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6. HARMONIC FUNCTIONS 

The real and imaginary parts of an analytic function are conjugate harmonic 
functions. Therefore, all theorems on analytic functions are also theorems 
on pairs of conjugate harmonic functions. However, harmonic functions 
are important in their own right, and their treatment is not always 
simplified by the use of complex methods. This is particularly true when 
the conjugate harmonic function is not single-valued. 

We assemble in this section some facts about harmonic functions 
that are intimately connected with Cauchy's theorem. The more delicate 
properties of harmonic functions are postponed to a later chapter. 

6.1. Definition and Basic Properties. A real-valued function u(z) or 
u(x,y), defined and single-valued in a region n, is said to be harmonic in 
n, or a potential junction, if it is continuous together with its partial 
derivatives of the first two orders and satisfies Laplace's equation 

(54) iJ2u iJ2u 
l:lu = ax2 + ay2 = 0. 

We shall see later that the regularity conditions can be weakened, but 
this is a point of relatively minor importance. 

The sum of two harmonic functions and a constant multiple of a 
harmonic function are again harmonic; this is due to the linear character 
of Laplace's equation. The simplest harmonic functions are the linear 
functions ax + by. In polar coordinates (r,O) equation (54) takes the form 

This shows that log r is a harmonic function and that any harmonic 
function which depends only on r must be of the form a log r + b. The 
argument (J is harmonic whenever it can be uniquely defined. 

If u is harmonic in n, then 

au .au = --~-
ax ay 

(55) f(z) 

. l'f .. u auv au h 1s ana ytiC, or wntmg = ax' = - ay we ave 

aU a2u a2u aV 
ax = ax2 = - ay2 = ay 
aU a2u aV 
ay = ax ay = ax 

t This form cannot be used for r = C. 
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This, it should be remembered, is the most natural way of passing from 
harmonic to analytic functions. 

From (55) we pass to the differential 

(56) f dz = ( ~~ dx + ~~ dy) + i (- ~~ dx + ~~ dy} 

In this expression the real part is the differential of u, 

au au 
du = ax dx + ay dy. 

If u has a conjugate harmonic function v, then the imaginary part can be 
written as 

av av au au 
dv = - dx + - dy = - - dx + -- dy. 

ax ay ay ax 

In general, however, there is no single-valued conjugate function, and in 
these circumstances it is better not to use the notation dv. Instead we 
write 

au au 
*du = - -- dx + - dy 

ay ax 

and call *du the conjugate differential of du. We have by (56) 

(57) f dz = du + i *du. 

By Cauchy's theorem the integral of f dz vanishes along any cycle 
which is homologous to zero in n. On the other hand, the integral of 
the exact differential du vanishes along all cycles. It follows by (57) that 

(58) f *du = J - au dx + au dy = 0 
'Y 'Y ay ax 

for all cycles 'Y which are homologous to zero in n. 
The integral in (58) has an important interpretation which cannot be 

left unmentioned. If 'Y is a regular curve with the equation z = z(t), 
the direction of the tangent is determined by the angle a = arg z'(t), 
and we can write dx = jdzi cos a, dy = idzi sin a. The normal which 
points to the right of the tangent has the direction {3 = a - 1r/2, and 
thus cos a = - sin {3, sin a = cos {3. The expression 

au au au . - = - cos {3 + - sm {3 
an ax ay 

is a directional derivative of u, the right-hand normal derivative with 
respect to the curve 'Y· We obtain *du = (aujan) jdzi, and (58) can be 
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written in the form 

(59) f au 
'Y an \dz\ = 0. 

This is the classical notation. Its main advantage is that au/an 
actually represents a rate of change in the direction perpendicular to 'Y· 

For instance, if 'Y is the circle \z\ = r, described in the positive sense, 
au/an can be replaced by the partial derivative aujar. It has the dis­
advantage that (59) is not expressed as an ordinary line integral, but as 
an integral with respect to arc length. For this reason the classical 
notation is less natural in connection with homology theory, and we 
prefer to use the notation *du. 

In a simply connected region the integral of * du vanishes over all 
cycles, and u has a single-valued conjugate function v which is deter­
mined up to an additive constant. In the multiply connected case the 
conjugate function has periods 

f *du = J ~u \dzl 
')'i ')'i un 

corresponding to the cycles in a homology basis. 
There is an important generalization of (58) which deals with a pair of 

harmonic functions. If u1 and Uz are harmonic in Q, we claim that 

(60) 

for every cycle 'Y which is homologous to zero in Q. According to 
Theorem 16, Sec. 4.6, it is sufficient to prove (60) for 'Y = aR, where R is 
a rectangle contained in Q. In R, U1 and Uz have single-valued conjugate 
functions v1, v2 and we can write 

U1 *du2 - Uz *du1 = U1 dvz - Uz dv1 = U1 dvz + V1 du2 - d(uzvl). 

Here d(u2v1) is an exact differential, and u 1dvz + v1duz is the imaginary 
part of 

(u1 + iv1)(duz + i dvz). 

The last ditferential can be written in the form Fdz dz where F1(z) and 
f 2(z) are analytic on R. The integral of Fdz dz vanishes by Cauchy's 
theorem, and so does therefore the integral of its imaginary part. We 
conclude that (60) holds for 'Y = aR, and we have proved: 

Theorem 19. If Ut and u2 are harmonic in a region Q, then 

(60) J-r Ut *du2 - Uz *du1 = 0 
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for every cycle 'Y which is homologous to zero in !2. 

For u1 = 1, u2 = u the formula reduces to (58). In the classical 
notation (60) would be written as 

6.2. The Mean-value Property. Let us apply Theorem 19 with 
u 1 = log r and u2 equal to a function u, harmonic in lzl < p. For !2 we 
choose the punctured disk 0 < lz I < p, and for 'Y we take the cycle C 1 - C 2 

where C i is a circle lz I = r i < p described in the positive sense. On a 
circle lzl = r we have *du = r(aujar) dO and hence (60) yields 

log 1·1 j 1'1 ~u dO - ( u dO = log r2 ( r2 ~u dO - ( u dO. c, ur 1 c, 1 c, ur 1 c. 

In other words, the expression 

J u dO - logr I r :; dO 
lzl =r 1•1 =r 

is constant, and this is true even if u is only known to be harmonic in an 
annulus. By (58) we find in the same way that 

I r au dO 
or 

lzl=r 

is constant in the case of an annulus and zero if u is harmonic in the 
whole disk. Combining these results we obtain: 

Theorem 20. The arithmetic mean of a harmonic function over concentric 
circles lzl = r is a linear function of log r, 

(61) 2~ J u dO = a log r + {3, 
lzl=r 

and if u is harmonic in a disk a = 0 and the arithmetic mean is constant. 

In the latter case {3 = u(O), by continuity, and changing to a new 
origin we find 

(62) u(zo) = 2~ / 0

2
" u(zo + rei9

) dO. 

It is clear that (62) could also have been derived from the corre-
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sponding formula for analytic functions, Sec. 3.4, (34). It leads directly 
to the maximum principle for harmonic functions: 

Theorem 21. A nonconstant harmonic function has neither a maximum 
nor a minimum in its region of definition. Consequently, the maximum 
and the minimum on a closed bounded set E are taken on the boundary of E. 

The proof is the same as for the maximum principle of analytic func~ 
tions and will not be repeated. It applies also to the minimum for the 
reason that -u is harmonic together with u. In the case of analytic 
functions the corresponding procedure would have been to apply the 
maximum principle to 1/f(z) which is illegitimate unless f(z) ~ 0. 
Observe that the maximum principle for analytic functions follows 
from the maximum principle for harmonic functions by applying the 
latter to log lf(z) l which is harmonic when f(z) ~ 0. 

EXERCISES 

1. If u is harmonic and bounded in 0 < !zl < p, show that the origin 
is a removable singularity in the sense that u becomes harmonic in lzl < p 

when u(O) is properly defined. 

2. Suppose that f(z) is analytic in the annulus r1 < Jzl < r2 and 
continuous on the closed annulus. If M(r) denotes the maximum of 
lf(z) I for lzl = r, show that 

M(r) ~ M(r1)"'M(r2) 1-a 

where a = log (rdr): log (rdr1) (Hadamard's three-circle theorem). 
Discuss cases of equality. Hint: Apply the maximum principle to a 
linear combination of log lf(z) I and log lzl. 

6.3. Poisson's Formnla. The maximum principle has the following im­
portant consequence: If u(z) is continuous on a closed bounded set E and 
harmonic on the interior of E, then it is uniquely determined by its values 
on the boundary of E. Indeed, if u1 and u 2 are two such functions with 
the same boundary values, then u1 - u 2 is harmonic with the boundary 
values 0. By the maximum and minimum principle the difference u 1 - u 2 

must then be identically zero on E. 
There arises the problem of finding u when its boundary values are 

given. At this point we shall solve the problem only in the simplest case, 
namely for a closed disk. 

Formula (62) determines the value of u at the center of the disk. But 
this is all we need, for there exists a linear transformation which carries 
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any point to the ccmter. To be explicit, suppose that u(z) is harmonic in 
the closed disk \z\ ~ R. The linear transformation 

= S(~'") = R(Rt + a) 
z ~ R+ar 

maps Jr\ ~ 1 onto \z\ ~ R with r = 0 corresponding to z = a. The 
function u(S(r)) is harmonic in \r\ ~ 1, and by (62) we obtain 

From 

we compute 

u(a) = 2~ f u(S(t)) d arg r. 
trl=l 

r = R(z- a) 
R 2 - az 

d arg r = -i d/ = -i (z ~ a + R2 ~ az) dz = (z ~ a + R2 ~ az) dO. 

On substituting R 2 = zz the coefficient of dO in the last expression can be 
rewritten as 

z a R 2 - Ja\ 2 

-z---a + -z ---a = ~~-z--~a~\-'---2 

or, equivalently, as 

! (z + a + ~ + ~) = Re z + a. 
2 z-a z-a z-a 

We obtain the two forms 

1 J R 2 
- Ja\ 2 1 J z + a (63) u(a) = 211" \z _ a\ 2 u(z) dO = 211" Re z _ a u(z) dO 

~-R ~-R 

of Poisson's formula. In polar coordinates, 

. 1 ~ 2.,- R 2 
- r 2 

. 
u(re•-r) = -2 R 2 2 R (O ) + 2 u(Re•0

) dO. 
1r o - r cos - <P r 

In the derivation we have assumed that u(z) is harmonic in the dosed 
disk. However, the result remains true under the weaker condition that 
u(z) is harmonic in the open disk and continuous in the closed disk. 
Indeed, if 0 < r < 1, then u(rz) is harmonic in the closed disk, and we 
obtain 

1 J R 2
- \a\ 2 

u(ra) = 211" \z _ a\ 2 u(rz) dO. 
lzi=R 
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Now all we need to do is to let r tend to 1. Because u(z) is uniformly 
continuous on \z\ ~ R it is true that u(rz) ----* u(z) uniformly for \z\ = R, 
and we conclude that (63) remains valid. 

We shall formulate the result as a theorem: 

Theorem 22. Suppose that u(z) is harmonic for \z\ < R, continuous for 
\z\ ~ R. Then 

(64) 1 J R 2
- Ja\ 2 

u(a) = 271" \z _ a\ 2 u(z) dB 
jzj=R 

for all \a\ < R. 

The theorem leads at once to an explicit expression for the conjugate 
function of u. Indeed, formula (63) gives 

u(z) = Re [_!_· J t + z u(t) dt·l· 
271"t t-z r 

ll'I=R -

(65) 

The bracketed expressio& is an analytic function of z for \z\ < R. It 
follows that u(z) is the real part of 

(66) f(z) = 2~i J ~ : : u(t) d{ + iC 
lri=R 

where Cis an arbitrary real constant. This formula is known as Schwarz's 
formula. 

As a special case of (64), note that u = 1 yields 

(67) 

for all \a\ < R. 

r R2 - \z\2 
J \z - a\2 dB = 271" 

lzi=R 

6.4. Schwarz's Theorem. Theorem 22 serves to express a given 
harmonic function through its values on a circle. But the right-hand 
side of formula (64) has a meaning as soon as u is defined on \z\ = R, 
provided it is sufficiently regular, for instance piecewise continuous. 
As in (65) the integral can again be written as the real part of an analytic 
function, and consequently it is a harmonic function. The question is, 
does it have the boundary values u(z) on \z\ = R? 

There is reason to clarify the notations. Choosing R = 1 we define, 
for any piecewise continuous function U(B) in 0 ~ B ~ 271", 
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1 Jr2,. e;e + z Pu(z) = -
2 

Re - .• -- U(B) dB 
1r 0 e'" - Z 

and call this the Poi8son integral of U. Observe that Pu(z) is not only a 
function of z, but also a function of the function U; as such it is called a 
functional. The functional is linear inasmuch as 

Putv = Pu + Pv 
and 

Pcu =cPu 

for constant c. Moreover, U ~ 0 implies Pu(z) ~ 0; because of this 
property Pu is said to be a positive linear functional. 

We deduce from (67) that Pc = c. From this property, together 
with the linear and positive character of the functional, it follows that any 
inequality m ~ U ~ M implies m ~ Pu ~ M. 

The question of boundary values is settled by the following funda­
mental theorem that was first proved by H. A. Schwarz: 

Theorem 23. The function Pu(z) is harmonic for lzl < l. and 

(68) lim Pu(z) = U(Bo) 
~e.'O~ 

provided that U is continuous at Bo. 
We have already remarked that Pu is harmonic. To study the 

boundary behavior, let cl and c2 be complementary arcs of the unit 
circle, and denote by ul the function which coincides with u on cl and 
vanishes on C2, by U2 the corresponding function for C2. Clearly, 
Pu = Pu, + Pu,. 

Since Pu, can be regarded as a line integral over C1 it is, by the same 
reasoning as before, harmonic everywhere except on the closed arc C1. 
The expression 

Re eiO + z = 1 - lzl2 
eiO - z leiO - z\2 

vanishes on lzl = 1 for z ,P ei9• It follows that Pu, is zero on the open 
arc C2, and since it is continuous PuJz) ----* 0 as z----* eiO € c2. 

In proving (68) we may suppose that U(8 0) = 0, for if this is not the 
case we need only replace U by U- U(Bo). Given e > 0 we can find C1 

and c2 such that ei9o is an interior point of c2 and I U(B) I < e/2 for ei9 € c2. 
Under this condition IU2(8)\ < e/2 for all 8, and hence \Pu,(z)\ < e/2 
for all \zl < 1. On the other hand, since U1 is continuous and vanishes 
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FIG. 4-15 

at ei8o there exists a o such that !Pu,(z)j < e./2 for !z- ei8•! < o. It 
follows that !Pu(z)! ~ !Pu,! + !Pu,! < e. as soon as Jzl < 1 and jz - ei8oJ 

< o, which is precisely what we had to prove. 
There is an interesting geometric interpretation of Poisson's formula, 

also due to Schwarz. Given a fixed z inside the unit circle we determine 
for each ei8 the point ei8* which is such that ei8, z and ei8* are in a straight 
line (Fig. 4-15). It is clear geometrically, or by simple calculation, that 

(69) 

But the ratio (ei 8 - z)j(ei8*- z) is negative, so we must have 

1 - lz\2 = - (ei8- z)(e-i8*- z). 

We regard 8* as a function of 8 and differentiate. Since z is constant we 
obtain 

eiB d8 e-iB* d8* 
eiB - z = e-iB* - z 

and, on taking absolute values, 

(70) d8* = / eiB* - z I· 
d8 ei8 - z 

It follows by (69) and (70) that 

and hence 

1 - \z\ 2 d8* 
\eiB- z\2 = dB 
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In other words, to find Pu(z), replace each value of U(B) by the value at 
the point opposite to z, and take the average over the circle. 

EXERCISES 

1. Assume that UW is piecewise continuous and bounded for all real 
~. Show that 

1 J"" y Pu(z) = - ( ~) 2 + 2 U(O d~ 7r -oo X- y 

represents a harmonic function in the upper half plane with boundary 
values U(f;) at points of continuity (Poisson's integral for the half plane). 

2. Prove that a function which is harmonic and bounded in the upper 
half plane, continuous on the real axis, can be represented as a Poisson 
integral (Ex. 1). 

Remark. The point at oo presents an added difficulty, for we cannot 
immediately apply the maximum and minimum principle to u - P ,.. 
A good try would be to apply the maximum principle to u - P u - ey for 
e > 0, with the idea of letting e tend to 0. This almost works, for the 
function tends to 0 for y -+ 0 and to - oo for y -+ oo, but we lack control 
when lxl -+ oo. Show that the reasoning can be carried out successfully 
by application to u-P,.- e Im (yiz). 

3. In Ex. 1, assume that U has a jump at 0, for instance U( +O) = 0, 
1 

U( -0) = 1. Show that Pu(z) - - arg z tends to 0 as z-+ 0. Gen-
71' 

eralize to arbitrary jumps and to the case of the circle. 
4. If C1 and C2 are complementary arcs on the unit circle, set U = 1 

on C1, U = 0 on C2• Find Pu(z) explicitly and show that Z1rPu(z) equals 
the length of the arc, opposite to C1, cut off by the straight lines through 
z and the end points of C1. 

5. Show that the mean-value formula (62) remains valid for 
u = log 11 + zi, zo = 0, r = 1, and use this fact to compute 

f
0
"log sin 8 dB. 

6. If j(z) is analytic in the whole plane and if z-1 Re f(z) -+ 0 when 
z -+ oo, show that f is a constant. Hint: Use (66). 

7. If f(z) is analytic in a neighborhood of oo and if z-1 Re f(z) -+ 0 
when z -+ oo, show that lim f(z) exists. (In other words, the isolated 

singularity at oo is removable.) 
Hint: Show first, by use of Cauchy's integral formula, that f = f1 + f2 

wherefr(z)-+ 0 for z-+ oo andj2(z) is analytic in the whole plane. 
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*8. If u(z) is harmonic for 0 < lz I < p and lim zu(z) = 0, prove that u 

can be written in the form u(z) = a log lzl + u 0(z) where a is a constant 
and Uo is harmonic in lz I < p. 

Hint: Choose a as in (61). Then show that uo is the real part of an 
analytic function fo(z) and use the preceding exercise to conclude that the 
singularity at 0 is removable. 

6.5. The Reflection Principle. An elementary aspect of the symmetry 
principle, or reflection principle, has been discussed already in connection 
with linear transformations (Chap. 3, Sec. 3.3). There are many more 
general variants first formulated by H. A. Schwarz. 

The principle of reflection is based on the observation that if u(z) is 
a harmonic function, then u(z) is likewise harmonic, and if f(z) is an analy­
tic function, then f(z) is also analytic. More precisely, if u(z) is harmonic 
and f(z) analytic in a region then u(z) is harmonic and f(z) analytic as 
functions of z in the region n* obtained by reflecting gin the real axis; that 
is, z € n* if and only if z € n. The proofs of these statements consist in 
trivial verifications. 

Consider the case of a symmetric region: n* = n. Because n is 
connected it must intersect the real axis along at least one open interval. 
Assume now that f(z) is analytic in n and real on at least one interval of 
the real axis. Since f(z) - f(z) is analytic and vanishes on an interval it 
must be identically zero, and we conclude that f(z) = f(z) in n. With 
the notation f = u + iv we have thus u(z) = u(z), v(z) = -v(z). 

This is important, but it is a rather weak result, for we are assuming 
that f(z) is already known to be analytic in all of n. Let us denote the 
intersection of g with the upper half plane by n+, and the intersection of g 
with the real axis by u. Suppose that f(z) is defined on g+ U u, analytic 
inn+, continuous and real on u. Under these conditions we want to show 
that f(z) is the restriction to n+ of a function which is analytic in all of n 
and satisfies the symmetry condition f(z) = f(z). In other words, part 
of our theorem asserts that f(z) has an analytic continuation to n. 

Even in this formulation the assumptions are too strong. Indeed, 
the main thing is that the imaginary part v(z) vanishes on u, and nothing 
at all need to be assumed about the real part. In the definitive statement 
of the reflection principle the emphasis should therefore be on harmonic 
functions. 

Theorem 24. Let n+ be the part in the upper half plane of a symmetric 
region n, and let u be the part of the real axis in n. Suppose that v(x) is 
continuous in g+ U u, harmonic in n+, and zero on u. Then v has a har­
monic extension to n which satisfies the symmetry relation v(z) = -v(z). 
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In the same situation, if vis the imaginary part of an analytic function f(z) in 
n+, then f(z) has an analytic extension which satisfies f(z) = f(z). 

For the proof we construct the function V(z) which is equal to v(z) 
inn+, 0 on fr, and equal to -v(z) in the mirror image of n+. We have to 
show that V is harmonic on fT. For a point x0 ~ u consider a disk with 
center x0 contained in n, and let Pv denote the Poisson integral with 
respect to this disk formed with the boundary values V. The difference 
V - Pv is harmonic in the upper half of the disk. It vanishes on the half 
circle, by Theorem 23, and also on the diameter, because V tends to zero 
by definition and Pv vanishes by obvious symmetry. The maximum and 
minimum principle implies that V = Pv in the upper half disk, and the 
same proof can be repeated for the lower half. We conclude that V is 
harmonic in the whole disk, and in particular at x0• 

For the remaining part of the theorem, let us again consider a disk 
with center on fT. We have already extended v to the whole disk, and v 
has a conjugate harmonic function -u0 in the same disk which we may 
normalize so that uo = Re f(z) in the upper half. Consider 

Uo(z) = uo(z) - uo(z). 

On the real diameter it is clear that aU0jax = 0 and also 

aUo = 2 auo = _ 2 av = o. 
ay ay ax 

It follows that the analytic function aUo/ax - i aUojay vanishes on the 
real axis, and hence identically. Therefore U0 is a constant, and this 
constant is evidently zero. We have proved that u0(z) = uc(z). 

The construction can be repeated for arbitrary disks. It is clear 
that the u 0 coincide in overlapping disks. The definition can be extended 
to all of n, and the theorem follows. 

The theorem has obvious generalizations. The domain g can be 
taken to be symmetric with respect to a circle C rather than with respect 
to a straight line, and when z tends to C it may be assumed that f(z) 
approaches another circle C'. Under_such conditionsf(z) has an analytic 
continuation which maps symmetric points with respect to C onto sym­
metric points with respect to C'. 

EXERCISES 

1. If f(z) is analytic in the whole plane and real on the real axis, 
purely imaginary on the imaginary axis, show that f(z) is odd. 

2. Show that every functionf which is analytic in a symmetric region 
g can be written in the form h + ih where h, j 2 are analytic in n and 
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real on the real axis. 
3. If f(z) is analytic in lzl ~ 1 and satisfies lfl = 1 on lzl = 1, show 

that f(z) is rational. 
4. Use (66) to derive a formula for f'(z) in terms of u(z). 
5. If u(z) is harmonic and 0 ~ u(z) ~ Ky for y > 0, prove that u = ky 

with 0 ~ k ~ K. [Reflect over the real axis, complete to an analytic 
function f(z) = u + iv, and use Ex. 4 to show that f'(z) is bounded.] 



5 SERIES AND 

PRODUCT DEVELOPMENTS 

Very general theorems have their natural place in the theory of 
analytic functions, but it must also be kept in mind that the whole 
theory originated from a desire to be able to manipulate explicit 
analytic expressions. Such expressions take the form of infinite 
series, infinite products, and other limits. In this chapter we 
deal partly with the rules that govern such limits, partly with 
quite explicit representations of elementary transcendental func­
tions and other specific functions. 

1. POWER SERIES EXPANSIONS 

In a preliminary way we have considered power series in Chap. 2, 
mainly for the purpose of defining the exponential and trigono­
metric functions. Without use of integration we were not able 
to prove that every analytic function has a power series expan­
sion. This question will now be resolved in the affirmative, 
essentially as an application of Cauchy's theorem. 

The first subsection deals with more general properties of 
sequences of analytic functions. 

I .1. Weierstrass's Theorem. The central theorem concerning the 

convergence of analytic functions asserts that the limit of 
a uniformly convergent sequence of analytic functions is an 
analytic function. The precise assumptions must be carefully 
stated, and they should not be too restrictive. 

175 
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We are considering a sequence {fn(z)} where each fn(z) is defined and 
analytic in a region iln. The limit function j(z) must also be considered 
in some region n, and clearly, if f(z) is to be defined inn, each point of n 
must belong to all iln for n greater than a certain no. In the general 
case n 0 will not be the same for all points of n, and for this reason it would 
not make sense to require that the convergence be uniform in n. In fact, 
in the most typical case the regions iln form an increasing sequence, n1 C 
n2 C · · · C nn C · · · , and n is the union of the nn. In these circum­
stances no single functionfn(z) is defined in all of n; yet the limitj(z) may 
exist at all points of n, although the convergence cannot be uniform. 

As a very simple example take fn(z) = zj(2zn + 1) and let nn be the 
disk lzl < 2-l/n. It is practically evident that lim fn(z) = z in the disk 

lzl < 1 which we choose as our region n. In order to study the uni­
formity of the convergence we form the difference 

fn(z) - z = -2zn+lj(2zn + 1). 

For any given value of z we can make lznl < a/4 by taking n > 
log (4/a)jlog (1/lzl). If E < 1 we have then 2lzi•+l < a/2 and 
11 + 2znl > t so that lfn(z) - zl < a. It follows that the convergence 
is uniform in any closed disk izl ~ r < 1, or on any subset of such a closed 
disk. 

With another formulation, in the preceding example the sequence 
{fn(z)} tends to the limit function f(z) uniformly on every compact sub­
set of the region n. In fact, on a compact set lzl has a maximum r < 1 
and the set is thus contained in the closed disk lzl ~ r. This is the 
typical situation. We shall find that we can frequently prove uniform 
con-vergence on every compact subset of n; on the other hand, this is the 
natural condition in the theorem that we are going to prove. 

Theorem I. Suppose that f,(z) is analytic in the region nn, and that the 
sequence {f.(z)} converges to a limitfunctionj(z) in a region n, uniformly on 
every compact subset of n. Then f(z) is analytic in n. Moreover, f~(z) 
converges uniformly to f' (z) on every compact subset of n. 

The analyticity of f(z) follows most easily by use of Morera's theorem 
(Chap. 4, Sec. 2.3). Let iz - ai ~ r be a closed disk contained in n; 
the assumption implies that this disk lies in nn for all n greater than a 
certain no. t If 'Y is any closed curve contained in lz - ai < r, we have 

J'Y fn(z) dz = 0 

tIn fact, the regions fl. form an open covering of lz - al ~ r. The disk is com­
pact and hence has a finite subcovering. This means that it is contained in a fixed n.,. 
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for n > no, by Cauchy's theorem. Because of the uniform convergence 
on 'Y we obtain 

! f(z) dz = lim J fn(z) dz = 0, 
'Y n-+oo 'Y 

and by Morera's theorem it follows that f(z) is analytic in lz - ai < r. 
Consequently f(z) is analytic in the whole region !.2. 

An alternative and more explicit proof is based on the integral formula 

where Cis the circle It - ai = r and lz - al < r. Letting n tend to co 
we obtain by uniform convergence 

f(z) = ~ r f(t) dt_ 
21rt1 c r- z 

and this formula shows that f(z) is analytic in the disk. Starting from 
the formula 

the same reasoning yields 

I. f'( ) 1 f f(t) dt f'( ) lm n Z = 2-----; ( )2 = Z ' 
n-+«> 'Tr~ c r-z 

and simple estimates show that the convergence is uniform for lz - ai 
;;::; p < r. Any compact subset of Q can be covered by a finite number 
of such closed disks, and therefore the convergence is uniform on every 
compact subset. The theorem is proved, and by repeated applications 
it follows that j<~l(z) converges uniformly to fCk) (z) on every compact 
subsot of 1.2. 

Th-:orem 1 is due to Weierstrass, in an equivalent formulation. Its 
application to series whose terms are analytic functions is particularly 
important. The theorem can then be expressed as follows; 

If a series with analytic terms, 

f(z) = h(z) + h(z) + · · · + fn(z) + · · · , 
converges uniformly on every compact subset of a region 1.2, then the sum f(z) 

is analytic in n, and the series can be differentiated term by term. 
The task of proving uniform convergence on a compact point set A 

can be facilitated by use of the maximum principle. In fact, with the 
notations of Theorem 1, the difference lfm(z) - fn(z)i attains its maxi-
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mum in A on the boundary of A. For this reason uniform convergence 
on the boundary of A implies uniform convergence on A. For instance, 
if the functions fn(z) are analytic in the disk \z\ < 1, and if it can be 
shown that the sequence converges uniformly on each circle \z\ = rm 
where lim rm = 1, then Weierstrass's theorem applies and we can con-

m--->oo 

elude that the limit function is analytic. 
The following theorem is due to A. Hurwitz: 

Theorem 2. If the functions f .. (z) are analytic and ~ 0 in a region n, 
and if fn(z) converges to j(z), uniformly on every compact subset of n, then 
f(z) is either identically zero or never equal to zero in n. 

Suppose that f(z) is not identically zero. The zeros of f(z) are in any 
case isolated. For any point z0 En there is therefore a number r > 0 such 
that f(z) is defined and ~0 for 0 < \z - zo\ ~ r. In particular, \f(z) \ 
has a positive minimum on the circle \z - z0 \ = r, which we denote by C. 
It follows that 1/fn(z) converges uniformly to 1/f(z) on C. Since it is also 
true that f~(z)----* f'(z), uniformly on C, we may conclude that 

lim - 1- r f~(z) dz = - 1- r f'(z) dz 
n--->oo Z1ri J C fn(z) Z1ri J C f(z) · 

But the integrals on the left are all zero, for they give the number of roots 
of the equation fn(z) = 0 inside of C. The integral on the right is there­
fore zero, and consequently f(z 0) ~ 0 by the same interpretation of the 
integral. Since z0 was arbitrary, the theorem follows. 

EXERCISES 

1. Using Taylor's theorem applied to a branch of log (1 + zjn), 
prove that 

lim (1 + ~)n = e• 
n---?oo n 

uniformly on all compact sets. 
2. Show that the series 

"" 
t(z) = L n-• 

n=l 

converges for Re z > 1, and represent its derivative in series form. 
3. Prove that 

(1 - 21-•)t(z) = 1-· - z-z + 3-· - ... 

and that the latter series represents an analytic function for Re z > 0. 
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4. As a generalization of Theorem 2, prove that if the fn(z) have at 
most m zeros inn, thenj(z) is either identically zero or has at most m zeros. 

5. Prove that 

for lzl < 1. (Develop m a double series and reverse the order of 
summation.) 

1.2. The Taylor Series. We show now that every analytic function can 
be developed in a convergent Taylor series. This is an almost immediate 
consequence of the finite Taylor development given in Chap. 4, Sec. 3.1, 
Theorem 8, together with the corresponding representation of the 
remainder term. According to this theorem, if f(z) is analytic in a region 
n containing z0, we can write 

f(z) = f(zo) + f'~~o) (z - zo) + 

with 

f (n) (zo) + -- (z- zo)n 
n! 

In the last formula Cis any circle lz - zol = p such that the closed disk 
lz - zol ~ p is contained in n. 

If M denotes the maximum of lf(z) I on C, we obtain at once the 
estimate 

We conclude that the remainder term tends uniformly to zero in every 
disk lz - zol ~ r < p. On the other hand, p can be chosen arbitrarily 
close to the shortest distance from Zo to the boundary of n. We have 
proved: 

Theorem 3. lj f(z) is analyt~c in the region n, containing Zo, then the 
representation 

f(z) = f(zo) + .f'i~o) (z - zo) + · · · + j(<:;zo) (z - z0)n + 

is valid in the largest open disk of center z0 contained in n. 
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The radius of convergence of the Taylor series is thus at least equal to 
the shortest distance from zo to the boundary of Q. It may well be 
larger, but if it is there is no guarantee that the series still representsj(z) at 
all points which are simultaneously in Q and in the circle of convergence. 

We recall that the developments 

z2 zn 
e• = 1 + z + zj + · · · + n! + · 

z2 z4 zB 
cos z = 1 - 2! + 4! - 6! + . . . 
• za z5 z7 

Sin Z = Z- 3! + S!- 7! + • · · 

served as definitions of the functions they represent. Of course, as we 
have remarked before, every convergent power series is its own Taylor 
series. We gave earlier a direct proof that power series can be differ­
entiated term by term. This is also a direct consequence of Weierstrass's 
theorem. 

If we want to represent a fractional power of z or log z through a power 
series, we must first of all choose a well-defined branch, and secondly we 
have to choose a center z0 ~ 0. It amounts to the same thing if we 
develop the function (1 + z)J.t or log (1 + z) about the origin, choosing the 
branch which is respectively equal to 1 or 0 at the origin. Since this 
branch is single-valued and analytic in lzl < 1, the radius of convergence 
is at least 1. It is elementary to compute the coefficients, and we obtain 

(1 + z)~' = 1 + p.Z + (~) z2 + · · · + ( ~) zn + 
z2 z3 z4 zs 

log (1 + z) = z- 2 + 1f- 4 + 5-

where the binomial coefficients are defined by 

(
f.i.) = p.(p. - 1) · · · (p. - n + 1). 
n 1 · 2 · · · n 

If the logarithmic series had a radius of convergence greater than 1, 
then log (1 + z) would be bounded for lzi < 1. Since this is not the 
case, the radius of convergence must be exactly 1. Similarly, if the 
binomial series were convergent in a circle of radius > 1, the function 
(1 + z)~' and all its derivatives would be bounded in lzl < 1. Unless p. 
is a positive integer, one of the derivatives will be a negative power of 
1 + z, and hence unbounded. Thus the radius of convergence is pre­
cisely 1 except in the trivial case in which the binomial series reduces to 
a polynomial. 
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The series developments of the cyclometric functions arc tan z and 
arc sin z are most easily obtained by consideration of the derived series. 
From the expansion 

1 
1 + z2 = 1 - z2 + z4 - z6 + . . . 

we obtain by integration 

z3 zs z1 
arc tan z = z - - + - - - + 

3 5 7 

where the branch is uniquely determined as 

arc tan z = Joz 1 ! z2 

for any path inside the unit circle. For justification we can either rely 
on uniform convergence or apply Theorem 1. The radius of convergence 
cannot be greater than that of the derived series, and hence it is exactly 1. 

If y1 - z2 is the branch with a positive real part, we have 

1 1 1·3 1·3·5 
y 1 - z2 = 1 + 2 z

2 + 2 · 4 z
4 + 2 · 4 · 6 z

6 + 
for \z\ < 1, and through integration we obtain 

. 1 z3 1 · 3 z5 1 · 3 · 5 z1 

arc sm z = z + 2 3 + 2 · 4 5 + 2 · 4 · 6 7 + 
The series represents the principal branch of arc sin z with a real part 
between -7r /2 and 1r /2. 

For combinations of elementary functions it is mostly not possible to 
find a general law for the coefficients. In order to find the first few 
coefficients we need not, however, calculate the successive derivatives. 
There are simple techniques which allow us to compute, with a reasonable 
amount of labor, all the coefficients that we are likely to need. 

It is convenient to introduce the notation [zn] for any function which is 
analytic and has a zero of at least order n at the origin; less precisely, 
[zn] denotes a function which "contains the factor zn." With this notation 
any function which is analytic at the origin can be written in the form 

where the coefficients are uniquely determined and equal to the Taylor 
coefficients of f(z). Thus, in order to find the first n coefficients of the 
Taylor expansion, it is sufficient to determine a polynomial P n(z) such 
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that f(z) - P n(z) has a zero of at least order n + 1 at the origin. The 
degree of Pn(z) does not matter; it is true in any case that the coefficients 
of zm, m :;;; n, are the Taylor coefficients of f(z). 

For instance, suppose that 

f(z) = ao + a1z + a2z2 + · · 
g(z) = bo + b1z + b2z2 + · 

With an abbreviated notation we write 

f(z) = Pn(z) + [zn+l]; g(z) = Qn(z) + [zn+l]. 

It is then clear that f(z)g(z) = Pn(z)Qn(z) + [zn+I], and the coefficients 
of the terms of degree ;;;n in PnQn are the T!:'ylor coefficients of the prod­
uct f(z)g(z). Explicitly we obtain 

f(z)g(z) = aobo + (aobl + a1bo)z + · · · 
+ (aobn + albn-1 + . . . + anbo)zn + .... 

In deriving this expansion we have not even mentioned the question of 
convergence, but since the development is identical with the Taylor 
development of f(z)g(z), it follows by Theorem 3 that the radius of con­
vergence is at least equal to the smaller of the radii of convergence of 
the given seriesf(z) and g(z). In the practical computation of PnQn it is 
of course not necessary to determine the terms of degree higher than n. 

In the case of a quotient f(z)jg(z) the same method can be applied, 
provided that g(O) = bo ,P 0. By use of ordinary long division, con­
tinued until the remainder contains the factor zn+I, we can determine a 
polynomial Rn such that Pn = QnRn + [zn+ 1]. Then ! - Rng = [zn+ 1], 
and since g(O) ,P 0 we find that f/g = Rn + [zn+1]. The coefficients of 
Rn are the Taylor coefficients of f(z)jg(z). They can be determined 
explicitly in determinant form, but the expressions are too complicated 
to be of essential help. 

It is also important that we know how to form the development of a 
composite function f(g(z)). In this case, if g(z) is developed around zo, 
the expansion of f(w) must be in powers of w - g(zo). To simplify, let 
us assume that z0 = 0 and g(O) = 0. We can then set 

f(w) = ao + a1w + · · · + anwn + · · 
and g(z) = b1z + b2z2 + · · · + bnzn + · · · . Using the same nota­
tions as before we writef(w) = Pn(w) + [wn+l] and g(z) = Qn(z) + [zn+lJ 
with Qn(O) = 0. Substituting w = g(z) we have to observe that 
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and that any expression of the form [wn+l] becomes a [zn+t]. Thus we 
obtain f(g(z)) = P n(Qn(z)) + [zn+1], and the Taylor coefficients of f(g(z)) 
are the coefficients of P n(Qn(z)) for powers ~ n. 

Finally, we must be able to expand the inverse function of an analytic 
function w = g(z). Here we may suppose that g(O) = O, and we are 
looking for the branch of the inverse function z = g- 1(w) which is ana­
lytic in a neighborhood of the origin and vanishes for w = 0. For the 
existence of the inverse function it is necessary and sufficient that 
g' (0) ~ 0; hence we assume that 

g(z) = a1z + a2z2 + · · · = Qn(z) + [z"+1] 

with a1 ~ 0. Our problem is to determine a polynomial Pn(w) such that 
Pn(Qn(z)) = z + [zn+1]. In fact, under the assumption a1 ~ 0 the nota­
tions [zn+l] and [wn+t] are interchangeable, andfromz = Pn(Qn(z)) + [z"+ 1] 

weobtainz = Pn(g(z) + [zn+l]) + [zn+l] = Pn(w) + [wn+t]. HencePn(w) 
determines the coefficients of g- 1(w). 

In order to prove the existence of a polynomial P n we proceed by 
induction. Clearly, we can takeP1(w) = wja1• If Pn_1 is given, we set 
p n = p n-1 + bnwn and obtain 

Pn(Qn(z)) = Pn-l(Qn(z)) + bna1zn + [zn+l] 
= Pn-l(Qn-t(Z) + anzn) + bna~zn + [zn+l] 

= Pn-t(Qn-t(z)) + P~_1 (Qn-t(z))a,.zn + bna~zn + [z"+t]. 

In the last member the first two terms form a known polynomial of the 
form z + CnZn + [zn+l], and we have only to take bn = -cnarn· 

For practical purposes the development of the inverse function is 
found by successive substitutions. To illustrate the method we deter­
mine the expansion of tan w from the series 

za zs 
w = arc tan z = z - 3 + 5 - · · · . 

If we want the development to include fifth powers, we write 

za zs 
z = w + 3 - 5 + [z7] 

and substitute this expression in the terms to the right. With appro­
priate remainders we obtain 

1 ( za )a 1 z = w +- w +- + [w5
] - - (w + [w3])

5 + [w1] 3 3 5 
1 1 1 

= w + - w 3 + - w2z3 
- - w 5 + [ w7] 

3 3 5 
1 1 1 1 2 

= w + -w3 + -w2(w + [w3]) 3 - -w5 + [w7] = w + -wa + -ws + [w7] 3 3 5 3 15 . 
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Thus the development of tan w begins with the terms 

1 2 
tan w = w + - w 3 + - w5 + 3 15 

EXERCISES 

1. Develop 1/(1 + z2) in powers of z - a, a being a real number. 
Find the general coefficient and for a = 1 reduce to simplest form. 

2. The Legendre polynomials are defined as the coefficients P n(a) in 
the d<welopment 

(1 - 2az + z2)-l = 1 + P 1(a)z + P 2(a)z 2 + · · · . 
Find Pr, P2, P3, and P4. 

3. Develop log (sin zjz) in powers of z up to the term z6• 

4. What is the coefficient of z7 in the Taylor development of tan z? 
5. The Fibonacci numbers are defined by c0 = 0, c1 = 1, 

Cn = Cn-1 + Cn-2• 

Show that the Cn are Taylor coefficients of a rational function, and deter­
mine a closed expression for Cn· 

1.3. The Laurent Series. A series of the form 

(1) 

can be considered as an ordinary power series in the variable 1/z. It 
will therefore converge outside of some circle lzl = R, except in the 
extreme case R = oo ; the convergence is uniform in every region lzl ;?; p 

> R, and hence the series represents an analytic function in the region 
lzl > R. If the series (1) is combined with an ordinary power series, 
we get a more general series of the form 

(2) 

It will be termed convergent only if the parts consisting of nonnegative 
powers and negative powers are separately convergent. Since the first 
part converges in a disk lzl < R2 and the second series in a region lzl > Rr, 
there is a common region of convergence only if Rt < R 2, and (2) repre­
sents an analytic function in the annulus Rr < lzl < R2. 

Conversely, we may start from an analytic function.f(z) whose region 
of definition contains an annulus Rr < lzl < Rz, or more generally an 
annulus Rr < lz - ai < R2. We shall show that such a function can 
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always be developed in a general power series of the form 

+oo 
f(z) = L An(Z - a)n. 

n=-oo 

The proof is extremely simple. All we have to show is that .f(z) can 
be written as a sum JI(z) + .f2(z) where ft(z) is analytic for jz - al < R2 
and /2(z) is analytic for jz - aJ > R 1 with a removable singularity at oo. 

Under these circumstances ft(z) can be developed in nonnegative powers 
of z- a, andf2(z) can be developed in nonnegative powers of 1/(z- a). 

To find the representation .f(z) = .ft(z) + /2(z) define .ft(z) by 

1 J f(t) dt ft(z) = -. 
21rt r - z 

lr-al =r 

for jz - aj < r < R2 and f2(z) by 

1 J f(t) dt /2(z) = --2 . r 
7!"'/, ~ - z 

lr-al=r 

for R1 < r < jz - aj. In both integrals the value of r is irrelevant as long 
as the inequality is fulfilled, for it is an immediate consequence of 
Cauchy's theorem that the value of the integral does not change with r 
provided that the circle does not pass over the point z. For this reason 
.ft(z) and f2(z) are uniquely defined and represent analytic functions in 
iz - aj < R2 and \z - a\ > R1 respectively. Moreover, by Cauchy's 
integral theorem f(z) = ft(z) + /2(z). 

The Taylor development of .ft(z) is 

00 

f1(z) = L An(Z - a)" 
n=O 

with 

(3) 

In order to find the development of f 2(z) we perform the transformation 
r = a + 1/t', z = a + 1/z'. This transformation carries It - aj = r 
into WI = 1/r with negative orientation, and by simple calculations we 
obtain 
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with 

This formula shows that we can write 

+oo 
f(z) = L An(Z - a)n 

n=-oo 

where all the coefficients An are determined by (3). Observe that the 
integral in (3) is independent of r as long as Rr < r < R2. 

If R 1 = 0 the point a is an isolated singularity and A_1 = B 1 is the 
residue at a, for f(z) - A_t(Z - a)- 1 is the derivative of a single-valued 
function in 0 < \z - a\ < R2. 

EXERCISES 

1. Prove that the Laurent development is unique. 
2. Let n be a doubly connected region whose complement consists of 

the components E 1, E2. Prove that every analytic functionf(z) inn can 
be written in the form fr(z) + /2(z) where fr(z) is analytic outside of E 1 

and/2(z) is analytic outside of E2. (The precise proof requires a construc­
tion like the one in Chap. 4, Sec. 4.5.) 

3. The expression 

_ !'" (z) 3 (!" (z)) 2 

{!,z} - f'(z) - 2 f'(z) 

is called the Schwarzian derivative of f. Iff has a multiple zero or pole, 
find the leading term in the Laurent development of {!,z}. Answer: If 
f(z) = a(z - zo)m + · · · , then {f,z} = i(1 - m 2)(z - zo)-2 + · · · . 

4. Show that the Laurent development of (e• - 1)-1 at the origin is 
of the form 

! -! + ~ (-1)k-1 ~ 2k-1 
z 2 L (2k)! z 

1 

where the numbers B k are known as the Bernoulli numbers. Calculate 
B1, B2, Ba. (By Sec. 2.1, Ex .. 5, the B k are all positive.) 

5. Express the Taylor development of tan z and the Laurent develop­
ment of cot z in terms of the Bernoulli numbers. 


