5.16 Modern Algebra

3. Let V be the set of all polynomials in F[x] of

_degree < n.Let S = {1,x,x2,...... i)
Then L(S) = V and hence V is finite-
dimensional.

4. Cisa ﬁmte—dxmensronal vector space over R,
since L({1,{}) =

5. In My(R) consider the set S consisting of the

matrices
0 0-.1
ofim=[s o)

-

e

2

[ auk ]=aA+bB+cC+dD.
e ud

0wl

—0 (=T

" Hence L(S) =
; dimensional, -

M>(R) so that MZ(R) is finite-

Note. All the vector spaces we have considered
" above are finite dimensional. However there are vector

spaces which cannot be spanned by a finite number of .

vectors. For example, consider R[x]. Let S be any
finite subset of R[x]. Let f be a polynomial of max-
imum degree in S. Let deg f = n. Then any element

of L(S) is a polynomial of degree <.n and hence

L(S) # R[x] Thus R[x] is not finite-dimensional.

Throughout the rest of this chapter all the vector
spaces we consider are finite dimensional.

. Although we have defined what is meant by a finite
" dimensional space we have not yet defined what is
meant by the dimension of a vector space. We now
proceed to intio e the concepts necessary to define.
the dimension of a finite dimensional vector space.

Consider the vectors e; = (1, 0, 0),
e2=1(0,1,0),e3 = (0,0, 1) in V3(R).

Suppose that @je; + azes + aze3 = 0.

Then (a1, 0, 0)+(0, a2, 0)+(0, 0, a3) = (0,0, 0).

(a1, o2, @3)= (0,0, 0).

agi=ay =a3 =0

(i.e) xje; + azer + a3e3

=0iffey =a; =3 =0.

o Jio=[§ 2] me

Thus a linear combination of the vectors |, e and
e3 will yield the zero vector iff all the coefficients are
Z€ro. ;

Definition. Let V be a vector space over a field F.

A finite set of vectors vy, v2, .. ..., v, in V i$ said to

be linearly independent if
vy +am ...t ey, =0
o= =@y = =0 ::(),
Ifvy, v, ......, v, are not linearly independent, lhcn
they are said to be linearly dependent.
Note. 'If vy, v3,......,v, are hnear!y dependent,
“then there exist scalars @y, @3, . . . ... , @, not all zero,
such thatejv; + ... + auv, =9.
Examples
B A P R T o
independent set of vectors, for,
aje; +azes +...... + ape, = 0.
= a(1,0,...... ,0) + (0, 1,...... ,0)
A + a, (0, 0 ...... , 1)
¥ )i 0 e 0)
*
=5 (10 0w o ) = (0,05, ,0)

2. In Va(R) the vectors (1, 2, 1), (2, 1, Oyand
(4, —1, 2) are linearly indeperent. For, let
on(1,2, 1) +02(2, 1,0

+as3(l, —1,2) = (0,0, 0).
(a' +2000+a3, 200 +@r—ag, g +2a3) =
(0,0,0).
o + 203 +a3=0...... )
2a1>+a2'—a3=0 ...... (2)
oy 200 =000 0 3)

Sulve.g - uations (1), (2) and (3) we get
o] =3 =a3 =0 : '
The given vectors are linearly independent.




In V53(R) the vectors (1,4, -2),(=2,1,3)

and (—4,,11,5) are linearly dependent. For,
let ;
(1,4, -2) + (=2, L3 -

: C o 4a3(—4,11,9 =(0,0,0)

a) — 202 —4a3=0
4oy +ap + 13 =0
—2ay 4 303+ Sa3 =0

From (1) and (2),
o] a) a3
e k (say)

a) = —18k,an = —27k, a3 =9%k.
These vilues of @7, @2 and a3, for any k satisfy
(3) also.

Taking kK = 1 we get

a) =—18,p = 27,03 =.9 as a non-trivial
solution.

Hence the three vectors are linearly depen-
dent.

Let V be a vector space over a field F. Then

any subset S of V containing the zero vector
is linearly dependent.
Proof. LetS = :
Clearly 0 + Ovy + Ovz + + Ov, = 0Where
= is any element of F. Hence for any o # 0, we get
+ non-trivial linear combination of vectors in S giving
she zero vector. Hence § is linearly dependent. -

Exercises

1. Determine whether the following sets of vec-

tor are linearly independent or linearly depen-
dent in V3(R).

(@ {(1,0,0),(0,1,0
®)- 1(1,2,3),2,3,1
(© {(1,2,3),%, 1,5
(2,53

1

), (1,1, 0)}.
,3, Dk
), (—4,6,2)}..

5

@ {(0,0,0),(,5,

=
), (=1,0,6)}.
(e). {(1.0,0),(1,1,0, (1 1, D, O 1,0}
Determine whether xhe following sets of vec-
tors are linearly independent or not.

@ ((1,1,0,0),(0,0, 1,'1)(1., 0,0,4), -
(00,0,2)} in V4(R). 2
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® {2i,1,0), @, —i, D, 0,1,+i, —i)}
in V3(C).

© 1(7.0,0),(0,¢,0),(0,0,v5)}
in Va(R). -
V = the sét of all polynomials of
degree < n in R[x] and

)

o {[s 3] |
- M2 (R).

In V3(Zs) determine whether the following
sets of vectors are linearly dependent.

@ {(1,3,2),2,13)
® {1, 1,2),2,1,0,0, 4, D).
In Va(R) prove that the vectors (a, b) and
(c, d) are linearly dependent iff ad — be = 0.
Let {v;, v2, v3} be a linearly.independent set
of vectors in V3(R).
Show that
(@) (v1+va, v2+ v3, v3 + vy} is linearly
independent.
(b) {[2v1+v2, v1+v2, V1~ v3) is linearly
independent.
If the vectors (0, 1,a), (1,a, 1) and (a, 1,0)
of V3(R) are linearly dependent then find the -
value of a.

Answers.

1. (b) is linearly independent. :
2. (a), (b), (¢), (d) and (e) are linearly independent.
3. (a) is linearly independent 6. @ =0, +/2.

_ Theorem 5.11. Any subset of a linearly independent

set is linearly independent.
Proof. Let V be a vector space over a field F.

Let S = {vy, v2," ., Un) be a linearly indepen-

* dent set. = 5

. > -
Let S be a subset of S. Withoyt loss of generality
we take S’ = {vr, v2, ." ,ur) where k < n.

Suppose S is a linearly dependent set. Then there
existay, @2, g - o0 Gk in F not all zero,-such that
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Qv+ ..., + oy =

Hencca;vl +azvpt. ..., +ag v RO o
0v, = 0 is a non- trivial linear combination giving the
Z€ro vector.

Here S is a linearly dependent set which is a
contradiction.

Hence §’ is linearly independent,

Theorem 5.12. Any set containing a linearly depen- _

dent set is also linearly dependent.

Proof. Let v be a vector space. Let S be a linearly

dependent set. Let §' 5 ..

If S is linearly independent § is also linearly inde-
pendent (by theofem 5.11) which is a contradiction.
Hence §" is linearly dependent.

Thieorem 5.13. Let § = (y,, s o] , Un} be a lin-
early independent set of Vectors in a vector space V
over a field F. Then every element of L(S) can be
uniquely written in the form '

v +opup ... + &y vy, Whereo; € F.

Proof. By definition every elements of L(S) is of the
form ]

Qv+ ..., S = e

Now, let oy v; tov ...+, = Bivi + Bovy+
; T o e
‘Hence (o; — BV + (ay — Bl +... +
(@n = Br)v, = 0.

Since S is a linearly independent set, ¢ — B; =0
for all ;. :

@; = B; for all i. Hence the theorem.
Theorem 5.14. 5 = {v;, v, ... + Un} is a linearly

‘dependent set of vectors in V iff there exists a vector
Uk € S such that vy is a linear combination of the

preceding vectors v, AR L e _
Proof. Suppose v, vy, ... » Un are linearly depen-
dent. .

Then there exist D TR yop | € F, not all
zero, such that ajv; + Qv+ ..., +lapu, = 6.

Let & be the largest integer for which a; # 0.

Thepioisfhy o +arv = 0.
-
O U= SO =0 T e JUR .
-1 —1
) S G R +(—ey @p_1)V_y-

Vg is a linear combination of the preceding vectors

Conversely, suppose there exists a vector vy such
that vy =y +...... ‘v

Hence —qjv; — ... %1V + vk + Ougyq 4
: : -+ 0p, =0,
Since the coefficient of Ur = 1, we have
SS=e va} is linearly dependent.
Example. ;
In V3(R), letS=({(1, 0, 0),. (0, 1,0), (0,0, D, (1,1, 1)
Here (1,1, 1) = (1,0,0) + (0, L,0)+ (0,0, 1).

Thus (1,1, 1) is a linear combination of the pre-
ceding vectors. Hence § is a linearly dependent
set.

Theorem 5.15. Let V be a Vvector space over F. Let
= {v), v5 ... .. »Un} and L(S) = W. Then there
exists a linearly independent subset S’ of § such that
L(S)=w. i
Proof. . LetS'———{vl,vz, ...... s Ui )s
If Sislinearly independent there is nothing to prove.

If not, let vy, be the first vector in S which is a linear
combination of the preceding vectors.

LetS; = (v, vg,...... ,vk_l,vk.;_[,...:..,v,,-}. i
(ie) 8y is obtained by deleting the vector v from S.

' We claim that L(S,) LSy =w.
Since §; C.5, L(S1) € L(S). (refer theorem 5.10).
Not, let v € LS.

Thenvi—=eqir + -0 T QU + ..+ o,
Now, v is a linear combination of the preceding

vectors.

Let l;’A =By +...... + Br1vp_g.

Hence v = g N s F v+ oy (B v+
....ﬂ.-l-ﬁk‘]vk_;)+rxk+1vk+1 e e + @y Uy



-. v can be expressed as a linear combination of
e vectors of S; so that v € L(S;). Hence L(S) C
L(S1)

Thus L(S) = L($1) = W

Now, if §; is linearly independent, the proof is

If not, we continue the above process bf remov-
=g a vector from Sy, which is a linear combination
of the preceeding vectors until we arrive at a lin-

warly independent subset S’ of S such that L(5")
=W. LAy

5.6. Basis and Dimension
Definition. A linearly independent subset S of a vec;

Jasis of the vector space.

Theorem 5.16. Any finite-dimensional vector space
¥ contains a finite number of linearly independent
wectors which span V. (ie) A finite dimensional vec-
wor space has a basis consisting of a finite number of
wectors. -
Proof. Since V is finite dimensional fhere, exists a
Enite subset § of V such that L(S) = V. By the-
orem 5.15 this set S contains a linearly independent
subset 8’ = {vy, v, ..+ , Un} such that
LY=L =V.
Hence ' is a basis for V. :

Theoreni 5.17. Let V be a vector space over a field F.
Then § = {v},v2, ..., Un} is a basis for V iff every
zlemefit of V can be uniquely expressed as a linear
combination of element of S.

Proof. Let Sbea basis_for V.

Then by definition S is linearly independent and
L(S5) = V. Hence by theorem 5.13 every element of
-V can be uniquely expressed as a linear combination
of elements of S.. :

Convarsely, suppose «very element of V can be
uniquc.y expressed as a linear combination of elements
of S.

wr space V which spans the whole space V iscalled a-

Vector Spaces = 5.19

Clearly L(S) = V. . ,
Now, let oy vy +a2v2+..‘....+a_,,v,, =
Alsg, 0vy +0v + . .. + Ov, = 0. :

“Thug we have expressed 0 as a linear combmatlon
of vectors of § in two ways

..%ylv‘p&hwlsal—az_ ...... =a, =0.
Hence S is linearly independent. Hence S is a
basis. -

e

Examples

1. S = {(1,0,0),(0,1,0),(0,0, 1)} is a basis
for V3(R) for, (a, b, ¢) = a(1,0, 0)+

b0, 1,0) +¢(0,0, 1).

Aily vector (a, b, ¢) of V3(R) has been

exprcssed uniquely as a linear combination of

the elements Bf S and hence S is a basis for

Va(R) :
2. S= {eiens i ar, ep) is a basis for V,(F).
This is known as the standard basis for V, (F).

3 =0 0), (G0 TR0y L T l)} is a basis
for V3(R) -

- Proof. We shall show that any element
(a, b, ¢) of V3(R) can be uniquely expressed
asa linear combination of the vectors of S.
Let (a, b, c) =a(1,0,0) + B0, 1,0)

: +y(1, 1,1)
'I'héna-+y =a,B+y=0by=c
Hencea =a —cand B = b —c.
Thus (a, b, ¢) = (a — ¢)(1,0,0)
+b )0, 1,0)+c(1,1, 1)
S is*a basis for | (R)

4. S = {1} is abasis for the vector space R over
R. = ;

=l SFR LR o)

g ?] is a basis for M>(R), since any

matrix [ d] can be uniquely written as -
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RO

0 G 0 0
i I R
{1, i} is a basis for the vector space C over R.

7. Let V be the set of all polynomxals of degree
< nin R[x]. Then {l x,x%
basis for V.

8. {(1,0), (:,0), (0, 1), (0, i)} is a basis, for the
vector space C x C over R, for
(@+ib,c+id)=

a(1,0) + b(i, 0) + c(0, 1) + d(0, i).

...... TRl }isa

9. {(100)(010)(111)(110)}.

spans the vector space V3(R) but is ndt a basis.

Proof. Let$’ = {(1,0,0),(0,1,0), (1,1, 1)} :

Then L(S") = V3(R) (refer example 3).
Now, since S C §’, we get L(S) = V5(R).
Thus S spans V3(R).
But § is linearly dependent since

€151 By = 6l 0,0) + (0, L0,
Hence S is not a basis.

10. .S = {(1,0,0), (1, 1,0)} is linearly indepen-
-dent but not a basis of ¥3(R).

Proof. Leta(l,0,0)+8(1,1,0) =
Thena+ﬂ Oand 8 = 0.

; @ = B = 0. Hence § is lmearly
mdepcndent

Also L(S) = {(a, b, O)/a be R] # V3(R).

. S is not a basis.

(0,0, 0).

Exercises

1. Show that the following three vectors from a
basts for v; (R)

(a) (1 2 =3),:2, 5, 1), (=1, L, &)
(b) 1,4, 00, (0, L, 1), (50, 1)
(c) (2, =081 2l w2y

2. Show that the following sets of vectors do not
form a basis for V3(R).

(@) {(1,0,0),(1,1,0)}

by {(1,2,1),(1,3,5),(-1,0,1),
o (L,-12)

-which is a linear combination of the preceding vectors.
* Since the w;’s are linearly independent, this vector
. cannot be wy or wy and hence must be some v; where

© {(0,0,0),(1,0,0),(0,1,0), (0,
(d) {(3!2’ 1))(31 1,5),(3,4‘ _7)}
() ((1,2,3),(2,3,4),(3,4,5)}

3. Show that (1,i,0), (2i, 1, 1), (0, 1 41,
form a basis for V3(C).

4. Find a basis for the vector space consisti
all matrices of the form

a b b VaO'
S T S PR

5. If {v1, vy, v3} is a basis for Va(R), show
{v1 + v2, v2 + v3, v3 + v1} is also-a basis.
this true in (a) V3(Zz) (b) V3(Z3)?

PTETETT
ol ol )

‘Theorem 5.18. Let V be a vector space over afield
Let S = (v 0: . . v} span V. Let

S = {w;, wy, , Wn} be a linearly independ
set of vectors in V Then m < n.

Proof. Since L(S) = V, every vector in
and in particular wy, is a linear combination
L0 PR P

Hence S| = {wi, v, v2,...;v,} is a linearl
dependent set of vectors. Hence there exists a vector
v # wy in Sy which is a linear combination of the

preceding vectors.
Let 8§ = {wy, vr,
Clearly, L(S) =V

el o R T

Hence wy is a linear combination of the vectors in 7.

v
Hence S3 = {wyy wi, vr, ..., vk, Vkgry ..., Vnlk
is linearly dependent. Hence there exists a vector in 3

J # k (say, with j > k). Deletion of v; from the set S3
gives the set




Sa = {wy, wi, v, v, .., vy, Vgpy, T 3
Uj+1, .., Un} of n vectors spanning V.

In this process, at each step we insert one vector
from {w, wa, ..., w,} and delete one vector from
v, va, .0 )

If m > n after repeating this process n times, we
arrive at the set {wy, Wy, ..., wi} which spans V.

Hence w,;; is alinear combination of wy, wy,...,
wy. Hence {wy, w, ..., w,, Wity ... , Wy} is lin-
early dnpendemwh:ch is a contradiction.

Hencem < n. 5 !

Theorem 5.19. Any two bases of a finite dimensim_nl
vector space V have the same number of elements.

Proof. Since V is finite dimensional, it has a basis
say § = {v),v3,... , vu).
Let §'={w), ws, .
Vs :
Now, L(S) = V and S’ is a set of m linearly
independent vectors. Hence by Theorem 5.18, m <n.
Also, since L(S") = V and S is a set of n linearly
independent vectors, n < m. Hence m = n.

Definition. Let V be a'finite dimensional vector
space over a field F. The number of elements in any
basis of V is called the dimension of V and is denoted
by dimV. '

Examples
. dimV,(R) = n, since {e1, ez,.
basis of V,(R).

M>(R) is a vector space of dimension 4

10 RS
¢l 'to o}

0
00 0 0 ’ 5
[l 0 ]lo | ]}Jsabasxs for
M>(R).

Cis a vector space of dimension2 over R since
{1, i} is a basis for C.

cosealis A

over Rsince

Let V be the set of all polynomials of degree -
<ninR[x]. Visa vector space over R having

dimension n + 1, since {1, x, x%, ...  x"}isa

basis for V.

;) be any other basis for

Vector Spaces  5.21

Theorem 5.20. Let V be a vector space of dimension
n. Then

(i) any set of m vectors where m > n is linearly
dependent.
“(ii) any setof m vectors where m < n cannot span
V. ’ o

Proof. ~ (i) LetS = (v, vs,...
for V. Hence L(S) = V.
Let S’ be any set consisting of m vectors where
m > n. Suppose §' is linearly independent.
" Since S spans V by Theorem 5.18, m < a
which is a contradiction.
Hence §’ is lincarly dependent.
Let S’ be a set consisting of m vectors where
m < n. Suppose L(S')= V. .
Now, S = (v}, vz,...,u,} is a basis for
V and hence linearly independent. Hence by
" Theorem 5.18 n < m which is a contradiction:
Hence S’ cannot span V.

, U} be a basis

Theorem 5.21. Let V be a finite dimensional vector -
space over a field F. Any linearly independent set of

«vectors in V is part of a basis.

Proof. Let § = {v, vy, . Ur} be a linearly

independent set of vectors. ;
If L(S) = V then S itself is a basis.
If L(S) # V, choose an element vigr €V — L(S).

Now, consider §; = {vy, va,

s Ury Vrgt).

We shall prove that S is linearly independent by
showing that no vector in S is-a linear combination of
the preceeding vectors. (refer thcorem 5.14).

Since {v;, vy, : , Ur} is linearly indepen-
dent, v; where 1 < i < r is not a linear combination
of the preceeding vectors. )

Also v,q1 ¢ L(S) and hence Upy is not a linear
combination of vy, vy,

Hence S is linearly independent.
If'L(SL) = V, then S is a basis for V. If not we

take ‘an element v,.5 € V — L(S)) and proceed as
before. Since the dimension of V is finite, this process
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must stop at a certain stage giving the required basis
containing S. :

Theorem 5.22. Let V be a finite dimensional vector
space over a field F. Let A be a subspace of V. Then
there exists a subspace B of V such that V — A® B.

Proof. Let S = (v}, vy,

, Ur} be a basis of
A. 3

By theorem 5.21, we can find wy, ws,
w; € V suchthatsuchthat S’ = {vy, v,
L et e , Wy} is a basis of V.

Now, let B = L({wy, (TSR MR e , wi})

We claim that AN B = {0} and V = 4 + B.
Now,letveAﬂB.ThenveAandve B.
Hence v = aju; +

...... U,
=BrwiF .o + Bswy
TS e TR e TS = Bw; =0

*. Now, since S’ is linearly-independent, a; = 0 = Bj
for all i and ;. : :
Hence v =+0. Thus A N B = {0}.
Now, letv € V.

Thenv =t §...... + a_,v,y)

. BB +Bsws) € A+ B,

HenceA+B=VsothatV=AeB.

.Exercises

I.Let V be a finite-dimensional vector space.
Let A and B be subspaces of V such that
V = A @ B. Then show that ;
dimV =dim A + dim B.
2. Construct 3 subspaces Wy, Wa, Ws of a vector
space Vsuchthat V = W, @ W, = W& W;
 but W, # W;.
3. For each of the following subspaces A4 of
V3(R) find another subspace B such that
A®B = V(R)

] A=L{(,1,0),(0,1, 1)
WS A = LD 1))
liii] - A= L({ey, e, e3}). -

* in V are linearly dependent and hence S is_a maximal

Definition. Let V be a vector space and

ST O e o +Un} beasetofindepe
vectors in V. Then S is called a maximal ki
independent set if for every v € V — S, the
fo i v , Un} is linearly dependent.

Definition. Let S = (v}, vs, , U} bea
of vectors in V and let L(S) = V. Then S is call
minimal generating set if for any v; € S,

L(S—{v}#+V.

Theorem 5.23. Let V be a vector space over a field

LetSi v s 0 + Un} € V. Then the followi
are equivalent.

(i) S is abasis for V.
(ii) S is a maximal linearly independent set.
(iii) S is a minimal generating set.

Proof. (i) = (ii) Let S = (v}, vy, , Un} be
basis for V. Then by theorem 5.20 any n + 1 vectoi

. 2

linearly independent set.

- (@) = () Let S = lny, 05, . vn) be &
maximal linearly independent set. Now to prove that
S is a basis for V we shall show that L(S)=V.

Obviously L(S) C V.
Now, letv e V.
Ifves, thenv e L(S). (since S € L(S))

ifus & S080 = v v » Un, U} is 4 lin-
early dependent set (since S is a maximal linearly
independent set)

.'. There exists a vector in S’ which is a linear
combination of the preceeding vectors.

Since vy, va, ... , v, are linearly independent, this
vector must be v. Thus v is a linear combination of
(o S » Un. Therefore v € L(S). j

Hence V C L(S). Thus V = L(S).

@) = (iii) Let S = {v, V3,
basis. Then L(S) = V.

If § is not minimal, there exists v; € .S such that
L(S—{y}) =V.




Since S is linearly independent, g {vi} i§ also
ly independent. Thus S—{v;}isa basis consisting

m—1 elgments which is a contradiction.

Hence S is a minimal generating set.

Gii)=> () Let S = {v1,v2, ...+ ., vp) be a mini-

generating set. To prove that S is a basis, we have

show that S is linearly mdependent

If S is linearly dependent, there exists a vector
.. which is a linear combination of the preceeding

WeCiors.

Clearly L(S ——\{vk-}) =
mality of S.

Thus § is linearly independent and since
L(S) = V, § is a basis for V.

Theorem 5.24. Any vector space of dimension n over
28eld F is isnmorphic to V,,(F ). .

l'roof Let V be a vector space of dimension 7. Let

I, Uy, e v,} be a basis for V.

Then we know that if v € V,v can be \a_fritten
amiquely as v = Y1 +a2v2+.,,"_. L +oz,,v,., whe(e
= c F.

Now, consxder the map [ : V>V, (F ) given by
f(a;v1+...+a,,v,,)=(cq,az,._ ..... , 0.

Clearly f is 1-1 and onto.

Letv,we V..
Thenv = vy + .- . + @y Uy and
w= v +,.»....—+;ﬂ,,v,,,
v+ w)= {"[(al_ +Bv +...+ (an + ﬁn)vn]
= ((a1+ B1), (2 + B2), - » (@n + Bn))
E (o0 i son)+ (B By oov e .+ Bn)
= f) + f(w).
Also f(av) = f(@avy + ...+ @ vy
— (e G L , o 0y)
= o], 02, -0 -n- +6n)
= af(v)

Hence f is an isomorphism of V to Vu(F).

V contradicting the mini-

Vec;or Spaces 5.23 '

Corollary. Any two vector spaces of the same dtmen-
sion over a field F are isomorphic, for, if the vector
spaces are of dimension n, each is 1somorphlc toV, (F)
and hence they are isomorphic: :

Theorem 5.25. Let V and W be vector spaces over a
field F. Let T : V — W be an isomorphism. Then T
maps a basis of V onto a basis of W. :
Proof. Let {vy, B Ul be abusia foi V.

We shall prove that T(v1), T (v2),.: .- T )
are linearly independent and that they span Witz

Now, a; T (vy) +oT(v2)+-..... +a,,T(v,,) -.,Q

= T(ajvy) + T(ogup) + ... .o + T(a,,v,,) =0.7
= T(ajvy o2+ -enn- + ) =

= ajv; + Ut vy =0 (smceTls 1- 1)
SO == =0,=0

(since vy, v2,...... ,Uy are lmearly independent).

- Ty, T(vz) (v,,) arelmearlymdcpcn-

dent

at Now, letw € W. Then smce T is onto, there exnsts

a vector v € v such that T (v) =7

Letv=ajv1 4+ ...... +anv,.

Thenw = T (v)
=T@ v+ ... 4+ apUp).
= mT(ul) +. +0i,,T(v,.).

Thus w 1s a hnear combmahon of the vectors

Corollary Two finite dimensional vector spaces v
and W over a field F are isomorphic iff they have the
same dimension.

Theorem 5.26. Let V and W be finite dimensional

Vector spaces Over a field F. Let {v1, V2, -+ » Un}

be a basis for V and let wy, w2, .. .... ,wy, be any '

1 vectors in W (not necessarily distinct) Then there

exists a unique linear transformation 7 : V. — w
such that T(v;) = wi, i = 1,2, ..... n ‘ it

b

ST (e - T(v,;) span W and hence is a basis.
for W :
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S Letv=a,v|;+-a2v2+ ...... + a,v, € V.

We define T'(v) =owy +awr + ... + o wy.
' Now, letx, y € V. :

Letx = ajv; + ... + a,v, and

y-ﬁm = S T

X+y= () +Bvi+...+ (an + Bn)vp.

TG+ )= (@ +Bow +...+ (@ + Bn)wy
=(xjwy + ... + apwy)+
Brwr+...+ Bnwy)
=Tx)+T(y).
Similarly T (ax) = T (x).

Hence T is a linear transformation.

Alsovy = lv; +0vy +. .. + Ovp,.

Hence T'(v1) = lw; + Ow; + 0w, = w;.
Simi!arly T (vi) = w; for allt=1.2 .7 n

Now, to prove the uniqueness, let 7/ : V — W be
any other linear transformation such that T'(v;) = w;.

Letv=ajv; +... 4+ apv, € V
T’y =aiT') + ... + 0y T'(vs)
=ajw =S +apw, = T(v).
Hence T = 7',

Remark. The above theorem shows that a linear
transformation is completely determined by its values
on the elements of a basis.

Theorem 5.27. Let V be a finite dimensional vector
space over afield F. Let W be a subspace of V. Then

(i) dim W <dimV.

: 1%
(ii) dimW =dimV —dimW.
Proof.
(i) LetS = {wy,wy,...... , Wn} be a basis for

- W.Since W is a subspace of V, S is a part of
/. abasis for V.
Hence dim W < dim V. :
(i) LetdimV =nanddimW = m:

S s t

;®

Now, since {wy, w,, ..

Pos:— : V
Hence S’ spans W ° that §” is a basis for —

Let S = {w, ws, ..., wy,) be a basis for
Clearly S is a linearly independent set
vectors in V.

Hence S is a part of a basis in V
{wi, wa, ... wp, vy, v, ... ,U} be a
for V.Thenm +r = n.

Now,weélaimS’: {W+v|,W+v2,...

3 ”
1sa baSlS fOl el
W

a(W+uv) +oaa(W+Huv)+...+
% (W +v,) =W
= (W +ayv;) +.(W+a2vg)+...

: +HW +a,v,) =
= W+ o ‘+aon+...tov, =W
=ovi+ovt...+aov e W,

., Wy} is a basis for W

a1V +... + o = Bwg +.‘.+ﬂ,,;w,,,.

a;v1+...+a,v,—131wl'— ..—ﬁ,,,wm= _
M=m=a,=f=f=...=pf=
§" is a finearly independent set.

|4
Now, let W —.
ow, le +vew

Letv = aju; +...tav 4 Bw + ...+ B
Then W+ v =W + (a;y, + ...+ a0,

-}Tﬂlw| + oo Bt
= W + (a1v +...:§-a,v,)

(i Brwit .+ A
=(}'Vj*-alvl)+.--+(W+¢rvr)

=a1(W+1{1)+...+ar(W+‘vr)-

dimW=r#n—m

=dimV —dimW.



Theorem 5.28. Let V be a ﬁnite-dimensional vector
space over a field F. Let A and B be subspaces of V.

Then dim (A + B)

Proof. - A and B are subspaces of V. Hence A N B is
subspace of V,

Letdim(ANB) =r. 3 ;
Let S = (v, v2,......,v,} be abasis for AN B
Since A N B is a subspace of A and B, § is a part
of a basis for A and B.
Let{vil,vz,.‘. y U, U, U2, ..
and {vy, v3, ..., U, wi, Wy, ...

. u;} be a basis for A
, w; } be a basis for B.

We shall prove that §' = {v,...
Ug, Wy, ..., w)}is abasis for A + B.

Letajvi+... 420, +Biu; +. . -+ Bsus+yiwi+
Fpy=0.

Then Brur+...+Bsus = —(yywi +...+ yw,)
—'(oqv_l +...+av)eB

Hence Biu1 + ... + Bsus € B
AlSOﬁ]ll] e s +ﬂsu,}-'e A.
Henceﬂ,ui +...+ Bsus € AN B.

Biuy + .. +ﬁ:us =61 + ...+ 6v,.

Brui + ...+ Bouy — vy — o=&v, =0.
Bi=..=8=686=...=6=0
(since {uy,...,us,v1,...,v.} is linearfy- indepen-

dent) E :
Similarly we canprove y; = yo = ... = 3, = 0.
=Bi=w=0forl<i<r,
l<j<sil<k<t
- Thus §" is a linearly independent set.
Clearly S’ spans A + B.

§'isa basis for A + B.

Hencedzm(A+B)—r+s+t ;
AlspdzmA —r.-l—.;,d_gngﬁ—_r_+tand
dim(ANB)=r,

=dimA +dimB —dim(ANB)
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S

dim A+dim B—dim A N B= (r+s)+(r+t)—r

=r+s+t
=dim (A + B).
| A1y B
Aliter. By ¢ I — = —,
iter. By heorem5 .

ATy B )
HCHCCdlm.[T] _4zm [m]

dim (A + B) — dim A = dim B — dim(A N B).
dim(A+ B) = dth+dth dzm(AﬁB)

Corollary. IfV =A® B, dim V =dim A +a'im ‘B.

Proof V= AGBB=>A+B VandAﬂB._{o}
dim(ANB) =0.
Hencedim V = dzmA + dim B.

Exercises °

I ‘Find the dimension of the subspace spanned
by the followmg vectors in V3(R)

(a) (I 1 I) (=L, -1 =)
(b) (LO,«2), 2,0,1), (1,0, 1)
(c) (1,2,<3),(0,0:1), ’( 'l PAEN
(d) {, 12),( bl O)
2. Fmd the dimension of the subspace spanned
by the followmg vectors in V4(R)
@ ﬂemgm4 T
(b) ey, ez
() ei;es,e3
@ e

In V3(R) find dim (A + B) and dzm (A n B),
where !

w

(@ Aisthe subspace spanned by (1, 1, l)and B

is the subspace spanned by (=11, — l)

(b) Ais'the subs;pace sparmed by (I, L, 1) and

~ Bisthe subspace spanned by ;
L h
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(©) " Aisthe subspace spanned by (1, 1, 1) and

(1,2, 1) and B is the subspace spanned by

©,0,1).

(d) A is the subspace spanned by o
(1,1, 1) and (1,2,1)and B is the subspace
Spanned by (1, —], Dand (-1, |, -1)

4. Let V, and V, be subspaces of V such that
Vi NV, is the zero space. '

Prove that dim Vi +dim v, <dimV.

Let V; and Vs> be subspaf:es of V such that

every vector v € V can be represented as

UV = v + vy where v; e Vi and v, € Va.

Prove that dim Vi +dim Vs > dimv.

6. If A and B are finite dimensional subspaces of
‘W such that A S BanddimA = dimp then
showthat 4 = B,

7. Let S bea -subspa'cée of a ﬁnite-dimensional
vector space V. If dim V = dim S then prove
that § = v/, :

8. LetW, and W3 be two subspaces of a finite-
- dimensional vector space V.
IfdimV = gim Wi + dim W, and
Winw, = {0} prove that, V — Wi w,.

Answers.

L@l ()2 ©3 (@2
e R SR
3@LEL ®20 ©30 @30

5.7. Rank and Nullity

Definition. LetT : V — W be a linear transforma-
tion. Then the dimension of T(V)is called the rank of
T. The dimension of ker T is called the nullity of T.

Theorem 5.29, It T Vs Wben linear transfor-
mation. Then dim V — rank T + nullity T

Proof We know that Viker T = T(V).
o dimV — dim (ker T)= dim (T (V)
dimV — nullity T= rank T

< dimV=nullity T + rankT

% ‘ :

Answers.

Definition.

A linear transformation T Vo Wis
called non-singular if T is I-1; otherwise T.is called
singular.

Exefcises

Note. ker T is aiso called null space of T

Example. [et v denote the set of all polynomi
of degree < n in Rlx].LetT : v 5 vy be defin

by T(f) = d_f We know that T s a linear
5 :

4 ; d -
formation. Since —f =0<% fis constant, ke

consists of all constant polynomials. The dimensic
of this subspace of V is L. Hence nullity T is 1. Sin
dimV =n + LrankT = p.

Exercises

L. Find the rank and nullity of the linear tran
formations given'in section 5.3.

2. Let 'V be a finite-dimensional Vector spag
overafield F. Let T : v — V be a line:
transformation such that rank T = nulliry

- Show that dim V is'even. Give an example ¢
such a transformation,

1 L nullityT = dim V; rank T = 0
2. nullityT = 0; rank T = dim v-
3. nullity T = dim e
rankT = dimV — dim W..
4, nullity T = 2: rank T — f
5. nullity T = L rank T = p.
6. nullity T = 0; rankT =n+ ..

L Let V and W be finite dimensional vector
spaces over a field ¥ and dimV > dimW.
‘Then show that any linear transformation
T:V > Wis singular. :

2. Let V be a finite-dimensional vector space
over a field F. Then any non-singular linear

transformation 7 : v =5 y ig onto.

Letf -V Wik, linear transformation.

Show that 7 is a non-singular iff ‘

rank T = dim'V.



4 Lt : V> VadT:V > V be linear
transformations. Prove that

(@) rank(T2Th) < rank T;.

(b) nullity (RTy) > nullity T

(©) rank(T2Ty) = rank T2 iff Ty is non-
singular. ‘ ’

5. LetT : V — W be a linear transformation
which is both 1-1 and onto. Show that y
W — V is a linear transformation.

6. Determine which of the following statements
are true and which are false.

(@) BT:V— W-is‘a linear transforma-
tion then

@) rankT <dimV

(i) mdlity T < dim V.

(i) rankT <dimW.

(v) IfTisontorankT = dim Ww.
(v) If T is non-singular

rankT = dimV
(vi) rankT =dimV =
nullity T-=0.

(b) Every linear transformation.
T:V4R) = V3(R) is singular.

© If ‘,T .V — W is non-singular
ands{uy; Ca2e ,'v,,} is a basis then
T e , T(v,)} is a basis for
w. I

Answers.

6.(a) ) TG) T Gi)T () T WT (vi)‘T
®»T ©F

5.8. Matrix of a Linear Transfor-

mation

Let V and W be finite dimensional vector spaces over

afield F. Let dimV =m and dimW = n. Fix an -

ordered basis {vy, V2, - - - , Um} fOr V and an ordered
basis {wy, w2, .+ -, Wa} for W. :

Let T : V — W be a linear transformation.
We have seen that T is completely specified by the
elements T (v1), Tlusy - T(p,,,)..Now, let

T(v) =anwi +apwz+......+ainWn

T(p) =anwy +anwr + ... Fagwn B
T (vm) = G W + G2t oo S
Hence T(vy), T(v2),.----- , T (vy) are cdmpletely

specified by the mn elements a;j of the field F. These

a;j can be convenie *ly arranged in the form of m rows
and n columns 2s  OWs.

ai i o din

a2 ay an
aml am?2 g Amn

Such an array of mn elements of F arranged in m
rows and n columns is known as m X n matrix over.
the field F and is denoted by (ai;)- Thus to every linear
transformation T there is associated with itanm X s
matrix over F. Conversely any m X n matrix over F
defines a linear transformation T : V. — W given by
the lf)ormula (1). :

Note. The m x n matrix which we have associated
with a linear transformation T : V — W depends on
the choice of the basis for V and w. :

For example, consider the linear transformation .

T : Va(R) »> Va(R) givcn'by T(a,b) = (a,a + b).

Choose {e;, €2} as a basis both for the domain and the

range.

ThenT(er) = (1, ) =e1 + &2
Ten=0D=en -

Hence the matii.)'& represénting Tis [ (I) i ]
Now, we choose {ey, e} as a basis for the domain and
{(l’, 1), (1, —1)} as a basis for the range..
Let w; = (1, 1) and wp = (1, =1).

Then T(e)) = (1, 1) = w,

and T(e2) = (0, 1) = kl/2)w1 — (1/2)wy.

il e : ; 1 0
Hence the matnxrepresen'tmngs [ 12 -1/2 ]
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Solved problems

Problem 1. Obtain the matrix representmg the lin-
" ear transformatlon T : 3(R) — V3(R) given by
T(a,b,c) = (Ba,a—b,2a+b+c) wrt. the standard
basis {ey, e, e3}.

Soluti(')n.'b
T(e1)=T(1,0,00=(3,1, 2)—3e|+e2+2e3

T(e2) = T(0, 1,0) = (0, -1, ) =~e2+e3
T(e3) =T(0, 0, 1) = (0,0, D=e3

3 395 7
Thus the matrix representing Tis | 0 —1 1
\ : : flet) 1
Problem 2. Find the linear transformation
T : V3(R) — V3(R) determined by the matrix

1 22 :
[ 0 ) L ] w.r.t. the standard basis {e|, e3, e3}.
LEC :

Solution.

T(ej)=e;+2er+e3=(1,2,1).
T(ez) =0e; +e3+e3=(0, 1, 1)
T(e3) = —ej.+3es+4de3 = (=1, 3.4).

Now, (a, b, c) = a(1,0,0) + b(0, 1, 0) + ¢(0, 0, 1)

= ae| + be; + ces.
T(a,b,c)= T(ae, + bes + cey)
=aT (e;) + bT (ez) + cT(e3)

=a(l,2,1)+b(0,1,1) +c(—1,3,4).

T(a b;c) = (a——c 2a+b+3c a+b+4c)

Thls is the requ1red linear transformation.

Exercises

1: Obtam the matrices for the following lmear
transformatioris;

V(a)( = A V2(R) = V2(R) given by

T(a,b)= (=b,a) w.rt.

(i) -standard basis
(i) the basis {(1,2), (1, —1)} for
both domain and range. q

® T : V;® — Vi(R) given byl
T(a,b,c) = (a+b,2c—a)wrt.

(i) standard basis = 4

(i) {(1,0, =1), (1, L, 1), (1,0, 0)
as a basis for V3(R) and
{(0, 1), (1,0)} for V5(R).

() T :V3(R) — V35(R) given by
T(a,b,c) = Ba+c,—2a+b;a+
2b + 4c¢) wrt.

(i) the standard basis : )L

(ii) thebasis{(1,0, 1), =121
(2,1, 1)} for both domain
and range.

(d) LetV be the setof all polynomials of
degree < n in R[x]
ar
T:V > VdeﬁnedbyT(f) =
w.r.t. the basis {1, x, x2, ... v X0

2. Obtain the linear transformation determined
by the following matrices

@ T : WR) - V(R) given by

6 —sind ;
G g w.r.t. the stan-

sind cos®
dard basis.
) T : V3R) - V3(R) given by
a0 c
[ ey l w.r.t. the standard
¢ oiah
basis.

ey T VQ(R) —> V;;(R) given by
1

2 -1

: w.r.t. the standard
I 1 =1 # 3

basis.




Answers.
| B ol -1/3 -5/3
. (')[ 10 ] Bl 15
1% Egasd
ool 10l @] 1 2
0 2 =y 1
T G
©o®]lo 1 2
1L 0 4
17/4 -3/ -1/2
Gi) | 35/4 1574 -7/2
1772 -3)2 0
06 00 0 0
1 00 0 <0
Fora 0 o
@]o o 3 0 0
0 0 0 n 0

2. - (a) T(a,b)=(acost+bsinb, —a sin 6+
) - b cos6)
b Tx.y.x) =

(ax + by + cz, bx+
: ¢y +az,cx +ay + bz)
(¢ T(,b)=Q@a+ba+b —a-0>)

Definition. Let A = (a;j) and B = (b;;) be two

m x n matrices. We define the sum of these two

matrices by A + b = (a;; +.bif)-
Note that we have defined addition only for two
matrices having the same number of rows and the same

number of columns.

Definition. Let A = (a;;) be anarbitrary matrix over
afield F. Leta € F.We define ¢ A = (aa;j).

Theorem 5.30. The set Mypxn(F)ofallmxn matrices
over the field F is a vector space of dimension mn
over F under matrix addition and scalar multiplication
defined above.
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Proof. Let A = (g;;) and B = (b;;) be two m X n
matrices over the field F. The addition of m x n matri-
ces is a binary operation which is both commutative
and associative. The m x n matrix whoseentries are 0
is the identity matrix and ( aj;) is the inverse matrix
of (ajj). Thus the set of all m x n matrices over the
field F is an abelian group. with respect to addition.

The verification of the followmc axioms are strcught

forward.

(@ a(A+B)=aA+aB

(b) (@+B)A=aA+BA

(©) (ap)A =a(BA) :
(d A=A : :

Hence the set of all m x n over F isa vector space

over. F S = :

Now, we shall prove that the dimension of this vec-
tor space is mn. Let Ej; be the matrix with entry 1 in
the (i, j)™ place and 0 in the other places. We have
mn matrices of this form. Also any matrix A = (aij)

can be written as A = ) a;; Eij. Hence Aisa

linear combiation of the matrices E, ;. Further these

. mn matrices E;; are linearly independent. Hence these

mn matrices form a basis for the space of all m x n
matrices. Therefore the dimension of the vector space
is mn. ; :

Theorem 5.31. Let V and W be two finite dimen-
sional vector spaces over a field F. Let dimV = m
and dimW = n. Then L(V, W) is a vector space of
dimension mpn over F.

Proof. By theorem 5.8, L(V, W) is a vector space
over F. Now, we shall prove that the vector space
L(V, W) is isomorphic to the vector space My xn(F).
Since My xn(F) is of dimension mn, it fol]ows that
L(V, W) is also Qf dlmenslon mn.

Fix a basxs UL e ,u,,,} for V and a basis

{wy, wa, ...... , wy} for W,
We know that any linear transformation

T e L(V, W)canberepresented by an»t-n X n matrix
over F. ?




