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4 COMPLEX INTEGRATION 

1. FUNDAMENTAL THEOREMS 

Many important properties of analytic functions are very difficult 
to prove without use of complex integration. For instance, it is 
only recently that it became possible to prove, without resorting to 
complex integrals or equivalent tools, that the derivative of an 
analytic function is continuous, or that the higher derivatives 
exist. At present the integration-free proofs are, to say the least, 
much more difficult than the classical proofs. t 

As in the real case we distinguish between definite and indef­
inite integrals. An indefinite integral is a function whose deriva­
tive equals a given analytic function in a region; in many ele­
mentary cases indefinite integrals can be found by inversion of 
known derivation formulas. The definite integrals are taken over 
differentiable or piecewise differentiable arcs and are not limited 
to analytic functions. They can be defined by a limit process 
which mimics the definition of a real definite integral. Actu­
ally, we shall prefer to define complex definite integrals in terms 
of real integrals. This will save us from repeating existence 
proofs which are essentially the same as in the real case. N atu­
rally, the reader must be thoroughly familiar with the theory of 
definite integrals of real continuous functions. 

1.1. Line Integrals. The most immediate generalization of a 
real integral is to the definite integral of a complex function over 
a real interval. If f(t) = u(t) + iv(t) is a continuous function, 

t Without use of integration R. L. Plunkett proved the continuity of the 
derivative (Bull. Am. Math. Soc. 65, 1959). E. H. Connell and P. Porcelli 
proved the existence of all derivatives (Bull. Am. Math. Soc. 67, 1 961). Both 
proofs lean on a topological theorem due to G. T. Whyburn. 

101 
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defined in an interval (a,b), we set by definition 

(1) 

This integral has most of the properties of thfl real integral. In particu­
lar, if c = a + i{3 is a complex constant we obtain 

(2) 

for both members are equal to 

lab (au - {3v) dt + i lab (av + {3u) dt. 

When a ~ b, the fundamental inequality 

(3) 

holds for arbitrary complex f(t). To see this we choose c = e-i6 with a 
real () in (2) and find 

For () = arg lab f(t) dt the expression on the left reduces to the absolute 

value of the integral, and (3) results. t 
We consider now a piecewise differentiable arc 'Y with the equation 

z = z(t), a ~ t ~ b. If the function f(z) is defined and continuous on y, 

then f(z(t)) is also continuous and we can set 

(4) IJCz) dz = lab f(z(t) )z' (t) dt. 

This is our definition of the complex line integral of f(z) extended over the 
arc 'Y· In the right-hand member of (4), if z'(t) is not continuous through­
out, the interval of integration has to be subdivided in the obvious man­
ner. Whenever a line integral over an arc 'Y is considered, let it be tacitly 
understood that 'Y is piecewise differentiable. 

The most important property of the integral (4) is its invariance under 
a change of parameter. A change of parameter is determined by an 
increasing function t = t(r) which maps an interval a ~ r ~ {3 onto 
a ~ t ~ b; we assume that t(r) is piecewise differentiable. By the rule 

t ()is not defined if lab f dt = 0, but then there is nothing to prove. 
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for changing the variable of integration we have 

Jab f(z(t))z'(t) dt = J: f(z(t(r)))z'(t(r))t'(r) dr. 

But z'(t(r))t'(r) is the derivative of z(t(r)) with respect tor, and hence the 
integral ( 4) has the same value whether 'Y be represented by the equation 
z = z(t) or by the equation z = z(t(r)). 

In Chap. 3, Sec. 2.1, we defined the opposite arc -y by the equation 
z = z( -t), -b ~ t ~ -a. We have thus 

J_.J(z) dz = ~-~a f(z( -t))( -z'( -t)) dt, 

and by a change of variable the last integral can be brought to the form 

Jba f(z(t) )z' (t) dt. 

We conclude that 

(5) J _ _J(z) dz = - J.JCz) dz. 

The integral (4) has also a very obvious additive property. It is 
quite clear what is meant by subdividing an arc 'Y into a finite number of 
subarcs. A subdivision can be indicated by a symbolic equation 

'Y = 'Yl + ')'2 + ' · · + ')'n, 

and the corresponding integrals satisfy the relation 

(6) J f dz = J f dz + J f dz + · .. + J f dz. 
n ~ n 

'YI+'Y2+••• +'Yn 

Finally, the integral over a closed curve is also invariant under a shift 
of parameter. The old and the new initial point determine two subarcs 
y 1, /'2, and the invariance follows from the fact that the integral over 
'YJ + 'Y2 is equal to the integral over 'Y2 + y 1• 

In addition to integrals of the form (4) we can also consider line inte­
grals with respect to z. The most convenient definition is by double 
conjugation 

Using this notation, line integrals with respect to x or y can be introduced 
by 

J.Jdx = ~(J.Jdz + J.Jaz) 

J.J dy = 2~ (J.J dz- J.J dz} 
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With f = u + iv we find that the integral (4) can be written in the form 

(7) J..
1 

(u dx - v dy) + i J..r (u dy + v dx) 

which separates the real and imaginary part. 
Of course we could just as well have started by defining integrals of 

the form 

f-rp dx + q dy, 

in which case formula (7) would serve as definition of the integral (4). 
It is a matter of taste which one prefers. 

An essentially different line integral is obtained by integration with 
respect to arc length. Two notations are in common use, and the defini­
tion is 

(8) JJ ds = /)ldzl = JJCz(t))lz'(t)l dt. 

This integral is again independent of the choice of parameter. In con­
trast to (5) we have now 

J_Jidzl = /)ldzl 

while (6) remains valid in the same form. The inequality 

(9) J JJdz j ~ f-r lfl·ldzl 
is a consequence of (3). 

For f = 1 the integral (8) reduces to f-r ldzl which is by definition the 

length of "Y· As an example we compute the length of a circle. From 
the parametric equation z = z(t) = a + peit, 0 ~ t ~ 21r, of a full circle 
we obtain z'(t) = ipeit and hence 

r2-.- , I f2" 
}o lz (t) dt = }o p dt = 2?rp 

as expected. 

1.2. Rectifiable Arcs. The length of an arc can also be defined as the 
least upper bound of all sums 

(10) lz(tl) - z(to) I + lz(t2) - z(t1) I + · · · + lz(t.,) - z(tn-1) I 
where a = to < t1 < · · · < tn = b. If this least upper bound is finite 
we say that the arc is rectifiable. It is quite easy to show that piecewise 
differentiable arcs are rectifiable, and that the two definitions of length 
coincide. 
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Because lx(tk) - x(tk-1) I ~ lz(tk) - z(tk-1) I, ly(tk) - y(tk-1) I ~ 
lz(tk) - z(tk-1)1 and lz(tk) - z(tk-1)1 ~ lx(tk) - x(tk-1)1 + ly(tk) - y(tk-1)1 
it is clear that the sums (10) and the corresponding sums 

jx(t1) - x(to) I + 
IY(t1) - y(to) I + 

+ lx(tn) - x(tn-1)1 

+ ly(tn) - YCtn-1) I 
are bounded at the same time. When the latter sums are bounded, one 
says that the functions x(t) and y(t) are of bounded variation. An arc 
z = z(t) is rectifiable if and only if the real and imaginary parts of z(t) are of 
bounded variation. 

If 'Y is rectifiable and f(z) continuous on 'Y it is possible to define 
integrals of type (8) as a limit 

n 

j_Jds =lim l f(z(tk))lz(tk) - z(tk-t)l. 
k=1 

Here the limit is of the same kind as that encountered in the definition of 
a definite integral. 

In the elementary theory of analytic functions it is seldom necessary 
to consider arcs which are rectifiable, but not piecewise differentiable. 
However, the notion of rectifiable arc is one that every mathematician 
should know. 
1.3. Line Integrals as Functions of Arcs. General line integrals of 

the form J-r p dx + q dy are often studied as functions (or functionals) of 

the arc 'Y· It is then assumed that p and q are defined and continuous in 
a region !J and that 'Y is free to vary in !J. An important class of integrals 
is characterized by the property that the integral over an arc depends only 
on its end points. In other words, if "f1 and "f2 have the same initial point 

and the same end point, we require that J p dx + q dy = J p dx + q dy. 
'Yl 'Y2 

To say that an integral depends only on the end points is equivalent to 
saying that the integral over any closed curve is zero. Indeed, if 'Y is a 
closed curve, then 'Y and -'Y have the same end points, and if the integral 
depends only on the end points, we obtain 

and consequently J-r = 0. Conversely, if "f1 and '¥2 have the same end 

points, then 7 1 - "f2 is a closed curve, and if the integral over any closed 

curve vanishes, it follows that J = J · 
'Yl 'YS 
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FIG. 4-1 

The following theorem gives a necessary and sufficient condition 
under which a line integral depends only on the end points. 

Theorem I. The line integral II p dx + q dy, defined inn, depends only 

on the end points of 'Y if und only if there exists a function U(x,y) in n 
with the partial derivatives au;ax = p, au jay= q. 

The sufficiency follows at once, for if the condition is fulfilled we can 
write, with the usual notations, 

f fb(au au ) fbd 
'Y p dx + q dy = }a ax x 1(t) + ay y

1(t) dt = }a dt U(x(t),y(t)) dt 

= U(x(b),y(b)) - U(x(a),y(a)), 

and the value of this difference depends only on the end points. To 
prove the necessity we choose a fixed point (xo,Yo) c: n, join it to (x,y) 
by a polygon y, contained in n, whose sides are parallel to the coordinate 
axes (Fig. 4-1) and define a function by 

U(x,y) = J'Y p dx + q dy. 

Since the integral depends only on the end points, the function is well 
defined. Moreover, if we choose the last segment of 'Y horizontal, we 
can keep y constant and let x vary without changing the other segments. 
On the last segment we can choose x for parameter and obtain 

U (x,y) = J"' p(x,y) dx + const., 

the lower limit of the integral being irrelevant. From this expression it 
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follows at once that au jax = p. In the same way, by choosing the last 
segment vertical, we can show that au jay = q. 

It is customary to write dU = (aU ;ax) dx + (aU jay) dy and to say 
that an expression p dx + q dy which can be written in this form is an 
exact differential. Thus an integral depends only on the end points if and 
only if the integrand is an exact differential. Observe that p, q and U can 
be either real or complex. The function U, if it exists, is uniquely deter­
mined up to an additive constant, for if two functions have the same 
partial derivatives their difference must be constant. 

When isf(z) dz = f(z) dx + if(z) dy an exact differential? According 
to the definition there must exist a function F(z) in !J with the partial 
derivatives 

aF(z) = f(z) 
ax 

aF(z) = 'f( ) 
ay 2 z. 

If this is so, F(z) fulfills the Cauchy-Riemann equation 

aF .aF 
- = -2-' 
ax ay' 

since f(z) is by assumption continuous (otherwise ]./ dz would not be 

defined) F(z) is analytic with the derivative f(z) (Chap. 2, Sec. 1.2). 

The integral J-r f dz, with continuous f, depends only on the end points of 

'Y if and only iff is the derivative of an analytic function in !:2. 
Under these circumstances we shall prove later that f(z) is itself 

analytic. 
As an immediate application of the above result we find that 

(11) { (z - a)n dz = 0 

for all closed curves 'Y, provided that the integer n is ~ 0. In fact, 
(z- a)n is the derivative of (z- a)n+1j(n + 1), a function which is 
analytic in the whole plane. If n is negative, but ~ -1, the same 
result holds for all closed curves which do not pass through a, for in the 
complementary region of the point a the indefinite integral is still analytic 
and single-valued. For n = -1, (11) does not always hold. Consider 
a circle C with the center a, represented by the equation z = a + peu, 
0 ~ t ~ 21r. We obtain 

~ dz /r2.- . d 2 . --- = 2 t = ?r2. a z- a o 
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This result shows that it is impossible to define a single-valued branch of 
log (z - a) in an annulus Pl < lz - a\ < p2• On the other hand, if the 
closed curve 'Y is contained in a half plane which does not contain a, the 
integral vanishes, for in such a half plane a single-valued and analytic 
branch of log (z - a) can be defined. 

EXERCISES 

1. Compute 

J..
1
xdz 

where 'Y is the directed line segment from 0 to 1 + i. 
2. Compute 

r xdz 
}Jz/=r ' 

for the positive sense of the circle, in two ways: first, by use of a parameter, 

and second, by observing that x = ~ (z + z) = ~ ( z + ~)on the circle. 

3. Compute 
r dz 

}/z/=2 z2 - 1 

for the positive sense of the circle. 
4. Compute 

r lz- 11 . ldzl. 
}Jz/ =1 

5. Suppose that f(z) is analytic on a closed curve 'Y (i.e., f is analytic 
in a region that contains "f). Show that 

JJ<z)f'(z) dz 

is purely imaginary. (The continuity of f'(z) is taken for granted.) 
6. Assume that f(z) is analytic and satisfies the inequality lf(z) - 11 

< 1 in a region !J. Show that 

f f'(z) dz = 0 
'Y f(z) 

for every closed curve in !J. (The continuity of f'(z) is taken for granted.) 
7. If P(z) is a polynomial and C denotes the circle lz- ai = R, what 

is the value of Jo P(z) dz? Answer: -21riR 2P'(a). 
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8. Describe a set of circumstances under which the formula 

/,log z dz = 0 

is meaningful and true. 

1.4. Cauchy's Theorem for a Rectangle. There are several forms of 
Cauchy's theorem, but they differ in their topological rather than in their 
analytical content. It is natural to begin with a case in which the topo­
logical considerations are trivial. 

We consider, specifically, a rectangle R defined by inequalities 
a ~ x ~ b, c ~ y ~ d. Its perimeter can be considered as a simple closed 
curve consisting of four line segments whose direction we choose so that R 
lies to the left of the directed segments. The order of the vertices is thus 
(a,c), (b,c), (b,d), (a,d). We refer to this closed curve as the boundary 
curve or contour of R, and we denote it by aR. t 

We emphasize that R is chosen as a closed point set and, hence, is not 
a region. In the theorem that follows we consider a function which is 
analytic on the rectangle R. We recall to the reader that such a func­
tion is by definition defined and analytic in an open set which contains R. 

The following is a preliminary version of Cauchy's theorem: 

Theorem 2. 

(12) 

If the function f(z) is analytic on R, then 

r f(z) dz = 0. }aR 

The proof is based on the method of bisection. Let us introduce the 
notation 

TJ(R) = { f(z) dz }aR 

which we will also use for any rectangle contained in the given one. If 
R is divided into four congruent rectangles RC 1>, RC2>, RC 3>, RC 4>, we find 
that 

(13) 

for the integrals over the common sides cancel each other. It is impor­
tant to note that this fact can be verified explicitly and does not make 
illicit use of geometric intuition. Nevertheless, a reference to Fig. 4-2 is 
helpful. 

t This is standard notation, and we shall use it repeatedly. Note that by earlier 
convention aR is also the boundary of R as a point set (Chap. 3, Sec. 1.2). 
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--- ---
~ Ro> u R<2> t -- -- ---
~ R<3l u R(4l t -- -

FIG. 4-2. Bisection of rectangle. 

It follows from (13) that at least one of the rectangles R<kl, k = 1, 2, 3, 
4, must satisfy the condition 

I7J(R<kl)l ~ ii7J(R)I. 

We denote this rectangle by R1; if several R<kl have this property, the 
choice shall be made according to some definite rule. 

This process can be repeated indefinitely, and we obtain a sequence of 
nested rectangles R J R1 J R2 J · · · J Rn J · · · with the property 

I7J(Rn) I ~ ii7J(Rn-l) I 
and hence 

(14) 

The rectangles Rn converge to a point z* c: R in the sense that Rn will 
be contained in a prescribed neighborhood lz - z*l < o as soon as n is 
sufficiently large. First of all, we choose o so small that f(z) is defined 
and analytic in lz - z*l < o. Secondly, if E > 0 is given, we can choose 
o so that 

I f(z) - f(z*) - f'(z*) I < e 
z- z* 

or 

(15) lf(z) - f(z*) - (z- z*)f'(z*)l < clz- z*l 

for lz - z*l < o. We assume that o satisfies both conditions and that 
Rn is contained in lz - z*l < o. 

We make now the observation that 

!. dz = 0 
8Rn 

!. z dz = 0. 
8Rn 
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These trivial special cases of our theorem have already been proved in 
Sec. 1.1. We recall that the proof depended on the fact that 1 and z are 
the derivatives of z and z2/2, respectively. 

By virtue of these equations we are able to write 

1/(Rn) = J [f(z) - f(z*) - (z - z*)f'(z*)] dz, 
8Rn 

and it follows by (15) that 

(16) I11CRn) I ~ e: J lz - z*l·ldzl. 
8Rn 

In the last integral lz - z *I is at most equal to the length dn of the 
diagonal of Rn. If Ln denotes the length of the perimeter of Rn, the 
integral is hence ;2;: dnLn. But if d and L are the corresponding quantities 
for the original rectangle R, it is clear that dn = 2-nd and Ln = 2-nL. 
By (16) we have hence 

and comparison with (14) yields 

\1/(R)\ ~ dL E. 

Since e is arbitrary, we can only have 11(R) = 0, and the theorem is proved. 
This beautiful proof, which could hardly be simpler, is due to "E. 

Goursat who discovered that the classical hypothesis of a continuous 
f'(z) is redundant. At the same time the proof is simpler than the earlier 
proofs inasmuch as it leans neither on double integration nor on differentia­
tion under the integral sign. 

The hypothesis in Theorem 2 can be weakened considerably. We 
shall prove at once the following stronger theorem which will find very 
important use. 

Theorem 3. Let f(z) be analytic on the set R' obtained from a rectangle R 
by omitting a finite number of interior points fi· If it is true that 

limz-->r1(z - tN(z) = 0 
for all j, then 

f f(z) dz = 0. 
aR 

It is sufficient to consider the case of a single exceptional point r, for 
evidently R can be divided into smaller rectangles which contain at most 
one rJ• 

We divide R into nine rectangles, as shown in Fig. 4-3, and apply 
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I 
I 
I 
I 

-------o~ -------

-------~ ~-------

1 I 
I I 
I I 
I I 

FIG. 4-3 

Theorem 2 to all but the rectangle Ro in the center. If the corresponding 
equations (12) are added, we obtain, after cancellations, 

(17) f fdz = J fdz. aR aRo 

If E > 0 we can choose the rectangle Ro so small that 

\f(z)\ ~ \z ~ r\ 

on aRo. By (17) we have thus 

If fdzl < cJ ~-aR = aRo \z - s\ 

If we assume, as we may, that R 0 is a square of center t, elementary esti­
mates show that 

f __E:L_ < 8 
aRo \z- t\ · 

Thus we obtain 

I JaR f dz I < 8E, 

and since E is arbitrary the theorem follows. 
We observe that the hypothesis of the theorem is certainly fulfilled if 

f(z) is analytic and bounded on R'. 

1.5. Cauchy's Theorem in a Disk. It is not true that the integral 
of an analytic function over a closed curve is always zero. 
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r dz = 27ri 
}a z- a 

when C is a circle about a. In order to make sure that the integral 
vanishes, it is necessary to make a special assumption concerning the 
region n in which f(z) is known to be analytic and to which the curve 'Y is 
restricted. We are not yet in a position to formulate this condition, and 
for this reason we must restrict attention to a very special case. In 
what follows we assume that n is an open disk lz - zol < p to be de -
noted by D.. 

Theorem 4. If f(z) is analytic in an open disk D., then 

(18) /JCz) dz = 0 

for every closed curve 'Y in D.. 

The proof is a repetition of the argument used in proving the second 
half of Theorem 1. We define a function F(z) by 

(19) F(z) = JJdz 

where u consists of the horizontal line segment from the center (xo,Yo) 
to (x,y0) and the vertical segment from (x,y 0) to (x,y); it is immediately 
seen that aF jay = if(z). On the other hand, by Theorem 2 u can be 
replaced by a path consisting of a vertical segment followed by a hori­
zontal segment. This choice defines the same function F(z), and we 
obtain aF j ax = f(z). Hence F(z) is analytic in D. with the derivative 
f(z), and f(z) dz is an exact differential. 

Clearly, the same proof would go through for any region which con­
tains the rectangle with the opposite vertices zo and z as soon as it con­
tains z. A rectangle, a half plane, or the inside of an ellipse all have 
this property, and hence Theorem 4 holds for any of these regions. By 
this method we cannot, however, reach full generality. 

For the applications it is very important that the conclusion of 
Theorem 4 remains valid under the weaker condition of Theorem 3. We 
state this as a separate theorem. 

Theorem 5. Let f(z) be analytic in the region D.' obtained by omitting a 
finite number of points Si from an open disk D.. If .f(z) satisfies the con­
dition limz-->i;(Z - ?:N(z) = 0 for all j, then (18) holds for any closed 
curve 'Y in D.'. 
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FIG. 4-4 

The proof must be modified, for we cannot let rr pass through the 
exceptional points. Assume first that no ?;1 lies on the lines x = xo and 
y = y 0• It is then possible to avoid the exceptional points by letting rr 
consist of three segments (Fig. 4-4). By an obvious application of 
Theorem 3 we find that the value of F(z) in (18) is independent of the 
choice of the middle segment; moreover, the last segment can be either 
vertical or horizontal. We conclude as before that F(z) is an indefinite 
integral of .f(z), and the theorem follows. 

In case there are exceptional points on the lines x = x 0 and y = Yo 
the reader will easily convince himself that a similar proof can be carried 
out, provided that we use four line segments in the place of three. 

2. CAUCHY'S INTEGRAL FORMULA 

Through a very simple application of Cauchy's theorem it becomes 
possible to represent an analytic function f(z) as a line integral in which 
the variable z enters as a parameter. This representation, known as 
Cauchy's integral formula, has numerous important applications. Above 
all, it enables us to study the local properties of an analytic function in 
great detail. 

2.1. The Index of a Point with Respect to a Closed Curve. As a 
preliminary to the derivation of Cauchy's formula we must define a notion 
which in a precise way indicates how many times a closed curve winds 
around a fixed point not on the curve. If the curve is piecewise differ­
entiable, as we shall assume without serious loss of generality, the defi­
nition can be based on the following lemma: 



COMPLEX INTEGRATION 115 

Lemma 1. If the piecewise differentiable closed curve 'Y does not pas& 
through the point a, then the value of the integral 

is a multiple of 21ri. 

This lemma may seem trivial, for we can write 

f ~ = J d log (z- a) = J d log lz- ai + i J d arg (z- a). 
-rZ- a -r -r -r 

When z describes a closed curve, log lz - ai returns to its initial value and 
arg (z - a) increases or decreases by a multiple of 21r. This would seem 
to imply the lemma, but more careful thought shows that the reasoning is 
of no value unless we define arg (z - a) in a unique way. 

The simplest proof is computational. If the equation of 'Y is z = z(t), 
a ~ t ~ {3, let us consider the function 

h(t) = Jt z'(t) dt. 
a z(t) - a 

It is defined and continuous on the closed interval [a,{3], and it has the 
derivative 

h' (t) = z' (t) 
z(t) - a 

whenever z' (t) is continuous. From this equation it follows that the 
derivative of e-h<t>(z(t) - a) vanishes except perhaps at a finite number of 
points, and since this function is continuous it must reduce to a constant. 
We have thus 

eh<t> = z(t) - a. 
z(a) -a 

Since z(f3) = z(a) we obtain eh<!3> = 1, and therefore h(f3) must be a multiple 
of 27ri. This proves the lemma. 

We can now define the index of the point a with respect to the curve y 
by the equation 

1 J dz n(7,a) = -
2 

. --· 
1rt -rz-a 

With a suggestive terminology the index is also called the winding number 
of 'Y with respect to a. 

It is clear that n( -'Y,a) = -n('Y,a). 
The following property is an immediate consequence of Theorem 4: 
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(i) If 'Y lies inside of a circle, then n( 'Y,a) = 0 for all points a outside of 
the same circle. 

As a point set 'Y is closed and bounded. Its complement is open and 
can be represented as a union of disjoint regions, the components of the 
complement. We shall say, for short, that 'Y determines these regions. 
If the complementary regions are considered in the extended plane, there 
is exactly one which contains the point at infinity. Consequently, 'Y 
determines one and only one unbounded region. 

(ii) As a function of a the index n( 'Y,a) is constant in each of the regions 
determined by "/, and zero in the unbounded region. 

Any two points in the same region determined by 'Y can be joined by a 
polygon which does not meet 'Y· For this reason it is sufficient to prove 
that n('Y,a) = n('Y,b) if 'Y does not meet the line segment from a to b. 
Outside of this segment the function (z- a)/(z- b) is never real and 
~ 0. For this reason the principal branch of log [(z - a)/(z- b)] is 
analytic in the complement of the segment. Its derivative is equal to 
(z - a)- 1 - (z - b)-I, and if 'Y does not meet the segment we must have 

----- dz= o· f ( 1 1 ) 
-yZ-a z-b ' 

hence n('Y,a) = n('Y,b). If lal is sufficiently large, 'Y is contained in a 
disk lzl < p < lal and we conclude by (i) that n('Y,a) = 0. This proves 
that n('Y,a) = 0 in the unbounded region. 

We shall find the case n('Y,a) = 1 particularly important, and it is 
desirable to formulate a geometric condition which leads to this conse­
quence. For simplicity we take a = 0. 

Lemma 2. Let z1, z2 be two points on a closed curve 'Y which does not 
pass through the origin. Denote the subarc from Z1 to Z2 in the direction of 
the curve by "!1, and the subarc from z2 to Z1 by "f2. Suppose that Z1 lies in 
the lower half plane and Z2 in the upper half plane. If "11 does not meet the 
negative real axis and '¥2 does not meet the positive real axis, then n( "/,0) = 1. 

For the proof we draw the half lines L1 and L2 from the origin through 
Zt and z2 (Fig. 4-5). Let s1, s2 be the points in which Lt, L2 intersect a 
circle C about the origin. If C is described in the positive sense, the 
arc C1 from s1 to s2 does not intersect the negative axis, and the arc C2 
from s2 to s1 does not intersect the positive axis. Denote the directed 
line segments from z1 to s1 and from z2 to s2 by o1, o2. Introducing the 
closed curves Ut = "/1 + 02 - Ct - OJ, 0"2 = "/2 + Ot - c2 - 02 we find 
that n('Y,O) = n(C,O) + n(u1,0) + n(u2,0) because of cancellations. But 
u1 does not meet the negative axis. Hence the origin belongs to the 
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FIG. 4-5 

unbounded region determined by u1, and we obtain n(u1,0) = 0. For a 
similar reason n(u2,0) = 0, and we conclude that n('y,O) = n(C,O) = 1. 

*EXERCISES 

These are not routine exercises. They serve to illustrate the topo­
logical use of winding numbers. 

1. Give an alternate proof of Lemma 1 by dividing 'Y into a finite 
number of subarcs such that there exists a single-valued branch of 
arg (z - a) on each subarc. Pay particular attention to the compact­
ness argument that is needed to prove the existence of such a subdivision. 

2. It is possible to define n("(,a) for any continuous closed curve 'Y 
that does not pass through a, whether piecewise differentiable or not. For 
this purpose 'Y is divided into subarcs "/1, .•. , 'Yn, each contained 
in a disk that does not include a. Let uk be the directed line segment 
from the initial to the terminal point of "/k, and set u = u1 + · · · + un. 
We define n('Y,a) to be the value of n(u,a). 

To justify the definition, prove the following: 
(a) the result is independent of the subdivision; 
(b) if 'Y is piecewise differentiable the new definition is equivalent to 

the old; 
(c) the properties (i) and (ii) of the text continue to hold. 
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0 

FIG. 4-6. Part of the Jordan cnrve theorem. 

3. The Jordan curve theorem asserts that every Jordan curve in the 
plane determines exactly two regions. The notion of winding number 
leads to a quick proof of one part of the theorem, namely that the comple­
ment of a Jordan curve 'Y has at least two components. This will be so if 
there exists a point a with n("/,a) ~ 0. 

We may assume that Re z > 0 on "/, and that there are points Zt, 
z2 c: 'Y with Im z1 < 0, Im z2 > 0. These points may be chosen so that 
there are no other points of 'Yon the line segments from 0 to z1 and from 0 
to z2• Let "/1 and "f2 be the arcs of 'Y from Zt to z2 (excluding the end 
points). 

Let u1 be the closed curve that consists of the line segment from 0 to 
Zt followed by 'Yt and the segment from z2 to 0, and let u2 be constructed in 
the same way with "12 in the place of "'t· Then u 1 - u2 = 'Y or --y. 

The positive real axis intersects both 'Yt and "1 2 (why?). Choose the 
notation so that the intersection x 2 farthest to the right is with "12 (Fig. 4-6). 

Prove the following: 
(a) n(u1,x2) = 0, hence n(ut,z) = 0 for z c: 'Y2i 
(b) n(u1,x) = n(u2,x) = 1 for small x > 0 (Lemma 2); 
(c) the first intersection x1 of the positive real axis with 'Y lies on 'Yti 
(d) n(u2,x1) = 1, hence n(u2,z) = 1 for z c: 'Yti 
(e) there exists a segment of the positive real axis with one end point 

on "/1, the other on "1 2, and no other points on 'Y· The points x between 
the end points satisfy n( 'Y ,x) = 1 or -1. 

2.2. The Integral Formula. Let f(z) be analytic in an open disk D.. 

Consider a closed curve 'Y in D. and a point a c: D. which does not lie on 'Y· 
We apply Cauchy's theorem to the function 

F(z) = f(z) - f(a). 
z-a 
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This function is analytic for z r!'- a. For z = a it is not defined, but it 
satisfies the condition 

lim F(z)(z- a) = lim (f(z) - f(a)) = 0 
z->a z->a 

which is the condition of Theorem 5. We conclude that 

f f(z) - f(a) dz = 0. 
'Y z- a 

This equation can be written in the form 

f f(z) dz = f(a) J ~' 
-yZ-a -yz-a 

and we observe that the integral in the right-hand member is by defi­
nition 27ri · n('Y,a). We have thus proved: 

Theorem 6. Suppose that f(z) is analytic in an open disk D., and let 'Y 
be a closed curve in D.. For any point a not on 'Y 

(20) 1 J f(z) dz n(")',a) · f(a) = -
2 

. --, 
71'2 'Y z- a 

where n(")',a) is the index of a with respect to 'Y· 

In this statement we have suppressed the requirement that a be a 
point in D.. We have done so in view of the obvious interpretation of 
the formula (20) for the case that a is not in D.. Indeed, in this case 
n('Y,a) and the integral in the right-hand member are both zero. 

It is clear that Theorem 6 remains valid for any region Q to which 
Theorem 5 can be applied. The presence of exceptional points s1 is per­
mitted, provided none of them coincides with a. 

The most common application is to the case where n('Y,a) = 1. We 
have then 

(21) f(a) = ~ J f(z) dz, 
2m 'YZ- a 

and this we interpret as a representation formula. Indeed, it permits us 
to compute f(a) as soon as the values of f(z) on 'Y are given, together 
with the fact that f(z) is analytic in D.. In (21) we may let a take differ­
ent values, provided that the order of a with respect to 'Y remains equal 
to 1. We may thus treat a as a variable, and it is convenient to change 
the notation and rewrite (21) in the form 

(22) f(z) = ~~ f(S) ds. 
2m -yr-z 
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It is this formula which is usually referred to as Cauchy's integral 
formula. We must remember thflt it is valid only when n('Y,z) = 1, and 
that we have proved it only when f(z) is analytic in a disk. 

EXERCISES 

1. Compute 

2. Compute 

I P' 
;dz. 

lzl =1 

I dz 
z2 + 1 

1•1=2 

by decomposition of the integrand in partial fractions. 
3. Compute 

I ldzl 
lz- ai2 

1•1 =p 

under the condition lal ~ p. Hint: make use of the equations zz = p2 and 

ldzl = - ip dz. 
z 

2.3. Higher Derivatives. The representation formula (22) gives us an 
ideal tool for the study of the local properties of analytic functions. In 
particular we can now show that an analytic function has derivatives of 
all orders, which are then also analytic. 

We consider a function f(z) which is analytic in an arbitrary region fl. 
To a point a en we determine a o-neighborhood A contained inn, and in 
A a circle C about a. Theorem 6 can be applied to f(z) in A. Since 
n(C,a) = 1 we have n(C,z) = 1 for all points z inside of C. For such z 
we obtain by (22) 

f(z) = _!_. J f(r) d( 
2n ct-z 

Provided that the integral can be differentiated under the sign of 
integration we find 

(23) f'(z) = _!_ f f<n ds 
2-ni c (s - z) 2 

and 

(24) 
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If the differentiations can be justified, we shall have proved the existence 
of all derivatives at the points inside of C. Since every point in Q lies 
inside of some such circle, the existence will be proved in the whole 
region n. At the same time we shall have obtained a convenient repre­
sentation formula for the derivatives. 

For the justification we could either refer to corresponding theorems in 
the real case, or we could prove a general theorem concerning line inte­
grals whose integrand depends analytically on a parameter. Actually, 
we shall prove only the following lemma which is all we need in the 
present case: 

Lemma 3. Suppose that <p(t) is continuous on the arc 'Y· Then the 
function 

is analytic in each of the regions determined by 'Y, and its derivative is 
F~(z) = nFn+I(z). 

We prove first that F1(z) is continuous. Let Zo be a point not on 'Y, 
and choose the neighborhood \z - zo\ < o so that it does not meet 'Y· 
By restricting z to the smaller neighborhood \z - zo\ < o/2 we attain 
that \S - z\ > o/2 for all r e 'Y· From 

f "'m dr Fl(z) - Fl(zo) = (z- Zo) 'Y cr- z)(r- zo) 

we obtain at once 

\F1(z) - FI(zo)\ < \z- zo\ · ~ f-r \'P\\dr\, 

and this inequality proves the continuity of F 1(z) at z0• 

From this part of the lemma, applied to the function <p(r) I cr - Zo)' 
we conclude that the difference quotient 

F\(z) - F I(zo) = J 'P(r) dr 
Z - Zo 'Y (r - z) (r - Zo) 

tends to the limit Fz(zo) as z -t z0. Hence it is proved that F~(z) = Fz(z). 
The general case is proved by induction. Suppose we have shown 

that F~_1 (z) = (n- l)Fn(z). From the identity 

Fn(z) - Fn(zo) 

= [ J "' dr - J "' dr J + (z - zo) J "' dr 
'Y (t - z)n-l(r - Zo) 'Y (r - Zo)n 'Y (r - z)n(r - Zo) 



122 COMPLEX ANALYSIS 

we can conclude that Fn(z) is continuous. Indeed, by the induction 
hypothesis, applied to <p(S) I (r - zo), the first term tends to zero for 
z ----7 z0, and in the second term the factor of z - zo is bounded in a 
neighborhood of zo. Now, if we divide the identity by z - zo and let z 
tend to z0, the quotient in the first term tends to a derivative which by 
the induction hypothesis equals (n - 1)F n+ 1(z0). The remaining factor 
in the second term is continuous, by what we have already proved, and 
has the limit Fn+1(z0). Hence F~(zo) exists and equals nFn+1(zo). 

It is clear that Lemma 3 is just what is needed in order to deduce 
(23) and (24) in a rigorous way. We have thus proved that an analytic 
function has derivatives of all orders which are analytic and can be 
represented by the formula (24). 

Among the consequences of this result we like to single out two classi­
cal theorems. The first is known as Morera's theorem, and it can be 
stated as follows: 

If f(z) is defined and continuous in a region n, and if J
7 

f dz = 0 for 

all closed curves 'Y in n, then f(z) is analytic in n. 
The hypothesis implies, as we have already remarked in Sec. 1.3, that 

f(z) is the derivative of an analytic function F(z). We know now that 
f(z) is then itself analytic. 

A second classical result goes under the name of Liouville's theorem: 
A function which is analytic and bounded in the whole plane must reduce 

to a constant. 
For the proof we make use of a simple estimate derived from (24). 

Let the radius of C be r, and assume that lf(S) I ~ M on C. If we apply 
(24) with z = a, we obtain at once 

(25) lf<nl(a)l ~ Mnh·-n. 

For Liouville's theorem we need only the case n = 1. The hypothesis 
means that lf(S) I ~ M on all circles. Hence we can let r tend to oo, 
and (25) leads to f'(a) = 0 for all a. We conclude that the function is 
constant. 

Liouville's theorem leads to an almost trivial proof of the fundamental 
theorem of algebra. Suppose that P(z) is a polynomial of degree > 0. If 
P(z) were never zero, the function 1/P(z) would be analytic in the whole 
plane. We know that P(z) ----7 oo for z ----7 oo, and therefore 1/ P(z) tends 
to zero. This implies boundedness (the absolute value is continuous on 
the Riemann sphere and has thus a finite maximum), and by Liouville's 
theorem 1/ P(z) would be constant. Since this is not so, the equation 
P(z) = 0 must have a root. 

The inequality (25) is known as Cauchy's estimate. It shows above 


