the
absolute value. Now the norm of every number in ¢ is a positive integer
greater than 1, except for the numbers 0,1, — 1 for which we have
NWO)=0, NI) =1, N(—-1) = 1. We say that we have a factoring of a +
by — 6 if we can write

a+b/=6 = (x, +yV=6)(x, +y,y—6) (1.1)

where N(x, + y,/~ 6) > 1 and N(x, + y,'— 6) > 1. This restriction on
the norms of the factors is needed to rule out such trivial factorings
as a+bV=6=(1Xa+byY-6)=(—1X—-a — bY—6). The norm of
a product can be readily calculated to be the product of the norms of
the factors, so that in the_ factoring (1.1) we have N(a + bvV—6) =
N(x, + yV= 6)N(x, + y,/— 6). It follows that

1 <N(x, +y,Y=6) <N(a+b/—6),
1<N-(x2+y2v/-—6){N(a +b'i/—_6)

50 any number a + b¥ —6 will break up into only a finite number of
factors since the norm of each factor is an integer.

We remarked above that the norm of any number in ¢, apart from 0
and 1, is greater than 1. More can be said. Since N(a + bV — 6) has the
value a? + 6b%, we observe that

N(a+w—6);_6 ifb+0, (1.2)

that is, the norm of any nonreal number in ¢ is not less than 6. )

A number of # having norm >1, but that cam:lot be‘fact'ured in ll!c
sense of (1.1), is called a prime in €. For example, 5 is a prime in &, for 12
the first place, 5 cannot be factored into real numbers in «. In the secon

L3 Primes ; E

Place, if we had a factoring 5 = |
B3 =(x +y /=
plexinumbers, we could take norms ]to gt; 6 X, /%) ingg

5 =N(x, +y, V= WN(x, 4y 0= §)
which contradicts (1.2), Thus, 5 is a prime
establishes that 2 is a prime. Prime In €, and 4 similay

) We 4re now in a position to show that not ]
uniquely into primes, Consider the number 10 ap,

iy

I Numberg of
d its two facw'_e "“'

0=2-5=2+/=8)2-v=p),

The first product 2 - 5 has factors that ar
Thus we can conclude that there is not un;
10/in #". Note that this conclusion d
Foul 0€s not depend on gur know
2+ v'l 6and 2 — y~6 are primes; they actually are, bug -y ; B
tant in our discussion, , i
) This exarrfple may also seem artificial, but jt is, in fact, taken from a2
important topic, algebraic number theory, discussed in Chapter 9,
We now return to the ‘discussion of unique factorizalioﬂ in the

ordinary integers 0, + L+2 -+, It will be i
following result. S

Theorem 1.15 If plab, p being a prime, then pla or p|b. More generally, i
plaia, -+ a,, then p divides ay least one factor a, of the product. 3

Proof 1f pXa, then (a2, p) =1 and so by Theorem 1.10, p|b: We ma
regard this as the first step of a proof of the general statement by
mathematical induction. So we assume that the proposition holds whes
ever p divides a product with fewer than n factors, Now if pla,a, -~ 4,
that is, pla,c where ¢ = a,a, --- a,, then pla, or plec. If ple we apph
the induction hypothesis 'to conclude that pla, for some subscript i from?
to .

Theorem L.16 The fundamental theorem of arithmetic, or the unique facior
ization theorem. The factoring of any integer n > 1 into primes is unique aps
from the order of the prime Sactors.

First Proof Suppose that there is an integer n with two different fiﬂ::
ings. Dividing out any primes common to the two representations:
would have an cquality of the form

el (13
P\P; " p=qqy " g, :
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~ where the raf:t_ors 7 and g; are primes, not necessarily all distinct, b

- where no prime on the left side occurs on the right side. But tr;is ‘:;
impossible bc‘f‘lu.sc pilg,q, *+ - q,, so by Theorem L.15, p, is a divisor of
] a’: least one of the g;. That is, p, must be identical with at least one of
. the g,. it

Second Proof - Suppose that the theorem is false and let # be the smallest
positive integer having more than one representation as the product of
primes, say ;

n=p\p; TP =919 " 4, (1.4)

Ses AR Pl R |

It is clear that r and s are greater than 1. Now the primes p,, p,, -, p,
have no members in common with g,, q,," -, g, because if, for example,
p, were a common prime, then we could divide it out of both sides of (1.4)
to get two distinct factorings of n/p,. But this would contradict our
assumption that all integers smaller than n are uniquely factorable.

Next, there is no loss of generality in presuming that p, < 4,, and we
define the positive integer N as :

N=(g,-p)a:q -+ 4, =p(P2P3 " " P, — %203 """ 4,). (1.5)

it is clear that N < n, so that N is uniquely factorable into primes. But
'py (g, — p,), so (1.5) gives us two factorings of N, one involving p, and
the other not, and thus we have a contradiction. ,

= In the application of the fundamental theorem we frequently write any
. integer @ > 1 in the form .

. aw= I_‘Ipaip)
gor 2

where a(p)is a non-negative integer, and it is understood tha:lt n:(_p) =0
for all sufficiently large primes p. If a = 1 then a(p) = 0 for 1 Sg::ll:t?:‘lfs'
and the product may be considered to be empty. For brevity w uetimg
‘write @ = T1p®, with the tacit understanding that the exponeénts a depe:
on p and, of course on a. If :

a ) (1.6)

o) a(p)! b = I-IP"“”-,.— c = ,I_Ip’-’ ),
a I;Ip . 3 i .

by the ‘fundamental

p- If, conversely,

and ab = c, then a(p) + B(p) = ¥(p) for all p,
[1p## with

: (p) for all
theorem. Here alc, and we note that a(p) < ¥(P -
..a(p) < y(p) for all p, then we may define an integer b

L3 Primes

B(p) = v(p) ~ o =
P) = alp). Then ab = ¢, whicn

that the divisibility m:ﬂm ale is 'eq‘:’if;;::;?os?: that alc. Thy, o

alp) < ; o farmite b
¥(p). As a consequence, the greatest Dom:::::wd'n{' inequalitie
WVisor and the

least common multiple can be written as

(a,b) = min (a(p), B¢ p))
I;IP m, [a,b] = EIP"'""("'“'”. (7

For example, if @ = 108 and b = 225, then

a =235 p=203252

(a_ b) = 203250 =9, [a,b] = 223151 = 2700,
The first part of Theorem 1.13, like many similar identities, follows easily
from the fundamental theorem in conjunction with (1.7). Since min (a, B)
+ max(a, B) = a + B for any real numbers a, g, the relations (1.7) also
provide a means of establishing the second part of Theorem 1.13. On the
other hand, for calculational purposes the identifies (1.7) should only be
used when the factorizations of 2 and b are already known, as in general
the task of factoring a and & will involve much more computation than is
required if one determines (a, &) by the Euclidean algorithm.
We call a a square (or alternatively a perfect square) if it can be
written in the form n? By the fundamental theorem we see that a is a
square if and only if all the exponents a{p) in (1.6) are even. We say that
a is square-free if 1 is the largest square dividing @. Thus a is square-free if
and only if the exponents a(p) take only the values 0 and 1. Finally, we
observe that if p is prime, then the assertion p*lla is equivalent to
k = alp).

Theorem 1.17 Euclid. The number of primes is infinite. That is, there is no
end to the sequence of primes .
2,3,5,7,11,13, .,

Proof Suppose that py, p,, -, p, are the first r primes. Then form the
number ! ‘ ‘
n=1+pp; P

- or p,. Hence any prime

is n ivisi b or or -
Note that n is not divisible by p, P O Prsince n is cither a

divisor p of n is a prime distinct from p,, p2,° 5 1 e
prime or has a prime factor p, this implies that lh?rc is a prime c;::lt_m:;
from p,, P3," ", P, Thus we see that for any finite .r,ﬁtl!te num
primes is not exactly r. Hence the number of primes is infinite.
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26 Divisibility

Students often note that the first few of the numbers n here are
primes. However, 1 + 2+3 5.7+ 11- 13 = 59 - 509,

Theorem 1.18 There are arbitranly large gaps in the series of primes. Stated
otherwise, given any positive integer k, there exist k consecutive composite
integers,

Proof Consider the integers
(k+ D!+ 2,(k+ 1)+ 3,---,(5 + )+ Ak (k+ D)+ k+ 1.

Every one of these is composite because j divides (k + I)!+j if 2 <j <
k + 1.

The primes are spaced rather irregularly, as the last theorem suggests.
If we denote the number of primes that do not exceed x by m(x), we may
ask about the nature of this function. Because of the irregular occurrence
of the primes, we cannot expect a simple formula for =(x), but we may
seek to estimate its rate of growth. The proof of Theorem 1.17 can be used
to derive a lower bound for w(x), but the estimate obtained, m(x) >
cloglog x, is very weak. We now derive an inequality that is more
suggestive of the true state of affairs.

Tﬁeorelil 1.19 For every real number y =2,

-Y, —>loglogy — 1.

pPsy

Here it is understood that the sum is over all primes p < y. From this
it follows that the infinite series L1/p diverges, which ]';)rovides a second
proof of Theorem 1.17.

Proof Let y be given, y > 2, and let .# denote the set of all those
positive integers n that are composed entirely of primes p not exceeding
y. Since there are only finitely many primes p <y, ?nd since the terms of
an absolutely convergent infinite series may be arbitrarily rearranged, we

see that

1 1 ; 1 :
ﬂ{1+$+?+—5+-")=2;- (1.8)

pey P C nEN

e

13 Primes

g fofn b
If n is a positive integer <y then ) ey 5pq th
includes the sum I, ., 1/n. Let N denotelthe largest US the gop
ing y. By the integral test, Integer i
v §
' i
N1 N+1dx '
L2 [T e,

n=1 N

Thus the right side of (1.8) is > log y. On the other hand, the ¢
left side of (1.8) is a geometric series, whose value is (] - ]/p;‘[': on the

see that S0 e |
1 =1
IT(1- —) > log y.
p<y P
We assume for the moment that the inequality
el--n.l > (1 - U)-l (13]

holds for all real numbers v in the interval 0 < v < 1/2. Taking v = 1/p,
we deduce that o : C

1 1) o .
I1 exp[;-&-?).‘»!ogy."'

Py

Since [Texp(a;) = exp(La,), and since the logarithm function is monolot
ically increasing, we may take logarithms of both sides and deduce that i

i
3
¥
o

RN

7 > loglog y.
ey P pay P '

By the comparison test we see that the second sum is

and by the integral test this is

i #
S
5 e O LT 1.9). We "]
This gives the stated inequality, but it renrains to P'O"‘( :
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show that f(v) > 1 for O s v < 1/2, where f(v) = (1 — ) 2
Since f(0) = 1, it suffices to show that f(v) is increasing for SXE E}u +lu 2)
To this end it is enough to observe that <1/2

f(v) =v(l - 20p) exp (v + v?) » 0.
Thus we have (1.9), and the proof is complete.
With more work it can be shown that the difference
1
Yy —- loglog y
psy P

- isa bounded_ function of y, for y > 2. Deeper still lies the Prime Number
- Theorem, which asserts that

w(x)

lim =
r—=x/log x

- We say that f(x) is asymptotic to g(x), or write flx) ~glx), if
lim, __, f(x)/g(x) = 1. Thus the prime number theorem may be ex-
_pressed by writing m(x) ~ x/log x. This is one of the most important
results of analytic number theory. We do not prove it in this book, but in
Section 8.1 we establish a weaker estimate in this direction,

ROBLEMS
1. With a and b as in (1.6) what conditions on the exponents must be
satisfied if (a, ) = 1?
What is the largest number of consecutive squ?re-frcc positive inte-
gers? What is the largest number of consecutive cube-frec positive
integers, where a is cube-free if it is divisible by the cube of no
integer greater than 17 : .
In any positive integer, such as 8347, the last digit is called the units
"digit, the next the fens digit, the next the hundreds dlgjt,.a{:d.so foth.
In the example 8347, the units digit is _7,_ the tens digit is 4, It)ce
hundreds digit is 3, and the thousands dig'u_:s_s. P.n:.v\fc that a rm;;ﬂt r
is divisible by 2 if and only if its units digit is divisible by 2; t : a
number is divisible by 4 if and only if the integer foﬂpcd_ hyt:lts cnss
digit and its units digit is divisible by 4; that a number Is dlYlsiii:is?ty)Ie
_if and only if the integer formed by its last three digits is

by 8.

L3 Primes
29

4. Prove that an inte; is divi
TR g BET 1S_divisj .
dlglts‘ is divisible by 3, vaem::‘::tbays il::eand only if the sy of its
s ;),nly if t:e sum of its digits is divisible by ger 15 divisible by g i and
» [Tove that an integer is divisible by 11 ;
b?tyvct.:n the sum of the djg'its in Ktyc od:: ;lr;dcl.c‘:m
] g:lgns in the even places is divisible by 11.
- Show that every positive integer n has a yp;
oCl unique express;
formnrn=2mr>0,ma Ppositive odd integer, et o
7. t§h-:rw lhill every posnn_.rp integer n can be written uniquely in the
‘orm n = ab, where a 1s square-free and b is a square Sh
® e square. Show that b
is then the largest square dividing n.

8. A test for divisibility _Hy ?.'Starting' with any positive integer n,
subtract double the units digit from the integer obtained from n by
removing the units digit, giving a smaller integer », For example, if
n = 41283 with units digit 3, we subtract 6 from 4128 to get r= 4122,
The problem is to prove that if either n or r is divisible by 7, so is the
other. This gives a test for divisibility by 7 by repeating the process,
From 41283 we pass to 4122, then to 408 by subtracting 4 from 412,
and then to 24 by subtracting 16 from 40. Since 24 is not divisible by
7, neither is 41283, (H)

9. Prove that any prime of the form 3k + 1 is of the form 6k + 1.
10. Prove that any positive integer of the form 3£ + 2 has a prime factor
of the same form; similarly for each of the forms 4k + 3 and 6k + §5.

11. If x and y are odd, prove that x? + y? cannot be a perfect square.
12. If x and y are prime to 3, prove that x? + y? cannot be a perfect
square.

13. If (a,b) = p, a prime, what are the possible values of (a?,5)? Of
(a? b)? Of (a? b%)?

14. Evaluate (ab, p*) and (a + b, p*) given that (a, p*) = p and (b, p*)

= p? where p is a prime.

15. If a and b are represented by (1.6), what conditions must be satisfied
by the exponents if a is to be a cube? For a 1622 :

16. Find a positive integer i such that n/2 is a square, n/3 is a cube,
and n/5 is a fifth power. )

17. Twin primes are those differing by 2. Show that 5 l's'lhe only prime
belonging to two such pairs. Show also that there is a onc-;n«laln:
correspondence between twin primes and numbers n such that
n? ~ 1 has just four positive divisors. o

18. Prove that (a2, 63) = ¢? if (a,b) = c.

Y if the difference
and the sum of the
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*48.

*49.

*50.

*51.

*52.

Divisibility

Prove that there are infinitely many primes hy}cunsiduring the se-
quence 27 + 1,28 + 1,2 + 1,28+ 1, (1D
If g is a divisor of cach of ab, cd, and ac + bd, prove that it is also a
divisor of ac and bd, where a, b, ¢, d are intcgers.

Show that

a d c b
(ab,cd) = (‘-’-C)(b-d)( (a.0) " (b, d) ]( (a,0)" (b, d) )

Show that 24 is the largest integer divisible by all integers less than its
square root. (H)
(For readers familiar with the rudiments of point-set topology.) We
topologize the integers as follows: a set ¥ of integers is open if for
every t € # there is an arithmetic progression .0/ such that n € oL
c .#. {An arithmetic progression is a set of the form (dk + r: k € Z}
with o # 0.) Prove that arbitrary unions of open sets are open, and
that finite intersections of open sets are open, so that these open sets
define a topology in the usual sense. (From a more advanced per-
spective, this is known as a profinite topology.) As is usual in
topology, we call a set .#” closed if its complement Z\ ./#" is open.
Let </ be an arithmetic progression. Prove that the complement of
& is a union of arithmetic progressions. Deduce that &7 is both
open and closed. Let % denote the union over all prime numbers p
of the arithmetic progressions {np: n € Z}, and let ¥ decnote the
complement of %. In symbols, 2= U, pZ and ¥'= Z\ “%. Show
that = {—1,1}. Show that if there were only finitely many prime
numbers then the set 2 would be closed. From the observation that
¥ is not an’open set, conclude that there exist infinitely many prime
numbers. i :

*S3, Let w(x) deriote the number of primes nat exceeding x. Show that

w{

x) x 2
= + fz-rr(u}/uzdu.

Tip=

psx

Using Thearem 1.19, deduce that

lim sup ;;f:g)x

=1.

1.4 The Binomial Theorem

1.4 THE BINOMIAL THEOREM. " -

We first define the binomial coefficients and describe them combinalon’ally.

Definition 1.6 Ler a be any real nwﬁbér, and let k be 2 non-negatiye

integer. Then the binomial coefficient (z,]‘"is given by the formula

(z) _ a(a*l)"’;!{a—k+ l)-

Suppose that n and k are both intcgérs. From the formula we sce lha:.

n! .
if0 < k < nthen ") —— — whereasif0 < n <k, then "= 0.
k] ki (n—=kKk)1""" k 3

Here we employ the convention 0!= 1.,

Theorem 1.20 Let .~ be a set containing exactly n elements. For any

non-negative integer k, the number of subsets of . containing precisely k
. (n
elements is ( k )

. 4 4-3
By the definition, [2) ==

Because of this combinatorial interpretation, the binomial coefficient (z
is read “n choose £.” :

= 6, whereas if = {1,2,3,4) then the s
subsets containing two elements are {1,2},{1,3}%{1,4},(2,3),(2,4},(3,4).

¥

&

<A

Proof Suppose that = {1,2,---,n}). These numbers may be listed in =

various orders, called permurations, here denoted by . There are n! of.
these permutations 4, because the first term may be any one of the n
numbers, the second term any one of the n — 1 remaining numbers, and
the third term any one of the still remaining n — 2 numbers, and so on.
We count the permutations in a way that involves the number X of subsets
containing precisely k elements. Let &7 be a specific subset of . with k
elements. There are k! permutations of the elements of &/, each permu-
tation having k terms. Similarly there are (n — &)! permutations of the
n —k elements not in o7. If we attach any one of these (n —k)!
permutations to the right end of any one of the k! previous permutations,
the ordered sequence of n elements thus obtained is one of the permuta-
tions 7 of #. Thus we can generate k!(n — k)! of the permutations T in
this way. To get all the permutations  of ./, we repeat this procedure
with o7 replaced by each of the subsets in question. Let X denote the
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:7 umber of these subsets. Then there are ANa = ANX 1
and equating this to n! we find that X = (” permutations ar,
: k)

We now sce that the quoti n! :
. § ont ————— s F
1 KI(n - k)1 15 an integer, because it

p.r(:h_cnls the m.tmhcr of ways of doing something, In this way, combina-
toria l‘:ucrprct:.mons can be uscful in number theory. We now use Theo
rem 1.20 to dcn;; the following result, which we shall need in Section 2.6

» : \\b ’
'l heorem 1.21 ¢ p ¢t of any k consecutive integers iy divisible by k1.

mducllv:lnishcs. and is therefore a multiple of k! in this case also.
,_.nally, if n < 0, we note that the product may be written

,z(-—l)*(-—n)(—n +1) o (—n+k—1)= (—1)*( - +k" = ‘)u.

3 9(: that in this case the upper member —n + k — 1is at least k, so that
by Theorem 1.20 the binomial coefficient is an intcger.

:Jll‘

" In the formula for the binomial coefficients we note a symmetry:

[Z)ﬂ(nfk)' (1.10)

his is also evident from the combinatorial interpretation, since the
nts are in one-to-one correspondence

sets of &7 containing k cleme ¢ ' en
th the complementary subsets A\NF=[(ie S i & &/} containing
k elements.
-:'orem 1.22 The binomial theorem. For any integer n = 1 and any real
numbers x and ¥,

n
e+ 3)" = 5 [R)etr ™ (1.11)

k=0

oof We consider first the product

l:[(xi +YI)‘

i=1

b The Winomial Theorem n
On i J ' -ht
multiplying this out, we u\)luhv&’" me "
27 monormial,
e ARl Torg
111y 13
ln‘/'ioﬂ' ‘ "' :l]
where o iy an : 4
il y subset of (1,2, - i i,
consider the monomial terms ohl.ui it G 1‘-‘0’;" #
A ) we

havi i ned from those 2
wing exactly k clements, We set %, 3 ‘;\c:g;h;lc? ﬂfolh_z_. “.n}
(]l i all § and note thay

such 4 monomi y nee 13
al has value x for the !ubsct.\ in question, Si he:
u such sub i
such scts, we see that the contribution of such bu'.ﬂ:
L 15 1

re |
n - H
(k }rkyn k, which gives (1.11).

The binomial theorem can also b i
the following simple result, AR Sy

n
Lemma 1.23 Let P(z) = ¥ a,z* be a polynomial with real coefficients

Then a, = PUX0)/r! for (Jhu (XQ) ;i £
P(2) a:rz 'y /r! fe < r < n, where PUN0) is the nh derivatite of

Proof By differentiating repeatedly, we see that

PO(z) = 3 k(k = 1) -+ (k —r + Dagz*™".
k=r

On setting z = 0 we sce that P”X0) = rla,, as desired.
If we take P(z) = (1 + z)", then
PN z)mn(n—=1)---(n-r+ 0 +2)""

so that PYX0) = n(n — 1)+ (n —r+ 1), and hence by the Lemma,
a,=nn—1D--(n-r+ D/rt= (‘;,').That is,

¢! +z)"-‘§n(:)z‘. (1.12)

m. We can recaver (1.11) by taking

This is a form of the binomial theore y takir
des by y". This gives the identity

z = x/y, and then multiplying both si n
when y % 0. The case y = 0 of (111} is obvious. In our first (combina-

torial) proof of th
of Theorem 1.20, but in our second (ana

ficients arosc in the coniext

is theorem, the binomial coc c
ey occurred in the

Iytic) proof, th
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18 " . Divisibility

form described in Definition 1.6. Thus the two proofs of Theorem 1.22
may be combined to provide a second proof of Theorem 1.20.

As a matter of logic, we require only one proof of each’theorem, but
additional proofs often provide new insights, and the various proofs may
generalize in different directions. In the present case, the: first proof can
be used whenever x and y are members of a commutative ring, whereas
the second proof can be used to derive a more general form of the

binomial theorem, which asserts that

(1+2)" = )E[Z}z* E (1.13)

k=0

for |z| < 1. Here a is an arbitrary real or complex number. This is
consistent with (1.12) if « is a non-negative integer. As a“function of «,

the quantity z is a polynomial of degree k with rational coefficients. By

Theorem 1.21 we see that this polynomial takes integral values whenever
@ is an integer. A polynomial with this property is called integer-valued.
The series (1.13) is the Taylor series of the function on the left. To
demonstrate that it converges to the desired value, one may use the
integral form of the remainder, which states that if f(z) is a function for

which f*¥*"%z) is continuous, then

K (kJ(D)
flz) = L

k=0

¥+ Re(z)

where

ZK+I . Foor
Rx(z}-—K,—fo(l — )RR (12} dr.

We take f(z) = (1 + z)°, so that
f*z2y=ala—-1)---(a—Fk+ 1)1 +z)° 7k

Hence
R N -l B P 1 a-K-1
x(2) a( p )z [l -0t +e) dr.
0

From :
the hypothesis Izl <1 it follows that [1 +ez| =1 — |ezl =1 — 1.

1.4 The Binorwial Theorem - %
Hence |1 + 1z] ™ < (1 — 1), and we see that i
v

IRA(ZH s’ﬂ{a; l)zK#l

say. Here the integral is independent of X, and

1
LI(I +z2)" " dt = 1,

Tevr [(e—K-1)z
T K+1 ’_'-Iz’

as K — . Taking r so that [z| <r < 1, we deduce that Ty, < rTy for
all large K, say K;a L. By induction it follows that Ty < Cr¥ for K;
L, where C =T, /r’. Thus Tx— 0 as K — =, and we conclude 1hat
Ry(2) = 0 as K — o, Thus (1.13) holds when lzf < 1.

The binomial coefficients arise in many identities, both in analysis ami'-
in combinatorics. One of the simplest of these is the recursion =

(2)+ (e20)-(22) a9

this triangle below, but first we give three short proofs of identity (1.14) |
Since all members vanish if £ > n, and since the identity is clear when
k = —1, we may assume that 0 < & < n. First, we may simply use the
formula of Definition 1.6, and then simplify the expressions. Second, we
can interpret the identity combinatorially. To this end, observe that if &/
contains & + | elements of .= ({1,2,---, n + 1}, then one can consider

two cases: either n + 1 € .97, or n + | € .o/, In the first case, &7 is

determined by choosing & of the numbers 1, 2,:+ -, s1; there are (z) waysv,‘»
of doing this. In the second case, &/ is determined by choosing & + lg

numbers from among 1, 2,- - -, n, which gives (k +1 ) subsets of this type."

This again gives the identity, by Thcorem 1.20. Third, we note that the
right side is the coefficient of z¥*! in (1 + z)"*'. But this polynomial may.

be written

T

(1+z)(l+z)"-(1+z)“+z(l+z)"=k§){ ) k4 2( ) kel "

A 4"

In this last expression, the coefficient of z**! is (k + I) ( J From
Lemma 1.23 we see that the coefficient of z**! is uniquely defined. Thusfs

we again have (1.14).

Scanned with CamScanner



: Divisibility

40
pasc;fl’s triangle is the infinite array of numbers

the last row exhibited gives the binomial coefficients
6. The identity (1.14) can be used to generate as
lease. Apart from the 1's at the ends of each
btained by adding the two integers on the
one just to the left and one just to the right. For example

| preceding row,
' the next row is 1,1+ 6,6 + 15,15 + 20, and so on, or 1,7,21,35,
35,21,7,1. The nth row has n entries, namely the coefficients in the

binomial expansion of (x + )"~

where, for example,
in the expansion of (x +y)
many further rows as we p
row, the numbers can be o

PROBLEMS
1. Use the binomial theorem to show that
n
n
¥ () =2
E(2)-2

Can you give a combinatorial proof of this?

= n
2. Show that if n > 1 then 3 (—=1¥(7)=0.
k=0
3. (@) By comparing the coefficient of z* in the polynomial identity

:z:::(m;- ﬂ)zk = (1 +Z)"'+n - (1 4-2)’"(] +z)n
-(E2))(E @)
show that

41

" . L4 The Binomial Theorem

(b) Let 2 and ¥ be disjoint sets containi
) ng m and a cl
respectively, and put = % U ¥. Show that the n:r:rg::‘:‘(
subsets & of .7 that contain k clements and that also have the
property that 3/ N % contains i elements is (T “k n ) Inter-
-1

pret this identity combinatorially.
(c) Show that for n » 0,
- (n)? 2n
T (k) ( n )

k=0

4. (a) Suppose that .~ contains 2n clements, and that ~ is parti-
tioned into n disjoint subsets each one containing exactly two
elements of .. Show that this can be done in precisely

(2n)!

2"n!

=1 =

(2n—1)(2n —=3)+--5-3

ways.
(b) Show that (n + 1Xn + 2) - -+ (2n) is divisible by 27, but not by

2u+ll
5. Show that if @ and b are positive integers, then a!*b!|(ab)!. (H)
6. Let f(x)and g(x)be n-times differentiable functions. Show that the

nth derivative of f(x)g(x) is

n

MY [l P 2o T e e 8
Z (%)

7. Show that ("“ -~ 1)-= (—1)‘(";*) for 4 = 0. Deduce that if

|z] < 1 then

l a0
== - 50 .19

8. Give three proofs that
5 (m +k}= (k+M+ 1)_
= k k+1

(a) With k fixed, induct on M, using Theorem 1.20.
(b) Let 4= (1,2,-+-,k + M + 1}. Count the number of subsets o

of . containing k + 1 elements, with the maximum one being
k+m+ 1.
(c) Compute the coefficient of z* in the identity
(1+z+2z24 —-)- lk'= -
(I—z)es 1-2z)

k+2 "
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CHAPTER 2

Congruences

2.1 CONGRUENCES

It is apparent from Chapter 1 that dj

visibility is a fundamental
number ﬂ_‘lEOT}H one that sets it apart from many other branches of
mathematics. In this chapter we continue the cs on

; - study of divisibility-
a slightly different point of view. A congrue y ibility; but

nce is nothing more than g

e TR T i = n
statement about divisibility. However, it is more than just a Cﬂnveniﬁ
notation. It often makes it easier to discover proofs, and we shall see that

E:ongme‘nces can suggest new problems that will lead us 0 new
mteresting topics.

The theory of congruences was introduced by Carl Friedrich Gaﬁ'sg
(1777-1855), one of the greatest mathematicians of all time. Gauss cog-
tributed to the theory of numbers in many outstanding ways, including
basic ideas of this chapter and the next. Although Pierre de Fermat
(1601-1665) had earlier studied number theory in a somewhat systematic
way, Gauss was the first to develop the subject as a branch of mathematics
rather than just a scattered collection of interesting problems. In his boc .
Disquisitiones Arithrneticae, written at age 24, Gauss introduced the the o1y
of congruences, which gained ready acceptance as a fundamental tool for
the study of number theory. :

Some fundamental ideas of congruences are included in this
section. The theorems of Fermat and Euler are especially noteworthy,
providing powerful techniques for analyzing the multiplicative aspects of
congruences. These two pioneers in number theory worked in widely
coptrasting ways. Mathematics was an avocation for Fermat, who was @
lawyer by profession. He communicated his mathematical ideas by correx
spondence with other mathematicians, giving very few details of the proofs
of his assertions. (One of his claims is known as Fermat’s “last theorem,"
aithough it is not a theorem at all as yet, having never been proved. This
situation is discussed in Section 5.4.) Leonard Euler (1707-1783), on the
other hand, wrote prolifically in almost all the known branches of mathe
matics of his time. For example, although Fermat undoubtedly was able 0

=t E

CD“CEP[" |“
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eorem 2.7 below, Euler in 1736

i d to him as
anbr;;ﬂll; proof. Years later, in 1760, Euler stated and
Y rmat’s result, which is given as Theorem 2.8

prove the result
lization of Fe

o
a5 the first
;rovcd his genera
here.
integer m, not zero, divides the difference a — b, we say
b modulo m and write a = b(mod m). Ifa — b is not

pefinition 2.1 ifan
that a is not congruent fo b modulo m, and in this

dhat @ is cgn_gruf:ﬂl o

divisible By m we say
case we wiite @ # b{mod m).

Since a — b is divisible by m if and only if a — b is divisible by —m,
we can generally confine our attention to a positive modulus. Indeed, we
shall assume throughout the present chapter that the modulus m is a

positive integer. . 1 -
Congruences have many properties in common with equalities. Some
properties that follow casily from the definition are listed in the following

theorem.

Theorem 2.1 Ler a, b, c, d denote integers. Then:
(1) a = b(mod m), b = a(mod m), and a — b = 0(mod m) are
equivalent statements.
(2) if a = b(mod m) and b = c (mod m), then a = c (mod m).
(3) Ifa = b(mod m) and ¢ = d (mod m), thena + ¢ = b + d (mod m).
4) ifa = b(mod m) and ¢ = d(mod m), then ac = bd (mod m).
(5) Ifa = b(mod m) and dlm,d > 0, then a = b (mod d).
(6) If a = b(mod m) then ac = be (mod mc) forc > 0.

Theorem 2.2 Let f denote a polynomial with integral coefficients. If a =
bimod m) then f(a) = f(b)(mod m).

f::’"f e can suppose f(x) = c,x" + ¢,_,x""' + -+ +c, where the ¢,
r:;:t;':'ilzers. Since a = b(mod m) we can apply Theorem 2.1, part 4,
i 2(, W find a’=p? a’=b%---, 4" = p"(mod m), and then
i b'"f,‘ (mod m), and finally c,a” +c,_,a"~' + -+ +co mc,b" +
A ¥ =t +c,{mod m), by Theorem 2.1 part 3.

You 5
- 4:1:;;' of course, well aware of the property of real numbers that if
“mgrus @ #0 then x =y, More care must be used in dividing a
nice Ihrnug}] by a.

21 G
ongruences 19

Theorem 2.3
(1) ax = ay (mod m).if and enly ifx = y [rnﬂd " )
b (a,m)
(2) If ax = ay (mod m) and (a, m) = 1, then x =y (mod m).
(3) x = y(mod m,) fori = 1,2,---,rif and only if
x =y{mod[m;, my,---,m]D.

Proof (1) If ax = ay (mod m) then'ay — ax = mz for some integer z.
Hence we have
m

a
(v = %) = oy =

(a,m)

and thus

m a

T (y —x).

(a,m)
But (a/(a, m), m/(a, m)) = 1 by Theorem 1.7 aud therefore
{m/(a, m}|(y — x) by Theorem 1.10. That is,

m
.rsy(rnod (—m—'m*-—)—)

Conversely, if x = y(mod m/(a, m)), we multiply by a to get ar =
ay (mod am /(a, m)) by use of Theorem 2.1, part 6. But (a, m) is a divisor
of a, so we can write ax = ay (mod m) by Theorem 2.1, part 5.

For example, 15x = 15y (mod 10} is equivalent to x = y (mod 2), which

amounts to saying that x and y have the same parity.
(2) This is a special case of part L. It is listed separately because we

shall use it very often. s
3) If x=y(modm,) for i =1,2,--+,r, then m,|(y —x) for i =
1,2,--+,r. That is, y —x is a common multiple of m,, m,,---,m,, and
therefore (see Theorem 1.12) [, m,,-- -, m, ]|(y — x). This implies x =
y(mod[m, my,« - ,.m.]). - o ey
If x =y (mod(rm,, my," -+, m,]) then x = y (modm,) by Theorem 2.1
part 5, since my|[my,my,---,m,_]. )

_ In dealing with integers modulo m, we are essentially performing the
ordinary operations of arithmetic but are disregarding multiplés of m. In a
sense we are not distinguishing between a and a + s, where X is'uny
integer. Given any integer a, let g and r be the quotient and remainder on
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division by m; thus @ =gm + r by Theorem 1.2. Now a = r(mo"i m) and,
since r satisfies the incqualities 0 < r <m, we see that every integer is
congruent modulo /1 to one of the values 0, 1,2,- -+, m — 1. Also it is clear
that no two of these m integers are congruent modulo m. These m values
constitute a complete residue system modulo m, and we now give a

general definition of this term.

Definition 2.2 Ifx = y(mod m) then y is called a residue of x modulo m.
A set xy, X3,"* ", X, i3 called a complete residue system modulo m if for
every integer y there is one and only one Xx; such that y = x; (mod m).

It is obvious that there are infinitely many complete residue systems
modulo m, the set ,2,-+-,m = 1, m being another example.

A set of m integers forms a complete residue system modulo m if and
only if no two integérs in the set are congruent modulo m.

For fixed integers @ and m > 0, the set of all integers x satisfying
x = a(mod m) is the arithmetic progression

vya=3m,a—-2m,a-m,a,a+m,a+2m,a+3Im, .

This set is called a residue class, or congruence class, modulo m. There are
m distinct residue classes modulo m, obtained for example by taking
successively a = 1,2,3,---, m.

Theorem 24 If b = c(mod m), then (b, m) = (¢, m).

Proof We have ¢ = b + mx for some integer x, To see that (b, m) =
(b + mx, m), take @ = m in Theorem 1.9,

Definition 2.3 A reduced residue system modulo m.is a set of integers r,
such that (r,,m) = 1, r; # r,(mod m) if i # j, and such that every x prime to
m is congruent modulo m to some member r, of the set.

In view of Theorem 2.4 it is clear that a reduced residue system
modulo m can be obtained by deleting from a complete residue system
modulo m those members that are not relatively prime to m. Further-
more, all reduced residuc systems module m will contain the same
number of members, a number that is denoted by ¢(m). This function is
called Euler’s ¢-function, sometimes the rotient. By applying this definition

of ¢(m) to the complete residue system 1,2,--+,m mentioned in the
paragraph following Definition 2.2, we can get what amounts to an
alternative definition of ¢(m), as given in the following theorem.

2.1 Congruences

Theorem 2.5 The number ¢(,‘.ﬂ) & thE T i - ‘l‘h
or equal to m that are relatively prime to m. of positive legery h,“

Euler’s function ¢(m) is of consid-crable interest |
further in Sections 2.3, 4.2, 8.2, and 8.3, - We shall conyg

Theorem 2.6 Let (a,m) = 1. Let ry,ry,+,r, e g complie: i e
duccd, residue system modulo m. Then ary, ar,,- --, ar, is g com;:l;:'-' L
reduced, residue system, respectively, modulo m. e

For example, since 1,2,3,4 is a reduced residue system moduh 5 la
also is 2,4, 6, 8. Since 1,3,7,9 is a reduced residue system modulo 1) ‘;;.“
3,921,271 it
Proof  1f (r;, m) = 1, then (ar;, m) = 1 by Theorem 18, . .

There are the same number of ary, ary, " -, ar, as of Pty r,
Therefore we need only show that ar, # ar; (mod m) if i # j. But Theo.
rem 2.3, part 2,shows that ar, = ar; (mod m) implies r, = r, (mod m) and
hence i =4, /- .

rf\

Theorem 2.7 “FeFmat's theorem.Let p denote a-prime. If pXa then
a?~" = 1(modp). For every integer a, a” = a(mod p). - i

We shall postpone the proof of this theorem and shall obtain it as 2
corollary to Theorem 2.8, . ‘ : ‘) S

Theorem 2.8 Euler’s generalization of Fermat’s_theorem.. If (a,m)= 1,

then . -

) a*™ a 1 (mod m). e

i A ; oy bl
Proof  Let ry, ry,- -, T4om) be a reduced residue system modulo m. Then s
by Theorem 2.6, ur,,ar,,- - ‘) @Fym i also a reduced residuc system
modulo m. Hence, corresponding to each , there is one and only.one i
such that r, = ar, (mod m). Furthermore, different r, will have different
corresponding ar,. This means that the numbers ary, arg, "y 8rym A
just the residues modulo m of r,, ry,: -, Facmyr DUL TIOL necessarily. in the..

samc order. Multiplying and using Theorem 2.1, part 4, we obtain . 7% :
ircrrasdo

#(m) &d{m) . E .A,..I.

[T (ar) = [Tr(modm), «-ivis nt 00

=1 : im] ( i e T o S0
25
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and hence
${m) #m) -
a¥m™ r{ = ;I_Ij ry(mod m).
i= e

m) = 1, so we can use Theorem 2.3, part.2, to cancel the r; and

. Now (r, a#™ = 1(mod m).

we obtain

Proof of Theorem 2.7 1f p X a, then (a, p) = 1and a*?) = 1(mod p). Tc
find ¢(p), we refer to Theorem 2.5.' All the integers 1,2,--+, p — 1, p with
the exception of p are relatively prime to p. Thus we have ¢(p) =p—1
and the first part of Fermat's theorem follows. The second part is now

obvious.

Theorem 2.9 If (a,m) = 1 then there is an x such that ar =1 (mod m).
two such x are congruent (mod m). If (a, m) > 1 then there is no ;uch .

\Proof If (a,m) = 1, then there cxist x and y such that ar +my = I._
at is, ar = 1(mod m). Conversely, if ax = 1(mod m), then therc is a y
'such that ax + my = 1, so that (a, m) = 1. Thus if axr, = ax, = 1(mod ),

then (a,m) = 1, and it follows from part 2 of Theorem 2.3 that x, =

x, (mod m). -

The relation ax = 1(mod m) is equivalent to the assertion that the
idue class x (mod m) is the multiplicative inverse of the residue class
a(mod ). To avoid confusion with the rational number a_" = 1/a, we
denote this residue class by @ (mod m). The value of @ is qu:kay found by
employing the Euclidean algorithm, as described in Section 1.2. The
existence of 7 is also evident from Theorem 2.6, for if (a, m) = 1, t_herl the
fumbers a,2a, ..., ma form a complete system of residues, which is 10 say
hat one of them is = 1(mod m). In addition, the existence of @ can also
b inferred from Theorem 2.2, by taking @ = a®(™ "', !

emma 2,10 Let p be a prime number. Then x* = 1(mod p) if and only if
£ = +1(mod p). . L

_In Section 2.7 we establish a more general result (Theorem 2._26)_ from
¥hich the foregoing is easily derived, but we give a direct proof now, since
1S obscrvation has many useful applications.

oof This quadratic congruence may  be ‘expressed as x® — 1=
#0d p). That js, (x — 1Xx + 1) = O(mod p), which is to say that

Ve

2.1 Congruences

pl(x = 1Xx + 1). By Theorem 1.15 it follows that pl(\x - 1Dor

¢ pl( .
Equivalently, x = 1(mod p) or x = —1(mod p). Conversely, if ciuf::o:?:
of these latter congruences holds, then »2 = 1(mod p).

Theorem 2.11 Wilson's theorem. If p is a prime, then (p—1a

—1(mod p).

Proof If p=2or p =3, the congruence is easily verified. Thus we may

assume that p > 5. Suppose that | € a < p — 1. Then (a, p) = 1, so that

by Theorem 2.9 there is a unique integer @ such that 1 < @ <p-—1and
az = 1{mod p). By a sccond application of Theorem 2.9 we find that if 7
is given then there is exactly onc a, 1 €a<p -1, such that ag =
I(mod p). Thus a and @ form a pair whose combined contribution to
(p — Dlis = 1{mod p). However, a little care is called for because it may
happen that a = 4. This is equivalent to the assertion that a? = 1(mod p),
and by Lemma 2.10 we see that this is in turn equivalent to @ = I or
a=p-—1Thatis, I=1land p—I=p— 1, butif2<a<p—2then
a v a. By pairing these latter residues in this manner we find that
MfZ7a =1(mod p), so that (p — M= 1-(TI?2a)-(p— 1D =
—1(mod p).

We give a second proof of Wilson’s theorem in our remarks following
Corollary 2.30 in Section 2.7, and a third proof is ocutlined in Problem 22
of Section 2.8. AT i

Theorem 2.12  Let p denote a prime. Then x* = — | (mod p) has solutions
Gf\:fﬂnd onlyifp =2 orp = 1(mod 4).

Ffroof If p =2 we have the solution x = 1.

For any odd prime p, we can write Wilson’s theorem in the form'

(1-2-s 5;—'-)(-"—;—' v i) (p= 2= 1) I-

= —1(mod p).

The product on the left has been divided into two parts, each with the
same number of factors. Pairing off j in the first half with p =/ in the
second half, we can rewrite the congruence in the form RS

(p-nsz T ol s
;I._{ i(p—~j)= —1(mod p). '-’--'5-' Kefy, propced
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But j(p —j) = —j*(mod p), and so the abpve is
u

(p-11/2 \?
(p-1)/2 (p=1)/2 :
gy o Jj| (mod p).
SR

if 1 (mod 4) then the first factor on the right is 1, and we see that
p =

1 is a solution of x? = —1(mod p).

i h that x? = —1(mod p).
, conversely, that there is an x suc r
We i::??::: for such an x, pA'x. We suppose that p > 2, and raise both
sides of the congruence to the power (p — 1)/2 to see that

=

(_‘i)u-luz - (xz)(p—ll.fz =xP-! (mod p).

By Fermat’s congruence, the right side here is = 1 (mod p). The left side
is +1, and since —1 # 1(mod p), we deduce that

(_ l)(p-l\,’l =1.
Thus (p — 1)/2 is even; that is, p = 1{mod 4).

In case p = 1{mod 4), we have explicitly constructed a solution of the
congruence x* = —1(mod p). However, the amount of calculation re-

quired to evaluate

!{mod p) is no smaller than would be required

by exhaustively testing x =2, x = 3.---, x = (p — 1)/2. In Section 2.9 we
develop a method by which the desired x can be quickly determined.

Theorem 2.12 provides the key piece of information nceded to deter-

mine which integers can be written as the sum of the squares of two

integers. We begin by showing that a certain class of prime numbers can
be represented in this manner.

Lerfm'm 213 If pis a prime nimber and P = 1(mod4), ther: there evist
positive integers a and b such that a° + b? = p.

Tflu's was first stated in 1632 by Albert Girard, on the basis of
numerical evidence. The first proof was given by Fermat in 1654,

Froof Let p be a prime number, p = 1(mod4). By Theorem 2.12 we
know that there exists an integer x such that x* = — | (mod p). Define
flu,v) =u+xe,and K = h/};]. Since |,/; is not an integer, it follows tht

2.1 Congruences

K < ,/3 < K + 1. We consider pairs (i, v) of inte
and 0 € v < K. Since 4 and v each take on
(K + 1)* pairs. Since K + 1 > VP, the number of
consider f(u, v)(mod p), we have more numbers under consig
we have residue classes to put them in, so there must be SOme
class that contains the number f(u, v) for two different Pairs (5,
is known as the pigeonhole principle, which we discuss in !ﬂ:ﬂtel:
Section 4.5.) Suppose, for example, that (u,,v,) and ("2-91) are
pairs with coordinates in the interval [0, K], for which
fQuy, v;)(mod p). That is, w, + XUy = u; + xw; (med p),

(u; —uz) = —x(v, - v,)(mod p). Take a =u, —u, ang b
Then a = —xb(mod p), and on squaring both sides we see that
(=xb)? = x?b? = —p?(mod p) since x? = —1(mod p), That is,

= 0(mod p), which is to say that pl(a® + b?). Since the orders
(u,1,) is distinct from the pair (u,,v,), it follows that not both a
vanish, so that a? + b? > 0. On the other hand, Uy <K and u,
that a = u; — u, < K. Similarly, we may show that ¢ » —K, and iy,
same manner that —K < b < K. But K < /p, so this gives |a| < yp
|6l < y/p. On squaring these inequalities we find that a? < p and i<,
which gives a? + b? < 2p. Thus altogether we have shown that 0 <4,
b? < 2p and that pl(a? + &2). But the only multiple of p in the inteng
(0,2p) is p, so we conclude that a2 + 42 = p, =

-

We now establish a similar result in the converse direction.

Lemma 2.14  Let q be a prime factor of a* + b2, If g = 3(mod 4) then g,
and glb. : .

Proof We prave the contrapositive, that is, that if ¢ does not divide
a and b then ¢ # 3(mod 4). By interchanging a and b, if necessary, ¥
may suppose that (a, q) = 1. Let @ be chosen so that ad = 1(mod g). W
multiply both sides of the congruence a* = ~b2(mod q) by @* to seethd
1 = (a2)’ = —(b3)* (mod q). Thus if x = b then x is a solution of
congruence x? = —1(mod g), and by Theorem 2.12 it follows that g=!
or g = 1(mod 4). "

Theorem 2.15  Fenmat. Write the canonical factorization of n in the fom

n=2e IT p# T] g - il
plle)  gm3) R |
!

Then n can be expressed as a sum of two squares of integers ¥ and m{”‘
the exponents y are even. e

e
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yof  We note that the identity

(a® + b2)(c? + d*) = (ac - bd)* + (ad - be)?

holds for any real numbers. In pal:licular. it follows that if m and n are
both sums of two squares then mn is also a sum of two squares. The prime
qumber 2 = 17 + 12 is a sum of two squares, and every prime number
p=1{mod4) is a sum of two squares, If g is a prime number, g =
3(mod 4), then g% = ¢ + 0% is a sum of two squares. Hence any number
that may be expressed as a product of 2’s, p’s, and g%'s is a sum of two
wquares. Conversely, suppose that n is a sum of two squares, say n = a® +
,t,!, If ¢ is a prime number, g = 3 (mod 4), for which ¥ > 0, then g(n, and
by Lemma 2.14 it follows that gla and gq|b, which implies that g?|n. That
is, v » 2, and we may write n/q? = (a/q)* + (b/q)*. By applying this
same argument to n/g? we discover that if y > 2 then y > 4 and that
4*a and q%|b. Since this process must terminate, we conclude that ¥ must
be aven, and additionally that g7/%|a and g7/?|b.

‘This theorem of Fermat is the first of many similar such theorems.
‘The object of constructing a coherent theory of quadratic forms was the
primary influence on research in number theory for several centuries. The
first stcp in the theory is to generalize Theorem 2.12. This is accomplished
in the law of quadratic reciprocity, which we study in the initial sections of
Chapter 3. With this tool in hand, we develop some of the fundamentals
concerning quadratic forms in the latter part of Chapter 3. In Section 3.6
we apply the general theory to sums of two squares, to give not only a
second proof of Theorem 2.15, but also some further results.

PROBLEMS

L List all integers x in the range 1 <x <100 that satisfy x =
7(mod 17). . i :

% Exhibit a complete residue system modulo 17 composed entirely of
multiples of 3, L L b

- Exhibit a reduced residue system for the modulus 12; for 30,

“ I an lnteger x g even,, observe that it ‘must satisfy the congruence

x T'IJ(nmd 2). If an integer y is odd, what congrucnce docs it satisfy?

W "4¥ congruence does ‘an integer z of the form 6k + 1 satisfy?

: "te a single congruence that is equivalent to the pair of congru-

NCCs x = | (mod 4), x m 2(mod 3).

plf;’:':_":‘i' if p is a prime and a* = b*(mod p), then pl(a +b) or

F S

-

Lo
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7. Show that if f(x) is a polynomial with integral coefficients and if
f(a) = k(mod m), then f(a + tm) = k (mod m) for every integer 1.

8. Prove that any number that is a square must have one of the
following for its units digit: 0,1,4,5,6,9. ic

9. Prove that any fourth power must have one of 0, 1,5,6 for its units
digit. A

10. Evaluate ¢(m) for m = 1,2,3,---,12.

11. Find the least positive integer x such that 13|(x? + 1).

12. Prove that 19 is not a divisor of 4n? + 4 for any integer n.

13. Exhibit a reduced residue system modulo 7 composed entirely of
powers of 3. : s

14. Show that.7|(32**! + 27*2) for all n. L o 14

15. Find integers a,,- - -, a5 such that every integer x satisfies at least one

of the congruences x = a;(mod2), x =a,(mod3), x = a;(mod4),

x = a,(mod 6), x = as(mod 12).
16. Illustrate the proof of Theorem 2.11 for p =11 and p = 13 by
actually determining the pairs of associated integers. .

17. Show that 61!+ 1 = 63!+ 1 = 0(mod 71).

F ' Sy 4.5 5 -1 TR
18. Show that if p = 3(mod 4), then (p )!E + 1(mod p). ,

19. Prove that n® — 1 is divisible by 7 if (n,7) = 1. "~

20. Prove that a7 — n is divisible by 42, for any integer n.

21. Prove that n'? — 1 is divisible by 7 if (7,7) = 1. | i

22. Prove that n®* — 1 is divisible by 7 if (n,7) = 1, k being any positive
integer, i ;

23. Prove that n'* — p is divisible by 2, 3, 5, 7 and 13 for any integer ».

24. Prove that n'? — g'? js divisible by 13 if # and a are prime to 13,

25. Prove that n'? — a' is divisible by 91 if n and @ are prime to 91. -

26. Show that the product of three consecutive integers is divisible by 504
if the middle one is a cube, botiadbi « Brteray oy i bl i R

27. Prove that tn* + {n® + Jn is an integer for every integer n.

28. (\;l!l;at is the last digit in the ordinary decimal representation of 34%?

29. What is the last digit in the ordinary decimal representation:af 24097

30. What are the last.two digits in' the ordinary decimal representation of

3'%7 (H) RPN

3L Show that ~(m — 1)/2, — (m — 3)/2,- -+, (m = 3)/2,(m - 1) /2 is
a complete residue system modulo miif m is odd, and that —(m —
2/2,=(m =) /2, (m — 2)/2,m 2 is a complete residue system
modulo m if m is even.
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pairs (u,0), show that at least one of the equations a® + 252 =p,

4% + 2b* = 2p has a solution,

Show _that (@ + b6Y=—2Xe + d¥=2) = (ac — 2bd) + (be o

" 4d)/ = 2. Thus or otherwise show that (a2 + 252)c2 4 2d?) = tac
_ 2bd)* + 2(bc + ad). ‘

58

a2 = p.

Let p be a prime factor of a? + 2b2 Show that if p does not divide
both @ and b then the congruence x2? = —2 (mod P) has a solution,
Combine the results of the foregoing problems to show that a prime
number p can be expressed in the form a? + 252 jf and only if the
congruence x? = —2(mod p) is solvable. (In Chapter 3 we show that
this congruence is solvable if and only if p = 20rp = 1 or 3{(mod 8).)

59.

60.

29 SOLUTIONS OF CONGRUENCES

In analogy with the solution of algebraic equations it.is natural to consider
the problem of solving a congruence. In the rest of this chapter we shall !et
flx) denote a polynomial with integral ctlaeﬂimfants, and we shall write
fxd=a,x" +a, x""' 4+ -++ +ay. If u is an integer such that f(u) =
0(mod ), then we say that u is a solution of the congruence f(x) =
O(mod m). Whether or not an integer is a solution ot'" a congruence
depends on the modulus m as well as on the polynomial f(x). If the
integer u is a solution of f(x) = 0(mod m), and if v = u (mod m), 'l'h_eo—
rem 2.2 shows that v is also a solution. Because of this we shall say that
Y=u(modm) is a solution of f(x) = 0(mod m); meaning that every
integer congruent to « modulo m satisfies f(x) = 0(mod m). |
For cxample, the congruence x? — x + 4 = 0(mod 10) has the solu-
tion x =3 and also the solution x = 8. It also has the solutions x = 13,
*=18, and all other numbers obtained from 3 and 8 by adding anc:_
- Subtracting 10 as often as we wish. In counting the number of solutions o
-~ dtongruence, we restrict attention to a complete residue system belonging
' the modulus. In the example x2 —x + 4 = 0(mod 10), we say ;hat
- there are two solutions because x = 3 and x = 8 are the only numbers
.~ among (), 1,2,-++,9 that are solutions. The two solutions can be wrltlcnlg;
Sduation form, x = 3 and x = 8, or in congruence form, x = 3(m°d2 0
ot £ = B(mod 10). As a second example, the congruence x* — 7x + :
-__0(m0d 10) has exactly four solutions x = 3, 4, 8, 9. The reason for cot;lr;smg
B Umber of solutions in this way is that if f(x) = 0(mod rr(l) b
Mhion x = 4, then it follows that all integers x satisfying x = a (mo

Show that if p is an odd prime and a® + 262 = 2p, then 4 is even -
and b is odd. Deduce that (2b)* + 24 = 4p, and hence that b4

s T
2.2 Solutions of Congruences
61
are automatically solutjq, i
1 ns, :0 th i
single solution, > endre Fonenence dass ' counteq
ed as a
: \
Definiti
efinition 2.4 1, T Fay **,r, denote q complete reg;,

m. The number of solutions of (.,. 0
that f(r;) = 0(mod m), e

It is clear from Theorem 2.2 that the number of so|
dent of the choice of the complete residue s .
number of solutions cannot exceed the modulus m. If is small jt
s:mple_matter to just compute f(r) for each of the , and thu;s;a
determine the number of solutions. In the foregoing exam;:l;lc the con ru?
ence has just two solutions. Some other examples are F

x2+1=0 (mod 7). has no solution,
x? + 1 = 0(mod 5) has two solutions,
x? — 1 = 0(mod 8) has four solutions.

Definition 2.5 Let f(x) = a4, X" +a, x"7' 4+ 4o If a, #
0(mod m) the degree of the congruence f(x) = 0(mod m) is n. Ifa,=
0(mod m), let  be the largest integer such that a; # 0(mod m); then the
degree of the congruence is j. If there is no such integer j, that is, if all the
coefficients of f(x) are multiples of m, no degree is assigned to the congru-
ence.

It should be noted that the degree of the congruence f{x) = 0(mod m)
is not the same thing as the degree of the polynomial f(x). The degree of
the congruence depends on the modulus; the degree of the polynomial
does not. Thus if glx) = 6x? + 3x2 + 1, then g(x) = 0(mod5) is, of
degree 3, and g(x) = 0(mod 2) is of degree 2, whereas g(x) is of degree 3.

Theorem 2.16 {f d|m,d > 0, and if u is a solution of f(x) = 0(mod m),
then u is a solution of f(x) = 0(mod d).

Proof This follows directly from Theorem 2.1, part 5.

There is a distinction made in the theory of algebraic equations lzhar
has an analogue for congruences. A conditional equation, such as ¢* -
5x + 6 = 0, is true for only certain values of x, namely x = 2 and'x = ?
An identity or identical equation, such as (x — 2) = x? — 4x + 4, holas
for all real numbers x, or for all complex numbers for that matter.
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Similarly, we say that f(x) = 0(mod m) is an identical congruence if it
holds for all integers x. If f(x)isa polynomial all of whose coefficients are
divisible by m, then f(x) = 0(mod m) is an identical congruence. A
different fype of identical congruence is illustrated by x? = x(mod p),
true for all integers x by Fermat’s theorem,

Before considering congruences of higher degree, we first describe the
solutions in the linear case.

Theorem 2.17 Leta, b, and m > 0 be given integers, and pur g =(a, m).
The congruence axr = b(mod m) has a solution if and only if g|b. If this
condition is met, then the solutions Jorm an arithmetic progression with
common difference m /g, giving g solutions (mod m).

Proof The question is whether there exist integers x and y such that
ax +my = b, Since g divides the left side, for such integers to exist we
must have g|b. Suppose that this condition js met, and write a = ga,
b=gB, m=gu. Then by the first part of Theorem 2.3, the desired
congruence holds if and only if ax = g(mod u). Here (a,p) =1 by
Theorem 1.7, so by Theorem 2.9 there is a unique number & (mod w) such
that aa = 1{mod ). On multiplying through by &, we find that X =
aax = ap(mod p). Thus the set of integers x for which ax = b (mod )
is precisely the arithmetic progression of numbers of the form @B + ky. If
we allow & to take on the values 0,1,...,g — 1, we obtain g values of x
that are distinct (mod m). All other values of X are congruent (mod ) to
one of these, so we have precisely g solutions.

Since & can be located by an application of the Euclidean algorithm,
the solutions are casily found.

PROBLEMS

L If f(x)=0(mod p) has exactly j solutions with P a prime, and
£(x) = 0(mod p) has no solution, prove that f(x)g(x) = 0(mod P)
has exactly j solutions, '

2. Denoting the number of solutions of f(x) = k (mod m) by N(k),
prove that I7_ | N(k) = m. '

3. Ifa polyr.mmial congruence f(x) = 0(mod m) has m solutions, prove
that any integer whatsoever is a solution,
_4. The fact that the product of any three consecutive integers is divisible
. by3 leads to the identical congruence x(x + IXx + 2) = 0(mnod 3).
- Generalize this, ang write an identical congruence modulo .

\

2.2 Solutions of Congruences

5. Find all solutions of the congruences .
(@) 20x = 4(mod 30); (e) 64x = 83(moq1q5), - -~ *
(b) 20x = 30 (mod 4); {f) 589x = 209 (mod g1 7.~
(e) 353x = 254(mod 400);,  (g) 495 = 5000 (mod 999, .
(d) 57x = 87 (mod 105); .

6. How many solutions are there to each of the folluwing 00;1 :
(@) 15x = 25 (mod 35); 3
(6) 15x = 24 (mod 35),
(¢) 15x = 0(mod 35)? o

7. If a is seiected at random from 1,2,3.-. 14, and p 5

] L3 ] se
random from 1,2,3,---, 15, what is the probability m:;m .
#(mod 15) has at least one solution? Exactly one solutiop? B

8. Show that if p is an odd prime then the congruence x?
has only the two solutions x=1x= -1(mod Po).

9. Show that the congruence 2 = 1(mod 2°) has o
a = 1, two solutions when a — 2, and precisely
l,2°’"—l,2‘*“+l,-—lwhena;3. ,

10. Shgw that if p is an odd prime then the number of solutions (ordered
pairs) of the congruence x? — 2 — a(mod p) is p - | unless am
0(mod p), in which case the number of solutions is 2p — 1. (H)

11. Suppose (a, m) = 1, and Iet x, denote a solution of gr = 1 (mod m),
Fors =1,2,--- Iet *: = 1/a - (1/aX1 ~ ax,Y. Prove that x, isan
Integer and that i, is a solution of ar = 1(mod m), X

*12. _Suppo:w that (a,m) = 1. If g = *1, the solution of ar = 1{mod m*)
is obvmus[!y x=almodm?. If a= 12, then m is odd and x=
31 — m*)a (mod m*) is_the solution of ar = 1(mod m*). For all;
other a use Problem 11 t6 show that the solution of ax = 1(mod m'),
IS X = k (mod m*) where & is the nearest integer to —(1/aX1 — ax}i

i m

%l(moqp_-}__

ne solution whey
the four solutiong

13. Solve 3x = 1(mod 125) by Problem 12, taking x, =2. = ... 4
@ " s o A

*14. Show that (‘i )-=. 0(mod p) for 0 < &k < p=. {H) _ e
i 3 a.__ Sy of el il

*15. Show that [ P k IJE (=1)* (mod p) for 0 < k<p™ -1 (H_.l_, »E—
A

i bus, .
*16. Show that if r is a non-negative integer then all coefficients of the

polynomial (1 + x)*" — (1 + x2') are even. Write a positive integer A
in binary, n = ¥ 2°. Show that all coefficients of the pofymﬂiﬂ*:

res i : ; X
(I +x) — TT(1 +x%) are even. Write k = Y 27 in binary. shm’ﬁ
re. s -

that (:} is odd if and only if g .. Concl.lfc_tc’that |f.nlt§ gm*

1
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o MY is odd for precisely 2"’ values of k, where w(n), called
:».: bfm’-;r? weight of n, is the number of I's in the binary expansion of
ﬂ‘_ [n symbols, w(n) = card (2).

wvote This is a special case ofa_ result of E. Lucas, proved in 1891.
se¢ N. I. Fine, *‘Binomial coefficients modulo a prime,” Amer. Math.
Monthly, 54 (1947), 589-592.

Let the numbers ¢; be defined by the power series identity

7.
(QHx+ -+ /(1 =2 " =1+ x+cpx?+ - .

Show that ¢, = 0(mod p) for all i > 1.

53 THE CHINESE REMAINDER THEOREM

we now consider the important problem of solving simultaneous congru-
ences. The simplest case of this is to find those x (if there are any) that

satisfy the simultaneous congruences

x =a,(mod m,),
x = a,(mod m,),

(2.1)
x =a,(mod m,).

This is the subject of the next result, called the Chinese Remainder
ina in the first century A.p.

Theorem because the method was known in Qb)l

Theorem 2.18  The Chinese Remainder Zﬁ;ére} . Let my,my, 0, m, de-
nole r positive integers that are relaiively prime in pairs, and let a,, a4,,"* *» 4,

denote any r integers. Then the congruences (2.1) have common solu.‘zgnls).
I xy is one such solution, then an integer x satisfies I:he congruences i
Y and only if x is of the form x = xo + km for some integer k. Here m

Myt

,.,: Wriuing m=pm,m, --- m,, we sce that m/m; is :m'imcg.er and
S m,) = 1. Hence by Theorem 2.9 for each j there is an integer

23 The Chinese Remainder Theorem
65

b; such that (m/mpDb, = 1 (mod m

i #J. Put - Clearly (m/m,)5, = 0(mod my i

r
m
Xy = E —b.a..
jermy (22)

We consider this nuniber modulo m;, and find that

*o = —ba; = a,(modm,).

m;
Thus x, is a solution of the system (2.1).

If x, and x, are two solutions of the system (2.1), then x, =
x, (mod m,) for i = 1,2,---.r, and hence x, = x, (mod m) by part :’?ot‘
Theorem 2.3, This completes the proof.

Example 1 Find the [east positive integer x such that x = 5(mod7),
x = 7(mod 11), and x = 3 (mod 13):

Solution We follow the proof of the theorem, taking a, =5, a, = 7,
ay=3, m=7 my=11, my=13, and m =7-11"13 = 1001. Now
(myms, m;) = 1, and indeed by the Euclidean algorithm we find that
(=2) - mymy + 21 - m = 1, so we may take b, = —2. Similarly, we find
that 4 -mym; + (=33} -m, = 1, sa we take b, = 4. By the Euclidean
algorithm a third time we find that (—=1)-mm, + 6 -m; = 1, so we
may take b; = —1. Then by (2.2) we see that 11-13-(=2)-5 +
7:13-4-7+7:11-(=1)-3 = 887 is a solution. Since this solution is
uniqgue modulo /m, this is the only solution among the numbers

1,2,---,1001. Thus 887 is the least positive solution.

In the Chinese Remainder Theorem, the hypothesis that the moduli
m; should be pairwise relatively prime is absolutely essential. When this
hypothesis fails, the existence of a solution x of the simultancous system
(2.1) is no longer guaranteed, and when such an x does exist, we see from
Part 3 of Theorem 2.3 that it is unique modulo [, #1;,- -+, m, ], not
modulo m. In case there is no solution of (2.1), we call the system
inconsistent. In the following two examples we explore some of the possibil-
ities that arise when the m; are allowed to have common facrors: An
extension of the Chinese Remainder Theorem to the case of unrestricted
m; is laid out in Problems 19-23.
Example 2 Show that there is no x for which both x = 29(mod 52) and

x = 19(mod 72).
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Solution,” Since 52 = 4 - 13, we see by Part 3 of Theorem 2.3 that the first
congrucnce is equivalent to the simultaneous congruences x = 29 (mod 4)
and x = 29(mod 13), which reduces to r = 1(mod 4) and x = 3 (mod 13).
Similarly, 72 = 8 - 9, and the second congruence given is equivalent to the
simultaneous e6ngruences & = 19 (mod 8) and r = 19(mod 9). These re-
duce to x =3(mod8) and x = I{mod9). By the Chinese Remainder
Theorem we know that the constraints (mod 13) and (mod 9) are indepen-
dent of those (mod8). The given congruences are inconsistent because
there is no x for which both x = 1(mod4) and x = 3(mod 8).

Once an inconsistency has been identified, a brief proof can be
constructed: The first congruence implies that x = 1(mod 4) while the
second congruence implies that x = 3(mod 4),

Example 3 Dectermine whether the system x = 3 (mod 10, x =
8(mod 15). x = 5(mod 84) has a solution, and find them all, if any exist.

First Solution We factor each modulus into prime powers. By Part 3 of
Theorem 2.3, we see that the first congruence of the system is equivalent
to the two simultaneous congruences x = 3(mod 2), x = 3 (mod 5). Simi-
larly. the second congruence of the system is equivalent to the two
conditions x = 8(mod 3), x = 8(mod5), while the third congruence is
equivalent to the three congruences x = 5(modd), x = 5(m0§13). x=
5(mod 7). The new system of seven simultaneous congruences is equiva-
lent to the ones given, but now all moduli are prime powers. We consider
the powers of 2 first. The two conditions are x = 3(rpod ?) and x =
1 (mod 4). These two are consistent, but the second one implies the first,
so tnat the first one may be dropped. The conditions modulo 3 are
x = 8(mod 3) and x = 5(mod 3). These are equivalent, and may be ex-
pressed as x = 2(mod3). Third, the conditions modulo 5 are x =
3(mod 5), x = 8(mod 5). These are equivalent. so we drop the second of
them. Finally, we have the condition x = 5(mod 7). !-!ence our system of
seven congrueices is equivalent to the four conditions x = I{mod 4),
x=2(mod3), x=3(mod5), and x = 5(mod7). Here the moduli are
relatively prime in pairs, so we may apply the formula (2.2) used in the
pronf of the Chinese Remainder Theorem. Proceeding as in the solutioln
of Example 1, we find that x satisfies the given congruences if and only if
¥ = 173 {mod 420), : .
e procedure we employed here provides useful insights concerning
the way that conditions modulo powers of the same prime must mesh, but
when the numbe-s involved are large, it requires a large amount of
computation (because the moduli must be factored). A superior method is
previded by the tcrative use of Theorem 2.17. This avoids the need to

" factor the moduli,

x = a/(mod m,).

)

.23 The Chinese Remainder Theorem

and requires only r— | , licati ;
algorithm. R o

Second Solution The x that satisfy the third of the given congyy. -
precisely those x of the form 5 + 84u where u is ap integer, g"“““‘
~ing this into the second congruence, we see that the e o
-5+ 84u = 8(mod 15). That is, Bdu = 3(mod 15).
algorithm we find that (84,15) = 3, and indeed we
(=11 15 = 3. By Theorem 2:17 we deduce that u
congruence if and only if « = 2(mod 5). That is, 4 iso
5v, and hence x satisfies both the second and the thirg of the
congruences if and only if x is of the form 5 + 84(2 + Su) =173 + g0,
The first congruence now requires that 173 + 420y = 3 (mod 10). Tha
420v = —170(mod 10). By the Euclidean algorithm we find that (420,199
= 10. Since 10[170, we deduce that this congruence holds for al| U, Thay |
is, in this example, any x that satisfies the second and third of the given
congruences also satisfies the first. The set of solutions consists of th
of the form 173 + 420v. That is, x = 173 (mod 420). ’

By the E,
.ﬁnd that 7.

case the system is inconsistent, the inconsistency is revealed by a failure
the condition glb in Theorem 2.17. Alternatively, if it happens that the
moduli are pairwise relatively prime, then g = 1 in each application of
Theorem 2.17, and we obtain a second (less symmetric) proof of ll:g
Chinese Remainder Theorem,

Returning to Theorem 2.18. we take a fixed set of positive integez{
My, My, - -, m,, relatively prime in pairs, with product m. But instead of
considering just one set of equations (2.1), we consider all possible systems
of this type. Thus @, may be any integer in a complete residue system
modulo m,, a, any integer in a complete residue system modulo m,, and.
S0 on. To be specific, let us consider a, to be any integer among.
1,2,-:-,m,, and a, any integer among 1,2,**-,m,, -+, and a, any.
integer among 1,2, -, m,. The number of such r-tuples (a,,a,, --,a,) 8
mmy -+ m_=m. By the Chinese Remainder Theorem, each r-tlfplc
determines precisely one residue class x modulo . Moreover, distmd-_
r-tuples determine different residue classes. To see this, suppose that
(a,85,-+,a,) = (aj, a4, --,a’). Then a, # a/ for some i, and we se¢
that no integer x satisfies both the congruences x = a,(mod m,) and

Thus we have a one-to-one correspondence between the r-tuples
(a;,a3,'--,a,) and a complete residue system modulo m, such as t_he 3
integers 1,2,-- -, m. It is perhaps not surprising that two sets,-each hawn‘zl:
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.nts. can be put into one-to-gne correspondence. However, this
ence is particularly natural, and we shall draw some important

nces from it.

'« £tm,) % -+~ % ¢(m,). For example, if R denotes the set of
mbers, then R % R, abbreviated R?, describes the ordinary Eu-
, plane with the usual rectangular coordinates belonging to any
r. ¥). In this notation, we may express the one-to-onc correspon-

’ ¢ in question by writing
€0my) % €(mz) % -+ % €(m,) = €(m).

piample 4 Exhibit the foregoing one-to-one correspondence explicitly,
nm, =7, m,=9, m=463.

whent

Solution Consider the following matrix with 7 rows and 9 columns. At the
intersection of the ith row and jth column we place the element ¢,
where ¢, = i{mod7) and ¢, = j{modY). According to Theorem 2.18 we
can sclect the clement ¢, from the complete residue system £(63) =
{1,2,---.63). Thus the clement 40, for example, is at the intersection of
the fifth row and the fourth column, because 40 = 5(mod 7) and 40 =
4(mod 9). Note that the element 41 is at the intersection of the sixth row
znd fifth column, since 41 = 6(mod7) and 41 = 5(mod9). Thus the
clement € + | in the matrix is just southeast from the element c, allowing
for periodicity when ¢ is in the last row or column. For example, 42 is in
the last row, 0 43 turns up in the first row, one column later. Similarly, 45
is in the last column, so 46 turns up in the first column, one row lower.
This gives us an easy way to construct the matrix: just write 1 in the ¢,
pasition and proceed downward and to the right with 2,3, and so on.

I 29 57 22 50 15 43 8 36
37 2 30 58 23 51 16 4 9
10 38 3 31 59 24 52 17 45
46 11 39 4 32 60 25 53 18
19 47 12 40 5 33 61 26 54
55 20 31 13 41 6 34 62 27
B 56 21 49 14 42 7 35 63

H ; 3 .
7€ the correspondence between the pair (i, j) and the entry c,; provides
M:iulihn to the lJl'Obl:ﬂ'l.

23 The Chinese Remmginge, —_—
&0

::mmbc-rs “.i"".‘ﬁl, ;nd i Precisely those o which ; 3
5::,,.6:)'- 1if and only i (;,7) = Land (7,9) = 1. gmc, H
4,(523‘: 4, and for each such ; there are p'rc.cisc!v{; fw ane ractly
dcm; - 1:6 - Tmamxw:: NOW show that this mﬁ"m’i 1
ca ormula for &(/n) in terms of the ori = .
prime !Gﬂm'inﬁ:nd -

m.

Theorem 2.19 If m; and m, denots itive, relaticet,
2 o positive, i Drime intepers
:ha: é(m,ﬁ,) = &m )bl m,). Moreover, ifml;'z:ds the cancnical .
i 1 - p’,thmd(m)" n(p.._ ==y tra-
I1 P~ Y m}l(! - 1/p).

If m = |, then the products are e and ion an
mpty, by convention empty
product has value 1. Thus the formula g; es = 1 in thi 3
3 gives ¢{1) = 1 in this sz, which is

Proof Put m = mm,, and suppose that (r,m) = ucing
modulo m, we see that there is a unique f:, g;&:)?gtl:gbh :
a,(mod m,). Here, as before, <(m,) is the complete s;-sn:m of l’l:ﬁ;l.;
(m,) = {1,2,---_m}. Similarly, there is a unigue a, € €(m,) for which
x = a,(mod m;). Since (x,m;) =1, it follows by Thwn::zu 24 tha
(a,.m;) = 1. Similarly (a,,m,) = i. For any positive integer n, let Z(n)
be _lhc system of reduced residues formed of those numbers a é -f(;:) for
which (a,n) = 1. That is, #(n) = (g = Z{n). (a,n) = 1). Thus we see
that any x € Z(m) gives rise to a pair (a,.a,) with a, € #(m,) for
{=1,2. Suppose, conversely, that we start with such a pair. By the
Chinese Remainder Theorem (Theorem 2.18) there exists a unique x £
&lm) such that x = g, (mod m,} for i =1,2. Since (a,, m,) = 1 and
£ = a;{mod m,). it follows by Theorem 2.4 that (x,m;) = l‘1. S:'mi[a.riy we
find that (x, m,) = 1, and hence (x, m) = I. That is, x € S#(m). In this
way we see that the Chinese Remainder Theorem enables s to establish a
one-to-one correspondence between the reduced residuc classes modulo
m and pairs of r‘:duccd residue classes modulo m, and m,, provided that
(m,, m,) = 1. Since 4, € .#(m,) can take any one of &lm,) values, and
a; € #(m,) can take any onc of ¢(m,) values, there are (m,)é(m.,)
pairs, 5o that ¢(m) = Glm,)é(m,). ' :
. We havc_now established the first identity of the theorem. If rm = Ip®
is the canonical factorization of m, then by repeated use of this identity
we sce that ¢(m) = [T( p?). To complete the proof it remains to deter-
mine the value of ( p“). If a is one of the p® numbers 1,2,-- -, p=, then
(a, p*) = 1 unless u is one of the p=~' numbers p.2p, -, p""' -p. On -
sl.lllb‘:mcnng. we deduce that the number of reduced residue classes modulo
p%is p* — p~! = pe(] — 1/p). This gives the stated formulac.
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We shall derive further properties of Euler’s ¢-function in Sections
4.2, 4.3, and an additional proof of the formula for ¢(x) will be given in
S-cc't:'on 4.5, by means of the inclusion—exclusion principle of combinatorial
mathematics. - .~ )

Let f(x) denote a polynomial with integral coefficients, and let N(m)
denote the number of solutions of the congruence Slx) = 0(mod m) as
counted in Definition 2.4. We suppose that mr = myn., where (my, m,) =
1. By employing the same line of reasoning as in the rurego!ng proof, we
show that the roots of the congruence f(x) = 0(mod mr) are in one-to-one
correspondence with pairs (a,, a;) in which a, runs over all roots of the
congruence f(x)J = 0(mod m,) and a, runs over all roots of the congru-
ence f(x) = 0(mod /m,). In this way we are able to relate N(m) o N(m))
and Ar(mg)-

Theorem 220 Ler fUx) be a fixed polynomial with integral coefficients, and
for any positive integer m let N(m) denote the number of solutions of the
_‘congmence flx)=0(mod m). If m = mm, where (m,,m_z) - 1, then
Nlm) = N(m)N(m,). If m = T1p® is the canonical factorization of m,
then N(m) = [TN(p°).

ibility that one or more of the N(p<) may be 0 is not
exrlg:d l::slslus ftgnnula. Indeed, from Theorem 2.16 we see tha.t i_f dlm
and N(d) = 0, then N(m) = 0. One immediate consequence of tl‘us is that
the congruence f(x) = O{mod m) has solutions if and only if it has
solutions (med p®) for each prime-power p” exactly dividing m.

Proof Suppose that x € €(m), where #(m) is the complete residue
system ¢lm) = (1,2,---,m}. If f(x) = O(mod m) and m = m,m,, then
by Theorem 2.16 it follows that f(x) = 0(mod m,). Let a, be the unique
member of €(m,) = (1,2,...,m,} for which r = a,(mod m,). By Theo-
Tem 2.2 it foliows that f(a,) = 0(mod m). Similarly, there is a unique
a; € €(m,) such that x = a;{mod m,), and f(a,) = 0(mod m,). Thus
for each solution of the congrience modulo m we construct a pair (a,, a,)
in which a, is a solution of the congruence modulo m,, for i = 1,2. Thus
far we have not used the hypothesis that my and m,
It is in the converse direction that this latter hypothe:

Suppose now that m = mym,,

are relatively prime.
sis becomes vital.

where (m,,m,) = 1, and that for =1
and 2, numbers o, € €(n) are chosen so that f(a,) = 0(mod m,). By the
Chincse Remainder Theorzm (Theorem 2.18), there is a unique x € ()
such that x = a,(mod m,j for i = L, 2. By Theorem 2.2 we sce that this x
is a solution of the congruence f(x) = 0(mod m,), for i = 1,2, Then by
Part 3 of Theorem 2.3 we: conclude that Sx) = 0tmod m). We haye now

23 The Chinese Remainder Theorem

established a one-to e between

congrut_:nce modulo m and pairs (a,, a,) of -‘-Oll.ltionl::“;lmi% X ﬂ
respectively. Since a, runs over N(m,) valyes, and g o ™ ang
values, there are N(m)N(m,) such pairs, and we hav:. {;:m
of the theorem. The second assertion follows rcpcale: :ippl-"_. ;

the first part
Example 5@1,’(;’) =x? 4+ x4+ 7 Find all rogqs of
the COngryey,

f(x) = 0(mod 15).
» = 2, we find thay x)
that there s e

Solution  Trying the values ¢ = 0,1 .
has no solution. Since 5115, it follows no mluﬁ(}n(m(n:é
Example 6 Let f(x) be as in Example 5. Fing

0(mod 189), given that 189 = 3° . 7, that the roots (mod 2N are 4, 13
22, and that the roots (mod 7) are 0 ang 6, T

Solution In a situation of this kind it is more efficient to proceed Hy
did in the solution of Example 1, rather than employ the method
in the second solution of Example 3. By ¢

we find that x = a, (mod 27) and 1 = a,{mod 7) if and
27a,(mod 189). We let a, take on the t
takes on the values 0 and . Thus
13, 49,76, 112, 139, 175 (mod 189).

to the case of a prime
modulus, and finally in Section 2.7 we consider some of the specia
properties of congruences modulo a prime number p.

PROBLEMS

L. Find the smallest positive integer (except x = 1) that satisﬁul;
following congruences simultaneously: x = 1(mod3), x = lfﬂfod :
x = 1(mod 7). ~

2. Find all integers that satisfy simultaneously: x = 2(mod3), £#
3(mod5), x = 5(mod?2).

3. Solve the set of congruences: x = 1(mod4), x = 0(mod3), 1%
5{mod 7). -
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"
ve that for u.} 2 the sum of all positive integers lc=s than n and
10 n is néln), \ _
;a:lﬁ £of the positive integers less tha.: n and prime

that flm) = f(n) implies that m = 7-
&(n)lna.

&(n) > d — &ld).
corem:

a'ilposmw integers n such that

¥ din and 0 < d < n, prove that n_—E b 2
flowl sralization of Euler
the following generaliza
s a™ = gm—4™ (mod m)
for anpy integer &- gl of ¥i=x (mod m) for any pasiri-.-c

’ e35, Find the aumber ©
w5 i for which both

o -note the number of integers 4, 1ga<n,
ke 55 [icl n) = 1. Show that ¢(n) = n[1(1 = 2/p). For

- pin

(a,n)=1and(a
s —
hat values of n is u(n) = 07? _
»47. f:rﬂf(xj be 2 polynomial with integral coefficients, let N(m) denote
. ¢ f the congruence f(x) = 0(mod m), and let

the number cf solutions o r
&.(m) denote the number of intcgers a, 1 <a<m, such that

(f(a),m) = 1. Show that if (m,n) = 1 then &,(mn) = @, (m)d(n).
Show that if a > 1 then &,(p®) = p*~'d,(p). Show that é,(p) =
p — M(p). Conclude that for any positive integer n, &,(n) =
n[](1 = N(p)/p)- Show that for an appropriate choice of f(x), this

pin
reduces to Theorem 2.19.

2.4 TECHNIQUES OF NUMERICAL CALCULATION

When investigating properties of integers, it is often instructive to examine
a few examples. The underlying patterns. may. be more evident if one
extends the numerical data by the use of a programmable calculator or
electronic computer. For example, after considering a long list of .those
odd primes p for which the congruence x? = 2(mod p). has a solution,
one might arrive at the conjecture that it is precisely those primes that are
congruent to + 1 modulo 8. (This is true, and forms an important part of
quadratic reciprocity, proved in Section 3.2.) By extending the range of the
calculation, one may provide further evidence in favor of a conjecture.
Computers are also useful in constructing proofs. For example, one might
formulzte an argument to show that there is a particular number_n, such
that if n > ng, then n is not divisible by all numbers less than vr (recall
Problem 50 in Section 1.3). Then by direct calculation one might show that
this is also true if n lies in the interval 24 < n < n,, in order to conclude

T 7 e

24 Techniques of Numerical Calculation-

that 24 is the largest number divisible - - i
root. In this e_tam_ple. it is not hard to ?[:::Li &u;? ::r: 1ess thaq ity
and hence one might check the jntermediate range byu:lay My
cases of this kind the n, may be very large, making a 2nd, bug in g :
We assume that our calculators and computers pc?mm.tcrr
metic accurately, as long as the intégers involved have morm eaer g
refer to d as the word :_'engrh. This assumption applies no:ms lfd"ﬁsit:'; )
subtraction, and multiplication, but also o division o",lyfﬁ Uity
resulting quotient is also an integer. That is, if alb’ E,m“ded'h&*g
accurately find b/a, with no round-off error, We al;o Do -w
computer has a facility for determining the integral agumc it
number. Thus in the division algorithm, b =qga +r l:;: [Ii-'d"f 4
accurately find g = [b/a). Use of- the fractional part {.,,,-} e mmm“"-
be avoided, since in general the decimal (or binary) gxpan;- [l odf
not tcmimte, with the result_that the computer-will. “:T'dﬁ hl"‘
approximation to this function. In particular, as we indicztcd,l - iy,
remainder in the division algorithm should be -calculated Rl
a[b/a), not as r = a{b /a). % Leil
We have noted that the Euclidean algorithm does nos 1. -
steps. Indeed, when it is applied to veryglarge nu:iiser];? t“::quu.gm
stfaint is. the time involved in performing accurate multiplemm_pnn-mi-.: :
arithmetic. The. Euclidean algorithm provides a very.- efficient meapg I
locating the solutions of linear congruences, and also of finding the | m!‘.
the Chinese remainder theorem. Since the Euclidean algorithm ;qum_
many applications, it is worth spending some effort to optimize it Oma: =
of improving the Euclidean algorithm is to form g+, by mundiug m:{
nearest integer, rather than rounding down. The resulting 7, is genennr
smaller, although it may be negative. This modified form of the Eudidﬁ?
algori_thm requires fewer iterations to defermine (b,¢), but the order'sf.
magnitude is- still usually log ¢ .when b > c. Example 3 of Section 1]
required 24 iterations; but with the modified algorithm only 15 would b’
needed.. (Warning: The integral part’ function’ conveniently provided te"
most machines rounds toward 0. That is, when asked for the integef paf
of a decimal (or binary) number +a,a,_, - ag.byb, -+ b, the mr
chine will return +a; @ _, -~ a,. This is [x] when xis non-negative/bif
it is _—[—xi when x is negative. For example, [—3.14159) = -4, but the-
machine will round toward 0, giving an answer —3. To avoid’this‘trap’
ensure that a number is non-negative before asking a machine to gve}or,
the-integer part. Alternatively; one could employ a conditional instructon
‘Put y = int(x). If y > x, then replace y by y — 1.” This ﬁ“mé\aé-‘
of setting y =[x]) - : ! b i 5.;@!:
In performing congruence arithmetic, we observe' that if 0°&# <%
and 0 < b < m then either a + b is alredy reduced or else m €4 +0<.
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..ok case @ + b — m is reduced. To calculate ab (mod m), we

= "7 45, and then reduce c (mod m). However, ¢ may be ds large
which means that if we are limited to integers < 107 then we

& ab (mod m) in this way only for m < 10972, that is, half the
The sensible solution to this problem is to employ multiple-
ymetic, but in the short term one may instead use an
ch as that described in Problem 21 at the end of this section.
:v;itua:ion in which we may introduce a modest saving is in the
of 2 polynomial f(x) = a,x” + a,_x"~' + --- +a,. The naive
.ould involve constructing the sequence of powers x*, and as
<o, forming the partial sums ag, 2o + a,x,* _unfil one arrives
| This requires n additions-and 2n — 1 multiplications. A more

~rocess is suggested by observing that
r

J:(Ij = ( e ((anx +au—l)x + an-z)x & sieo )X + aﬂ"

... w2 still have n additions, but now only n multiplications. This
. ic known as Horner’s method. ] .

ch greater saving can be introduced when computing a power a°,
ks Ea;ge. The naive approach would involve & — 1 multiplications.
i fine if k is small, but for large k one should {epeated[y square to
e sequence of numbers d; = a?’. Writing the binary expansion of &

:form k= Y 27, we see that a* = :l;;Ifdj. Here the number of
= 1 <
plications reqjuir/ed is of the order of magmtl_ldc log k, a great sa;q;lf:
is large. This procedure can be made still more efficient i :
ine in use automatically converts numbers to binary, f_or then the
7 digits of &k can be accessed, rather than computed: It might seem :at
hat this device is of limited utility. After all, if a* is encountered in
wniext of real arithmetic, one would simply compute ¢xp (k 'Qiﬂ')s-
Gen il  and & are integers, one is unlikely to examine 4 Wl_lenHo“l’-
#12%, unless one is willing to perform multiple-precision arithmetic.
“¢t, this device is extremely useful when computing @* (mod m).

Euample 7 Determine the value of 999'7 (mod 1763).

Solire 2
'i?:m" We find that 179 = 1 + 2+ 2% + 2° + 2/, that 99692 =
"0d 1763), 9994 = 1432 = 1056 (mod 1763), 999 *2105
2q5 0 1763), 99916 = 9302 = 160 (mod 1763), 999.; s
0ot 1763), 999% = 918% = 10 (mod 1763), so that 999 o150
r;lg_l _163). Hence 99917° — 999 - 143 - 160 - 918 - 100 = 54

= 1588918 - 100 = 4546 - 100 = 1219 (mod 1763).

U

24 T,
echnicpie, of Nuwnerica] ¢ “alg

i aticm
of ,:hh‘in irnplerncnted. it would be 3 oy n
app",) ":[n form 5 list of the num&“&h iesing .
Pridle d; together, ,¢ e have dgop 2o Ty i i::;
perform these three tasks Concurrcm:y e - L o o
as follows: -
l. . i 4
Set x = L. (Here » 1s the produg being formeq )

2. While k > 0, repeat the following st

(a) Set e = k — Ak /2] (Thus e = OPS:

or 1, according ag ) i even

T T N— :
Place x ar, "
€= D then £ bt ot altcrl:g_) and reduce this (meg m). (1

(c) Replace a by a?, and reduce this (
f mod m),
(d) gx;glaC_c k byc(!k ;fe),;l (i.e., drop the unj; digit in the binary
nsion, and shift the remaining digits- place
L g digits’one 0 the

When this is completed, we see that x = g* (mod m).

Our ability to evaluate a* (mod m) quickly can be applied to provide
an easy means of establishing that a given number is composite.

Examp!e}ﬂSh that 1763 is composite.
R

Solution By Fermat’s congruence, if P is an odd prime number thea
27! = 1(mod p). In other words, if #n is an odd number for which
277" # 1(mod n), then n is composite. We calculate that 2" =
742(mod 1763), and deduce that 1763 is composite. Alternatively, we
might search for a divisor of 1763, but the use we have made here of
Fermat’s congruence provides a quicker means of establishing composite-
ness when # is large, provided, of course that the test succeeds. Since the
empirical evidence is that the test detects most composite numbers, if
2"~!' = 1(mod n) then we call n a probable prime to the base 2. A
composite probable prime is called a pseudoprime. That such numbers

exist is seen in the following example.
Example 9 Show that 1387 is composite.

Solution We may calculate that 2'** = 1(mod 1387). Thus 1387 is a
probable prime to the base 2. To demonstrate that it is composite, we may
try a different base, but a more efficient procedure is provided by appf{rr;g
Lemma 2.10. We have a number x = 2% with the property :ha;s.;?is
1(mod 1387). Since 2°% = 512 # +1(mod 1387), we conclude that 138

composite.
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78 " Congruencas
this technique yields the s-'ron;w-‘-‘““":f."f":
test. If we wish to show that an odd -number m is composite, we dMWe
m=1hy2 repeatedly, in order to write m — 1 = 2/d, with 4 odd. o
form a”(mod m), and by repeatedly squaring and reducing, we constru
the numbers o

When used systematically,

4 ‘
a’,a*, a", ... a¥(mod m).

If the last number here is # 1 (mod m), then m is composite, If this la.*‘ft
member is = 1 (mod m), then m is a probable prime to the base a, but if
the entry immediately preceding the first 1 is # —1(mod ), then we
may still conclude (by Lemma 2.10) that m is composite. When this test is
inconclusive, we call m a strong probable prime. An odd, composite, strong
probable prime is called a strong Dseudoprime to the base a, abbreviated
spsp(a). Such numbers exist, but numerical evidence suggests that they
are much rarer than pseudoprimes. In our remarks following Problem 54
in Section 2.1, we noted the existence of numbers m, called Carmichael
numbers, which are pseudoprime to every base a that is relatively prime to
m. Such a phenomenon does not persist with strong pseudoprimes, as it
can be shown that if m is odd and composite then m is a spsp (a) for at
most /4 values of a(mod m). For most m, the number of such a is
much smaller. Expressed as an algorithm, the strong pseudoprime test for
m takes the following shape: ] '

L Find j and d with 4 odd, so that m — 1 = 2/d, :
- Compute a(mod m): If a? = +1(mod m), then m is a strong
probable prime; stop. : . s
Square a“ to compute 2 (mod m). If a?® ='1(mod m), then m is
composite; stop. If a*? = — 1, then m is a strong probable prime;
stop. kit : ; .

4. Repeat step 3 with a2 replaced by a*?, g™, .., g2 sHiies
5. If the procedure has not already terminated, then m is composite.

Let X = 25 10° Integers in the interval [1, X] have been examined
in detail, and it has been found that the number of prime numbers in this
interval is 7(X') = 1,091,987,405, that the number of odd pseudoprimes in
this interval is 21,853, and that the number of Carmichael numbers in 'this
interval is 2163: On the other hand, in this interval there are 4842 numbers
of the class spsp(2), 184 that are both spsp(2) and spsp(3), 13 that are
spsp(a) for @ = 2,3,5, only 1 that s spsp(a) for a = 2,3,5,7, and none
that is spsp(a) fora = 2,3,5,7,11. g

The strong pseudoprime test provides a very efficient means for
proving that an odd integer i is composite. With further information one

(]

o

24 Techniques of Numerical Calculation

. it to demonstrate that 3 i
canyimpmet E useir:'le base.2, and if m < 2(;_1;;mbc' S priy
strong probable P ). If m is larger, app] » then is % It
2047 is the least spsp (2). hant e 2PPIY the tegy | the 3 % 1

ain found to be a strong probable prime, theln s prin. 3
:IS < 1,373,653, This latter number is the least injegq, thay %t
and spsp (3). If m is larger, thenb.:pplx the test 1 rp,, bage 5 M,
again found to be a strong probable prime, thﬂ“’m iS prime . .
m < 25,326,001, This is _t‘hc I_east number that jg simul; eéz,pfl.]c&: -
for a = 2,3, and 5. If rm is still larger, then apply (pe test g »:s':' !
m is once more ft:iundlu to be a probable prime, thep m is pr; ® by
that m < X = 25 - 10 an?l that m + 3,215,031,75) This !a::le P
the only number < X that is spsp (a) for a = 2, 3, S, and 7, . My,
in general how many apph_ca.t:ons (.)f the strong tes suffice 4 en:?”"--
number s is prime. but it is conjectured that if ,, is 2 P Ure s,
prime for all bases a in the range 1 < a< 2(log m)? then lf f_’_'?f%:

" Suppose that m is a lz.irge composite number, By e st Prif;
prime test'we may establish that M 1S composite withqy, enﬁif}:‘.;
proper divisor of m. In general, finding the factorizatiop of ’H%IF"_E
much more calculation. If p denotes the Jeast prime factor of m [l;.
locate the proper divisor p after p 'trial divisions. Since p may bet :
as large as Vm , this may require up to v operations. We noy. da;.:::-'
method ‘which usually locates the smallest prime factor  j, J'us; ‘f:
more than /p  steps. As in many such factoring algorithms, gyr cs:_.ll:-:
for the running time is not proved, but is instead based on heurig
probabilistic models, and ‘experience. For our present purposes, (e -,
vant probabilistic result is expressed in the following lemma, o

N

Lem_nia 2.21 Suppose'thar | < k < n, and that 1he numbers u,u,,..
are rndependcnrba chosen from the ser (1,2,--<, n). Then the probubili
the niitmbers u, are distinct is:

(=0 -3)e- 55

i:?rfﬁerscclmglt.j?r a sequence yu,- - “»U, in which each u, is one W
S n. Since each u, is one of Mumbers, thereare o
A Vifc S&:l ]:thng these, we count those for which fh?_""ﬂ‘;;‘
distinct from g that L1 Tan be any one of a SDERE LR [br
from beth . |.dt en u, is one of n — | numbers. If u; is to be dl;flni |
the total numpey 23 'EM ¥a-iS one of # — 2 numbers, and so On'lih“k';
dhde T of such sequences js H#{R 1) 50 = AL
18 By-n* to obtain the stated probability.

y
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Cﬂﬂgruenc'ea.
As an application, we note that

if n=3 n = 7
probability in question is less than 1/2.T 65 and & 23, then the

e hat is, if
random, then the probability of twe of th

greater than 1/2. It may seem couy
of people suffices, but it can be sh
exp(_kz/(z,,)}, (A derivation of Precise estimate of thi
in Problem 22 at the end of this section.) Hence the .
distinct if & is small compared with v | by, unlikely 1o b
large compared with Vn,

Suppose that m is a large composite Number :
divisor is p. If we choose k integers Uy, Uy, ‘-,uk“‘f‘l;(l)s:arsx?;:ef‘ug;mz
large compared (0 but small compared tg yrr, e is likely tha the
w; will be distinct (mod m), but not distinct (mod p). That is, there
probably are integers i, j, with 1 < § < j < Kk such that 1 < (5, o m) <
m. Each pair (i, j) is easily tested by the Euclidean algorithm.'but rfl:le task
of inspecting all 2 ) Pairs is painfully long. To shorten our work, we adopt
the following scheme: We generate the

Uiy = flu;) where f(u) is a polynomial wj
precise choice of f(u) is unimportant, except that it should be easy to
compute, and it should give rise to 3 Sequence of numbers that “looks
random.” Here some experimentation i

s called for, but it has been found
that f(u) = u* + 1 works well. (In general, polynomials of first degree do
not.)

g ‘23 People are chosen at
intuiri VINg the same birthdg, is
Nterintuitive that such 4 small nur'h)l;ier
OWn that the Product

e distinet if k g

by a recursion of the form
th integral coefficients, The

The advantage of generating the wu; in this way is that if u,
u;(mod d), then Uiy = flu) = flu)) = i;,,(mod d), so the sequence ;
becomes periodic (mod d) with period j —i. In other words, if we put
r=j—i, then u, = u, (mod d) whenever s = ¢ (mod r), s =i, and {3 i
In particular, if we let s be the least multiple of r thatis > i, and we take
t=12s, then u, = u, (mod d). That is, among the numbers ta, — U, we
expect to find one for which 1 < (w5, — u,,m) < m, with s of size roughly
comparable to /p .

Example 10 Use this method to locate a proper divisor of the number
m = 36,287,

Soluti e uy=1, u,,, =u?+ l{mod m), 0 <u,,, <m. Then
the ni’.?nb:ff ;:ak i :nl,z....: 14 are 2, s, 26, 677, 22886, 2439, 33941i
24380, 3341, 22{73. 25652, 26685, 29425, 22806. We find that ('_‘:s —ug,m
=1 for s = 1,2,---,6, but that (u,, — us, m) = 13‘1. That is, 131 is :
divisor of m. In this example, it turns out that 131 is the smallest prim

divisor of m, because the division of 36,287 by 131 gives the other prime
factor, 277,

are likely to be .'

2.4 Technigues of Numerical Calculation 81
If we reduce the u; (mod 131), we ob
92,81, 12, 14, 66, 34,109,92, 81, 12. Hence 4

tain the numbers 2.5,26,22,
quence has period 7 from ts on. We might

12 = ti5(mod 131), and the se-.
diagram this a5 follows;

ar‘"“z\m

66
22 109w e

o —= R

This method was proposed by J. M
above resembles the Greek letter p (**
Pollard rho method. 1t should be ap
already known to be composite (e.g.,
if m is prime then the method will

- Pollard in 1975. Since the pattern
rho™), this approach is known as the
plied only to numbers m that are
by the strong pseudoprime test), for

even be m itself. In the latter eve
value of Uy, Or with a new function fu), say f(u) = 1? + ¢ with some
new value for ¢. (The two values ¢ = 0, ¢ = —2 should be avoided.)

As of this writing, the most efficient factoring strategies are expected
to locate a proper divisor of a composite number m in no more than
exp (c(log m)'2(log log m)'*?) bit operations, (Here ¢ is some positive
constant.) In Section 5.8 we use elliptic curves to find proper divisors lh!S
quickly. If £ is a given positive number, then the func_tion of m above is
< m’* for all sufficiently large m. Nevertheless, it remains the case that we

can perform congruence arithmetic, compositeness tests, and so forth for
much larger m than we can factor.
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L : Congruences
.l -(c‘) Replace ¢ by ¢ +s.
. (d) If ¢ » m, replace ¢ by ¢ — .
< - (e) Replace k by gk — ml gk /m].
" (f) Replace a by (a — r)/g.
2. Show :h:tz the ;;croduct in Lemma 2.21 is smaller than

k k3
; - , but la th -
exp 2n + 2n) ut farger than cxp( e -_-_3:12)' (H)

25 PUBLIC-KEY CRYPTOGRAPHY

we now apply our knowledge of congruence arithmetic to construct a
method of encrypting messages. The mathematical principle we use is
formulated in the following lemma.

Lemma 222 Suppose that m is a positive integer and that (a,m) = 1. If k
and % are positive integers such that kk = 1(mod ¢(m)), then a** =
a(mod m).

Proof Write kk = 1 + r¢(m), where r is a nan-negative integer. Then by
Euler’s congruence
atk = g - gm¥m™ = a(a‘“”")r =g 1 =a(modm).

£ ( itive i k m) = 1. Thus if
= k is a positive integer, then {.a ,m
p (a’)m)d rl :m{- r, is f(;ystem of reduced }'estdues (mo'?h m)é “;cetﬁ
i"h‘= ﬂmbea:ls r"l’rg’---:rf are also relatively prime to m. ide:isng b
loew:i:n;ay nolt’ ail, be distinct (mod m), as we sci Cbl:l lTc“n:nzrs.22 g b
EPECial kO i ]:I?r:('j’cfm(r:‘nod m) provided that
: ¢ distin P

deduce that these kth powers arc g el k) o . By
= e that r; = r; (mod | G

%eﬁ(?:i) 291'wior:;sal;pggfermine a po’silive mteggrtk such that

T . .
1 (mod ¢(m)), and then it follow from the lemma t

k k _ L kk od m).
r s r;"} = (r_f) = (f;k) ri B (m

our further analysis in Section 2.i3 ll? _w:.ll

Iso holds: the numbers ry, 2. i ks »
vk = 1.) Suppose that (k, p(m) en;
tinct (mod m), thcz form a sg;stmc
the map a — a* permute

This implies that i = j. 1ll(From .
become apparent that the conv
are distinct (mod m) on'!y if '(k': da(m‘)j)is
Since the numbers r¥, r§, " *»7a ;;ct s
of reduced residues (mod m). That 15,

25 Pllb“l’.‘-xzy Cl’yp!ograpiy .

reduced residugs (mod m) if (k, ¢(m)) = 1. The signj
is that the furtﬁl‘:r map b — b is the inverse pe:;g::::;::;«‘:e e et

To apply these observations to Cryptography, we take two distinct
large primes, P, P2, say each one with about 100 digits, and multiply them
to form a composite modulus m =P, p, of about 200 digits, Since we
know the prime factorization of m, from Theorem 2.19 We see that
¢(m) = (p, - 1Xp, — 1). Here ¢(m) is somewhat smaller than m. we
choose a big number, &, from the interval 0 < k < ¢(m), and check by the
Euclidean algorithm that (k,d(m)) = 1. If a proposed k does not haye
this property, we try another, until we obtain one for which this holds. We
make the numbers m and k publicly available, but keep p|, p,, and &(m)
secret. Suppose now that some associate of ours wants to send us a
message, say “Gauss was a genius!” The associate first converts the
characters of the message to numbers in some standard way, say by
employing the three digit American Standard Code for Information Inter-
change (ASCII) used on many computers. Then “G” becomes 071, “3"

becomes 097,- - -, and “!I" becomes 033. Concatenate these codes to form
a number

a = 0710971171151151261 190971151260971261031011101051171 15033.

Since @ has only 56 digits, we see that 0 < a < m. If the message were
longer, it could be divided into a number of blocks. Our associate could
send us the number a, and then we could reconstruct the original
characters, but suppose that the message contains some sensitive material
that would make it desirable to ensure the privacy of the transmission. In
that case, our associate would use the numbers k and m that we have
provided. Being acquainted with the ideas discussed in the preceding
section, our associate quickly finds the unique number &, 0 < b < m, such

that b = a*(mod m), and sends this b to us, We use the Euclidean

algorithm to find a positive number k such that k& = 1(mod ¢(in)), and

then we find the unique number ¢ such that 0 < ¢ < m, ¢ = b* (mod m).

From Lemma 2.22 we deduce that a = c. In theory it might happen that

(a,m) > 1, in which case the lemma does not apply, but the chances of
this are remote (= 1/p, = 10~'™), (In this unlikely cvent, one could still

appeal to Problem 4 at the end of this section.) Suppose that some

inquisitive third party gains access to the numbers m, &, anq b, and seeks

to recover the number a. In principle, all that need be done is to factor m,

which yields #(m), and hence %, just as we have c!cu_ne. In practice,

however, the task of locating the factors of m is prohibitively long. Using

the best algorithms known and fastest computers, it would take ccnturlles

to factor our 200 digit modulus m. Of course, we hope that faster factoring .
algorithms may yet be discovered, but here one can only speculate.
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86 ) Congruences

PROBLEMS

1. Sup\posc that b = 4% (mod 91), and that (a,91) = 1. Find a positive
number % such that b* = a (mod 91). If b = 53, what is a (mod 91)?

2. Suppose that m = pg, and ¢ =(p— 1Xg — 1) where p and q are
real numbers. Find a formula for p and g, in terms of m and @.
Supposing that m = 39,247,771 is the product of two distinct primes,
deduce the factors of m from the information that $(m) = 39,233,944,

3. Show that if d|m, then d(d) p(m).

4. Suppose that m is square-free, and that k£ and % are positive integers
such that kk = 1(mod ¢(m)). Show that a** = g (mod m) for all inte-
gers a. (H)

5. Suppose that m is a positive integer that is not square-free. Show that
there exist integers a, and a, such that a, # a,(mod m), but at =
a3 (mod m) for all integers k > 1.

/
2.6 PRIME POWER MODULI 2l

The problem of solving a congruence was reduced in Section 2.3 to the
case of a prime-power modulus. To solve a polynomial congruence f(x) =
0(mod p*), we start with a solution modulo p, then move on to modulo
P’ then to p and by iteration to P*. Suppose that x = a is a solution of
f(x) = 0(mod p/) and we want to use it to get a solution modulo pi*h,
The idea is to try to et a solution x'=a + tp/, where r is to be
determined, by use of Taylor's expansion

fla +1p’) = f(a) + pif(a) + P2pf(a) 24 - +t"p"iftY( g} nt
(2.3)

where # is the presumed degree of the polynomial f(x). All derivatives
beyond the nth are identically zero. i
Now with respect to the modulus p/*!, equation (2.3) gives

flatw) =fa) + pif(a)(mod p*1) (20

as the following argument shows. What we want to establish is that the
coefficients of 12,1% - -- 1" in equation (2.3) are divisible by p/*! and so
can be omitted in (2.4). This is almost obvious because the powers of p in
those terms are p%, p%,... p". But this is not quite immediate because
of the denominators 21,3!,--, n! in these terms. The explanation is that

' According to Theorem 1.21, the product of & consecutive i,
~ divisible by k!, and the argument is complete. Thus, we have

2.6 Prime Power Moduli
L]

fYNa)/k! is an integer for each value of k.2<k<hp, To se

be a representative term from S(x). The corresponding :ermchl.,hf;;k];t o
a) i

er(r—1)0(r—2) - (r—k + 1)a"=*

‘Egc[s is

the coefficients of 17,1, - - in (2.3) are divisible by pret"C PTOVeEd thy
y p'el,

The congruence (2.4) reveals how ¢ should be chosen if x = g
to be a solution of f(x) = 0(mod P’*Y). We want ¢ 1o be a solutigy ff >

f(a) +w/f(a) = 0 (mod pi*1).

Since f{x) = 0(mod p/) is presumed to have the solution x = 4, —
that p/ can be removed as a factor to give ¢

7(a) = ‘q,%)“fmod 2 (25)

which is a linear congruence in . This congruence may have no solution
one solution, or p solutions. If f(a) # 0(mod p), then this congruence
has exactly one solution, and we obtain

?‘hmmm 2.23_ Hensel’s lemma. Supgose that f(x) is a polynomial with
r.megra!_ coefficients. If fla) = 0(mod P’) and f'(a) £ 0(mod p), then there
Is a unique 1{mod p) such tha fla + 1p’) = 0(mog pitn.

If f(a) = 0(mod p¥), f(b) = 0(mod p*), J <k, and a = b(mod p/),
then we say that b lies abore 4, or a lifis to b. I f(a) = 0(mod p’), then
t!]e root a jis called nonsingular if fa) # 0(mod p); otherwise it is
smgular: By Hensel's lemma we see that a nonsingular root a (mod p) lifis
10 a unique root a, (mod p?), Since a; = a(mod p), it follows (by Theo-
rem 2.:2) that f(a;) = f(a) # 0(mod P). By a second application of
Fensel's lemma we may fift 42 10 form a root a, of f(x)modulo p?, and

Qw1 =a; = f(a;)f'(a) (26)

where f(a) is an integer chosen so that f(a)f'(a) = 1(mod p). This is
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c!;‘i”!y analogous to Newton's n‘cthod for locating the root of a differen-

tiable functic
Example lve x> + x + 47 = 0(mod 73).

Solution  First we note that x = l(mod"f) and x = 5(mod 7) are the only
solutions of x*+x + 47 = 0(mod 7). Since f'(x)=2x + 1, we sce that
f)=3# 0(mod7) and f'(5) = 1 # 0(mod 7, so these roots are non-
singular. Taking f'(l? = 5, we see by (2.6) that the root @ = 1(mod 7) lifts
0a=1- 49-5. Since a, is considered (mod 72), we may take instead
a, = 1. Then a; = 1 -49-5 = 99(mod 73). Similarly, we take f(5)=2,
and see by (2.6) that the root 5(mod7) lifts to 5 — 77.2 = —-149 =
47(mod 7%), and that 47 (mod 7°) lifts to 47 — f(47)-2 = 47 — 2303 .2 —
—4559 = 243(mod 7°). Thus we conclude that 99 and 243 are the desired
roots and that there are no others. .

We now turn to the more difficult problem of lifting singular roots.
Suppose that f(a) = 0(mod p’) and that f{a) = 0(mod p). From the
Taylor expansion (2.3) we see that f(a + 1p/) = f(a)(mod p/*") for all
integers 1. Thus if f(a) = 0(mod p’*') then f(a + 1p/) = 0(mod p/+1),
so that the single root a(mod p’) lifts to p roots (mod p/*!). But if
fla) # 0(mod p’*!), then none of the p residue classes a + p’ is a
solution (mod p/*'), and then there are no roots (mod p’*!) lying above
a(mod p?).

Example 12 Solve x* + x + 7 = 0(mod81).

Solution Starting with x2 + x + 7 = 0(mod 3), we note that x = 1 is the
only solution. Hsre f'(1) =3 =0(mod3), and f(1) = 0(mod9), so that
we have the roots x = 1, x = 4, and x = 7(mod 9). Now f(1) # 0(mod 27),
and hence- there is no root x(mod27) for which x = 1(mod 9). As
f(4) = 0(mod 27), we obtain three roats, 4, 13, and 22(mod 27)..wh1ch are
=4(mod9). On the other hand, f(7) # 0(mod 27), so there is no r?ot
(mod 27) that'is = 7(mod 9). We are now in a position to determine
which; if any; of the roots 4, 13, 22 (mod 27) can be lifted to roots (mod 81).
We find that f(4) = 27 % 0(mod 81), f(13) = 189 = 27 # 0(mod 81), and
that £(22) = 513 = 27 # 0(mod 81), from which we deduce that the con-
gruence has no solution (mod 81). . i ! .

In this example, we see that a singular solution a (mod p) may lift to
some higher powers of p, but not necessarily to arbura_nly hlgl? powers of
P. We now show that if the power of p dividing f(a) ls‘suﬂicwntly l.arge
compared with the power of p in f(a), then the solution can be lifted
without limit. _ = ‘ ,

2.6 Prime Power Moduli 89

Theorem 2.24 Let f(x) be a polynomial with

that f(a) = 0(mod p’), that Plf(a), and thar

= ( 3 y J227+1. Ifb
a(mod p’~") then f(b) = f(a)(mod p’) and Pl Fb). Mor:ocer rh{re i::
unique t (mod p) such that f(a + p!=7) = 0(mod pi+1), '

integral coefficients. Suppose

In this situation, a collection of p" solutions (mod p/) give rise to p”
solutions (mod p/*+1), while the power of p dividing f’ remains constant.
Since the hypotheses of the theorem apply with a replaced by a + pl-T
and (mod p’) replaced by (mod pP'*') but with unchanged, the lifting
may be repeated and continues indefinitely.

Proof By Taylor;s expansion (2.3), we see that
£(8) = f(a + /") = f(a) + p'~"f(a) (mod p~2).

Here the modulus is divisible by p/*!, since 2j=2r=j+(-27)>
J + 1. Hence

fla +1p'~") = f(a) + p’~7f'(a) (mod pi*1).

Since both terms on the right side are divisible by p’, the left side is also.
Moreover, on dividing through by p’ we find that

fla+p™7)  f(a) f(a)
LR R T e e s o e
P ) p P

(mod p),

and the coefficient of r is relatively prime to p, so that there is a unique
t (mod p) for which the right side is divisible by p. This establishes the
final assertion of the theorem. To complete the proof, we note that f(x)is
a polynomial with integral coefficients, so that

£(a + /=) = £(a) (mod p/~")

for any integer t. But j — 7 > 7 + 1, so this congruence holds (mod p™*').
Since p” exactly‘divides' f'(a) (in symbols, pTllf(a)), we conclude that
prlif'(a + p/~").

Example 13 Discuss the solutions of x2? + x + 223 = 0(mod 3/).
Solution  Since 223 = 7(mod 27), the solutions (mod 27) are the same as
in Example 12. For this new polynomial, we find that f(4) = 0(mod 81),

and thus we have three solutions 4,31,58(mod 81). Similarly f(13) =
0(mod 81), giving three solutions 13, 40, 67 (mod 81). Moreover, f(22) = -
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Table 1 ' Solutions of x? +x + 223 = 0(mod 3/).
729

Vv Wy oo

0(mod 81), yielding the solutions 22, 49, 76 (mod 81). Thus we find that the
congruence has exactly nine solutions (mod81). In fact we note that
f(4) = 0(mod 3°), 3% f'(4), so by Theorem 2.20 the solution 4 (mod 243) is
one of nine solutions of the form 4 + 27t (mod 243). We may further verify
that there is precisely one value of ¢(mod3), namely t =2, for which
f(4 + 27) = 0(mod 3°). This gives nine solutions of the form 58 +
81¢ (mod 3%). Similarly, f(22) = 0(mod 3%), 32|/ f(22), 5o that 22 (mod 243)
is one of nine solutions of the form 22 + 27t (mod 243). Moreover, we can
verify that there is. precisely. one value of t(mod3), namely ¢ = 0, for
which 22 + 27t is a solution (mod3®). That is, we have nine solutions
(mod 3%) of the form 22 + 81¢. On the other hand, f(13) = 0(mod 27), so
that f(13 + 27¢) = f(13) (mod 38). As 3*]|f(13), we find that none of the
three solutions 13 + 27t (mod 81) lifts to a solution (mod 243). In conclu-
sion, we have found that for each j > 5 there are precisely 18 solutions
(mod 3%), of which 12 do not lift to 3/*', while each of the remaining six
lifts to three solutions (mod 3/*!). These results are depicted .in Table 1.

Suppose that f(a) = 0(mod p), and that f(a) = 0(mod p). We wish .

to know whether @ can be lifted to solutions modulo- arbitrarily high
powers of p. The situation is resolved if we can reach a point at which
Theorem: 2.24 applies, that is, j > 2r + 1. However, there is nothing in
our discussion thus far to preclude the possibility that the power of p in f'
might steadily increase with that in £, so that Theorem 2.24 might never
take effect. In Appendix A.2 we define the discriminant D(f).of the
polynomial, and show that the critical inequality j > 27 + 1 holds when-
ever j is larger than the power of p in D(f). 5 ke

2.7. Prime Modulus

PROBLEMS

L. Solve the congruence x? + x + 7 = 0(mog 27)
of completing the square from elementary g ebby Using the e
28 = (2x + 1)* + 27. Solve this Congruenceg( 13, thus 4,2 | 4h0d
method. MOdBL) by g o *
2. Solve x* + x* +'1 = 0(mod 3*%). h
3. Solve x* + x + 57 = 0(mod 5%).
4. Solve x? + 5x + 24 = 0(mod 36).
5. Solve x> + 10x?+x+ 3 = 0(mod 33).
6. Solve x>+ x? =4 =0(mod 7°).:
7. Solve x* + x? = 5 = 0(mod 7°);
8. Apply the theory of thi i )
‘ Efi gulator. ry of this section to solve 1000x = | (mog 101, usp,
9. Suppose that f(a) = 0(mod p’) and (a)
f(a) be an integer chosen salihat f'{a;%a(t_a)fs(a])(:god(m?)d P Ly
b =a — f(a)f'(a). Show that f(b) = 0(mod pH). £ ad
10. lfLe:;] fcl;f, arl:l ;ldd prime, and sup}aosc that a-# 0(mod p). Show thy
g s squgtion_ fﬁ; ;l ia(m_od p’) has a solution when j = 1, they j
*11.-Let f(x) be a polynomial with integral coefficients in the n vari
ables x, x,,---, X, Supp%se that f(a) = 0(mod p) where ar:

(al’ dg," -,a,,), al'lq that {;f(a) # 0(mod p) for at least one i,

sh : . . ke | £ :
.évcor\;'j'lhat the congru-c-nce f(x) = 0(mod p’) has a solution for

2.7 PRIME MODULUS

We have now reduced the problem of solving f(x) = 0(mod m) to its last
stage, . congruences. with: prime - moduli. Although we have no generil
me.tl*_:od'for solving. such .congruences, : there are some interesting facts
concerning :the ! solutions. ‘A natural, question about polynomial congru-
ences of the type f{x) = 0(mod m) is whether there is any analogue to the
well-known theorem in algebra: that a polynomial equation of degree 7
whose coefficients are complex numbers has exactly n roots or solution
allowing for multiple roots. For congruences the situation is more compli-
cated. In the first place, for: any- modulus m > 1, there are pﬂb’""mizl
congruences having no solutions. An example of this is given by x” =% *
1 = 0(mod m), where p is any prime factor.of /. This congruence has 10
501“3!0'15 because x” — x.+.1.= 0(mod p) has none, by Fermat’s theore™
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] Congruences
Moreover, we have *}lfﬁady seen tl'znat 2 congruence can have more
jutions than its degree, for examglc- *° = 7x + 2 = 0(mod 10) with four
sc'lutil:'lls x=3,4,8,9, and also E X+ 7= 0(mod27) with three solu.
Sf’n s x = 4,13,22. But if the modulus is a Prime, a congruence at
"ovc more solutions than its degree.. This is Proved in Thearem 2.2¢ later
ha the section. It is important here to note carefully the meaning of
E:jcgrce of congruence,” given in Definition 2.5 jn Section 2.2, Such a
lynomial as 5xz% + x* — x has degree 3, but the congruence 5x? 4+ x2 —
poﬁ 0(mod 5) has degree 2.
% Consider the congruence 5x% + 10x + 15 = 0(mo
jutions x =0, 1, 2, 3, and 4. At first glance, this n}ight appear to be a
counterexample to Theorem 2.26. However, by Definition 2.5, this congru-
ce is assigned no degree, so that Theorem 2.26 does not apply.
i With this background, we proceed to prove some fundamental results,
As before, we write f(x) =a,x" +a,_ x"-1 4 ... 4 a,, and we assume
that p is a prime not dividing a,,, so that_tl}e congruence f(x) = 0(mod p)
has degree n. In Theorem 2.25, we divide such a polynomial f(x) of
degree n > p by x? — x to get a quotient and‘a remainder, bo?h polyno-
mials. This is a limited use of the division a!g:arfrhm for fobmomwb, which
is discussed more fully in Theorem 9.1. By “limited use,” we mean that the
only idea involved is the division of one polyr}omnal into anoth‘el;; asa:;
elementary algebra. The uniqueness of the quotient and the remainder
not needed.

d 5), having five so-

m 2.25 If the degree n of f(x) = 0(mod p) is grea.'er;hand?;:qir:a;
.r]:mr:hen e'i:her every integer is a solution of f(.x)E 0‘(mod %i C;J;m e ing
p;,omial 2(x) having integral coefficients, with leading Cloi[om ) g,{ el
ﬁ g(x) = 0(mod p) is of degree less than p and the solu
0(mod p) are precisely those of f(x) = 0(mod p).

Proof - Dividing f(x) by x — x, we get a quotient g(x) and a remainder

. Here g(x) and r(x) are
s T e x)qu);:dr(:{)x) is either zero or a polyno-

i ith i flicients,
polynomials with integral coeffic r
mial of degree less than p. Since every ltl;:a
x(mod p) by Fermat’s theorem, we ice) s
0(mod p) are the same as those of r xth;-n \ome
every coefficient of r(x) is divisible by p,. !

0 d p). .
I(I)OE':I tl(ll:gthzr hand, if at least one coct:ic;e:td :;r::(ef
P, then the congruence r(.\g)IE (() :l)n:): :;L tﬂh s o
less than. p. The polynomial £
r{x) by getting leading coefficient

eger is a solution of xP =
t the solutions of f(x)=

if
d p). If r(x)=0o0r1
. rftcger is a solution of

) is not divisible by
and that degree 1S
btained from

1, as follows. We may discard all terms

2.7 Prime Modulys

= = 1(mod p), and )
b, p.) =1 also. Then the congruence brix) p nd note that
solutions as

r(x) = 0(mod P), and so has th
0(med p). D b i

same solutions g =
efine g(x) to be br(x) with its ol
by I, that is,

leading coefficient 45 replaced

8(x) =br(x) - (BB — 1)xm.

Theorem 2.26 The congruence f(x) = 0(mod P) of degree n has a; most n
solutions.

Proof The proof is by induction on the de
n =0, the polynomial f(x)is just a, with q
congruence has no solution. If » = 1,

gree of f(x) = 0(mod p). If
o # 0(mod p), and hence the
the congruence has exactly one
congruences of degree <
of the congruence f{x) = 0(mod p) of degree n. Let the leading term of

f(x) be a,x" and let UisMgy - w1, be solutions of t

¢ he congruence,
with u, # u;(mod p) for i # j. We de

fine g(x) by the equation
(%) = f(x) ~a,(x = u,)(x - uy) --- (

T -ug,),
noting the cancellation of a, x"

Note that g(x) = 0(mod
Uy, * -, u,. We consider

on the right.

pP) has at least » solutions,
two cases, first where every coefficien
divisible by p, and second where at least one coefficient is not
p- (The first case includes the situation where g(x)is identically zero.) We
show that both cases lead to a contradiction. In the first case, every integer
is a solution of g(x)= 0(mod p), and since flu, ) = 0(mod p) by
assumption, it follows that x = t, ., is a solution of

namely u,,
tof g(x)is
divisible by

a(x —u)(x —1uy) -+ (x~ u,) = 0(mod p).
This contradicts Theorem 1.15.
In the second case; we note that the congruence g(x) = 0(mod _p) h:fs
a degree, and that degree is less than n. By the induction hyporhes:s. .this
congruence has fewer than n solutions. This contradicts the carlier obser-

vation that this congruence has at least » solutions. Thus the proof is
complete.

We have already noted, using the example 5x2 + 10x +_15hE
0(mod5), that the conclusion of Theorem 2.26 need not hold if the
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94 Congruences
assumplion is just that the polynomial \f(x) has degree n. The following
corollary describes the situation.

Cﬁmllary 227 Ifbx" +b,_ x""' + -+ +b, = 0(mod p) has more than
n solutions, then all the coefficients b; are divisible by p.

The reason for this is that if some coefficient is not divisible by p, then
the polynomial congruence has a degree, and that degree is at most n.
Theorem 2.26 implies that the congruence has at most » solutions, and

this is a contradiction.

Theorem 2.28 If F(x) is a function that maps residue classes (mod p) to
residue classes (mod p), then there is a polynomial SCx) with integral coeffi-
cients and degree at most p — 1 such that F(x) = f(x)(mod p) for all

residue classes x (mod p).
Proof By Fermat's congruence we see that

{l(mod p) if x=a(modp),

l—(x—a)"'=
(=) 0(mod p) otherwise.

p
Hence the polynomial f(x) = Y F(iX1 — (x — {)"~") has the desired

properties.

Theorem 2.29  The congruence f(x) = 0(mod p) of degree n, with leading
coefficient a, = 1, has n solutions if and only if f(x) is a factor of x” — x
modulo p, that is, if and only if x? — x = f(x)q(x) + ps(x), where q(x) and
s(x) have integral coefficients, q(x) has degree p — n and leading coefficient
1, and where either s(x) is a polynomial of degree less than n or s(x) is zero.

Proof First assume that f(x) = 0(mod p) has # solutions. Then 2 < p,
by Definition 2.4 of Section 2.2. Dividing x” —x by f(x), we get a
quotient ¢(x) and a remainder r(x) satisfying x” — x = f(x)g(x) + r(x),
where r(x) is either identically zero or a polynomial of degree less than #,
This equation implies, by application of Fermat’s theorem to x? — x, that
every solution of f(x) = 0(mod p) is a solution of r(x)= 0(mod P).
Thus, r(x) = 0(mod p) has at least n solutions, and by Corollary 2.27, it
follows that every coefficient in r(x) is divisible by p, so r(x) = ps(x) as in

the theorem.

Conversely, assume that x? = x = f(x)q(x) + ps(x), as in the state-

ment of the theorem. By Fermat’s theorem, the congruence f(x)g(x) =

27 Prime Modulus

O(mpd p) has p solutions. This congruence has oy

lcadn?g term of f(x) is x". by hypothesis, and hencuﬂ(}:n -

q(x) is x#—n, y Theorem 2.26, the congruences f( )ejcadi“g tery, ¢

q:(x) = 0(mod p) have it most # solutions and P - . = ”Fm"d an’

uveb:. But every one of the p solutions of SCe)g( :, ‘:’]”“Uns‘ re\petd

solution of at least one of the congruences flx)= ”(-moa g;mo p) |\2
4l

o=
3

3

k4

= =

0(mod p). It follows that these two congruences have cx'lcuy-'md X) s
U n SOIU

and p - n solutions, respectively. Uion

The restriction a, = 1{ in this theorem is ne
7 n=1 eded so tha .
x? —x by_f.(x) and obtdin a polynomial q(x) with inregra\:ecma“: divig,
However, it 15 not much of a restriction. We cap always find an"vcfhcm“ll
such that aya,= 1(modp). Put g(x)= Zf(x) -{aaq - ”m"tegeran
g(x) = l}t(mod p) has the-same solutions as flx)y=q (:nt;d ) Y- Tha
has leading coefficient 1. - Pl and g0y)
As an example, we sce that x5 — 5x3 4+ 4
) 5 . X = 0(mod 5) h ;
tlons,_ andjxs —x=(x* -5+ 45) + (523 — 5x) Asa seco::csj e sob
;vez cn? ¥~ —x = 0(mod5) with three solutions, and 5 -  _ f(?xasmpl:‘
sgje:gn),_; :Thhforiﬁg 2.29 has many important applications, Wc noxw ;u.ﬂ
at wi : : . P n-
o e crucial to our discussion of primitive T0Ots in Sectigy

Corollary 2.30 Ifdl(p ~ 1), then x4 = 1(mod p) has d solutions
Proof Choose e so that de = p — . Since (y — 1) ty 4ol gy

=y“=1, on takin —
+x‘”"“5=.r!-—-xg YT X we sce that X! — XL+ L

A further applicatj i
BolyRonied Pp 1on of Theorem 2.9 anises by considering the

flx) =(x- D(x=-2)-.. (x—p+1).
For convenience we assume that p > 2, Op expanding, we find that
(2.7)

= yP—1 =
f(.f) X —o']x" 3+()'2,[”_-‘—-..+(r

=1

where i g .
¢ o; is the sum of all products of j distinct members of the set

({1,2.- P = 1} In the two eXtreme cases we have o, = 1 +2 4+ -+ +
P=D=pp~1,2 and o RS S (g [m G DE Thig
polynomial f(x) has o= P p L

) has degree p - 1 ana has the p — 1 roots 1,2,

P r—mlt(mgd {J]. C(lmscqucmly the polynomial xf(x) has degree p and has
P §. By applying Theorem 2.29 to this latter polynomial, we see that
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there are polynomials g(x) ang S(x) such thay y»
since g(x) has degree p — ,, -

g(x) = 1. That is, x? — x = xf(x)

+ ps(x), which s to € see that
e a

cients of x” — X are congruent (mod p) 1o those of A:f(sxg O he cocth

the coefficients of x, we dedyce that

Ty = (p = 1)ya o mParing
which provides a second proof of Wilson's c"C;-l'llgrumr't’ce:. 01:1;?: :
remaining coefficients, we deduce that % = 0(mod p) for 1
To these useful observations we may add ope further rem
then

Omparing thc;
<ji<p-2
artk: if px 5

% -2 = 0(mod P?).

(2.8)
This is Wolstenholme’s congruen,

(p=-p=-D---(p-p+1)
have

ce. To prove it We note that SfC
, p) =
=(p -1 On taking x = 5 i 2.7), we

(P=Di=pr™l —gpr-2y ... to,_3p? - %2P ta,_,,
We have already observed tha

to,_,=(p-1
amount from both sides and divi

On subtracting this
ding through by p,

we deduce that
pPT? — ﬁ!‘“cr"’_3 + - 4 93P —0,_, =0,
All terms except the last two ¢

ontain visible factors of p2, Thus
7,-2(mod p?). This gives the

O'1:»-3p =
desired result, since 0,_3 = 0(mod p).

PROBLEMS

L. Reduce the followin
degree < 6:
(@) x" + %3 + 5 = 0(mod 7);
(B) x® + % 4 47 4 x = 2(mod 7);
(@) xS x4y 3= 0(mod 7).

2. Prove that 2x* + 532 + 6x + 1 = 0(mod 7) has three solutions by
use of Theorem 2.29.

g congruences to equivalent congruences of

3. Prove that x'4 + 12x2 = 0(mod 13) has 13 solutions and so it is an -

identical congruence, et e Com s
4. Prove that if (x) = 0(mod p) has j solutions X =, ey il :
* = a;(mod P){(herc is a polynomial g(x) such that f(x) = (x — a,

(x—a) - (x - a;)g(x)(mod p). (H)

27 Prime Modulus

' 97
5. With the as! i :

& problem, Prove

qix) i.»_ 4 constant ang can be

oefficient of fx). -

6. Let m be composite. Prove thy
replaced by “mog m. -

7. Show U'ial if the Prime number P in Theorem 228 is replaced by 5
€omposite number sn then the Statement becomes false. .

- € proof of Wolstenholme's congruen
p=3

9. For p =5, compute the valyes of the numbers o0,
10. Write 1/1+ 172+ -

cHlAp-1) =a/b with (4
that p?laif p = 5. -
*11. Let p be a prim

€, P =35, and suppose thar. the
(2.7). Show that 9p-2 = po,_;(mod p?). -

ce fails when

T304 in (2,7),

»b) = 1. Show

numbers o} are as in
*12. Show that if P>
= 1(mod p?),

*13. Show that if P > 5 then (mp) = m!p!™ (mod pm+3),
*14. Suppose that P is an odd prime, and write 1|

/33— —p= =a/(p = 1. Show that
p(mod p).

Sand m is a positive integer then [mp _‘l)
p—

=12+
a=(2-2¢y

2.8 PRIMITIVE ROOTS AND POWER RESIDUES
e e
Definition 2.6 [ m
h b

denote a Positive integer and q any integer such that
(a,m) = 1. Let the smallest positive integer such thar q" = | (mod m)."
We say that the order of a modulo mis h, or that a belongs 1o the exponent h
modulo m T e e

The terminology “g belongs to the exponent /"
language of number theory. This language is being repl
more in the current literature by ““the
standard in group theory: (In Secti
relationships ‘between the ideas

is the classical

order of a is ,” a usage that is
ons 2.10 and 2.11 we shall explore the

of number theory and those of group
theory.) .

Suppose that a has order h{mod m). If k is a
say k = qh, then a* = g9 = (4h)7 =
positive integer such that g*
algorithm t¢ obtain integers g
0 <r<h. Thus 1 = g% = gah+r

19 = 1 (mod m). Conversely, if.k. ]:S a
= 1(mod m), then we apply the division
and r such that k =gh +r, g > 0, and
= (a")%* = 192" = a’ (mod m). But 0 <
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98 ‘ = Congruences

r < h and h is the least positive power of 4 that is congruent to 1 modulo
m, so it follows that r = 0. Thus 4 divides k, and we have proved the
following lemma. )

Lemma 2.31 - If a has order h (mod m), then the positive integers k such that
a* = 1(mod m) are precisely those for which hik.

Corollary 232 If (a,m) = 1, then the order of a modulo m divides ¢(m).

Proof Each reduced residue class a modulo m has finite order, for by
Euler’s congruence g™ = | (mod m). Moreover, if a has order h then by
taking k = #(m) in the lemma we deduce that A|¢(m).

Lemma 2.33 If a has order h modulo ‘m, then a* has order h/(h, k)
modulo m. i

Since h/(h, k) =1 if and only if hlk, we see that Lemma 233
contains Lemma 2.31 as a special case.

Proof According to Lemma 2.31, (a*) = 1(mod m) if and only if /|kj.
But hl4j if and only if (h/Ch, k) Uk /Ch, KDY, As the divisor is relatively
prime to the first factor of the dividend, this relation holds if and only if
{h/(h, k}\j. Therefore the least positive integer j such that (a*) =
l(mod m) is j = h/(h, k).

If @ has order & and b has order k, both modulo m, then (ab)* =
(a")(b*)" = 1 (mod m), and from Lemma 2.31 We deduce that-the order
of ab is a divisor of hk. If i and k are relatively prime, then we can say
more.

Lemma 234 If a has order h(mod m), b has order k(mod m), and if
(h, k) = 1, then ab has order hk (mod m).

Proof Let r denote the order of ab(mod m), We have shown that r|hk.
To complete the proof it suffices to show that /ik|r. We note that
b™ = (a"Yb™ = (ab)” = 1(mod m). Thus klrh by Lemma 231. As
(h, k) =1, it follows that kr. By a similar argument we see that klr,
Using again the hypothesis (4, k) = 1, we conclude that hk|r.

We have already seen that the order of a modulo m is a divisor of
&(m). For certain values of m, there are integers a such that the order of
a is equal to $(m). These cases are of considerable importance, so a
special label is used.

2.8 Primitive Roots and Power Residues

-

!ﬁ‘
Definition 2.7  [f g belongs to the exponent $(m) mbdulo m, they , -
a primitive root modulo m. . Euc,z,kd

F
h

(In algebraic language, this definition can be stated: 1f yhe f
modulo m is ¢(m), then the multiplicative group of 'Educ,_-grdﬂ‘“f’ 1
modulo m is a cyclic group generated by the element g. Rfadenre‘l T
familiar with group theory can find a more detaileq explanation ;)fnm oy 5
Section 2.10.) this m €

In view of Lemma 2.31, the number a is a solution of the cong ¢
x* = 1(mod m) if and only if the order of a(mod m) divides kL:um (
special case, namely the situation of Corollary 2.30, we haye dct'cr:hnm i
the number of solutions of this congruence. That is, if pis primeg :
k|(p = 1), then there are precisely & residue classes a(mod p) Such |
the order of 4 modulo p is a divisor of k. If k happens to be a prime |
power, we can then determine the exact number of residues a(mod )
order k.

g
ng !
hay
me
Yot

Lemma 235 Ler p and g be primes, and suppose that q*|(p — 1), where

@ > 1. Then there are precisely q= — q"" residue classes a(mod p) ¢
order q°. '

Proof The divisors of gq° are the numbers q® with B=01:- qa0f
these, g is the only one that is not a divisor of g*~'. There are ¢
residues (mod p) of order dividing ¢, and among these there are g~
residues of order dividing ¢=~1, On subtracting we sce that there are
precisely % — g*~! residues a of order q° (mod p).

Theorem 236

If pis a prime then there exist $(p — 1) primitive roots
modulo p.

Froof We first establish the existence of at least one primitive root. Let
P = 1=phps: ... p;» be the canonical factorization of p — 1. By Lemma
2.35 we may choose numbers a, (mod p) so that a, has order p, i =
12,7+, j. The numbers p" are pairwise relatively prime, so by repeated
use of Lemma 2.34 we see that g — a,a, -+ a, has order p{p3: -+ p’
=p — L Thatis, g isa primitive root (mod p). .
To complete the proof, we determine the exact number of primitive
roots (mod p). Let g be g primitive root (mod p). Then the numbers
&8%e% - g” ! form a system of reduced residues (mod p). By Lemma
233 we see that g* has order (p = 1)/(k, p = 1). Thus g* is a primitive
root if and only if (k, p — 1) = 1. By definition of Euler’s phi function.
there are exactly ¢(p — 1) such values of k in the interval 1 <k <p -1
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on Calculation  Suppose tha
R m), where a, h..and m are giv
e discussed in Section 2.4, we may quickly verify
Ik is small, then we simply examine a,a?,... gh=i Oty
# (e_.g-- = ¢($£2=;Sen the amount of caleulatign hcré \::) Id
rolibie, ot o I the on o LEMMa 231 thay e orould be
muslb‘= a dl)n.sol' Oh : f ; ‘e ordel-. of aisa Proper divisor of h thl; ol
order of a divides /1/p for some prime factor p of . Thyy the orde e
a{modm) is h if and onlynlf the following two conditions ‘are der of
W a* = 1(mod m), {md _(u) for each pri
1 (mod m). In case m is prime, we may take

me factor p of h
h=m < 1in ik ¥
2 ey ise
determine whether a is a primitive root, o

To Toms erion to
3 . ale a primitive root we
gmply ty @ =2, @ =3,*, and 1 general a primitive roor .js quickly
found. For example, to show that 2 is a pr

' that imitive root (mod 101), we note
that 2 and 5 are the primes dividing 100. Then we calculate that 2% =

- = —~1
# 1(mod 101), and that 2% =95 % 1 (mod 101).

The techniques discuss;d In Section 2.4 allow us to prove very quickly
that a given number m is composite, but they are not so useful in
establishing primality. Suppose that a given number p is a strong pseudo-
prime to several bases, and is therefore expected to be prime. To show
that p is prime it suffices to exhibit a number a of order p — 1(mod p),
for then ¢(p) = p — 1, and hence p must be prime. Here the h.ard part is
to factor p — 1. (If the desired primitive root is elusive, then p is probably
composite.) This approach is developed further in Problems 38 and 39 at
the end of this Section. . o '

Up to 10" or so one may construct primes by sieving. Larger primes

; i i hy) can be constructed as
(such as those used in public-key cryptography L
i ther, add 1 to this product, and
follows: Multiply several small primes toge r’mnce i ey g
call the result p. This number has no greater ¢ & I ikl Sar
randomly chosen number of the same size, an 'tm G subich case e By
pseudoprime test will reveal that p 1s composite % v pamsr v
i 2 e el FRREL R Ho:evctrl;at p is orime, since
such tests, then one may proceed as‘above. t(::es ow
the factorization of p — | is known in advance. |
3 ' jon, then a is
Definition 2.8 If (a,p) = 1 and x" = a(mod p) has a solutio
called an nth power residue modulo p. o
i iodic. It g 1
2 ...(mod m) is periodic i

If(g, m) = 1 then the sequence 8, 8" * " ‘< sequence is &(m),
a }Jrimi:;ivf:l :Uot (mod m) then the least period of thf;'f rgduced residues
and we see that g, g2, -, g®™ form 2 S)f?tc."ij(mod (m)). By ex-

y 3 ’ ) 3 i l = : ! ; :
oo i), Thus g' = g/ (mod m) if e mc]:)ynven a multiplicative congru
Pressing numbers as powers of g, we may

2.8 itie
Primitive Roots ang Power Residues
101
ence (mod ) 1o an ad
logarithms g real
Power residue (m

ditive congruencc (lllOd Hm ), just as we appl
nu tlelS. In this way we dcle:mme whe he ais an ath
od D) ther 5 a t

congruence x" =

(p-1 L
alP=W/n.p-1y _ l(mol )
or not.

Proof Let g be a primitive root (mod p), and
a{mod p). If there is an x such that "=,
that x = g¥ (mod p) for some u. Thus th
g' (mod p), which is equivalent to nu = i (mod P—1.Putk=(n

By_ Theorem 2.17, this has & solutions if k|i, and e
kli, then i(p — D/k = 0(mod p — 1), so0 that
(7Y% = 1 (mod Pp). On the other hand, if k4 then ilp - N/k 2

), and hence af# =Wk < gip-nzk 4 1 (mod p).

choose i so that gls
= a(mod p) then (x, p) = 1, so
€ proposed congruence js gre

=1k
no solution if ki, If
ate=hrsk = gle vk

O0(mod p — 1

Example 14  Show that the congruence x* = 6 (mod 101) has 5 solutjons,

Solution 1t suffices to verify that 6 =
plished using the technique discussed in
need to find a primitive root '
The mere fact that 62 =

1 (mod 101). This is easily accom-
Section 2.4. Note that we do not
of to find i such that g’ = 6(mod 101).
1(mod 101) assures us that 5|i. (With more work
one may prove that g = 2 is a primitive root (mod 101), and that 2 =
6(mod 101). Hence the five solutions are ¢ = 2141 (mod 101) where
J=0,1,2,3,4. That is, x = 22,70, 85,96, 30(mod 101).)

Corollary 2.3t Euler's criterion. If p is an odd prime and (a, p) = 1, then
x* = a(mod p) has mwo solutions or no solution according as a'?~ "2 =1
or = —1(mod p).

Proof Put b =a'?~"? Thus b* =4a”"" = 1(mod p) by Fermat's con-
gmence. From Lemma 2.10 it follows that b = +1(med p). !f b=
—1{mod p) then the congruence x? = a(mod p) has no solution, by
Theorem 2.37. If & = L(mod p) then the congruence has exactly two
solutions, by Theorem 2.37.

By taking « = —1 in Euler’s criterion we obtain a scfcond lp_rucfﬂ?:
i i lgorithm for solving
.12. In the next section we give an a
Theorem 2. .

ongruence x2 = a(mod p). In Sections 3.1 and 3.2 a quite dlgs:':?:
pr%oach of Gauss is developed, which offers an alternative to
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criterion for determining whether a given number a is a quadratic rc‘ﬁdue
(mod p).

We have seen that primitive roots provide a valuable tool for analyzing
certain congruences (mod p). We now investigate the extent to which this

can be generalized to other moduli.

Theorem 2.39  [f p is a prime then there exist $(d(p>)) = (p — Dd(p — 1)
primitive roots modulo p?. j '

Proof We show that if g is a primitive root (mod p) then g +1p is a
primitive root (mod p?) for exactly p — 1 values of t(mod p). Let A
denote the order of g + tp(mod p?). (Thus # may depend on r.) Since
(g + 1p)" = 1(mod p?), it follows that (g + tp)" = 1(mod p), which in
turn implies that g” = 1 (mod p), and hence that (p — 1)|4. On the other
hand, by Corollary 2.32 we know that h|¢(p?) =p(p — 1). Thus h = p —
1 or h =p(p — 1). In the latter case g + tp is a primitive root (mod p?),
and in the former case it is not. We prove that the former case arises for
only one of the p possible values of t. Let f(x) = x#~' — 1. In the former
case, g + p is a solution of the congruence f(x) = 0(mod p?) lying above
g (mod p). Since f(g) =(p — 1)g”~2 # 0(mod p), we know from
Hensel’s lemma (Theorem 2.23) that g (mod p) lifts to a unique solution
g + tp(mod p?). For all other values of ¢ (mod p), the number g + tpisa
primitive root (mod p?2).
Since each of the ¢(p — 1) primitive roots (mod p) give rise to exactly
p — | primitive roots (mod p?), we have now shown that there exist at
least (p — 1)¢(p — 1) primitive roots (mod p?). To show that there are no
other primitive roots (mod p?), it.suffices to argue as in the preceding
proof. Let g denote a primitive root (mod p?), so that the numbers
g, 8%+, gP?~" form a system of reduced residues (mod p?). By Lemma
2.33, we know that g* is a primitive root if and only if (&, p(p — 1)) = 1.
By the definition of Euler’s phi function, there are precisely ¢(p(p — 1))
such values of k among the numbers 1,2,---, p(p — 1). Since (p, p — 1)
= 1, we deduce from Theorem 2.19 that ¢(p(p — 1)) = ¢(pld(p — 1) =

(p— Dé(p - 1.

Theorem 2.40 If p is an odd prime and g is a primitive root modulo p*, then
g is a primitive root modido p® for a = 3,4,5,- - .

Proof Suppose that g is a primitive root (mod p?), and that / is the
order of g (mod p”) where a > 2. From the congruence g” = 1(mod p©)

we deduce that g" = 1(mod p?), and hence that #(p?)|h. By Corollary
2.32 we also know that hl¢(p®). Thus h = pP(p — 1) for some B among

2.8 Primitive Roots and Power Residues
1y

= L it suffices 4 show
thy

gp"’(.v-ll # l(mod p“). " :

B=12:--, or @ — 1. To prove that B

T 2
We use induction to show that this holds for all a » 7 g . (2g)
order of g (mod p?) is ¢(p?) = p(p — 1). Hence g’-{';l (YPOlhesis‘ the
we have (2.9) when a = 2. By Fermat’s congruence go-l T?d ), ang
= 1lmp

we may write ' = 1 + b, p with p.t'b,. By the binomial the,, dp), ¢
rem,

—1) _ _ P
g" V= +b,p) =1+ (l)b;p + (g)bfpz-J-

" g D .
Since p > 2 by hypothesis, (2 ) =p(p—-1)/2= 0(mod p), and

5 €Nnce
abgve is ; s |!, + b, p? (mod p_’)_ This gives (2.9) when o = 3 Thus he
write g#?~" = | + b, p? with pA'by. We raise both sides of lhi::urTEY

C

pth power and repeat this procedure to find that grite-n_

b, p* (mod p*), which gives (2.9) for a = 4. Continu;
s . = 4. Continuing | i
conclude that (2.9) holds for all a = 2, and the proof isgc(;nm;}:feway, o

The prime p =2 must be excluded, for g =3 imitj
(mod 4), but not (mod 8), Indeed it is easy to vcr?fy t:atlsafapalTn:l;Les;m[
any odd number a, As @(8) = 4, it follows that there is no primitive ”
E:]nOdIS). Su:pposc tzhat a is odd. Since 8|(a* — 1) and 2|(42 + 1), it fo]lr;]f:
(hia; afll(,i-,e;t 1IXa? + 1) = a‘s- I. That is, a* = | (mod 16). On‘repeminﬁ
e dgzﬂ){ we see that ¢® = 1(mod 32), and in general that o'~ =

0 Or a > 3. Since $(27) = 291 ye conclude that if ¢ > 3 then

a®"2 o 1 (mod 2::) (2.]0)

for all odd 4, and . . Lo
a=3,45 0, nd hence that there is no primitive root (mod2°) for
S y : .

(mod ':)Q,F;Oﬁctha: P 1S an odd prime and that g is a primitive root
only to repl May suppose that g is odd, for if g is even then we have
they a[sonfol::‘i izzl:uedsym‘?m (mod p*). Since these numbers are odd,
ce : ; T

root (mod 2 p). residue system (mod 2p®). Thus g is a primitive
. =V;f'c2hzve fstablishlt:d that a primitive root exists modulo m wh_en
root (r!no;:] 2‘;;7 > O 29, (p an odd prime), but that there is no primitive
twice a pri fos 2 ., Suppose now that m is not a prime power of
prime power, Then m can be expressed as a product; m = mhy
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g, M) = 1, m>2 m,>2 Let e= Lem. (¢(m,), (i, )). If
““hm, #ll then (a, m;) = 1, so that a®™) = | (mod m)), nml] hcnc:c2 a =
ga(.mod ym,). Similarly @® = 1(mod m,), and hence a® = 1(mod m). Since
21 for all n > 2, we see that 2|(¢(m,), ¢(m,)), so that by Theorem

1.13,

¢'(‘ml)d)(mz)
€= @lm), dlmy)) ~ PUm)élms) = o(m).

Thus there is no primitive root in this case. We_have now determined
precisely which m possess primitive roots.

Theorem 2.41 There exists a primitive root modulo m if and only if m =
1,2, 4, p° or 2p°, where p is an odd prime.
4

Theorem 2.37 (and its proof) generalizes to any modulus m possessing
a primitive root.

Corollary 2.42 Suppose that m = 1, 2, 4, p®, or 2p“, where p is an odd
prime. If (a,m) = 1 then the congruence x" = a(mod m) has (n,$(m))
solutions or no solution, uccording as

a®tm/tn.Hm) = 1 (mod rm) (2.11)
or not.

For the general composite rn possessing no l‘arimitive root, we factor
m and apply the above to the prime powers dividing m.

4=
Example 15 Determine the number of solutions of the congruence x” =
61 (meod 117).

Solution We note that 117 = 32 - 13. As ¢(9)/(4,6(9) = 6/ (Ct 6)x4= 5.3
and 61° = (—2)° = 1(mod9), we deduce that the congrr;:):; it
61(mod 9) has (4, $(9)) = 2 solutions. Similarly qS(Jlr:i)/_(tlﬁ,;;b((mOd 1—3) and
61° = (—4)® = 1(mod 13), so the congruence = _
(4,4(13)) = 4 solutions. Thus by Theorem 2.20, the number of solutions
modulo 117is2 - 4 = 8.

is divisible by 8, as Coyollary
o I? 2.l In order to establish an
ers of 2, we first show that 5

This method fails in case the modu
2.42 does not apply to the higher powers O
znalogue of Corollary 2.42 for the higher pow
is nearly a primitive root (mod 27).

2.8 Primitive Roots and Power Residues
105

m 243 Suppose th
numbers +5, 452, 4 53 . if«'-?"” order of 5(mod27) is 29-2

form a sysiom red| I
= . e
1 then there exisy i and j such that o Ef( - l)‘Se‘c:mTc,ld;e;

i are uni i
respectively. J uniquely determined (mod2) and (mod 20-2),

Proof We first show that 2952

:2 _21- sz ? =_[ ()r(nod 4) then 2l(a + 1), and hence the power of 2 dividing

a = 1a+1)is exactly one more than the power of 2 dividin
4 — 1. Taking a = 5, we deduce that 2352 — 1), Taking 2 = 52, we tth
deduce that 24|(5* — 1), and so on. Now let h denote the ‘Ordcr of
5(mod 2°). Since /1|$(2%) and $(2%) = 227! we know that h = 2° for
some B. But the least 8 for which 52 = 1 (mod 2°)is B =a — 2. Thus §
has order 2°~2 (mod 2°), so that the numbers 5,5%,5%---,5" are mutu-
ally incongruent (mod2°). Of the 2=-! integers in a reduced residue
system (mod 29), half are = 1(mod 4), and half are = 3(mod4). The
numbers 5/ are all = 1(mod 4). Since the powers of 5 lie in 2°72 distinct
residue classes (mod 27), and since 2°2 of the integers (mod 2°) are
= 1(mod4), for any @ = 1(mod 4) there is a J such that @ = 5/ (mod 2°).
For any integer @ = 3(mod4), we observe that —a = 1(mod4), and
hence that —a = 5/(mod 2¢) for some j.

= 1) for a > 2. This is clear for

Corollary 2.44 Suppose that « > 3 and that a is od-. If n is odd, then the
congruence x" = a(mod2®) has exactly one solution. If n is even, then
choose B so that (n,2%72) = 28. The congruence x™ = a (mod 2") has 28+!
solutions or no solution according as a = 1 (mod 28*2) or not. :

Proof Since a is odd, we may choose i and j so that a = (—1)5/ (mod 2*).
As any x for which x" = a (mod 2°) is necessarily odd, we may suppose
that x = (- 1)“5 (mod 2°). The desired congruence then takes the form
(= 1)"™5™ = (—1)'5/(mod 2*). By Theorem 2.43, this is equivalent to the
pair of congruences nu = i(mod2), nv = j(mod2°~?), If n is odd, then
by Theorem 2.17 there exists exactly one u(mod2) for which the first
congruence holds, and exactly one v (mod2°~2) for which_ the s_econ.d
congruence holds, and hence there exists precisely one solution x in this
case. )
Supposc now that n is even. We apply Theorem 2.17 two more times.
If i = 0(mod2) then the congruence nu = i(mod2) has two solut:oni.
Otherwise it has none. If j = 0(mod2”) then the congruence nv =
j{mod 27-2) has exactly 2# solutions. Otherwise it has none. Thus the
_ @ B+l i lution, according
congruence x" = a(mod 2”) has 2 solutions or no so y
j i B F Theorem 2.43 we know
as a = 5/(mod 2%), j = 0(mod 27), or not. From The
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that 5 has order 28 (mod 28*2). Thus by Lemma 2.31, 5/ = 1(mod 2#*?) if

\ and only if 28)j. Since 2°*%27, the condition on a is precisely that

a = 1(mod2°+%).

PROBLEMS .
1. Find a primitive root of the prime 3; the prime 5; the prime 7; the
prime 11; the prime 13.
2. Find a primitive root of 23,
3. How many primitive roots does the prime 13 have? ;
4. To what exponents-do each of 1,2,3,4,5,6 belong modulo 7? To’
what exponents do they belong modulo 117 .
Let p be an odd prime. Prove that a belongs to the exponent 2

5.
modulo p if and only if a = =1(mod p). 5%

6. If a belongs to the exponent A modulo m, prove that no two of
a,a’,a%--, a" are congruent modulo m.

7. If p is an odd prime, how many solutions are there to x°~'=
1(mod p); to x?~! = 2(mod p)?

8. Use Theorem 2.37 to determine how many solutions each of the
following congruences has:
(a) x"? = 16(mod 17)  (#) x® = 9(mod 17)
(¢) x®=13(mod17)  (d) x"" = 9(mod 17).

9. Show that 3% = —1(mod 17). Explain why this implies that 3 is a
primitive root of 17.

10. Show that the powers of 3(mod 17) are 3, 9, 10, 13, 5, 15, 11, 16, 14,
8, 7, 4, 12, 2, 6, 1. Use this information to find the solutions of the
congruences in Problem 8.

11. Using the data in the preceding problem, decide which of the

congruences x> =1, x* = 2,x%? = 3,-- -, x> = 16(mod 17), have solu-

tions.
12. Prove that if p is a prime, (a,p) =1 and (n,p — 1) = 1, then
x" = a(mod p) has exactly one solution.
Show that the numbers 1%,2%--- (p — 1)* form a reduced residue
system (mod p) if and only if (k, p — 1) = 1.
I4. Suppose that a has order 4 (mod p), and that @@ = 1(mod p). Show
that @ also has order h. Suppose that g is a primitive root (mod p),
and that a =g'(mod p), 0 <i <p - 1. Show that @ =
g?~ '~ (mod p).
Prove that if a belongs to the exponent & modulo a prime p, and if A
is even, then a"/? = —1(mod p).

13.

15.

2.8 Primitive Roots and Power Residues
17

16. Let m and n be positive integers. Show th
. t s B n
m is odd. Hem-12 * iy
17. Show that if a* + 1 is prime, k > 0, and a > 1 then k s
2 Show that if p|(a® + 1) then p = 2 or p = L(mog e 1} rer of
18. Show tha_t if g and g’ are primitive roots modulo an ggq '.(H)
then gg' is not a primitive root of p. PR b
19. Show that if a* = 1(mod p) then a”* = 1( F
is a primitive root (mod p?) then it i imitive rout (o ot i
p p en it is a primitive root (mod p) $
20. Of the 101 integers in a complete residue system (mod I(ll’)‘:h‘
= 2(mod 101), which one is not a primitive root (mod 1012)? Aare
21. Le't g be a primitive root of the odd prime p. Show that.-u ;
primitive root, o-r l:l(?l, according as p = 1(mod 4) or p= J(mgodlsna
22. Let g be la p',',?“"?;fz root (mod p). Show that (p— D=y 2
reeeegPl = grtr- (mod p). Use this to pive ; e
Wilson’s congruence (Theorem 2.11), # IR prost o
*23. Prove that if a belongs to the ex i
ponent 3 modulo a prime
) 1+a+a*=0(mod phand 1 +a belongs to the expgncm :, .
24, L;:;al {.:mddn )>fl be- any integers such that g"-! = 1(mod ) byt
a mod n ivi
b or every proper divisor 4 of n — 1. Proye that nisa
*25. Show that the number of red i
o 1 : uced residues «(mod m) such th
a”"" = 1{mod m) is exactly II'](p - 1L,m-1). "
. . pPlm
26. Esdecalijthat. m is a Carmichael number if g™~ = 1(mod m) for all
andu;t{:ﬂyn;:niuq: a(mod ;n).) Show that m is a Carmichael number if
nd ¢ 1S square-free and (p — 1)|(m — i
g m — 1) for all pri
- S;v;tzr;iartrr. Df:ducg that 2821 = 7. 13 . 3lisa Carmichae!pm:?nel:ef
; 2t m is a Carmichael number if and if m is te
55 ;llr:d a™ = a(mod m) for al| integers a. S e
- Show that the followi i
sty e wing are equivalent statements concerning the
(i) # is square- :
@ 1 a::{d ;ea?ece :;1‘:! (p ~ Dln for all primes p dividing n;
Positive integers such that j = k (mod n), then

a’ = a* (mod n) for all integers a.

(The nu
s g ;: {er- ennet, “A theorem on partitions of the set of
%29, Show that 1o 1o - er- Math. Monthly, 47 (1940), 152-154.)
" th sy o1 Sequence 1',22,33.. ..., considered (e5d ) period
\_ylth least period 2(p - D). , ered (mod p) is periodic
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#39. Let m be given, and let s be a product o:f prime powers g° eacl
havin'; the property described in the preceding problem. Show that if
s > m'/? then m is_prime.

2.9 CONGRUENCES OF DEGREE TWO,
PRIME MODULUS

If f(x) = 0(mod p) is of degree 2, then f(x) = ax® + bx + ¢, and a is
relatively prime to p. We shall suppose p > 2 since the case p = 2 offers
no difficulties. Then p.is odd, and 4af(x) = (2ax % b)* + 4ac — b°. Hence
u is a solution of f(x) = 0(mod p) if and only if 2au + b = v(mod p),
where v is a solution of v? = b%— dac(mod p). Furthermore, since
(2a, p).= 1, for each solution v there.is one, and only one, & modulo p
such that 2au + b = y(mod p). Clearly different v modulo p yicld dif-
ferent u modulo p. Thus the problem of solving the congruence of degree
2 is reduced to-that of solving a congruence of the form v* = k (mod p).
Following some preliminary observations on this congruence, we turn to
an algorithm, called RESSOL, for finding its solutions.

If a = 0(mod p), then this has the sole solution x = 0(mod p). If
a # 0(mod p), then the congruence x%'= a(mod p) may have no solution,
but if x is a solution then —x is also a solution. Since p is odd,
x #.—x (mod p), and thus the congruence has two distinct solutions in this
case. It cannot have more than two, by Corollary 2.27.

If p is'a’'small prime then the solutions of the congruence x? =
a(mod p) may be found by simply trying x =0, x = 1, -, x = (p — 1)/2
until one is found. Since this involves = p multiplications, for.large p it is
desirable to have a more efficient procedure. If p = 2 then it suffices to
take x = a. Thus we may suppose that p > 2. By Euler’s criterion we may
suppose that a'?~"%2? = 1(mod p), for otherwise the congruence has no
solution. - )

Suppose first that p = 3(mod4). In this case we can verify that
x = +a'»*1/4 are the solutions, for )

(ta(pfl)/4)2 =g+ o g ;a(p-lj/l = a(mod p).

Note that it is not necessary to verify in advance that a‘*~"%? = 1(mod p).
It suffices to calculate x = a*?*"4(mod p).-If x? = a(mod p), then the

solutions are +x. Otherwise x* = —a(mod p), and we can conclude that

a is a quadratic nonresidue. Thus x = +a'?*!%% are the solutions, if the
congruence has a solution. This takes care of roughly half the primes, As

!

2.9 Congruences of Degree Two, Prime Modulus ‘
o

always with large exponents, the value of gts+ 14 (mod p)
using the repeated squaring device discussed jn Sectimf 2l: permineg
number of congruential multiplications required is only or- t'hHence the
magnitude log p. i € Order o
Suppose now that p =1(mod4). We have :
special case x* = —1(mod p), and in proving T:t!.;iz?lr .;c;rilzmd“ed
formula for the solutions; namely x = +((p = sy, Hov;evcw :
mula is useless for large' p, as it involves =p mulliplicaliunr'
other hand, .if a quadratic nonresidue z is known then >
x = 2714 (mod p), since then x2 = z(P-1/2 — —1(mod e“;n
criterion. Thus in this special case it suffices to find a quﬁdruﬁ'ﬁu{er;
residue. We can try small numbers .in turn, or use a random -
generator to provide “random” residue classes. In either case .v.i;:“mbcr
the reduced residues are quadratic nonresidues, we may eJcpe'cl ufe half
average number of trials is 2. (Here our interest is not in a detenn?t-lhe
algorithm of proven efficiency, but rather a calculational procedure :}?mm
quick in practice.) b
: =We now develop these ideas to find the roots of the coNgruence
x%= a(rpod p) for arbitrary a and p- We begin with a few eneral
observations. Let @ and b be relatively prime to m, and Supposegth ¥
and b both have order h(mod m). Then (abY* = 1(mod m), and ha1 :
the order of ab is a divisor of A. In general nothing more ca;1 be Saizmli
may be that b is the inverse of a, so that ab = 1(mod m), in which cae
the order. of ab is 1. On the other hand, the order of ab may be as large a5

::;zmb.zr: .I‘:jve U; Mgi ? arilre!)mimy prime to a prime number p, and if
Agidiior order. mox ith i 44
for some J' < j. P) with j > 0, then ab has order 2" (mod p)

Prgoé IDSlnc:e a hza:§lorder 2/ (mod p), it follows that 2/|(p — 1), and thus
P>2Putx=g - Then x # 1(mod p) but x? = g% = 1(mod p). Thus
by Lemma 210 it follows that
—1(mod p), and it follows that

X = —1(mod p). Similarly, b* '=
21t F=ly 9=t
(ab)™" = a™b2™ = (~1)(=1) = 1 (mod p).

gﬁ"{“ this and Lemma 2.31 we deduce that the order of ab is a divisor of
» that is, the order of ab is 24 for some j' < i
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jther Theorem 2.45 nor its proof involves rimit;

o e iy s B

rs of a given PrIMItive 100t g. Write a = ga (moy P)
P By Lemma 2.33, the order of g= is (,, D/ -1, a). wii
T m2* with m'odd. Thc'_hypothesis that g hag urder'zfis t]l;l:]:
cquivalc‘“ to the rclatlonﬂ(p = 1,a) - m2k=i That js, o = a,m2%~i with
o, 0dd. Similarly, b = g% (mod p) with g < Bim2*7, g odd. By then
;’gaﬂs (mod p),:and a + B = oy + Bym2k=i, Since @, and B, are
poth odd, it follows that @, + By is even. Choose j 5o that (a, + g, 2‘1) =
21, Since j > 0 by hypot_'heSI:*‘:, lt:follf)ws that i > . Moreover, the o;-der of
b is 2071 so'we have_,r =J]—1<j.

. With-these tools in hand, we describe the algorithm RESSOL (for
RESidue SOLver), which locates x such that x2 = 4 (mod p). We begin by
determining. the power of 2 in p — 1. Thus we find k and m with m odd,
so-that p'— 1 = 2¥m. We are supposing. that

: P > 2, so that k. > (. Set
r=a"*""2(mod p) and n = a™ (mod p). We note that

roots, but some
100 in terms of

r? = an (mod p). (2.13)

1;-‘,,";‘:1 (mod p), then ‘it suffices to take x = +r(mod plIf n#
1(mod p), then we find a quadratic nonresidue z, and put ¢ = z™ (mod p).
We note that

k
C2

L

=z -l =) (mod p).
Thus the order of ¢'is a divisor of 2%. Moreover,
cz"' - zz""_m — z(pA—U/Z = —1(mod p)

A L 3 is exactly 2%.
since z is a quadratic nonresidue. Thus the order of ¢ is ¢ y
Similarly,

n?* = g?m =g = 1_(m0d p),

0 that the order of n divides 2*. By repeatedly squaring n we determine
the exact order of n, say 2%'. Since

nz"" = azk‘l”' = a(p-l)/z’
2 i if
we see that a is a quadratic residue (mod p) if and only if

2™ = 1(mod p),

29 Congruences of Degree Two, Prime Modulus 113
which in turn is equivalent to the ine i ' i

n quality k' < k. Itis rt i
tha} this inequality holds, fr otherwise k' =k, g is a ::a\;‘r;‘;:c:;g:
resndl_:e and the proposed congruence has no solution. Ay this point of the
algorithm, we begin a loop. Set b= ¢ (qoq P). We put
br (mod p), ¢' = p? i

(mod p), n' = ¢'n (mod P). By multiplyi i
of (2.13) by 52 we find that P Doty

- r'? = an’ (mod p). (2.19)
The point of this construction is that ¢’ has order exactly 2% Since
n # 1(mod p) in the present case, it follows that k&’ > 0, Thys by Theorem
2.45, the order of n' = ¢'n is 2" where k" < k', (We determine the value
of k" by repeated squaring.) If k" = 0, then n' = 1(mod p), ang we see
from (2.14) that it suffices to take x = +r'(mod p). If n' 1 (mod p)
then k”.> 1, and the situation is the same as when the loop began, excepr'.
that the numbers c (of order 2*) and 1 (of order 2*) with 0 < k' < £ have
been replaced by ¢’ (of order 2%') and n’ (of order 2%) with 0 < &k~ < k-,
while r has been replaced by ' and (2.13) has been replaced by (2.14).
Since k" < k', some progress has been made. By executing this loop
repeatedly, we eventually arrive at a set of these variables for which
n = 1(mod p), and then x = +r(mod p) is the desired solution.

As a numerical example of th

is algorithm, suppose we wish to find the
roots of the congruence x? = 43(mod 97). Thus p=97, and p—1 =

2° - 3. By using the method described in Section 2.4, we find that r =
439*1/2 = 6(mod 97), and that n = 43° = 64 (mod 97). Thus the congru-
ence (2.13) is 6 = 43 - 64 (mod 97). Since n # 1(mod 97), we must find a
quadratic nonresidue. We note that (p = 1)/2 = 48, and calculate that
2% = 1(mod 97). Thus 2 is a quadratic residue, by Euler's criterion.
Similarly 3 is a quadratic residue, but 5 is a quadratic nonresidue. We set
z=35,c =5 =28(mod97). Thus ¢ has order 2°(mod 97), By repeatedly
squaring, we discover that n has order 23 (mod 97). That is, k&’ = 3, and we
now begin the loop. Since k — k' — 1 =1, we set b =c? = 8(mod197),
and ¢’ = b? = 64 (mod 97). On multiplying both sides of (2.13) by b? we
obtain the congruence (2.14) with ' = 8 - 6 = 48(mod 97) and »’ = 64 -
64 = 22(mod 97). That is, 482 = 43 - 22(mod 97). By repeated squaring,
we discover that 22 has order 2% (mod 97), so we take k" = 2, and we are
ready to begin the loop over. With the new values of the paran?r:ters,zwe
now have k—k'—1=0, so we set b=c = (14(m0d M, ¢ 25_64 =
22 (mod 97), and obtain the congruence 6’332 = (64‘£9‘f73)) H=r:39\:3
(22 - 22)? = 43 - 96(mod 97). That is, r' = 65, #' = 96(mo : -ec:lc b
has order 2, so that k" = 1. Since n’ # 1(m0d_97)v_“';2r(nm";dg’;) ¢ =b?
loop a third time. As k — k' — 1 =0, weset b =2¢;—(22 L 65): = 43 - (96 -
= 96(mod 97), and we obtain the congruence 72
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15::']2 :f ‘:ﬁ:ﬂ;rli ?i':l);m'r]!lus the snll{tions are x = +72(mod 97). This exam-
el g | 1s unusually'long because p — 1. is divisible by a high
To gain further insight into this algorithm, let g be a primitive root

(T!f"d p). Then z =g"(mod p) for some 'n, and hence c=z"=

27" (mod p). But n is odd since z is a quadratic nonresidue, and thus
(mn, p — 1) =m. Consequently by Lemma 2.33 the order of ¢ is 2*. In
general, the order of g’ is a power of 2 if and only if m|t. There are
precisely 2* such residue classes, namely g™, g?™, g3 .-, g¥™ On
the other hand, the 2* residue classes c, ¢2, ¢3,- - f.c'z* e distinct, and
each one has order a power of 2, so this latter sequence is simply a
permutation of the former one. Thus the order of a residue class is a
power of 2 if and only if it is a power of ¢c. But n = a™ (mod p) has order
that is a power of 2, and hence there is a non-negative integer u such that
n = c“(mod p). A number ¢’ is a quadratic residue or nonresidue accord-
Ing as ¢ is even or odd. Hence if a is a quadratic residue, then u is even,
and the solutions sought are x = +c¢“/?(mod p). Thus it suffices to
determine the value of u (mod 2*). As it stands, the algorithm does not do
this, but it can be slightly modified to yield u. (See Problem 5 below.) If

,n # 1(mod p),. then .u # 0(mod 2*). Suppose  that. 0 < u < 2%, If the

order of n is 2% then 2% *'|u but 2*7*'*!':¥u. Thus we obtain some

information concerning the binary expansion of u. Repeated iterations of
the loop (suitably modified) determine further coefficients in the binary
expansion of u, and eventually u is determined. Alternatively, the value of

u could be determined by calculating the successive powers of ¢ until n is
encountered, but that might require as many.as 2* multiplications. The
algorithm given is much faster, as the loop is executed at most k times..

PROBLEMS Efr: o LRt
1. Reduce the following congruences to the form (x — r)? = k (mod p):
(@) 4x?+2x + 1= 0(mod5);  (b) 3x*—x + 5 =0(mod7),
C(¢) 2x%+ 7x ~ 10 = 0(mod 11);  (d) x? 4+ x —1=0(mod13).

. Subpc-sr that f(x) = ax* + bx + ¢, and that. D = bz — 4ac. Show
that if p is an odd prime, p{a, plD, then f(x) = 0(mod p) has
exactly one solution. Show that if p is an odd prime, pAa, pA D, then
the congruence f(x) = 0(mod p) has either 0 or 2 solutions, and that
if x is a solution then f'(x) # 0(mod p). | e

*3, Let f(x) =ax? + bx + ¢, and let p be an odd prime that docs not
divide all the coefficients a, b, c. Show that the congruence f(x) =

0(mod p?) has either 0, 1, 2, or p solutions.
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