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Pf re ace 

Our original purpose in writing this book was to provide a text for the under- 
graduate linear algebra course at the Massachusetts Institute of Technology. This 
course was designed for mathematics majors at the junior level, although three- 
fourths of the students were drawn from other scientific and technological disciplines 
and ranged from freshmen through graduate students. This description of the 
M.I.T. audience for the text remains generally accurate today. The ten years since 
the first edition have seen the proliferation of linear algebra courses throughout 
the country and have afforded one of the authors the opportunity to teach the 
basic material to a variety of groups at Brandeis University, Washington Univer- 
sity (St. Louis), and the University of California (Irvine). 

Our principal aim in revising Linear Algebra has been to increase the variety 
of courses which can easily be taught from it. On one hand, we have structured the 
chapters, especially the more difficult ones, so that there are several natural stop- 
ping points along the way, allowing the instructor in a one-quarter or one-semester 
course to exercise a considerable amount of choice in the subject matter. On the 
other hand, we have increased the amount of material in the text, so that it can be 
used for a rather comprehensive one-year course in linear algebra and even as a 
reference book for mathematicians. 

The major changes have been in our treatments of canonical forms and inner 
product spaces. In Chapter 6 we no longer begin with the general spatial theory 
which underlies the theory of canonical forms. We first handle characteristic values 
in relation to triangulation and diagonalization theorems and then build our way 
up to the general theory. We have split Chapter 8 so that the basic material on 
inner product spaces and unitary diagonalization is followed by a Chapter 9 which 
treats sesqui-linear forms and the more sophisticated properties of normal opera- 
tors, including normal operators on real inner product spaces. 

We have also made a number of small changes and improvements from the 
first edition. But the basic philosophy behind the text is unchanged. 

We have made no particular concession to the fact that the majority of the 
students may not be primarily interested in mathematics. For we believe a mathe- 
matics course should not give science, engineering, or social science students a 
hodgepodge of techniques, but should provide them with an understanding of 
basic mathematical concepts. 

. . . 
am 
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On the other hand, we have been keenly aware of the wide range of back- 
grounds which the students may possess and, in particular, of the fact that the 
students have had very little experience with abstract mathematical reasoning. 
For this reason, we have avoided the introduction of too many abstract ideas at 
the very beginning of the book. In addition, we have included an Appendix which 
presents such basic ideas as set, function, and equivalence relation. We have found 
it most profitable not to dwell on these ideas independently, but to advise the 
students to read the Appendix when these ideas arise. 

Throughout the book we have included a great variety of examples of the 
important concepts which occur. The study of such examples is of fundamental 
importance and tends to minimize the number of students who can repeat defini- 
tion, theorem, proof in logical order without grasping the meaning of the abstract 
concepts. The book also contains a wide variety of graded exercises (about six 
hundred), ranging from routine applications to ones which will extend the very 
best students. These exercises are intended to be an important part of the text. 

Chapter 1 deals with systems of linear equations and their solution by means 
of elementary row operations on matrices. It has been our practice to spend about 
six lectures on this material. It provides the student with some picture of the 
origins of linear algebra and with the computational technique necessary to under- 
stand examples of the more abstract ideas occurring in the later chapters. Chap- 
ter 2 deals with vector spaces, subspaces, bases, and dimension. Chapter 3 treats 
linear transformations, their algebra, their representation by matrices, as well as 
isomorphism, linear functionals, and dual spaces. Chapter 4 defines the algebra of 
polynomials over a field, the ideals in that algebra, and the prime factorization of 
a polynomial. It also deals with roots, Taylor’s formula, and the Lagrange inter- 
polation formula. Chapter 5 develops determinants of square matrices, the deter- 
minant being viewed as an alternating n-linear function of the rows of a matrix, 
and then proceeds to multilinear functions on modules as well as the Grassman ring. 
The material on modules places the concept of determinant in a wider and more 
comprehensive setting than is usually found in elementary textbooks. Chapters 6 
and 7 contain a discussion of the concepts which are basic to the analysis of a single 
linear transformation on a finite-dimensional vector space; the analysis of charac- 
teristic (eigen) values, triangulable and diagonalizable transformations; the con- 
cepts of the diagonalizable and nilpotent parts of a more general transformation, 
and the rational and Jordan canonical forms. The primary and cyclic decomposition 
theorems play a central role, the latter being arrived at through the study of 
admissible subspaces. Chapter 7 includes a discussion of matrices over a polynomial 
domain, the computation of invariant factors and elementary divisors of a matrix, 
and the development of the Smith canonical form. The chapter ends with a dis- 
cussion of semi-simple operators, to round out the analysis of a single operator. 
Chapter 8 treats finite-dimensional inner product spaces in some detail. It covers 
the basic geometry, relating orthogonalization to the idea of ‘best approximation 
to a vector’ and leading to the concepts of the orthogonal projection of a vector 
onto a subspace and the orthogonal complement of a subspace. The chapter treats 
unitary operators and culminates in the diagonalization of self-adjoint and normal 
operators. Chapter 9 introduces sesqui-linear forms, relates them to positive and 
self-adjoint operators on an inner product space, moves on to the spectral theory 
of normal operators and then to more sophisticated results concerning normal 
operators on real or complex inner product spaces. Chapter 10 discusses bilinear 
forms, emphasizing canonical forms for symmetric and skew-symmetric forms, as 
well as groups preserving non-degenerate forms, especially the orthogonal, unitary, 
pseudo-orthogonal and Lorentz groups. 

We feel that any course which uses this text should cover Chapters 1, 2, and 3 
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thoroughly, possibly excluding Sections 3.6 and 3.7 which deal with the double dual 
and the transpose of a linear transformation. Chapters 4 and 5, on polynomials and 
determinants, may be treated with varying degrees of thoroughness. In fact, 
polynomial ideals and basic properties of determinants may be covered quite 
sketchily without serious damage to the flow of the logic in the text; however, our 
inclination is to deal with these chapters carefully (except the results on modules), 
because the material illustrates so well the basic ideas of linear algebra. An ele- 
mentary course may now be concluded nicely with the first four sections of Chap- 
ter 6, together with (the new) Chapter 8. If the rational and Jordan forms are to 
be included, a more extensive coverage of Chapter 6 is necessary. 

Our indebtedness remains to those who contributed to the first edition, espe- 
cially to Professors Harry Furstenberg, Louis Howard, Daniel Kan, Edward Thorp, 
to Mrs. Judith Bowers, Mrs. Betty Ann (Sargent) Rose and Miss Phyllis Ruby. 
In addition, we would like to thank the many students and colleagues whose per- 
ceptive comments led to this revision, and the staff of Prentice-Hall for their 
patience in dealing with two authors caught in the throes of academic administra- 
tion. Lastly, special thanks are due to Mrs. Sophia Koulouras for both her skill 
and her tireless efforts in typing the revised manuscript. 

K. M. H. / R. A. K. 
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-1. With the usual operations of addition and multiplication, the set of 
integers satisfies all of the conditions (l)-(9) except condition (8). 

EXAMPLE 3. The set of rational numbers, that is, numbers of the 
form p/q, where p and q are integers and q # 0, is a subfield of the field 
of complex numbers. The division which is not possible within the set of 
integers is possible within the set of rational numbers. The interested 
reader should verify that any subfield of C must contain every rational 
number. 

EXAMPLE 4. The set of all complex numbers of the form 2 + yG, 
where x and y are rational, is a subfield of C. We leave it to the reader to 
verify this. 

In the examples and exercises of this book, the reader should assume 
that the field involved is a subfield of the complex numbers, unless it is 
expressly stated that the field is more general. We do not want to dwell 
on this point; however, we should indicate why we adopt such a conven- 
tion. If F is a field, it may be possible to add the unit 1 to itself a finite 
number of times and obtain 0 (see Exercise 5 following Section 1.2) : 

1+ 1 + ... + 1 = 0. 

That does not happen in the complex number field (or in any subfield 
thereof). If it does happen in F, then the least n such that the sum of n 
l’s is 0 is called the characteristic of the field F. If it does not happen 
in F, then (for some strange reason) F is called a field of characteristic 

zero. Often, when we assume F is a subfield of C, what we want to guaran- 
tee is that F is a field of characteristic zero; but, in a first exposure to 
linear algebra, it is usually better not to worry too much about charac- 
teristics of fields. 

1.2. Systems of Linear Equations 

Suppose F is a field. We consider the problem of finding n scalars 
(elements of F) x1, . . . , x, which satisfy the conditions 

&Xl + A12x2 + .-a + Al?& = y1 

(l-1) 
&XI + &x2 + ... + Aznxn = y2 

A :,x:1 + A,zxz + . . . + A;nxn = j_ 

where yl, . . . , ym and Ai?, 1 5 i 5 m, 1 5 j 5 n, are given elements 
of F. We call (l-l) a system of m linear equations in n unknowns. 

Any n-tuple (xi, . . . , x,) of elements of F which satisfies each of the 
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equations in (l-l) is called a solution of the system. If yl = yZ = . . . = 
ym = 0, we say that the system is homogeneous, or that each of the 
equations is homogeneous. 

Perhaps the most fundamental technique for finding the solutions 
of a system of linear equations is the technique of elimination. We can 
illustrate this technique on the homogeneous system 

2x1 - x2 + x3 = 0 

x1 + 322 + 4x3 = 0. 

If we add (-2) times the second equation to the first equation, we obtain 

-7X2 - 723 = 0 

or, x2 = -x3. If we add 3 times the first equation to the second equation, 
we obtain 

7x1 + 7x3 = 0 

or, x1 = -x3. So we conclude that if (xl, x2, x3) is a solution then x1 = x2 = 
-x3. Conversely, one can readily verify that any such triple is a solution. 
Thus the set of solutions consists of all triples (-a, -a, a). 

We found the solutions to this system of equations by ‘eliminating 
unknowns,’ that is, by multiplying equations by scalars and then adding 
to produce equations in which some of the xj were not present. We wish 
to formalize this process slightly so that we may understand why it works, 
and so that we may carry out the computations necessary to solve a 
system in an organized manner. 

For the general system (l-l), suppose we select m scalars cl, . . . , c,, 
multiply the jth equation by ci and then add. We obtain the equation 

(Cl& + . . . + CmAml)Xl + . . * + (Cl&a + . . . + c,A,n)xn 

= c1y1 + . . . + G&7‘. 

Such an equation we shall call a linear combination of the equations in 
(l-l). Evidently, any solution of the entire system of equations (l-l) will 
also be a solution of this new equation. This is the fundamental idea of 
the elimination process. If we have another system of linear equations 

&1X1 + . . . + BlnXn = Xl 

U-2) 
&-lx1 + . * . + Bk’nxn = z,, 

in which each of the k equations is a linear combination of the equations 
in (l-l), then every solution of (l-l) is a solution of this new system. Of 
course it may happen that some solutions of (l-2) are not solutions of 
(l-l). This clearly does not happen if each equation in the original system 
is a linear combination of the equations in the new system. Let us say 
that two systems of linear equations are equivalent if each equation 
in each system is a linear combination of the equations in the other system. 
We can then formally state our observations as follows. 
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Theorem 1. Equivalent systems of linear equations have exactly the 
same solutions. 

If the elimination process is to be effective in finding the solutions of 

a system like (l-l), then one must see how, by forming linear combina- 

tions of the given equations, to produce an equivalent system of equations 

which is easier to solve. In the next section we shall discuss one method 

of doing this. 

Exercises 

1. Verify that the set of complex numbers described in Example 4 is a sub- 
field of C. 

2. Let F be the field of complex numbers. Are the following two systems of linear 
equations equivalent? If so, express each equation in each system as a linear 
combination of the equations in the other system. 

Xl - x2 = 0 321 + x2 = 0 
2x1 + x2 = 0 Xl + x2 = 0 

3. Test the following systems of equations as in Exercise 2. 

-x1 + x2 + 4x3 = 0 21 - 23 = 0 
x1 + 3x2 + 8x3 = 0 x2 + 3x8 = 0 

&Xl + x2 + 5x3 = 0 

4. Test the following systems as in Exercise 2. 

2x1 + (- 1 + i)x2 + x4=0 
( I 

1 + i x1 + 8x2 - ixg - x4 = 0 

3x2 - %x3 + 5x4 = 0 +x1 - gx, + x3 + 7x4 = 0 

5. Let F be a set which contains exactly two elements, 0 and 1. Define an addition 
and multiplication by the tables: 

+ 0 1 .Ol 
-- 

0 0 1 0 00 
110 101 

Verify that the set F, together with these two operations, is a field. 

6. Prove that if two homogeneous systems of linear equations in two unknowns 
have the same solutions, then they are equivalent. 

7. Prove that each subfield of the field of complex numbers contains every 
rational number. 

8. Prove that each field of characteristic zero contains a copy of the rational 
number field. 
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1.3. Matrices and Elementary 

Row Operations 

One cannot fail to notice that in forming linear combinations of 
linear equations there is no need to continue writing the ‘unknowns’ 

. . , GL, since one actually computes only with the coefficients Aij and 
Fie’ scalars yi. We shall now abbreviate the system (l-l) by 

AX = Y 
where 

11 *** -4.1, 

[: :I A,1 . -a A’,, 

x=;;,A 
Yl 

and Y = : [ ] . 

Ym 
We call A the matrix of coefficients of the system. Strictly speaking, 
the rectangular array displayed above is not a matrix, but is a repre- 
sentation of a matrix. An m X n matrix over the field F is a function 
A from the set of pairs of integers (i, j), 1 5 i < m, 1 5 j 5 n, into the 
field F. The entries of the matrix A are the scalars A (i, j) = Aij, and 
quite often it is most convenient to describe the matrix by displaying its 
entries in a rectangular array having m rows and n columns, as above. 
Thus X (above) is, or defines, an n X 1 matrix and Y is an m X 1 matrix. 
For the time being, AX = Y is nothing more than a shorthand notation 
for our system of linear equations. Later, when we have defined a multi- 
plication for matrices, it will mean that Y is the product of A and X. 

We wish now to consider operations on the rows of the matrix A 
which correspond to forming linear combinations of the equations in 
the system AX = Y. We restrict our attention to three elementary row 

operations on an m X n matrix A over the field F: 

1. multiplication of one row of A by a non-zero scalar c; 
2. replacement of the rth row of A by row r plus c times row s, c any 

scalar and r # s; 
3. interchange of two rows of A. 

An elementary row operation is thus a special type of function (rule) e 
which associated with each m X n matrix A an m X n matrix e(A). One 
can precisely describe e in the three cases as follows: 

1. e(A)ii = Aii if i # T, e(A)7j = cAyi. 
2. e(A)ij = A+ if i # r, e(A)?j = A,i + cA,~. 

3. e(A)ij = Aij if i is different from both r and s, e(A),j = A,j, 
e(A)8j = A,+ 
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In defining e(A), it is not really important how many columns A has, but 
the number of rows of A is crucial. For example, one must worry a little 
to decide what is meant by interchanging rows 5 and 6 of a 5 X 5 matrix. 
To avoid any such complications, we shall agree that an elementary row 
operation e is defined on the class of all m X n matrices over F, for some 
fixed m but any n. In other words, a particular e is defined on the class of 
all m-rowed matrices over F. 

One reason that we restrict ourselves to these three simple types of 
row operations is that, having performed such an operation e on a matrix 
A, we can recapture A by performing a similar operation on e(A). 

Theorem 2. To each elementary row operation e there corresponds an 
elementary row operation el, of the same type as e, such that el(e(A)) = 
e(el(A)) = A for each A, In other words, the inverse operation (junction) of 
an elementary row operation exists and is an elementary row operation of the 
same type. 

Proof. (1) Suppose e is the operation which multiplies the rth row 
of a matrix by the non-zero scalar c. Let el be the operation which multi- 
plies row r by c-l. (2) Suppose e is the operation which replaces row r by 
row r plus c times row s, r # s. Let el be the operation which replaces row r 
by row r plus (-c) times row s. (3) If e interchanges rows r and s, let el = e. 
In each of these three cases we clearly have ei(e(A)) = e(el(A)) = A for 
each A. 1 

Dejinition. If A and B are m X n matrices over the jield F, we say that 
B is row-equivalent to A if B can be obtained from A by a$nite sequence 
of elementary row operations. 

Using Theorem 2, the reader should find it easy to verify the following. 
Each matrix is row-equivalent to itself; if B is row-equivalent to A, then A 
is row-equivalent to B; if B is row-equivalent to A and C is row-equivalent 
to B, then C is row-equivalent to A. In other words, row-equivalence is 
an equivalence relation (see Appendix). 

Theorem 3. If A and B are row-equivalent m X n matrices, the homo- 
geneous systems of linear equations Ax = 0 and BX = 0 have exactly the 
same solutions. 

Proof. Suppose we pass from A to B by a finite sequence of 
elementary row operations: 

A = A,,+A1+ ... +Ak = B. 

It is enough to prove that the systems AjX = 0 and Aj+lX = 0 have the 
same solutions, i.e., that one elementary row operation does not disturb 
the set of solutions. 
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So suppose that B is obtained from A by a single elementary row 
operation. No matter which of the three types the operation is, (l), (2), 
or (3), each equation in the system BX = 0 will be a linear combination 
of the equations in the system AX = 0. Since the inverse of an elementary 
row operation is an elementary row operation, each equation in AX = 0 
will also be a linear combination of the equations in BX = 0. Hence these 
two systems are equivalent, and by Theorem 1 they have the same 
solutions. 1 

EXAMPLE 5. Suppose F is the field of rational numbers, and 

We shall perform a finite sequence of elementary row operations on A, 
indicating by numbers in parentheses the type of operation performed. 

6-l 5 

The row-equivalence of A with the final matrix in the above sequence 
tells us in particular that the solutions of 

2x1 - x2 + 3x3 + 2x4 = 0 
xl + 4x2 - x4 = 0 

2x1 + 6x2 - ~3 + 5x4 = 0 
and 

x3 - 9x4 = 0 
Xl +yx4=0 

x2 5x -0 - g4- 

are exactly the same. In the second system it is apparent that if we assign 
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any rational value c to x4 we obtain a solution (-+c, %, J+c, c), and also 
that every solution is of this form. 

EXAMPLE 6. Suppose F is the field of complex numbers and 

Thus the system of equations 

-51 + ix, = 0 
--ix1 + 3x2 = 0 

x1 + 2x2 = 0 

has only the trivial solution x1 = x2 = 0. 

In Examples 5 and 6 we were obviously not performing row opera- 
tions at random. Our choice of row operations was motivated by a desire 
to simplify the coefficient matrix in a manner analogous to ‘eliminating 
unknowns’ in the system of linear equations. Let us now make a formal 
definition of the type of matrix at which we were attempting to arrive. 

DeJinition. An m X n matrix R is called row-reduced if: 

(a) the jirst non-zero entry in each non-zero row of R is equal to 1; 
(b) each column of R which contains the leading non-zero entry of some 

row has all its other entries 0. 

EXAMPLE 7. One example of a row-reduced matrix is the n X n 
(square) identity matrix I. This is the n X n matrix defined by 

Iii = 6,j = 
-t 

1, if i=j 
0, if i # j. 

This is the first of many occasions on which we shall use the Kronecker 

delta (6). 

In Examples 5 and 6, the final matrices in the sequences exhibited 
there are row-reduced matrices. Two examples of matrices which are not 
row-reduced are: 
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The second matrix fails to satisfy condition (a), because the leading non- 
zero entry of the first row is not 1. The first matrix does satisfy condition 
(a), but fails to satisfy condition (b) in column 3. 

We shall now prove that we can pass from any given matrix to a row- 
reduced matrix, by means of a finite number of elementary row oper- 
tions. In combination with Theorem 3, this will provide us with an effec- 
tive tool for solving systems of linear equations. 

Theorem 4. Every m X n matrix over the field F is row-equivalent to 
a row-reduced matrix. 

Proof. Let A be an m X n matrix over F. If every entry in the 
first row of A is 0, then condition (a) is satisfied in so far as row 1 is con- 
cerned. If row 1 has a non-zero entry, let k be the smallest positive integer 
j for which Alj # 0. Multiply row 1 by AG’, and then condition (a) is 
satisfied with regard to row 1. Now for each i 2 2, add (-Aik) times row 
1 to row i. Now the leading non-zero entry of row 1 occurs in column k, 
that entry is 1, and every other entry in column k is 0. 

Now consider the matrix which has resulted from above. If every 
entry in row 2 is 0, we do nothing to row 2. If some entry in row 2 is dif- 
ferent from 0, we multiply row 2 by a scalar so that the leading non-zero 
entry is 1. In the event that row 1 had a leading non-zero entry in column 
k, this leading non-zero entry of row 2 cannot occur in column k; say it 
occurs in column Ic, # k. By adding suitable multiples of row 2 to the 
various rows, we can arrange that all entries in column k’ are 0, except 
the 1 in row 2. The important thing to notice is this: In carrying out these 
last operations, we will not change the entries of row 1 in columns 1, . . . , k; 
nor will we change any entry of column k. Of course, if row 1 was iden- 
tically 0, the operations with row 2 will not affect row 1. 

Working with one row at a time in the above manner, it is clear that 
in a finite number of steps we will arrive at a row-reduced matrix. 1 

Exercises 

1. Find all solutions to the system of equations 

(1 - i)Zl - ixz = 0 
2x1 + (1 - i)zz = 0. 

2. If 
3 -1 2 

A=2 [ 11 1 1 -3 0 

find all solutions of AX = 0 by row-reducing A. 
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3. If 

find all solutions of AX = 2X and all solutions of AX = 3X. (The symbol cX 
denotes the matrix each entry of which is c times the corresponding entry of X.) 

4. Find a row-reduced matrix which is row-equivalent to 

6. Let 

be a 2 X 2 matrix with complex entries. Suppose that A is row-reduced and also 
that a + b + c + d = 0. Prove that there are exactly three such matrices. 

7. Prove that the interchange of two rows of a matrix can be accomplished by a 
finite sequence of elementary row operations of the other two types. 

8. Consider the system of equations AX = 0 where 

is a 2 X 2 matrix over the field F. Prove the following. 
(a) If every entry of A is 0, then every pair (xi, Q) is a solution of AX = 0. 
(b) If ad - bc # 0, the system AX = 0 has only the trivial solution z1 = 

x2 = 0. 
(c) If ad - bc = 0 and some entry of A is different from 0, then there is a 

solution (z:, x20) such that (xi, 22) is a solution if and only if there is a scalar y 
such that zrl = yxy, x2 = yxg. 

1 .P. Row-Reduced Echelon Matrices 

Until now, our work with systems of linear equations was motivated 
by an attempt to find the solutions of such a system. In Section 1.3 we 
established a standardized technique for finding these solutions. We wish 
now to acquire some information which is slightly more theoretical, and 
for that purpose it is convenient to go a little beyond row-reduced matrices. 

DeJinition. An m X n matrix R is called a row-reduced echelon 
matrix if: 
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(a) R is row-reduced; 
(b) every row of R which has all its entries 0 occurs below every row 

which has a non-zero entry; 
(c) ifrowsl,..., r are the non-zero rows of R, and if the leading non- 

zero entry of row i occurs in column ki, i = 1, . . . , r, then kl < 
kz < . . . < k,. 

One can also describe an m X n row-reduced echelon matrix R as 
follows. Either every entry in R is 0, or there exists a positive integer r, 
1 5 r 5 m, and r positive integers kl, . . . , k, with 1 5 ki I: n and 

(a) Rij=Ofori>r,andRij=Oifj<k;. 
(b) &ki = 8ij, 1 5 i 5 r, 1 5 j 5 r. 
(c) kl < . . . < k,. 

EXAMPLE 8. Two examples of row-reduced echelon matrices are the 
n X n identity matrix, and the m X n zero matrix O”J’, in which all 
entries are 0. The reader should have no difficulty in making other ex- 
amples, but we should like to give one non-trivial one: 

Theorem 5. Every m X n matrix A is row-equivalent to a row-reduced 
echelon matrix. 

Proof. We know that A is row-equivalent to a row-reduced 
matrix. All that we need observe is that by performing a finite number of 
row interchanges on a row-reduced matrix we can bring it to row-reduced 
echelon form. 1 

In Examples 5 and 6, we saw the significance of row-reduced matrices 
in solving homogeneous systems of linear equations. Let us now discuss 
briefly the system RX = 0, when R is a row-reduced echelon matrix. Let 
rows 1, . . . , r be the non-zero rows of R, and suppose that the leading 
non-zero entry of row i occurs in column ki. The system RX = 0 then 
consists of r non-trivial equations. Also the unknown xk; will occur (with 
non-zero coefficient) only in the ith equation. If we let ul, . . . , u+,. denote 
the (n - r) unknowns which are different from xk,, . . . , xk,, then the 
r non-trivial equations in RX = 0 are of the form 

Xkl + Z CljUj = 0 

(l-3) 
. j=l 

n--r 
Xk, -I- Z CrjUj = 0. 

j=l 
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All the solutions to the system of equations RX = 0 are obtained by 
assigning any values whatsoever to ~1, . . . , u,-, and then computing the 
corresponding values of xk,, . . . , xk, from (l-3). For example, if R is the 
matrix displayed in Example 8, then r = 2, ICI = 2, i& = 4, and the two 
non-trivial equations in the system RX = 0 are 

x2 - 3x3 + $x5 = 0 or x2 = 3x3 - +x5 
x4+2x5=0 or x4= -2x5. 

So we may assign any values to xi, x3, and x5, say x1 = a, 23 = b, x5 = c, 
and obtain the solution (a, 3b - +c, 6, -2c, c). 

Let us observe one thing more in connection with the system of 
equations RX = 0. If the number r of non-zero rows in R is less than n, 
then the system RX = 0 has a non-trivial solution, that is, a solution 
(Xl, . . . ) x,) in which not every xi is 0. For, since r < n, we can choose 
some Xj which is not among the r unknowns xk,, . . . , xk,, and we can then 
construct a solution as above in which this xi is 1. This observation leads 
us to one of the most fundamental facts concerning systems of homoge- 
neous linear equations. 

Theorem 6. Zf A is an m X n matrix and m < n, then the homo- 
geneous system of linear equations Ax = 0 has a non-trivial solution. 

Proof. Let R be a row-reduced echelon matrix which is row- 
equivalent to A. Then the systems AX = 0 and RX = 0 have the same 
solutions by Theorem 3. If r is the number of rows in R, then 
certainly r 5 m, and since m < n, we have r < n. It follows immediately 
from our remarks above that AX = 0 has a non-trivial solution. 1 

Theorem 7. Zf A is an n X n (square) matrix, then A is row-equivalent 
to the n X n identity matrix if and only if the system of equations AX = 0 
has only the trivial solution. 

Proof. If A is row-equivalent to I, then AX = 0 and IX = 0 
have the same solutions. Conversely, suppose AX = 0 has only the trivial 
solution X = 0. Let R be an n X n row-reduced echelon matrix which is 
row-equivalent to A, and let r be the number of non-zero rows of R. Then 
RX = 0 has no non-trivial solution. Thus r 2 n. But since R has n rows, 
certainly r < n, and we have r = n. Since this means that R actually has 
a leading non-zero entry of 1 in each of its n rows, and since these l’s 
occur each in a different one of the n columns, R must be the n X n identity 
matrix. 1 

Let us now ask what elementary row operations do toward solving 
a system of linear equations AX = Y which is not homogeneous. At the 
outset, one must observe one basic difference between this and the homo- 
geneous case, namely, that while the homogeneous system always has the 
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trivial solution 51 = . . . = x, = 0, an inhomogeneous system need have 
no solution at all. 

We form the augmented matrix A’ of the system AX = Y. This 
is the m X (n + 1) matrix whose first n columns are the columns of A 
and whose last column is Y. More precisely, 

A& = Aii, if j 5 n 
Ai(n+l) = Yi. 

Suppose we perform a sequence of elementary row operations on A, 
arriving at a row-reduced echelon matrix R. If we perform this same 
sequence of row operations on the augmented matrix A’, we will arrive 
at a matrix R’ whose first n columns are the columns of R and whose last 
column contains certain scalars 21, . . . , 2,. The scalars xi are the entries 
of the m X 1 matrix 21 z= ; [I Gn 
which results from applying the sequence of row operations to the matrix 
Y. It should be clear to the reader that, just as in the proof of Theorem 3, 
the systems AX = Y and RX = Z are equivalent and hence have the 
same solutions. It is very easy to determine whether the system RX = Z 
has any solutions and to determine all the solutions if any exist. For, if R 
has r non-zero rows, with the leading non-zero entry of row i occurring 
in column ki, i = 1, . . . , rr then the first r equations of RX = Z effec- 
tively express zk,, . . . , xk, in terms of the (n - r) remaining xj and the 
scalars zl, . . . , zT. The last (m - r) equations are 

0 = G+1 

and accordingly the condition for the system to have a solution is zi = 0 
for i > r. If this condition is satisfied, all solutions to the system are 
found just as in the homogeneous case, by assigning arbitrary values to 
(n - r) of the xj and then computing xk; from the ith equation. 

EXAMPLE 9. Let F be the field of rational numbers and 

and suppose that we wish to solve the system AX = Y for some yl, yz, 
and y3. Let us perform a sequence of row operations on the augmented 
matrix A’ which row-reduces A : 
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E -; -i p E -i j (yz $24 3 

[ 

1 -2 1 Yl l-2 1 Yl 
0 5 -1 (Y/z - 2?/1) 

I [ 

(1!0 1 -* gyz - Q> (2! 
’ 0 0 0 (y3 - yz + 2Yd 0 0 0 (ya - yz + 2%) 1 

[ 
10 Q 3CYl + 2Yz) 
0 1 -4 icy2 - &/I) . 
0 0 0 (Y3 - y2 + 2Yl) I 

The condition that the system AX = Y have a solution is thus 

2Yl - yz + y3 = 0 

and if the given scalars yi satisfy this condition, all solutions are obtained 
by assigning a value c to x3 and then computing 

x1 = -$c + Q(y1 + 2Yd 
22 = Bc + tcyz - 2Yd. 

Let us observe one final thing about the system AX = Y. Suppose 
the entries of the matrix A and the scalars yl, . . . , ym happen to lie in a 
sibfield Fl of the field F. If the system of equations AX = Y has a solu- 
tion with x1, . . . , x, in F, it has a solution with x1, . . . , xn in Fl. F’or, 
over either field, the condition for the system to have a solution is that 
certain relations hold between ~1, . . . , ym in FI (the relations zi = 0 for 
i > T, above). For example, if AX = Y is a system of linear equations 
in which the scalars yk and Aij are real numbers, and if there is a solution 
in which x1, . . . , xn are complex numbers, then there is a solution with 
21, . . . , xn real numbers. 

Exercises 

1. Find all solutions to the following system of equations by row-reducing the 
coefficient matrix: 

;a + 2x2 - 6x3 = 0 
-4x1 + 55.7 = 0 
-3x1 + 622 - 13x3 = 0 
-$x1+ 2x2 - *x - 0 73- 

2. Find a row-reduced echelon matrix which is row-equivalent to 1 . 
A=2 ;“. [ 1 i 1+i 

What are the solutions of AX = O? 
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3. Describe explicitly all 2 X 2 row-reduced echelon matrices. 

4. Consider the system of equations 

Xl - x2 + 2x3 = 1 
2x1 + 2x3 = 1 

Xl - 3x2 + 4x3 = 2. 

Does this system have a solution? If so, describe explicitly all solutions. 

5. Give an example of a system of two linear equations in two unknowns which 
has no solution. 

6. Show that the system 

Xl - 2x2 + x3 + 2x4 = 1 
Xl + X2 - x3 + xp = 2 
21 + 7X2 - 5X3 - X4 = 3 

has no solution. 

7. Find all solutions of 

2~~-3~~-7~~+5~4+2x~= -2 
ZI-~XZ-~X~+~X~+ x5= -2 

2x1 -4X3+2X4+ 25 = 3 

XI - 5X2 - 7x3 + 6x4 + 2x5 = -7. 

8. Let 
3 -1 2 

A=2 11. [ 1 1 -3 0 

For which triples (yr, y2, y3) does the system AX = Y have a solution? 

9. Let 
3 -6 2 -1 

For which (~1, y2, y3, y4) does the system of equations AX = Y have a solution? 

10. Suppose R and R’ are 2 X 3 row-reduced echelon matrices and that the 
systems RX = 0 and R’X = 0 have exactly the same solutions. Prove that R = R’. 

1.5. Matrix Multiplication 

It is apparent (or should be, at any rate) that the process of forming 
linear combinations of the rows of a matrix is a fundamental one. For this 
reason it is advantageous to introduce a systematic scheme for indicating 
just what operations are to be performed. More specifically, suppose B 
is an n X p matrix over a field F with rows PI, . . . , Pn and that from B we 
construct a matrix C with rows 71, . . . , yrn by forming certain linear 
combinations 

(l-4) yi = Ail/G + A& + . . . + AinPn. 
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The rows of C are determined by the mn scalars Aij which are themselves 
the entries of an m X n matrix A. If (l-4) is expanded to 

(Gil * * .Ci,> = i 64i,B,1. . . Air&p) 
r=l 

we see that the entries of C are given by 

Cij = 5 Ai,Brj. 
r=l 

DeJnition. Let A be an m X n matrix over the jield F and let R be an 
n X p matrix over I?. The product AB is the m X p matrix C whose i, j 
entry is 

Cij = 5 Ai,B,j. 
r=l 

EXAMPLE 10. Here are some products of matrices with rational entries. 

(4 [; -: ;I = [ -5 ;I [l; -: ;I 
Here 

Yl = (5 -1 2) = 1 . (5 -1 2) + 0. (15 4 8) 
Y-2 = (0 7 2) = -3(5 -1 2) + 1 . (15 4 8) 

Cb) [I; ; Ii] = [-i gK s” -8-l 

Here 
yz=(9 12 -8) = -2(O 6 1) + 3(3 8 -2) 
73 = (12 62 -3) = 5(0 6 1) + 4(3 8 -2) 

cc> 

(4 

[2i] = [i Xl 
[-; J=[-$2 41 

Here 
yz = (6 12) = 3(2 4) 

(0 

k> 

[ 0 2 0 0 0 3 4 0 0 1 
[ 0 0 0 9 2 1 0 0 0 1 
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It is important to observe that the product of two matrices need not 
be defined; the product is defined if and only if the number of columns in 
the first matrix coincides with the number of rows in the second matrix. 
Thus it is meaningless to interchange the order of the factors in (a), (b), 
and (c) above. Frequently we shall write products such as AB without 
explicitly mentioning the sizes of the factors and in such cases it will be 
understood that the product is defined. From (d), (e), (f), (g) we find that 
even when the products AB and BA are both defined it need not be true 
that AB = BA; in other words, matrix multiplication is not commutative. 

EXAMPLE 11. 

(a) If I is the m X m identity matrix and A is an m X n matrix, 
IA=A. 

(b) If I is the n X n identity matrix and A is an m X n matrix, 
AI = A. 

(c) If Ok+ is the k X m zero matrix, Ok+ = OksmA. Similarly, 
‘4@BP = ()%P. 

EXAMPLE 12. Let A be an m X n matrix over F. Our earlier short- 
hand notation, AX = Y, for systems of linear equations is consistent 
with our definition of matrix products. For if 

Xl 

x= “.” [:I &I 

with xi in F, then AX is the m X 1 matrix 

Yl 

y= y.” [:I Ym 

such that yi = Ails1 + Ai2~2 + . . . + Ai,x,. 
The use of column matrices suggests a notation which is frequently 

useful. If B is an n X p matrix, the columns of B are the 1 X n matrices 
BI,. . . , BP defined by 

lljip. 

The matrix B is the succession of these columns: 

B = [BI, . . . , BP]. 

The i, j entry of the product matrix AB is formed from the ith row of A 
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and the jth column of B. The reader should verify that the jth column of 
AB is AB,: 

AB = [ABI, . . . , A&]. 

In spite of the fact that a product of matrices depends upon the 
order in which the factors are written, it is independent of the way in 
which they are associated, as the next theorem shows. 

Theorem 8. If A, B, C are matrices over the field F such that the prod- 
ucts BC and A(BC) are defined, then so are the products AB, (AB)C and 

A(BC) = (AB)C. 

Proof. Suppose B is an n X p matrix. Since BC is defined, C is 
a matrix with p rows, and BC has n rows. Because A(BC) is defined we 
may assume A is an m X n matrix. Thus the product AB exists and is an 
m X p matrix, from which it follows that the product (AB)C exists. To 
show that A(BC) = (AB)C means to show that 

[A(BC)lij = [W)Clij 

for each i, j. By definition 

[A(BC)]ij = Z A+(BC)rj 

= d AC 2 BmCnj 

= 6 Z AbmCsj 
r 8 

= 2 (AB)i,C,j 
8 

= [(AB)C’]ij. 1 

When A is an n X n (square) matrix, the product AA is defined. 
We shall denote this matrix by A 2. By Theorem 8, (AA)A = A(AA) or 
A2A = AA2, so that the product AAA is unambiguously defined. This 
product we denote by A3. In general, the product AA . . . A (k times) is 
unambiguously defined, and we shall denote this product by A”. 

Note that the relation A(BC) = (AB)C implies among other things 
that linear combinations of linear combinations of the rows of C are again 
linear combinations of the rows of C. 

If B is a given matrix and C is obtained from B by means of an ele- 
mentary row operation, then each row of C is a linear combination of the 
rows of B, and hence there is a matrix A such that AB = C. In general 
there are many such matrices A, and among all such it is convenient and 
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possible to choose one having a number of special properties. Before going 
into this we need to introduce a class of matrices. 

Definition. An m X n matrix is said to be an elementary matrix if 
it can be obtained from the m X m identity matrix by means of a single ele- 
mentary row operation. 

EXAMPLE 13. A 2 X 2 elementary matrix is necessarily one of the 
following: 

[ 0 c 0 1’ 1 c # 0, [ 0 1 0 c’ 1 c # 0. 

Theorem 9. Let e be an elementary row operation and let E be the 
m X m elementary matrix E = e(1). Then, for every m X n matrix A, 

e(A) = EA. 

Proof. The point of the proof is that the entry in the ith row 
and jth column of the product matrix EA is obtained from the ith row of 
E and the jth column of A. The three types of elementary row operations 
should be taken up separately. We shall give a detailed proof for an oper- 
ation of type (ii). The other two cases are even easier to handle than this 
one and will be left as exercises. Suppose r # s and e is the operation 
‘replacement of row r by row r plus c times row s.’ Then 

Therefore, 

Eik = F’+-rk ’ 
rk s 7 i = r. 

In other words EA = e(A). 1 

Corollary. Let A and B be m X n matrices over the field F. Then B 
is row-equivalent to A if and only if B = PA, where P is a product of m X m 
elementary matrices. 

Proof. Suppose B = PA where P = E, ’ * * EZEI and the Ei are 
m X m elementary matrices. Then EIA is row-equivalent to A, and 
E,(EIA) is row-equivalent to EIA. So EzE,A is row-equivalent to A; and 
continuing in this way we see that (E, . . . E1)A is row-equivalent to A. 

Now suppose that B is row-equivalent to A. Let El, E,, . . . , E, be 
the elementary matrices corresponding to some sequence of elementary 
row operations which carries A into B. Then B = (E, . . . EI)A. 1 
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Exercises 

1. Let 

A = [; -; ;I, B= [-J, c= r1 -11. 

Compute ABC and CAB. 

2. Let 

A-[% -i ;], B=[; -;]a 

Verify directly that A(AB) = A2B. 

3. Find two different 2 X 2 matrices A such that A* = 0 but A # 0. 

4. For the matrix A of Exercise 2, find elementary matrices El, Ez, . . . , Ek 
such that 

Er ... EzElA = I. 

5. Let 

A=[i -;], B= [-I ;]. 

Is there a matrix C such that CA = B? 

6. Let A be an m X n matrix and B an n X k matrix. Show that the columns of 
C = AB are linear combinations of the columns of A. If al, . . . , (Y* are the columns 
of A and yl, . . . , yk are the columns of C, then 

yi = 2 B,g~p 
?.=I 

7. Let A and B be 2 X 2 matrices such that AB = 1. Prove that BA = I. 

8. Let 

be a 2 X 2 matrix. We inquire when it is possible to find 2 X 2 matrices A and B 
such that C = AB - BA. Prove that such matrices can be found if and only if 
Cl1 + czz = 0. 

1.6. Invertible Matrices 

Suppose P is an m X m matrix which is a product of elementary 
matrices. For each m X n matrix A, the matrix B = PA is row-equivalent 
to A; hence A is row-equivalent to B and there is a product Q of elemen- 
tary matrices such that A = QB. In particular this is true when A is the 
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m X m identity matrix. In other words, there is an m X m matrix Q, 
which is itself a product of elementary matrices. such that QP = I. As 
we shall soon see, the existence of a Q with QP = I is equivalent to the 
fact that P is a product of elementary matrices. 

DeJinition. Let A be an n X n (square) matrix over the field F. An 
n X n matrix B such that BA = I is called a left inverse of A; an n X n 
matrix B such that AB = I is called a right inverse of A. If AB = BA = I, 
then B is called a two-sided inverse of A and A is said to be invertible. 

Lemma. Tf A has a left inverse B and a right inverse C, then B = C. 

Proof. Suppose BA = I and AC = I. Then 

B = BI = B(AC) = (BA)C = IC = C. 1 

Thus if A has a left and a right inverse, A is invertible and has a 
unique two-sided inverse, which we shall denote by A-’ and simply call 
the inverse of A. 

Theorem 10. Let A and B be n X n matrices over E’. 

(i) If A is invertible, so is A-l and (A-l)-’ = A. 
(ii) If both A and B are invertible, so is AR, and (AB)-l = B-‘A-‘. 

Proof. The first statement is evident from the symmetry of the 
definition. The second follows upon verification of the relations 

(AB)(B-‘A-‘) = (B-‘A-‘)(AB) = I. 1 

Corollary. A product of invertible matrices is invertible. 

Theorem 11. An elementary matrix is invertible. 

Proof. Let E be an elementary matrix corresponding to the 
elementary row operation e. If el is the inverse operation of e (Theorem 2) 
and El = el(1), then 

and 
EE, = e(El) = e(el(I)) = I 

ElE = cl(E) = el(e(I)) = I 

so that E is invertible and E1 = E-l. 1 

EXAMPLE 14. 

(4 

(b) 
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(cl [c’ ;I-l = [-: !I 
(d) When c # 0, 

I 

Theorem 12. If A is an n X n matrix, the following are equivalent. 

(i) A is invertible. 
(ii) A is row-equivalent to the n X n identity matrix. 

(iii) A is a product of elementary matrices. 

Proof. Let R be a row-reduced echelon matrix which is row- 
equivalent to A. By Theorem 9 (or its corollary), 

R = EI, . ’ . EzE,A 

where El, . . . , Ee are elementary matrices. Each Ei is invertible, and so 

A = EC’... E’,‘R. 

Since products of invertible matrices are invertible, we see that A is in- 
vertible if and only if R is invertible. Since R is a (square) row-reduced 
echelon matrix, R is invertible if and only if each row of R contains a 
non-zero entry, that is, if and only if R = I. We have now shown that A 
is invertible if and only if R = I, and if R = I then A = EL’ . . . EC’. 
It should now be apparent that (i), (ii), and (iii) are equivalent statements 
about A. 1 

Corollary. If A is an invertible n X n matrix and if a sequence of 
elementary row operations reduces A to the identity, then that same sequence 
of operations when applied to I yields A-‘. 

Corollary. Let A and B be m X n matrices. Then B is row-equivalent 
to A if and only if B = PA where P is an invertible m X m matrix. 

Theorem 13. For an n X n matrix A, the following are equivalent. 

(i) A is invertible. 
(ii) The homogeneous system AX = 0 has only the trivial solution 

x = 0. 
(iii) The system of equations AX = Y has a solution X for each n X 1 

matrix Y. 

Proof. According to Theorem 7, condition (ii) is equivalent to 
the fact that A is row-equivalent to the identity matrix. By Theorem 12, 
(i) and (ii) are therefore equivalent. If A is invertible, the solution of 
AX = Y is X = A-‘Y. Conversely, suppose AX = Y has a solution for 
each given Y. Let R be a row-reduced echelon matrix which is row- 
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equivalent to A. We wish to show that R = I. That amounts to showing 
that the last row of R is not (identically) 0. Let 

0 
0 

Es i. 

[I 
0 
1 

If the system RX = E can be solved for X, the last row of R cannot be 0. 
We know that R = PA, where P is invertible. Thus RX = E if and only 
if AX = P-IE. According to (iii), the latter system has a solution. m 

Corollary. A square matrix with either a left or right inverse is in- 
vertible. 

Proof. Let A be an n X n matrix. Suppose A has a left inverse, 
i.e., a matrix B such that BA = I. Then AX = 0 has only the trivial 
solution, because X = IX = B(AX). Therefore A is invertible. On the 
other hand, suppose A has a right inverse, i.e., a matrix C such that 
AC = I. Then C has a left inverse and is therefore invertible. It then 
follows that A = 6-l and so A is invertible with inverse C. 1 

Corollary. Let A = AlA, . . . Ak, where A1 . . . , Ak are n X n (square) 
matrices. Then A is invertible if and only if each Aj is invertible. 

Proof. We have already shown that the product of two invertible 
matrices is invertible. From this one sees easily that if each Aj is invertible 
then A is invertible. 

Suppose now that A is invertible. We first prove that Ak is in- 
vertible. Suppose X is an n X 1 matrix and AkX = 0. Then AX = 
(A1 ... Akel)AkX = 0. Since A is invertible we must have X = 0. The 
system of equations AkX = 0 thus has no non-trivial solution, so Ak is 
invertible. But now A1 . . . Ak--l = AAa’ is invertible. By the preceding 
argument, Ak-l is invertible. Continuing in this way, we conclude that 
each Aj is invertible. u 

We should like to make one final comment about the solution of 
linear equations. Suppose A is an m X n matrix and we wish to solve the 
system of equations AX = Y. If R is a row-reduced echelon matrix which 
is row-equivalent to A, then R = PA where P is an m X m invertible 
matrix. The solutions of the system A& = Y are exactly the same as the 
solutions of the system RX = PY (= Z). In practice, it is not much more 
difficult to find the matrix P than it is to row-reduce A to R. For, suppose 
we form the augmented matrix A’ of the system AX = Y, with arbitrary 
scalars yl, . . . , ylnz occurring in the last column. If we then perform on A’ 
a sequence of elementary row operations which leads from A to R, it will 
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become evident what the matrix P is. (The reader should refer to Ex- 
ample 9 where we essentially carried out this process.) In particular, if A 
is a square matrix, this process will make it clear whether or not A is 
invertible and if A is invertible what the inverse P is. Since we have 
already given the nucleus of one example of such a computation, we shall 
content ourselves with a 2 X 2 example. 

EXAMPLE 15. Suppose F is the field of rational numbers and 

A= 2 -l [ 1 1 3’ 
Then 

2 -1 y1 (3) 1 1 [ 3 yz (2) 1 3 y.2 (1) 
1 3 yz - 2 71 y1 - 1 [ 0 -7 y1-2yz - 1 

1 3 (2) 1 0 3(y2 + 3YI) 
0 1 S(2yB2 y1) - 1 [ 0 1 4@Y, - Yl) 1 

from which it is clear that A is invertible and 

A-’ = + [ 1 + . -4 3 
It may seem cumbersome to continue writing the arbitrary scalars 

Yl, Y-2, . . . in the computation of inverses. Some people find it less awkward 
to carry along two sequences of matrices, one describing the reduction of 
A to the identity and the other recording the effect of the same sequence 
of operations starting from the identity. The reader may judge for him- 
self which is a neater form of bookkeeping. 

EXAMPLE 16. Let us find the inverse of 

0 
0 
1 1 
0 
0 
1 1 
0 
0 
1 1 
0 
0 

180 1 
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[ 1 0 1 09 
001 

10 0 

[ I 

0 1 07 
00 1 

--9 60 

-36 192 -180 
30 -180 -60 1 180 _ 

- 
9 -36 30 

-36 192 -180 

I 

. 
30 -180 180 

It must have occurred to the reader that we have carried on a lengthy 
discussion of the rows of matrices and have said little about the columns. 
We focused our attention on the rows because this seemed more natural 
from the point of view of linear equations. Since there is obviously nothing 
sacred about rows, the discussion in the last sections could have been 
carried on using columns rather than rows. If one defines an elementary 
column operation and column-equivalence in a manner analogous to that 
of elementary row operation and row-equivalence, it is clear that each 
m X n matrix will be column-equivalent to a ‘column-reduced echelon’ 
matrix. Also each elementary column operation will be of the form 
A + AE, where E is an n X n elementary matrix-and so on. 

Exercises 

1. Let 

Find a row-reduced echelon matrix R which is row-equivalent to A and an in- 
vertible 3 X 3 matrix P such that R = PA. 

2. Do Esercise 1, but with 

A = [; -3 21. 

3. For each of the two matrices 

use elementary row operations to discover whether it is invertible, and to find the 
inverse in case it is. 

4. Let 
5 0 

A= [ 15 

0 

0 1 0. 1 5 
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For which X does there exist a scalar c such that AX = cX? 

5. Discover whether 
1 2 3 4 

A=O234 [ 1 0 0 3 4 
0 0 0 4 

is invertible, and find A-1 if it exists. 

6. Suppose A is a 2 X I matrix and that B is a 1 X 2 matrix. Prove that C = AB 
is not invertible. 

7. Let A be an n X n (square) matrix. Prove the following two statements: 
(a) If A is invertible and AB = 0 for some n X n matrix B, then B = 0. 
(b) If A is not invertible, then there exists an n X n matrix B such that 

AB = 0 but B # 0. 

8. Let 

Prove, using elementary row operations, that A is invertible if and only if 
(ad - bc) # 0. 

9. An n X n matrix A is called upper-triangular if Ai, = 0 for i > j, that is, 
if every entry below the main diagonal is 0. Prove that an upper-triangular (square) 
matrix is invertible if and only if every entry on its main diagonal is different 
from 0. 

10. Prove the following generalization of Exercise 6. If A is an m X n matrix, 
B is an n X m matrix and n < m, then AB is not invertible. 

11. Let A be an m X n matrix. Show that by means of a finite number of elemen- 
tary row and/or column operations one can pass from A to a matrix R which 
is both ‘row-reduced echelon’ and ‘column-reduced echelon,’ i.e., Rii = 0 if i # j, 

Rii = 1, 1 5 i 5 r, Rii = 0 if i > r. Show that R = PA&, where P is an in- 
vertible m X m matrix and Q is an invertible n X n matrix. 

12. The result of Example 16 suggests that perhaps the matrix 

is invertible and A+ has integer entries. Can you prove that? 
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5. Let I” be a field and let 12 be a positive integer (n 2 2). Let V be the vector 
space of all n X n matrices over Ii’. Which of the following sets of matrices B in V 
are subspaces of V? 

(a) all invertible A ; 
(b) all non-invertible A ; 
(c) all A such that AB = &I, where B is some fixed matrix in V; 
(d) all A such that A2 = A. 

6. (a) Prove that the only subspaces of R1 are R1 and the zero subspace. 
(b) Prove that a subspace of R* is R2, or the zero subspace, or consists of all 

scalar multiples of some fixed vector in R2. (The last type of subspace is, intuitively, 
a straight line through the origin.) 

(c) Can you describe the subspaces of R3? 

7. Let WI and WZ be subspaces of a vector space V such that the set-theoretic 
union of WI and Wz is also a subspace. Prove that one of the spaces Wi is contained 
in the other. 

8. Let 7.7 be the vector space of all functions from R into R; let 8, be the 
subset of even functions, f(-2) = f(s); let V, be the subset of odd functions, 

f(-z) = -f(z). 

(a) Prove that 8, and V, are subspaces of V. 
(b) Prove that V, + V, = V. 
(c) Prove that V, n V, = (0). 

9. Let WI and Wz be subspaces of a vector space V such that WI + Wz = V 
and WI n W2 = (0). Prove that for each vector LY in V there are unique vectors 
(Ye in WI and (Ye in W2 such that a = crI + LYE. 

2.3. Bases and Dimension 

We turn now to the task of assigning a dimension to certain vector 

spaces. Although we usually associate ‘dimension’ with something geomet- 

rical, we must find a suitable algebraic definition of the dimension of a 

vector space. This will be done through the concept of a basis for the space. 

DeJinition. Let V be a vector space over F. A subset S of TJ is said to 

be linearly dependent (or simply, dependent) if there exist distinct vectors 

a, a-2, . . . ) (Y,, in S and scalars cl, c2, . . . , c, in F, not all of which are 0, 

such that 

Clcrl + c.gY2 + . * - + C&t, = 0. 

A set which is not linearly dependent is called linearly independent. If 
the set S contains only$nitely many vectors q, o(~, . . . , LY,, we sometimes say 
that cq, a2, . . . , 01, are dependent (or independent) instead of saying S is 

dependent (or independent) . 
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The following are easy consequences of the definition. 

1. Any set which contains a linearly dependent set is linearly de- 
pendent. 
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2. Any subset of a linearly independent set is linearly independent. 
3. Any set which contains the 0 vector is linearly dependent; for 

1 * 0 = 0. 
4. A set X of vectors is linearly independent if and only if each finite 

subset of S is linearly independent, i.e., if and only if for any distinct 
vectors cq, . . . , a, of X, clczl + . . . + c,(Y, = 0 implies each ci = 0. 

Definition. Let V be a vector space. A basis for V is a lineady inde- 

pendent set of vectors in V ‘which spans the space V. The space V is finite- 

dimensional if it has aJinite basis. 

EXAMPLE 12. Let F be a subfield of the complex numbers. In F3 the 
vectors 

w=( 3,0,-3) 

a2 = (-1, 1, 2) 
a3 = ( 4, 2, -2) 

a4 = ( 2, 1, 1) 

are linearly dependent, since 

201 + 2cYz - cY3 + 0 . a4 = 0. 
The vectors 

El = 0, 0, 0) 
E2 = (0, 1, 0) 
E3 = (0, 0, 1) 

are linearly independent 

EXAMPLE 13. Let F be a field and in Fn let S be the subset consisting 
of the vectors cl, c2, . . . , G, defined by 

t1 = (1, 0, 0, . . . , 0) 
c2 = (0, 1, 0, . . . ) 0) 

. . . . . . . 

tn = (0, 0, 0, . . . ) 1). 

Let x1, x2, . . . , xn be scalars in F and put (Y = xlcl + x2c2 + . . . + x,E~. 
Then 

(2-12) a= (x1,52 )...) 5,). 

This shows that tl, . . . , E, span Fn. Since a! = 0 if and only if x1 = 
x2 = . . . = 5, = 0, the vectors Q, . . . , E~ are linearly independent. The 
set S = {q, . . . , en} is accordingly a basis for Fn. We shall call this par- 
ticular basis the standard basis of P. 
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EXAMPLE 14. Let P be an invertible n X n matrix with entries in 
the field F. Then PI, . . . , P,, the columns of P, form a basis for the space 
of column matrices, FnX1. We see that as follows. If X is a column matrix, 
then 

PX = XlPl + . . * + xnPn. 

Since PX = 0 has only the trivial solution X = 0, it follows that 
{Pl, . . . , P,} is a linearly independent set. Why does it span FnX1? Let Y 
be any column matrix. If X = P-‘Y, then Y = PX, that is, 

Y = XlPl + * ’ * + G&P,. 

so (Pl, . . . , Pn) is a basis for Fnxl. 

EXAMPLE 15. Let A be an m X n matrix and let S be the solution 
space for the homogeneous system AX = 0 (Example 7). Let R be a row- 
reduced echelon matrix which is row-equivalent to A. Then S is also the 
solution space for the system RX = 0. If R has r non-zero rows, then the 
system of equations RX = 0 simply expresses r of the unknowns x1, . . . , xn 
in terms of the remaining (n - r) unknowns xi. Suppose that the leading 
non-zero entries of the non-zero rows occur in columns kl, . . . , k,. Let J 
be the set consisting of the n - r indices different from kl, . . . , k,: 

J = (1, . . . , n} - {kl, . . . , IGT}. 

The system RX = 0 has the form 

xk, i- i? cljxj = 0 
J 

xk, + Z G$j = 0 
J 

where the cij are certain scalars. All solutions are obtained by assigning 
(arbitrary) values to those xj’s with j in J and computing the correspond- 
ing values of xk,, . . . , %k,. For each j in J, let Ei be the solution obtained 
by setting xj = 1 and xi = 0 for all other i in J. We assert that the (n - r) 
vectors Ej, j in J, form a basis for the solution space. 

Since the column matrix Ej has a 1 in row j and zeros in the rows 
indexed by other elements of J, the reasoning of Example 13 shows us 
that the set of these vectors is linearly independent. That set spans the 
solution space, for this reason. If the column matrix T, with entries 
t1, . . . , t,, is in the solution space, the matrix 

N = 2; tjEj 
J 

is also in the solution space and is a solution such that xi = tj for each 
j in J. The solution with that property is unique; hence, N = T and T is 
in the span of the vectors Ej. 
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EXAMPLE 16. We shall now give an example of an infinite basis. Let 
F be a subfield of the complex numbers and let I’ be the space of poly- 
nomial functions over F. Recall that these functions are the functions 
from F into F which have a rule of the form 

f(x) = co + ClX + * . . + c,xn. 

Let 5(z) = xk, Ic = 0, 1, 2, . . . . The (infinite) set {fo, fr, fi, . . .} is a basis 
for V. Clearly the set spans V, because the functionf (above) is 

f = cofo + Clfl + * * * + cnfn. 

The reader should see that this is virtually a repetition of the definition 
of polynomial function, that is, a function f from F into F is a polynomial 
function if and only if there exists an integer n and scalars co, . . . , c, such 
that f = cofo + . . . + cnfn. Why are the functions independent? To show 
that the set {fo, h, .h, . . .} is independent means to show that each finite 
subset of it is independent. It will suffice to show that, for each n, the set 
dfo, * * * , fn) is independent. Suppose that 

Cojfo + * * * + cJn = 0. 

This says that 
co + ClX + * * * + cnxn = 0 

for every x in F; in other words, every x in F is a root of the polynomial 
f(x) = co + ClX + * . . + cnxn. We assume that the reader knows that a 
polynomial of degree n with complex coefficients cannot have more than n 
distinct roots. It follows that co = cl = . . . = c, = 0. 

We have exhibited an infinite basis for V. Does that mean that V is 
not finite-dimensional? As a matter of fact it does; however, that is not 
immediate from the definition, because for all we know V might also have 
a finite basis. That possibility is easily eliminated. (We shall eliminate it 
in general in the next theorem.) Suppose that we have a finite number of 
polynomial functions gl, . . . , gT. There will be a largest power of z which 
appears (with non-zero coefficient) in gl(s), . . . , gJx). If that power is Ic, 
clearly fk+l(x) = xk+’ is not in the linear span of 91, . . . , g7. So V is not 
finite-dimensional. 

A final remark about this example is in order. Infinite bases have 
nothing to do with ‘infinite linear combinations.’ The reader who feels an 
irresistible urge to inject power series 

co 
z CkXk 

k=O 

into this example should study the example carefully again. If that does 
not effect a cure, he should consider restricting his attention to finite- 
dimensional spaces from now on. 
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Theorem 4. Let V be a vector space which is spanned by a finite set of 
vectors PI, & . . . , Pm. Then any independent set of vectors in V is jinite and 
contains no more than m elements. 

Proof. To prove the theorem it suffices to show that every subset 
X of V which contains more than m vectors is linearly dependent. Let S be 
such a set. In S there are distinct vectors (~1, Q, . . . , (Y, where n > m. 
Since pl, . . . , Pm span V, there exist scalars Aij in F such that 

For any n scalars x1, x2, . . . , x, we have 

XlLyl + . . . + XfS(r?l = i XjcUj 
j=l 

Since n > m, Theorem 6 of Chapter 1 implies that there exist scalars 
a, x2, . . . , xn not all 0 such that 

5 Aijxj=O, l<i<m. 
j=l 

Hence xlal + x2a2 + + . . + X~CG, = 0. This shows that S is a linearly 
dependent set. 1 

Corollary 1. If V is a finite-dimensional vector space, then any two 
bases of V have the same (jinite) number of elements. 

Proof. Since V is finite-dimensional, it has a finite basis 

@l,PZ,. . .,Pm). 

By Theorem 4 every basis of V is finite and contains no more than m 
elements. Thus if {CQ, +, . . . , oc,} is a basis, n I m. By the same argu- 
ment, m 2 n. Hence m = n. 1 

This corollary allows us to define the dimension of a finite-dimensional 
vector space as the number of elements in a basis for V. We shall denote 
the dimension of a finite-dimensional space V by dim V. This allows us 
to reformulate Theorem 4 as follows. 

Corollary 2. Let V be a finite-dimensional vector space and let n = 
dim V. Then 
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(a) any subset of V which contains more than n vectors is linearly 
dependent; 

(b) no subset of V which contains fewer than n vectors can span V. 

EXAMPLE 17. If F is a field, the dimension of Fn is n, because the 
standard basis for Fn contains n vectors. The matrix space Fmxlr has 
dimension mn. That should be clear by analogy with the case of Fn, be- 
cause the mn matrices which have a 1 in the i, j place with zeros elsewhere 
form a basis for Fmxn. If A is an m X n matrix, then the solution space 
for A has dimension n - r, where r is !he number of non-zero rows in a 
row-reduced echelon matrix which is row-equivalent to A. See Example 15. 

If V is any vector space over F, the zero subspace of V is spanned by 
the vector 0, but {0} is a linearly dependent set and not a basis. For this 
reason, we shall agree that the zero subspace has dimension 0. Alterna- 
tively, we could reach the same conclusion by arguing that the empty set 
is a basis for the zero subspace. The empty set spans {0}, because the 
intersection of all subspaces containing the empty set is {0}, and the 
empty set is linearly independent because it contains no vectors. 

Lemma. Let S be a linearly independent subset of a vector space V. 
Suppose p is a vector in V which is not in the subspace spanned by S. Then 
the set obtained by adjoining p to S is linearly independent. 

Proof. Suppose al, . . . , CY, are distinct vectors in S and that 

Clcrl + * * - + ~,,,a, + bfi = 0. 

Then b = 0; for otherwise, 

p= -; al+... 
( > 

+ -2 ffm 
( > 

and fi is in the subspace spanned by S. Thus clal + . . . + cn,ol, = 0, and 
since S is a linearly independent set each ci = 0. 1 

Theorem 5. If W is a subspace of a finite-dimensional vector space V, 
every linearly independent subset of W is finite and is part of a (finite) basis 
for W. 

Proof. Suppose So is a linearly independent subset of W. If X is 
a ‘inearly independent subset of W containing So, then S is also a linearly 
independent subset of V; since V is finite-dimensional, S contains no more 
than dim V elements. 

We extend So to a basis for W, as follows. If So spans W, then So is a 
basis for W and we are done. If So does not span W, we use the preceding 
lemma to find a vector p1 in W such that the set S1 = 2%~ U {PI} is inde- 
pendent. If S1 spans W, fine. If not, npolv the lemma to obtain a vector 02 
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in W such that Sz = X1 U {/3z> is independent. If we continue in this way, 
then (in not more than dim V steps) we reach a set 

s, = so u {Pl, f . . , PnJ 

which is a basis for W. 1 

Corollary 1. Ij W is a proper subspace of a finite-dimensional vector 
space V, then W is finite-dimensional and dim W < dim V. 

Proof. We may suppose W contains a vector cy # 0. By Theorem 
5 and its proof, there is a basis of W containing (Y which contains no more 
than dim V elements. Hence W is finite-dimensional, and dim W 5 dim V. 
Since W is a proper subspace, there is a vector /3 in V which is not in W. 
Adjoining p to any basis of W, we obtain a linearly independent subset 
of V. Thus dim W < dim V. 1 

Corollary 2. In a finite-dimensional vector space V every non-empty 
linearly independent set of vectors is part of a basis. 

Corollary 3. Let A be an n X n matrix over a field F, and suppose the 
row vectors of A form a linearly independent set of vectors in F”. Then A is 
invertible. 

Proof. Let (~1, crz, . . . , ayn be the row vectors of A, and suppose 
W is the subspace of Fn spanned by al, (Ye, . . . , czn. Since al, LYE, . . . , (Ye 
are linearly independent, the dimension of W is n. Corollary 1 now shows 
that W = F”. Hence there exist scalars Bij in F such that 

E; = i B.. G3) lliln 
j=l 

where (~1, Q, . . . , en} is the standard basis of Fn. Thus for the matrix B 
with entries Bii we have 

BA = I. 1 

Theorem 6. If WI and Wz are finite-dimensional subspaces of a vector 
space V, then Wr + Wz is Jinite-dimensional and 

dim Wr + dim Wz = dim (WI n W,) + dim (WI + WZ). 

Proof. By Theorem 5 and its corollaries, W1 n W2 has a finite 
basis {cq, . . . , CQ} which is part of a basis 

{al, . . . , Uk, Pl, * * . , Pm) for WI 

and part of a basis 

1 al, . . . , ak, -t’l, . . . , rn} for Wz. 

The subspace Wl + W2 is spanned by the vectors 
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and these vectors form an independent set. For suppose 

Z XiO!i + 2 yjfij + Z 277~ = 0. 
Then 

- 2 7$-y, = 2 Xi% + L: YjPj 

which shows that Z z,y, belongs to W,. As 2 x,y, also belongs to W, it 
follows that 

2 X,y, = 2 CiCti 

for certain scalars cl, . . . , ck. Because the set 

{ al) . . . , ax, Yl, . . . , Yn > 

is independent, each of the scalars X~ = 0. Thus 

2 XjOri + Z yjpj = 0 
and since 

{% . . . , ak, 01, . . . , &) 

is also an independent set, each zi = 0 and each y, = 0. Thus, 

{ al, . . . , ak, Pl, . . . , bn, 71, . . . , -in > 

is a basis for WI + Wz. Finally 

dim WI + dim l,t7, = (Ic + m) + (Ic + n) 
=k+(m+k+n) 
= dim (W, n Wz) + dim (WI + W,). 1 

Let us close this section with a remark about linear independence 
and dependence. We defined these concepts for sets of vectors. It is useful 
to have them defined for finite sequences (ordered n-tuples) of vectors: 
al, . . . ) a,. We say that the vectors (~1, . . . ,01, are linearly dependent 

if there exist scalars cl, . . . , c,, not all 0, such that clczl + . . . + cnan = 0. 
This is all so natural that the reader may find that he has been using this 
terminology already. What is the difference between a finite sequence 
al. . . ,&I and a set {CQ, . . . , CY,}? There are two differences, identity 
and order. 

If we discuss the set {(Ye, . . . , (Y,}, usually it is presumed that no 
two of the vectors CQ . . . , 01, are identical. In a sequence CQ, . . . , ac, all 
the CX;)S may be the same vector. If ai = LYE for some i # j, then the se- 
quence (Y], . . . , 01, is linearly dependent: 

(Yi + (-1)CXj = 0. 

Thus, if CY~, . . . , LYE are linearly independent, they are distinct and we 
may talk about the set {LYE, . . . , a,} and know that it has n vectors in it. 
So, clearly, no confusion will arise in discussing bases and dimension. The 
dimension of a finite-dimensional space V is the largest n such that some 
n-tuple of vectors in V is linearly independent-and so on. The reader 
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who feels that this paragraph is much ado about nothing might ask him- 

self whether the vectors 

a1 = (esj2, 1) 

a2 = (rn, 1) 

are linearly independent in Rx. 

The elements of a sequence are enumerated in a specific order. A set 

is a collection of objects, with no specified arrangement or order. Of 

course, to describe the set we may list its members, and that requires 

choosing an order. But, the order is not part of the set. The sets {1,2, 3,4} 

and (4, 3, 2, l} are identical, whereas 1, 2,3,4 is quite a different sequence 

from 4, 3, 2, 1. The order aspect of sequences has no bearing on ques- 

tions of independence, dependence, etc., because dependence (as defined) 

is not affected by t,he order. The sequence o(,, . . . , o(] is dependent if and 

only if the sequence al, . . . , 01, is dependent. In the next section, order 

will be important. 

Exercises 

1. Prove that if two vectors are linearly dependent, one of them is a scalar 
multiple of the other. 

2. Are the vectors 

a1 = (1, 1, 2,4), cY2 = (2, -1, -5, 2) 

a.3 = (1, -1, -4,O), a4 = (2, 1, 1, 6) 

linearly independent in R4? 

3. Find a basis for the subspace of R4 spanned by the four vectors of Exercise 2. 

4. Show that the vectors 

a = (1, 0, --I), ffz = (1, 2, I), a3 = (0, -3, 2) 

form a basis for R3. Express each of the standard basis vectors as linear combina- 
tions of al, (Ye, and LYE. 

5. Find three vectors in R3 which are linearly dependent, and are such that 
any two of them are linearly independent. 

6. Let V be the vector space of all 2 X 2 matrices over the field F. Prove that V 
has dimension 4 by exhibiting a basis for V which has four elements, 

7. Let V be the vector space of Exercise 6. Let W1 be the set of matrices of the 
form 

X -x 1 1 Y 2 
and let Wz be the set of matrices of the form 


