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satisfies the hypothesis of the original theorem. Hence we obtain 
\Sf(T-1r)\ ~ \r\, or \Sf(z)\ ~ \Tz\. Explicitly, this inequality can be 
written in the form 

(36) I 
M(f(z) - wo) I' ~ I R(z - zo) I· 
M 2 - wof(z) - R 2 - zoz 

EXERCISES 

and 

1. Show by use of (36), or directly, that \f(z)\ ~ 1 for \z\ ~ 1 implies 

lf'(z)\ < 1 . 
(1 - \f(z)\ 2

) = 1 - \z\ 2 

2. If f(z) is analytic and Im f(z) ~ 0 for Im z > 0, show that 

\f(z) - f(zo) I < \z - zo\ 
l!Cz) - tCzo) 1 = lz - zol 

\f'(z) I <! 
Im f(z) = y 

(z = x + iy). 

3. In Ex. 1 and 2, prove that equality implies that f(z) is a linear 
transformation. 

4. Derive corresponding inequalities if f(z) maps \zl < 1 into the 
upper half plane. 

5. Prove by use of Schwarz's lemma that every one-to-one conformal 
mapping of a disk onto another (or a half plane) isgivenbyalinear 
transformation. 

*6. If 'Y is a piecewise differentiable arc contained in \z\ < 1 the integral 

f \dzl 
'Y 1 - \z\ 2 

is called the non~rnclidean length (or hyperbolic length) of 'Y· Show that 
a.n analytic function f(z) with \f(z)\ < 1 for \zl < 1 maps every 'Yon an 
arc with smaller or equal noneuclidean length. 

Deduce that a linear transformation of the unit disk onto itself pre­
serves noneuclidean lengths, and check the result by explicit computation. 

*7. Prove that the arc of smallest noneuclidean length that joins two 
given points in the unit disk is a circular arc which is orthogonal to the unit 
circle. (Make use of a linear transformation that carries one end point 
to the origin, the other to a point on the positive real axis.) 

The shortest noneuclidean length is called the noneuclidean distance 
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between the end points. Derive a formula for the noneuclidean distance 
between z1 and z2• Answer: 

*8. How should noneuclidean length in the upper half plane be defined? 

4. THE GENERAL FORM OF CAUCHY'S THEOREM 

rn our preliminary treatment of Cauchy's theorem and the integral 
formula we considered only the case of a circular region. For the pur­
pose of studying the local properties of analytic functions this was quite 
adequate, but from a more general point of view we cannot be satisfied 
with a result. which is so obviously incomplete. The generalization can 
proceed in two directions. For one thing we can seek to characterize 
the regions in which Cauchy's theorem has universal validity. Secondly, 
we can consider an arbitrary region and look for the curves 'Y for which 
the assertion of Cauchy's theorem is true. 

4.1. Chains tind Cycles. In the first place we must generalize the 
notion of line integral. To this end we examine the equation 

(37) J f dz = J f dz + J f dz + · · · + J .f dz 
~ n n 'Yl+'Y•+ ... +'Y• 

which is valid when 'Yl, "{2, •.. , 'Yn form a subdivision of the arc 'Y· 

Since the right-hand member of (37) has a meaning for any finite collec­
tion, nothing prevents us from considering an arbitrary formal sum 
'Yt + 'Y2 + · · · + 'Yn, which need not be an arc, and we define the cor­
responding integral by means of equation (37). Such formal sums of 
arcs are called chains. It is clear that nothing is lost and much may be 
gained by considering line integrals over arbitrary chains. 

Just as there is nothing unique about the way in which an arc can be 
subdivided, it is clear that different formal sums can represent the same 
chain. The guiding principle is that two chains should be considered 
identical if they yield the same line integrals for all functions f. If this 
principle is analyzed, we find that the following operations do not change 
the identity of a chain: (1) permutation of two arcs, (2) subdivision of 
an arc, (3) fusion of subarcs to a single arc, (4) reparametrization of an 
arc, (5) cancellation of opposite arcs. On this basis it would be easy to 
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formulate a logical equivalence relation which defines the identity of 
chains in a formal manner. Inasmuch as the situation does not involve 
any logical pitfalls, we shall dispense with this formalization. 

The sum of two chains is defined in the obvious way by juxtaposition. 
It is clear that the additive property (37) of line integrals remains valid 
for arbitrary chains. When identical chains are added, it is convenient 
to denote the sum as a multiple. With this notation every chain can be 
written in the form 

(38) 

where the a1 are positive integers and the 'YJ are all different. For opposite 
arcs we are allowed to write a(- 'Y) = - a'Y and continue the reduction of 
(38) until no two "fj are opposite. The coefficients will be arbitrary 
integers, and terms with zero coefficients can be added at will. The last 
device enables us to express any two chains in terms of the same arcs, and 
their sum is obtained by adding corresponding coefficients. The zero 
chain is either an empty sum or a sum with all coefficients equal to zero. 

A chain is a cycle if it can be represented as a sum of closed curves. 
Very simple combinatorial considerations show that a chain is a cycle if 
and only if in any representation the initial and end points of the indi­
vidual arcs are identical in pairs. Thus it is immediately possible to tell 
whether a chain is a cycle or not. 

In the applications we shall consider chains which are contained in a 
given open set n. By this we mean that the chains have a representation 
by arcs in n and that only such representations will be considered. It is 
clear that all theorems which we have heretofore formulated only for 
closed curves in a region are in fact valid for arbitrary cycles in a region. 
In particular, the integral of an exact differential over any cycle is zero. 

The index of a point with respect to a cycle is defined in exactly the 
same way as in the case of a single closed curve. It has the same proper­
ties, and in addition we can formulate the obvious but important additive 
law expressed by the equation n('Y1 + "{2,a) = n('Y1,a) + n('Y2,a). 

4.2. Simple Connectivity. There is little doubt that all readers will 
know what we mean if we speak about a region without holes. Such 
regions are said to be simply connected, and it is for simply connected 
regions that Cauchy's theorem is universally valid. The suggestive 
language we have used cannot take the place of a mathematical c~efi­

nition, but fortunately very little is needed to make the term precise. 
Indeed, a region without holes is obviously one whose complement con­
sists of a single piece. We are thus led to the following definition: 
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Definition I. A region is simply connected if its complement with respect 
to the extended plane is connected. 

At this point we warn the reader that this definition is not the one 
that is commonly accepted, the main reason being that our definition 
cannot be used in more than two real dimensions. In the course of our 
work we shall find, however, that the property expressed by Definition 1 is 
equivalent to a number of other properties, more or less equally important. 
One of these states that any closed curve can be contracted to a point, and 
this condition is usually chosen as definition. Our choice has the advan­
tage of leading very quickly to the essential results in complex integration 
theory. 

It is easy to see that a disk, a half plane, and a parallel strip are 
simply connected. The last example shows the importance of taking the 
complement with respect to the extended plane, for the complement of the 
strip in the finite plane is evidently not connected. The definition can be 
applied to regions on the Riemann sphere, and this is evidently the most 
symmetric situation. For our purposes it is nevertheless better to agree 
that all regions lie in the finite plane unless the contrary is explicitly 
stated. According to this convention the outside of a circle is not simply 
connected, for its complement consists of a closed disk and the point 
at infinity. 

Theorem 14. A region n is simply connected if and only if n(y,a) = 0 
for all cycles 'Yin n and all points a which do not belong to n. 

This alternative condition is also very suggestive. It states that a 
closed curve in a simply connected region cannot wind around any point 
which does not belong to the region. It seems quite evident that this 
condition is not fulfilled in the case of a region with a hole. 

The necessity of the condition is almost trivial. Let 'Y be any cycle in 
n. If the complement of n is connected, it must be contained in one of 
the regions determined by "{, and inasmuch as oo belongs to the comple­
ment this must be the unbounded region. Consequently n( "{,a) = 0 for 
all finite points in the complement. 

For the precise proof of the sufficiency an explicit construction is 
needed. We assume that the complement of n can be represented as the 
union A U B of two disjoint closed sets. One of these sets contains oo, 
and the other is consequently bounded; let A be the bounded set. The 
sets A and B have a shortest distance o > 0. Cover the whole plane 
with a net of squares Q of side < ojv/2. We are free to choose the net 
so that a certain point a e A lies at the center of a square. The boundary 
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FIG. 4-9. Curve with index 1. 

curve of Q is denoted by aQ; we assume explicitly that the squares Q 
are closed and that the interior of Q lies to the left of the directed lih.e 
segments which make up aQ. 

Consider now the cycle 

(39) 

where the sum ranges over all squares Qi in the net which have a point 
in common with A (Fig. 4-9). Because a is contained in one and only 
one of these squares, it is evident that n('Y,a) = 1. Furthermore, it is 
clear that 'Y does not meet B. But if the cancellations are carried out, 
it is equally clear that 'Y does not meet A. Indeed, any side which meets 
A is a common side of two squares included in the sum (39), and since 
the directions are opposite the side does not appear in the reduced 
expression of 'Y· Hence 'Y is contained in a, and our theorem is proved. 

We remark now that Cauchy's theorem is certainly not valid for 
regions which are not simply connected. In fact, if there is a cycle 'Yin a 
such that n('Y,a) ~ 0 for some a outside of a, then 1/(z - a) is analytic in 
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a while its integral 

f ---..!!!___ = 2Trin( ')',a) ~ 0. 
'YZ- a 

4.3. Homology. The characterization of simple connectivity by Theo­
rem 14 singles out a property that is common to all cycles in a simply 
connected region, but which a cycle in an arbitrary region or open set may 
or may not have. This property plays an important role in topology and 
therefore has a special name. 

Definition 2. A cycle 'Y in an open set a is said to be homologous to zero 
with respect to a if n('Y,a) = 0 for all points a in the complement of a. 

In symbols we write 'Y ""'0 (mod a). When it is clear to what open 
set we are referring, a need not be mentioned. The notation 'Yl ""' ')' 2 
shall be equivalent to 'Yl - 'Y2 ""' 0. Homologies can be added and sub­
tracted, and 'Y ""' 0 (mod a) implies 'Y ""' 0 (mod a') for all a' ::) a. 

Again, our terminology does not quite agree with standard usage. 
It was Emil Artin who discovered that the characterization of homology 
by vanishing winding numbers ties in precisely with what is needed for 
the general version of Cauchy's theorem. This idea has led to a re­
markable simplification of earlier proofs. 

4.4. The General Statement of Cauchy's Theorem. The definitive 
form of Cauchy's theorem is now very easy to state. 

Theorem 15. If f(z) is analytic in a, then 

(40) j'Yf(z) dz = 0 

for every cycle 'Y which is homologous to zero in a. 

In a different formulation, we are claiming that if 'Y is such that (40) 
holds for a certain collection of analytic functions, namely those of the 
form 1/(z - a) with a not in a, then it holds for all analytic functions in a. 

In combination with Theorem 14 we have the following corollary: 

Corollary I. If f(z) is analytic in a simply connected region a, then (40) 
holds for all cycles 'Y in a. 

Before proving the theorem, we make an observation which ties up 
with the considerations in Section 1.3. As pointed out in that connection, 
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the validity of ( 40) for all closed curves 'Y in a region means that the line 
integral off dz is independent of the path, or that f dz is an exact differ­
ential. By Theorem 1 there is then a single-valued analytic function F(z) 
such that F'(z) = f(z) (the pleonastic term "single-valued" is used for 
emphasis only). In a simply connected region every analytic function 
is thus a derivative. 

A particular application of this fact occurs very frequently: 

Corollary 2. If f(z) is analytic and 7"' 0 in a simply connected region Q, 

then it is possible to define single-valued analytic branches of log f(z) and 
-\Y f(z) in Q. 

In fact, we know that there exists an analytic function F(z) in Q such 
that F'(z) = f'(z)/f(z). The function j(z)e-F<z> has the derivative zero 
and is therefore a constant. Choosing a point z0 e Q and one of the in­
finitely many values log f(z 0), we find that 

eF(z)-F(zol+log !(zo) = f(z), 

and consequently we can set log f(z) = F(z) - F(zo) + log f(zo). To 
define -\Yf(z) we merely write it in the form exp ((1/n) log f(z)). 

4.5. Proof of Cauchy's Theorem. t We begin with a construction that 
parallels the one in the proof of Theorem 14. Assume first that Q is 
bounded, but otherwise arbitrary. Given o > 0, we cover the plane by a 
net of squares of side o, and we denote by Qh j E J, the closed squares in 
the net which are contained in Q; because Q is bounded the set J is finite, 
and if o is sufficiently small it is not empty. The union of the squares 
Qh j E J, consists of closed regions whose oriented boundaries make up the 
cycle 

Clearly, r, is a sum of oriented line segments which are sides of exactly 
one Q1. We denote by n, the interior of the union V Q1 (Fig. 4-10). 

Let 'Y be a cycle which is homologous to zero in Q; we choose o so 
small that 'Y is contained in n,. Consider a point r E Q - n,. It belongs 
to at least one Q which is not a Qj. There is a point roE Q which is not in Q. 

It is possible to join rand .lo by a line segment which lies in Q and therefore 
does not meet n,. Since [', considered as a point set, is contained in n. it 
follows that n( 'Y,r) = n( 'Y,r 0) = 0. In particular, n( [',.\) = 0 for all 
points r on r •. 

t This proof follows a suggestion by A. F. Beardon, who has kindly permitted its 
use in this connection. 
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FIG. 4-10 

Suppose now that f is analytic in rl. 
say, then 

If z lies in the interior of Qio• 

~ J f(t) dt = {f(z) 
27r~ aQj r - z 0 

if j = io 

if j ~ .fo 

and hence 

(41) f(z) =~I f(t) dt_ 
27r~ ro r - z 

Since both sides are continuous functions of z, this equation will hold for 
all z € rl;. 

As a consequence we obtain 

(42) I f(z) dz = I (~I f(t) dt) dz. 
'Y 'Y 27r~ r; r - z 

The integrand of the iterated integral is a continuous function of both 
integration variables, namely the parameters of r, and 'Y· Therefore, the 
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order of integration can be reversed. In other words, 

17 (2~1· Ira ~cr~ a~) dz = Ira C~i 17 r ~ z) 1m ar 
On the right the inside integral is -n('Y,r) = 0. Hence the integral (42) is 
zero, and we have proved the theorem for bounded rl. 

If r2 is unbounded, we replace it by its intersection rl' with a disk 
lz I < R which is large enough to contain 'Y. Any point a in the complement 
of rl' is either in the complement of r2 or lies outside the disk. In either 
case n('Y,a) = 0, so that 'Y ,....__ 0 (mod rl'). The proof is applicable to rl', 
and we conclude that the theorem is valid for arbitrary rl. 

4.6. Locally Exact Differentials. A differential p dx + q dy is said to 
be locally exact in r2 if it is exact in some neighborhood of each point in rl. 
It is not difficult to see (Ex. 1, p. 148) that this is so if and only if 

(43) 1
7 

p dx + q dy = 0 

for all 'Y aR where R is a rectangle contained in rl. This condition is 
certainly fulfilled if p dx + q dy = f(z) dz with f analytic in rl, and by 
Theorem 15, (43) is then true for any cycle 'Y ,....__ 0 (mod rl). 

Theorem 16. If p dx + q dy is locally exact in rl, then 

1
7 

p dx + q dy = 0 

for every cycle 'Y ,....__ 0 in rl. 

There does not seem to be any direct way of modifying the proof of 
Theorem 15 so that it would cover this more general situation. We shall 
therefore end up by presenting two different proofs of Cauchy's general 
theorem. As in the earlier editions of this book, we shall follow Artin's 
proof of Theorem 16. The separate proof of Cauchy's theorem has been 
included because of its special appeal. 

For the proof of Theorem 16 we show first that 'Y can be replaced by a 
polygon cr with horizontal and vertical sides such that every locally exact 
differential has the same integral over cr as over 'Y. This property implies, 
in particular, n(cr,a) = n('Y,a) for a in the complement of rl, and hence 
cr ,....__ 0. It will thus be sufficient to prove the theorem for polygons with 
sides parallel to the axes. 

Let the distance from 'Y to 
z(t), the function z(t) is 
We determine o > 0 so 

We construct cr as an approximation of 'Y. 
the complement of r2 be p. If 'Y is given by z 
uniformly continuous on the closed interval [a,b]. 
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that lz(t) - z(t') I < p for It - t'l < o and divide [a,b] into subintervals of 
length < o. The corresponding aubarcs 'Yi of 'Y have the property that 
each is contained in a disk of radius p which lies entirely in rl. The end 
points of 'Yi can be joined within that disk by a polygon cr; consisting of 
a horizontal and a vertical segment. Since the differential is exact in 
the disk, 

J.i pdx + q dy J'Y, p dx + q dy, 

and if cr l:cr;, we obtain 

J. p dx + q dy = /,., p dx + q dy, 

as desired. 
To continue the proof we extend all segments that make up cr to 

infinite lines (Fig. 4-11). They divide the plane into some finite rectangles 
R; and some unbounded regions R; which may be regarded as infinite 
rectangles. 

(44) 

Choose a point a; from the interior of each R;, and form the cycle 

cro = ' n(cr,a;) aR; 
1....! 

where the sum ranges over all finite rectangles; the coefficients n(cr,a;) are 
well determined, for no a; lies on cr. In the discussion that follows we 
shall also make use of points a; chosen from the interior of each R~·. 

It is clear that n(aR;,ak) = 1 if k = i and 0 if k ;;"" i; similarly, 
n(aR;,a;) = 0 for all .f. With this in mind it follows from (44) that 
n(cro,a;) = n(cr,a;) and n(cro,a;) = 0. It is also true that n(cr,a;) = 0, for 
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the interior of R~ belongs to the unbounded region determined by cr. 
We have thus shown that n(cr - cr 0,a) = 0 for all a = a; and a = a;. 

From this property of cr - cro we wish to conclude that cr 0 is identical 
with cr up to segments that cancel against each other. Let cr;k be the 
common side of two adjacent rectangles R;,Rk; we choose the orientation 
so that R; lies to the left of cr;k. Suppose that the reduced expression of 
cr - cr 0 contains the multiple ccr;k. Then the cycle cr - cr 0 - caR; does not 
contain cr;k, and it follows that a; and ak must have the same index with 
respect to this cycle. On the other hand, these indices are -c and 0, 
respectively; we conclude that c = 0. The same reasoning applies if 
cr;i is the common side of a finite rectangle R; and an infinite rectangle R;. 
Thus every side of a finite rectangle occurs with coefficient zero in cr - cro, 
proving that 

(45) cr = L n(cr,a;) aR;. 

We prove now that all the R; whose corresponding coefficient n(cr,a;) 
is different from zero are actually contained in a. Suppose that a point a 
in the closed rectangle R; were not in a. Then n(cr,a) = 0 because cr ,...._, 0 
(mod a). On the other hand, the line segment between a and a; does not 
intersect cr, and hence n(cr,a;) = n(cr,a) = 0. We conclude by the local 
exactness that the integral of p dx + q dy over any aR; which occurs 
effectively in ( 45) is zero. Consequently, 

and Theorem 16 is proved. 

4.7. Multiply Connected Regions. A region which is not simply con­
nected is called multiply connected. More precisely, a is said to have 
the finite connectivity n if the complement" of a has exactly n components 
and infinite connectivity if the complement has infinitely many com­
ponents. In a less precise but more suggestive language, a region of 
connectivity n arises by punching n holes in the Riemann sphere. 

In the case of finite connectivity, let A 1, A2, ... , An be the com­
ponents of the complement of a, and assume that <XJ belongs to An. If 
'Y is an arbitrary cycle in a, we can prove, just as in Theorem 14, that 
n("(,a) is constant when a varies over any one of the components A; and 
that n('Y,a) = 0 in An. Moreover, duplicating the construction used in 
the proof of the same theorem we can find cycles "(;, i = 1, ... , n -1, 
such that n("f;,a) = 1 for a E A; and n("(;,a) = 0 for all other points out­
side of a. 
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For a given cycle 'Yin 0, let c; be the constant value of n('Y,a) for 
a E A;. We find that any point outside of 0 has the index zero with 
respect to the cycle 'Y - C1'Y1 - C2'Y2 - · · · - Cn-1'Yn-1· In other words, 

'Y""' C1'Y1 + C2'Y2 + • • • + Cn-1'Yn-1• 

Every cycle is thus homologous to a linear combination of the cycles 
'Y1, 'Y2, ... , 'Yn-1. This linear combination is uniquely determined, for 
if two linear combinations were homologous to the same cycle their 
difference would be a linear combination which is homologous to zero. 
But it is clear that the cycle C1'Y1 + C2'Y2 + · · · + Cn-1'Yn-1 winds c, 
times around the points in A,; hence it cannot be homologous to zero 
unless all the c; vanish. 

In view of these circumstances the cycles 'Y1, '¥2, ... , 'Yn-1 are said 
to form a homology basis for the region 0. It is not the only homology 
basis, but by an elementary theorem in linear algebra we may conclude 
that every homology basis has the same number of elements. We find 
that every region with a finite homology basis has finite connectivity, 
and the number of basis elements is one less than the connectivity. 

By Theorem 18 we obtain, for any analytic function f(z) in n, 

f f dz = C1 J f dz + C2 J f dz + · · · + Cn-1 J f dz. 
'Y 'Yl ')'2 ')'n-1 

The numbers 

P; = J fdz 
'Yi 

depend only on the function, and not on 'Y· They are called modules of 
periodicity of the differential f dz, or, with less accuracy, the periods of 
the indefinite integral. We have found that the integral of f(z) over any 
cycle is a linear combination of the periods with integers as coefficients, 
and the integral along an arc from zo to z is determined up to additive 
multiples of the periods. The vanishing of the periods is a necessary 
and sufficient condition for the existence of a single-valued indefinite 
integral. 

In order to illustrate, let us consider the extremely simple case of an 
annulus, defined by r1 < lzl < r2• The complement has the components 
izl ~ r1 and lzl ~ r2; we include the degenerate cases r1 = 0 anJ r2 = oo. 
The annulus is doubly connected, and a homology basis is formed by 
any circle lzl = r, r1 < r < r2. If this circle is denoted by C, any cycle 
in the annulus satisfies 'Y ""'nC where n = n(y,O). The integral of an 
analytic function over a cycle is a multiple of the single period 
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whose value is of course independent of the radius r. 

EXERCISES 

1. Prove without use of Theorem 16 that p dx + q dy is locally exact 
in r2 if and only if 

f p dx + qdy = 0 an 

for every rectangle R C r2 with sides parallel to the axes. 

2. Prove that the region obtained from a simply connected region by 
removing m points has the connectivity m + 1, and find a homology basis. 

3. Show that the bounded regions determined by a closed curve are 
simply connected, while the unbounded region is doubly connected. 

4. Show that single-valued analytic branches of log z, za and zz can be 
defined in any simply connected region which does not contain the origin. 

5. Show that a single-valued analytic branch of V1 - z2 can be 
defined in any region such that the points ± 1 are in the same component 
of the complement. What are the possible values of 

f dz 

V1- z2 

over a closed curve in the region? 

5. THE CALCULUS OF RESIDUES 
The results of the preceding section have shown that the determination 
of line integrals of analytic functions over closed curves can be reduced 
to the determination of periods. Under certain circumstances it turns 
out that the periods can be found without or with very little computation. 
We are thus in possession of a method which in many cases permits us to 
evaluate integrals without resorting to explicit calculation. This is of 
great value for practical purposes as well as for the further development 
of the theory. 

In order to make this method more systematic a simple formalism, 
known as the calculus of residues, was introduced by Cauchy, the founder 
.. f compl1x integration theory. From the point of view adopted in this 
booE: kcl use of residues amounts essentially to an application of the 
results proved in Sec. 4 under particularly simple circumstances. 

5.1. The Residue Theorem. Our first task is to review earlier results 
in the light of the more general theorems of Sec. 4. Clearly, all results 
which were derived as consequences of Cauchy's theorem for a disk 
remain valid in arbitrary regions for all cycles which are homologous 
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to zero. For instance, and this application is typical, Cauchy's integral 
formula can now be expressed in the following form: 

If f(z) is analytic in a region a, then 

n(,,a)f(a) = ___!_. J f(z) dz 
2m 'Y z - a 

for every cycle I' which is homologous to zero in a. 
The proof is a repetition of the proof of Theorem 6. In this con­

nection we point out that there is of course no longer any need to give 
a separate proof of Theorem 15 in the presence of removable singularities. 
Indeed, our discussion of the local behavior has already shown that all 
removable singularities can simply be ignored. 

We turn now to the discussion of a functionf(z) which is analytic in a 
region a except for isolated singularities. For a first orientation, let us 
assume that there are only a finite number of singular points, denoted by 
a 1, az, ... , an. The region obtained by excluding the points ai will be 
denoted by a'. 

To each ai there exists a oi > 0 such that the doubly connected region 
0 < lz - ail < o1 is contained in a'. Draw a circle C1 about a1 of radius 
<oh and let 

(46) Pi = J f(z) dz 
C; 

be the corresponding period of f(z). The particular function 1/(z - ai) 
has the period 21ri. Therefore, if we set Ri = Pi/2Tri, the combination 

f ( z) - _____!!_j_ 
z- ai 

has a vanishing period. The constant Ri which produces this result is 
called the residue of f(z) at the point ai. We repeat the definition in the 
following form: 

Definition 3. The residue of f(z) at an isolated singularity a is the unique 
complex number R which makesf(z) - R/(z- a) the derivative of a single­
valued analytic function in an annulus 0 < iz - ai < o. 

It is helpful to use such self-explanatory notations as R = Res,~af(z). 
Let I' be a cycle in a' which is homologous to zero with respect to a. 

Then I' satisfies the homology 

I' ""' [ n(,,a1)C1 
i 

with respect to a'; indeed, we can easily verify that the points a1 as well 
as all points outside of a have the same order with respect to both cycles. 
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By virtue of the homology we obtain, with the notation (46), 

J..J dz = L n('Y,ai)P;, 
j 

and since Pi = 21ri · R; finally 

2~i J..J dz = L n('Y,ai)Ri. 
i 

This is the residue theorem, except for the restrictive assumption that 
there are only a finite number of singularities. In the general case we 
need only prove that n('Y,a;) = 0 except for a finite number of points a;, 
for then the same proof can be applied. The assertion follows by routine 
reasoning. The set of all points a with n('Y,a) = 0 is open and contains 
all points outside of a large circle. The complement is consequently a. 
compact set, and as such it cannot contain more than a finite number of 
the isolated points ai. Therefore n('Y,ai) 7"' 0 only for a finite number of 
the singularities, and we have proved: 

Theorem 17. Let f(z) be analytic except for isolated sing1darities ai in a 
region a. Then 

(47) 2~i J..JCz) dz = L n("(,a;) Resz=a; f(z) 
j 

for any cycle 'Y which is homologous to zero in a and does not pass through 
any of the points ai. 

In the applications it is frequently the case that each n("(,a1) is either 
0 or 1. Then we have simply 

2~i J.JCz) dz = L Resz=a1 f(z) 
i 

where the sum is extended over all singularities enclosed by 'Y· 
The residue theorem is of little value unless we have at our disposal a 

simple procedure to determine the residues. For essential singularities 
there is no such procedure of any practical value, and thus it is not sur· 
prising that the residue theorem is comparatively seldom used in the 
presence of essential singularities. With respect to poles the situation is 
entirely different. We need only look at the expansion 

f(z) = Bh(z - a)-h + · · · + B1(z - a)-1 + 1p(z) 

to recognize that the residue equals the coefficient B1. Indeed, when the 
term B 1(z - a)-1 is omitted, the remainder is evidently a derivative. 
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Since the principal part at a pole is always either given or can be easily 
found, we have thus a very simple method for finding the residues. 

For simple poles the method is even more immediate, for then the 
residue equals the value of the function (z - a)f(z) for z = a. For 
instance, let it be required to find the residues of the function 

(z - a)(z- b) 

at the poles a and b 7"' a. The residue at a is obviously eaj(a - b), and 
the residue at b is eb / (b - a). If b = a, the situation is slightly more 
complicated. We must then expand e• by Taylor's theorem in the form 
ez = ea + ea(z- a) + f2(z)(z- a)2. Dividing by (z - a) 2 we find that 
the residue of ezj(z - a) 2 at z = a is ea. 

Remark. In presentations of Cauchy's theorem, the integral formula 
and the residue theorem which follow more classical lines, there is no 
mention of homology, nor is the notion of index used explicitly. Instead, 
the curve 'Y to which the theorems are applied is supposed to form the 
complete boundary of a subregion of n, and the orientation is chosen so 
that the subregion lies to the left of n. In rigorous texts considerable 
effort is spent on proving that these intuitive notions have a precise 
meaning. The main objection to this procedure is the necessity to allot 
time and attention to rather delicate questions which are peripheral in 
comparison with the main issues. 

With the general point of view that we have adopted it is still possible, 
and indeed quite easy, to isolate the classical case. All that is needed is 
to accept the following definition: 

Definition 4. A cycle 'Y is said to bound the reg1"on n 1j and only if n( 'Y,a) 
is defined and equal to 1 for all points a € n and either undefined or equal to 
zero for all points a not inn. 

If 'Y bounds n, and if n + 'Y is contained in a larger region n', then it 
is clear that 'Y is homologous to zero with respect to n'. The following 
statements are therefore trivial consequences of Theorems 15 and 17: 

If 'Y bounds n and f(z) is analytic on the set n + 'Y, then 

j_J(z) dz = 0 

and 

f(z) = ____!___. J f(t) dt 
2m 'Y r - z 

for all z € n. 
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lf f(z) is analytic on Q + 'Y ercept for isolated singularities in Q, then 

2~i JJCz) dz = l Resz~aJ(z) 
j 

where the sum ranges over the singularities ai € Q. 

We observe that a cycle 'Y which bounds Q must contain the set 
theoretic boundary of Q. Indeed, if z0 lies on the boundary of Q, then 
every neighborhood of zo contains points from Q and points not in Q. 

If such a neighborhood were free from points of 'Y, n('Y,z) would be defined 
and constant in the neighborhood. This contradicts the definition, and 
hence every neighborhood of zo must meet 'Yi since 'Y is closed, z0 must 
lie on 'Y· 

The converse of the preceding statement is not true, for a point on 'Y 

may well have a neighborhood which does not meet Q. Normally, one 
would try to choose 'Y so that it is identical with the boundary of Q, but 
for Cauchy's theorem and related considerations this assumption is not 
needed. 

5.2. The Argument Principle. Cauchy's integral formula can be con­
sidered as a special case of the residue theorem. Indeed, the function 
f(z)l(z- a) has a simple pole at z = a with the residue f(a), and when 
we apply ( 47), the integral formula results. 

Another application of the residue theorem occurred in the proof of 
Theorem 10 which served to determine the number of zeros of an analytic 
function, For a zero of order h we can write .f(z) = (z - a)hfh(z), with 
!h(a) ,r= 0, and obtain f'(z) = h(z- a)h~Ijh(z) + (z- a)hf~(z). Conse­
quently f'(z)lf(z) = hl(z- a)+ f~(z)lfh(z), and we see that !'If has a 
simple pole with the residue h. In the formula (32) this residue is 
accounted for by a corresponding repetition of terms. 

We can now generalize Theorem 10 to the case of a meromorphic 
function. Iff has a pole of order h, we find by the same calculation as 
above, with - h replacing h, that f' If has the residue -h. The follow­
ing theorem results: 

Theorem 18. If f(z) is meromorphic in Q with the zeros ai and the poles 
bk, then 

(48) 

for every cycle 'Y which is homologous to zero in Q and does not pass through 
any of the zeros or poles. 
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It is understood that multiple zeros and poles have to be repeated as 
many times as their order indicates; the sums in (48) are finite. 

Theorem 18 is usually referred to as the argument principle. The 
name refers to the interpretation of the left-hand member of (48) as n(r,O) 
where r is the image cycle of 'Y· If r lies in a disk which does not con­
tain the origin, then n(r,O) = 0. This observation is the basis for the 
following corollary, known as Rouche's theorem: 

Corollary. Let 'Y be homologous to zero in Q and such that n('Y,z) is either 
0 or 1 for any point z not on 'Y· Suppose that f(z) and g(z) are analytic in Q 

and satisfy the inequality lf(z) - g(z) I < lf(z) I on "f. Then f(z) and g(z) 
have the same number of zeros enclosed by 'Y· 

The assumption implies that f(z) and g(z) are zero-free on 'Y· More­
over, they satisfy the inequality 

I g(z) - 11 < 1 
f(z) 

on 'Y· The values of F(z) = g(z)/f(z) on 'Y are thus contained in the 
open disk of center 1 and radius 1. When Theorem 18 is applied to 
F(z), we have thus n(r,O) = 0, and the assertion follows. 

A typical application of Rouche's theorem would be the following. 
Suppose that we wish to find the number of zeros of a function f(z) in 
the disk lzl ;2; R. Using Taylor's theorem we can write 

f(z) = Pn-t(z) + znfn(z) 

where P n-t is a polynomial of degree n - 1. For a suitably chosen n 
it may happen that we can prove the inequality Rnlfn(z)l < IPn-t(z)l on 
lzl = R. Then f(z) has the same number of zeros in lzl ;2; R as Pn-t(z), 
and this number can be determined by approximate solution of the poly­
nomial equation P n- 1(z) = 0. 

Theorem 18 can be generalized in the following manner. If g(z) is 

analytic in Q, then g(z) j(~} has the residue hg(a) at a zero a of order h 

and the residue -hg(a) at a pole. We obtain thus the formula 

(49) 1 J f'(z) _ ~ ~ 
21ri 

7 
g(z) f(z) dz- 'J n('Y,ai)g(ai) - 4: n('Y,bk)g(bk). 

This result is important for the study of the inverse function. With 
the notations of Theorem 11 we know that the equation f(z) = w, 
\w - wo\ < o has n roots zi(w) in the disk lz - zo\ < e. If we apply 
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(49) with g(z) = z, we obtain 

(50) ~ 1 J f'(z) 
f.., zi(w) = 27ri f(z) _ w z dz. 
j=! Jz-zoJ=• 

For n = 1 the inverse functionj- 1(w) can thus be represented explicitly by 

1 J f'(z) 
j-I(w) = 21ri f(z) - w z dz. 

Jz-zoJ =• 

If (49) is applied with g(z) = zm, equation (50) is replaced by 

~ 1 J f'(z) 
f.., Z;(w)m = 27ri f(z) - W zm dz. 

j = 1 Jz- zoJ = • 

The right-hand member represents an analytic function of w for lw - w0 I < 
o. Thus the power sums of the roots zi(w) are single-valued analytic 
functions of w. But it is well known that the elementary symmetric 
functions can be expressed as polynomials in the power sums. Hence 
they are also analytic, and we find that the zi(w) are the roots of a poly­
nomial equation 

zn + a1(w)zn-t + · · · + an--t(w)z + an(w) = 0 

whose coefficients are analytic functions of w in Jw - wol < o. 

EXERCISES 

L How many roots does the equation z7 - 2z5 + 6z3 - z + 1 0 
have in the disk lzl < 1? Hint: Look for the biggest term when lzl 1 
and apply Rouche's theorem. 

2. How many roots of the equation z4 - 6z + 3 = 0 have their modu­
lus between 1 and 2? 

3. How many roots of the equation z4 + 8z3 + 3z2 + 8z + 3 = 0 lie 
in the right half plane? Hint: Sketch the image of the imaginary axis 
and apply the argument principle to a large half disk. 

5.3. Evaluation of Definite Integrals. The calculus of residues pro­
vides a very efficient tool for the evaluation of definite integrals. It is 
particularly important when it is impossible to find the indefinite inte­
gral explicitly, but even if the ordinary methods of calculus can be applied 
the use of residues is frequently a laborsaving device. The fact that the 
calculus of residues yields complex rather than real integrals is no dis­
advantage, for clearly the evaluation of a complex integral is equivalent 
to the evaluation of two definite integrals. 
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There are, however, some serious limitations, and the method is far 
from infallible. In the first place, the integrand must be closely con­
nected with some analytic function. This is not very serious, for usually 
we are only required to integrate elementary functions, and they can all 
be extended to the complex domain. It is much more serious that the 
technique of complex integration applies only to closed curves, while a 
real integral is always extended over an interval. A special device must 
be used in order to reduce the problem to one which concerns integration 
over a closed curve. There are a number of ways in which this can be 
accomplished, but they all apply under rather special circumstances. 

The technique can be learned at the hand of typical examples, but even­
complete mastery does not guarantee success. 

1. All integrals of the form 

(51) /
0

2
" R(cos e, sin 8) dO 

where the integrand is a rational function of cos (} and sin (} can be easily 
evaluated by means of residues. Of course these integrals can also be 
computed by explicit integration, but this technique is usually very 
laborious. It is very natural to make the substitution z = ei8 which 
immediately transforms (51) into the line integral 

It remains only to determine the residues which correspond to the poles 
of the integrand inside the unit circle. 

As an example, let us compute 

(" d(} 
}o a+ coso' a> 1. 

This integral is not extended over (0,27r), but since cos (} takes the same 
values in the intervals (0,1r) and (1r,21r) is is clear that the integral from 
0 to 1r is one-half of the integral from 0 to 21r. Taking this into account 
we find that the integral equals 

. J dz 
-~ z2 + 2az + 1 

izl =1 

The denominator can be factored into (z - a)(z - {3) with 

a= -a-:-va2 -1, {3= -a-ya2 -l. 

Evidently \a\ < 1, \{3\ > 1, and the residue at a is 1/(a - {3). The value 
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of the integral is found to be 1r/Va2 - 1. 
2. An integral of the form 

J_"'., R(x) dx 

converges if and only if in the rational function R(x) the degree of the 
denominator is at least two units higher than the degree of the numerator, 
and if no pole lies on the real axis. The standard procedure is to inte­
grate the complex function R(z) over a closed curve consisting of a line 
segment (- p,p) and the semicircle from p to - p in the upper half plane. 
If p is large enough this curve encloses all poles in the upper half plane, 
and the corresponding integral is equal to 21ri times the sum of the 
residues in the upper half plane. Asp----> <XJ obvious estimates show that 
the integral over the semicircle tends to 0, and we obtain 

(52) 

J _"'., R(x) dx = 21ri I Res R(z). 
y>O 

3. The same method can be applied to an integral of the form 

J :., R(x)eix dx 

whose real and imaginary parts determine the important integrals 

(53) J _"'., R(x) cos x dx, J _"'., R(x) sin x dx. 

Since \ei'\ = e-Y is bounded in the upper half plane, we can again con­
clude that the integral over the semicircle tends to zero, provided that 
the rational function R(z) has a zero of at least order two at infinity. We 
obtain 

J _"'., R(x)eix dx = 21ri I Res R(z)ei•. 
y>O 

It is less obvious that the same result holds when R(z) has only a 
simple zero at infinity. In this case it is not convenient to use semi­
circles. For one thing, it is not so easy to estimate the integral over the 
semicircle, and secondly, even if we were successful we would only have 
proved that the integral 

over a symmetric interval has the desired limit for p ~ oo. In reality 
we are of course required to prove that 

J x, R(x)eix dx 
-x, 
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has a limit when X 1 and X 2 tend independently to oo. In the earlier 
examples this question did not arise because the convergence of the inte­
gral was assured beforehand. 

For the proof we integrate over the perimeter of a rectangle with the 
vertices X 2, X2 + iY, -X1 + iY, -X1 where Y > 0. As soon as X1, 
X 2 and Y are sufficiently large, this rectangle contains all the poles in 
the upper half plane. Under the hypothesis \zR(z) \ is bounded. Hence 
the integral over the right vertical side is, except for a constant factor, 

less than 

J: e-u f~ < ; 2 Joy e-u dy. 

The last integral can be evaluated explicitly and is found to be < 1. 
Hence the integral over the right vertical side is less than a constant 
times 1/X2, and a corresponding result is found for the left vertical side. 
The integral over the upper horizontal side is evidently less than 
e-Y(X1 + X 2)/Y multiplied with a constant. For fixed X1, X2 it tends 
to 0 as Y ----> oo, and we conclude that 

where A denotes a constant. This inequality proves that 

J _"'"' R(x)eix dx = 27ri L Res R(z)eiz 
y>O 

under the sole condition that R( oo) = 0. 
In the discussion we have assumed, tacitly, that R(z) has no poles on 

the real axis since otherwise the integral (52) has no meaning. How­
ever, one of the integrals (53) may well exist, namely, if R(z) has simple 
poles which coincide with zeros of sin x or cos x. Let us suppose, for 
instance, that R(z) has a simple pole at z = 0. Then the second inte­
gral (53) has a meaning and calls for evaluation. 

We use the same method as before, but we use a path which avoids 
the origin by following a small semicircle of radius o in the lower half 
plane (Fig. 4-12). It is easy to see that this closed curve encloses the poles 
in the upper half plane, the pole at the origin, and no others, as soon as 
X 1, X 2, Y are sufficiently large and o is sufficiently small. Suppose that 
the residue at 0 is B, so that we can write R(z)eiz = B/z + R 0(z) where 
Ro(z) is analytic at the origin. The integral of the first term over the 
semicircle is !riB, while the integral of the second term tends to 0 with 8. 
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0 
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FIG. 4-12 

It is clear that we are led to the result 

~ J _-"'8 + J
8

"' R(x)ei" dx = 21ri [ l Res R(z)ei• + iB} 
y>O 

The limit on the left is called the Cauchy principal value of the integral; 
it exists although the integral itself has no meaning. On the right-hand 
side we observe that one-half of the residue at 0 has been included; this 
is as if one-half of the pole were counted as lying in the upper half plane. 

In the general case where several poles lie on the real axis we obtain 

pr.v. J _"'"' R(x)eix dx = 27ri l Res R(z)ei• + 1ri l Res R(z)ei• 
y>O y=O 

where the notations are self-explanatory. It is an essential hypothesis 
that all the poles on the real axis be simple, and as before we must 
assume that R( <XJ) = 0. 

As the ~implest example we have 

f "' eix . 
pr. v. - dx = 1r~. 

-«> X 

Separating the real and imaginary part we observe that the real part of 
the equation is trivial by the fact that the integrand is odd. In the 
imaginary part it is not necessary to take the principal value, and since 
the integrand is even we find 

( "' sin X dx = !. 
}o x 2 

We remark that integrals containing a factor cosn x or sinn x can be 
evaluated by the same technique. Indeed, these factors can be written 
as linear combinations of terms cos mx and sin mx, and the corresponding 
integrals can be reduced to the form (52) by a change of variable: 
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J"" R(x)eimx dx = _!_ J"" R (_:;__) ei"' dx. 
-oo m -oo m 

4. The next category of integrals have the form 

Jo"" x"'R(x) dx 

where the exponent a is real and may be supposed to lie in the interval 
0 < a < 1. For convergence R(z) must have a zero of at least order two 
at oo and at most a simple pole at the origin. 

The new feature is the fact that R(z)z"' is not single-valued. This, 
however, is just the circumstance which makes it possible to find the 
integra! from 0 to oo. 

The simplest procedure is to start with the substitution x = t2 which 
transforms the integral into 

2 /o"" t2"'+ 1R(t2
) dt. 

For the function z2"' we may choose the branch whose argument lies 
between -1ra and 37ra; it is well defined and analytic in the region 
obtained by omitting the negative imaginary axis. As long as we avoid 
the negative imaginary axis, we can apply the residue theorem to the func­
tion z2"'+ 1R(z2). We use a closed curve consisting of two line segments 
along the positive and negative axis and two semicircles in the upper half 
plane, one very large and one very small (Fig. 4-13). Under our assump­
tions it is easy to show that the integrals over the semicircles tend to zero. 
Hence the residue theorem yields the value of the integral 

J"" z2a+1R(z2) dz = f"" (z2a+l + ( -z)2a+l)R(z2) dz. 
-oo }o 

However, ( -z) 2"' = e2"i"'z2"', and the integral equals 

(1 - e211"ia) Jo"" z2a+1R(z2) dz. 

Since the factor in front is ,r= 0, we are finally able to determine the value 
of the desired integral. 

The evaluation calls for determination of the residues of z2"'+ 1R(z2) iT! 
the upper half plane. These are the same as the residues of z"'R(z) in the 
whole plane. For practical purposes it may be preferable not to use any 
preliminary substitution and integrate the function z"'R(z) over the closed 
curve shown in Fig. 4-14. We have then to use the branch of z"' whose 
argument lies between 0 and 27ra. This method needs some justification, 
for it does not conform to the hypotheses of the residue theorem. The 
justification is trivial. 
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5. As a final example we compute the special integral 

j
0
"log sin 0 dO. 

Consider the function 1 - e2iz = -2iei• sin z. From the representation 
I - e2i• = I - e-2Y(cos 2x + i sin 2x), we find that this function is real 
and negative only for x = mr, y ~ 0. In the region obtained by omitting 
these half lines the principal branch of log (I - e2i•) is hence single­
valued and analytic. We apply Cauchy's theorem to the rectangle whose 
vertices are 0, 71', 7l' + iY, and iY; however, the points 0 and 7l' have to be 
avoided, and we do this by following small circular quadrants of radius o. 

Because of the periodicity the integrals over the vertical sides cancel 
against each other. The integral over the upper horizontal side tends to 
0 as Y----> co. Finally, the integrals over the quadrants can also be seen 
to approach zero as o----> 0. Indeed, since the imaginary part of the 
logarithm is bounded we need only consider the real part. From the fact 
that II - e2i•l/lzl ----> 2 for z----> 0 we see that log II - e2i•l becomes infinite 
like log o, and since o log o ----> 0 the integral over the quadrant near the 
origin will tend to zero. 

The same proof applies near the vertex 71', and we obtain 

j
0
"log ( -2iei" sin x) dx = 0 

If we choose log ei" = ix, the imaginary part lies between 0 and 71'. There­
fore, in order to obtain the principal branch with an imaginary part 
between -7!' and 71', we must choose log ( -i) = -7l'i/2. The equation 
can now be written in the form 


