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3 ANALYTIC FUNCTIONS 

AS MAPPINGS 

A function w = f(z) may be viewed as a mapping which repre­
sents a point z by its image w. The purpose of this chapter is to 
study, in a preliminary way, the special properties of mappings 
defined by analytic functions. 

In order to carry out this program it is desirable to develop 
the underlying concepts with sufficient generality, for otherwise 
we would soon be forced to introduce a great number of ad hoc 
definitions whose mutual rela!ionship would be far from clear. 
Since present-day students are exposed to abstraction and gen­
erality at quite an early stage, no apologies are needed. It is 
perhaps more appropriate to sound a warning that greatest possi­
ble generality should not become a purpose. 

In the first section we develop the fundamentals of point set 
topology and metric spaees. There is no need to go very far, for 
our main concern is with the properties that are essential for the 
study of analytic functions. If the student feels that he is already 
thoroughly familiar with this material, he should read it only for 
terminology. 

The author believes that proficiency in the study of analytic 
functions requires a mixture of geometric feeling and computa­
tional skill. The second and third sections, only loosely connected 
with the first, are expressly designed to develop geome!ric feeling 
by way of detailed study of elementary mappings. At the same 
time we try to stress rigor in geometric thinking, to the point 
where the geometric image becomes the guide but not the founda­
tion of reasoning. 

49 



50 COMPLEX ANALYSIS 

1. ELEMENTARY POINT SET TOPOLOGY 

The branch of mathematics which goes under the name of topology is con­
cerned with all questions directly or indirectly related to continuity. The 
term is traditionally used in a very wide sense and without strict limits. 
Topological considerations are extremely important for the foundation of 
the study of analytic functions, and the first systematic study of topology 
was motivated by this need. 

The logical foundations of set theory belong to another discipline. 
Our approach will be quite naive, in keeping with the fact that all our 
applications will be to very familiar objects. In this limited framework no 
logical paradoxes can occur. 

1.1. Sets and Elements. In our language a set will be a collection of 
identifiable objects, its elements. The reader is familiar with the notation 
x EX which expresses that x is an element of X (as a rule we denote sets 
by capital letters and elements by small letters). Two sets are equal if 
and only if they have the same elements. X is a subset of Y if every ele­
ment of X is also an element of Y, and this relationship is indicated by 
X C Y or Y::) X (we do not exclude the possibility that X = Y). The 
empty set is denoted by 0. 

A set can also be referred to as a space, and an element as a point. 
Subsets of a given space are usually called point sets. This lends a 
geometric flavor to the language, but should not be taken too literally. 
For instance, we shall have occasion to consider spaces whose elements an~ 
functions; in that case a "paint" is a function. 

The intersection of two sets X and Y, denoted by X (\ Y, is formed by 
all points which are elements of both X and Y. The union XU Y con­
sists of all points which are elements of either X or Y, including those which 
are elements of both. One can of course form the intersection and union 
of arbitrary collections of sets, whether finite or infinite in number. 

The complement of a set X consists of all points which are not in X; 
it will be denoted by "'X. We note that the complement depends on the 
totality of points under consideration. For instance, a set of real numbers 
has one complement with respect to the real line and another with respect 
to the complex plane. More generally, if X C Y we can consider the 
relative complement Y ""'X which consists of all points that are in Y but 
not in X (we find it clearer to use this notation only when X C Y). 

It is helpful to keep in mind the distributive laws 

XU (Y fl Z) (XU Y) n (XU Z) 
X fl (Y U Z) = (X fl Y) U (X n Z) 
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and the De Morgan laws 

"-'(X IJ Y) = "'X 1\ ""'Y 
"'(X 1\ Y) = "'X IJ ""'Y. 

These are purely logical identities, and they have obvious generalizations 
to arbitrary collections of sets. 

1.2. Metric Spaces. For all considerations of limits and continuity it 
is essential to give a precise meaning to the terms "sufficiently near" and 
"arbitrarily near." In the spaces Rand C of real and complex numbers, 
respectively, such nearness can be expressed by a quantitative condition 
\x - y\ < e. For instance, to say that a set X contains all x sufficiently 
near to y means that there exists an e > 0 such that x eX whenever 
\x - y\ < e. Similarly, X contains points arbitrarily near to y if to every 
e > 0 there exists an x eX such that \x - y\ < e. 

What we need to describe nearness in quantitative terms is obviously 
a distance d(x,y) between any two points. We say that a set Sis a metric 
space if there is defined, for every pair xeS, yeS, a nonnegative real num­
ber d(x,y) in such a way that the following conditions are fulfilled: 

1. d(x,y) = 0 if and only if x = y. 
2. d(y,x) = d(x,y). 
3. d(x,z) ~ d(x,y) + d(y,z). 

The last condition is the triangle inequality. 
For instance, R and C are metric spaces with d(x,y) = \x - y\. 

The n-dimensional euclidean space Rn is the set of real n-tuples 

X = (x 1, • • • , Xn) 

n 

with a distance defined by d(x,y) 2 = 2: (x; - y.)2. We recall that we 
1 

have defined a distance in the extended complex plane by 

d(z z') - 2\z - z'\ 
' - v-----r,:(1:;=+~\z:::;:;:\2~) (~1 '=;=+=;::\z::;::;'\~2) 

(see Chap. 1, Sec. 2.4); since this represents the euclidean distance between 
the stereographic images on the Riemann sphere, the triangle inequality is 
obviously fulfilled. An example of a function space is given by C[a,b], 
the set of all continuous functions defined on the interval a ~ x ~ b. It 
becomes a metric space if we define distance by d(f,g) = max \f(x) - g(x) \. 

In terms of distance, we introduce the following terminology: For 
any o > 0 and any y e S, the set B(y,o) of all x e S with d(x,y) < o is called 
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the ball with center y and radius o. It is also referred to as the a-neighbor­
hood of y. The general definition of neighborhood is as follows: 

Definition l. A set N C Sis called a neighborhood of y E S if it contains 
a ball B(y,o). 

In other words, a neighborhood of y is a set which contains all points 
sufficiently near to y. We use the notion of neighborhood to define 
open set: 

Definition 2. A set is open if it is a neighborhood of each of its elements. 

The definition is interpreted to mean that the empty set is open (the 
condition is fulfilled because the set has no elements). The following is an 
immediate consequence of the triangle inequality: 

Every ball is an open set. 

Indeed, if z E B(y,o), then o' = 0 - d(y,z) > 0. The triangle in­
equality shows that B(z,o') C B(y,o), for d(x,z) < o' gives d(x,y) < o' + 
d(y,z) = o. Hence B(y,o) is a neighborhood of z, and since z was any 
point in B(y,o) we conclude that B(y,o) is an open set. For greater em­
phasis a ball is sometimes referred to as an open ball, to distinguish it 
from the closed ball formed by all x E S with d(x,y) ~ o. 

In the complex plane B(z 0,o) is an open disk with center z0 and radius o; 
it consists of all complex numbers z which satisfy the strict inequality 
lz - zol < o. We have just proved that it is an open set, and the reader 
is urged to interpret the proof in geometric terms. 

The complement of an open set is said to be closed. In any metric 
space the empty set and the whole space are at the same time open and 
closed, and there may be other sets with the same property. 

The following properties of open and closed sets are fundamental: 
The 1:ntersection of a finite number of open sets is open. 
The union of any collection of open sets is open. 
The union of a finite number of clo-sed sets is closed. 
The intersection of any collection of closed sets is closed. 

The proofs are so obvious that they can be left to the reader. It 
should be noted that the last two statements follow from the first two by 
use of the De Morgan laws. 

There are many terms in common usage which are directly related to 
the idea of open sets. A complete Jist would be more confusing than 
helpful, and we shall limit ourselves to the following: interior, closure, 
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boundary, exterior. 
(i) The interior of a set X is the largest open set contained in X. It 

exists, for it may be characterized as the union of all open sets ex. It 
can also be described as the set of all points of which X is a neighborhood. 
We denote it by Int X. 

(ii) The closure of X is the smallest closed set which contains X, or 
the intersection of all closed sets :JX. A point belongs to the closure of 
X if and only if all its neighborhoods intersect X. The closure is usually 
denoted by X-, infrequently by Cl X. 

(iii) The boundary of X is the closure minus the interior. A point 
belongs to the boundary if and only if all its neighborhoods intersect both 
X and "'X. Notation: Bd X or aX. 

(iv) The exterior of X is the interior of "'X. It is also the comple­
ment of the closure. As such it can be denoted by "'X-. 

Observe that Int X C X C X- and that X is open if Int X = X, 
closed if X- = X. Also, X C Y implies Int X C Int Y, x- C Y-. For 
added convenience we shall also introduce the notions of isolated point 
and accumulation point. We say that x EX is an isolated point of X if x 
has a neighborhood whose intersection with X reduces to the point x. 
An accumulation point is a point of X- which is not an isolated point. 
It is clear that x is an accumulation point of X if and only if every 
neighborhood of x contains infinitely many points from X. 

EXERCISES 

1. If Sis a metric space with distance function d(x,y), show that S 
with the distance function o(x,y) = d(x,y)/[1 + d(x,y)] is also a metric 
space. The latter space is bounded in the sense that all distances lie 
under a fixed bound. 

2. Suppose that there are given two distance functions d(x,y) and 
d1(x,y) on the same spaceS. They are said to be equivalent if they deter­
mine the same open sets. Show that d and d1 are equivalent if to every 
E > 0 there exists a o > 0 such that d(x,y) < o implies d1(x,y) < E, and 
vice versa. Verify that this condition is fulfilled in the preceding exercise. 

3. Show by strict application of the definition that the closure of 
\z - zo\ < o is \z - zo\ ~ o. 

4. If X is the set of complex numbers whose real and imaginary parts 
are rational, what is Int X, X-, aX? 

5. It is sometimes typographically simpler to write X' for "'X. With 
this notation, how is X'-' related to X? Show that X-'-'-'-' = X-'-'. 

G. A set is said to be discrete if all its points are isolated. Show that 
a discrete set in R or C is countable. 

7. Show that the accumulation points of any set form a closed set. 
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1.3. Connectedness. If E is any nonempty subset of a metric spaceS 
we may consider E as a metric space in its own right with the same dis­
tance function d(x,y) as on all of S. Neighborhoods and open sets onE 
are defined as on any metric space, but an open set onE need not be open 
when regarded as a subset of S. To avoid confusion neighborhoods and 
open sets onE are often referred to as relative neighborhoods and relatively 
open sets. As an example, if we regard the closed interval 0 ~ x ~ 1 as 
a subspace of R, then the semiclosed interval 0 ~ x < 1 is relatively open, 
but not open in R. Henceforth, when we say that a subset E has some 
specific topological property, we shall always mean that it has this prop­
erty as a subspace, and its subspace topology is called the relative topology. 

Intuitively speaking, a space is connected if it consists of a single 
piece. This is meaningness unless we define the statement in terms of 
nearness. The easiest way is to give a negative characterization: Sis not 
connected if there exists a partition S = A U B into open subsets A and B. 
It is understood that A and Bare disjoint and nonempty. The connected­
ness of a space is often used in the following manner: Suppose that we are 
able to construct two complementary open subsets A and B of S; if S is 
connected, we may conclude that either A or B is empty. 

A subset E C S is said to be connected if it is connected in the rela­
tive topology. At the risk of being pedantic we repeat: 

Definition 3. A subset of a metric space is connected if it cannot be repre­
sented as the union of two disjoint relatively open sets none of which is empty. 

If E is open, a subset of E is relatively open if and only if it is open. 
Similarly, if E is closed, relatively closed means the same as closed. We 
can therefore state: An open set is connected if it cannot be decomposed into 
two open sets, and a closed set is connected if it cannot be decomposed into two 
closed sets. Again, none of the sets is allowed to be empty. 

Trivial examples of connected sets are the empty set and any set 
that consists of a single point. 

In the case of the real line it is possible to name all connected sets. 
The most important result is that the whole line is connected, and this is 
indeed one of the fundamental properties of the real-number system. 

An interval is defined by an inequality of one of the four types: 
a < x < b, a ~ x < b, a < x ~ b, a ~ x ~ b. t For a = - oo or 
b = + oo this includes the semi-infinite intervals and the whole line. 

t We denote open intervals by (a,b) and closed intervals by [a,b]. Another eommon 
practice is to denote open intervals by ]a,b[ and semiclosed intervals by ]a,b] or [a,b[. 
It is always understood that a < b. 
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Theorem I. The nonempty connected subsets of the real line are the 
intervals. 

We reproduce one of the classical proofs, based on the fact that any 
monotone sequence has a finite or infinite limit. 

Suppose that the real lineR is represented as the union R = AU B 
of two disjoint closed sets. If neither is empty we can find a 1 E A and 
b1 E B; we may assume that a1 < b1. We bisect the interval (a1,b1) and 
note that one of the two halves has its left end point in A and its right end 
point in B. We denote this interval by (a2,b2) and continue the process 
indefinitely. In this way we obtain a sequence of nested intervals 
(an,bn) with an E A, bn E B. The sequences {an} and {bn} have a common 
limit c. Since A and B are closed c would have to be a common point of 
A and B. This contradiction shows that either A or B is empty, and 
hence R is connected. 

With minor modifications the same proof applies to any interval. 
Before proving the converse we make an important remark. Let E 

be an arbitrary subset of R and call a a lower bound of E if a ~ x for all 
x E E. Consider the set A of all lower bounds. It is evident that the 
complement of A is open. As to A itself it is easily seen that A is open 
whenever it does not contain any largest number. Because the line is 
connected, A and its complement cannot both be open unless one of them 
is empty. There are thus three possibilities: either A is empty, A con­
tains a largest number, or A is the whole line. The largest number a of 
A, if it exists, is called the greatest lower bound of E; it is commonly 
denoted as g.l.b. x or inf x for x E E. If A is empty, we agree to set 
a = - oo, and if A is the whole line we set a = + oo. With this con­
vention every set of real numbers has a uniquely determined greatest 
lower bound; it is clear that a = + oo if and only if the set E is empty. 

The least upper bound, denoted as I. u. b. x or sup x for x E E, is defined in a 
corresponding manner. t 

Returning to the proof, we assume that E is a connected set with the 
greatest lower bound a and the least upper bound b. All points of E lie 
between a and b, limits included. Suppose that a point ~ from the open 
interval (a,b) did not belong to E. Then the open sets defined by x < ~ 
and x > ~cover E, and because E is connected, one of them must fail to 
meet E. Suppose, for instance, that no point of E lies to the left of ~­
Then ~ would be a lower bound, in contradiction with the fact that a is the 
greatest lower bound. The opposite assumption would lead to a similar 
contradiction, and we conclude that ~ must belong to E. It follows that E 
is an open, closed, or semi closed interval with the end points a and b; the 
cases a = - oo and b = + oo are to be included. 

t The HUpremum of a Hequence waH introduced alren,dy in Chap. 2, Sec. 2.1. 
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In the course of the proof we have introduced the notions of greatest 
lower bound and least upper bound. If the set is closed and if the bounds 
are finite, they must belong to the set, in which case they are called the 
minimum and the maximum. In order to be sure that the bounds are 
finite we must know that the set is not empty and that there is some 
finite lower bound and some finite upper bound. In other words, the E>et 
must lie in a finite interval; such a set is said to be bounded. We have 
proved: 

Theorem 2. Any closed and bounded nonempty set of real numbers has 
a minimum and a maximum. 

The structure of connected sets in the plane is not nearly so simple as 
in the case of the line, but the following characterization of open con­
nected sets contains essentially all the information we shall need. 

Theorem 3. A nonempty open set in the plane is connected if and only 
if any two of its points can be joined by a polygon which lies in the set. 

The notion of a joining polygon is so simple that we need not give a 
formal definition. 

We prove first that the condition is necessary. Let A be an open con­
nected set, and choose a point a E A. We denote by A 1 the subset of A 
whose points can be joined to a by polygons in A, and by A2 the subset 
whose points cannot be so joined. Let us prove that At and A2 are both 
open. First, if at EAt there exists a neighborhood lz - a1l < E contained 
in A. All points in this neighborhood can be joined to a 1 by a line seg­
ment, and from there to a by a polygon. Hence the whole neighborhood 
is contained in Ar, and At is open. Secondly, if a2 E A2, let iz - a 21 < 10 

be a neighborhood contained in A. If a point in this neighborhood could 
be joined to a by a polygon, then a2 could be joined to this point by a line 
segment, and from there to a. This is contrary to the definition of A 2, 

and we conclude that A2 is open. Since A was connected either A 1 or 
A2 must be empty. But A1 contains the point a; hence A 2 is empty, and 
all points can be joined to a. Finally, any two points in A can be joined 
by way of a, and we have proved that the condition is necessary. 

For future use we remark that it is even possible to join any two points 
by a polygon whose sides are parallel to the coordinate axes. The proof 
is the same. 

In order to prove the sufficiency we assume that A has a representa­
tion A = A1 U A2 as the union of two disjoint open sets. Choose a 1 E A 1, 

a2 E A2 and suppose that these points can be joined by a polygon in A. 
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One of the sides of the polygon must then join a point in At to a point in 
A2, and for this reason it is sufficient to consider the case where at and a2 
are joined by a line segment. This segment has a parametric representa­
tion z = at + t(a2 - at) where t runs through the interval 0 ~ t ~ 1. 
The subsets of the interval 0 < t < 1 which correspond to points in At 
and A 2, respectively, are evidently open, disjoint, and nonvoid. This 
contradicts the connectedness of the interval, and we have proved that 
the condition of the theorem is sufficient. 

The theorem generalizes easily to Rn and Cn. 

Definition 4. A nonempty connected open set is called a region. 

By Theorem 3 the whole plane, an open disk lz - ai < p, and a half 
plane are regions. The same is true of any /l-neighborhood in Rn. A 
region is the more-dimensional analogue of an open interval. The closure 
of a region is called a closed region. It should be observed that different 
regions may have the same closure. 

It happens frequently that we have to analyze the structure of sets 
which are defined very implicitly, for instance in the course of a proof. 
In such cases the first step is to decompose the set into its maximal con­
nected components. As the name indicates, a component of a set is a 
connected subset which is not contained in any larger connected subset. 

Theorem 4. Every set has a unique decomposition into components. 

If E is the given set, consider a point a E E and let C(a) denote the 
union of all connected subsets of E that contain a. Then C(a) is sure to 
contain a, for the set consisting of the single point a is connected. If we 
can show that C(a) is connected, then it is a maximal connected set, in 
other words a component. It would follow, moreover, that any two 
components are either disjoint or identical, which is precisely what we 
want to prove. Indeed, if c E C(a) (\ C(b), then C(a) C C(c) by the 
definition of C(c) and the connectedness of C(a). Hence a E C(c), and by 
the same reasoning C(c) C C(a), so that in fact C(a) = C(c). Similarly 
C(b) = C(c), and consequently C(a) = C(b). We call C(a) the com­
ponent of a. 

Suppose that C(a) were not connected. Then we could find relatively 
open sets A, B ~ J1 such that C(a) = AU B, A(\ B =fl. We may 
assume that a E A while B contains a point b. Since bE C(a) there is a 
connected set Eo C E which contains a and b. The representation 
Eo = (Eo(\ A) U (Eo(\ B) would be a decomposition into relatively 
open subsets, and since a E Eo(\ A, bE Eo(\ B neither part would be 
empty. This is a contradiction, and we conclude that C(a) is connected. 
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Theorem 5. In R n the components of any open set are open. 

This is a consequence of the fact that the /l-neighborhoods in Rn are 
connected. Consider a E C(a) C E. If E is open it contains B(a,il) 
and because B(a,il) is connected B(a,il) C C(a). Hence C(a) is open. A 
little more generally the assertion is true for any space S which is locally 
connected. By this we mean that any neighborhood of a point a contains 
a connected neighborhood of a. The proof is left to the reader. 

In the case of Rn we can conclude, furthermore, that the number of 
components is countable. To see this we observe that every open set 
must contain a point with rational coordinates. The set of points with 
rational coordinates is countable, and may thus be expressed as a sequence 
{pkl· For each component C(a), determine the smallest k such that 
Pk E C(a). To different components correspond different k. We con­
clude that the components are in one-to-one correspondence with a 
subset of the natural numbers, and consequently the set of components is 
countable. 

For instance, every open subset of R is a countable union of disjoint 
open intervals. 

Again, it is possible to analyze the proof and thereby arrive at a 
more general result. We shall say that a set E is dense in S if E- = S, 
and we shall say that a metric space is sep:trable if there exists a countable 
subset which is dense inS. We are led to the following result: 

In a locally connected separable space every open set is a countable union 
of disjoint regions. 

EXERCISES 

1. If X C S, show that the relatively open (closed) subsets of X are 
precisely those sets that can be expressed as the intersection of X with an 
open (closed) subset of S. 

2. Show that the union of two regions is a region if and only if they 
have a common point. 

3. Prove that the closure of a connected set is connected. 
4. Let A be the set of points (x,y) E R 2 with x = 0, [y[ ;2; 1, and let B 

be the set with x > 0, y = sin 1/x. Is A IJ B connected? 
5. Let E be the set of points (x,y) E R 2 such that 0 ;2; x ;2; 1 and either 

y = 0 or y = 1/n for some positive integer n. What are the com­
ponents of E? Are they all closed? Are they relatively open? Verify 
that E is not locally connected. 

6. Prove that the components of a closed set are closed (use Ex. 3). 
7. A set is said to be discrete if all its points are isolated. Show that a 

discrete set in a separable metric space is countable. 
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1.4. Compactness. The notions of convergent sequences and Cauchy 
sequences are obviously meaningful in any metric space. Indeed, we 
would say that Xn ----7 x if d(xn,x) ----7 0, and we would say that {xn} is a 
Cauchy sequence if d(xn,Xm) ----7 0 as n and m tend to oo. It is clear that 
every convergent sequence is a Cauchy sequence. For R and C we have 
proved the converse, namely that every Cauchy sequence is convergent 
(Chap. 2, Sec. 2.1), and it is not hard to see that this property carries over 
to any Rn. In view of its importance the property deserves a special 
name. 

Definition 5. A metric space is said to be complete if every Cauchy sequence 
is convergent. 

A subset is complete if it is complete when regarded as a subspace. 
The reader will find no difficulty in proving that a complete subset of a 
metric space is closed, and that a closed subset of a complete space is complete. 

We shall now introduce the stronger concept of compactness. It is 
stronger than completeness in the sense that every compact space or set 
is complete, but not conversely. As a matter of fact it will turn out that 
the compact subsets of R and C are the closed bounded sets. In view of 
this result it would be possible to dispense with the notion of compactness, 
at least for the purposes of this book, but this would be unwise, for it 
would mean shutting our eyes to the most striking property of bounded 
and closed sets of real or complex numbers. The outcome would be that 
we would have to repeat essentially the same proof in many different 
connections. 

There are several equivalent characterizations of compactness, and it 
is a matter of taste which one to choose as definition. Whatever we do the 
uninitiated reader will feel somewhat bewildered, for he will not be able to 
discern the purpose of the definition. This is not surprising, for it took 
a whole generation of mathematicians to agree on the best approach. 
The consensus of present opinion is that it is best to focus the attention 
on the different ways in which a given set can be covered by open sets. 

Let us say that a collection of open sets is an open covering of a set X if 
X is contained in the union of the open sets. A subcovering is a subcollec­
tion with the same property, and a finite covering is one that consists of a 
finite number of sets. The definition of compactness reads: 

Definition 6. A set X is compact if and only if every open covering of X 
contains a finite subcovering. 

In this context we are thinking of X as a subset of a metric space S, 
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and the covering is by open sets of S. But if U is an open set in S, then 
U (\ X is an open subset of X (a relatively open set), and conversely 
every open subset of X can be expressed in this form (Sec. 1.3, Ex. 1). 
For this reason it makes no difference whether we formulate the definition 
for a full space or for a subset. 

The property in the definition is frequently referred to as the Heine­
Borel property. Its importance lies in the fact that many proofs become 
particularly simple when formulated in terms of open coverings. 

We prove first that every compact space is complete. Suppose that 
X is compact, and let {xn} be a Cauchy sequence in X. If y is not the 
limit of {xn} there exists an e > 0 such that d(xn,Y) > 2a for infinitely 
many n. Determine no such that d(xm,Xn) < a form, n ;:;; no. We choose 
a fixed n ;:;; no for which d(xn,Y) > 2a. Then d(xm,Y) ;:;; d(xn,Y) - d(xm,Xn) 
> E for all m ;:;; n 0• It follows that the a-neighborhood B(y, 11:) contains 
only finitely many Xn (better: contains Xn only for finitely many n). 

Consider now the collection of all open sets U which contain only 
finitely many Xn. If {xn) is not convergent, it follows by the preceding 
reasoning that this collection is an open covering of X. Therefore it 
must contain a finite subcovering, formed by U 1, ••• , UN. But that is 
clearly impossible, for since each U; contains only finitely many Xn it 
would follow that the given sequence is finite. 

Secondly, a compact set is necessarily bounded (a metric space is 
hounded if all distances lie under a finite bound). To see this, choose a 
point x 0 and consider all balls B(xo,r). They form an open covering of X, 
and if X is compact, it contains a finite subcovering; in other words, 
X C B(xo,r1) U · · · U B(xo,rm), which means the same as X C B(xo,r) 
with r = max (rb . .. , rm). For any x,y E X it follows that d(x,y) ~ 
d(x,x 0) + d(y,x 0) < 2r, and we have proved that X is bounded. 

But boundedness is not all we can prove. It is convenient to define a 
stronger property called total boundedness: 

Definition 7. A set X is totally bounded if, for every 11: > 0, X can be 
covered by finitely many balls of radius 11:. 

This is certainly true of any compact set. For the collection of all 
balls of radius 11: is an open covering, and the compactness implies that 
we can select finitely many that cover X. We observe that a totally 
bounded set is necessarily bounded, for if XC B(x1,11:) U · · · U B(xm,d, 
then any two points of X have a distance <2E + max d(xi,x1). (The 
preceding proof that any compact set is bounded becomes redundant.) 

We have already proved one part of the following theorem: 

Theorem 6. A set is compact if and only if it is complete and totally 
bounded. 
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To prove the other part, assume that the metric space S is complete 
and totally bounded. Suppose that there exists an open covering which 
does not contain any finite subcovering. Write e:n = 2-n. We know 
that S can be covered by finitely many B(x, e: t). If each had a finite 
subcovering, the same would be true of S; hence there exists a B(xt, e: t) 
which does not admit a finite subcovering. Because B(xt, e: 1) is itself 
totally bounded we can find an X2 E B(x1, e: 1) such that B(x2, e: 2) has no 
finite subcovering.t It is clear how to continue the construction: we 
obtain a sequence Xn with the property that B(xn, e:n) has no finite sub­
covering and Xn+! E B(xn,•n). The second property implies d(xn,Xn+t) < e:n 
and hence d(Xn,Xn+v) < E:n + E:n+l + · · · + E:n+v-1 < 2-n+l. Jt follows 
that Xn is a Cauchy sequence. It converges to a limit y, and this y belongs 
to one of the open sets U in the given covering. Because U is open, it 
contains a ball B(y,o). Choose n so large that d(xn,Y) < o/2 and e:n < o/2. 
Then B(xn, e:n) C B(y,o), for d(X,Xn) < e:n implies d(x,y) ~ d(x,xn) + 
d(xn,y) < o. Therefore B(xn, e:n) admits a finite subcovering, namely by 
the single set U. This is a contradiction, and we conclude that S has 
the Reine-Borel property. 

Corollary. A subset of R or C is compact if and only if it is closed and 
bounded. 

We have already mentioned this particular consequence. In one 
direction the conclusion is immediate: We know that a eompact set is 
bounded and complete; but Rand Care complete, and complete subsets 
of a complete space are closed. For the opposite conclusion we need to 
show that every bounded set in R or C is totally bounded. Let us take 
the case of C. If X is bounded it is contained in a disk, and hence in a 
square. The square can be subdivided into a finite number of squares 
with arbitrarily small side, and the squares can in turn be covered by disks 
with arbitrarily small radius. This proves that X is totally bounded, 
except for a small point that should not be glossed over. When Definition 
7 is applied to a subset X C S it is slightly ambiguous, for it is not clear 
whether the E-neighborhoods should be with respect to X or with respect 
to S; that is, it is not clear whether we require their centers to lie on X. 
It happens that this is of no avail. In fact, suppose that we have covered 
X by E-neighborhoods whose centers do not necessarily lie on X. If such 
a neighborhood does not meet X it is superfluous, and can be dropped. If 
it does contain a point from X, then we can replace it by a 2E-neighborhood 
around that point, and we obtain a finite covering by 2E-neighborhoods 
with centers on X. For this reason the ambiguity is only apparent, and 
our proof that bounded subsets of C are totally bounded is valid. 

t Here we are using the fact that any subset of a totally bounded set is totally 
''-,l. The reader should prove this. 
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There is a third characterization of compact sets. It deals with the 
notion of limit point (sometimes called cluster value): We say that y is a 
limit point of the sequence {xn} if there exists a subsequence {Xn1 } that 
converges toy. A limit point is almost the same as an accumulation point 
of the set formed by the points x,., except that a sequence permits repeti­
tions of the same point. If y is a limit point, every neighborhood of y 
contains infinitely many x,.. The converse is also true. Indeed, suppose 
that <: k ~ 0. If every B(y, <: k) contains infinitely many Xn we can choose 
subscripts nk, by induction, in such a way that x,.k E B(y, Ek) and nk+r > nk. 
It is clear that {Xn1 } converges toy. 

Theorem 7. A metric space is compact if and only if every infinite 
sequence has a limit point. 

This theorem is usually referred to as the B olzano-Weierstrass theorem. 
The original formulation was that every bounded sequence of complex 
numbers has a convergent subsequence. It came to be recognized as an 
important theorem precisely because of the role it plays in the theory of 
analytic functions. 

The first part of the proof is a repetition of an earlier argument. If 
y is not a limit point of {x,.} it has a neighborhood which contains only 
finitely many Xn (abbreviated version of the correct phrase). If there were 
no limit points the open sets containing only finitely many Xn would form 
an open covering. In the compact case we could select a finite subcover­
ing, and it would follow that the sequence is finite. The previous time we 
used this reasoning was to prove that a compact space is complete. We 
showed in essence that every sequence has a limit point, and then we 
observed that a Cauchy sequence with a limit point is necessarily con­
vergent. For strict economy of thought it would thus have been better to 
prove Theorem 7 before Theorem 6, but we preferred to emphasize the 
importance of total boundedness as early as possible. 

It remains to prove the converse. In the first place it is clear that the 
Bolzano-Weierstrass property implies completeness. Indeed, we just 
pointed out that a Cauchy sequence with a limit point must be convergent. 
Suppose now that the space is not totally bounded. Then there exists an 
E > 0 such that the space cannot be covered by finitely many E-neighbor­
hoods. We construct a sequence { Xn} as follows: x1 is arbitrary, and when 
xr, ... , Xn have been selected we choose Xn+l so that it does not lie in 
B(xr, €) U · · · U B(xn, €). This is always possible because these neigh­
borhoods do not cover the whole space. But it is clear that {x,.} has no 
convergent subsequence, for d(x,.,x,.) > E for all m and n. We conclude 
that the Bolzano-Weierstrass property implies total boundedness. In 
view of Theorem 6 that is what we had to prove. 
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The reader should reflect on the fact that we have exhibited three 
characterizations of compactness whose logical equivalence is not at all 
trivial. It should be clear that results of this kind are particularly valua­
ble for the purpose of presenting proofs as concisely as possible. 

EXERCISES 

1. Give an alternate proof of the fact that every bounded sequence of 
complex numbers has a convergent subsequence (for instance by use of the 
limes inferior). 

2. Show that the Reine-Borel property can also be expressed in the 
following manner: Every collection of closed sets with an empty intersec­
tion contains a finite subcollection with empty intersection. 

3. Use compactness to prove that a closed bounded set of real num­
bers has a maximum. 

4. If E1 :J E2 :J Ea :J · · · is a decreasing sequence of nonempty 
"' compact sets, then the intersection(\ En is not empty (Cantor's lemma). 
1 

Show by example that this need not be true if the sets are merely closed. 
5. Let S be the set of all sequences x = {xn l of real numbers such 

that only a finite number of thexn are~ 0. Defined(x,y) = max \xn - Yn\. 
Is the space complete? Show that the a-neighborhoods are not totally 
bounded. 

1.5. Continuous Functions. We shall consider functions f which are 
defined on a metric space S and have values in another metric space S'. 
Functions are also referred to as mappings: we say that f maps S into S', 
and we write f: S ~ S'. Naturally, we shall be mainly concerned with 
real- or complex-valued functions; occasionally the latter are allowed 
to take values in the extended complex plane, ordinary distance being 
replaced by distance on the Riemann sphere. 

The space S is the domain of the function. We are of course free to 
consider functions f whose domain is only a subset of S, in which rase the 
domain is regarded as a subspace. In most cases it is safe to slur over the 
distinction: a function on S and its restriction to a subset are usually 
denoted by the same symbol. If X C S the set of all values f(x) for x E S 
is called the image of X under j, and it is denoted by f(X). The inverse 
imagej-1(X') of X' C S' consists of all x t: S such thatf(x) EX'. Observe 
thatj(j-- 1(X')) C X', andj- 1(f(X)) :J X. 

The definition of a continuous function needs practically no modifica­
tion: f is continuous at a if to every E > 0 there exists b > 0 such that 
d(x,a) < o implies d'(f(x),j(a)) < E. We are mainly concerned with 
functions that are continuous at all points in the domain of definition. 
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The following characterizations are immediate consequences of the 
definition: 

A function is continuous if and only if the inverse image of every open 
set is open. 

A function is continuous if and only if the inverse image of every closed 
set is closed. 

Iff is not defined on all of S, the words "open" and "closed," when 
referring to the inverse image, should of course be interpreted relatively 
to the domain of f. It is very important to observe that these properties 
hold only for the inverse image, not for the direct image. For instance 
the mapping f(x) = x2j(l + x 2) of R into R has the image f(R) = 

{y; 0 ~ y < 1} which is neither open nor closed. In this example f(R) 
fails to be closed because R is not compact. In fact, the following is 
true: 

Theorem 8. Under a continuous mapping the image of every compact set 
is compact, and consequently closed. 

Suppose that f is defined and continuous on the compact set X. 
Consider a covering of f(X) by open sets U. The inverse images f-1(U) 
are open and form a covering of X. Because X is compact we can select a 
finite subcovering: X C f- 1(U1) IJ · · · IJ f- 1(U m). It follows that 
f(X) C Ur IJ · · · IJ Um, and we have proved that f(X) is compact .. 

Corollary. A continuous real-valued function on a compact set has a maxi­
mum and a minimum. 

The image is a closed bounded subset of R. The existence of a 
maximum and a minimum follows by Theorem 2. 

Theorem 9. Under a continuous mapping the image of any connected set 
is connected. 

We may assume that f is defined and continuous on the whole space 
S, and that f(S) is all of S'. Suppose that S' = A IJ B where A and B 
are open and disjoint. Then S = f- 1(A) IJ f- 1(B) is a representation of 
S as a union of disjoint open sets. If Sis connected either f- 1(A) = 0 or 
f- 1(B) = 0, and hence A = 0 or B = 0. We conclude that S' is 
connected. 

A typical application is the assertion that a real-valued function 
which is continuous and never zero on a connected set is either always 
positive or always negative. In fact, the image is connected, and hence 
an interval. But an interval which contains positive and negative num-
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bers also contains zero. 
A mapping f :S ----7 S' is said to be one to one if f(x) = f(y) only for 

x = y; it is said to be onto if f(S) = S'. t A mapping with both these 
properties has an inverse f-\ defined on S'; it satisfiesf- 1(f(x)) = x and 
f(f- 1(x')) = x'. In this situation, iff and f- 1 are both continuous we 
say that f is a topological mapping or a homeomorphism. A property of a 
set which is shared by all topological images is called a topological property. 
For instance, we have proved that compactness and connectedness are 
topological properties (Theorems 8 and 9). In this connection it is per­
haps useful to point out that the property of being an open subset is not 
topological. If X C S and Y C S' and if X is homeomorphic to Y there is 
no reason why X and Y should be simultaneously open. It happens to be 
true if S = S' = Rn (invariance of the region), but this is a deep theorem 
that we shall not need. 

The notion of uniform continu~ty will be in constant use. Quite 
generally, a condition is said to hold uniformly with respect to a parameter 
if it can be expressed by inequalities which do not involve the parameter. 
Accordingly, a function f is said to be uniformly continuous on X if, to 
every a > 0, there exists a o > 0 such that d'(f(xr),J(x2)) < E for all 
pairs (x1,x2) with d(x 1,x2) < o. The emphasis is on the fact that o is not 
allowed to depend on x1. 

Theorem 10. On a compact set every continuous function is uniformly 
continuous. 

The proof is typical of the way the Reine-Borel property can be used. 
Suppose that f is continuous on a compact set X. For every y 11: X there is 
a ball B(y,p) such that d'(f(x),j(y)) < E/2 for x 11: B(y,p); here p may depend 
on y. Consider the covering of X by the smaller balls B(y,p/2). There 
exists a finite subcovering: X C B(y1,pr/2) U · · · U B(ym,Pm/2). Let o 
be the smallest of the numbers pr/2, ... , Pm/2, and suppose that d(xr,x 2) < 
o. There is a Yk with d(xr,Yk) < Pk/2, and we obtain d(x2,yk) < Pk/2 + 
o ~ ok. Hence d'(f(x 1),j(yk)) < E/2 and d'(f(x 2),j(yk)) < E/2 so that 
d' (f ( x1) ,j ( x 2)) < f as desired. 

On sets which are not compact some continuous functions are uni­
formly continuous and others are not. For instance, the function z is 
uniformly continuous on the whole complex plane, but the function Z2 

is not. 

t These linguistically clumsy terms can be replaced by injective (for one to one) 
and surjective (for onto). A mapping with both properties is called bijective. 
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EXERCISES 

1. Construct a topological mapping of the open disk izl < 1 onto the 
whole plane. 

2. Prove that a subset of the real line which is topologically equiva­
lent to an open interval is an open interval. (Consider the effect of 
removing a point.) 

3. Prove that every continuous one-to-one mapping of a compact 
space is topological. (Show that closed sets are mapped on closed sets.) 

4. Let X and Y be compact sets in a complete metric space. Prove 
that there exist x EX, y E Y such that d(x,y) is a minimum. 

5. Which of the following functions are uniformly continuous on the 
whole real line: sin x, x sin x, x sin (x2), lx[t sin x? 

1.6. Topological Spaces. It is not necessary, and not always con­
venient, to express nearness in terms of distance. The observant reader 
will have noticed that most results in the preceding sections were formu­
lated in terms of open sets. True enough, we used distances to define 
open sets, but there is really no strong reason to do this. If we decide to 
consider the open sets as the primary objects we must postulate axioms 
that they have to satisfy. The following axioms lead to the commonly 
accepted definition of a topological space: 

Definition 8. A topological space is a set T together with a collection of its 
subsets, called open sets. The following conditions have to be fulfilled: 

(i) The empty set 0 and the whole space T are open sets. 
(ii) The intersection of any two open sets is an open set. 
(iii) The union of an arbitrary collection of open sets is an open set. 

We recognize at once that this terminology is consistent with our 
earlier definition of an open subset of a metric space. Indeed, properties 
(ii) and (iii) were strongly emphasized, and (i) is trivial. 

Closed sets are the complements of open sets, and it is immediately 
clear how to define interior, closure, boundary, and so on. Neighbor­
hoods could be avoided, but they are rather convenient: N is a neighbor­
hood of x if there exists an open set U such that x E U and U C N. 

Connectedness was defined purely by means of open sets. Hence the 
definition carries over to topological spaces, and the theorems remain 
true. The Reine-Borel property is also one that deals only with open 
sets. Therefore it makes perfect sense to speak of a compact topological 
space. However, Theorem 6 becomes meaningless, and Theorem 7 
becomes false. 

As a matter of fact, the first serious difficulty we encounter is with 
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convergent sequences. The definition is clear: we say that Xn --t x if 
every neighborhood of x contains all but a finite number of the Xn· But 
if Xn --t x and Xn --t y we are not able to prove that x = y. This awkward 
situation is remedied by introducing a new axiom which characterizes the 
topological space as a Hausdorff space: 

Definition 9. A topological space is called a Hausdorff space if any two 
distinct points are contained in disjoint open sets. 

In other words, if x ~ y we require the existence of open sets U, V 
such that x E U, y E V and U (\ V = 0. In the presence of this condition 
it is obvious that the limit of a convergent sequence is unique. We shall 
never in this book have occasion to consider a space that is not a Hausdorff 
space. 

This is not the place to give examples of topologies that cannot be 
derived from a distance function. Such examples would necessarily be 
very complicated and would not further the purposes of this book. The 
point is that it may be unnatural to introduce a distance in situations 
when one is not really needed. The reason for including this section has 
been to alert the reader that distances are dispensable. 

2. CONFORMALITY 

We now return to our original setting where all functions and variables are 
restricted to real or complex numbers. The role of metric spaces will 
seem disproportionately small: all we actually need are some simple 
applications of connectedness and compactness. 

The whole section is mainly descriptive. It centers on the geometric 
consequences of the existence of a derivative. 

2.1. Arcs and Closed Curves. The equation of an arc 'Yin the plane 
is most conveniently given in parametric form x = x(t), y = y(t) where t 
runs through an interval a ~ t ~ {3 and x(t), y(t) are continuous func­
tions. We can also use the complex notation z = z(t) = x(t) + iy(t) 
which has several advantages. It is also customary to identify the arc 'Y 
with the continuous mapping of [a,{3]. When following this custom it is 
preferable to denote the mapping by z = 'Y(t). 

Considered as a point set an arc is the image of a closed finite interval 
under a continuous mapping. As such it is compact and connected. How­
ever, an arc is not merely a set of points, but very essentially also a suc­
cession of points, ordered by increasing values of the parameter. If a 
nondecreasing function t = <P(r) maps an interval a' ~ r ~ {3' onto a ~ 

t ~ {3, then z = z(<P(r)) defines the same succession of points as z = z(t). 
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We say that the first equation arises from the second by a change of parame­
ter. The change is reversible if and only if <P(r) is strictly increasing. For 
instance, the equation z = t2 + it\ 0 ~ t ~ 1 arises by a reversible change 
of parameter from the equation z = t + it2, 0 ~ t ~ 1. A change of the 
parametric interval (a,{3) can always be brought about by a linear change 
of parameter, which is one of the form t = ar + b, a > 0. 

Logically, the simplest course is to consider two arcs as different as 
soon as they are given by different equations, regardless of whether one 
equation may arise from the other by a change of parameter. In follow­
ing this course, as we will, it is important to show that certain properties of 

arcs are invariant under a change of parameter. For instance, the initial 
and terminal point of an arc remain the same after a change of parameter. 

If the derivative z'(t) = x'(t) + iy'(t) exists and is ~0, the arc 'Y has 
a tangent whose direction is determined by arg z'(t). We shall say that 
the arc is differentiable if z'(t) exists and is continuous (the term con­
tinuously differentiable is too unwieldy); if, in addition, z'(t) ~ 0 the arc 
iR said to be regular. An arc is piecewise differentiable or piecewise regular 
if the same conditions hold except for a finite number of values t; at these 
points z(t) shall still be continuous with left and right derivatives which 
are equal to the left and right limits of z'(t) and, in the case of a piecewise 
regular arc, ~0. 

The differentiable or regular character of an arc is invariant under the 
change of parameter t = <P(r) provided that <P'(r) is continuous and, for 
regularity, ~0. When this is the case, we speak of a differentiable or 
regular change of parameter. 

An arc is simple, or a Jordan arc, if z(t1) = z(t2) only for t1 = t2. An 
arc is a closed curve if the end points coincide: z(a) = z({3). For closed 
curves a shift of the parameter is defined as follows: If the original equa­
tion is z = z(t), a ~ t ~ {3, we choose a point to from the interval (a,{3) and 
define a new closed curve whose equation is z = z(t) for to ~ t ~ {3 and 
z = z(t - {3 + a) for {3 ~ t ~ to + {3 - a. The purpose of the shift is to 
get rid of the distinguished position of the initial point. The correct 
definitions of a differentiable or regular closed curve and of a simple closed 
curve (or Jordan curve) are obvious. 

The opposite arc of z = z(t), a ~ t ~ {3, is the arc z = z( -t), -{3 ~ 
t ~ -a. Opposite arcs are sometimes denoted by 'Y and -'Y, sometimes 
by 'Y and 'Y-\ depending on the connection. A constant function z(t) 
defines a point curve. 

A circle C, originally defined as a locus \z - a\ = r, can be considered 
as a closed curve with the equation z = a+ reit, 0 ~ t ~ 21r. We will 
use this standard parametrization whenever a circle is introduced. 
This convention saves us from writing down the equation each time it is 
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needed; also, and this is its most important purpose, it serves as a definite 
rule to distinguish between C and -C. 

2.2. Analytic Functions in Regions. When we consider the derivative 

f'(z) = lim f(z +h) - f(z) 
h->0 h 

of a complex-valued function, defined on a set A in the complex plane, it is 
of course understood that z t: A and that the limit is with respect to values 
h such that z + h E: A. The existence of the derivative will therefore 
have a different meaning depending on whether z is an interior point or a 
boundary point of A. The way to avoid this is to insist that all analytic 
functions be defined on open sets. 

We give a formal statement of the definition: 

Definition 10. A complex-valued function f(z), defined on an open set n, 
is said to be analytic in n if it has a derivative at each point of n. 

Sometimes one says more explicitly that f(z) is complex analytic. A 
commonly used synonym is holomorphic. 

It is important to stress that the open set n is part of the definition. 
As a rule one should avoid speaking of an analytic function f(z) without 
referring to a specific open set n on which it is defined, but the rule can 
be broken if it is clear from the context what the set is. Observe that f 
must first of all be a function, and hence single-valued. If n' is an open 
subset of n, and if f(z) is analytic in n, then the restriction off to n' is 
analytic in Q'; it is customary to denote the restriction by the same letter f. 
In particular, since the components of an open set are open, it is no loss 
of generality to consider only the case where n is connected, that is to say 
a regt"on. 

For greater flexibility of the language it is desirable to introduce the 
following complement to Definition 10: 

Definition II. A function f(z) is analytic on an arbitrary point set A if 
it is the restriction to A of a function which is analytic in some open set con­
taining A. 

The last definition is merely an agreement to wse a convenient termi­
nology. This is a case in which the set n need not be explicitly men­
tioned, for the specific choice of n is usually immaterial as long as it contains 
A. Another instance in which the mention of n can be suppressed is the 
phrase: "Let f(z) be analytic at zo." It means that a function f(z) is 
defined and has a derivative in some unspecified open neighborhood of z0• 
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Although our definition requires all analytic functions to be single­
valued, it is possible to consider such multiple-valued functions as yz, 
log z, or arc cos z, provided that they are restricted to a definite region 
in which it is possible to select a single-valued and analytic branch of the 
function. 

For instance, we may choose for n the complement of the negative 
real axis z ~ 0; this set is indeed open and connected. In n one and 
only one of the values of yz has a positive real part. With this choice 
w = .Yz becomes a single-valued function in n; let us prove that it is 
continuous. Choose two points ZI, z2 t: n and denote the corresponding 
values of w by WI = UI + ivi, w2 = u2 + iv2 with ui, u2 > 0. Then 

\zi -- z2J = Jwi - w~l = Jw1 - w2\ · Jw1 + w2J 

and Jwi + w2J :;;; u1 + U2 > u1. Hence 

I I < 
jz1 - z2l 

WI- W2 
UI 

and it follows that w = yz is continuous at ZI. Once the continuity is 
established the analyticity follows by derivation of the inverse function 
z = w 2• Indeed, with the notations used in calculus Ll.z -----t 0 implies 
Ll.w -----t 0. Therefore, 

1
. Ll.w 

1
. Ll.w 

Im-= Im-
az->O Ll.z aw->0 Ll.z 

and we obtain 

with the same branch of yz. 
In the case of log z we can use the same region n, obtained by exclud­

ing the negative real axis, and define the principal branch of the logarithm 
by the condition jim log z\ < 1r. Again, the continuity must be proved, 
but this time we have no algebraic identity at our disposal, and we are 
forced to use a more general reasoning. Denote the principal branch by 
w = u + iv = log z. For a given point WI = U1 + ivi, \vi\ < 1r, and a 
given E > 0, consider the set A in the w-plane which is defined by the 
inequalities \w - w1 \ ~ a, JvJ ~ 1r, \u - ui\ ~ log 2. This set is closed 
and bounded, and for sufficiently small E it is not empty. The continu­
ous function jew - ew1j has consequently a minimum p on A (Theorem 8, 
Corollary). This minimum is positive, for A does not contain any point 
WI + n · 21ri. Choose o = min (p,-!eut), and assume that 

Jz1 - z2J = jew, - ew•\ < o. 
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Then w 2 cannot lie in A, for this would make \ew, - ew•\ ~ p ~ fi. 

Neither is it possible that u2 < U1- log 2 or u2 > u1 +log 2; in the 
former case we would obtain \ew, - ew•\ ~ e"' - e"' > -!e"' ~ fi, and in 
the latter case lew, - ew•\ ~ e"' - e"' > e"' > fi. Hence w2 must lie 
in the disk lw - w1\ < E, and we have proved that w is a continuous 
function of z. From the continuity we conclude as above that the 
derivative exists and equals 1/z. 

The infinitely many values of arc cos z are the same as the values of 
i log (z + yz2 - 1). In this case we restrict z to the complement n' of 
the half lines x ;;;:; -1, y = 0 and x ~ 1, y = 0. Since 1 - z2 is never 
real and ;;;:; 0 inn', we can define y1 - z2 as in the first example and then 
set yz2 - 1 = iy1 - z2• Moreover, z + yz2 - 1 is never real inn', 
for z + v z2 - 1 and z - v z2 - 1 are reciprocals and hence real only if z 
and v z2 - 1 are both real; this happens only when z lies on the excluded 
parts of the real axis. Because n' is connected, it follows that all values 
of- z + v z2 - 1 in n' are on the same side of the real axis, and since i is 
such a value they are all in the upper half plane. We can therefore define 
an analytic branch of log (z + yz2 - 1) whose imaginary part lies between 
0 and 7f. In this way we obtain a single-valued analytic function 

arc cos z = i log (z + yz2 - 1) 

in n' whose derivative is 

arc cos z = ~ + = ----D . 1 (1 z ) 1 
z + v z2 - 1 v z2 - 1 y1 - z2 

where y1 - z2 has a positive real part. 
There is nothing unique about the way in which the region and the 

single-valued branches have been chosen in these examples. Therefore, 
each time we consider a function such as log z the choice of the branch 
has to be specified. It is a fundamental fact that it is impossible to 
define a single-valued and analytic branch of log z in certain regions. 
This will be proved in the chapter on integration. 

All the results of Chap. II, Sec. 1.2 remain valid for functions which 
are analytic on an open set. In particular, the real and imaginary parts 
of an analytic function in n satisfy the Cauchy-Riemann equations 

au av 
-=-, ax ay 

au av 
ay = -ax· 

Conversely, if u and v satisfy these equations in n, and if the partial 
derivatives are continuous, then u + iv is an analytic function in n. 

An analytic function in n degenerates if it reduces to a constant. In 



72 COMPLEX ANALYSIS 

the following theorem we shall list some simple conditions which have this 
consequence: 

Theorem ll. An analytic function in a region n whose derivative van­
ishes identically must reduce to a constant. The same is true if either the 
real part, the imaginary part, the modulus, or the argument is constant. 

The vanishing of the derivative implies that ilu/ilx, aujay, avjax, 
ilv/ily are all zero. It follows that u and v are constant on any line seg­
ment in n which is parallel to one of the coordinate axes. In Sec. 1.3 we 
remarked, in connection with Theorem 3, that any two points in a region 
can be joined within the region by a polygon whose sides are parallel to 
the axes. We conclude that u + iv is constant. 

If u or v is constant, 

f'(z) = au _ i au = av + i av = 0 
ax ily ay ax ' 

and hence f(z) must be constant. If u2 + v2 is constant, we obtain 

uau+vav=O 
ax ax 

and 
au av av au 

u- + v- = - u- + v- = 0. 
ay ay ax ax 

These equations permit the conclusion ilu/ilx = ilv/ilx = 0 unless the 
determinant u2 + v2 vanishes. But if u2 + v2 = 0 at a single point it, is 
constantly zero and f(z) vanishes identically. Hence f(z) is in any case 
a constant. 

Finally, if arg f(z) is constant, we can set u = kv with constant k 
(unless v is identically zero). But u - kv is the real part of (1 + ik)f, 
and we conclude again that f must reduce to a constant. 

Note that for this theorem it is essential that n is a region. If not, 
we can only assert that f(z) is constant on each component of n. 

EXERCISES 

L Give a precise definition of a single-valued branrh of y1 + z + 
Vl - z in a suitable region, and prove that it is analytic. 

2. Same problem for log log z. 
3. Suppose thatf(z) is analytic and satisfies the condition \f(z) 2 - 1\ 

< 1 in a region n. Show that either Re f(z) > 0 or Re f(z) < 0 through­
out n. 
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2.3. Conformal Mapping. Suppose that an arc 'Y with the equation 
z = z(t), a ~ t ~ {3, is contained in a region n, and let f(z) be defined 
and continuous in n. Then the equation w = w(t) = f(z(t)) defines an 
arc 'Y' in the w-plane which may be called the image of 'Y· 

Consider the case of an f(z) which is analytic in n. If z' (t) exists, 
we find that w'(t) also exists and is determined by 

(1) w'(t) = f'(z(t))z'(t). 

We will investigate the meaning of this equation at a point zo = z(to) 
with z'(to) rf 0 and f'(zo) rf 0. 

The first conclusion is that w'(to) rf 0. Hence 'Y' has a tangent a~ 

Wo = f(zo), and its direction is determined by 

(2) argw'(to) = argf'(zo) + argz'(to). 

This relation asserts that the angle between the directed tangents to 'Y 

at zo and to 'Y' at wo is equal to arg f' (z 0). It is hence independent of 
the curve 'Y· For this reason curves through zo which are tangent to 
each other are mapped onto curves with a common tangent at w 0• 

l\!foreover, two curves which form an angle at z0 are mapped upon curves 
forming the same angle, in sense as well as in size. In view of this 
property the mapping by w = f(z) is said to be conformal at all points 
withf'(z) rf 0. 

A related property of the mapping is derived by consideration of the 
modulus lf'(zo)l. We have 

lim lf(z) - f(zo)l = lf'(zo)l, 
z~zo lz - zo! 

and this means that any small line segment with one end point at z0 is, 
in the limit, contracted or expanded in the ratio lf'(zo)l. In other words, 
the linear change of scale at zo, effected by the transformation w = f(z), 
is independent of the direction. In general this change of scale will vary 
from point to point. 

Conversely, it is clear that both kinds of conformality together imply 
the existence off' (zo). It is less obvious that each kind will separately 
imply the same result, at least under additional regularity assumptions. 

To be more precise, Jet us assume that the partial derivatives afjax 
and afjay are continuous. Under this condition the derivative of 
w(t) = f(z(t)) can be expressed in the form 

w' (to) = aj x' (to) + aj y' (to) 
ax ay 

where the partial derivatives are taken at z0• In terms of z'(t0) this can 
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be rewritten as 

'( ) 1 ( af . af) '( ) 1 ( af + . of)-,-----( ) W to = - - - ~ - z to + - - ~ - z to . 2 ax ay 2 ax ay 

If angles are preserved, arg [w'(t 0)/z'(t0)] must be independent of 
arg z' (to). The expression 

(3) ! (of_ i a.r) +! ( a.r + i of) z'(to) 
2 ax ay 2 ax ay z'(to) 

must therefore have a constant argument. As arg z'(to) is allowed to 
vary, the point represented by (3) describes a circle having the radius 

~\(of/ox) + i(afjay)\. The argument cannot be constant on this circle 
unless its radius vanishes, and hence we must have 

af . af - = -2-ax ay (4) 

which is the complex form of the Cauchy-Riemann equations. 
Quite similarly, the condition that the change of scale shall be the 

same in all directions implies that the expression (3) has a constant 
modulus. On a circle the modulus is constant only if the radius van­
ishes or if the center lies at the origin. In the first case we obtain (4), 
and in the second case 

af . af 
- =2-· ax ay 

The last equation expresses the fact that f(z) is analytic. A mapping 
by the conjugate of an analytic function with a nonvanishing derivative 
is said to be indirectly conformal. It evidently preserves the size but 
reverses the sense of angles. 

If the mapping of n by w = f(z) is topological, then the inverse func­
tion z = f- 1(w) is also analytic. This follows easily if f'(z) :;6 0, for then 
the derivative of the inverse function must be equal to 1/f'(z) at the point 
z = .f-1(w). We shall prove later that f'(z) can never vanish in the case 
of a topological mapping by an analytic function. 

The knowledge that f' (zo) :;6 0 is sufficient to conclude that the map­
ping is topological if it is restricted to a sufficiently small neighborhood of 
z0• This follows by the theorem on implicit functions known from the cal­
culus, for the Jacobian of the functions u = u(x,y), v = v(x,y) at the point 
z0 is \.f' (z 0)\2 and hence :;6 0. Later we shall present a simpler proof of this 
important theorem. 

But even if f'(z) :;6 0 throughout the region n, we cannot assert that 
the mapping of the whole region is necessarily topological. To illustrate 
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what may happen we refer to Fig. 3-1. Here the mappings of the sub-

FIG. 3-1. Doubly covered region. 

regions Q1 and Q2 are one to one, but the images overlap. It is helpful to 
think of the image of the whole region as a transparent film which partly 
covers itself. This is the simple and fruitful idea used by Riemann when 
he introduced the generalized regions now known as Riemann surfaces. 

2.4. Length and Area. We have found that under a conformal mapping 
f(z) the length of an infinitesimal line segment at the point z is multiplied 
by the factor lf'(z) 1. Because the distortion is the same in all directions, 
infinitesimal areas will clearly be multiplied by lf'(z) 1

2• 

Let us put this on a rigorous basis. We know from calculus that the 
length of a differentiable arc 'Y with the equation z = z(t) = x(t) + iy(t), 
a ~ t ~ b, is given by 

L('Y) = fb vx'(t)2 + y'(t) 2 dt = fb lz'(t)l dt. 
a a 

The image curve 'Y' is determined by w = w(t) = f(z(t)) with the derivative 
w'(t) = f'(z(t))z'(t). Its length is thus 

L( 'Y 1
) = j b If' (z( t)) liz' ( t) I dt. 

a 

It is customary to use the shorter notations 

(5) L('Y) = f ldzl, 
1' 

L('Y') = j lf'(z) lldzl. 
1' 

Observe that in complex notation the calculus symbol ds for integration 
with respect to arc length is replaced by ldz 1. 

Now let E be a point set in the plane whose area 

A(E) = f f dx dy 

E 
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can be evaluated as a double Riemann integral. If f(z) = u(x,y) + 
iv(x,y) is a bijective differentiable mapping, then by the rule for changing 
integration variables the area of the image E' = f(E) is given by 

A(E') = J J luxVy - UyVxl dx dy. 

E 

But if f(z) is a conformal mapping of an open set containing E, then 
UxVu - UyVx lf'(z) 12 by virtue of the Cauchy-Riemann equations, and 
we obtain 

(6) A(E') = J J lf'(z) 12 dx dy. 

E 

The formulas (5) and (6) have important applications in the part of 
complex analysis that is frequently referred to as geometric function 
theory. 

3. LINEAR TRANSFORMATIONS 

Of all analytic functions the first-order rational functions have the simplest 
mapping properties, for they define mappings of the extended plane onto 
itself which are at the same time conformal and topological. The linear 
transformations have also very remarkable geometric properties, and for 
that reason their importance goes far beyond serving as simple examples of 
conformal mappings. The reader will do well to pay particular attention 
to this geometric aspect, for it will equip him with simple but very valua­
ble techniques. 

3.1. The Linear Group. We have already remarked in Chap. 2, Sec. 
1.4 that a linear fractional transformation 

(7) w = S(z) 

with ad - be rf 0 has an inverse 

z = S-1(w) 

az + b 
cz + d 

dw- b 
-cw +a 

The special values S( oo) = ajc and S( -djc) = oo can be introduced 
either by convention or as limits for z ____. oo and z ____. - d/ c. With the 
latter interpretation it becomes obvious that Sis a topological mapping of 
the extended plane onto itself, the topology being defined by distances on 
the Riemann sphere. 

For linear transformations we shall usually replace the notation S(z) 
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by Sz. The representation (7) is said to be normalized if ad - be = 1. 
It is clear that every linear transformation has two normalized represen­
tations, obtained from each other by changing the signs of the coefficients. 

A convenient way to express a linear transformation is by use of 
homogeneous coordinates. If we write z = zt/z2, w = wtfwz we find that 
w = Sz if 

(8) 

or, in matrix notation, 

W1 = az1 + bzz 
Wz = ez1 + dzz 

The main advantage of this notation is that it leads to a simple determina­
tion of a composite transformation w = S1Szz. If we use subscripts to 
distinguish between the matrices that correspond to 81, Sz it is immediate 
that sls2 belongs to the matrix product 

All linear transformations form a group. Indeed, the associative 
law (S1Sz)Sa = SI(SzSa) holds for arbitrary transformations, the identity 
w = z is a linear transformation, and the inverse of a linear transformation 
is linear. The ratios z1: z2 :;6 0:0 are the points of the complex projective 
line, and (8) identifies the group of linear transformations with the one­
dimensional projective group over the complex numbers, usually denoted 
by P(1,C). If we use only normalized representations, we can also iden­
tify it with the group of two-by-two matrices with determinant 1 (denoted 
SL(2,C)), except that there are two opposite matrices corresponding to the 
same linear transformation. 

We shall make no further use of the matrix notation, except for 
remarking that the simplest linear transformations belong to matrices of 
the form 

The first of these, w = z + a, is called a parallel translation. The second, 
w = kz, is a rotation if lkl = 1 and a homothetic transformation if k > 0. 
For arbitrary complex k :;6 0 we can set k = lkl · k/lkl, and hence w = kz 
can be represented as the result of a homothetic transformation followed 
by a rotation. The third transformation, w = 1/z, is called an inversion. 

If c :;6 0 we can write 

az + b be- ad a ---- +-· ez + d - c2(z + dje) c 
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and this decomposition shows that the most general linear transforma­
ion is composed by a translation, an inversion, a rotation, and a homo­
thetic transformation followed by another translation. If c = 0, the 
inversion falls out and the last translation is not needed. 

EXERCISES 

1. Prove that the reflection z -7 z is not a linear transformation. 

2. If 

z+2 
T1z = z + 3, 

z T2z = __ , 
z + 1 

find T1T2z, T2T1z and T11T2z. 

3. Prove that the most general transformation which leaves the origin 
fixed and preserves all distances is either a rotation or a rotation followed 
by reflexion in the real axis. 

4. Show that any linear transformation which transforms the real 
axis into itself can be written with real coefficients. 

3.2. The Cross Ratio. Given three distinct points z2, z3, Z4 in the 
extended plane, there exists a linear transformation S which carries them 
into 1, 0, oo in this order. If none of the points is oo, Swill be given by 

(9) 

respectively. 

Z - Za Z2 - Za 
Sz = --:---· 

Z- Z4 Z2- Z4 

the transformation reduces to 

z- Za __ , 
Z- Z4 

If T were another linear transformation with the same property, 
then ST-1 would leave 1, 0, oo invariant. Direct calculation shows that 
this is true only for the identity transformation, and we would have 
S = T. We conclude that S is uniquely determined. 

Definition 12. The cross ratio (z1,z2,za,z4) is the image of z1 under the 
linear transformation which carries z2,z3,z4 into 1, 0, oo. 

The definition is meaningful only if z2,z3,z4 are distinct. A conven­
tional value can be introduced as soon as any three of the points are 
distinct, but this is unimportant. 
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The cross ratio is invariant under linear transformations. In more 
precise formulation: 

Theorem 12. If z1, z2, za, Z4 are distinct points in the extended plane and T 
any linear transformation, then (Tzt,Tz2,Tz 3,Tz4) = (zt,Z2,za,z4). 

The proof is immediate, for if Sz = (z,z2,za,z4), then ST- 1 carries 
Tz2, Tza, Tz4 into 1, 0, oo. By definition we have hence 

(Tzt,Tz2,Tza,Tz4) = ST- 1(Tzt) = Szt = (zt,Z21Za,z4). 

With the help of this property we can immediately write down the 
linear transformation which carries three given points z1, z2, za to pre­
scribed positions w1, w2, wa. The correspondence must indeed be given by 

In general it is of course necessary to solve this equation with respect tow. 

Theorem 13. The cross ratio (zt,z2,za,z4) is real if and only 1j the four 
points lie on a circle or on a straight line. 

This is evident by elementary geometry, for we obtain 

and if the points lie on a circle this difference of angles is either 0 or ± 1r, 

depending on the relative location. 
For an analytic proof we need only show that the image of the real 

axis under any linear transformation is either a circle or a straight line. 
Indeed, Tz = (z,z2,z3,z4) is real on the image of the real axis under the 
transformation T- 1 and nowhere else. 

The values of w = T- 1z for real z satisfy the equation Tw = Tw. 
Explicitly, this condition is of the form 

aw + b 
cw + d 

By cross multiplication we obtain 

aw + 6 
cfi) +a 

(ac- ca)\w2\ + (ad-· cb)w + (be- da)w + bd- db= 0. 

If ac - ca = 0 this is the equation of a straight line, for under this con­
dition the coefficient ad - cb cannot also vanish. If ac - ca :;6 0 we can 


