Theory of Matrices
70 Introduction

In chapter 5 we have introduced m x n matrices and
we have represented linear transformations by these
. | matrices. In this chapter we shall develop the general
theory of matrices. Throughout this chapter we deal
 with matrices whose entries are from the field F of
 real or complex numbers.

- 7.1 Algebra of Matrices

- We have already seen that an m x n matrix A is an
array of mn numbers ajj where 1 <i <m,1 < j <n
arranged in m rows and n columns as follows:

a B125 . eivsrise A\n
al) apnl ...... ap
am) -~ G2}t »--- a
We shall denote this matrix by the symbol (¢ If

m = n. A is called a square matrix of order n

Definition. Two matrices A = (aij) and B = (b;j)
are said to be equal if A and B have the same number
of rows and columns and the corresponding entries in
the two matrices are same.

- Addition of matrices. We have already defined the
addition of two m x n matrices A = (a;;) and

B = (bl’) by A+B= (aij + blj)'

We note that we can add two matrices iff they have

i | the same number of rows and columns.
A 12 0 4
~ Example. IfA= |3 4] and [ 2 1| then

915 -1 0
1 6
A+B=1|55
8 5

Remark. The set of all m x n matrices is an abelian
group under matrix addition. The m x n matrix with
each entry 0 is the zero matrix and is denoted by 0 and
the additive inverse of matrix A = (a;;) is (—a;;) and
is denoted by —A.

If A = (ajj) is any matrix and « is any number (real
or cpmplex) we have defined the matrix ¢ A by
oA — (C((l,'j).

The set of all m x n matrices over the field R under
matrix addition and scalar multiplication defined above
is a vector space. This result is true if R is replaced by
C or by any field F.

We now proceed to define multiplication of matri-
ces. We have already defined the multiplication of
2 x 2 matrices, which we generalise in the following

definition.

Definition. Let A = (a;j) beanm X n matrix and
B = (bijj)beann x p matrix. We define *he product
AB as the m x p matrix (¢;;) where the i j™entry cjj

is given by

n
cii = aiybyj +ainbaj + - -+ @inbnj = Y aikbyj-
k=1\

Note 1. The product AB of two matrices is defined
only when the number of columns of A is equal to the

number of rows of B.

Note 2. The entry ¢;; of the product AB is found by
multiplying i row of A and the j™ column of B.
To multiply a row and a column, we multiply the
corresponding entries and add.

Examples
o8 2
L. LeaA=1}0 2 1| 1}L208
l 0 () l L ¥

B= _Aisa?3 x 4matrixand Bisa

i 1
k-3
3.2
1 0

4 x 2 matrix. Hence the product AB isa3 %2
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Note that in this example the product BA is
~ notdefined. Even if the product BA is defined,
“ AB need not be equal to BA.
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Consider the square matrix of order n given

Let A be any m x n matrix. Then I,A = A.
Also if A is an m x n matrix, Al, = A.
: IfA isany n x n matrix, Al, = I,A = A.
1 |s called the identity matrlx of order n.

We shall denote the identity matrix of any
order by the symbol I

Solved problems G

. Lo ‘
ml Showmatmmﬂ;-

A42l =

- Now,

A(A - I(A+2D)

=13 1
a3 2

(412 -4
a3
89

0 0 0
0 0 0
0 0 ©
iy
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Hence A(A — I)(A +2I) =

i n k
" Problem 2. Prove that [3 i] = ll" 1

Solution. We prove this result by mducnon
When n = | result is obvnously true.. R
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Wntc down six pairs of matrices A and B such
that the product A B is defined and in each case
compute the product AB.
2. (a) Show that if A is an m X n matrix,
then AB and BA are both defined iff
B is an n x m matrix.
(b) Write down six pairs of matrices A
and B such that both AB and BA are
defined and compute the products A B
and BA.
3. If A and B are two matrices such that AB and
A + B are both defined, show that A, B are
square matrices of the same order.

1 —2 .4
e laA=]-3 0 2| and

7843
oL Ic . 0} .
B=]—-1:3 ~-—3']
[ 00~ %l
Compute A, B>, AB and BA.
22
S e =12 1 2 show that .
A —4A 5] =0.
A7 3
1 provcthat

y 'm; A(BC) = (AB)C.

(g) Matrix multiplication is wr;
(hy IfAand Bare3 x 3 “

(A+ B2 =A2 4248+ B2.

(i) If A and B are 3 x 3 matrices then
(A+BYA-B)=A-B.

() (h)and (i) are true if AB = BA.

Answers. 5
8. @ EF: @WFi(©F @F & F
®T @ F MF @F @FT

Theorem 7.1. Let A be an m x n matrix, Bann x p

" matrix and C a p x ¢ matrix. Then A(BC) = (AB)C.

Proof. Let A = (ajj). B = (bjj) and C = (cij)- Let
us find the rs™ entry in A(BC). ;
The rh row in" A is @ 1,@2,...--- »Grm-

The s™ column in BC consists of the element
Y byies, - i Eb,uc,v Hence the rs'™ entry = .,,‘
A(BC) 1S dry Zbl_;c], “+ app an}‘?p ;L

n
i y

i=l

Let us now find the rs™ entry in (AB)C. 2
The '™ row in AB is

Yo aribit, 3 apibizy i DI N
The s™ column in C is €1y, €200 0. ooy €pse
Hence the rs'™ entry in (A B)C is

(}: “ribi |.)‘c|x + (2 ai 552,); Q‘ &N
BT . (Eaub.,) Y S
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Mv‘z“w U, V, W be vector spaces of dimen-
sions m,n and p respectively over a field F* with
respective bases {u), u3, ... upy), (v, vayiis s Un)y
and {wy, wy, ...... ywp). Let Ty : U — V and
D V = W be linear transformations and M (7))
and M(T3) their corresponding matrices with respect
to these bases. ‘

Then M(Ty 0 T\) = M(T\)M(T>).
Proof. M(T)) and is an m x n matrix and M (T3) is

an n x p matrix. Hence the product M (T))M(T3) is
defined and is an m x p matrix.

Let M(Tl) = (a,j) and M(T) = (bij)-

n’ P
Then, Ti(w;) = Y ajjvjand T>(vj) = Y bjxwg.

(T2 0 Ty) (ui)= T (Z a,-,-v,-) :

j=1

n

= Za,'sz(vj)
=1

: 4 4

= Za,-j Z bjk Wk
s s e
n )4

=" > @jbj)(wp)

j=1 k=1

Thus M (T3 o T1) = M(T1)M(T3).

Note 1. Thus multiplication of two matrices is equiv-
alent to the composition of their corresponding linear
transformations in the reverse order. Since compo-
sition of linear transformation is associative we get
matrix multiplication is associative. :

Note 2. Let M,,(F) denote the set of all square matri-
ces of order n over the field F. Then matrix multipli-
cation is an associative binary operation on M,,(F). If
A, B, C € M, (F) the two distributive laws,

A(B+C)=AB+ACand (A+B)C = AC+BC
can be verified. Bl diom €

Since My (F) is already an abelian ﬁroup under.

matrix addition we see that Mu(F) s a ring,

i iy

Eixercises :
i 1 =1
1 -11 0
1, Using A= |5 01]8':‘? :‘1
l;
10 '
c = 10 i test the associative h’i:'m
1 Ee

A(BC) = (AB)C for matrix multiphica. |
4 ~1 2 0
ute (217 2 1) 10 =15y
2: Comp 1 S-aH!

Find for what values of x will

2 41 UFLE
(x41)[1 0 2] ‘; =0

PUNT G

I. .0 0 1. 0
4. Giventhat |0 2 OlA10 O
0O 0 -3 0 Fi0

Joeed s o3
= |4 5 4] find the matrix A.
T |

Answers.

9 R3). 3. =12 156

1 28 2
4. A=|2 28— 5/2
-1 -1/3° -2/3
Definition. Let A = (g; ;) be an m x n matrix. Then
the n x m matrix B = (bij) where b;j = aji s

callethhe transpose of the matrix A and it is denoted
by A". Thus AT is obtained from the matrix A by
interchanging its rows and columns and the

@i, )™ entry of AT = (j, i)™ entry of A.

r

oy

' 15234

Forexample,if A= |2 1 0 1] then
‘ 0.3 ki

143t :
areilar &

ltegrat )

4 ) o Avaans
Clearly if A is an m x n matrix, then AT isann X

matrix, AT I
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1] $. ¢l Jnd diagonal are 2610 ‘ ; i
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l { 0l . tri gular,
7.2. Types of Matrices g 3 ey :
|

e matrix is 2 diagonal matrix iff it
lar and upper triangular.

= (aij) is said to be ?

Definition. An 1 x n matrix is calleds a row matrix. Clearly §quar
both lower triangu

Thus a row matrix consists of 1 row and n columns. /
A square matrix A

Definition.

| It is of the form (ajy, @12, @13, -+ ; i)
j 5 (ai1, a1z, a13, ,@1n) symmetric if aij = 9ji for all i, Jj-
1 Deﬁlfltlon. An m x 1 matrix is called a column
2 matrix. Thus a column matrix consists of m rows and Example-
. 11 ki 17 ‘2
{ 44 ot o 05
i 1 column and it a1 a b =
i an 1lsoftheform o] h b S byY3rotied aresym-
! | Sl g S 1€) g 5 N
(1 Definition. Let A = (aij) be a square matrix. Then metric matrices.
i f the elements @11, @22, - - - » @nn a1® called the diagonal Theorem 7.6. A square matrix A is symmetric iff
| § elements of A and the diagonal elements constitute T
: 3 | what is known as the principal diagonal of the matrix gl
| he entries which do not belong to the principal are Then the (i. /)
zero. Hence in a diagonal matrix a;j = 0if i # i en the (i, j)™ entry of A
e G = (j,i)"entry of A.
i For example [0 3 O is a diagonal matrix Sqs -
3 : 0l 2 = (i, j)" entry of A
{ Deﬁnitio.n.‘ Adifxgonal matrix inwt.xichalltheentries Hente Ates AR
a of the principal diagonal are equal is called a scalar
| %! e Conversely let A = AT.
| 4 0 0 Then (i, j)' entry of A
i | For example |0 4 0] is a scalar matrix.
| 12004 : = (i, ))™ entry of AT
¥ Definition. A square matrix (aij) is called an upper = (j, i)™ entry of A.
triangular matrix if all the entries above the principal !
e X Hence A is symmetric.

i
|

diagonal are z€ro- .

Hence adij =

AT TR ‘ )
0 wheneyer i = J in an upper Theorem 7.7. Let A be any sq niat';i;. ot §
triangular matrix. el uare matria

“Then A + AT is symmetric.

ANI D
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A+ADT = AT 4 (ATyr

'“ﬂ"‘j‘ 3

=AT 44
=A4AT i

st
o
'guH—Ar is symmetric.
w".&w A and B be;ymmmc Matricde of
order - Then

o At B is symmetric.

AB is symmetric iff AB = BA,

(i) AB 4 BA is symmetric.

@ :f 2 i;symmetric, then k A is symmetric where

proof.

® @a+BT =AT +BT

= A+ B (since A and B are
symmetric)

A + B is symmetric.
i) ABis symmetric

o (AB)T =

& BTAT = AB (by Theorem 7.4)
& BA=AB.

Gii) (AB+ BA)T = (AB)T + (BA)T

BTAT + ATBT
= BA+ AB (smceAandB
are symmetric)
= AB + BA.

AB + BA is symmetric.
) kA)T =kAT = kA (since Ais symmetric).

. kA is symmetric.

Asqwe matrix A = (au) is sald to be
‘ mlfa; s-a,;.fonlh '

£L0o0om

O Reno 10x Zoom - (€

Note. Let A be a skew symmetric matrix. Then

R gt L UL
!nmnanwu
- 0 4 ;
O 0 ] ‘““
pleoofskewcymmicmu '

Theorem 7.9. A e matrix A is skew
mteix it A < ~ AT, o

Proof is similar to that of Theorem 7.6

Theorem 7.10. Let A be any square matrix. Then
A — AT is skew symmetric.
Proof. (A= ATY = AT < (AT
=AT - A
=—(A - AT).
Hence A — AT is skew symmetric.

Theorem 7.11. Any square matrix A can be expressed
uniquely as the sum of a symmetric matrix and a skew
symmetric matrix.

Proof. Let A be any square matrix.

Then A + AT iis a symmetric matrix (by Theorem
1.7)

%(A + AT) is also a symmetric matrix.

Also, (A — AT is a skew symmetric matrix (by
Theorem 7.10)

Now, A = 5(A+ AT +

A is the sum of a symmetric matrix and a skew

symmetric matrix.

Now, to prove the uniqueness, let A = R+ S where
S is a symmetric matrix and R is a skew symmetric
matrix. We claim that S = $(A + AT) and

R = }(A—AD).

A=S+R

La-AD.

ek
rx % ,"? Qﬁ'ﬁm{l
AT (S + R) 4 :a'.:\.‘u':ms,’ﬂ &

- s’(wu&‘,’: wabt 690 08

":‘z y ?
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Example. 'ﬁw'[ e
: _‘ ‘} nal matrix (venfy)

Theorem 7. i‘f’ Let A oﬂd ‘:3 %e
of the same order. Then

e
(i)A,T is orthogonal sishowy ot 1ads m o
G ABisorthogonal.
Proof. () AT(AT)T A"A {) t"f“’; et
i (smceA is orthogonal)” f'}:‘ "
Slmllarly we can prove (AT)TAT 2 ket

AT is,orthogonal. 41 vise 13t wONE"E

(ii) Immoo T 3 ,
(A‘B)(AB)T=(AB)(B,TA,T) R
»—A(BBT)AT ooy

SATAT (smceB:sormogml)
= AAT

ety

. Similarly (AB)T(AB)=1. .

i 5 “Henc_ev AB is orthogonal.

, é ' | 4R K Aslitad
e ‘ W Deﬁnition.v AsquarematnxAlswdtobcmy

D 40 matn.xlfAA ‘,..A A=l

.} E R Note. Any unitary matnx over 1s an ¢
matm‘ o A olisin Siopd oo S
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r Answers.
2. @F
e T

QT

A, B are skew
_skew symmetric,

- AB is upper triangular.

Ao .“m
AB 14 fower Wangune airiees =

A, B are diagonal matrices
a diagonal matrix. = ABis

A, B are scalar matri
0 .m
scalar matrix. PR AR

Conjugate of a s i
ymmetric i% i
symmetric. matrix is

Conj.ug.ate of a skew symmetric
matrix is skew symmetric.

Conju.gate of a Hermitian matrix is
Hermitian.

Conjugate of a skew Hermitian
matrix is skew Hermitian.

[.\ny real symmetric matrix is Hermi-
tian.

{c) T

(& T
k)T

d T
(h) T

(b) F
M T
G T

‘, 73. The Inverse of a Matrix

a

A2 x 2 matrix A = [ Z] has an inverse iff

C

| JA| = ad — bc # 0 and the inverse of A is given

| 1 [d —b
by |A] [ e @ ]
singular. In this section we sh

of finding the inverse of any non-singu
order n.

Determinants. We can associate with any X1 matrix

~ Such matrices are called non-

all describe the method
lar matrix of

A= (a;;) overa field F an element of F given by the
™ 0127, ey ain
’ @ . 022 o0t - An
. i ‘,;’ ! ina,nt ? s p ’ .
L R Ann

its vhiue . | |
3 ﬂ»f""""“""“""“'
Fot example,
W 1fA -‘: 5] Son bl mad = by,
0
.‘ e
|
0

1 =}
1

Definition. A square matrix A is said to be singular
if |A| = 0. '
A is called a non-singular matrix if |A| # 0.

i3
) IfA=|0 2
) S

IAl =

—_— O =
NN -

Remark. The rule for multiplying two matrices is
same as the rule for multiplying two determinants.

Hence if A and B are two n x n matrices
|AB| = |Al|BI.
Theorem 7.19. The product of any two non-singular

matrices is non-singular.

Proof. Let A and B be two non-singular matrices of
the same order. Then |A| # 0 and | B| # 0. |

|AB| = |A||B| #0.

Hence A B is non-singular.

Note. Sum of two non-singular matrices need not be
non-singular. For, if A is any non-singular matrix then
—A is also a non-singular matrix and A + (—A) is the
zero matrix which is obviously a singular matrix

Definition. Let A = (a;j) beann X matrix. If we

delete the row and the column containing the element

ajj we obtain a square matrix of order n — 1 and the
determinant of this square matrix is called the miner
of the element a;; and is denoted by M;;.

The minor M;; multiplied by (—D)* s called the
cofactor of the element a;; and is denoted by Aij-

Ajj = (=D Mij.




~ Example. Let A = ol . 'mﬁ ‘ Mﬂm“’“’e matrices A and ¢
ay Ay’ A fate adj Ay ADET U AY
Corresponding to the 9 elements aj, we get 9 5, Prove that adj A gy
minors of A. For example, the minor of a1y i 3 IfA i symrmetric prove lj A is $YMime,
M 'u"" 23, e mindr of aas 18 i
"Zlan anl® Ty T heorem 7.20. Let A b‘;"} ’g“?':‘ ’m ;"hgo'f"ﬁ 1
PR Al n. Then (adj A)A ’dA(“ Ll cliomd @
5y = s identity matrix of order n. '
: : . th glement of (A(adj A)) ¢
The cofactor of @y is Ay = (=1)2M1 = M. proof. The (i, J) e’l p
The cofactor of as is Azy = (=1)2+3 M2 = ainAjk (
4 0 if i#J
Definition. Let A = (a;;) be a square matrix. Let = [/ Py
* A;; denote the co-factor of a;;. The transpose of the ‘
matrix (A;;) is called the adjoint or adjugate of the |A| () LLis 0
matrix A and is denoted by adj A. ol AT . .o 0
Thus the (i, j)th entry of adj A is Ajji- 11 2 A Gy ..... .. |
Note. If A is a square matrix of order n then adj A : e : 1
is also a square matrix of order n. 0 o T Al
| PR — |All
Example. LetA=]|3 1 -l
S R Similarly, (adj A)A = |All.
== di A)A = A(adj A) = |All.
Bk gy ,i 31‘ ai 8¢ Hence (adj A) (adj A) = |A| |
Note. Suppose |A| # 0. Now, consider the mamx |
3. L.y ;.
o Lt B = — adj A.
A 58S T A adj |
Similarly other co-factors can be calculated and we o™ AR = A [_1_ (adj A)] . :
get |A| %
Al Axn A3 g 28 =2 1 : "
: =—(Aadj A
ade:[A;z o 1 R =7 " 7 7] A A
Ai3 Az A L e | 1
We notice that = m\All
, taefiidiooDirn 2 4 2 =2
AadjiA)=|3 1 -1 i) i oY 7 =1,
SN ety S =0 1) Similarly BA = I. Thus AB = BA = .
[ 14™5y""0 Definiti )
mre | Definition. Let A be a square matrix of order n. A
- is said to be invertible in there exists a square matrit
i Bofordern such that AB = BA = [ and B is called
= (adj A)A. (verify) the inverse of A and is denoted by AL,

oom - © KANMANTD
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716 Modern Algepry

Notation. We gpal employ the followirg notations
for elementary transformations.

(i) lr;temhanke of "™ and j" rows will be denoted

by R,' « R )
(i) Multiplication of i row by a non-zero ele-
ente € F will be denoted by
R;‘ - CR,‘.
(i) Addition of k times the j row to the i row
will be denoted by R; — R; + kR;.

The corresponding column operations will be denoted
by writing C in the place of R.

Definition. An m x n matrix B is said to be row
equivalent (column equivalent) to an m x n matrix A
if B can be obtained from A by a finite succession of
elementary row operations (column operations).

A and B are said to be equivalent if B can be

obtained from A by a finite succession of elementary
row or column operations.

If A and B are equivalent. We write A ~ B.

Exercise. Prove thatrow equivalence, column equiv-
alence and equivalence are equivalence relations in the
set of all m x n matrices.

Definition. A matrix obtained form the identity

matrix by applying a single elementary row or column
-operation is called an elementary matrix.

0 7il00 4 0 0
For example, 1PRR00 (RS ey
0 R |y | 0 0 1

1.0 0

P... 4% 0 are elementary matrices obtained
P 27 1
; B 00

from the identity matrix [ G R

0 0
the elcmcmary operations R| <> R,,

Ry — 4R,, Rz — R34+ 2R, respectively.

Exercise. -
order 4.

] by applying

Give examples of elementary matrices of

~ Theorem 7.23. Any clcmenttry matrix is nop.
singular, L

The determinant of the identity matrixtof :
|, Hence the determinant of an ele

{ by interchanging any two ,Ow;:a“'?l
of an elementary matrix Obtainedh'"
multiplying any row by k # Oisk. 'ggg dc“"'minam
an elementary matrix obtalfled by adding a my| lipeg
one row with another row is 1. Hence any elem%
matrix is non-singular.

Theorem 7.24. Let A be an m X n matrix and o
ann x p matrix. Then every elementary row (Colm
operation of the product AB can be obtained by suf,

jecting the matrix A (matrix B) to the same °'°m6ina,y
row (column) operation.

Proof.

order is
matrix obtained
The determinant

Proof. Let Rj, R, ....-. » Rm denote the rowsg of
the matrix A and Cj, Cz,.-' ----- +Cp ficnote the
columns of B. By the definition of matrix multipf.

cation

( RIC] R|C2 ......

p
RZCI R2C2 ...... RZCP

sapaddl o shnd sw S
RAETIREET RuC,

It is obvious from the above representation of ABtha |
if we apply any elementary row operation on A the |
matrix AB is also subjected to the same clementary =

row operation. Also if we apply any elementary col-
umn operation on B the matrix AB is also subjected
to the same elementary column operation.

Theorem 7.25. Each elementary row operation onan
M X n matrix A is equivalent to pre-multiplying the

matrix A by the corresponding elementary m X it
matrix.

Proof. Since 4 is an m X n matrix we can write

A = 1A where |/ s the identity matrix of ordef
m. R y theorem 7,24 ap elementary row operation A
'S equivalent to the same row operation on /. Butd
elementary row operation on / gives an elementa!}

—Em a wa eA

en

e et =y o a3
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