- 3. Let V be the set of all polynomials in F[x] of degree $\leq n$. Let $S = \{1, x, x^2, \dots, x^n\}$. Then L(S) = V and hence V is finite-dimensional.
- 4. C is a finite-dimensional vector space over R, since $L(\{1, i\}) = \mathbb{C}$.
- 5. In $M_2(\mathbb{R})$ consider the set S consisting of the matrices

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}; B = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix};$$

$$C = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}; D = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}. \text{ Then }$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = aA + bB + cC + dD.$$

Hence $L(S) = M_2(\mathbf{R})$ so that $M_2(\mathbf{R})$ is finite-dimensional.

Note. All the vector spaces we have considered above are finite dimensional. However there are vector spaces which cannot be spanned by a finite number of vectors. For example, consider $\mathbf{R}[x]$. Let S be any finite subset of $\mathbf{R}[x]$. Let f be a polynomial of maximum degree in S. Let deg f = n. Then any element of L(S) is a polynomial of degree $\leq n$ and hence $L(S) \neq \mathbf{R}[x]$ Thus $\mathbf{R}[x]$ is not finite-dimensional.

Throughout the rest of this chapter all the vector spaces we consider are finite dimensional.

Although we have defined what is meant by a finite dimensional space we have not yet defined what is meant by the dimension of a vector space. We now proceed to introduce the concepts necessary to define the dimension of a finite dimensional vector space.

Consider the vectors $e_1 = (1, 0, 0)$.

$$e_2 = (0, 1, 0), e_3 = (0, 0, 1) \text{ in } V_3(\mathbf{R}).$$

Suppose that $\alpha_1 e_1 + \alpha_2 e_2 + \alpha_3 e_3 = 0$.

Then $(\alpha_1, 0, 0) + (0, \alpha_2, 0) + (0, 0, \alpha_3) = (0, 0, 0)$.

$$\alpha_1, \alpha_2, \alpha_3 = (0, 0, 0).$$

 $\alpha_1 = \alpha_2 = \alpha_3 = 0$

(i.e)
$$\alpha_1 e_1 + \alpha_2 e_2 + \alpha_3 e_3 = 0$$
 iff $\alpha_1 = \alpha_2 = \alpha_3 = 0$.

Thus a linear combination of the vectors e_1 , e_2 and e_3 will yield the zero vector iff all the coefficients are zero.

Definition. Let V be a vector space over a field F. A finite set of vectors v_1, v_2, \ldots, v_n in V is said to be *linearly independent* if

$$\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n = 0$$

 $\Rightarrow \alpha_1 = \alpha_2 = \dots = \alpha_n = 0.$

If v_1, v_2, \ldots, v_n are not linearly independent, then they are said to be *linearly dependent*.

Note. If v_1, v_2, \ldots, v_n are linearly dependent, then there exist scalars $\alpha_1, \alpha_2, \ldots, \alpha_n$ not all zero, such that $\alpha_1 v_1 + \ldots + \alpha_n v_n = 0$.

Examples

1. In $V_n(F)$, $\{e_1, e_2, \dots, e_n\}$ is a linearly independent set of vectors, for, $\alpha_1 e_1 + \alpha_2 e_2^* + \dots + \alpha_n e_n = 0$.

$$\Rightarrow \alpha_1(1,0,\ldots,0) + \alpha_2(0,1,\ldots,0)$$

$$+ \dots + \alpha_n(0,0,\dots,1)$$

= $(0,0,\dots,0)$

$$\Rightarrow (\alpha_1 \alpha_2, \dots, \alpha_n) = (0, 0, \dots, 0)$$

\Rightarrow \alpha_1 = \alpha_2 = \dots \dots = \alpha_n = 0.

2. In $V_3(\mathbf{R})$ the vectors (1, 2, 1), (2, 1, 0) and (1, -1, 2) are linearly independent. For, let $\alpha_1(1, 2, 1) + \alpha_2(2, 1, 0) + \alpha_3(1, -1, 2) = (0, 0, 0)$.

$$+\alpha_3(1, -1, 2) = (0, 0, 0).$$

$$\therefore (\alpha_1 + 2\alpha_2 + \alpha_3, 2\alpha_1 + \alpha_2 - \alpha_3, \alpha_1 + 2\alpha_3) = (0, 0, 0).$$

$$\alpha_1 + 2\alpha_2 + \alpha_3 = 0$$
..... (1)

$$2\alpha_1 + \alpha_2 - \alpha_3 = 0 \dots (2)$$

$$\alpha_1 + 2\alpha_3 = 0 \dots \tag{3}$$

Solving quations (1), (2) and (3) we get $\alpha_1 = \alpha_2 = \alpha_3 = 0$.

.. The given vectors are linearly independent.

$$\alpha_1(1, 4, -2) + \alpha_2(-2, 1, 3) + \alpha_3(-4, 11, 5) = (0, 0, 0)$$

$$\therefore \quad \alpha_1 - 2\alpha_2 - 4\alpha_3 = 0 \dots \tag{1}$$

$$4\alpha_1 + \alpha_2 + 11\alpha_3 = 0...$$
 (2)

$$-2\alpha_1 + 3\alpha_2 + 5\alpha_3 = 0 \dots (3)$$

From (1) and (2),

$$\frac{\alpha_1}{-18} = \frac{\alpha_2}{-27} = \frac{\alpha_3}{9} = k \text{ (say)}$$

$$\alpha_1 = -18k, \alpha_2 = -27k, \alpha_3 = 9k.$$

These values of α_1 , α_2 and α_3 , for any k satisfy (3) also.

Taking k = 1 we get

 $\alpha_1 = -18$, $\alpha_2 = -27$, $\alpha_3 = 9$ as a non-trivial solution.

Hence the three vectors are linearly depen-

 Let V be a vector space over a field F. Then any subset S of V containing the zero vector is linearly dependent.

Proof. Let
$$S = \{0, v_1, \ldots, v_n\}$$

Clearly $\alpha 0 + 0v_1 + 0v_2 + \dots + 0v_n = 0$ where α is any element of F. Hence for any $\alpha \neq 0$, we get a non-trivial linear combination of vectors in S giving the zero vector. Hence S is linearly dependent.

Exercises

- Determine whether the following sets of vector are linearly independent or linearly dependent in V₃(R).
 - (a) $\{(1,0,0),(0,1,0),(1,1,0)\}.$
 - (a) {(1,0,0), (6,2,0)} (b) {(1,2,3), (2,3,1)}.
 - (c) $\{(1,2,3), (4,1,5), (-4,6,2)\}.$
 - (d) $\{(0,0,0),(2,5,3),(-1,0,6)\}.$
 - (e) $\{(1,0,0),(1,1,0),(1,1,1),(0,1,0)\}$: *dent set.
- Determine whether the following sets of vectors are linearly independent or not.
 - (a) $\{(1, 1, 0, 0), (0, 0, 1, 1)(1, 0, 0, 4), (0, 0, 0, 2)\}$ in $V_4(\mathbf{R})$.

T. ...

- (b) $\{(2i, 1, 0), (2, -i, 1), (0, 1, +i, -i)\}$ in $V_3(C)$.
- (c) $\{(\pi, 0, 0), (0, e, 0), (0, 0, \sqrt{5})\}\$ in $V_3(\mathbf{R})$.
- (d) $V = \text{the set of all polynomials of degree } \leq n \text{ in } \mathbf{R}[x] \text{ and}$

$$S = \{1, x, x^2, \dots, x^n\}.$$

(e)
$$\left\{ \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 3 & 0 \end{bmatrix} \right\} \text{in}$$
$$M_2(\mathbf{R}).$$

- In V₃(Z₅) determine whether the following sets of vectors are linearly dependent.
 - (a) {(1, 3, 2), (2, 1, 3)}
 - (b) {(1, 1, 2), (2, 1, 0), (0, 4, 1)}.
- 4. In $V_2(\mathbf{R})$ prove that the vectors (a, b) and (c, d) are linearly dependent iff ad bc = 0.
- 5. Let $\{v_1, v_2, v_3\}$ be a linearly independent set of vectors in $V_3(\mathbf{R})$.

Show that

- (a) $\{v_1 + v_2, v_2 + v_3, v_3 + v_1\}$ is linearly independent.
- (b) $\{2v_1 + v_2, v_1 + v_2, v_1 v_3\}$ is linearly independent.
- If the vectors (0, 1, a), (1, a, 1) and (a, 1, 0) of V₃(R) are linearly dependent then find the value of a.

Answers.

- 1. (b) is linearly independent.
- 2. (a), (b), (c), (d) and (e) are linearly independent.
- 3. (a) is linearly independent 6. $a = 0, \pm \sqrt{2}$.

Theorem 5.11. Any subset of a linearly independent set is linearly independent.

Proof. Let V be a vector space over a field F.

Let $S = \{v_1, v_2, \dots, v_n\}$ be a linearly independent set.

Let S' be a subset of S. Without loss of generality we take $S' = \{v_1, v_2, \dots, v_k\}$ where $k \le n$.

Suppose S' is a linearly dependent set. Then there exist $\alpha_1, \alpha_2, \ldots, \alpha_k$ in F not all zero, such that

$$\alpha_1v_1+\alpha_2v_2+\ldots+\alpha_kv_k=\mathbf{0}.$$

Hence $\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_k v_k + 0 v_{k+1} + \dots + 0 v_n = \mathbf{0}$ is a non-trivial linear combination giving the zero vector.

Here S is a linearly dependent set which is a contradiction.

Hence S' is linearly independent.

Theorem 5.12. Any set containing a linearly dependent set is also linearly dependent.

Proof. Let V be a vector space. Let S be a linearly dependent set. Let $S' \supset S$.

If S' is linearly independent S is also linearly independent (by theorem 5.11) which is a contradiction. Hence S' is linearly dependent.

Theorem 5.13. Let $S = \{v_1, v_2, \dots, v_n\}$ be a linearly independent set of vectors in a vector space V over a field F. Then every element of L(S) can be uniquely written in the form

$$\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n$$
, where $\alpha_i \in F$.

Proof. By definition every elements of L(S) is of the form

$$\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n$$
.

Now, let $\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n = \beta_1 v_1 + \beta_2 v_2 + \ldots + \alpha_n v_n$.

Hence
$$(\alpha_i - \beta_1)v_1 + (\alpha_2 - \beta_2)v_2 + ... + (\alpha_n - \beta_n)v_n = 0.$$

Since S is a linearly independent set, $\alpha_i - \beta_i = 0$ for all i.

 $\alpha_i = \beta_i$ for all i. Hence the theorem.

Theorem 5.14. $S = \{v_1, v_2, \dots, v_n\}$ is a linearly dependent set of vectors in V iff there exists a vector $v_k \in S$ such that v_k is a linear combination of the preceding vectors v_1, v_2, \dots, v_{k-1} .

Proof. Suppose v_1, v_2, \ldots, v_n are linearly dependent.

Then there exist $\alpha_1, \alpha_2, \ldots, \alpha_n \in F$, not all zero, such that $\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n = \mathbf{0}$.

Let k be the largest integer for which $\alpha_k \neq 0$.

Then
$$\alpha_1 v_1 + \dots + \alpha_k v_k = \mathbf{0}$$
.

. v_k is a linear combination of the preceding vectors.

Conversely, suppose there exists a vector v_k such that $v_k = \alpha_1 v_1 + \ldots + \alpha_{k-1} v_{k-1}$.

Hence
$$-\alpha_1 v_1 - \ldots - \alpha_{k-1} v_{k-1} + v_k + 0 v_{k+1} + \ldots + 0 v_n = 0$$

Since the coefficient of $v_k = 1$, we have

$$S = \{v_1, \ldots, v_n\}$$
 is linearly dependent.

Example.

In
$$V_3(\mathbb{R})$$
, let $S = \{(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1)\}$
Here $(1, 1, 1) = (1, 0, 0) + (0, 1, 0) + (0, 0, 1)$.

Thus (1, 1, 1) is a linear combination of the preceding vectors. Hence S is a linearly dependent

Theorem 5.15. Let V be a vector space over F. Let $S = \{v_1, v_2, \dots, v_n\}$ and L(S) = W. Then there exists a linearly independent subset S' of S such that L(S') = W.

Proof. Let
$$S = \{v_1, v_2, \dots, v_n\}.$$

If S is linearly independent there is nothing to prove.

If not, let v_k be the first vector in S which is a linear combination of the preceding vectors.

Let
$$S_1 = \{v_1, v_2, \dots, v_{k-1}, v_{k+1}, \dots, v_n\}.$$

(ie) S_1 is obtained by deleting the vector v_k from S.

We claim that
$$L(S_1) = L(S) = W$$

Since $S_1 \subseteq S$, $L(S_1) \subseteq L(S)$. (refer theorem 5.10).

Not, let $v \in L(S)$.

Then
$$v = \alpha_1 v_1 + \ldots + \alpha_k v_k + \ldots + \alpha_n v_n$$
.

Now, v_k is a linear combination of the preceding vectors.

Let
$$v_k = \beta_1 v_1 + \ldots + \beta_{k-1} v_{k-1}$$
.

Hence
$$v = \alpha_1 v_1 + \dots + \alpha_{k-1} v_{k-1} + \alpha_k (\beta_1 v_1 + \dots + \beta_{k-1} v_{k-1}) + \alpha_{k+1} v_{k+1} + \dots + \alpha_n v_n$$
.

v can be expressed as a linear combination of the vectors of S_1 so that $v \in L(S_1)$. Hence $L(S) \subseteq$ $L(S_1)$

Thus
$$L(S) = L(S_1) = W$$
.

Now, if S₁ is linearly independent, the proof is

If not, we continue the above process of removing a vector from S_1 , which is a linear combination of the preceeding vectors until we arrive at a linearly independent subset S' of S such that L(S')=W.

Basis and Dimension

Definition. A linearly independent subset S of a vecor space V which spans the whole space V is called a. basis of the vector space.

Theorem 5.16. Any finite-dimensional vector space V contains a finite number of linearly independent vectors which span V. (ie) A finite dimensional vecor space has a basis consisting of a finite number of vectors.

Proof. Since V is finite dimensional there exists a finite subset S of V such that L(S) = V. By theorem 5.15 this set S contains a linearly independent subset $S' = \{v_1, v_2, \dots, v_n\}$ such that

$$L(S') = L(S) = V.$$

Hence S' is a basis for V.

Theorem 5.17. Let V be a vector space over a field F. Then $S = \{v_1, v_2, \dots, v_n\}$ is a basis for V iff every element of V can be uniquely expressed as a linear combination of element of S.

Proof. Let S be a basis for V.

Then by definition S is linearly independent and L(S) = V. Hence by theorem 5.13 every element of V can be uniquely expressed as a linear combination of elements of S.,

Conversely, suppose every element of V can be unique y expressed as a linear combination of elements of S.

Clearly
$$L(S) = V$$
.

Now, let
$$\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n = 0$$
.

Also,
$$0v_1 + 0v_2 + \ldots + 0v_n = 0$$
.

Thus we have expressed 0 as a linear combination of vectors of S in two ways.

$$\therefore$$
 By hypothesis $\alpha_1 = \alpha_2 = \ldots = \alpha_n = 0$.

Hence S is linearly independent. Hence S is a basis.

Examples

1. $S = \{(1,0,0), (0,1,0), (0,0,1)\}$ is a basis for $V_3(\mathbf{R})$ for, (a, b, c) = a(1, 0, 0) +

$$b(0, 1, 0) + c(0, 0, 1).$$

: Any vector (a, b, c) of $V_3(\mathbf{R})$ has been expressed uniquely as a linear combination of the elements of S and hence S is a basis for

- 2. $S = \{e_1, e_2, \dots, e_n\}$ is a basis for $V_n(F)$. This is known as the standard basis for $V_n(F)$.
- 3. $S = \{(1,0,0), (0,1,0), (1,1,1)\}$ is a basis for $V_3(\mathbf{R})$.

Proof. We shall show that any element (a, b, c) of $V_3(\mathbf{R})$ can be uniquely expressed as a linear combination of the vectors of S.

Let
$$(a, b, c) = \alpha(1, 0, 0) + \beta(0, 1, 0)$$

$$+\gamma(1,1,1)$$

Then $\alpha + \gamma = a$, $\beta + \gamma = b$, $\gamma = c$.

Hence
$$\alpha = a - c$$
 and $\beta = b - c$.

Thus
$$(a, b, c) = (a - c)(1, 0, 0)$$

$$+(b)(0,1,0)+c(1,1,1).$$

- 4. $S = \{1\}$ is a basis for the vector space **R** over
- 5. $S = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$ is a basis for $M_2(\mathbf{R})$, since any matrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ can be uniquely written as

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = a \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + d \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

- 6. $\{1, i\}$ is a basis for the vector space C over R.
- 7. Let V be the set of all polynomials of degree $\leq n$ in $\mathbb{R}[x]$. Then $\{1, x, x^2, \dots, x^n\}$ is a basis for V.
- 8. $\{(1,0), (i,0), (0,1), (0,i)\}$ is a basis, for the vector space $\mathbb{C} \times \mathbb{C}$ over \mathbb{R} , for (a+ib,c+id) = a(1,0) + b(i,0) + c(0,1) + d(0,i).
- 9. $S = \{(1,0,0), (0,1,0), (1,1,1), (1,1,0)\}$ spans the vector space $V_3(\mathbb{R})$ but is not a basis.

Proof. Let $S' = \{(1, 0, 0), (0, 1, 0), (1, 1, 1)\}$ Then $L(S') = V_3(\mathbb{R})$ (refer example 3). Now, since $S \subseteq S'$, we get $L(S) = V_3(\mathbb{R})$. Thus S spans $V_3(\mathbb{R})$. But S is linearly dependent since

(1, 1, 0) = (1, 0, 0) + (0, 1, 0).

Hence S is not a basis.

10. $S = \{(1, 0, 0), (1, 1, 0)\}$ is linearly independent but not a basis of $V_3(\mathbb{R})$.

Proof. Let $\alpha(1, 0, 0) + \beta(1, 1, 0) = (0, 0, 0)$. Then $\alpha + \beta = 0$ and $\beta = 0$.

 $\alpha = \beta = 0$. Hence S is linearly independent.

Also $L(S) = \{(a, b, 0)/a, b \in \mathbb{R}\} \neq V_3(\mathbb{R})$. S is not a basis.

Exercises

- 1. Show that the following three vectors from a basis for $v_3(\mathbf{R})$.
 - (a) (1, 2, -3), (2, 5, 1), (-1, 1, 4)
 - (b) (1, 1, 0), (0, 1, 1), (1, 0, 1)
 - (c) (2, -3, 1), (0, 1, 2), (1, 1, 2).
- 2. Show that the following sets of vectors do not form a basis for $V_3(\mathbf{R})$.
 - (a) $\{(1,0,0),(1,1,0)\}$
 - (b) $\{(1, 2, 1), (1, 3, 5), (-1, 0, 1), (1, -1, 2)\}$

- (c) $\{(0,0,0),(1,0,0),(0,1,0),(0,0)\}$
- (d) $\{(3, 2, 1), (3, 1, 5), (3, 4, -7)\}$
- (e) $\{(1, 2, 3), (2, 3, 4), (3, 4, 5)\}$
- 3. Show that (1, i, 0), (2i, 1, 1), $(0, 1+i, 1-form a basis for <math>V_3(\mathbb{C})$.
- 4. Find a basis for the vector space consisting all matrices of the form

(a)
$$\begin{bmatrix} a & b \\ 0 & d \end{bmatrix}$$
 (b) $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$

5. If $\{v_1, v_2, v_3\}$ is a basis for $V_3(\mathbf{R})$, show that $\{v_1 + v_2, v_2 + v_3, v_3 + v_1\}$ is also a basis. In this true in (a) $V_3(\mathbf{Z}_2)$ (b) $V_3(\mathbf{Z}_3)$?

Answers.

4. (a)
$$\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$
 (b)
$$\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

Theorem 5.18. Let V be a vector space over a field F Let $S = \{v_1, v_2, \dots, v_n\}$ span V. Let

 $S = \{w_1, w_2, \dots, w_m\}$ be a linearly independent set of vectors in V. Then $m \le n$.

Proof. Since L(S) = V, every vector in V and in particular w_1 , is a linear combination of v_1, v_2, \ldots, v_n .

Hence $S_1 = \{w_1, v_1, v_2, \dots, v_n\}$ is a linearly dependent set of vectors. Hence there exists a vector $v_k \neq w_1$ in S_1 which is a linear combination of the preceding vectors.

Let
$$S_2 = \{w_1, v_1, \dots, v_{k-1}, v_{k+1}, \dots, v_n\}$$
.
Clearly, $L(S_2) = V$.

Hence w_2 is a linear combination of the vectors in S_2 .

Hence $S_3 = \{w_2, w_1, v_1, \dots, v_{k-1}, v_{k+1}, \dots, v_n\}$ is linearly dependent. Hence there exists a vector in S_3 which is a linear combination of the preceding vectors. Since the w_i 's are linearly independent, this vector cannot be w_2 or w_1 and hence must be some v_j where $j \neq k$ (say, with j > k). Deletion of v_j from the set S_3 gives the set

0, 0, 1)}

mg of

 $S_4 = \{w_2, w_1, v_1, v_2, \dots, v_{k-1}, v_{k+1}, \dots v_{j-1}, v_{j+1}, \dots, v_n\} \text{ of } n \text{ vectors spanning } V.$

In this process, at each step we insert one vector from $\{w_1, w_2, \dots, w_m\}$ and delete one vector from $\{v_1, v_2, \dots, v_n\}$.

If m > n after repeating this process n times, we arrive at the set $\{w_n, w_{n-1}, \dots, w_1\}$ which spans V.

Hence w_{n+1} is a linear combination of w_1, w_2, \ldots, w_n . Hence $\{w_1, w_2, \ldots, w_n, w_{n+1}, \ldots, w_m\}$ is linearly dependent which is a contradiction.

Hence $m \leq n$.

Theorem 5.19. Any two bases of a finite dimensional vector space V have the same number of elements.

Proof. Since V is finite dimensional, it has a basis say $S = \{v_1, v_2, \dots, v_n\}$.

Let $S' = \{w_1, w_2, \dots w_m\}$ be any other basis for V.

Now, L(S) = V and S' is a set of m linearly independent vectors. Hence by Theorem 5.18, $m \le n$.

Also, since L(S') = V and S is a set of n linearly independent vectors, $n \le m$. Hence m = n.

Definition. Let V be a finite dimensional vector space over a field F. The number of elements in any basis of V is called the *dimension* of V and is denoted by dimV.

Examples

- 1. $dim V_n(\mathbf{R}) = n$, since $\{e_1, e_2, \dots, e_n\}$ is a basis of $V_n(\mathbf{R})$.
- 2. $M_2(\mathbf{R})$ is a vector space of dimension 4 over \mathbf{R} since $\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$ is a basis for $M_2(\mathbf{R})$.
- 3. C is a vector space of dimension 2 over R since $\{1, i\}$ is a basis for C.
- 4. Let V be the set of all polynomials of degree $\le n$ in $\mathbb{R}[x]$. V is a vector space over \mathbb{R} having dimension n+1, since $\{1, x, x^2, \dots, x^n\}$ is a basis for V.

Theorem 5.20. Let V be a vector space of dimension n. Then

- (i) any set of m vectors where m > n is linearly dependent.
- (ii) any set of m vectors where m < n cannot span V.

Proof. (i) Let $S = \{v_1, v_2, \dots, v_n\}$ be a basis for V. Hence L(S) = V.

Let S' be any set consisting of m vectors where m > n. Suppose S' is linearly independent. Since S spans V by Theorem 5.18, $m \le n$ which is a contradiction.

Hence S' is linearly dependent.

(ii) Let S' be a set consisting of m vectors where m < n. Suppose L(S') = V.
Now, S = {v₁, v₂, ..., v_n} is a basis for V and hence linearly independent. Hence by Theorem 5.18 n ≤ m which is a contradiction. Hence S' cannot span V.

Theorem 5.21. Let V be a finite dimensional vector space over a field F. Any linearly independent set of vectors in V is part of a basis.

Proof. Let $S = \{v_1, v_2, \dots, v_r\}$ be a linearly independent set of vectors.

If L(S) = V then S itself is a basis.

If $L(S) \neq V$, choose an element $v_{r+1} \in V - L(S)$.

Now, consider $S_1 = \{v_1, v_2, \dots, v_r, v_{r+1}\}.$

We shall prove that S_1 is linearly independent by showing that no vector in S_1 is a linear combination of the preceeding vectors. (refer theorem 5.14).

Since $\{v_1, v_2, \dots, v_r\}$ is linearly independent, v_i where $1 \le i \le r$ is not a linear combination of the preceeding vectors.

Also $v_{r+1} \notin L(S)$ and hence v_{r+1} is not a linear combination of v_1, v_2, \ldots, v_r .

Hence S₁ is linearly independent.

If $L(S_1) = V$, then S_1 is a basis for V. If not we take an element $v_{r+2} \in V - L(S_1)$ and proceed as before. Since the dimension of V is finite, this process

must stop at a certain stage giving the required basis containing S.

Theorem 5.22. Let V be a finite dimensional vector space over a field F. Let A be a subspace of V. Then there exists a subspace B of V such that $V = A \oplus B$.

Proof. Let $S = \{v_1, v_2, \dots, v_r\}$ be a basis of A.

By theorem 5.21, we can find $w_1, w_2, \ldots, w_s \in V$ such that such that $S' = \{v_1, v_2, \ldots, v_r, w_1, w_2, \ldots, w_s\}$ is a basis of V.

Now, let $B = L(\{w_1, w_2, \dots, w_s\})$

We claim that $A \cap B = \{0\}$ and V = A + B.

Now, let $v \in A \cap B$. Then $v \in A$ and $v \in B$.

Hence
$$v = \alpha_1 v_1 + \dots + \alpha_r v_r$$

= $\beta_1 w_1 + \dots + \beta_s w_s$

$$\therefore \quad \alpha_1 v_1 + \ldots + \alpha_r v_r - \beta_1 w_1 - \ldots - \beta_s w_s = 0.$$

Now, since S' is linearly-independent, $\alpha_i = 0 = \beta_j$ for all i and j.

Hence v = 0. Thus $A \cap B = \{0\}$.

Now, let $v \in V$.

Then $v = (\alpha_1 v_1 + \ldots + \alpha_r v_r)$

$$+(\beta_1w_1+\ldots+\beta_sw_s)\in A+B.$$

Hence A + B = V so that $V = A \oplus B$.

Exercises

1. Let V be a finite-dimensional vector space. Let A and B be subspaces of V such that $V = A \oplus B$. Then show that

 $\dim V = \dim A + \dim B$.

- 2. Construct 3 subspaces W_1 , W_2 , W_3 of a vector space V such that $V = W_1 \oplus W_2 = W_1 \oplus W_3$ but $W_2 \neq W_3$.
- For each of the following subspaces A of V₃(R) find another subspace B such that A ⊕ B = V₃(R)
 - [i] $A = L\{(1, 1, 0), (0, 1, 1)\}.$
 - [ii] $A = L\{(1, 1, 1)\}.$
 - [iii] $A = L(\{e_1, e_2, e_3\}).$

Definition. Let V be a vector space and

 $S = \{v_1, v_2, \dots, v_n\}$ be a set of independent vectors in V. Then S is called a **maximal linear independent set** if for every $v \in V - S$, the $\{v_1, v_1, v_2, \dots, v_n\}$ is linearly dependent.

Definition. Let $S = \{v_1, v_2, \dots, v_n\}$ be a sof vectors in V and let L(S) = V. Then S is called *minimal generating set* if for any $v_i \in S$,

$$L(S - \{v_i\}) \neq V.$$

Theorem 5.23. Let V be a vector space over a field F Let $S = \{v_1, v_2, \dots, v_n\} \subseteq V$. Then the following are equivalent.

- (i) S is a basis for V.
- (ii) S is a maximal linearly independent set.
- (iii) S is a minimal generating set.

Proof. (i) \Rightarrow (ii) Let $S = \{v_1, v_2, \dots, v_n\}$ be a basis for V. Then by theorem 5.20 any n + 1 vectors in V are linearly dependent and hence S is a maximal linearly independent set.

(ii) \Rightarrow (i) Let $S = \{v_1, v_2, \dots, v_n\}$ be a maximal linearly independent set. Now to prove that S is a basis for V we shall show that L(S) = V.

Obviously $L(S) \subseteq V$.

Now, let $v \in V$.

If $v \in S$, then $v \in L(S)$. (since $S \subseteq L(S)$)

If $v \notin S$, $S' = \{v_1, v_2, \dots, v_n, v\}$ is a linearly dependent set (since S is a maximal linearly independent set)

 \therefore There exists a vector in S' which is a linear combination of the preceding vectors.

Since v_1, v_2, \ldots, v_n are linearly independent, this vector must be v. Thus v is a linear combination of v_1, v_2, \ldots, v_n . Therefore $v \in L(S)$.

Hence $V \subseteq L(S)$. Thus V = L(S).

(i) \Rightarrow (iii) Let $S = \{v_1, v_2, \dots, v_n\}$ be a basis. Then L(S) = V.

If S is not minimal, there exists $v_i \in S$ such that $L(S - \{v_i\}) = V$.

Since S is linearly independent, $S - \{v_i\}$ is also rearly independent. Thus $S - \{v_i\}$ is a basis consisting n - 1 elements which is a contradiction.

Hence S is a minimal generating set.

(iii) \Rightarrow (i) Let $S = \{v_1, v_2, \dots, v_n\}$ be a minimal generating set. To prove that S is a basis, we have show that S is linearly independent.

If S is linearly dependent, there exists a vector which is a linear combination of the preceeding ectors.

Clearly $L(S - \{v_k\}) = V$ contradicting the minimisty of S.

Thus S is linearly independent and since

L(S) = V, S is a basis for V.

Theorem 5.24. Any vector space of dimension n over field F is isomorphic to $V_n(F)$.

Proof. Let V be a vector space of dimension n. Let v_1, v_2, \ldots, v_n be a basis for V.

Then we know that if $v \in V$, v can be written miquely as $v = \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n$, where $v \in F$.

Now, consider the map $f: V \to V_n(F)$ given by

$$f(\alpha_1v_1+\ldots+\alpha_nv_n)=(\alpha_1,\alpha_2,\ldots,\alpha_n).$$

Clearly f is 1-1 and onto.

Let $v, w \in V$.

Then $v = \alpha_1 v_1 + \ldots + \alpha_n v_n$ and

$$w = \beta_1 v_1 + \ldots + \beta_n v_n.$$

 $f(v+w) = f[(\alpha_1 + \beta_1)v_1 + \ldots + (\alpha_n + \beta_n)v_n]$ = $((\alpha_1 + \beta_1), (\alpha_2 + \beta_2), \ldots, (\alpha_n + \beta_n))$

$$= (\alpha_1, \alpha_2, \ldots, \alpha_n) + (\beta_1, \beta_2, \ldots, \beta_n)$$

$$= f(v) + f(w).$$

Also
$$f(\alpha v) = f(\alpha \alpha_1 v_1 + ... + \alpha \alpha_n v_n)$$

= $(\alpha \alpha_1, \alpha \alpha_2, ..., \alpha \alpha_n)$

$$=\alpha(\alpha_1,\alpha_2,\ldots,\alpha_n)$$

$$= \alpha f(v).$$

Hence f is an isomorphism of V to $V_n(F)$.

Corollary. Any two vector spaces of the same dimension over a field F are isomorphic, for, if the vector spaces are of dimension n, each is isomorphic to $V_n(F)$ and hence they are isomorphic.

Theorem 5.25. Let V and W be vector spaces over a field F. Let $T: V \to W$ be an isomorphism. Then T maps a basis of V onto a basis of W.

Proof. Let $\{v_1, v_2, \ldots, v_n\}$ be a basis for V.

We shall prove that $T(v_1), T(v_2), \ldots, T(v_n)$ are linearly independent and that they span W.

Now,
$$\alpha_1 T(v_1) + \alpha_2 T(v_2) + \ldots + \alpha_n T(v_n) = \mathbf{0}$$
.

$$\Rightarrow T(\alpha_1 v_1) + T(\alpha_2 v_2) + \ldots + T(\alpha_n v_n) = \mathbf{0}.$$

$$\Rightarrow T(\alpha_1v_1 + \alpha_2v_2 + \ldots + \alpha_nv_n) = 0.$$

$$\Rightarrow \alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n = 0$$
 (since T is 1-1)

$$\Rightarrow \alpha_1 = \alpha_2 = \ldots = \alpha_n = 0$$

(since v_1, v_2, \ldots, v_n are linearly independent).

 $T(v_1), T(v_2), \ldots, T(v_n)$ are linearly independent.

Now, let $w \in W$. Then since T is onto, there exists a vector $v \in v$ such that T(v) = w

Let
$$v = \alpha_1 v_1 + \ldots + \alpha_n v_n$$
.

Then
$$w = T(v)$$

$$= T(\alpha_1 v_1 + \dots + \alpha_n v_n).$$

$$= \alpha_1 T(v_1) + \dots + \alpha_n T(v_n).$$

Thus w is a linear combination of the vectors

$$T(v_1),\ldots,T(v_n).$$

 $T(v_1), \ldots, T(v_n)$ span W and hence is a basis for W.

Corollary. Two finite dimensional vector spaces V and W over a field F are isomorphic iff they have the same dimension.

Theorem 5.26. Let V and W be finite dimensional vector spaces over a field F. Let $\{v_1, v_2, \ldots, v_n\}$ be a basis for V and let w_1, w_2, \ldots, w_n be any n vectors in W (not necessarily distinct) Then there exists a unique linear transformation $T: V \to W$ such that $T(v_i) = w_i, i = 1, 2, \ldots, n$.

P of. Let
$$v = \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n \in V$$
.
We define $T(v) = \alpha_1 w_1 + \alpha_2 w_2 + \dots + \alpha_n w_n$.
Now, let $x, y \in V$.

Let
$$x = \alpha_1 v_1 + \ldots + \alpha_n v_n$$
 and $y = \beta_1 v_1 + \ldots + \beta_n v_n$.

$$x + y = (\alpha_1 + \beta_1)v_1 + \dots + (\alpha_n + \beta_n)v_n.$$

$$\therefore \mathbf{7}(x + y) = (\alpha_1 + \beta_1)w_1 + \dots + (\alpha_n + \beta_n)w_n$$

$$= (\alpha_1 w_1 + \dots + \alpha_n w_n) +$$

$$(\beta_1 w_1 + \ldots + \beta_n w_n)$$

= $T(x) + T(y)$.

Similarly $T(\alpha x) = \alpha T(x)$.

Hence T is a linear transformation.

Also
$$v_1 = 1v_1 + 0v_2 + \ldots + 0v_n$$
.

Hence
$$T(v_1) = 1w_1 + 0w_2 + 0w_n = w_1$$
.

Similarly
$$T(v_i) = w_i$$
 for all $i = 1, 2, \ldots, n$

Now, to prove the uniqueness, let $T': V \to W$ be any other linear transformation such that $T'(v_i) = w_i$.

Let
$$v = \alpha_1 v_1 + \ldots + \alpha_n v_n \in V$$

 $T'(v) = \alpha_1 T'(v_1) + \ldots + \alpha_n T'(v_n)$
 $= \alpha_1 w_1 + \ldots + \alpha_n w_n = T(v).$

Hence T = T'.

Remark. The above theorem shows that a linear transformation is completely determined by its values on the elements of a basis.

Theorem 5.27. Let V be a finite dimensional vector space over a field F. Let W be a subspace of V. Then

(i)
$$\dim W \leq \dim V$$
.

(ii)
$$\dim \frac{V}{W} = \dim V - \dim W$$
.

Proof.

(i) Let S = {w₁, w₂, ..., w_m} be a basis for W. Since W is a subspace of V, S is a part of a basis for V.
 Hence dim W ≤ dim V.

(ii) Let $\dim V = n$ and $\dim W = m$.

Let $S = \{w_1, w_2, \dots, w_m\}$ be a basis for W Clearly S is a linearly independent set vectors in V.

Hence S is a part of a basis in V. Let $\{w_1, w_2, \dots w_m, v_1, v_2, \dots, v_r\}$ be a basis for V. Then m+r=n.

Now, we claim $S' = \{W + v_1, W + v_2, \dots, W + v_m\}$ is a basis for $\frac{V}{W}$.

$$\alpha_1(W + v_1) + \alpha_2(W + v_2) + \dots + \alpha_r(W + v_r) = W + \mathbb{I}$$

$$\Rightarrow (W + \alpha_1 v_1) + (W + \alpha_2 v_2) + \dots + (W + \alpha_r v_r) = \mathbb{I}$$

$$\Rightarrow W + \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_r v_r = W$$

 $\Rightarrow \alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_r v_r \in W.$ Now, since $\{w_1, w_2, \ldots, w_n\}$ is a basis for W

$$\alpha_1 v_1 + \ldots + \alpha_r v_r = \beta_1 w_1 + \ldots + \beta_m w_m.$$

$$\alpha_1 v_1 + \ldots + \alpha_r v_r - \beta_1 w_1 - \ldots - \beta_m w_m = 0$$

$$\alpha_1 = \alpha_2 = \alpha_r = \beta_1 = \beta_2 = \ldots = \beta_m = 0$$

.. S' is a linearly independent set.

Now, let
$$W + v \in \frac{V}{W}$$
.

Let
$$v = \alpha_1 v_1 + \ldots + \alpha_r v_r + \beta_1 w_1 + \ldots + \beta_m w_m$$

Then
$$W + v = W + (\alpha_1 v_1 + \ldots + \alpha_r v_r)$$

$$+\beta_1 w_1 + \ldots + \beta_m w_m)$$

$$= W + (\alpha_1 v_1 + \ldots + \alpha_r v_r)$$

(since
$$\beta_1 w_1 + \ldots + \beta_m w_m \in \mathbb{F}$$
)
$$= (W + \alpha_1 v_1) + \ldots + (W + \alpha_r v_r)$$

$$=\alpha_1(W+v_1)+\ldots+\alpha_r(W+v_r).$$

Hence S' spans $\frac{V}{W}$ so that S' is a basis for $\frac{V}{W}$.

$$\therefore \quad dim \frac{V}{W} = r = n - m$$

$$= dim V - dim W.$$

Theorem 5.28. Let V be a finite-dimensional vector space over a field F. Let A and B be subspaces of V.

Then $dim(A + B) = dim A + dim B - dim(A \cap B)$

Proof. A and B are subspaces of V. Hence $A \cap B$ is subspace of V.

Let $dim(A \cap B) = r$.

Let $S = \{v_1, v_2, \dots, v_r\}$ be a basis for $A \cap B$

Since $A \cap B$ is a subspace of A and B, S is a part of a basis for A and B.

Let $\{v_1, v_2, \dots, v_r, u_1, u_2, \dots u_s\}$ be a basis for A and $\{v_1, v_2, \dots, v_r, w_1, w_2, \dots, w_t\}$ be a basis for B.

We shall prove that $S' = \{v_1, \dots v_r, u_1, \dots, u_s, w_1, \dots, w_t\}$ is a basis for A + B.

Let $\alpha_1 v_1 + \ldots + \alpha_r v_r + \beta_1 u_1 + \ldots + \beta_s u_s + \gamma_1 w_1 + \ldots + \gamma_t v_t = \mathbf{0}$.

Then $\beta_1 u_1 + \ldots + \beta_s u_s = -(\gamma_1 w_1 + \ldots + \gamma_t w_t)$ $-(\alpha_1 v_1 + \ldots + \alpha_r v_r) \in B$

Hence $\beta_1 u_1 + \ldots + \beta_s u_s \in B$.

Also $\beta_1 u_1 + \ldots + \beta_s u_s \in A$.

Hence $\beta_1 u_1 + \ldots + \beta_s u_s \in A \cap B$.

 $\beta_1 u_1 + \ldots + \beta_s u_s = \delta_1 v_1 + \ldots + \delta_r v_r.$

 $\beta_1 u_1 + \ldots + \beta_s u_s - \delta_1 v_1 - \ldots - \delta_r v_r = 0.$

 $\beta_1 = \ldots = \beta_s = \delta_1 = \ldots = \delta_r = 0$

(since $\{u_1, \ldots, u_s, v_1, \ldots, v_r\}$ is linearly independent)

Similarly we can prove $\gamma_1 = \gamma_2 = \dots = \gamma_t = 0$.

 $\therefore \quad \alpha_i = \beta_j = \gamma_k = 0 \text{ for } 1 \le i \le r,$

 $1 \le j \le s$; 1 < k < t

Thus S' is a linearly independent set.

Clearly S' spans A + B.

S' is a basis for A + B.

Hence dim(A + B) = r + s + t.

Also $\dim A = r + s$; $\dim B = r + t$ and $\dim (A \cap B) = r$.

$$\dim A + \dim B - \dim A \cap B = (r+s) + (r+t) - r$$

$$= r + s + t$$

$$= \dim (A + B).$$

Aliter. By theorem 5.7, $\frac{A+B}{A} = \frac{B}{A \cap B}$. Hence $dim \left[\frac{A+B}{A} \right] = dim \left[\frac{B}{A \cap B} \right]$.

 $\therefore \dim(A+B) - \dim A = \dim B - \dim(A \cap B).$

$$\therefore \dim(A+B) = \dim A + \dim B - \dim(A \cap B).$$

Corollary. If $V = A \oplus B$, $\dim V = \dim A + \dim B$.

Proof. $V = A \oplus B \Rightarrow A + B = V \text{ and } A \cap B = \{0\}$ $\therefore \dim(A \cap B) = 0.$

Hence $\dim V = \dim A + \dim B$.

Exercises

- 1. Find the dimension of the subspace spanned by the following vectors in $V_3(\mathbf{R})$.
 - (a) (1, 1, 1), (-1, -1, -1).
 - (b) (1,0,2), (2,0,1), (1,0,1)
 - (c) (1, 2, -3), (0, 0, 1), (-1, 2, 1).
 - (d) (1, 1, 2), (-1, 1, 0).
- 2. Find the dimension of the subspace spanned by the following vectors in $V_4(\mathbf{R})$
 - (a) e_1, e_2, e_3, e_4
 - (b) e1, e2
 - (c) e1; e2, e3
 - (d) e₁
- 3. In $V_3(\mathbf{R})$, find dim(A + B) and $dim(A \cap B)$ where
- (a) A is the subspace spanned by (1, 1, 1) and B is the subspace spanned by (-1, -1, -1)
- (b) A is the subspace spanned by (1, 1, 1) and B is the subspace spanned by (1, 2, 1).

- (c) A is the subspace spanned by (1, 1, 1) and (1, 2, 1) and B is the subspace spanned by (0, 0, 1).
- (d) A is the subspace spanned by (1, 1, 1) and (1, 2, 1) and B is the subspace spanned by (1, -1, 1) and (-1, 1, -1)
- 4. Let V_1 and V_2 be subspaces of V such that $V_1 \cap V_2$ is the zero space. Prove that $\dim V_1 + \dim V_2 \leq \dim V$.
- 5. Let V_1 and V_2 be subspaces of V such that every vector $v \in V$ can be represented as $v = v_1 + v_2$ where $v_1 \in V_1$ and $v_2 \in V_2$. Prove that $\dim V_1 + \dim V_2 \ge \dim V$.
- 6. If A and B are finite dimensional subspaces of V such that $A \subseteq B$ and $\dim A = \dim B$ then show that A = B.
- 7. Let S be a subspace of a finite-dimensional vector space V. If $\dim V = \dim S$ then prove that S = V.
- Let W₁ and W₂ be two subspaces of a finite-dimensional vector space V.
 If dimV = dim W₁ + dim W₂ and W₁ ∩ W₂ = {0} prove that, V = W₁ ⊕ W₂.

Answers.

5.7. Rank and Nullity

Definition. Let $T: V \to W$ be a linear transformation. Then the dimension of T(V) is called the *rank* of T. The dimension of $\ker T$ is called the *nullity* of T.

Theorem 5.29. Let $T: V \to W$ be a linear transformation. Then $\dim V = \operatorname{rank} T + \operatorname{nullity} T$.

Proof. We know that $V/\ker T = T(V)$.

$$\therefore \dim V - \dim(\ker T) = \dim(T(V))$$

$$\therefore \quad \dim V - nullity T = rank T$$

$$\therefore \quad \dim V = nullity T + rank T$$

Note. ker T is also called null space of T.

Example. Let V denote the set of all polynomial of $degree \le n$ in $\mathbb{R}[x]$. Let $T:V\to V$ be define by $T(f)=\frac{df}{dx}$. We know that T is a linear transformation. Since $\frac{df}{dx}=0 \Leftrightarrow f$ is constant, ker consists of all constant polynomials. The dimension of this subspace of V is 1. Hence $nullity\ T$ is 1. Since $dim\ V=n+1$, $rank\ T=n$

Exercises

- 1. Find the *rank* and *nullity* of the linear transformations given in section 5.3.
- 2. Let V be a finite-dimensional vector space over a field F. Let $T: V \to V$ be a linear transformation such that rank T = nullityT. Show that dim V is even. Give an example of such a transformation.

Answers.

- 1. 1. nullity T = dim V; rank T = 0.
 - 2. nullity T = 0; rank T = dim V:
 - 3. nullity T = dim W;rank T = dim V - dim W.
 - 4. nullity T = 2; rank T = 1;
 - 5. nullity T = 1; rank T = n.
 - 6. nullity T = 0; rank T = n + 1.

Definition. A linear transformation $T: V \to W$ is called *non-singular* if T is 1-1; otherwise T is called *singular*.

Exercises

- 1. Let V and W be finite dimensional vector spaces over a field F and $\dim V > \dim W$. Then show that any linear transformation $T: V \to W$ is singular.
- 2. Let V be a finite-dimensional vector space over a field F. Then any non-singular linear transformation $T: V \to V$ is onto.
- 3. Let $T: V \to W$ be a linear transformation. Show that T is a non-singular iff

rank T = dim V.

- 4. Let $T_1: V \to V$ and $T_2: V \to V$ be linear transformations. Prove that
 - (a) $rank(T_2T_1) \leq rankT_2$.
 - (b) nullity $(T_2T_1) \ge nullity T_1$.
 - (c) $rank(T_2T_1) = rank T_2 \text{ iff } T_1 \text{ is non-singular.}$
- 5. Let $T: V \to W$ be a linear transformation which is both 1-1 and onto. Show that $T^{-1}: W \to V$ is a linear transformation.
- Determine which of the following statements are true and which are false.
 - (a) If $T: V \to W$ is a linear transformation then
 - (i) $rank T \leq dim V$
 - (ii) nullity $T \leq \dim V$.
 - (iii) $rank T \leq dim W$.
 - (iv) If T is onto rank $T = \dim W$.
 - (v) If T is non-singular rank T = dim V
 - (vi) $rank T = dim V \Rightarrow$ nullity T = 0.
 - (b) Every linear transformation. $T: V_4(\mathbf{R}) \to V_3(\mathbf{R})$ is singular.
 - (c) If $T: V \to W$ is non-singular and $\{v_1, \ldots, v_n\}$ is a basis then $\{T(v_1), \ldots, T(v_n)\}$ is a basis for W.

Answers.

5.8. Matrix of a Linear Transformation

Let V and W be finite dimensional vector spaces over a field F. Let $\dim V = m$ and $\dim W = n$. Fix an ordered basis $\{v_1, v_2, \ldots, v_m\}$ for V and an ordered basis $\{w_1, w_2, \ldots, w_n\}$ for W.

Let $T:V\to W$ be a linear transformation. We have seen that T is completely specified by the elements $T(v_1), T(v_2), \ldots, T(v_m)$. Now, let

$$T(v_1) = a_{11}w_1 + a_{12}w_2 + \dots + a_{1n}w_n$$

$$T(v_2) = a_{21}w_1 + a_{22}w_2 + \dots + a_{2n}w_n$$

$$\dots$$

$$T(v_m) = a_{m1}w_1 + a_{m2}w_2 + \dots + a_{mn}w_n$$
(1)

Hence $T(v_1), T(v_2), \ldots, T(v_m)$ are completely specified by the mn elements a_{ij} of the field F. These a_{ij} can be conveniegly arranged in the form of m rows and n columns as $p(x_i)$ $p(x_i)$

$$\begin{cases}
a_{11} & a_{12} & \dots & a_{1n} \\
a_{21} & a_{22} & \dots & a_{2n} \\
\dots & \dots & \dots & \dots \\
a_{m1} & a_{m2} & \dots & a_{mn}
\end{cases}$$

Such an array of mn elements of F arranged in m rows and n columns is known as $m \times n$ matrix over the field F and is denoted by (a_{ij}) . Thus to every linear transformation T there is associated with it an $m \times n$ matrix over F. Conversely any $m \times n$ matrix over F defines a linear transformation $T: V \to W$ given by the formula (1).

Note. The $m \times n$ matrix which we have associated with a linear transformation $T: V \to W$ depends on the choice of the basis for V and W.

For example, consider the linear transformation $T: V_2(\mathbf{R}) \to V_2(\mathbf{R})$ given by T(a, b) = (a, a + b). Choose $\{e_1, e_2\}$ as a basis both for the domain and the range.

Then
$$T(e_1) = (1, 1) = e_1 + e_2$$

 $T(e_2) = (0, 1) = e_2$.

Hence the matrix representing T is $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$

Now, we choose $\{e_1, e_2\}$ as a basis for the domain and $\{(1, 1), (1, -1)\}$ as a basis for the range.

Let
$$w_1 = (1, 1)$$
 and $w_2 = (1, -1)$.

Then
$$T(e_1) = (1, 1) = w_1$$
,

and
$$T(e_2) = (0, 1) = (1/2)w_1 - (1/2)w_2$$
.

Hence the matrix representing T is $\begin{bmatrix} 1 & 0 \\ 1/2 & -1/2 \end{bmatrix}$

Solved problems

Problem 1. Obtain the matrix representing the linear transformation $T: V_3(\mathbf{R}) \to V_3(\mathbf{R})$ given by T(a,b,c) = (3a,a-b,2a+b+c) w.r.t. the standard basis $\{e_1,e_2,e_3\}$.

Solution.

$$T(e_1) = T(1, 0, 0) = (3, 1, 2) = 3e_1 + e_2 + 2e_3$$

 $T(e_2) = T(0, 1, 0) = (0, -1, 1) = -e_2 + e_3$
 $T(e_3) = T(0, 0, 1) = (0, 0, 1) = e_3$

Thus the matrix representing T is $\begin{bmatrix} 3 & 1 & 2 \\ 0 & -1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$

Problem 2. Find the linear transformation

 $T: V_3(\mathbf{R}) \to V_3(\mathbf{R})$ determined by the matrix $\begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ -1 & 3 & 4 \end{bmatrix}$ w.r.t. the standard basis $\{e_1, e_2, e_3\}$.

Solution.

$$T(e_1) = e_1 + 2e_2 + e_3 = (1, 2, 1).$$

 $T(e_2) = 0e_1 + e_2 + e_3 = (0, 1, 1)$
 $T(e_3) = -e_1 + 3e_2 + 4e_3 = (-1, 3, 4).$

Now, (a, b, c) = a(1, 0, 0) + b(0, 1, 0) + c(0, 0, 1)

$$= ae_1 + be_2 + ce_3.$$

$$T(a, b, c) = T(ae_1 + be_2 + ce_3)$$

$$= aT(e_1) + bT(e_2) + cT(e_3)$$

$$= a(1, 2, 1) + b(0, 1, 1) + c(-1, 3, 4).$$

T(a, b, c) = (a - c, 2a + b + 3c, a + b + 4c)This is the required linear transformation.

Exercises

- 1. Obtain the matrices for the following linear transformations.
 - (a) $T: V_2(\mathbf{R}) \rightarrow V_2(\mathbf{R})$ given by T(a, b) = (-b, a) w.r.t.

- (i) standard basis
- (ii) the basis $\{(1,2), (1,-1)\}$ for both domain and range.
- (b) $T: V_3(\mathbf{R}) \rightarrow V_2(\mathbf{R})$ given by T(a, b, c) = (a + b, 2c a) w.r.t.
 - (i) standard basis
 - (ii) $\{(1, 0, -1), (1, 1, 1), (1, 0, 0)\}$ as a basis for $V_3(\mathbf{R})$ and $\{(0, 1), (1, 0)\}$ for $V_2(\mathbf{R})$.
- (c) $T: V_3(\mathbf{R}) \to V_3(\mathbf{R})$ given by T(a, b, c) = (3a + c, -2a + b, a + 2b + 4c) w.r.t.
 - (i) the standard basis
 - (ii) the basis $\{(1, 0, 1), (-1, 2, 1), (2, 1, 1)\}$ for both domain and range.
- (d) Let V be the set of all polynomials of $degree \le n$ in $\mathbb{R}[x]$.

$$T: V \to V$$
 defined by $T(f) = \frac{df}{dx}$
w.r.t. the basis $\{1, x, x^2, \dots, x^n\}$.

- 2. Obtain the linear transformation determined by the following matrices
 - (a) $T: V_2(\mathbf{R}) \to V_2(\mathbf{R})$ given by $\left(\begin{array}{cc} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{array} \right) \text{ w.r.t. the standard basis.}$
 - (b) $T: V_3(\mathbf{R}) \to V_3(\mathbf{R})$ given by $\begin{pmatrix} a & b & c \\ b & c & a \\ c & a & b \end{pmatrix}$ w.r.t. the standard basis.
 - (c) $T: V_2(\mathbf{R}) \rightarrow V_3(\mathbf{R})$ given by $\begin{bmatrix} 2 & 1 & -1 \\ 1 & 1 & -1 \end{bmatrix}$ w.r.t. the standard

Answers.

1. (a) (i)
$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 (ii)
$$\begin{bmatrix} -1/3 & -5/3 \\ 2/3 & 1/3 \end{bmatrix}$$
 (b) (i)
$$\begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 2 \end{bmatrix}$$
 (ii)
$$\begin{bmatrix} -3 & 1 \\ 1 & 2 \\ -1 & 1 \end{bmatrix}$$
 (c) (i)
$$\begin{bmatrix} 3 & 2 & -1 \\ 0 & 1 & 2 \\ 1 & 0 & 4 \end{bmatrix}$$
 (ii)
$$\begin{bmatrix} 17/4 & -3/4 & -1/2 \\ 35/4 & 15/4 & -7/2 \\ 17/2 & -3/2 & 0 \end{bmatrix}$$
 (d)
$$\begin{bmatrix} 0 & 0 & 0 & \cdots & 0 & 0 \\ 1 & 0 & 0 & \cdots & \cdots & 0 & 0 \\ 0 & 2 & 0 & \cdots & \cdots & 0 & 0 \\ 0 & 2 & 0 & \cdots & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \cdots & \cdots & \vdots \\ 0 & 0 & 0 & \cdots & \cdots & \cdots & \vdots \\ 0 & 0 & 0 & \cdots & \cdots & \cdots & \vdots \\ 0 & 0 & 0 & \cdots & \cdots & \cdots & \vdots \\ 0 & 0 & 0 & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & \cdots & \cdots \\ 0 & 0$$

2. (a)
$$T(a,b) = (a\cos\theta + b\sin\theta, -a\sin\theta + b\cos\theta)$$

(b)
$$T(x, y, x) = (ax + by + cz, bx + cy + az, cx + ay + bz)$$

(c)
$$T(a,b) = (2a+b, a+b, -a-b)$$
.

Definition. Let $A = (a_{ij})$ and $B = (b_{ij})$ be two

 $m \times n$ matrices. We define the *sum* of these two matrices by $A + b = (a_{ij} + b_{ij})$.

Note that we have defined addition only for two matrices having the same number of rows and the same number of columns.

Definition. Let $A = (a_{ij})$ be an arbitrary matrix over a field F. Let $\alpha \in F$. We define $\alpha A = (\alpha a_{ij})$.

Theorem 5.30. The set $M_{m \times n}(F)$ of all $m \times n$ matrices over the field F is a vector space of dimension mn over F under matrix addition and scalar multiplication defined above.

Proof. Let $A = (a_{ij})$ and $B = (b_{ij})$ be two $m \times n$ matrices over the field F. The addition of $m \times n$ matrices is a binary operation which is both commutative and associative. The $m \times n$ matrix whose entries are 0 is the *identity matrix* and $(-a_{ij})$ is the *inverse matrix* of (a_{ij}) . Thus the set of all $m \times n$ matrices over the field F is an *abelian group* with respect to addition. The verification of the following axioms are straight forward.

(a)
$$\alpha(A+B) = \alpha A + \alpha B$$

(b)
$$(\alpha + \beta)A = \alpha A + \beta A$$

(c)
$$(\alpha\beta)A = \alpha(\beta A)$$

(d)
$$1A = A$$
.

Hence the set of all $m \times n$ over F is a vector space over F

Now, we shall prove that the dimension of this vector space is mn. Let E_{ij} be the matrix with entry 1 in the $(i, j)^{th}$ place and 0 in the other places. We have mn matrices of this form. Also any matrix $A = (a_{ij})$ can be written as $A = \sum a_{ij} E_{ij}$. Hence A is a linear combiation of the matrices E_{ij} . Further these mn matrices E_{ij} are linearly independent. Hence these mn matrices form a basis for the space of all $m \times n$ matrices. Therefore the dimension of the vector space is mn.

Theorem 5.31. Let V and W be two finite dimensional vector spaces over a field F. Let $\dim V = m$ and $\dim W = n$. Then L(V, W) is a vector space of dimension mp over F.

Proof. By theorem 5.8, L(V, W) is a vector space over F. Now, we shall prove that the vector space L(V, W) is isomorphic to the vector space $M_{m \times n}(F)$. Since $M_{m \times n}(F)$ is of dimension mn, it follows that L(V, W) is also of dimension mn.

Fix a basis $\{v_1, v_2, \dots, v_m\}$ for V and a basis $\{w_1, w_2, \dots, w_n\}$ for W.

We know that any linear transformation

 $T \in L(V, W)$ can be represented by an $m \times n$ matrix over F.